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ABSTRACT 

Developing an understanding of guided wave propagation in multi-layered systems has 

important applications in non-destructive evaluation.  This article presents a general weighted 

residual formulation for guided wave propagation in fluid-filled pipes buried in an elastic 

solid, or immersed in a quiescent fluid.  A one-dimensional semi-analytic finite element 

(SAFE) approach is combined with a perfectly matched layer (PML), to compute dispersion 

curves for different pipe applications.  The speed and accuracy of this approach are compared 

against the scaled boundary finite element method (SBFEM) and it is shown that for a rod 

immersed in a liquid the two methods provide very similar computational speeds.  The speed 

and accuracy of the model is then investigated for immersed and buried fluid-filled pipes, and 

it is shown that no advantage in computational speed is found when using either quadratic or 

higher order spectral elements in the PML provided the number of degrees of freedom in 

each model is equivalent.  Accordingly, it is shown that the SAFE-PML method is capable of 

obtaining accurately the modal characteristics of buried and immersed fluid-filled pipes, with 

computational speeds comparable to the SBFEM approach using either quadratic or higher 

order spectral elements in the PML. 

 

 

Key words: SAFE-PML method; Buried pipes; Immersed pipes; Waveguide energy 

distribution; Spectral elements.  
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1. Introduction 

The propagation of elastic waves along the walls of pipelines plays an important role in the 

detection of leaks and the identification of defects such as cracks or regions of corrosion.  For 

example, non-destructive testing often makes use of propagating elastic waves to identify the 

presence of defects, and this is normally carried out in the ultrasonic frequency range [1].  

Alternatively, if pipelines are filled with a liquid, then ruptures of the wall can generate acoustic 

waves in the low audio frequency range, which can then be detected by remote monitoring 

equipment placed in the fluid or on the walls [2, 3].  These detection techniques rely on the 

propagation of acoustic energy in both the structure and the fluid, as well as the detection and 

interpretation of energy transfer.  However, it is common for these pipelines also to be buried 

underground, or immersed in a fluid, and this can significantly affect the propagation of energy. 

This often leads to a reduction in the effectiveness of detection techniques and so it is important 

to develop a good understanding of the physics underpinning this wave propagation if one is 

to develop reliable inspection methodologies. 

Analytic methods are available to analyse this type of problem and the commercial available 

software DISPERSE is capable of obtaining the low order modes for buried pipes.  For example, 

Aristégui et al [4] and Leniov et al. [5, 6] use DISPERSE to obtain torsional and longitudinal 

modes for a pipe immersed in fluids or buried in sand, and generally good agreement is 

obtained with experimental measurements for axisymmetric modes. However, an analytic 

solution is difficult to undertake for complex problems where large numbers of modes are 

present, and so it is convenient to use numerical methods and the analysis of pipes and cylinders 

or rods is now well established [7-11].  However, if the pipe is buried in an elastic solid, or 

immersed in a liquid, then one must address the challenge of capturing the sound field in the 

surrounding (nominally infinite) domain.  If one adopts a finite element based approximation 

then it is necessary to close the problem so that the mesh is restricted to a finite outer region, 
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but at the same time one also needs to enforce the appropriate radiation boundary conditions at 

infinity.  For solutions in the frequency domain, this complexity has led to the semi analytic 

finite element (SAFE) method being favoured, with a surrounding absorbing layer used to 

damp down outward propagating waves.  Relevant examples include the study of an immersed 

bar by Fan et al. [12], and a buried structure of arbitrary cross-section by Castaings and Lowe 

[13].  Recently, an alternative to absorbing layers was proposed by Nguyen et al. [14], who 

showed that a perfectly matched layer (PML) is more numerically efficient than an equivalent 

absorbing layer for an elastic waveguide of arbitrary cross-section buried in an infinite elastic 

medium.  Zuo and Fan recently applied a similar approach for an elastic waveguide immersed 

in a fluid [15].  If one is interested in axisymmetric geometries such as pipes or rods, Duan et 

al. [16] also showed that for buried pipes the axisymmetric problem can readily be reduced 

from two to one dimension, and a relatively thin PML can be attached directly to the outer 

surface of the pipe. This significantly lowers the number of degrees of freedom required and 

delivers significant improvements in the computational speed of a SAFE-PML based approach.  

Matuzzyk [17] also demonstrated the efficiency of a one dimensional finite element based 

approach, although this analysis is restricted to propagation in the circumferential direction 

only.  Kalkowski et al. [18] recently used a variational formulation to examine buried and 

submerged fluid filled pipes using a SAFE-PML approach with spectral finite elements.  

Thus, recent articles illustrate that one may significantly improve the speed of a SAFE-PML 

approach, however this approach requires a PML and this generates its own non-physical 

eigensolutions.  This means that one must sort so-called trapped and leaky modes from 

radiation type modes when adopting the SAFE-PML method.  Nguyen et al. [14] showed how 

this sorting can be done by comparing the average kinetic energy in each region, however this 

adds a further computational expense.  This has motivated attempts to try and find alternatives, 

and Hua et al. [19] use infinite elements over the outer surface of the waveguide. Hua et al. 



5 

developed an efficient one-dimensional solution for an axisymmetric problem and applied this 

approach to the analysis of buried pipes. However, this method requires the generation of new 

FE basis functions that are known to be computationally unstable in regions of high modal 

densities [20].  Hlasky-Hennison et al. [21] adopted a similar approach, this time using so-

called radiating elements for the outer surface of their FE mesh, and applied this to wave 

propagation in an immersed solid structure.  However, this approach requires the outer surface 

of the FE domain to be in the acoustic far field of the solid structure, which is likely to require 

a large outer domain and so will be computationally efficient only for low order modes and 

lower frequencies.  To completely remove the discretisation of the outer region, Mazzotti et al. 

[22-24] proposed coupling a SAFE formulation for the internal solid structure to a boundary 

integral formulation for the exterior region.  Application of the boundary element method then 

reduces the discretisation of the exterior domain to the outer surface of the guide only, which 

avoids problems associated with meshing a finite outer region.  Recently, Gravenkamp et al. 

[25-27] proposed the use of the scaled boundary finite element method (SBFEM), which uses 

an analytic formulation to scale this exterior domain.  The Sommerfeld radiation condition is 

then enforced by placing numerical dashpots on the outer surface of the guide, although an 

exact dashpot boundary condition only exists for a fluid exterior domain, and so for an elastic 

exterior the solution is only approximate.  This method has been applied by Gravenkamp et al. 

to one and two dimensional problems [25-27], and fast solution times are shown to be possible.  

Furthermore, this method does not require one to sort and remove those radiation type modes 

typically found when using a PML based method, which further helps to speed up the method. 

The method presented by Gravekamp et al. [25] delivers fast and accurate solutions and so 

this method presents a benchmark for this particular type of problem, at least for an immersed 

waveguide.  Accordingly, this article will compare the SAFE-PML approach against 

predictions obtained using the SBFEM method of Gravekamp et al.  This comparison will make 
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use of an optimised version of the general weighted residual method that has not previously 

been reported for the SAFE-PML approach.  This is important because identifying a general 

FE based approach that is at least comparable in speed and accuracy to the SBFEM approach 

means that one can continue to take advantage of standard FE codes.  Of course, the trade-off 

with the SAFE-PML approach is that one has to mesh an outer layer and identify and remove 

the radiation modes, and so this trade-off between the two methods is also explored here.  

Furthermore, recent developments of the SAFE-PML method have introduced the use of 

spectral elements [18] and so this article will also investigate if spectral elements provide any 

computational advantages in terms of solution speed and accuracy when compared to the more 

usual quadratic finite elements used by Duan et al. [16].  The investigation extends to both 

buried and immersed fluid filled pipelines because these represent common applications, and 

so in section 2 the weighted residual method is used to develop a new version of the SAFE-

PML approach for fluid filled pipes; this is then benchmarked for an immersed rod in section 

3, and extended to the more challenging problems of an immersed and buried fluid-filled pipes 

in sections 4 and 5.  In section 6, material damping is added to the outer region, and conclusions 

are drawn in section 7.  

2. Theory 

In this section the weighted residual method is applied to a fluid-filled pipe that consists of 

a number of elastic or viscoelastic layers, although each layer is assumed here to be 

homogenous and isotropic.  The weighted residual method is adopted here because of its 

generality and this method is re-cast here to enable frequency independent matrices to be 

assembled, which provides the weighted residual alternative to the variational approach by 

Kalkowski et al. [18].  Accordingly, the pipe is assumed to be surrounded by an infinite 

medium so that it is either buried in a solid elastic structure, or immersed in a quiescent fluid.  

This is illustrated in Fig. 1, where the layer Ω0 represents the internal fluid, layers Ω𝑗 , for 𝑗 =
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1, .  .  .  , 𝑚 − 1, denote the [elastic] pipe layers, and Ω𝑚 is the outer region where a PML is 

applied, which is either a fluid or an elastic solid. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Geometry of fluid-filled pipe. 

 

 

2.1. Governing Equations for Elastic Region 

The one dimensional form of Navier’s elastodynamic equations in cylindrical co-ordinates 

for layer Ω𝑗 (𝑗 = 1 to 𝑚 − 1)  gives [16] 

 𝜌𝑗

𝜕2𝑢𝑟𝑗

′

𝜕𝑡2
=

𝜕𝜎𝑟𝑟𝑗

′

𝜕𝑟
+

1

𝑟

𝜕𝜎𝑟𝜃𝑗

′

𝜕𝜃
+

𝜕𝜎𝑟𝑧𝑗

′

𝜕𝑧
+

1

𝑟
(𝜎𝑟𝑟𝑗

′ − 𝜎𝜃𝜃𝑗

′ ) (1) 

 

 𝜌𝑗

𝜕2𝑢𝜃𝑗

′

𝜕𝑡2
=

𝜕𝜎𝜃𝑟𝑗

′

𝜕𝑟
+

1

𝑟

𝜕𝜎𝜃𝜃𝑗

′

𝜕𝜃
+

𝜕𝜎𝜃𝑧𝑗

′

𝜕𝑧
+

2

𝑟
𝜎𝑟𝜃𝑗

′  (2) 

 

 𝜌𝑗

𝜕2𝑢𝑧𝑗

′

𝜕𝑡2
=

𝜕𝜎𝑧𝑟𝑗

′

𝜕𝑟
+

1

𝑟

𝜕𝜎𝑧𝜃𝑗

′

𝜕𝜃
+

𝜕𝜎𝑧𝑧𝑗

′

𝜕𝑧
+

1

𝑟
𝜎𝑟𝑧𝑗

′  (3) 

 

where r, 𝜃 and z form an orthogonal cylindrical co-ordinate system in the radial, 

circumferential and axial directions of the waveguide, respectively, see Fig. 1.  In addition, 𝜌 

is density, 𝑡 is time, 𝑢′ is displacement and 𝜎𝑞𝑙
′  (𝑞, 𝑙 = 𝑟, 𝜃 or 𝑧 ) is the stress tensor.  A time 

Pipe region Ω𝑚−1  

    

Fluid region Ω0 

Pipe region Ω1 

Pipe region Ω2  

Surrounding 

medium region Ω𝑚 

𝑎1 𝑎2 
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am 

r 
θ 

PML 

𝑎0 
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dependence of 𝑒i𝜔𝑡 is assumed throughout this article, where 𝜔 is the radian frequency and 

i = √−1.  The displacement sound field is assumed to be harmonic in the circumferential 

direction, and the coupled displacement 𝑢′ for all layers is expanded in the form 

 𝑢𝑞
′ (𝑟) = 𝑢𝑞(𝑟)𝑒

i[𝜔𝑡−𝑛𝜃−𝑘𝑇1𝛾𝑧], (4) 

where 𝑢𝑞 is an eigenfunction (𝑞 = 𝑟, 𝜃 or 𝑧), and 𝛾 is a dimensionless wavenumber.  In 

addition, 𝑛 denotes circumferential mode order, 𝑘𝑇1
= 𝜔 𝑐𝑇1

⁄ , and 𝑐𝑇1
 and 𝑐𝐿1

 are the shear 

(torsional) and compressional (longitudinal) bulk wave velocities for (elastic) layer Ω1, 

respectively.  The weighted residual method is used and so Eqs. (1)-(3) are weighted using 

the arbitrary function 𝑤𝑞.  The weak forms of Eqs. (1) to (3) are then obtained by making use 

of the usual relationships between stress and strain [16].  Layers from Ω1to Ω𝑚−1 are 

combined by enforcing continuity of displacement and normal shear stress over the interface 

between each layer. Three equations for the elastic regions are delivered by setting 𝜁 = i𝑘𝑇1
𝛾 

and �̃�𝜃 = i𝐮𝜃:  

 𝐑10𝐮𝐫 − 𝜁2𝐑12𝐮𝑟 + 𝚯10�̃�𝜃 + 𝜁𝐙11𝐮𝑧 = 𝑤𝑟𝜎𝑟𝑟𝑚−1
|
𝑟=𝑎𝑚−1

− 𝑤𝑟𝜎𝑟𝑟1|𝑟=𝑎0
 (5) 

 

 𝚯20�̃�𝜃 − 𝜁2𝚯22�̃�𝜃 + 𝐑20𝐮𝐫 + 𝜁𝐙21𝐮𝑧 = 𝑤𝜃𝜎𝜃𝑟𝑚−1
|
𝑟=𝑎𝑚−1

− 𝑤𝜃𝜎𝜃𝑟1|𝑟=𝑎0
 (6) 

 

 𝐙30𝐮𝑧 − 𝜁2𝐙32𝐮𝑧 + 𝜁𝐑31𝐮𝑟 + ζ𝚯31�̃�𝜃 = 𝑤𝑧𝜎𝑧𝑟𝑚−1
|
𝑟=𝑎𝑚−1

− 𝑤𝑧𝜎𝑧𝑟1|𝑟=𝑎0
 (7) 

 

The matrices that make up these equations are listed in Appendix A, and the Lamé constants 

are given by 𝜆 and 𝜇; the vectors for displacement contain the individual displacements in 

each layer, so that 𝐮𝑞 = [𝐮𝑞1 𝐮𝑞2  ∙∙∙ 𝐮𝑞(𝑚−1)].  
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2.2. Governing Equations for the Inner Fluid Region 

The appropriate wave equation for the fluid layer Ω0 is Helmholtz’s equation, which in 

cylindrical co-ordinates gives 

 
𝜕2𝑝0

′

𝜕𝑟2
+

1

𝑟

𝜕𝑝0
′

𝜕𝑟
+

1

𝑟2

𝜕2𝑝0
′

𝜕𝜃2
+

𝜕2𝑝0
′

𝜕𝑧2
−

1

𝑐0
2

𝜕2𝑝0
′

𝜕𝑡2
= 0, (8) 

where 𝑝0
′  is the acoustic pressure and 𝑐0 is the speed of sound in the fluid, layer Ω0.  The 

ansatz for pressure is the same as for the displacement in the structure, so that 

 𝑝0
′ (𝑟) = 𝑝0

(𝑟)𝑒i[𝜔𝑡−𝑛𝜃−𝑘𝑇1
𝛾𝑧]. (9) 

Adopting the weighted residual method yields the following eigenequaiton: 

 𝐑00�̃�0 − 𝜁2𝐑20�̃�0 =
1 

𝜌0𝜔
2
𝑤0

𝜕𝑝0

𝜕𝑟
|
𝑟=𝑎0

 (10) 

where 𝑤0 is the weighting function, and 𝑘0 = 𝜔 𝑐0⁄ .  The pressure is non-dimensionalised 

so that 𝜌0𝜔
2�̃�

0
= 𝐩0, and 𝜌0 is the fluid density in region Ω0; the matrices in Eq. (10) can be 

found in Appendix B.  To solve the fluid-filled pipe problem, it is necessary to couple 

together each layer and this is done separately for the case of a solid or a fluid in the outer 

layer.  

2.3. A SAFE-PML model for fluid-filled buried pipes 

A fluid-filled buried pipe is analysed first, and this requires Eqs. (5)-(7) and Eq. (10) to be 

coupled together. A PML is also used to model layer Ω𝑚, and the stretching function is 

specified here as 

 �̃� = ∫ 𝜉(𝑠)𝑑𝑠
𝑟

0

, (11) 
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where 𝜉 is a non-zero, continuous and complex-valued coordinate stretching function.  To 

couple the inner fluid and the pipe layers together it is necessary to apply the appropriate 

boundary conditions at the interface 𝑟 = 𝑎0, which gives 

 
1

𝜌0𝜔2

𝜕𝑝

𝜕𝑟
= 𝑢𝑟       and        𝑝 = −𝜎𝑟𝑟 . (12a,b) 

The boundary condition given by Eq. (12a) is substituted into the right hand side of Eq. 

(10), and Eq. (12b) is substituted into the right hand side of Eq. (5).  In addition, zero traction 

in the circumferential and axial directions is applied at 𝑟 = 𝑎0, and at the exterior of the PML 

zero traction is also applied.  This latter condition is used because it provides a convenient 

simplification of the governing equations.  The variable 𝜉 is then chosen to deliver an 

efficient PML and this is discussed in sections 3 and 4. Following the application of these 

boundary conditions, Eqs. (5)-(7) and Eq. (10) are combined to yield the following 

eigenequation 

 [
𝒁 𝟎
𝟎 𝐗𝐓] {

𝐋
ζ𝐋

} = 𝜁 [
𝐘 𝐗
𝐗𝐓 𝟎

] {
𝐋
ζ𝐋

} (13) 

where 𝐋 = [�̃�0 𝐮𝐫 �̃�𝜃 𝐮𝑧], and 𝐮𝒒 includes displacements in the outer PML layer Ω𝑚. 

In addition,  

 𝐙 = [

𝐑00 −𝐂01 𝟎 𝟎
−𝐂10 𝐑10 𝚯10 𝟎

𝟎 𝐑20 𝚯20 𝟎
𝟎 𝟎 𝟎 𝐙30

] (14) 

 

 𝐘 = [

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 −𝐙11

𝟎 𝟎 𝟎 −𝐙21

𝟎 −𝐑31 −𝚯31 𝟎

] (15) 

 

 𝐗 = [

𝐑20 𝟎 𝟎 𝟎
𝟎 𝐑12 𝟎 𝟎
𝟎 𝟎 𝚯22 𝟎
𝟎 𝟎 𝟎 𝐙32

]. (16) 
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The matrices that couple together the fluid and elastic layers are given as  

 𝐂01 = 𝐖0
T𝐍|𝑟=𝑎0

       and       𝐂10 = 𝜌
𝑚
𝜔2𝐖T𝐍|

𝑟=𝑎0
 (17a,b) 

 

Equation (13) is an eigenequation and solution of this equation will deliver an unordered 

list of 𝑁𝑇 = 2(𝑁𝑝 + 3𝑁𝑢) eigenmodes, where 𝑁𝑝 is the number of nodes in the fluid, and 𝑁𝑢 

is the total number of nodes in the pipe and the PML layers. Note that all of the matrices that 

populate Eq. (13), apart from 𝐑00 and 𝐌7 are frequency independent if the material 

properties are themselves frequency independent. This does of course help to speed up the 

computation of dispersion curves.  

2.4. A SAFE model for fluid-filled immersed pipes 

For a fluid-filled immersed pipe, Eqs. (5)-(7) and Eq. (10) are coupled together in the 

same way as in the previous section, however this time the integral over the PML region 

(Ω𝑚) in Eqs. (A7) to (A19) is removed and replaced with a fluid in the outer region.  

Accordingly, Helmholtz’s equation in the outer layer, Ω𝑚, is recast by replacing the radial 

coordinate 𝑟 with �̃�, and this delivers: 

 
1

𝜉

𝜕

𝜕𝑟
(
1

𝜉

𝜕𝑝
𝑚
′

𝜕𝑟
) +

1

𝜉

1

�̃�

𝜕𝑝
𝑚
′

𝜕𝑟
+

1

�̃�2

𝜕2𝑝
𝑚
′

𝜕𝜃2
+

𝜕2𝑝
𝑚
′

𝜕𝑧2
−

1

𝑐𝑚
2

𝜕2𝑝
𝑚
′

𝜕𝑡2
= 0 (18) 

 

Here, 𝑐𝑚 is the speed of sound in the outer fluid layer (Ω𝑚). Multiplying Eq. (18) by 𝜉 and 

applying the arbitrary weighting function 𝑤𝑚, yields the following weak form: 

 

∫ (
1

𝜉

𝜕𝑤𝑚

𝜕𝑟

𝜕𝑝
𝑚
′

𝜕𝑟
−

1

�̃�
𝑤𝑚

𝜕𝑝
𝑚
′

𝜕𝑟
− 𝜉

1

�̃�2
𝑤𝑚

𝜕2𝑝
𝑚
′

𝜕𝜃2
− 𝜉𝑤𝑚

𝜕2𝑝
𝑚
′

𝜕𝑧2
+ 𝜉

1

𝑐𝑚
2

𝑤𝑚

𝜕2𝑝
𝑚
′

𝜕𝑡2
)d𝑟

Ω𝑚

=𝑤𝑚

1

𝜉

𝜕𝑝
𝑚
′

𝜕𝑟
|
𝑟=𝑎𝑚−1

𝑟=𝑎𝑚

 

(19) 

In the matrix form, this gives 

 𝐑0𝑚�̃�𝑚 − 𝜁2𝐑2𝑚�̃�𝑚 =
1 

𝜌𝑚𝜔2
𝑤𝑚

1

𝜉

𝜕𝑝𝑚

𝜕𝑟
|
𝑟=𝑎𝑚−1

𝑟=𝑎𝑚

 (20) 
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The boundary conditions in Eqs. (12a,b) apply also to the interface at 𝑟 = 𝑎𝑚−1, and zero 

traction at the exterior of the PML is now replaced with zero normal velocity.  Following the 

application of these boundary conditions, the global eigenequation can be assembled in the 

same form as Eq. (13), so that  

 𝐙 =

[
 
 
 
 
𝐑00 −𝐂01 𝟎 𝟎 𝟎
−𝐂10 𝐑10 𝚯10 𝟎 𝐂1𝑚

𝟎 𝐑20 𝚯20 𝟎 𝟎
𝟎 𝟎 𝟎 𝐙30 𝟎
𝟎 𝐂𝑚1 𝟎 𝟎 𝐑0𝑚]

 
 
 
 

 (21) 

 

 𝐘 =

[
 
 
 
 
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 −𝐙11 𝟎
𝟎 𝟎 𝟎 −𝐙21 𝟎
𝟎 −𝐑31 −𝚯31 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎]

 
 
 
 

 (22) 

 

 𝐗 =

[
 
 
 
 
𝐑20 𝟎 𝟎 𝟎 𝟎
𝟎 𝐑12 𝟎 𝟎 𝟎
𝟎 𝟎 𝚯22 𝟎 𝟎
𝟎 𝟎 𝟎 𝐙32 𝟎
𝟎 𝟎 𝟎 𝟎 𝐑2𝑚]

 
 
 
 

 (23) 

 

where 𝐋 = [�̃�0 𝐮𝐫 �̃�𝜃 𝐮𝑧 �̃�𝑚], and 

 

 𝐂𝑚1 = 𝐖𝑚
T 𝐍|𝑟=𝑎0

       and       𝐂1𝑚 = 𝜌
𝑚
𝜔2𝐖𝑚

T𝐍|
𝑟=𝑎𝑚−1

. (24a,b) 

 

For this problem, the solution delivers an unordered list of 𝑁𝑇 = 2(𝑁𝑝 + 3𝑁𝑢) 

eigenmodes, where 𝑁𝑝 is the number of nodes in the fluid region Ω0 and the PML region Ω𝑚, 

and 𝑁𝑢 is the total number of nodes in the pipe and any additional layers (but does not 

include the PML).  

2.5. Computing dispersion curves and energy distribution 

The eigenproblem is solved using a one-dimensional finite element mesh and the 

eigensolver ‘eig’ in MATLAB®. This is executed in this study using a laptop with four 2.6 GHz 
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Intel Core™ CPU processors and 16 GB of RAM.  The phase velocity (𝑐𝑝) and the 

attenuation (∆) for an individual mode are given as 

 c𝑝 = 𝜔/Re(−𝑖𝜁)        and         ∆= 8.686 Im(i𝜁)  (25a,b) 

 

The eigensolution yields an unordered list of eigenvalues and associated eigenvectors and 

these are identified and sorted using the method described by Nguyen et al. [14], which sorts 

according to the balance between the average kinetic energy over the cross section of each 

layer, Ω𝑗, for each eigenmode.  This enables separation of the radiation from leaky and 

trapped modes and here the average kinetic energy in an elastic region is given as  

 

 K𝑗 =
𝜋

2
∫𝜌𝑗𝜔

2Re[𝐮𝑗
∗

Ω𝑗

∙ 𝐮𝑗]Re(𝜉)Re(�̃�)𝑑𝑟             𝑗 = 1 to 𝑚  (26) 

where, �̃� = 𝑟 and 𝜉 = 1 for 𝑗 = 1,𝑚 − 1, and Eq. (26) applies for 𝑗 = 𝑚 if the exterior 

region Ω𝑚 is elastic.  For a fluid region, the average kinetic energy, is  

K𝑗 =
𝜋

2
∫ 𝜌𝑗𝜔

2Re [
1

𝜉∗

𝜕�̃�𝑗
∗

𝜕𝑟
∙
1

𝜉

𝜕�̃�𝑗

𝜕𝑟
+ 𝑛2

1

�̃�∗
�̃�𝑗

∗ ∙
1

�̃�
�̃�𝑗 + 𝜁∗�̃�𝑗

∗ ∙ 𝜁�̃�𝑗]

Ω𝑗

Re(𝜉)Re(�̃�)𝑑𝑟,      

𝑗 = 0, or 𝑚,  

(27) 

where, �̃� = 𝑟 and 𝜉 = 1 for 𝑗 = 0, and Eq. (27) applies for 𝑗 = 𝑚 if the exterior region Ω𝑚 

is a fluid.  The ratio of the kinetic energy in PML to that in the interior region is then given as 

𝜂 = K𝑚 ∑ K𝑗
𝑚
𝑗=0⁄ . 

This article will also examine the relative energy distribution between different layers, and 

to do this the method of Fuller and Fahy [28] is used.  This requires the sound power in each 

layer to be calculated first.  However, the role of the PML in the outer region is to artificially 

damp down outgoing waves and so the energy calculated in this region is physically 

meaningless. Therefore, power flow is computed only in the inner fluid and those outer 

[elastic] layers present, and so for an elastic layer the power flow is given as 
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 W𝑗 = −𝜋 ∫Re[𝜎𝑧𝑟

Ω𝑗

∙ 𝑢𝑟
∗ + 𝜎𝑧𝜃 ∙ 𝑢𝜃

∗ + 𝜎𝑧𝑧 ∙ 𝑢𝑧
∗]𝑟𝑑𝑟             𝑗 = 1 to 𝑚 − 1.  (28) 

For the inner fluid region, the sound power is given as  

 W0 = 𝜋𝜔3 ∫𝜌0Re[i𝜁∗�̃�0
∗ ∙ �̃�0

Ω0

]𝑟𝑑𝑟. (29) 

The energy ratio is then defined as the sum of the power in region Ω0, divided by the sum 

of the power in structure W𝑆 = ∑ 𝑊𝑗
𝑚−1
𝑗=1 , so that 

 E𝑅 =
𝑊0

𝑊𝑆
= −

𝜔3 ∫ 𝜌0Re[i𝜁∗�̃�0
∗ ∙ �̃�0Ω0

]𝑟𝑑𝑟

∑ [∫ Re[𝜎𝑧𝑟Ω𝑗
∙ 𝑢𝑟

∗ + 𝜎𝑧𝜃 ∙ 𝑢𝜃
∗ + 𝜎𝑧𝑧 ∙ 𝑢𝑧

∗]𝑟𝑑𝑟]𝑚−1
𝑗=1              

.  (30) 

3. Comparison between SAFE-PML and SBFEM  

In this section, the SAFE-PML model is compared against SBFEM for a titanium elastic 

rod immersed in motor oil [25].  The SAFE-PML solution is obtained using the method 

presented in section 2.4, following the removal of the inner fluid section and setting the inner 

radius 𝑎0 = 0.  Two different finite element discretisations are used for the SAFE-PML 

approach: standard quadratic elements [16] and Gauss-Lobatto-Legendre spectral elements 

[18, 29], with a Gauss quadrature scheme used for both types of element. For the PML, the 

following co-ordinate stretching function is used [16] 

 𝜉(𝑟) = 𝑒𝛼�̅� − i[𝑒𝛽�̅� − 1], (31) 

 

where �̅� = (𝑟 − 𝑎𝑚−1) ℎ⁄ , and the thickness of the PML layer is ℎ = 𝑎𝑚 − 𝑎𝑚−1, with 𝛼 

and 𝛽 real valued constants.  This stretching function was found by Duan et al. [16] to work 

well for values of 𝛼 = 4 and 𝛽 = 5 for quadratic elements.  For the spectral element method, 

a range of these parameters has been proposed [18], however in order to minimise the number 

of variables to be investigated in the analysis that follows, and to avoid repetition of previous 

investigations, values of 𝛼 = 4 and 𝛽 = 5 are used for quadratic elements in sections 3 and 4, 
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and 𝛼 = 5 and 𝛽 = 6 for spectral elements.  Furthermore, the PML is attached directly to the 

outside of the pipe wall in order to minimise the size of the mesh required [16].  

The SAFE-PML method is compared against the SBFEM results published by 

Gravenkamp et al. [25] for a titanium rod of radius of 𝑎1 = 1 mm, a shear modulus 𝜇1 =

46.53 GPa, a density 𝜌1 = 4.46 g/cm3 and a Possion’s ratio of 𝜈 = 0.302.  For the 

surrounding motor oil: 𝑐𝑚 = 1.74 km/s and 𝜌𝑚 = 0.87 g/cm3.  Convergence is examined 

for the PML first by using standard quadratic finite elements in Table 1, and spectral 

elements in Table 2, for the first two longitudinal modes at a frequency of 1.5 MHz.   

Table 1. Convergence of wavenumbers 𝛾 for quadratic finite elements at 1.5 MHz 

ℎ  𝑁𝑚 L(0,1) L(0,2) 

0.2𝑎1 7 0.76720 - 0.03992i 0.46818 - 0.43969i 

0.4𝑎1 13 0.76745 - 0.03882i 0.46682 - 0.43961i 

0.6𝑎1 19 0.76750 - 0.03892i 0.46697 - 0.43953i 

0.8𝑎1 25 0.76749 - 0.03892i 0.46696 - 0.43955i 

𝑎1 31 0.76749 - 0.03892i 0.46696 - 0.43955i 

 

Table 2. Convergence of wavenumbers 𝛾 for spectral finite elements at 1.5 MHz 

ℎ  𝑁𝑚 L(0,1) L(0,2) 

0.2𝑎1 7 0.76515 - 0.03956i 0.46796 - 0.44219i 

0.4𝑎1 13 0.76733 - 0.03893i 0.46693 - 0.43976i 

0.6𝑎1 19 0.76749 - 0.03892i 0.46694 - 0.43953i 

0.8𝑎1 25 0.76749 - 0.03892i 0.46695 - 0.43952i 

𝑎1 31 0.76750 - 0.03892i 0.46696 - 0.43951i 

 

In Tables 1 and 2, the SAFE-PML method is seen to converge quickly for what is a 

relatively straightforward problem.  In these tables 𝑁𝑚 is the number of nodes in the PML, 

and in Table 1 ten quadratic elements are fixed for the rod, so that 𝑁𝑟 = 21.  This is 

equivalent to 43 nodes per wavelength for the bulk shear wave at 1.5MHz, which delivers an 



16 

element density that is far higher than the usual requirement in a finite element model; 

however, the number of elements is chosen to remove the influence of element density in the 

rod region, so that the focus is entirely on the PML region [as this is where the model differs 

from the SBFEM approach]. The element density in the PML region is 35 nodes per 

wavelength and this is kept constant in Table 1. For spectral elements, one element of order 

20 is used for the rod, and one spectral element is used in the PML with an order equal to 

(𝑁𝑚 − 1). This gives identical degrees of freedom for the quadratic and spectral elements so 

that a meaningful comparison for accuracy can be made for the same solution time.  

It can be seen in Tables 1 and 2 that for a PML thickness of ℎ = 0.2𝑎1 both models 

converge to two decimal places for the non-dimensional wavenumber 𝛾 using only seven 

nodes in the PML region. As the PML thickness is increased, the eigenvalues converge to 

four decimal places, so that the quadratic and spectral elements give almost identical values 

when ℎ = 𝑎1.  Further, for ℎ = 0.4𝑎1 the computation time for quadratic and spectral 

elements is 6.5 ms and 6.1 ms per frequency, respectively. The analysis in Tables 1 and 2 

examines a change in the size of the PML, however it is possible that in this analysis the 

errors introduced by the PML are greater than the discretisation errors associated with the 

quadratic and spectral element. Accordingly, in Tables 3 and 4 the convergence of the 

quadratic and spectral elements is examined with the width of the PML fixed at ℎ = 𝑎1.  It 

can be seen in Tables 3 and 4 that the rate of convergence when the PML width is fixed is 

similar to that seen in Tables 1 and 2.  Accordingly, no discernible difference in the rate of 

convergence is seen between the two types of finite element discretisation used for the PML.   
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Table 3. Convergence of wavenumbers 𝛾 for quadratic finite elements at 1.5 MHz 

ℎ  𝑁𝑚 L(0,1) L(0,2) 

𝑎1 5 0.79690 - 0.07193i 0.49217 - 0.39481i 

𝑎1 9 0.76849 - 0.03548i 0.46337 - 0.44024i 

𝑎1 17 0.76763 - 0.03895i 0.46706 - 0.43928i 

𝑎1 33 0.76749 - 0.03892i 0.46696 - 0.43955i 

𝑎1 65 0.76750 - 0.03892i 0.46696 - 0.43954i 

 

Table 4. Convergence of wavenumbers 𝛾 for spectral finite elements at 1.5 MHz 

ℎ  𝑁𝑚 L(0,1) L(0,2) 

𝑎1 5 0.79559 - 0.03371i 0.45174 - 0.41437i 

𝑎1 9 0.77185 - 0.03599i 0.46273 - 0.43464i 

𝑎1 17 0.76754 - 0.03902i 0.46714 - 0.43951i 

𝑎1 33 0.76750 - 0.03892i 0.46695 - 0.43952i 

𝑎1 65 0.76751- 0.03891i 0.46698 - 0.43957i 

 

The results reported in Tables 1-4 are designed to illustrate rates of convergence for the 

PML.  In Tables 5 and 6 rates of convergence for the rod are also investigated, this time with 

a fixed value of 𝑁𝑚 = 33 in the PML. 

Table 5. Convergence of wavenumbers 𝛾 for quadratic finite elements at 1.5 MHz 

ℎ  𝑁𝑟 L(0,1) L(0,2) 

𝑎1 5 0.76426 - 0.03824i 0.47025 - 0.45536i 

𝑎1 9 0.76729 - 0.03888i 0.46714 - 0.44059i 

𝑎1 17 0.76749 - 0.03892i 0.46697 - 0.43959i 

𝑎1 33 0.76750 - 0.03892i 0.46696 - 0.43952i 

 

Table 6. Convergence of wavenumbers 𝛾 for spectral finite elements at 1.5 MHz 

ℎ  𝑁𝑟 L(0,1) L(0,2) 

𝑎1 5 0.76786 - 0.03890i 0.46682 - 0.43570i 

𝑎1 9 0.76749 - 0.03892i 0.46695 - 0.43951i 

𝑎1 17 0.76748 - 0.03888i 0.46692 - 0.43951i 

𝑎1 33 0.76749 - 0.03892i 0.46696 - 0.43952i 
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In Tables 5 and 6 good convergence is achieved for quadratic and spectral elements with 

𝑁𝑟 = 17, so that the choice of 𝑁𝑟 = 21 in Tables 1-4 is shown to be adequate. It is evident in 

Tables 5 and 6 that the spectral element method converges more quickly and outperforms 

quadratic elements at the lowest values of 𝑁𝑟. This behaviour was also observed at other 

frequencies (not shown here).  This improvement in performance was not seen previously for 

the PML, and this is thought to be because it is harder to achieve accurate predictions with 

low mesh densities inside the PML.  This is because numerical errors associated with the 

coordinate stretching function and numerical damping in the PML are likely to be present at 

low mesh densities, and these serve to compromise the relative advantages normally observed 

with the spectral element method.  Thus, the results presented in Tables 1-6 illustrate that 

some of the advantages normally associated with the spectral element method are not 

necessarily retained when studying a PML, at least for the eigenproblem examined in this 

article. 

In Figs. 2 and 3, the dispersion curves for this example are shown using 𝑁𝑟 = 21, 𝑁𝑚 =

13 and ℎ = 0.4𝑎1, after enforcing 𝜂 ≤ 0.9 to remove the radiation modes.  Figures 2 and 3 

show excellent agreement between the SAFE-PML model developed here and the SBFEM 

approach of Gravenkamp et al. [25] [note that additional torsional, or shear, modes for the rod 

have been added to these figures, labelled here T(0,1) and T(0,2)].  The dispersion curves use 

300 data points and were obtained in 1.844 seconds.  In the article by Gravenkamp et al. [25] 

it was noted that a spectral element of order six, with five iterations, delivered a converged 

solution in about 2 seconds for the entire frequency range.  It is difficult to achieve an exact 

comparison between solution times, because the number of data points in the results present 

by Gravenkamp et al. [25] is unknown, as well as the solution accuracy and relative computer 

performance; however, the time taken using the SAFE-PML approach is at least of the same 

order as that of Gravenkamp et al. [25].  Furthermore, Kalkowski et al. [18] quote a solution 
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time of 9.1 ms for one frequency step and this gives a solution time of 2.7 seconds for 300 

data points.   

 

Figure 2. Phase velocity for titanium rod immersed in engine oil.  

               , SAFE-PML solution;                  , SBFEM solution [21]. 

 

Figure 3. Attenuation for titanium rod immersed in engine oil.  

               , SAFE-PML solution;                  , SBFEM solution [21]. 
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It is seen in Figs. 2 and 3 that all three approaches are capable of providing solutions in a 

very similar timescale and that the recent advances in the SAFE-PML approach have now 

delivered a method that is comparable, in terms of computational efficiency, to that of the 

SBFEM approach.  Each method can of course be further speeded up if one further relaxes 

the requirement for accuracy, as if often the case when plotting dispersion curves. Thus, an 

optimised SAFE-PML approach is clearly worthy of consideration when attempting to study 

this type of problem.  The question then shifts to whether these observations scale up for 

bigger and more complex problems such as buried pipelines.  Accordingly, in the next two 

sections more complex problems are examined using the SAFE-PML method, and relative 

solution speeds are compared against those found in this section and potential challenges are 

identified. 

4. SAFE-PML convergence for a fluid-filled immersed pipe 

The SAFE-PML method is applied in this section to a fluid-filled immersed pipe, as this is 

relevant to many engineering applications.  Fluid filled pipes typically generate a large 

number of eigenmodes over the frequency range of interest and this makes the identification 

and labelling of modes difficult, especially as many leaky modes transfer their energy from 

the wall to the fluid, and vice versa [28].  In this article, the modes are labelled as follows: 

FS(𝑛,𝑚), SF(𝑛,𝑚), FL(𝑛,𝑚), and T(0,𝑚), where 𝑛 stands for circumferential mode order, 

and 𝑚 for the sequence of modes in each circumferential family.  Each mode is labelled 

according to the relative energy distribution between the internal fluid (Ω0) and the pipe 

substrate (Ω1), and the decision on which labels to choose is based on behaviour at low 

frequencies and/or close to modal cut on (see later plots).  This means that for an FS mode, 

the acoustic energy lies predominantly in the fluid at lower frequencies, whereas at higher 

frequencies energy transfers from the fluid into the structure.  An SF mode starts out as 
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predominantly structural mode, with close equivalents to those found in a pipe in vacuo, and 

then transfers its energy from the structure into the fluid at higher frequencies.  This notation 

also encourages the continued use of T(0,𝑚) for shear (torsional) modes, as they do not 

interact with the fluid.  Finally, there are additional modes whose energy remains 

predominantly in the fluid over a wide frequency range, and these modes appear only when 

the fluid-filled pipe is further immersed in a fluid or buried in a solid; these modes are 

labelled here FL(𝑛,𝑚).  Note also that at higher frequencies progressive numbers of SF 

modes begin to cut-on, and at frequencies very close to cut-on these modes do not propagate, 

so that their energy oscillates locally and lies mostly within the fluid; however, as the mode 

moves away from its cut-on frequency, energy rapidly transfers from the fluid to the structure 

and it takes on the characteristics of a structural mode.  Accordingly, the limiting behaviour 

seen at cut-on has little practical relevance and so these modes are also considered to be 

SF(𝑛,𝑚) modes. 

The water-filled cast-iron pipe studied by Long et al. [30] is analysed in this section.  The 

dimensions of the pipe are 𝑎0 = 0.127 m, and 𝑎1 = 0.143 m, with the pipe wall thickness 

𝑡w = 𝑎1 − 𝑎0; for cast-iron, 𝑐T1
= 2500 m/s, 𝑐L1

= 4500 m/s, and 𝜌1 = 7100 kg/m3; for 

water, 𝑐0 = 1480  m/s, and 𝜌0 = 1000 kg/m3.  Tables 7 and 8 examine the convergence of 

wavenumbers 𝛾 for this pipe using quadratic and spectral elements at a frequency of 5 kHz.  

Table 7. Convergence of wavenumbers 𝛾 for quadratic finite elements at 5 kHz 

ℎ  𝑁𝑚 SF(0,1) FS(0,1) FL(0,1) 

𝑡w 9 0.57674 - 0.03988i 3.03408 + 0.00033i 1.50975 - 0.53181i 

2𝑡w 17 0.57683 - 0.03993i 3.03348 + 0.00016i 1.52561 - 0.55257i 

3𝑡w 25 0.57683 - 0.03993i 3.03344 + 0.00001i 1.52987 - 0.55370i 

4𝑡w 33 0.57683 - 0.03993i 3.03345 + 0.00000i 1.53034 - 0.55329i 

5𝑡w 41 0.57683 - 0.03993i 3.03345 + 0.00000i 1.53033 - 0.55321i 
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Table 8. Convergence of wavenumbers 𝛾 for spectral finite elements at 5 kHz 

ℎ  𝑁𝑚 SF(0,1) FS(0,1) FL(0,1) 

𝑡w 9 0.57696 - 0.04009i 3.02513 + 0.00211i 1.59134 - 0.74657i 

2𝑡w 17 0.57683 - 0.03993i 3.03378 - 0.00013i 1.53657 - 0.56095i 

3𝑡w 25 0.57683 - 0.03993i 3.03347 + 0.00001i 1.53051 - 0.55411i 

4𝑡w 33 0.57683 - 0.03993i 3.03348 - 0.00000i 1.53030- 0.55330i 

5𝑡w 41 0.57683 - 0.03993i 3.03348 + 0.00000i 1.53031 - 0.55322i 

 

For the quadratic elements, 32 are used in the internal fluid region and 4 in the pipe region. 

For the spectral elements, one element of order 64 is used in the internal fluid region, and one 

of order 8 is used in the pipe region. This delivers an equivalent degrees of freedom between 

the quadratic and spectral finite element models so that they can be compared. The rate of 

convergence for a number of modes is compared in Tables 7 and 8, for different PML 

thicknesses. It can be seen that when a steady increase in the PML thickness is accompanied 

by an increase in the number of degrees of freedom, convergence to four decimal places can 

quickly be achieved for this more complex problem. Furthermore, the quadratic and spectral 

elements continue to provide similar results when examining convergence for the PML only. 

This problem presents an increase in complexity when compared to the immersed rod in 

the previous section. This is because the stress distributions in a pipe wall are more complex 

than for a rod, and new modes also appear.  Furthermore, this problem has been deliberately 

chosen to illustrate the challenges presented by trapped modes.  For the material parameters 

and frequency range chosen, the fluid inside the pipe generates the trapped mode FS(0,1). 

This mode is characterised by a displacement field that decays exponentially in the outer 

fluid/solid region [13].  In Tables 7 and 8, convergence for this mode is seen to be slightly 

slower than for the other modes (note that the imaginary part should, by definition, be zero). 

Slower convergence arises for trapped modes because the PML parameters are designed 

primarily to absorb leaky modes.  This is achieved using a complex stretching function that 



23 

absorbs energy over the thickness of the PML.  However, trapped modes decay exponentially 

away from the pipe wall, which means there is a very rapid variation in the modal 

eigenfunction over a very short distance close to the pipe wall.  This means that a PML with a 

mesh distribution that is designed to absorb leaky modes over the entire width of the PML 

will not be optimal for capturing the behaviour of a trapped mode because there will be 

insufficient elements very close to the pipe wall.  Furthermore, it is necessary also to enforce 

zero displacement for the trapped modes in the outer region, and convergence for this 

boundary condition is achieved by progressively increasing the thickness of the PML.  Thus, 

trapped modes incur additional computational expenditure as the mesh must address two 

opposing criteria. 

Accordingly, a relatively thick PML, with ℎ = 4𝑡w, is used in this problem to find the 

trapped and leaky modes, with a proportionally higher mesh density when compared to the 

rod studied in the previous section.  Tables 7 and 8 indicate good converge with one spectral 

element of order 64, 8 and 32 for the inner fluid, pipe wall and PML, respectively. The 

increase in mesh density means that it takes 5.9 seconds to generate dispersions curves for 

300 frequency steps, and the dispersion curves are shown in Fig. 4.  The SAFE-PML method 

is also compared against the analytic global matrix solution DISPERSE [30] in Fig. 4, and one 

can see that the SAFE-PML method works successfully down to low frequencies and 

accurately captures trapped as well as leaky modes.  
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Figure 4. Phase velocity in a water-filled cast iron pipe immersed in water.            , SAFE-

PML solution;                , analytic solution (DISPERSE) [30].  

It is interesting also to investigate the relative energy distribution in the pipe, as the energy 

transport characteristics of particular modes are important in determining the likely speed and 

accuracy of a particular numerical approach.  The distribution of energy in fluid-filled pipes 

has been studied before, see for example Fuller and Fahy [28], however this is less well 

explored for the more complex problem of buried or immersed pipes.  Accordingly, relative 

energy distribution is explored here using the ratio, E𝑅, defined in Eq. (30); remembering that 

this is the ratio of the sound power contained within the internal fluid region to that in the 

pipe wall, so that values of E𝑅 greater than unity mean that the energy resides predominantly 

in the internal fluid, and vice versa.  The relative energy distribution for the immersed cast-

iron water-filled pipe is examined in Fig. 5, and the modal attenuation is also reported in Fig. 

6, as this helps to explain the changes in behaviour caused by the surrounding fluid. 
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Fig. 5. Energy distribution in a water-filled cast iron pipe immersed in water.  

 

Fig. 6. Modal attenuation in a water-filled cast iron pipe immersed in water.  

A comparison between the energy distribution and modal attenuation in Figs. 5 and 6 

shows that the attenuation of SF(0,1) peaks at about 5 kHz and then reduces as energy no 

longer transfers out of the structure above this frequency.  However, the energy in this mode 

is then seen to transfer into the fluid above 8kHz, which causes a rapid increase in attenuation 
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as the mode begins to radiate energy outwards.  That is, if a mode has high levels of 

attenuation in a lossless system then this must be caused by energy leakage/radiation into the 

outer fluid.  This type of behaviour can also be seen for the fluid mode FL(0,1), with the 

energy in the mode continuing to reside in the fluid over the entire frequency range in Fig 5; 

however, in Fig. 6 the modal attenuation reveals that as the frequency is increased up to 

around 14 kHz the attenuation drops.  This indicates that energy is transferring from the outer 

to the inner fluid.  Furthermore, the high levels of attenuation indicate that the FL(0,1) mode 

is a radiation type mode at low frequencies.  In contrast, the higher order SF modes have 

frequency bands where the energy resides mainly in the pipe wall, and so the attenuation of 

these modes is generally much lower, at least up until the next higher order SF mode cuts-on.  

It is possible, therefore, that the SF modes, and especially the higher order SF modes, may be 

useful in non-destructive testing.  However, Figs. 5 and 6 do serve to illustrate the complexity 

of the problem once one moves on to study pipelines, and the energy transfer between the 

fluid and the structure makes the generation of fast numerical algorithms challenging. 

5. Convergence of the SAFE-PML method for a fluid-filled buried pipe 

In this section, the surrounding medium is changed from a fluid to a solid, as this 

generates a different modal structure. The 8 inch schedule 40 pipe studied by Duan et al. [16] 

is analysed here, so that 𝑎0 = 101.36 mm and 𝑎1 = 109.54 mm.  The pipe is filled with 

water (see properties in the previous section) and made of steel, with 𝑐T1
= 3260 m/s, 𝑐L1

=

5960 m/s, and 𝜌1 = 7932 kg/m3.  The pipe is also buried in soil, with 𝑐Tm
=  300 m/s, 

𝑐Lm
= 1540 m/s, and 𝜌m = 2000 kg/m3 [16]. Note that values of  𝛼 = 5 and 𝛽 = 6 are 

used for both quadratic and spectral elements in this section.  Tables 9 and 10 examine the 

convergence of wavenumbers for this pipe using quadratic and spectral elements at a 

frequency of 16 kHz. 
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Table 9. Convergence of wavenumbers 𝛾 for quadratic finite elements at 16 kHz 

ℎ  𝑁𝑚 SF(0,1) FS(0,1) FL(0,2) 

0.2𝑡𝑤 7 0.59393 - 0.02821i 3.19834 - 0.02782i 2.17909 - 0.01171i 

0.6𝑡𝑤 17 0.59456 - 0.02850i 3.20827 - 0.03797i 2.17263 - 0.00974i 

𝑡𝑤 27 0.59458 - 0.02850i 3.20988 - 0.03738i 2.17189 - 0.00978i 

2𝑡𝑤 53 0.59458 - 0.02850i 3.20974 - 0.03739i 2.17180 - 0.00983i 

3𝑡𝑤 79 0.59458 - 0.02850i 3.20974 - 0.03739i 2.17180 - 0.00983i 

 

Table 10. Convergence of wavenumbers 𝛾 for spectral finite elements at 16 kHz 

ℎ  𝑁𝑚 SF(0,1) FS(0,1) FL(0,2) 

0.2𝑡𝑤 7 0.59361 - 0.02852i 3.19640 - 0.04910i 2.17976 - 0.01238i 

0.6𝑡𝑤 17 0.59458 - 0.02849i 3.20943 - 0.03740i 2.17256 - 0.00965i 

𝑡𝑤 27 0.59458 - 0.02850i 3.20980 - 0.03740i 2.17187 - 0.00978i 

2𝑡𝑤 53 0.59458 - 0.02850i 3.20979 - 0.03740i 2.17180 - 0.00983i 

3𝑡𝑤 79 0.59458 - 0.02850i 3.20979 - 0.03740i 2.17180 - 0.00983i 

 

For the quadratic elements, 30 are used in the internal fluid region and 4 in the pipe. For 

the spectral elements, one element of order 60 is used in the internal fluid region, and one 

element of order 8 for the pipe; this delivers an equivalent number of degrees of freedom for 

the quadratic and spectral elements.  The element density in the PML region is also kept at 24 

nodes per wavelength for both approaches.  The convergence of three modes is examined in 

Tables 9 and 10, and here it can be seen that a steady increase of PML thickness delivers 

convergence to four decimal places.  Furthermore, the quadratic and spectral elements are 

again seen to deliver similar results.  Note that for the other modes propagating at this 

frequency the convergence is much better and so these modes are not included in Tables 9 

and 10.  

To plot the dispersion curves for this example, a PML of thickness ℎ = 2𝑡𝑤 is chosen with 

𝑁𝑚 = 53.  This requires 47.74 seconds to generate dispersion curves with 300 frequency 

steps. This represents a significant increase in solution time when compared to the immersed 
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pipe/rod, and this is because the number of degrees of freedom in the elastic PML region is 

(3 × 𝑁𝑚) larger than that in the acoustic PML region (𝑁𝑚).  Moreover, the surrounding soil 

now supports both compressional and shear waves and accurately capturing all the leaky 

modes is more challenging when compared to a fluid region.  This change in complexity is 

best illustrated in the phase velocity diagram shown in Fig. 7, along with the energy 

distribution in Fig. 8 and the attenuation in Fig. 9.   

 

 

Figure 7. Phase velocity in a water-filled steel pipe buried in soil. 
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 Figure 8. Energy distribution in a water-filled steel pipe buried in soil.  

 

 
  

Figure 9. Modal attenuation in a water-filled steel pipe buried in soil.  
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range.  However, the solution time presented here for the SAFE-PML is still considered to be 

reasonable given the complexity of the problem, and it is shown that it is possible to generate 

dispersion curves over a wide frequency range in about 1 minute using relatively modest 

computational hardware. 

Figures 7 - 9 also illustrate another difficulty associated with plotting dispersion curves for 

buried and immersed structures.  In both figures, the FL(0,2) mode is plotted only at 

frequencies higher than about 10 kHz.  At 10 kHz the mode is deemed to transition from a 

radiation to a leaky mode.  The kinetic energy ratio 𝜂 = 0.9 is used to define this transition 

point, so that for 𝜂 < 0.9 this mode is added to Figs. 7 – 9, hence the abrupt appearance of 

FL(0,2).  The choice of 𝜂 = 0.9 is of course arbitrary and this will affect the extent to which 

FL(0,2) appears in Figs. 7 - 9. Moreover, the value of 𝜂 also changes with the thickness of the 

PML and this means that it is often difficult to compare dispersion curves generated by 

different authors for the same problem.  For example, Kalkowski et al. [18] compare their 

dispersion curves against those of Nguyen et al. [14] and Duan et al. [16].  In Fig. 3 of their 

paper Kalkowski et al. terminate their dispersion curves at frequencies higher than those used 

by Duan et al, and so discrepancies between the two results seem to be present.  However, 

these differences are caused only by the different choice of 𝜂, the PML thickness/mesh 

density, and/or the maximum magnitude of the imaginary part of the wavenumber; that is, the 

numerical results for all studies agree with one another.   

6. Addition of material damping in the outer layer 

The predictions presented so far assume that the medium surrounding the pipe is perfect 

and elastic.  It is, however, well known that materials such as soil have internal damping 

present within their structure and that this may affect the propagation of an elastic wave.  

Damping will affect the attenuation of a particular eigenmode and the effect of the material 

damping may dominate over the attenuation caused by the energy radiating away from a 
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structure [30, 31].  The influence of this material damping can readily be accommodated in 

the SAFE-PML model simply by adding complex material properties to the mass and 

stiffness matrices in the outer region.  This is straightforward because these mass and 

stiffness matrices are already complex to accommodate the PML, and so no further 

alterations to the model are required.  

For example, the shear and longitudinal bulk wave velocities in the soil may be written as 

𝑐Tm
= 1 [1 �̃�T − 𝑖�̃�T⁄ ]⁄  and 𝑐L𝑚

= 1 [1 �̃�L − 𝑖�̃�L⁄ ]⁄ , respectively [16].  The appropriate 

choice of �̃�T,L then enables the material damping to be accounted for.  Values of �̃�T =

 300 m/s, �̃�L = 1540 m/s, �̃�T = 0.5 × 10−3 s/m, and �̃�L = 0.1 × 10−3 s/m are reported 

for soil by Duan et al. [16].  These values may then be added to the SAFE-PML model and 

dispersion curves obtained in the usual way.  Example dispersion curves for modal 

attenuation are shown in Fig. 10, for the pipe geometry studied in the previous section and 

with ℎ = 2𝑡𝑤 and 𝑁𝑚 = 53.   

 

Figure 10. Modal attenuation in the water-filled steel pipe buried in damping soil.  
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It can be seen that when material damping is present the attenuation of a number of modes 

changes significantly, although it is interesting to note that this does not always deliver an 

increase in attenuation.  A complex pattern of behaviour is observed where the damping may 

change the balance of energy between the fluid and the soil and in turn this effects the way in 

which energy transfers between the different regions.  A more detailed analysis awaits further 

investigation, however it is shown here that material damping may readily be included into a 

SAFE-PML model. 

7. Conclusions  

This article uses a weighted residual approach to deliver a one-dimensional SAFE-PML 

model that is aimed at obtaining the coupled eigenmodes for fluid-filled immersed and buried 

pipes.  The speed and accuracy of the method is examined by comparing predicted dispersion 

curves against those obtained using the SBFEM method, and it is demonstrated that an 

optimised one dimensional SAFE-PML approach is capable of delivering fast and efficient 

eigensolutions for pipes and rods.  Moreover, solution times using the SAFE-PML approach 

are almost identical to those found using the SBFEM for an immersed rod [25]. The SAFE-

PML approach is then applied to fluid-filled buried and immersed pipes, and for a fluid-filled 

8 inch schedule 40 pipe buried in soil the solution time for a single frequency is about 160 

ms, once the eigenmodes have been computed and sorted on relatively modest computer 

hardware.  Accordingly, it is demonstrated that the SAFE-PML method is capable of 

delivering fast and accurate solutions that are comparable to those found using other methods, 

whilst retaining the flexibility to accommodate more complex pipe applications, including 

material damping in the outer layer.   

The relative accuracy and efficiency of quadratic and higher order spectral finite elements 

is also examined for the PML. To enable a consistent comparison, the number of degrees of 

freedom in each region is kept constant and convergence is examined for different PML 



33 

thicknesses. This reveals no practical difference in the relative rates of convergence for the 

two methods when changing the density of the mesh in the PML.  Accordingly, it is 

concluded that the benefits normally associated with the use of spectral elements are not 

necessarily present when discretising a PML. This is thought to be because numerical errors 

from the PML greater than those errors associated with the mesh at lower mesh densities 

(where spectral elements are particularly effective).  This means that higher mesh densities 

are generally required in the PML, and at higher mesh densities the quadratic and spectral 

element methods are seen to converge at similar rates. 

The SAFE-PML approach enables the straightforward calculation of the relative 

distribution of energy between the inner fluid and the pipe wall once the dispersion problem 

has been solved.  This is shown to provide an important insight into the behaviour of 

individual eigenmodes, and when coupled with plots of modal attenuation and mode shape 

this illustrates why a careful choice of PML is necessary when identifying and tracking 

relevant modes.  This is particularly important when computing trapped modes, where a 

relatively thick PML, coupled to a fine mesh density close to the pipe, is required.  

Furthermore, the arbitrary choice of the kinetic energy ratio 𝜂 means that problems are seen 

to arise when determining the frequency at which a mode is said to “transition” from a 

radiating to leaky mode.  This is an issue that cannot be avoided when using an artificial 

absorbing layer to damp down outward propagating waves in an eigensolution.  However, 

this problem tends to be most obvious when studying higher order modes, and for most 

practical problems this is not thought to present a limitation of the method.  Accordingly, it is 

concluded that the SAFE-PML approach is capable of providing fast and accurate solutions 

for fluid-filled buried and immersed pipelines, and for the problems studied here this 

approach is at least equivalent to the speed and accuracy found using the SBFEM approach. 
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Appendix A 

For elastic layers Ω𝑗  (with 𝑗 extending from 1 to 𝑚 − 1 if the outer layer Ω𝑚 is a fluid, and 

from 1 to 𝑚 if it is an elastic solid):   

𝐑10 = 𝐊1 − 2𝐊2 + 𝐊3 + (𝑛2 + 2)𝐌2 − 𝐌7, and 𝐑12 = 𝐌1 (A1a, b) 

𝚯20 = −𝐊6 + 2𝐊2 + 𝐊2
T − 𝑛2𝐌3 − 2𝐌2 + 𝐌7, and 𝚯22 = −𝐌1 (A2a, b) 

𝐙30 = 𝐊6 − 𝐊2 + 𝑛2𝐌2 − 𝐌7, and 𝐙32 = 𝐌6 (A3a, b) 

𝚯10 = 𝑛[𝐊2 − 𝐊3 − 3𝐌2], and 𝐙11 = [𝐊4 − 𝐊5] (A4a, b) 

𝐑20 = 𝑛[𝐊3
T − 𝐊2

T + 𝐌4], and 𝐙21 = −𝑛𝐌5 (A5a, b) 

𝐑31 = [𝐊5
T − 𝐊4

T + 𝐌5], and 𝚯31 = −𝑛𝐌5 (A6a, b) 

The matrices that make up these equations are given below.  In the matrices that follow, 

the PML is assumed to be elastic, so that these equations apply to a buried pipe.  However, if 

the pipe is immersed, then the integrals over Ω𝑚 should be removed from these matrices. 

𝐊1 = ∑(𝜆j + 2𝜇j)∫
𝜕𝐖T

𝜕𝑟

𝜕𝐍

𝜕𝑟
𝑑𝑟

Ωj

𝑚−1

𝑗=1

+ (𝜆𝑚 + 2𝜇𝑚)∫
1

𝜉

𝜕𝐖T

𝜕𝑟

𝜕𝐍

𝜕𝑟
𝑑𝑟

Ω𝑚

 (A7) 

𝐊2 = ∑ 𝜇j ∫
1

𝑟
𝐖T

𝜕𝐍

𝜕𝑟
𝑑𝑟 + 𝜇𝑚 ∫

1

�̃�
𝐖T

𝜕𝐍

𝜕𝑟
𝑑𝑟

Ω𝑚Ωj

𝑚−1

j=1

 (A8) 

𝐊3 = ∑ 𝜆j ∫
1

𝑟

𝜕𝐖T

𝜕𝑟
𝐍𝑑𝑟 + 𝜆𝑚 ∫

1

�̃�

𝜕𝐖T

𝜕𝑟
𝐍𝑑𝑟

Ω𝑚Ωj

𝑚−1

j=1

 (A9) 

𝐊4 = ∑ 𝜇j ∫ 𝐖T
𝜕𝐍

𝜕𝑟
𝑑𝑟 + 𝜇𝑚 ∫ 𝐖T

𝜕𝐍

𝜕𝑟
𝑑𝑟

Ω𝑚Ωj

𝑚−1

j=1

 (A10) 

𝐊5 = ∑ 𝜆j ∫
𝜕𝐖T

𝜕𝑟
𝐍𝑑𝑟

Ωj

𝑚−1

j=1

+ 𝜆𝑚 ∫
𝜕𝐖T

𝜕𝑟
𝐍𝑑𝑟

Ω𝑚

 (A11) 

𝐊6 = ∑ 𝜇j ∫
𝜕𝐖T

𝜕𝑟

𝜕𝐍

𝜕𝑟
𝑑𝑟

Ωj

𝑚−1

j=1

+ 𝜇𝑚 ∫
1

𝜉

𝜕𝐖T

𝜕𝑟

𝜕𝐍

𝜕𝑟
𝑑𝑟

Ω𝑚

 (A12) 
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𝐌1 = ∑ 𝜇j ∫ 𝐖T𝐍𝑑𝑟
Ωj

𝑚−1

j=1

+ 𝜇𝑚 ∫ ξ𝐖T𝐍𝑑𝑟
Ω𝑚

 (A13) 

𝐌2 = ∑ 𝜇j ∫
1

𝑟2
𝐖T𝐍𝑑𝑟

Ωj

𝑚−1

j=1

+ 𝜇𝑚 ∫
𝜉

�̃�2
𝐖T𝐍𝑑𝑟

Ω𝑚

 (A14) 

𝐌3 = ∑(𝜆j + 2𝜇j)∫
1

𝑟2
𝐖T𝐍𝑑𝑟

Ωj

𝑚−1

j=1

+ (𝜆𝑚 + 2𝜇𝑚)∫
𝜉

�̃�2
𝐖T𝐍𝑑𝑟

Ω𝑚

 (A15) 

𝐌4 = ∑(𝜆j + 4𝜇j)∫
1

𝑟2
𝐖T𝐍𝑑𝑟

Ωj

𝑚−1

j=1

+ (𝜆𝑚 + 4𝜇𝑚)∫
𝜉

�̃�2
𝐖T𝐍𝑑𝑟

Ω𝑚

 (A16) 

𝐌5 = ∑(𝜆j + 𝜇j)∫
1

𝑟
𝐖T𝐍𝑑𝑟

Ωj

𝑚−1

j=1

+ (𝜆𝑚 + 𝜇𝑚)∫
𝜉

�̃�
𝐖T𝐍𝑑𝑟

Ω𝑚

 (A17) 

𝐌6 = ∑(𝜆j + 2𝜇j)∫ 𝐖T𝐍𝑑𝑟
Ωj

𝑚−1

j=1

+ (𝜆𝑚 + 2𝜇𝑚)∫ 𝜉𝐖T𝐍𝑑𝑟
Ω𝑚

 (A18) 

𝐌7 = ∑ 𝜇j𝑘𝑇j

2 ∫ 𝐖T𝐍𝑑𝑟
Ωj

𝑚−1

j=1

+ 𝜇𝑚𝑘𝑇𝑚

2 ∫ ξ𝐖T𝐍𝑑𝑟
Ω𝑚

 (A19) 

 

where, 𝑘𝑇𝑗
= 𝜔 𝑐𝑇𝑗

⁄ , and 𝑐𝑇𝑗
 is the shear (torsional) bulk wave velocity of layer Ω𝑗.  Note that 

the displacement has been discretised in the following way 

𝑢𝑞(𝑟) = ∑N𝑞𝑖(𝑟)𝑢𝑞𝑖 = 𝐍q𝐮q

𝑚𝑞

𝑖=1

 (A20) 

 

where N𝑞𝑖 is a global trial (or shape) function, 𝑢𝑞𝑖 is the value of 𝑢𝑞 at node 𝑖, and 𝑚𝑞 is 

the number of nodes for the displacements in direction 𝑞.  In addition, 𝐍q and 𝐮q are row and 

column vectors of length 𝑚𝑞, respectively, and it is also convenient to choose 𝐍𝑟 = 𝐍𝜃 =

𝐍𝑧 = 𝐍.  Isoparametric elements are used so that 𝐖 = 𝐍.   
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Appendix B 

For inner fluid layer Ω0: 

𝐑00 = ∫ (
𝜕𝐖0

𝑻

𝜕𝑟

𝜕𝐍0

𝜕𝑟
−

1

𝑟
𝐖0

T
𝜕𝐍0

𝜕𝑟
+

𝑛2

𝑟2
𝐖0

T𝐍0 − 𝑘0
2𝐖0

T𝐍0)𝑑𝑟
Ω0

 (B1) 

𝐑20 = ∫ 𝐖0
T𝐍0𝑑𝑟

Ω0

 (B2) 

For outer PML layer Ω𝑚: 

 

𝐑0𝑚 = ∫ (
1

𝜉

𝜕𝐖𝑚
𝑻

𝜕𝑟

𝜕𝐍𝑚

𝜕𝑟
−

1

�̃�
𝐖𝑚

T
𝜕𝐍𝑚

𝜕𝑟
+ 𝜉

𝑛2

�̃�2
𝐖𝑚

T𝐍𝑚 − 𝜉𝑘𝑚
2 𝐖𝑚

T𝐍𝑚)𝑑𝑟
Ω𝑚

 

(B3) 

𝐑2𝑚 = ∫ 𝜉𝐖𝑚
T𝐍𝑚𝑑𝑟

Ω𝑚

 (B4) 

 

The pressure has been discretised in the following way: 

�̃�𝑗(𝑟) = ∑N𝑗𝑖(𝑟)�̃�𝑗𝑖 = 𝐍j�̃�j

𝑚𝑗

𝑖=1

, 𝑗 = 0 or 𝑚 (B5) 

 

where N𝑗𝑖 is a global trial (or shape) function, �̃�𝑗𝑖 is the value of �̃�𝑗 at node 𝑖, and 𝑚𝑗 is the 

number of nodes (or degrees of freedom) for the pressure in layer Ω0 or Ω𝑚.  In addition, 𝐍j 

and �̃�j are row and column vectors of length 𝑚𝑗, respectively, and isoparametric elements are 

used so that 𝐖 = 𝐍.   
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