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Abstract. Drug-resistant neuroblastoma remains a major 
challenge in paediatric oncology and novel and less toxic ther-
apeutic approaches are urgently needed to improve survival 
and reduce the side effects of traditional therapeutic inter-
ventions. Mesenchymal stem cells (MSCs) are an attractive 
candidate for cell and gene therapy since they are recruited by 
and able to infiltrate tumours. This feature has been exploited 
by creating genetically modified MSCs that are able to 
combat cancer by delivering therapeutic molecules. Whether 
neuroblastomas attract systemically delivered MSCs is still 
controversial. We investigated whether MSCs engineered to 
express tumour necrosis factor-related apoptosis-inducing 
ligand (TRAIL) could: i) cause death of classic and primary 
neuroblastoma cell lines in vitro; ii) migrate to tumour sites 
in vivo; and iii) reduce neuroblastoma growth in xenotrans-
plantation experiments. We observed that classic and primary 
neuroblastoma cell lines expressing death receptors could be 
killed by TRAIL-loaded MSCs in vitro. When injected in the 
peritoneum of neuroblastoma-bearing mice, TRAIL-MSCs 
migrated to tumour sites, but were unable to change the course 
of cancer development. These results indicated that MSCs 
have the potential to be used to deliver drugs in neuroblas-
toma patients, but more effective biopharmaceuticals should 
be used instead of TRAIL.

Introduction

Neuroblastoma, one of the most aggressive extracranial solid 
tumours occurring in childhood, remains a major cause of 
cancer-related deaths in infancy  (1). Despite therapeutic 
strategies based on chemotherapy, radiotherapy, surgery, 
GD2-targeted immunotherapy, stem cell transplant and 
treatment with 13-cis-retinoic acid, high-risk neuroblastoma 
outcome remains poor, with a 5-year event-free survival 
<40% (2-5). Tumours show initial response to therapeutic 
interventions but typically relapse into an incurable form of 
the disease. Moreover, several drugs cause severe side effects, 
including cognitive impairment and retarded growth (6). Thus, 
to reduce drug toxicity and to improve the outcome and the 
lifestyle of the patients affected by neuroblastoma, additional 
therapeutic options are required.

Recently, cell-based approaches have been increas-
ingly investigated for the delivery of therapeutics agents. 
Mesenchymal stem cells are multipotent adult stem cells 
isolated from the umbilical cord, bone marrow and fat tissue 
and can differentiate into multiple tissues including bone, 
cartilage, muscle, fat cells and connective tissue (7-12). Bone 
marrow-derived mesenchymal stem cells (MSCs) are ideally 
suited for the delivery of anticancer agents to tumours, 
including cytokines, interferons and prodrugs (13-15).

MSCs are particularly suitable for the role of vectors 
for anticancer therapies for various reasons (16). MSCs are 
immunologically inert due to their low expression of constitu-
tive major histocompatibility complex 1 (MHC1) and lack of 
MHC2 and co-stimulatory molecules CD80, CD86 and CD40, 
meaning that allogeneic cells can be used in immunocom-
petent patients abrogating the need of immunosuppressive 
therapies (17). Furthermore, MSCs are able to migrate to and 
incorporate into the tumour stroma when administered in vivo 
and, if engineered with viral vectors, can deliver therapeutic 
molecules that inhibit tumours or metastatic growth (18,19).

In recent studies, MSCs have been engineered to express 
IFN-γ, IL-12, IL-24 and tumour necrosis factor-related 
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apoptosis inducing ligand (TRAIL), to induce death of tumour 
cells (15,20).

TRAIL is a member of the TNF superfamily and interacts 
with fully functional death receptors DR4 and DR5, decoy 
receptors DCR1 and DCR2, and osteoprotegerin (OPG), 
which lack functional cytoplasmic signalling domains (21-23). 
TRAIL is an interesting anticancer molecule, since it causes 
apoptosis of cancer cells bearing DR4 and DR5 death recep-
tors, but it is unable to harm normal cells which express high 
levels of TRAIL decoy receptors and low levels of TRAIL 
death receptors on their surface. TRAIL-mediated killing is 
not dependent on a specific molecular alteration and all molec-
ular subtypes or high-risk tumours are potentially amenable to 
TRAIL killing. Thus, from a clinical point of view, TRAIL-
based therapies are especially attractive due to the extremely 
high therapeutic index.

Clinical trials in which cancer patients have been treated 
with soluble, truncated forms of TRAIL have been unsuc-
cessful, due to the extremely short half-life of the molecule 
in the blood stream and the emergence of resistance; there-
fore, efficient TRAIL delivery is essential  (24,25). The 
major advantage of using MSCs to deliver TRAIL is that it 
is continuously produced at the tumour site, overcoming the 
problem of the short half-life of the protein. Furthermore, it 
has been revealed that the full-length TRAIL protein secreted 
by MSCs transduced with a lentiviral vector containing the 
TRAIL cDNA, can resolve resistance in lung, colorectal and 
breast cancer (26-28). These cells are also able to clear lung 
metastasis in mice injected with extremely aggressive breast 
cancer cells or reduce the growth of mesothelioma cells in 
mouse models (29).

Notably, a protease inhibitor currently used in the clinic, 
Bortezomib, is able to enhance TRAIL-mediated killing of 
neuroblastoma cells or render them sensitive to the molecule, 
suggesting that in a TRAIL therapy setting, the problem of 
resistance could be managed pharmacologically (30-32).

In the present study, we investigated the tumour-homing 
ability and anticancer activity of TRAIL-MSCs in the context 
of neuroblastoma.

Materials and methods

Cell lines. The primary human neuroblastoma cell lines A5, 
2820, 0396 and 1043008 were isolated at the Institute of 
Child Health (University College London, London, UK) by 
disaggregating surgical resections. The patient characteris-
tics are summarised in Table I. Consent for the isolation of 
cell lines from patient material was obtained in accordance 
with the Great Ormond Street Hospital (London, UK) Ethics 
Committee regulations.

The patient-derived xenograft (PDX) cells LU-NB-1, 
LU-NB-2 and LU-NB-3 were established and characterized 
at the laboratory of Dr Daniel Bexell (Lund University, Lund, 
Sweden) as previously described (33). hNB cells were isolated 
from a tumour metastasised in the neck of a 3-year-old male 
patient in 2011 (34). MSC-TRAIL was generated at the labora-
tory of Dr Samuel Janes (University College London, London, 
UK) as previously described (26).

SKNAS, IMR-32, Kelly, SHEP, LA-N-5 and SH-SY5Y 
were obtained from the American Type Culture Collection 

(ATCC; Teddington, Middlesex, UK). LA-N-1 and 
patient-derived neuroblastoma cell lines were provided 
by Dr John Anderson (Institute of Child Health). LA-N-1, 
SKNAS, SHEP and SH-SY5Y were grown in Dulbecco's 
modified Eagle's medium (DMEM) (Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) supplemented with 10% 
fetal bovine serum (FBS) (Gibco; Thermo Fisher Scientific, 
Inc.), 1% penicillin/streptomycin (Gibco; Thermo Fisher 
Scientific, Inc.), 2 mM glutamine (Gibco; Thermo Fisher 
Scientific, Inc.) and 10 mM sodium pyruvate (Gibco; Thermo 
Fisher Scientific, Inc.). IMR-32, Kelly, LA-N-5 were cultured 
in RPMI-1640 medium (Gibco; Thermo Fisher Scientific, 
Inc.) containing 10% FBS, 2 mM glutamine supplemented, 
10 mM sodium pyruvate and 10 mM non-essential amino 
acids (NEAA) (Gibco; Thermo Fisher Scientific, Inc.). hNB 
cells were cultured in RPMI-1640 medium supplemented 
with 20% fetal calf serum (FCS) (Gibco; Thermo Fisher 
Scientific, Inc.), 2 mM glutamine, 10 µM 2-mercaptoethanol 
(Thermo Fisher Scientific, Inc.), 1 mM sodium pyruvate, 1% 
penicillin/streptomycin and 10 mM NEAA. TRAIL-MSCs 
were grown in α-MEM (Gibco; Thermo Fisher Scientific, 
Inc.) with 16% FBS, 4 mM L-glutamine and 1% penicillin/
streptomycin.

Primary cell lines were grown in stem cell medium 
(DMEM/F-12 medium with glutamine, 1% penicillin/strepto-
mycin, 2% B27 supplement (Thermo Fisher Scientific, Inc.), 
40 ng/ml of basic fibroblast growth factor (FGF) (PeproTech, 
Inc., Rocky Hill, NJ, USA) and 20 ng/ml of epidermal growth 
factor (EGF) (PeproTech, Inc.). All cell lines were incubated at 
37˚C and 5% CO2.

Western blotting. Cells were lysed in Laemmli buffer 
(cat. no. NP0007; Thermo Fisher Scientific, Inc.) supplemented 
with β-mercaptoethanol (cat. no. 21985023; Thermo Fisher 
Scientific, Inc.) and protein concentrations were determined 
using a Pierce BCA Protein Assay kit (cat. no. 23227; Thermo 
Fisher Scientific, Inc.). The protein extracts (20 µg) were 
resolved in 10% acrylamide gel and transferred onto nitrocel-
lulose membranes which were blocked in 5% non-fat dry milk 
for 1 h at room temperature. The membranes were incubated 
overnight at 4˚C with the primary antibodies followed by 
incubation with the goat-anti rabbit IgG HRP-conjugated 
secondary antibody (dilution 1:3,000; cat.  no.  1706515; 
Bio-Rad Laboratories, Inc., Hercules, CA, USA) for 1 h at 
room temperature. Membranes were exposed to ECL Western 
Blotting substrate (cat. no. 32106; Thermo Fisher Scientific, 
Inc.) as described in the manufacturer's protocol.

The following antibodies were used: DR4 (dilution 1:1,000; 
cat. no. 42533), DR5 (dilution 1:1,000; cat. no. 8074), α-tubulin 
(dilution 1:1,000; cat. no. 2144; all were from Cell Signalling 
Technology, Danvers, MA, USA).

In vitro co-culture and cell death assay. A total of 10,000 
Dil-labeled (cat.  no.  V22885; Thermo Fisher Scientific, 
Inc.) neuroblastoma cells were plated in 96-well plates, to 
which control medium, 50 ng/ml r-TRAIL (cat. no. 310-04; 
PeproTech, Inc.), 20 nM Bortezomib (cat. no. S-1013; Selleck 
Chemicals, Houston, TX, USA), 10,000 TRAIL-MSCs or their 
combinations were added after 24 h. Floating and adherent 
cells were harvested after 48 h after plating. Apoptosis was 
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quantified by AF647-conjugated Annexin V (cat. no. A23204; 
Invitrogen; Thermo Fisher Scientific, Inc.) and 2 µg/ml DAPI 
(cat. no. D9542; Sigma-Aldrich; Merck KGaA, Darmstadt, 
Germany) staining using flow cytometry.

Primary patient-derived neuroblastoma cell lines were 
grown as a monolayer in 96-well plates coated with human 
recombinant laminin 521 (cat. no. LN-521; Biolamina AB, 
Sundbyberg, Sweden) according to the manufacturer 's 
instructions.

Xenograft cancer models. All experimental procedures were 
non-retrospectively approved by a the Brunel University 
London Ethics Committee and the Home Office and were 
conducted under the Animal Scientific Procedures Act, 1986 
(UK). In addition, we confirm that the tumour burden did not 
exceed the recommended dimensions.

Forty four-week-old female mice (initial weight 20-23 g), 
immunodeficient NOD/SCID (purchased from Charles River 
Laboratories, Margate, UK) were injected subcutaneously 
into the right flank with 5x106 neuroblastoma cells in a 1:1 
mixture of Matrigel (Corning, Inc., Corning, NY, USA) and 
phosphate-buffered saline (PBS). After tumours reached the 
size of 5 mm in diameter, the mice were randomly assigned 
to 4 groups (10 mice/group) and PBS, 5x106 TRAIL-MSCs 
labelled with DiR (cat. no. D12731; Thermo Fisher Scientific, 
Inc.), Bortezomib (1 mg/kg body weight) and their combination 
were administered intraperitoneally every 3 days for 3 weeks. 
Fluorescent TRAIL-MSCs were tracked in vivo using the IVIS 
Lumina Imaging System (Caliper Life Sciences, Hopkinton, 
MA, USA). Tumour size was monitored with a calliper and 
calculated according to the formula: V = (length x width2)/2. 
Mice were housed under a 12-h light/dark cycle in a specific 
pathogen-free facility with controlled temperature and 
humidity (20-24˚C, 45-65% humidity) and allowed access to 
food and water ad libitum. Body weight and general physical 
status were recorded daily, and the mice were sacrificed 
by cervical dislocation when the tumour reached 1.2 cm in 
diameter.

Flow cytometry of lentivirus-transduced cells. For the expres-
sion detection of TRAIL, MSC cells were stained with a 
phycoerythrin (PE)-conjugated anti‑TRAIL antibody (dilu-
tion, 1:100; cat. no. 550516; BD Biosciences, Franklin Lakes, 
NJ, USA) and analysed by flow cytometry.

Statistical analysis. All data are expressed as the means ± stan-
dard deviation (SD). Statistical significance between different 
test conditions was determined using Student 's t-test. 
Probability values <0.05 were considered to indicate a statisti-
cally significant result. The statistical analysis of survival was 
carried out using a log-rank test and the SPSS 16.0 software 
(SPSS, Inc., Chicago, IL, USA).

Results

Expression of DR4 and DR5 death receptors in neuroblas-
toma cells. The presence of death receptors in cancer cells is 
a valuable biomarker to determine sensitivity to TRAIL. We 
therefore quantified the expression of DR4 and DR5 in a panel 
of established (classic) or patient-derived neuroblastoma cells 
and investigated whether the anticancer drug Bortezomib 
could be used to enhance the expression of TRAIL receptors. 

All classic neuroblastoma cells expressed DR5 receptor 
while the expression of DR4 was most prominent in a subset 
of neuroblastoma cell lines. The expression of DR5 was mark-
edly increased after treatment with 20 nM Bortezomib for 
24 h whereas the DR4 receptor was increased by the drug only 
in the Kelly and SKNAS cell lines (Fig. 1A).

There was a wide difference in expression of death recep-
tors in patient-derived cell lines, ranging from strong to 
undetectable. In keeping with the results obtained with classic 
neuroblastoma cell lines, Bortezomib enhanced the expression 
of DR4-5 also in primary cells (Fig. 1B).

TRAIL-MSCs induce neuroblastoma cell death in vitro. To 
examine whether the TRAIL-death receptor system could 
be exploited for therapeutic purposes in neuroblastoma, the 

Table I. Primary cell lines and patient information (Great Ormond Street Hospital cohort).

Pathology
number	 A5	 2820	 1043008 	 0396

Procedure	 Diagnostic biopsy	 Diagnostic biopsy	 Biopsy, second relapse	 Diagnostic biopsy
Diagnosis	 Poorly differentiated	 Poorly differentiated	 Poorly differentiated	 Poorly differentiated
 	 neuroblastoma	 neuroblastoma	 neuroblastoma	 neuroblastoma
Site of origin	 'Right neck mass'	 Abdominal mass	 Supraclavicular lymph node	 Right inguinal lymph node
	 (mediastinal into
	 right supraclavicular
	 fossa)
MYCN status	 Not amplified	 Not amplified	 Diagnostic biopsy: not amplified	 Not amplified
Chromosomal	 1p loss, 11q and 17q	 1p loss, 11q loss, 	 Diagnostic biopsy: 1p loss,	 11q loss, 17q gain, no
abnormalities	 status inconclusive	 17 gain	 11q loss, 17q gain	 1p/1q imbalance
Histopathology	 CD56+, NB84+	 CD56+, NB84+	 Diagnostic biopsy: CD56+, NB84+	 CD56+, NB84+

immunostaining
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different cell lines were subjected to in vitro killing assays.  
Neuroblastoma cells were cultured in the presence of soluble, 
recombinant TRAIL (r-TRAIL), Bortezomib, TRAIL-MSCs 
and their combinations. Before performing the experiments, 

TRAIL expression on the surface by the modified MSCs was 
verified by flow cytometry (Fig. 2A). The results revealed 
that soluble TRAIL and TRAIL-MSCs could induce killing 
of death receptor-positive cell lines that was increased by 

Figure 1. Classic and patient-derived neuroblastoma cell lines exhibit variable expression of TRAIL death receptors. Western blot analysis revealing the 
expression of DR4 and DR5 in a panel of classic (A) and patient-derived (B) neuroblastoma cell lines in the presence or absence of BTZ. α-tubulin was used 
as a loading control. Quantification of DR4 and DR5 expression relative to control (α-tubulin) is displayed at the bottom of each set of western blots. TRAIL, 
tumour necrosis factor-related apoptosis-inducing ligand; BTZ, Bortezomib; CTR, control.

Figure 2. Combination of TRAIL-MSCs with BTZ causes synergistic cell death of classic and patient-derived neuroblastoma cell lines. (A) MSCs infected with 
a TRAIL lentivirus, or parental cells, were subjected to flow cytometric analysis with a TRAIL antibody. Cell death assays; (B) classic or (C) patient-derived 
neuroblastoma cell lines were cultured in the presence or absence of recombinant TRAIL (r-TRAIL), BTZ, mesenchymal stem cells engineered to express 
secreted TRAIL (TRAIL-MSCs) or their combinations. Error bars indicate the standard errors of the means of three (Kelly and SKNAS) or two (primary cell 
lines) experiments. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. MSCs, mesenchymal stem cells; TRAIL, tumour necrosis factor-related apoptosis-inducing 
ligand; BTZ, Bortezomib.
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Bortezomib. The classic neuroblastoma cell line SKNAS was 
particularly sensitive to the combination, with 60-70% of cells 
undergoing apoptosis (Fig. 2B). Primary cells were gener-
ally less sensitive to soluble TRAIL or TRAIL-MSCs, and, 
as anticipated, the degree of cell death was in most instances 
proportional to the expression levels of the TRAIL receptors 
(Fig. 2C). Intraperitoneally injected TRAIL-MSCs migrate 
to neuroblastoma xenotransplants. Since TRAIL-MSCs and 
the combined treatment with Bortezomib enhanced TRAIL-
induced apoptosis in vitro, we evaluated the therapeutic 
efficacy of this treatment in  vivo. SKNAS were injected 
subcutaneously into the flank of NOD/SCID mice to establish 
a xenograft tumour model.

Tumours were allowed to grow until they reached a volume 
of 50 mm3. Mice were then randomly assigned into 4 groups 
and treated with vehicle (PBS), TRAIL-MSCs labelled with the 
fluorescent lipophilic dye DiR, Bortezomib or their combination.

Fluorescent TRAIL-MSCs were tracked in  vivo using 
the IVIS Lumina Imaging System (Caliper Life Sciences). 
Animals were imaged 24  h after injection to determine 
the localisation of TRAIL-MSCs in  vivo. A strong signal 
from DiR-labeled TRAIL-MSCs was detected in the flanks 

containing the tumour masses whereas a weak signal was 
detected in other anatomical locations (Fig.  3). Control 
animals receiving no MSC injections were negative for fluo-
rescence. To evaluate the effect of TRAIL-MSCs in tumour 
growth, mice were injected with TRAIL-MSCs, Bortezomib 
or TRAIL-MSCs+Bortezomib every 3 days for 3 weeks and 
monitored until tumour masses reached a diameter of 1.2 cm 
or mice lost 20% of their weight or showed signs of distress. 
There were no significant changes in tumour volumes in mice 
injected with the TRAIL-MSCs compared with the control 
group, but a significant anticancer effect was noted in the 
Bortezomib groups (Fig. 4A). We did not observe statistically 
significant differences in survival between different treatment 
groups, but there was a trend of increased survival in the 
Bortezomib-treated mice, consistent with previous observa-
tions (32) (Fig. 4B).

Discussion

Gene rearrangements and mutation of key oncogenes such 
as MYCN, ALK, ATRX, TERT and chromosomal losses 
or reduced expression of CLU, CHD5, PHOX2B, CASZ1, 

Figure 3. TRAIL-MSCs home into neuroblastoma tumours growing in vivo. TRAIL-MSCs were stained with the vital dye DiR and injected intraperitoneally 
into mice with tumours growing in the right flank. IVIS Lumina Imaging System (Caliper Life Sciences) confirmed that human TRAIL- MSCs infiltrated 
subcutaneous neuroblastoma tumour masses. The colour scale indicates the intensity of DiR signal, with the yellow colour indicating the strongest intensity. 
MSCs, mesenchymal stem cells; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand; BTZ, Bortezomib.

Figure 4. Bortezomib, but not TRAIL-MSCs, treatment slow down the growth of neuroblastoma xenografts. (A) Tumour growth curves. SKNAS cells were 
injected in the right flanks of mice and treatments were started after tumours reached ~50 mm3. The results are expressed as the tumour volume means ± SD 
(n=10, *P=0.05). (B) Survival curves. Log-rank test indicates that there is no significant effect on mice survival after TRAIL-MSCs or bortezomib treatments 
(P=0.051). MSCs, mesenchymal stem cells; TRAIL, tumour necrosis factor-related apoptosis-inducing ligand; BTZ, Bortezomib.
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PML and other tumour suppressor genes are thought to play 
a crucial role in the pathogenesis of neuroblastoma (35-39). 
Despite the significant advances in the understanding of its 
molecular causes, the life expectancy of patients bearing 
high-risk neuroblastoma is still very poor, suggesting that new 
therapeutic approaches are urgently needed. MYCN, the main 
neuroblastoma oncogene, is essentially undruggable  (40). 
Small molecule inhibitors against ALK have been developed, 
however, monotherapies with small molecule inhibitors are 
prone to the problem of resistance and new therapies based on 
the inhibition of molecular drivers, for example by small inter-
fering RNAs or CRISPR, are still far from being translated 
into clinical practice.

One of the many challenges of developing a therapy based 
on biomolecules is the delivery of these to the tumour site. It 
has been recently revealed that MSCs can specifically home 
in the tumour stroma, and this property can be exploited for 
cancer therapy. In this context, the death ligand TRAIL was 
reported to induce apoptosis selectively in tumour cells while 
sparing normal cells in vitro and in vivo  (41,42). Recently, 
several research groups have explored the possibility of using 
TRAIL as an anticancer molecule that could be delivered in 
the tumour microenvironment by mesenchymal stem cells. 
Loebinger et al demonstrated that TRAIL-MSCs were able to 
home and kill tumour cells, and significantly induce cancer 
regression in a lung metastatic cancer model of breast cancer 
cells (20). In addition, TRAIL-expressing MSCs exhibited 
anticancer activity in other experimental tumour models, 
such as glioma and sarcoma  (43-45). Despite expressing 
death receptors, cancer cells can become resistant to TRAIL-
induced apoptosis (46,47). Several studies have indicated that 
Bortezomib can reverse resistance of cancer cells to TRAIL 
killing by increasing the expression of DR4 and DR5 (48). 
Notably, Naumann et al reported that Bortezomib synergised 
with TRAIL in inducing apoptosis of neuroblastoma cells (49). 

A key question for the potential exploitation of MSCs in 
neuroblastoma therapeutics is whether stromal cells injected 
systemically can reach tumour sites. Contradicting informa-
tion has been published that still leaves the question open. 
For example, a previous study suggested that neuroblastoma 
tumours are unable to attract systemically injected MSCs, 
whereas a recent study revealed imaging of MSCs infiltrating 
human neuroblastomas growing in vivo (50,51).

To further address this issue, we investigated whether 
MSCs engineered to express TRAIL were attracted by and 
able to kill neuroblastoma cells transplanted into immuno-
compromised mice. Firstly, MSCs expressing TRAIL were 
co-cultured with classical and patient-derived neuroblastoma 
cell lines and subjected to cell killing assays. The protease 
inhibitor and anticancer drug Bortezomib was used to 
increase the expression of death receptors and sensitise cells 
to TRAIL killing. Once we had identified the cell line more 
susceptible to TRAIL-MSCs killing, we carried out xeno-
transplantation experiments to assess whether the engineered 
stem cells were attracted by neuroblastomas. Bioluminescent 
imaging (BLI) clearly indicated that TRAIL-MSCs infil-
trated neuroblastomas hours after intraperitoneal injections. 
Disappointingly, despite the fact that TRAIL-MSCs were 
able to kill SKNAS cells in vitro, they were not able to do so 
in vivo and the marginal therapeutic effect that we observed 

was caused by Bortezomib. Resistance to TRAIL killing may 
have different causes, including high expression of decoy 
receptors and downregulation or upregulation of apoptotic 
proteins. Expression of the intracellular apoptotic inhibitor 
c-FLIP can confer TRAIL resistance in different types of 
cancer cell lines and it may be involved in the protection of 
neuroblastoma cells from the cytotoxic effect of TRAIL (52). 
Deficient expression of caspases, in particular caspase-8, 
essential with FADD to form the death receptor complex 
DISC, may contribute to TRAIL resistance (53). Also, over-
expression of Bcl-2 or Bcl-x or loss of Bax and Bad function 
or high expression of an inhibitor of apoptotic proteins could 
lead to TRAIL resistance (54). Furthermore, high expression 
of inhibitors that act downstream of the receptors, which 
includes XIAP, c-IAP1, c-IAP2 and survivin could block 
the activation and activity of caspase-9, -3 and -7 (55). It is 
possible that one of these mechanisms of resistance is acti-
vated and selected in tumours developing in vivo and could 
be responsible for the failure of TRAIL-MSCs to kill their 
targets. An alternative explanation of the failure of the MSCs 
to induce cancer regression could be that the cells have lost 
their ability to express TRAIL in the tumour microenvi-
ronment. Although we cannot exclude this possibility, it is 
unlikely since the same TRAIL-modified MSCs have been 
previously used to successfully inhibit breast cancer growth 
in immunodeficient mice (20,26).

Nonetheless, the present study suggests that mesenchymal 
stem cells are suitable for neuroblastoma cell and gene therapy 
but should be loaded with biomolecules more effective than 
TRAIL in further preclinical studies. For example, MSCs 
producing interferon gamma (IFNγ) have shown promise in 
reducing neuroblastoma growth when injected intratumor-
ally (56). In light of this study, it is likely that systemic injections 
of MSCs producing IFNγ or other neuroblastoma-specific 
drugs could be successfully developed for neuroblastoma 
therapeutics.
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