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Abstract: We study the asymptotic behavior of the logistic classifier in an
abstract Hilbert space and require realistic conditions on the distribution
of data for its consistency. The number kn of estimated parameters via
maximum quasi-likelihood is allowed to diverge so that kn/n → 0 and
nτ4kn

→ ∞, where n is the number of observations and τkn is the variance
of the last principal component of data used for estimation. This is the only
result on the consistency of the logistic classifier we know so far when the
data are assumed to come from a Hilbert space.
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1. Introduction

Functional Data Analysis (FDA) is an active research area in statistics that in-
cludes a collection of theorems and methods for dealing with infinite-dimensional
(functional) data (see Ramsay & Silverman (2002) and Ramsay & Silverman
(2005) for an overview). Classification of functional data is one of the hottest
topics in FDA and establishing consistency of various classifiers for functional
data has been of a great research interest for more than a decade.

Most of classifiers assign an observation to the class with the largest esti-
mated posterior probability. Consistency of such a classifier is then implied by
the consistency of the estimate of that probability. If it depends on a finite num-
ber of unknown parameters, as in the logistic model in R

k, then it suffices to
consistently estimate all the parameters. For example, in the Rk case the logistic
classifier has been proved to be consistent, strongly consistent (see, e.g. Chen
et. al. (1999)) and even uniformly consistent Kazakeviciute & Olivo (2016).

The situation becomes more complicated if conditional probability is mod-
elled by the infinite number of parameters, as in the logistic model in an infinite-
dimensional Hilbert space E. In this case we are given independent observations
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(X1, Y1), . . . , (Xn, Yn) of (X,Y ), where X is E-valued random variable and
Y ∈ {−1, 1} is its associated class label. Usually, then the following 3-step pro-
cedure is used: (1) some orthonormal basis in E is chosen and the observations
are replaced by their coefficients in that basis (a finite number, say, l of coeffi-
cients are retained), (2) the principal component analysis of the obtained n× l
array of data is performed and the first k principal components are retained, (3)
the usual logistic regression on the new n× (k + 1) array of data is performed.
From the mathematical point of view this means that we replace the original
observations by their orthogonal projections in some k-dimensional subspace
Ek ⊂ E and find the estimate θ̂kn of the unknown parameter θ0 ∈ E, which
maximizes the quasi-likelihood over all θ ∈ Ek. Of course, if we want to analyze
asymptotic properties of such an estimator (and of the corresponding classifier,
based on that estimator), we should also assume that k depends on n, that is,

the final estimator to be analyzed is θ̂knn for some sequence kn → ∞.

Note that if Ek is obtained by the procedure described above, then it is a
random subspace of E (it depends on data). This makes the analysis of θ̂knn

rather complicated. Therefore here we will analyze the simpler case where Ek are
non random. Formally, this means that we omit the step of principal component
analysis. This approach (call it näıve) is also known in the literature, but in
some cases is not recommended for practical use. For example, Escabias et.
al. (2007) argued that the näıve approach in the context of functional data
introduces multicollinearity (strong dependence among predictors) which in turn
causes inaccurate parameter estimates and increases their variance. However,
the asymptotic results in the case where Ek are non-random in some situations
are good, as we show later. Moreover, they show what can be expected in the
general case because some required assumptions are likely to remain also in the
general setting.

In this work we establish the consistency of the logistic classifier under the two
sets of conditions. The first set consists of three conditions on the distribution
of X that are rather simple and, nevertheless, sufficiently general. All three
conditions are satisfied if X has a normal distribution in Hilbert space with
zero mean and positive definite covariance form. The second set of conditions
bound the growth rate of kn: we require that kn/n → 0 and nτ4kn

→ ∞, where
τk = minθ∈Ek,‖θ‖=1 C(θ, θ) and C is the moment form ofX defined by (3). As we
later discuss, τk can be interpreted as the variance of the kth theoretical principal
component. The first condition requires k to be asymptotically less than n which
is almost necessary. The second condition suggests that the variance of the
last theoretical principal component tends to 0 slower than n−1/4, as n → ∞.
However, this condition can be relaxed, as our simulation study shows.

In the literature, there are limited attempts to study asymptotic behavior of
logistic estimate when dimensionality kn of data used for estimation diverges to-
gether with the sample size. For example, van de Geer (2008), Fan & Song (2010)
and Wang (2011) studied related but slightly different problems, that is, models
that include some kind of penalty on a parameter vector, such as Lasso. At first
look it could seem that a very close attempt to solve the described problem was
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the one of Liang & Du (2012), where they proved the asymptotic normality of
the parameter estimate under mild conditions. However, the fundamental differ-
ence between their work and ours is that they did not consider covariates X to
be random, while we do. In principle, the results for the model with non-random
data can be applied also to the case where the data are random, provided that
the assumptions used for non-random data are satisfied for each realization of
random data. However, we cannot apply their result to solve our problem be-
cause one of their assumptions translates as infk τk > 0 which does not hold, if
data come from a Hilbert space and follow normal distribution in Hilbert space.
In such a situation we can always select basis system {ej} such that the coor-

dinates of X are uncorrelated. Then
∞∑
j=1

C(ej , ej) =
∞∑
j=1

EX2
j = E‖X‖2 < ∞. If

Ek =

⎧⎨
⎩

k∑
j=1

cjej | c1, . . . , ck ∈ R

⎫⎬
⎭, then τk ≤ C(ek, ek) and thus inf

k
τk = 0.

The results nearest to ours are achieved in Müller & Stadtmüller (2005).
In the paper, the authors studied generalized linear models with no penalty
and established asymptotic normality for a properly scaled distance between
the estimated and the true parameters. However, they assume (see assumption
(M1)) that if VarXY = σ2(EXY ) (where EX , VarX denote the conditional mean
and conditional variance, given X, respectively) then the function σ is bounded
away from 0: σ2(μ) ≥ δ > 0 for all μ. This is not the case for logistic regres-
sion model, where σ2(μ) = μ(1 − μ). This means that the results in Müller
& Stadtmüller (2005) cannot be applied to prove the consistency of logistic
classifier as considered in this work. Moreover, Müller & Stadtmüller (2005) ap-
proximated infinite-dimensional model by a finite-dimensional one, that is, they
assumed that the distribution of Y depends on the projection of θ0 onto some
subspace Ek rather than on full θ0 ∈ E, and assumed that the error of such an
approximation tends to 0. However, we could not find any proof of the latter
rather complicated statement. No such approximation is involved in our work.

Our paper is organized as follows. In Section 2 we describe the statistical
problem considered, explicitly state the assumptions, give some discussion on
them, and state our main result. In Section 3 we provide a simulation study
to check the necessity of the assumptions and we end this work with a brief
discussion in Section 4. All proofs are left for Section 5.

2. Consistency

Let E be a separable Hilbert space with the inner product 〈·, ·〉. Let X ∈ E
be a Hilbert space-valued random variable and Y a random variable, gaining
values −1 and 1, with conditional probabilities (w.r.t. X) being 1− pθ0(X) and
pθ0(X), respectively. Here θ0 ∈ E is an unknown parameter and

pθ(x) =
1

1 + e−〈θ,x〉 , θ, x ∈ E.
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For example, if E = �2, the space of all square-summable sequences, then

〈θ, x〉 =
∞∑
k=1

θkxk. If E = L2([0, 1]), then 〈θ, x〉 =
∫ 1

0

θ(t)x(t)dt. Since E can be

any Hilbert space, we will work with the general notation 〈θ, x〉 instead.
Let (X1, Y1), . . . , (Xn, Yn) be a random sample from the distribution of (X,Y ).

For θ, x ∈ E and y ∈ {−1, 1} define

mθ(x, y) = log
(
1 + e−y〈θ,x〉

)
and denote

Mn(θ) = mθ(X,Y ) =
mθ(X1, Y1) + · · ·+mθ(Xn, Yn)

n
, M(θ) = Emθ(X,Y ).

Note that

Mn(θ) =
1

n

n∑
i=1

log
(
1 + e−Yi〈θ,Xi〉

)
=

1

n
log

n∏
i=1

(
1 + e−Yi〈θ,Xi〉

)

= − 1

n
log

n∏
i=1

qθ(Xi, Yi),

where

qθ(Xi, Yi) =
1

1 + e−Yi〈θ,Xi〉
.

Obviously, qθ(Xi, 1) = pθ(Xi) and qθ(Xi,−1) = 1 − pθ(Xi). Also, for any
bounded f ,

Ef(X,Y ) =

∫
f(x, 1)qθ(x, 1)μ(dx) +

∫
f(x,−1)qθ(x,−1)μ(dx)

=

∫
f(x, y)qθ(x, y)μ(dx)ν(dy),

where ν is a counting measure in the set {−1, 1}. Therefore qθ(x, y) is a density
of (X,Y ) w.r.t. the measure μ × ν. Hence, since μ is unknown, Mn(θ) can
be interpreted as the logarithm of the quasi-likelihood function, multiplied by
−1/n.

Naturally, for various practical tasks it is of great interest to provide an
estimate of pθ.

Let (Ek) be some fixed sequence of the linear subspaces of the space E such
that the following conditions are satisfied: (1) dimEk = k for all k, (2) Ek ⊂
Ek+1 for all k, and (3)

⋃
k

Ek = E. For any k and n define

θ̂kn = arg min
θ∈Ek

Mn(θ). (1)
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Note that taking θ ∈ Ek in the above expression introduces some approximation
error. To force this error to tend to 0 as n diverges, fix some sequence (kn) and
set

θ̂ = θ̂knn and p̂ = pθ̂. (2)

We will call p̂ the logistic estimate of the true conditional probability pθ0 . For
example, let E = L2(T ) with the usual inner product

〈θ, x〉 =
∫
T

θ(t)x(t)dt,

where T ⊂ R is an interval and L2 is the space of square integrable real functions

on T endowed with the usual inner product 〈x1, x2〉 =

∫ 1

0

x1(t)x2(t)dt. The

standard method for obtaining logistic estimate from a given sample (X1, Y1),
. . . , (Xn, Yn) is expanding X and θ via selected basis functions {ej}

Xi(t) =

∞∑
j=1

Xijej(t), θ(t) =

∞∑
j=1

θjej(t),

choosing k = kn and then using (1), where

Ek =

⎧⎨
⎩

k∑
j=1

cjej | c1, . . . , ck ∈ R

⎫⎬
⎭ .

We consider the following statistical task. We want to estimate the unknown
true conditional probability pθ0 , given the sample (X1, Y1), . . . , (Xn, Yn) from
the distribution of (X,Y ). The quality of the estimate p̂ is assessed by the risk
E|p̂(X) − pθ0(X)|. If the risk tends to 0, as n → ∞, the estimate p̂ is called
consistent. It is well known that if p̂ is consistent, then the empirical classifier,
which assigns x to the class 1 whenever p̂(x) > 1/2, is also consistent (see, e.g.,
van Ryzin (1966) or Kazakeviciute et. al. (2017)). Here we will consider the

logistic estimate (2), where we suppose that θ̂kn = 0, if the minimum is not
attained or is not unique.

We will say that the distribution of X is of full rank, if P(〈θ,X〉 = 0) = 0,
for all θ �= 0. Also, recall that any family of random variables (Zs) is called
uniformly integrable, if

sup
s

E|Zs|1{|Zs|>c} −−−→
c→∞

0.

The consistency of the logistic estimate will be proved under the following as-
sumptions on the distribution of X:

(FR) The distribution of X is of full rank.
(M) E‖X‖4 < ∞.
(UI) The family of random variables (〈θ,X〉2/E〈θ,X〉2 | ‖θ‖ = 1) is uniformly

integrable.
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Assumption (M) implies that the mean of X and the second moment form
of X are correctly defined. The mean is the only such vector EX from E that
〈θ,EX〉 = E〈θ,X〉 for all θ ∈ E. The second moment form is defined by

C(θ1, θ2) = E〈θ1, X〉〈θ2, X〉. (3)

If EX = 0, (3) is called the covariance form. For example, if E = L2([0; 1]), then

C(θ1, θ2) = E

∫ 1

0

θ1(s)X(s)ds

∫ 1

0

θ2(t)X(t)dt =

∫ 1

0

ds

∫ 1

0

θ1(s)θ2(t)C̃(s, t)dt,

where C̃(s, t) = EX(s)X(t) is a covariance function of the process X. If E = �2

and xi denote the coordinates of x ∈ �2, then

C(θ1, θ2) = E
∞∑
i=1

θ1iXi

∞∑
j=1

θ2jXj =
∑
i,j

θ1iθ2jcij ,

where (cij) is a covariance matrix of the random vector X. Since E can be any
abstract Hilbert space, we will work with the general notation C(θ1, θ2).

The second moment form is a continuous bilinear form on E. Moreover, it is
symmetric and positive semi-definite, that is, for all θ,

C(θ, θ) = E〈θ,X〉2 ≥ 0.

Obviously, C(θ, θ) = 0 if and only if P(〈θ,X〉 = 0) = 1. This implies that
C(θ, θ) > 0 if and only if P(〈θ,X〉 = 0) < 1. Recall that assumption (FR)
is P(〈θ,X〉 = 0) = 0. Hence assumption (FR) is slightly stronger than the
requirement that C is positive definite.

The required conditions are realistic and hold for a variety of real-life set-
tings. For example, all three assumptions hold, if X is a normally distributed
random vector with zero mean and positive definite covariance form. Indeed,
then E‖X‖s < ∞, for all s, and

sup
‖θ‖=1

E
〈θ,X〉2
E〈θ,X〉2 1

{
〈θ,X〉2
E〈θ,X〉2 >c

} = EZ21{Z2>c} −−−→
c→∞

0.

Here Z is a random variable that follows a standard normal distribution.
Denote

τk = min
θ∈Ek

‖θ‖=1

C(θ, θ). (4)

Here C is the moment form of X, defined by (3). For example, if E = �2,
Ek satisfy the conditions mentioned above, EX = 0, the coordinates of X are
uncorrelated and the variances of them decrease, then τk is the variance of the
kth coordinate. In other words, τk is the variance of the kth theoretical principal
component.

Our main result is the following Theorem.
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Theorem 1. Suppose that assumptions (FR), (M) and (UI) hold. Moreover,
suppose that

kn → ∞,
kn
n

→ 0 and nτ4kn
→ ∞,

as n → ∞. Then the logistic estimate is consistent.

Note that the condition nτ4kn
→ ∞ requires that the data are such that

the variance of the last principal component tends to 0 slower than n−1/4, as
n → ∞. This in turn suggests that the data need to be such that it cannot be
sufficiently explained only by a few principal components.

In statistics, the logistic model with an intercept is usually preferred over the
one without it because useful model information might be incorporated in the
intercept term. Theorem 1 implies the analogous result on the logistic estimate,
when the model with an intercept is considered, that is, when the conditional
probability that Y = 1, given X = x, is defined by

pα,θ(x) =
1

1 + e−α−〈θ,x〉 for α ∈ R and θ, x ∈ E. (5)

In this case, the assumption (FR) should be changed to

(FR’) P(〈θ,X〉 = α) = 0 for all θ �= 0 and α ∈ R.

We call pα̂,θ̂ the logistic estimate of (5), if

(α̂, θ̂) = arg min
(α,θ)∈R×Ekn

Mn(α, θ), (6)

where

Mn(α, θ) = mα,θ(X,Y ), mα,θ(X,Y ) = log
(
1 + e−Y (α+〈θ,X〉)

)
.

We say that the logistic estimate is consistent, if E|pα̂,θ̂(X) − p0(X)| → 0, as

n → ∞, where p0(x) = pα0,θ0(x) in this case. As before, τk is defined by (4),
where C is the covariance form of X. Our last result is the following Theorem.

Theorem 2. Suppose assumptions (FR’), (M) and (UI) hold, and EX = 0.
Moreover, suppose that

kn → ∞,
kn
n

→ 0 and nτ4kn
→ ∞,

as n → ∞. Then the logistic estimate is consistent.

3. Simulation study

To investigate the need of the conditions required for consistency, we performed
a simulation study. We will give two examples: one, where all assumptions hold,
and another one, where the assumption nτ4k → ∞ does not hold.
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Example 1. Since Xi(t) =

∞∑
j=1

Cijej(t) for any selected basis system, it is

enough to generate coefficients Cij . To go in line with the (UI) assumption, we
will generate Cij as independent and normally distributed variables with zero
mean and variances σ2

j = 1/(1.1j). Then τk = σ2
k. If we want that nτ

4
k = n1.1−4k

tend to ∞, we have to take k = �c logn with c < 1/(4 log 1.1) ≈ 2.62. In this
example, we took c = 2, so that nτ4k → ∞ and all assumptions would hold.

We took θ0 with θ0i = 1/(1.1i) and calculated pθ0(Xi) up to the precision
ε = 10−4. To this end we generated additional coordinates Xij for j ≤ l, where
l was the first index with |θ0lXil| < ε.

We generated 300, 500, 1000, 1500 and 2000 observations, respectively, over
100 independent runs for each setting, and each time we approximated the
distance

d(p̂, p0) = f(θ̂, θ0),

where

f(θ, θ0) = E|1/(1 + e−U1)− 1/(1 + e−U2)|

with U = (U1, U2) distributed according to the normal law with zero mean and
covariance matrix

Σ =

⎛
⎜⎜⎝

∑
i

θ2i σ
2
i

∑
i

θiθ0iσ
2
i

∑
i

θiθ0iσ
2
i

∑
i

θ20iσ
2
i

⎞
⎟⎟⎠ .

We calculated f using the Monte Carlo method. We simulated 10000 inde-
pendent copies of U , which gives, as preliminary testing shows, approximately
0.01 precision for d. We also reported the misclassification rate

MCR =
1

n

n∑
i=1

1{ŷi 	=yi},

where we set ŷi = 1, if p̂(xi) >= 1/2. Moreover, we reported the Bayes risk,
where the probability of misclassification was calculated by

Emin(p0(X), 1− p0(X)) = E
1

1 + e|U | , (7)

where U ∼ N(0, 1/(1.13−1)). Again, we used Monte Carlo method to calculate
(7). Figure 1 illustrates the simulated coefficients as well as the difference be-
tween the true and the estimated conditional probabilities. The x axis in plots
(a)-(c) in Figure 1 represents the coefficient number j which stops after the kth
value is generated. The y axis in plots (a)-(c) in Figure 1 represents the values of
Cij . As we can see from plots (a)-(c) the Cij are distributed normally with mean
0 and their variance decreases as j increases. Plots (d)-(f) in Figure 1 shows the
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Fig 1. Illustration of simulated data for Example 1. (a)-(c) Simulated coefficients Cij for
n = 300, 1000 and 2000, respectively. (d)-(f) Difference (p0 − p̂) between the true condi-
tional probability p0 and the estimated conditional probability p̂, evaluated for the generated
observations.

difference p0 − p̂ between the true and the estimated conditional probabilities
p0 and p̂, respectively, as functions of x. The x axis represents the observation
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number i and the y-axis shows the value of p0 − p̂ at the x = xi, i = 1, . . . , n.
We can see that the differences between the true and the estimated conditional
probabilities are distributed more or less normally around zero and that the
variance of them decreases as n increases suggesting that the average difference
between the two probabilities tends to zero. This is further confirmed by d̂(p̂, p0)
values in Table 1 which contains numerical results, averaged over 100 indepen-
dent runs. As we can see from Table 1, the assumption nτ4k → ∞ holds and

d̂(p̂, p0) → 0, as expected.

Table 1

Numerical results for Example 1, averaged over 100 independent runs

n 300 500 1000 1500 2000
k 12 13 14 15 16

nτ4k 3.1 3.5 4.8 4.9 4.9

d̂(p̂, p0) (± sd) 0.1 (± 0.017) 0.08 (±0.01) 0.06 (±0.01) 0.05 (±0.01) 0.05 (±0.01)
MCR (%, ± sd) 25.82 (± 2.8) 26.39 (±2.01) 26.44 (±1.24) 26.65 (±1.15) 26.65 (±0.98)
Bayes (%, ± sd) 24.34 (± 0.15) 24.34 (± 0.15) 24.34 (± 0.15) 24.34 (± 0.15) 24.34 (± 0.15)

Example 2. We considered the same settings as for Example 1, except that
now we took c = 6, so that nτ4k → 0 and even nτ2k → 0. Figure 2 illustrates
the simulated data as well as the difference between the true and the estimated
conditional probabilities, while numerical results, averaged over 100 independent
runs, are displayed in Table 2.

Table 2

Numerical results for Example 2, averaged over 100 independent runs

n 300 500 1000 1500 2000
k 35 38 42 44 46

nτ2k 0.4 0.4 0.3 0.3 0.3

nτ4k 4 ∗ 10−4 2.5 ∗ 10−4 1.1 ∗ 10−4 7.8 ∗ 10−5 4.8 ∗ 10−5

d̂(p̂, p0) (± sd) 0.26 (± 0.028) 0.24 (± 0.024) 0.2 (± 0.023) 0.19 (±0.022) 0.18 (±0.024)
MCR (%, ± sd) 22.92 (± 2.72) 23.97 (± 1.88) 25.4 (± 1.41) 25.6 (± 1.25) 25.95 (± 0.98)
Bayes (%, ± sd) 24.36 (± 0.14) 24.36 (± 0.14) 24.36 (± 0.14) 24.36 (± 0.14) 24.36 (± 0.14)

As we can see from Table 2, the assumption nτ4k → ∞ (and even weaker

assumption nτ2k → ∞) is violated but d̂(p̂, p0) → 0, regardless. This suggests
that the assumption nτ4k → ∞ might be not needed to establish the consistency
of logistic estimate and could be relaxed in future investigations.

4. Discussion

As we noted in the previous Section, the assumption nτ4kn
→ ∞ does not seem

to be necessary for our main result to hold. It is interesting that the analogous
assumption (M3) in Müller & Stadtmüller (2005) translates into nτ2kn

/k2n → ∞.
However, our simulation study shows (see Example 2) that even the assumption
nτ2kn

→ ∞ is not necessary. At the moment either what the true asymptotic
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Fig 2. Illustration of simulated data for Example 2. (a)-(c) Simulated coefficients Cij for
n = 300, 1000 and 2000, respectively. (d)-(f) Difference (p0 − p̂) between the true condi-
tional probability p0 and the estimated conditional probability p̂, evaluated for the generated
observations.

lower bound for τkn is, or how Theorem 1 can be proved under an assumption
weaker than nτ2kn

→ ∞, is not clear.



4498 A. Kazakeviciute and M. Olivo

5. Proofs

5.1. Facts from probability theory

Further in this Section, →p and →d denote convergence in probability and con-
vergence in distribution, respectively, while → is used for the usual convergence
in R, or convergence in norm in E. For convenience of reference we recall some
well-known facts about convergence and uniform integrability of random vari-
ables.

Proposition 1 (Continuous mapping theorem, see Kallenberg (2001), Theo-
rem 3.7). Let Un and U be random elements of some metric space S, P(U ∈
C) = 1, T another metric space, and fn, f measurable functions from S to T . If
un → u ∈ C implies fn(un) → f(u), then Un →d U implies fn(Un) →d f(U).

Proposition 2 (Subsequence criterion, see Kallenberg (2001), Lemma 3.2). Let
Un and U be random elements of some metric space S. Then Un →p U if and
only if each subsequence of (Un) has a further subsequence which converges in
probability to U .

Proposition 3 (see Kallenberg (2001), Lemma 3.10). If (Zn) is a uniformly
integrable sequence of random variables, then sup

n
E|Zn| < ∞ and P(Wn) → 0

implies EZn1Wn → 0.

Proposition 4 (see Kallenberg (2001), Lemma 3.11). If (Zn) is a uniformly
integrable sequence of random variables, then Zn →d Z implies EZn → EZ.

Proposition 5 (Weak convergence version of Fatou’s lemma, see Kallenberg
(2001), Lemma 3.11). If (Zn) is a sequence of positive random variables, then
Zn →d Z implies lim

n→∞
EZn ≥ EZ.

5.2. The function M(θ)

We begin by establishing some properties of the function M(θ). Recall that θ0
denotes the ”true” value of parameter θ.

Proposition 6. 1. If E‖X‖ < ∞, then, for all θ,

0 < M(θ0) ≤ M(θ) < ∞.

2. If E‖X‖ < ∞, then θn → θ implies M(θn) → M(θ).
3. If M(θn) → M(θ0), then 〈θn, X〉 →p 〈θ0, X〉.

Proof. 1. Inequality M(θ) > 0 is implied by the fact that mθ(x, y) > 0 for all x
and y. Because log function is increasing,

M(θ) = E log(1 + e−Y 〈θ,X〉) ≤ E log(1 + e‖θ‖‖X‖)

≤ E log(2e‖θ‖‖X‖) = log 2 + ‖θ‖E‖X‖ < ∞.



Consistency of logistic classifier in abstract Hilbert spaces 4499

Finally, convexity of the function − log yields

M(θ)−M(θ0) = −E log
1 + e−Y 〈θ0,X〉

1 + e−Y 〈θ,X〉 ≥ − log E
1 + e−Y 〈θ0,X〉

1 + e−Y 〈θ,X〉

= − log E

(
1 + e〈θ0,X〉

1 + e〈θ,X〉 (1− pθ0(X)) +
1 + e−〈θ0,X〉

1 + e−〈θ,X〉 pθ0(X)

)

= − log E

(
1

1 + e〈θ,X〉 +
1

1 + e−〈θ,X〉

)
= − log 1 = 0.

2. The statement follows from the dominated convergence theorem, because
θn → θ implies that

mθn(X,Y ) → mθ(X,Y )

and

mθn(X,Y ) ≤ log(1 + e‖θn‖‖X‖) ≤ log 2 + ‖θn‖‖X‖ ≤ log 2 + c‖X‖

with c = sup
n

‖θn‖ < ∞.

3. Let M(θn) → M(θ0). By Proposition 2, we have to prove that any sub-
sequence (〈θnk

, X〉) contains a further subsequence that tends in probability to
〈θ0, X〉. Note that M(θnk

) → M(θ0), therefore, for ease of notation, we omit
the index k.

The sequence of random vectors (〈θn, X〉, 〈θ0, X〉) is tight in the space R̄×R.
Indeed, if K ⊂ R is a compact interval such that P(〈θ0, X〉 ∈ K) ≥ 1 − ε (and
we can always find such K), then the set R̄×K is also compact and for all n

P((〈θn, X〉, 〈θ0, X〉) ∈ R̄×K) = P(〈θ0, X〉 ∈ K) ≥ 1− ε.

By the Prokhorov’s theorem (see Kallenberg (2001), Theorem 14.3), there exists
a subsequence (〈θnk

, X〉, 〈θ0, X〉), which converges in distribution in the space
R̄× R to some random vector (U1, U2).

By Proposition 5,

E

(
log(1 + eU1)

1 + eU2
+

log(1 + e−U1)

1 + e−U2

)

≤ lim
k→∞

E

(
log(1 + e〈θnk

,X〉)

1 + e〈θ0,X〉 +
log(1 + e−〈θnk

,X〉)

1 + e−〈θ0,X〉

)
= lim

k→∞
M(θnk

) = M(θ0).

Obviously, U2 is distributed identically to 〈θ0, X〉. Hence

M(θ0) = E

(
log(1 + e〈θ0,X〉)

1 + e〈θ0,X〉 +
log(1 + e−〈θ0,X〉)

1 + e−〈θ0,X〉

)

= E

(
log(1 + eU2)

1 + eU2
+

log(1 + e−U2)

1 + e−U2

)
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and therefore

E

(
log(1 + eU1)

1 + eU2
+

log(1 + e−U1)

1 + e−U2

)
≤ E

(
log(1 + eU2)

1 + eU2
+

log(1 + e−U2)

1 + e−U2

)
.

Let V be a random variable gaining values −1 and 1 with (conditional w.r.t.

(U1, U2)) probabilities
1

1 + eU2
and

1

1 + e−U2
. Then the above inequality can be

re-written as
E log(1 + e−V U1) ≤ E log(1 + e−V U2).

This yields

0 ≤ E log
1 + e−V U2

1 + e−V U1
≤ log E

1 + e−V U2

1 + e−V U1

= log E

(
1

1 + eU1
+

1

1 + e−U1

)
= log 1 = 0.

Therefore, both inequality signs can be replaced by equalities. However, Jensen’s
inequality becomes equality if and only if the variable that is being integrated
almost surely is a constant. In this case that constant is 0, that is, almost surely

log
1 + e−V U2

1 + e−V U1
= 0

and U1 = U2.
Hence (〈θnk

, X〉, 〈θ0, X〉) →d (U2, U2) and therefore 〈θnk
, X〉 − 〈θ0, X〉 →d

U2 − U2 = 0. When the limit random variable is 0 (or a constant), convergence
in distribution is equivalent to convergence in probability (Kallenberg (2001),
Lemma 3.7). Therefore, 〈θnk

, X〉 − 〈θ0, X〉 →p 0 and 〈θnk
, X〉 →p 〈θ0, X〉.

For any f ∈ Cr(Ek) we assume that its rth derivative at the point θ ∈ Ek is
a symmetric r-linear form on Ek defined by

f (r)(θ)(dθ1, . . . , dθr) = Ddθr · · ·Ddθ1f(θ),

where Ddθ stands for the directional derivative along dθ ∈ Ek. Its norm is
defined by

‖f (r)(θ)‖ = sup
‖dθ1‖≤1,...,‖dθr‖≤1

|f (r)(θ)(dθ1, . . . , dθr)|.

The function dθ �→ f (r)(θ)(dθ, . . . , dθ) is called the rth differential of f and is
denoted by drf(θ). For example, d2f(θ) is a quadratic form associated with the
bilinear form f ′′(θ).

For any x ∈ E and y ∈ {−1, 1}, function θ �→ mθ(x, y) is infinitely differen-
tiable on Ek and

m′
θ(x, y)dθ =

e−y〈θ,x〉

1 + e−y〈θ,x〉 (−y〈dθ, x〉),
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m′′
θ (x, y)(dθ1, dθ2) =

e−y〈θ,x〉

(1 + e−y〈θ,x〉)2
〈dθ1, x〉〈dθ2, x〉,

m′′′
θ (x, y)(dθ1, dθ2, dθ3) =

e−y〈θ,x〉 − e−2y〈θ,x〉

(1 + e−y〈θ,x〉)3
〈dθ1, x〉〈dθ2, x〉(−y〈dθ3, x〉).

It is obvious that

|m′
θ(X,Y )dθ| ≤ ‖dθ‖‖X‖,

|m′′
θ (X,Y )(dθ1, dθ2)| ≤ |〈dθ1, X〉||〈dθ2, X〉| ≤ ‖dθ1‖‖dθ2‖‖X‖2,

|m′′′
θ (X,Y )(dθ1, dθ2, dθ3)| ≤ ‖dθ1‖‖dθ2‖‖dθ3‖‖X‖3.

Therefore,

‖m′
θ(X,Y )‖ ≤ ‖X‖, ‖m′′

θ (X,Y )‖ ≤ ‖X‖2, ‖m′′′
θ (X,Y )‖ ≤ ‖X‖3,

moreover, ‖X‖, ‖X‖2, ‖X‖3 are integrable, if E‖X‖3 < ∞. Hence M(θ), as a
function on Ek, belongs to C3(Ek), and

dM(θ) = −E
e−Y 〈θ,X〉

1 + e−Y 〈θ,X〉Y 〈dθ,X〉,

d2M(θ) = E
e−Y 〈θ,X〉

(1 + e−Y 〈θ,X〉)2
〈dθ,X〉2,

d3M(θ) = −E
e−Y 〈θ,X〉 − e−2Y 〈θ,X〉

(1 + e−Y 〈θ,X〉)3
Y 〈dθ,X〉3.

If the distribution of X is of full rank, then, for any dθ �= 0, almost surely
〈dθ,X〉2 > 0 and therefore d2M(θ) > 0. Hence, for all θ, d2M(θ) is a positive
definite quadratic form. According to Bertsekas et. al. (2003), M(θ) is strictly
convex on Ek.

Proposition 7. If assumptions (FR) and (M) hold, then, for any k ≥ 1, the
function M(θ) has a unique minimum point in the space Ek. Furthermore, if θk
is that point, then M(θk) → M(θ0), as k → ∞.

Proof. Step 1: we will prove that sets Aq = {θ ∈ Ek | M(θ) ≤ q} are bounded.
Suppose the contrary. Then there exists some set Aq that is not bounded.

Find a sequence (θm) ⊂ Ek such that M(θm) ≤ q for all m, and ‖θm‖ →
∞, θm/‖θm‖ → a, as m → ∞. Because ‖a‖ = 1 and the distribution of X is
of full rank, either 〈a,X〉 < 0 or 〈a,X〉 > 0 with a positive probability. Since
0 < pθ0 < 1,

0 < P(Y 〈a,X〉 < 0) ≤ P( lim
m→∞

mθm(X,Y ) = ∞)

and so E lim
m→∞

mθm(X,Y ) = ∞. On the other hand, by Fatou’s lemma,

E lim
m→∞

mθm(X,Y ) ≤ lim
m→∞

M(θm) ≤ q.

A contradiction.
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Step 2: the end of the proof.
The existence of θk follows from Proposition 2.1.1 of Bertsekas et. al. (2003).

Since M(θ) is strictly convex, the minimum point is unique.

If θ
(k)
0 is the projection of θ0 in the space Ek, thenM(θ0) ≤ M(θk) ≤ M(θ

(k)
0 ).

From θ
(k)
0 → θ0 we get that M(θ

(k)
0 ) → M(θ0). Therefore, also M(θk) → M(θ0).

We are now ready to establish the consistency criterion. The following Propo-
sition provides the consistency conditions for the estimate of the type p̂ = pθ̂n ,

where θ̂n is any estimate of θ. If θ̂n is defined by (1)-(2), we get the consistency
criterion for the logistic estimate.

Proposition 8. 1. If M(θ̂n) →p M(θ0), then the estimate pθ̂n is consistent.
2. Suppose assumptions (FR) and (M) hold, and θk is the minimum of the

function M in the space Ek. If kn → ∞ and M(θ̂n) −M(θkn) →p 0, then the
estimate pθ̂n is consistent.

Proof. 1. By Proposition 6, M(θn) → M(θ0) implies 〈θn, X〉 →p 〈θ0, X〉. Then
pθn(X) →p pθ0(X) and, by Proposition 4, E|pθn(X)− pθ0(X)| → 0.

Let now M(θ̂n) →p M(θ0). We have to prove that E|pθ̂n(X)− pθ0(X)| → 0.
It is enough to prove that any subsequence E|pθ̂ns

(X) − pθ0(X)| has a further

subsequence that tends to 0. Moreover, it is well-known that any sequence that
converges in probability has a subsequence that converges almost everywhere.
Therefore, it is enough to prove that, if almost surely M(θ̂ns) → M(θ0), then
E|pθ̂ns

(X)− pθ0(X)| → 0.

However, if almost surely M(θ̂ns) → M(θ0), then from the first paragraph of
this proof we get that almost surely

E∗|pθ̂ns
(X)− pθ0(X)| → 0,

where E∗ denotes the conditional mean w.r.t. sequence ((Xi, Yi) | i ≥ 1). It is
enough to use the dominated convergence theorem.

2. The second statement follows from the first one and from Proposition
7.

5.3. The function Mn(θ)

Now suppose that k and n are fixed and consider Mn(θ), as a function on Ek.
For all θ, dθ ∈ Ek, x ∈ E and y ∈ {−1, 1},

m
′′

θ (x, y)(dθ, dθ) =
e−y〈θ,x〉

(1 + e−y〈θ,x〉)2
〈dθ, x〉2 ≥ 0.

Therefore, the function θ �→ mθ(x, y) is convex in Ek. Then also the function
Mn(θ) is convex. We first give conditions for its strict convexity.

Note that if θ ∈ Ek, then 〈θ,Xi〉 = 〈θ,X(k)
i 〉, where X

(k)
i denotes the projec-

tion of vector Xi in the space Ek.
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Proposition 9. If n ≥ k and X
(k)
1 , . . . , X

(k)
k are linearly independent, then

function Mn(θ) is strictly convex on Ek. If assumption (FR) holds, the proba-
bility of such event is 1.

Proof. The function Mn(θ) is strictly convex if its second differential d2Mn(θ)
is a positive definite quadratic form. Since

d2Mn(θ) =
1

n

n∑
i=1

e−Yi〈θ,Xi〉

(1 + e−Yi〈θ,Xi〉)2
〈dθ,X(k)

i 〉2,

and all summands in the right-hand side are nonnegative, d2Mn(θ) = 0 implies

that dθ is perpendicular to all X
(k)
i . If n ≥ k and X

(k)
1 , . . . , X

(k)
k are linearly

independent, then dθ = 0.
The second statement follows from Theorem 1 in Kazakeviciute & Olivo

(2017).

Recall some notions from Kazakeviciute & Olivo (2017). Let (x1, y1), . . . ,
(xn, yn) be n vectors from Ek × {−1, 1}, called sample points, and a �= 0 be
another vector from Ek. We say that the vector a separates sample points if, for
all i,

yi〈a, xi〉 ≥ 0.

We say that sample points are separable, if there exists some a �= 0 that sep-
arates them. Note that this definition is equivalent to the definition of quasi-
complete separation, given by Albert & Anderson (1984). Next, the statement
”the sample (X1, Y1), . . . , (Xn, Yn) is k-separable” defines some event, the set
of all elementary events ω such that sample points

(X
(k)
1 (ω), Y1(ω)), . . . , (X

(k)
n (ω), Yn(ω)) (8)

are separable.

Proposition 10. If the sample (X1, Y1), . . . , (Xn, Yn) is not k-separable then,
for any q > 0, the (random) set Aq = {θ ∈ Ek | Mn(θ) ≤ q} is bounded.

Proof. Fix any ω such that the set Aq(ω) is not bounded and denote xi =

X
(k)
i (ω), yi = Yi(ω). Find a sequence (θm) ⊂ Aq such that ‖θm‖ → ∞ and

θm/‖θm‖ → a. Then, for all m and all i = 1, . . . , n,

log(1 + e−yi〈θm,xi〉) ≤
n∑

i=1

log(1 + e−yi〈θm,xi〉) ≤ nq.

But

−yi〈θm, xi〉 = −‖θm‖yi
〈 θm
‖θm‖ , xi

〉
→ ∞

if yi〈a, xi〉 < 0. Hence yi〈a, xi〉 ≥ 0 for all i, that is, a separates sample points
(8).
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Now suppose n ≥ k and let Wkn denote the following event: X
(k)
1 , . . . , X

(k)
k

vectors are linearly independent and the sample is not k-separable. If ω ∈ Wkn

then, by Propositions 9 and 10, the function Mn(θ) is strictly convex and all its
sub-level sets Aq are bounded. As is seen from the proof of Proposition 7, then

Mn(θ) has the unique minimum point, which is, of course θ̂kn(ω). If ω �∈ Wkn,

we suppose that θ̂kn(ω) = 0.
Denote qkn = P(W c

kn). Then, by Proposition 9 and by Corollary 2.1 in Kaza-
keviciute & Olivo (2017), qknn → 0, provided that assumption (FR) holds and
kn/n → 0.

5.4. Proof of Theorem 1

We follow the proof of Theorem 5.42 from van der Vaart (2000).
For k ≥ 1 and θ ∈ Ek, x ∈ E, y ∈ {−1, 1} let us define

ψk,θ(x, y) = − e−y〈θ,x〉

1 + e−y〈θ,x〉 yx
(k),

where x(k) denotes the orthogonal projection of x in the space Ek. It is obvious
that the function θ �→ ψk,θ(x, y) is the gradient of the restriction of the function
mθ(x, y) on Ek. Also let us define

Ψk,n(θ) = ψk,θ(X,Y ), and Ψk(θ) = Eψk,θ(X,Y ).

These functions are the gradients of the functions Mn(θ) and M(θ), as functions
on Ek, respectively. Therefore, both Ψk,n and Ψk are C2-smooth functions from
Ek to Ek. The derivative Ψ

′
k(θ) is the linear operator from Ek to Ek which maps

dθ1 ∈ Ek to a vector Ψ′
k(θ)dθ1 ∈ Ek such that, for all dθ2 ∈ Ek,

〈Ψ′
k(θ)dθ1, dθ2〉 = M ′′(θ)(dθ1, dθ2).

Proposition 11. The function Ψk is a diffeomorphism.

Proof. Suppose Ψk(θ1) = Ψk(θ2) and denote dθ = θ2 − θ1. Then, for some
t ∈ (0, 1),

0 = 〈Ψk(θ2), dθ〉 − 〈Ψk(θ1), dθ〉 = M ′′(θ1 + tdθ)(dθ, dθ).

This yields dθ = 0, that is, θ1 = θ2. Therefore, the function Ψk is injective.
Analogously, from Ψ

′

k(θ)dθ = 0 we get that

0 = 〈Ψ′
k(θ)dθ, dθ〉 = M ′′(θ)(dθ, dθ)

and dθ = 0. Therefore, the operator Ψ′
k(θ) is invertible for all θ.

The statement of the theorem now follows from the inverse function theo-
rem.
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Proposition 11 implies that the set V = Ψk(Ek) is open. Moreover, 0 ∈ V
because Ψk(θk) = 0. Let us take some δk such that Ū(0, δk) ⊂ V and denote
Uk = Ψ−1

k (U(0, δk)). Then Uk is the neighborhood of the point θk. Moreover,
because Ψk is a homeomorphism between Ek and V ,

Ψk(Ūk) = Ψk(Uk) = U(0, δk) = Ū(0, δk).

Denote
W

′

kn = { sup
θ∈Ūk

‖Ψk,n(θ)−Ψk(θ)‖ ≤ δk}.

The following reasoning is under the assumption that eventWkn∩W ′
kn occurred.

If z ∈ Ū(0, δk), then Ψ−1
k (z) ∈ Ūk and then

‖z −Ψk,n(Ψ
−1
k (z))‖ = ‖Ψk(Ψ

−1
k (z))−Ψk,n(Ψ

−1
k (z))‖ ≤ δk.

Therefore z �→ z − Ψk,n(Ψ
−1
k (z)) is a continuous function from Ū(0, δk) to

Ū(0, δk). From the Brouwer’s Fixed Point Theorem we get that, for some z ∈
Ū(0, δk),

z = z −Ψk,n(Ψ
−1
k (z)),

that is, Ψk,n(Ψ
−1
k (z)) = 0. Because the function Mn(θ) is strictly convex, θ̂kn is

the unique zero of the function Ψk,n. Therefore, θ̂kn = Ψ−1
k (z) ∈ Ūk.

Let dk = diamŪk. Then ‖θ̂kn − θk‖ ≤ dk and

|M(θ̂kn)−M(θk)| ≤ sup
θ
‖Ψk(θ)‖dk ≤ E‖X‖dk.

Fig 3. Conceptual illustration of the ideas from Theorem 5.42 in van der Vaart (2000) that
solves the well-known problem in statistics: by Law of Large Numbers, the empirical expec-
tation tends to the true expectation. How to prove that θ̂kn that minimizes the empirical
expectation tends to θk that minimizes the true expectation? As van der Vaart suggests, if
the distance between the gradients of the empirical and the true expectations are bounded by
δk, then the distance between θ̂kn and θk is bounded by dk.

Therefore, in order to prove Theorem 1 it is enough to choose δk in such a
way that dkn → 0 and P(W ′c

kn,n) → 0.
We now need to evaluate the diameter dk. The following Proposition gives

the necessary result.
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Proposition 12. Suppose assumptions (FR), (M) and (UI) are satisfied and
δk = o(

√
τk), as k → ∞. Then dk = O(δk/τk).

The proof of Proposition 12 is preceded with three lemmas.

Lemma 1. Let (Zn) be a sequence of positive integrable variables such that the
sequence (Zn/EZn) is uniformly integrable. Then, for all q < 1,

lim
n→∞

P(Zn ≥ qEZn) > 0.

Proof. Suppose the contrary. Without loss of generality, we can assume that

P(Zn ≥ qEZn) → 0.

From uniform integrability we get that

E
Zn

EZn
1{Zn≥qEZn} → 0.

Therefore, there exists n such that

EZn1{Zn≥qEZn} < (1− q)EZn.

But then

EZn = EZn1{Zn≥qEZn} + EZn1{Zn<qEZn} < (1− q)EZn + qEZn = EZn.

A contradiction.

Lemma 2. Suppose the assumptions (FR), (M) and (UI) hold and δk = o(
√
τk),

as k → ∞. Then there exists k0 such that, for all k ≥ k0 and all dθ ∈ Ek with
‖dθ‖ = 1,

∃t > 0 〈Ψk(θk + tdθ), dθ〉 > δk. (9)

Proof. Step 1 : we prove that if (9) fails, for some k ≥ 1 and dθ ∈ Ek with
‖dθ‖ = 1, then

E(Y 〈dθ,X〉)− ≤ δk. (10)

If (9) fails then, for some tm → ∞,

δk ≥ 〈Ψk(θk + tmdθ), dθ〉 = −E
e−Y 〈θk,X〉−tmY 〈dθ,X〉

1 + e−Y 〈θk,X〉−tmY 〈dθ,X〉Y 〈dθ,X〉.

Note that

e−Y 〈θk,X〉−tmY 〈dθ,X〉

1 + e−Y 〈θk,X〉−tmY 〈dθ,X〉 −−−−→
m→∞

{
0, if Y 〈dθ,X〉 > 0,

1, if Y 〈dθ,X〉 < 0,

Therefore (10) follows by dominated convergence.
Step 2: the end of the proof.
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Suppose δk = o(
√
τk), as k → ∞, but the assertion of the Lemma is false.

Then there exists a sequence km → ∞ and a sequence (dθm) such that, for all
m ≥ 1, dθm ∈ Ekm , ‖dθm‖ = 1 and, by the result of Step 1, E(Y 〈dθm, X〉)− ≤
δkm . Hence

E(Y 〈dθm, X〉)−
√
τkm

−−−−→
m→∞

0.

Then also
E(Y 〈dθm, X〉)−√

C(dθm, dθm)
−−−−→
m→∞

0.

But

E(Y 〈dθm, X〉)− = −E〈dθm, X〉1{〈dθm,X〉<0,Y=1} + E〈dθm, X〉1{〈dθm,X〉>0,Y=−1}

= E|〈dθm, X〉|
(
1{〈dθm,X〉<0}
1 + e−〈θ0,X〉 +

1{〈dθm,X〉>0}
1 + e〈θ0,X〉

)

≥ E
|〈dθm, X〉|
1 + e|〈θ0,X〉|

≥
√
C(dθm, dθm)

2
E
1{|〈dθm,X〉|≥

√
C(dθm,dθm)/2}

1 + e|〈θ0,X〉| ,

therefore

E
1{|〈dθm,X〉|≥

√
C(dθm,dθm)/2}

1 + e|〈θ0,X〉| → 0.

This yields
1{|〈dθm,X〉|≥

√
C(dθm,dθm)/2}

1 + e|〈θ0,X〉| →p 0

and then
1{|〈dθm,X〉|≥

√
C(dθm,dθm)/2} →p 0,

that is,
P(〈dθm, X〉2 ≥ C(dθm, dθm)/4) → 0.

This contradicts Lemma 1.

If Z is a positive random variable and EZ = 1, we can consider Z as a density,
that is, with any random vector U there exists a random vector Ũ such that
with any nonnegative or any bounded Borel function f

Ef(Ũ) = Ef(U)Z.

We need the following property of the transformation U �→ Ũ .

Lemma 3. Let (Zn) be a sequence of positive random variables, EZn = 1 for
all n, (Un) be another sequence of random variables and let Ũn be a random
variable such that with any nonnegative or any bounded Borel function f

Ef(Ũn) = Ef(Un)Zn.

If the sequence (Zn) is uniformly integrable, then Un = Op(1) implies Ũn =
Op(1).
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Proof. Fix ε and find c1 such that

sup
n

EZn1{Zn>c1} < ε.

Then find c such that
sup
n

P(|Un| > c) < ε/c1.

Then for all n,

P(|Ũn| > c) = E1{|Ũn|>c} = E1{|Un|>c}Zn

= E1{|Un|>c,Zn≤c1}Zn + E1{|Un|>c,Zn>c1}Zn

≤ c1P(|Un| > c) + E1{Zn>c1}Zn < 2ε.

Therefore, Ũn = Op(1).

Now we are ready to prove Proposition 12.

Proof. Lemma 2 implies that if k is large enough then, for any dθ ∈ Ek with
‖dθ‖ = 1, at least one of the values of the function f(t) = 〈Ψk(θk + tdθ), dθ〉
is greater than δk. The function is continuous, strictly increasing and equal
to 0, when t = 0. Therefore, there exists unique t = tk(dθ) > 0 such that
〈Ψk(θk + tdθ), dθ〉 = δk.

Step 1: we will prove that dk ≤ 2αk, where

αk = sup
dθ∈Ek

‖dθ‖=1

tk(dθ).

It is enough to prove that Ψ−1
k (Ū(0, δk)) ⊂ Ū(θk, αk). Let θ ∈ Ψ−1

k (Ū(0, δk)),
that is ‖Ψk(θ)‖ ≤ δk. Denote dθ = (θ − θk)/‖θ − θk‖. Then

〈Ψk(θk + ‖θ − θk‖dθ), dθ〉 = 〈Ψk(θ), dθ〉 ≤ ‖Ψk(θ)‖‖dθ‖ ≤ δk.

Therefore, ‖θ − θk‖ ≤ tk(dθ) ≤ αk.
Step 2: transforming the task to a simpler one.
From the result in Step 1 we get that it is enough to prove that αk = O(δk/τk),

that is that αkτk/δk = O(1). Suppose the contrary, that there exists some
subsequence that is unbounded. Then, without loss of generality, we can assume

αkτk/δk → ∞

and we need to get a contradiction.
Let dθk be unit-length vectors from Ek such that tk(dθk)/αk → 1. Then

τktk(dθk)/δk → ∞

and so
C(dθk, dθk)tk(dθk)/δk → ∞. (11)
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For short, denote

tk = tk(dθk), uk = tk
√

C(dθk, dθk), βk =
δk√

C(dθk, dθk)

and

Z1k = 〈θk, X〉, Z2k =
〈dθk, X〉√
C(dθk, dθk)

.

It is obvious that βk ≤ δk/
√
τk → 0 and from (11) we get that uk/βk → ∞.

Moreover,

δk = 〈Ψk(θk + tkdθk), dθk〉 = fk(1)− fk(0) =

∫ 1

0

f ′
k(t)dt,

where
fk(t) = 〈Ψk(θk + ttkdθk), dθk〉

and

f ′
k(t) = tkM

′′
(θk + ttkdθk)(dθk, dθk) = tkE

e−Y 〈θk+ttkdθk,X〉

(1 + e−Y 〈θk+ttkdθk,X〉)2
〈dθk, X〉2

= tkC(dθk, dθk)E
e−Y (Z1k+tukZ2k)

(1 + e−Y (Z1k+tukZ2k))2
Z2
2k.

Therefore,

βk → 0, βk/uk → 0, βk = ukE

∫ 1

0

e−Y (Z1k+tukZ2k)

(1 + e−Y (Z1k+tukZ2k))2
dtZ2

2k

and we have to obtain a contradiction.
Step 3: selecting one more subsequence.
Since EZ2

2k = 1, we can consider Z2
2k as a density. Then there exist random

variables Ỹk, Z̃1k and Z̃2k such that with any Borel function f

Ef(Ỹk, Z̃1k, Z̃2k) = Ef(Y, Z1k, Z2k)Z
2
2k.

As a separate case,

P(|Ỹk| = 1) = E1{|Ỹk|=1} = E1{|Y |=1}Z
2
k = EZ2

k = 1,

that is, almost surely Ỹk ∈ {−1, 1}. Moreover,

βk = ukE

∫ 1

0

e−Ỹk(Z̃1k+tukZ̃2k)

(1 + e−Ỹk(Z̃1k+tukZ̃2k))2
dt.

Since Z1k = 〈θk, X〉 →p 〈θ0, X〉, we get Z1k = Op(1). Since the sequence
(Z2

2k) is uniformly integrable, Z2
2k = Op(1) and then also Z2k = Op(1). Then

from Lemma 3 we get that Ỹk = Op(1), Z̃1k = Op(1) and Z̃2k = Op(1). This
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means that also (Ỹk, Z̃1k, Z̃2k) = Op(1). From Prochorov’s theorem we get
that some subsequence of that sequence converges in distribution. Therefore
we can suppose that uk → u (where u can be infinite), and (Ỹk, Z̃1k, Z̃2k) →d

(Ỹ , Z̃1, Z̃2).

Step 4: the case, where uk → u < ∞.

Denote

gu(y, z1, z2) =

∫ 1

0

e−y(z1+tuz2)

(1 + e−y(z1+tuz2)2)
dt.

If (yk, z1k, z2k) → (y, z1, z2), then for all t,

e−yk(z1k+tukz2k)

(1 + e−yk(z1k+tukz2k))2
→ e−y(z1+tuz2)

(1 + e−y(z1+tuz2))2
.

The sequence on the left is not greater than 1 for all t. Therefore, by the dom-
inated convergence theorem guk

(yk, z1k, z2k) → gu(y, z1, z2). Then, by Proposi-
tion 1,

guk
(Ỹk, Z̃1k, Z̃2k) →d gu(Ỹ , Z̃1, Z̃2).

The sequence of random variables on the left hand side is not greater than 1.
Therefore, by the Proposition 4

Egu(Ỹ , Z̃1, Z̃2) = lim
k→∞

Eguk
(Ỹk, Z̃1k, Z̃2k) = lim

k→∞

βk

uk
= 0.

We got a contradiction because gu function is everywhere positive.

Step 5: the case, where uk → ∞.

From

E
1

Z̃2
2k

= E
Z2
2k

Z2
2k

= 1

we get that the sequence of random variables (1/|Z̃2k|) is uniformly integrable.
Then by Proposition 3

E
1

|Z̃2|
= lim

k→∞
E

1

|Z̃2k|
≤ sup

k
E

1

|Z̃2k|
< ∞.

Therefore almost surely Z̃2 �= 0.

For all u > 0, y ∈ {−1, 1}, z1 ∈ R and z2 �= 0,

ugu(y, z1, z2) = u

∫ 1

0

e−y(z1+tuz2)

(1 + e−y(z1+tuz2))2
dt =

1

yz2

1

1 + e−y(z1+tuz2)

∣∣1
0

=
1

yz2

(
1

1 + e−y(z1+uz2)
− 1

1 + e−yz1

)

=
e−yz1 − e−y(z1+uz2)

yz2(1 + e−y(z1+uz2))(1 + e−yz1)
.
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Let uk → ∞ and (yk, z1k, z2k) → (y, z1, z2) with z2 �= 0. Then if yz2 < 0, then

ukguk
(yk, z1k, z2k) → − 1

yz2(1 + e−yz1)
,

and if yz2 > 0, then

ukguk
(yk, z1k, z2k) →

e−yz1

yz2(1 + e−yz1)
.

In other words,

ukguk
(yk, z1k, z2k) →

1

|yz2|(1 + e−yz1)
h(y, z1, z2) =

1

|z2|(1 + e−yz1)
h(y, z1, z2),

where

h(y, z1, z2) =

{
1, if yz2 < 0,

e−yz1 , if yz2 > 0.

By Proposition 1,

ukguk
(Ỹk, Z̃1k, Z̃2k) →d

1

|Z̃2|(1 + e−Ỹ Z̃1)
h(Ỹ , Z̃1, Z̃2).

The sequence of random variables on the left hand side is dominated by the
sequence (1/|Z̃2k|) which is uniformly integrable. Therefore by Proposition 4

E
1

|Z̃2|
h(Ỹ , Z̃1, Z̃2) = lim

k→∞
ukEguk

(Ỹk, Z̃1k, Z̃2k) = lim
k→∞

βk = 0.

Again, we got a contradiction because almost surely
1

|Z̃2|
h(Ỹ , Z̃1, Z̃2) > 0.

It remains to estimate the probability P(W
′c
kn). In order to do this, we have

to estimate

sup
θ∈Ūk

‖Ψk,n(θ)−Ψk(θ)‖.

Fix θ ∈ Ūk and denote dθ = θ − θk. By using Taylor’s expansion we get

Ψk,n(θ) = Ψk,n(θk) + Ψ′
k,n(θk)dθ + rk,n(θ, dθ),

Ψk(θ) = Ψ′
k(θk)dθ + rk(θ, dθ),

where

‖rk,n(θ, dθ)‖ ≤ sup
0<t<1

‖Ψ′′

k,n(θk + tdθ)‖‖dθ‖2 ≤ ‖X‖3d2k,

‖rk(θ, dθ)‖ ≤ sup
0<t<1

‖Ψ′′

k (θk + tdθ)‖‖dθ‖2 ≤ E‖X‖3d2k.
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Therefore,

sup
θ∈Ūk

‖Ψk,n(θ)−Ψk(θ)‖

≤ ‖Ψk,n(θk)‖+ dk‖Ψ′
k,n(θk)−Ψ′

k(θk)‖+ d2k(‖X‖3 + E‖X‖3)

and

P(W
′c
nk) ≤ P(‖Ψk,n(θk)‖ > δk/3) + P(dk‖Ψ′

k,n(θk)−Ψ′
k(θk)‖ > δk/3)

+ P(d2k(‖X‖3 + E‖X‖3) > δk/3).
(12)

The first term on the right hand of (12) is estimated as follows. Let (e1, . . . , ek)
be an orthonormal basis of Ek. Then

E‖Ψk,n(θk)‖2 =

k∑
j=1

E〈Ψk,n(θk), ej〉2 =

k∑
j=1

Var〈Ψk,n(θk), ej〉

=
1

n

k∑
j=1

Var〈ψk,θk(X,Y ), ej〉 =
1

n

k∑
j=1

E〈ψk,θk(X,Y ), ej〉2

=
1

n
E‖ψk,θk(X,Y )‖2 ≤ 1

n
E‖X‖2.

Therefore, the probability that we are interested does not exceed

9E‖X‖2
nδ2kn

.

Similarly, we can evaluate the second term of (12). Again, we would like to
apply Chebyshev’s inequality and get that

P(Z > δk/3dk) ≤
9d2k
δ2k

EZ2,

where Z = ‖Ψ′
k,n(θk)−Ψ′

k(θk)‖. However, since Ψk,n is a vector-valued function,
its derivative is a linear operator which makes the exact computation of its norm
very complex. To make things simpler, here we can use the Hilbert-Schmidt
norm instead, which is known to be greater than usual norm. Therefore,

E‖Ψ′
k,n(θk)−Ψ′

k(θk)‖2

≤
k∑

j,j′=1

E(〈Ψ′
k,n(θk)ej′ , ej〉 − 〈Ψ′

k(θk)ej′ , ej〉)2

=

k∑
j,j′=1

Var〈Ψ′
k,n(θk)ej′ , ej〉 =

1

n

k∑
j,j′=1

Var〈ψ′
k,θk

(X,Y )ej′ , ej〉

≤ 1

n

k∑
j,j′=1

E〈ψ′
k,θk

(X,Y )ej′ , ej〉2 =
1

n

k∑
j,j′=1

E(m
′′

θk
(X,Y )(ej′ , ej))

2
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≤ 1

n

k∑
j,j′=1

E〈X, ej〉2〈X, ej′〉2 =
1

n
E

⎛
⎝ k∑

j=1

〈X, ej〉2
⎞
⎠

2

=
1

n
E‖X(k)‖4

≤ 1

n
E‖X‖4

and the second term on the right hand side of (12) does not exceed

9E‖X‖4d2kn

nδ2kn

.

The third term of (12) tends to 0, if d2kn
/δkn → 0.

Therefore, Theorem 1 will be proved, if we can select δk such that

dkn → 0, nδ2kn
→ ∞,

d2kn

nδ2kn

→ 0,
d2kn

δkn

→ 0.

Note that the third condition is implied by the first and the second ones. If
we take δk = o(τ2k ), then the first and the fourth conditions are met because
then dk = O(δk/τk) = o(1) and d2k/δk = O(δk/τ

2
k ) = o(1). Therefore, it is

enough to select δk = o(τ2k ) such that nδ2kn
→ ∞, that is, in such a way that

asymptotically
n−1/2 ≺ δkn ≺ τ2kn

,

where a ≺ b means that a = o(b). Clearly, we can achieve this, if

n−1/2 ≺ τ2kn
,

that is, if nτ4kn
→ ∞ which is exactly the assumption of Theorem 1.

5.5. Proof of Theorem 2

Proof. Define a new Hilbert space Ē = R× E with the inner product

〈(α, θ), (a, x)〉 = αa+ 〈θ, x〉,

where α, a ∈ R and θ, x ∈ E, and set X̄ = (1, X) ∈ Ē. Take any θ̄ = (α, θ) �= 0.
If θ �= 0, then P(〈θ̄, X̄〉 = 0) = 0 because of (FR’).

If θ = 0, then α �= 0 and therefore

P(〈θ̄, X̄〉 = 0) = P(α = 0) = 0.

Hence X̄ satisfies condition (FR). Moreover, if X satisfies (M), then

E‖X̄‖4 = E〈X̄, X̄〉2 = E (1 + 〈X,X〉)2 = 1 + 2E‖X‖2 + E‖X‖4 < ∞,

that is, X̄ also satisfies (M). Finally, suppose X satisfies (UI). Fix ε and find c0
such that for all c > c0 and all θ

E〈θ,X〉21{〈θ,X〉2>(cE〈θ,X〉2)/2} ≤ εE〈θ,X〉2.
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Denote c̄0 = max(c0, 2, 1/ε). Take c > c̄0 and any θ̄ = (α, θ) with norm equal to
1. Then by Chebyshev’s inequality

α2P((α+ 〈θ,X〉)2 > c(α2 + E〈θ,X〉2)) ≤ α2/c ≤ α2ε

and

E〈θ,X〉21{(α+〈θ,X〉)2>c(α2+E〈θ,X〉2)} ≤ E〈θ,X〉21{2α2+2〈θ,X〉2>c(α2+E〈θ,X〉2)}

= E〈θ,X〉21{2〈θ,X〉2>cE〈θ,X〉2+(c−2)α2}

≤ E〈θ,X〉21{〈θ,X〉2>c/2E〈θ,X〉2}

< εE〈θ,X〉2.

Therefore,

E〈θ̄, X̄〉21{〈θ̄,X̄〉2>c(E〈θ̄,X̄〉2)}

= E(α+ 〈θ,X〉)21{(α+〈θ,X〉)2>c(α2+E〈θ,X〉2)}

≤ 2α2E1{(α+〈θ,X〉)2>c(α2+E〈θ,X〉2)} + 2E〈θ,X〉21{(α+〈θ,X〉)2>c(α2+E〈θ,X〉2)}

≤ 2ε(α2 + E〈θ,X〉2),

that is, X̄ satisfies condition (UI).
Define

C̄(θ̄1, θ̄2) = E〈θ̄1, X̄〉〈θ̄2, X̄〉, τ̄k = min
θ̄∈R×Ek

‖θ̄‖=1

C̄(θ̄, θ̄).

Note that

C̄(θ̄, θ̄) = E〈θ̄, X̄〉2 = E(α+〈θ,X〉)2 = α2+2αE〈θ,X〉+E〈θ,X〉2 = α2+E〈θ,X〉2.

Since C is a bilinear form, for all θ ∈ Ek

α2 + C(θ, θ) = α2 + ‖θ‖2C(θ/‖θ‖, θ/‖θ‖) ≥ α2 + ‖θ‖2τk.

Therefore,
τ̄k ≥ min

|α|≤1

(
α2 + (1− α2)τk

)
= min(1, τk)

and
nτ̄4kn

= nmin(1, τ4kn
) = min(n, nτ4kn

) → ∞.

Then, by Theorem 1, the corresponding logistic estimate

θ̃kn = arg min
θ̄∈R×Ek

M̄n(θ̄), (13)

where
M̄n(θ̄) = mθ̄(X̄, Y ), mθ̄(x̄, y) = log(1 + e−y〈θ̄,x̄〉)

is consistent on Ē = R×E. It remains to note that the logistic estimate (13) is
the same as the estimate (6).
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