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Abstract 

This research addresses solving two types of Travelling Salesman Problems (TSP) which are the 

symmetric TSP (STSP) and the asymmetric TSP (ATSP). The TSP is a problem of finding a 

minimal length closed tour that visits each city once. If the distances between each pair of cities 

are the same in both directions, the problem is a STSP, otherwise, it is an ATSP. 

 In this thesis, a new metaheuristic algorithm which is based on  Ant Colony Optimization 

(ACO) is proposed to solve these problems. The key idea is to enhance the ability of exploration 

and exploitation by incorporating a metaheuristic approach with an exact method. A new 

strategy for creating ‘Intelligent Ants’ is introduced to construct the solution tours. This strategy 

aims at reducing the computational time by heuristically fixing part of the solution tour and 

improving the accuracy of the solutions through the usage of a solver, specifically for large size 

instances. Moreover, this proposed algorithm employs new ways of depositing and evaporating 

pheromone. A different approach of global updating of pheromone is proposed in which the 

pheromone is deposited only on the edges belonging to the colony-best ant and evaporated only 

on the edges belonging to the colony-worst ant that are not in the colony-best ant.   

 Additionally, the parameters of the proposed algorithm which include the number of 

colonies, the number of ants in each colony, the relative influence of the pheromone trail 𝛼  and 

the pheromone evaporation rate 𝜌 are expressed as a function of the problem size. Comparisons 

with other sets of parameter values suggested in the literature have been investigated which 

illustrate the advantages of the choice of the proposed parameter settings. 

 Further, in order to evaluate the performance of the proposed algorithm, a set of standard 

benchmark problems from the TSPLIB with up to 442 cities were solved and the results 

obtained were compared with other approaches from the literature. The proposed algorithm has 

proven to be competitive and shows better performance in 63% of the 16 algorithms in terms of 

solution quality and obtained the optimum solutions in 70% of the 33 instances, proving that it 

is a good alternative approach to solve these hard combinatorial optimisation problems.  
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Chapter 1  

 

Introduction 

An optimization problem is defined by a set of decision variables, an objective function and a 

possible set of constraints. It is a process of minimizing or maximizing the objective function 

by finding values of the decision variables that satisfy the set of constraints. Let 𝑓 be an 

objective function, 𝑋 a feasible set and ℝ a solution space. The optimization problem is 

formulated as: 

max/min  {𝑓(𝑥)|𝑥 ∈ 𝑋, 𝑋 ⊆ ℝ} 1.1 

If 𝑥 ∈ 𝑋  then 𝑥 is called a feasible solution. Otherwise, 𝑥 is an infeasible solution. In general, 

optimization models are classified according to characteristics of the decision variables, 

constraints or objective function. If the classification is based on the nature of the equations 

for the objective function and the constraints, the optimization problem is classified as linear 

or nonlinear problems. On the other hand, if the classification is based on types of variables, 

the optimization problems are classified as continuous optimization or discrete optimization 

problems. Further, if the solution space is discrete, then the problem is a combinatorial 

optimization problem (COP). The COPs are easy to state but difficult to solve (Osman & 

Kelly, 1996).  Additionally, many COPs can be formulated as mathematical programming 

problems. 

 Meanwhile, the optimization problem is a linear programming problem (LP) if the 

objective function is a linear function in the form of (Dantzig, 1963): 

𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 1.2 

for some 𝑐𝑖 ∈ ℝ , 𝑖 = 1, … , 𝑛. Besides, the feasible region is the solution set to a finite 

number of linear inequality or equality constraints associated with some linear combination of 

the decision variables in the form: 

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛  {
≤
=
≥

}  𝑏 1.3 
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In other words, a feasible solution is a solution for which all the constraints are satisfied while 

the feasible region is the set containing all these feasible solutions. 

 Mathematically, these linear programming models can be defined as a method of 

finding the maximum or minimum value of the objective function satisfying a set of linear 

constraints. In particular, it is a process of finding the values of decision variables 𝑥𝑗 that 

maximize or minimize the objective function. It can be written as follows: 

max/min  ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 
1.4 

subject to 

∑ 𝑎𝑖𝑗𝑥𝑗 {
≤
=
≥

} 𝑏𝑖          𝑖 = 1, … , 𝑚

𝑛

𝑗=1

 
1.5 

𝑥𝑗 ≥ 0                         𝑗 = 1, … , 𝑛 1.6 

where  𝑐𝑗, 𝑎𝑖𝑗 and  𝑏𝑖  are constants. 

 Since the decision variables that satisfy all the linear constraints of the problem are 

called a feasible solution, then 𝑥 is a feasible solution if  𝑥 ∈ 𝑋 . Otherwise, 𝑥  is an infeasible 

solution.  

 Furthermore, if some or all of the variables in 1.6  are restricted to integer values, then, 

the LP is an integer programming (IP). Three types of IP models are: 

 Pure integer programming   : if all the variables are integers.  

 Mixed integer programming : if only some of the variables are restricted to be integer 

values. 

 Binary integer programming : all the variables are binary (restricted to the values of 0 

or 1). 

Hence, if there are no integer variables, then it is an LP, if no continuous variables are 

present, then it is a pure IP, and if both integer and continuous variables are present, then it is 

a mixed integer programming (Kolman & Beck, 1995). 
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 An example of a widely studied combinatorial optimization problem is the Traveling 

Salesman Problem (TSP). This research is aimed on finding the optimal solution or an 

approximate solution to two types of TSPs. In the next section, there are definitions, 

classifications, and formulations for the TSPs. 

 Classification of the Travelling Salesman Problem 1.1

The TSP is defined by having a set of cities where the distances between each city pair is 

known.  The problem is to plan a route that visits each city once and ends where it starts. 

 The simplicity of its formulation has led to numerous remarkable applications in many 

areas such as vehicle routing (Bektas, 2006), data transmission in a computer network (Ali & 

Kamoun, 1993), scheduling (Bigras, Gamache, & Savard, 2008) and (Baez, Angel-Bello, & 

Alvarez, 2016), air traffic management (Furini, Persiani, & Toth, 2016), printed-circuit-

boards manufacturing (Fujimura, Fujiwaki, Kwaw, & Tokataka, 2001) , robot navigation 

(Barral, Perrin, Dombre, & Liegeois, 1999) and data partitioning (Cheng, Lee, & Wong, 

2002). In these instances, the main goal is to find the optimal tour when the cost or distance 

between each location is known. In brief, it is a process of determining  an order of how each 

location is visited once and the total cost incurred or the total distance travelled is a minimum. 

 The general form of the TSP was first studied by mathematicians starting in the 1920’s 

in Vienna, notably by Karl Menger (Applegate, Bixby, Chvatal, & Cook, 1998).  The TSP 

then was studied by Princeton’s mathematical community during the 1930’s. In the 1940’s, 

Merrill Flood publicised the name TSP within the mathematical community on mass (Lawler, 

Lenstra, Kan, & Shmoys, 1985).   

 The TSP can be classified into different classes according to the properties of the cost 

matrix or the type of graph. The common classification of TSP is symmetric TSP (STSP), 

asymmetric TSP (ATSP), and mult TSP (mTSP). 

1.1.1 Asymmetric Traveling Salesman Problem 

The asymmetric TSP is defined as the problem of finding a minimal length closed tour that 

visits each city once. The distances between each pair of cities are not necessarily the same in 

both directions. In general, paths may not even exist in both directions. 
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 Consider a graph  𝐺 = (𝑉, 𝐸) , where 𝑉 = {𝑣1, … , 𝑣𝑛}  is a set of 𝑛 cities, and  𝐸 =

{(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉}  is the set of arcs. Let 𝑥𝑖𝑗 be a decision variable and  𝐶 = (𝑐𝑖𝑗) is a cost matrix 

associated with edge (𝑖, 𝑗) ∈ 𝐸. The formulation of the asymmetric TSP can be stated as 

follows (Punnen, 2007): 

minimize  ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝐸
𝑖≠𝑗

 
1.7 

subject to    

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1                 𝑗 = 1, … , 𝑛 
1.8 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1                𝑖 = 1, … , 𝑛 
1.9 

+ subtour elimination constraints, 1.10 

𝑥𝑖𝑗 = 0 or 1,          (𝑖, 𝑗) ∈ 𝐸 1.11 

 Constraints 1.8 and 1.9 are the in-degree and out-degree for each vertex, which ensures 

that each vertex leaves and enters each node exactly once; constraints 1.10 ensure that the 

tour is connected with no subtour while constraints 1.11 is the integrality constraint. 

1.1.2 Symmetric Traveling Salesman Problem 

The symmetric TSP is a particular case of the asymmetric TSP (Punnen, 2007) . The 

symmetric TSP implies that the distance between two cities is the same in each direction. 

Additionally, this symmetry halves the number of feasible solutions.  

 Consider the graph 𝐺 = (𝑉, 𝐸) defined previously in Section 1.1.1. The formulation of 

the symmetric TSP is given by (Punnen, 2007): 

minimize  ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝐸
𝑖<𝑗

 
1.12 

subject to 
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∑ 𝑥𝑖𝑘

𝑖<𝑘

+ ∑ 𝑥𝑘𝑗

𝑗>𝑘

= 2                 𝑖, 𝑗, 𝑘 = 1, … , 𝑛 
1.13 

+ subtour elimination constraints, 1.14 

𝑥𝑖𝑗 = 0 or 1,           𝑖, 𝑗 ∈ 𝐸 1.15 

Constraints 1.13 are referred to as degree constraints, enforcing that the tour uses 

exactly two of the edges incident on each node; constraints 1.14 and 1.15 are subtour 

elimination constraints and integrality constraints,respectively. 

If the distances 𝑐𝑖𝑗  satisfy the triangle inequality 𝑐𝑖𝑗 + 𝑐𝑗𝑘 ≥ 𝑐𝑖𝑘 for all distinct cities 

𝑖, 𝑗, 𝑘 then, the symmetric TSP is a metric TSP. The triangle inequality ensures that a direct 

path between two vertices is at least as short as any indirect path. If the distances 𝑐𝑖𝑗  satisfies 

the Euclidean norm and obeys the triangle inequality, then the metric TSP is a Euclidean TSP.  

1.1.1.1 A Euclidean TSP 

An instance of a Euclidean TSP is a complete graph 𝐺 with its vertices in a Euclidean space. 

The distance of any two vertices 𝑣𝑖 = (𝑥𝑖 , 𝑦𝑖)  and 𝑣𝑗 = (𝑥𝑗, 𝑦𝑗) in a Euclidean TSP is given 

by 𝑑(𝑣𝑖, 𝑣𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
.  In other words, the cost is the length of the straight 

line between the two points. 

1.1.3 The Multi Traveling Salesman Problem 

The Multi Traveling Salesman Problem (mTSP) is a generalization of the TSP which consists 

of a set of 𝑛 nodes (cities) and a set of 𝑚 salesmen located at a single depot node. The 

remaining cities that are to be visited are called intermediate nodes. Therefore, it is a problem 

of determining a set of routes for 𝑚 salesmen who start and end at the depot or home city 

such that each intermediate node is visited exactly once and the total cost of visiting all nodes 

is minimized (Bektas, 2006). Note that the cost metric can be defined in terms of distance, 

time, etc. Some possible variations of the problem are: 

 Single depot : In the single depot case, all salesman start from and end their tours at a 

single central depot. 
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 Multiple depots: In the multiple depot cases with a number of salesmen located at 

each, the final destination of the salesman can either be their original depot or any 

depot with the restriction that, at each depot, the initial number of the salesman 

remains the same after all the travel. 

 Number of salesmen: The number of salesman appearing in the problem may be a 

bounded variable or fixed a priori.  

 Fixed charges:  If the number of salesman in the problem is a bounded variable, the 

usage of each salesman in the solution usually has an associated fixed cost. In this 

case, the minimization of this bounded variable may also be of concern.  

 Time windows: Certain cities need to be visited in specific time periods, named as 

time windows. This extension of the mTSP is referred to as mTSP with Time 

Windows (mTSPTW). 

 Other restrictions: These additional constraints may consist of bounds on the number 

of nodes each salesman visits, the maximum or minimum distance or travelling 

duration a salesman travels or other special restrictions. 

1.2 Different Formulations of the TSP 

The standard formulation for the TSP was suggested by Dantzig, Fulkerson and Johnson 

(G.B.Dantzig, Fulkerson, & Johnson, 1954) in 1954. Dantzig, Fulkerson and Johnson 

formulated the problem as a zero-one linear program involving 𝑂(𝑛2) variables and 𝑂(2𝑛) 

linear constraints (Padberg & Sung, 1991). Since their formulation has an exponentially large 

number of constraints, many researchers have proposed alternative formulations of the TSP 

that involve only a polynomial number of constraints. For the sake of brevity, only three are 

mentioned here which are Miller, Tucker and Zemlin (Miller, Tucker, & Zemlin, 1960), 

Gavish and Graves (Gavish & Graves, 1978) and Claus (Claus, 1984). 

1.2.1 The Dantzig-Fulkerson-Johnson Formulation  

The Dantzig-Fulkerson-Johnson (DFJ) formulation associates a binary variable 𝑥𝑖𝑗 with each 

edge (𝑖, 𝑗) which  is equal to 1 if and only if the edge appears in the optimal tour. They have 
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formulated the subtour elimination constraints 1.10 and 1.14 as follows (G.B.Dantzig, 

Fulkerson, & Johnson, 1954): 

∑ 𝑥𝑖𝑗 ≤ |𝑆| − 1                   ∀ 𝑆 ⊂ 𝑉
𝑖,𝑗∈𝑆

, 𝑆 ≠ ∅ 
1.16 

 The subtour elimination constraints 1.16 are derived based on the fact that the number 

of nodes for every tour or subtour must be equal to the number of arcs. Thus, to form a tour 

without forming a subtour, for every subset that consists of 2 or 𝑛 − 1  cities , the number of 

arcs must be less than the number of cities, where 𝑆 is a nonempty proper subset of all nodes 

𝑉, and |𝑆| is the number of cities in 𝑆. Otherwise, constraints 1.16 are violated since its left-

hand side value would be equal to |𝑆| and its right-hand side value equal to |𝑆| − 1. 

Moreover, constraints 1.16 are only valid for 2 ≤ |𝑆| ≤ 𝑛 − 2  due to constraints 1.8,1.9 and 

1.13. 

 

Figure 1.1: Illustrative example of DFJ subtour elimination constraints 

 Consider the subtour 1 → 2 → 4 → 1 in Figure 1.1 with 𝑉 = {1,2,3,4,5,6} and 

𝑆 = {1,2,4}.  This subtour could not be satisfied since   ∑ 𝑥𝑖𝑗 ≰ |𝑆| − 1𝑖,𝑗∈𝑆 , that is  

∑ 𝑥𝑖𝑗 =    𝑥12 + 𝑥24 + 𝑥41 = 3 𝑖,𝑗∈𝑆  and  |𝑆| − 1 = 2 

Thus the corresponding constraints 1.16 would be violated.   

Likewise, the subtour 3 → 6 → 5 → 3 in Figure 1.1 with 𝑆 = {3,5,6}  would also violate 

constraints 1.16 since 

∑ 𝑥𝑖𝑗 =    𝑥36 + 𝑥65 + 𝑥53 = 3 𝑖,𝑗∈𝑆  and  |𝑆| − 1 = 2. 

1

2

4

3

5

6



Chapter 1                           Introduction 

8 

 

1.2.2 The Miller-Tucker-Zemlin Formulation  

Alternatively, Miller, Tucker and Zemlin (MTZ) proposed another formulation for a more 

general TSP using a polynomial number of subtour elimination constraints by introducing 

additional continuous variables 𝑢𝑖 namely node potentials. The MTZ subtour elimination 

constraints for 1.10 and 1.14 are then stated as (Miller, Tucker, & Zemlin, 1960) : 

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1     ∀𝑖 ≠ 𝑗 = 2, … , 𝑛 1.17 

The subtour elimination constraints 1.17 indicate the order of the corresponding node in the 

tour. The formulation involves 𝑂(𝑛2)  variables and 𝑂(𝑛2)  constraints (Oncan, Altinel, & 

Laporte, 2009).  

 The indices 𝑢𝑖 represent the position of node  𝑖 ≥ 2 in the tour assuming that the tour 

starts at node 1. Hence, node 1 has position 1. The constraints defining node potential prevent 

subtours by providing a simple contradiction upon surrogating the last set of constraints in 

1.17 over nodes in any subtour that does not involve the node 1. 

 For example, consider the subtour 3 → 6 → 5 → 3 in Figure 1.1 with 𝑥36 = 𝑥65 =

𝑥53 = 1 and 𝑢3 = 1, 𝑢6 = 2 and 𝑢5 = 3.  From constraints 1.17, three corresponding 

constraints are: 

𝑢3 − 𝑢6 + 6𝑥36 = 1 − 2 + 6(1) = 5 ≤ 5   (satisfied) 

𝑢6 − 𝑢5 + 6𝑥65 = 2 − 3 + 6(1) = 5 ≤ 5   (satisfied) 

𝑢5 − 𝑢3 + 6𝑥53 = 3 − 1 + 6(1) = 8 > 5   (violated) 

 It can be seen clearly that the subtour violates the last constraint. 

1.2.3 The Gavish and Graves Formulation  

In 1978, Gavish and Graves (G&G) proposed a single commodity flow problem that extends 

the MTZ formulation of TSP. Both MTZ and G&G use the same number of variables but 

differ in their constraints set. Imagine that the salesman carries 𝑛 − 1 units of commodity 

when he leaves node 1, and delivers 1 unit of this commodity to each other node. Let the 𝑥𝑖𝑗  

be defined as in DFJ, G&G uses additional flow variables 𝑦𝑖𝑗 indicating the amount of flow 
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on arc (𝑖, 𝑗). The G&G formulation of the subtour elimination constraints are stated as 

(Gavish & Graves, 1978): 

∑ 𝑦𝑖𝑗 − ∑ 𝑦𝑗𝑖 = 1

𝑛

𝑗=2
𝑗≠𝑖

𝑛

𝑗=1
𝑗≠𝑖

              𝑖 = 2, … , 𝑛 
1.18 

0 ≤ 𝑦𝑖𝑗 ≤ (𝑛 − 1)𝑥𝑖𝑗              1 ≤ 𝑖, 𝑗 ≤ 𝑛,     𝑗 ≠ 𝑖    1.19 

𝑥𝑖𝑗 = 0 or 1,                             𝑖, 𝑗 ∈ 𝐸 1.20 

For fixed values of the variables  𝑥𝑖𝑗 , the two sets of constraints 1.18 and 1.19 yield a 

network flow problem in which the variables  𝑦𝑖𝑗  take integer values. Constraints 1.18 

guarantee that each client receives one unit of flow; constraints 1.19 ensure that the flow on 

each arc leaving the nodes does not exceed a specified capacity. The G&G formulation has 

𝑂(𝑛2) variables and 𝑂(𝑛2) constraints (Oncan, Altinel, & Laporte, 2009) . 

1.2.4 The Claus Formulations 

Moreover, Claus presented a multi-commodity flow formulation with 𝑛 − 1  commodities, 1 

unit of each for each customer. This formulation introduces non-negative continuous 

variables 𝑤𝑖𝑗
𝑘  representing the amount of the 𝑘th commodity passing directly from node 𝑖 to 

node 𝑗. The formulation is as follows (Claus, 1984): 

∑ 𝑤𝑖𝑗
𝑘 − ∑ 𝑤𝑗𝑖

𝑘 = 0

𝑛

𝑖=2

𝑛

𝑖=1

                             𝑗, 𝑘 = 2, … , 𝑛   , 𝑗 ≠ 𝑘 
1.21 

∑ 𝑤1𝑖
𝑘 = 1                      

𝑛

𝑖=2

                         𝑘 = 2, … , 𝑛 1.22 

∑ 𝑤𝑖𝑘
𝑘

𝑛

𝑖=1

= 1                                               𝑘 = 2, … , 𝑛 1.23 

0 ≤ 𝑤𝑖𝑗
𝑘 ≤ 𝑥𝑖𝑗,                𝑖, 𝑗 = 1, … , 𝑛;     𝑖 ≠ 𝑗;     𝑘 = 2, … , 𝑛 1.24 
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 𝑥𝑖𝑗 = 0 or 1,                                               𝑖, 𝑗 ∈ 𝐸 1.25 

Constraints 1.21 ensure that a commodity leaves a vertex if it is not its final destination; 

constraints 1.22 guarantee that each commodity leaves the depot and is delivered to a vertex; 

constraints 1.23 ensure that each vertex gets exactly one commodity. The coupling constraints 

1.24 indicate that flow of any commodity is allowed on the arc (𝑖, 𝑗) only if that arc is 

included in the solution. In other words, variable 𝑤𝑖𝑗
𝑘   is equal to 1 if and only if the 

commodity going from vertex 1 to vertex 𝑘 flows on arc (𝑖, 𝑗). 

 The Claus formulation involves 𝑂(𝑛3) variables and 𝑂(𝑛3) constraints (Oncan, Altinel, 

& Laporte, 2009).  

1.3 Solution Methods to the Travelling Salesman Problem  

The TSP is a typical example of hard combinatorial optimization problems that have intrigued 

mathematicians and computer scientists for years. Traditional optimization techniques such as 

linear programming, non-linear programming and dynamic programming have frequently 

been used for solving the TSP. However, these algorithms are computationally expensive 

since they examine potentially every feasible solution in order to identify the optimum 

solution. For this reason, heuristic or approximate algorithms are often preferred to exact 

algorithms for solving the large TSPs in practice. 

1.3.1 Exact Algorithms  

These types of algorithms theoretically are guaranteed to find an optimal solution although 

they can  only be successfully used for modestly sized problem instances. Such methods 

include brute-force, cutting planes, branch-and-bound, branch-and-cut, and dynamic 

programming. 

1.3.1.1 Brute-force Method  

A brute force method is a straightforward approach directly based on the problem’s statement 

and definitions of the concepts involved. The brute-force method for solving the TSP would 

be to check every possible route and take the shortest one as the answer.  If there are 𝑁 cities 
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to choose from, then there will be  (𝑛 − 1)! maximum possible Hamiltonian cycles for an 

asymmetric TSP (directed graph) and (𝑛 − 1)! 2⁄   maximum possible Hamiltonian cycles for 

a symmetric TSP (undirected graph). 

 However, the factorial function (𝑛 − 1)!  grows larger when  𝑛 becomes larger as it 

needs to generate (𝑛 − 1)! number of permutations for all the n cities. Hence, the time needed 

for solving the TSP grows enormously even for modern computers. 

1.3.1.2 Branch-and-bound  

The branch-and-bound (B&B) was first proposed by (Land & Doig, 1960) in the 1960s and  is 

typically used to solve discrete optimisation problems.  The underlying idea of a B&B 

algorithm lies in finding an optimal solution and proving its optimality by successive 

partitioning of the feasible set. The word ‘branch’ in the B&B refers to the partitioning 

process while the word ‘bound’ refers to the process of defining lower bounds for 

subproblems. In other words, it is a method of searching for an optimal solution based on the 

successive partitioning of the solution space.  

 The solution of a problem with a B&B algorithm is usually described as a search 

through a search tree in which the root node corresponds to the original problem and each 

other node is a subproblem of the original problem. For most cases, a feasible solution to the 

problem is produced in advance using a heuristic and the value thereof is used as the current 

best solution or incumbent. In each iteration of a B&B algorithm, a node is selected for 

exploration from the list of live nodes corresponding to unexplored feasible subproblems 

using some selection strategy. It is then followed by the branching strategy in which two or 

more children of the selected node are constructed through the addition of constraints to the 

subproblem of the node. In this way, the subspace is subdivided into smaller subspaces. For 

each of these subproblems, the bound for the node is calculated, and this value is used to 

discard certain subproblems from further consideration. When there are no more unexplored 

parts of the solution space left, the search in the whole B&B tree terminates and the optimal 

solution is the value of the current best solution.  

In general, the essential components of the B&B for a discrete optimisation problem are: 

 A relaxation of the original problem: Relaxation means some or all constraints are 

dropped which result in additional feasible solutions.  A good relaxation is the one 
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that gives a strong lower bound and is easy to solve. A common form of relaxation is 

linear relaxation, which removes the requirement that the variables be integers 

(Miller S. J., 2017). A Lagrangian relaxation removes complicating constraints by 

adding them to the objective function, assigned with a Lagrangian multiplier 

(Williams, 2006). The bounds calculated by Lagrangian relaxation are tight yet 

computationally demanding. 

 The quality of the upper bound and lower bound: Upper bound is the value of the 

best feasible solution or incumbent. Lower bound is the value of the objective 

function to the current node, which is not possible to reach any successor node with a 

smaller value than this lower bound in case the current node is expanded further. If 

the upper bound of any subproblem is larger than the incumbent, the subproblem is 

added to the list of active nodes to be expanded further during the search. If not, then 

it will be fathomed.   

 The branching rule: The branching rule determines how children (newly generated 

nodes) are generated from a subproblem.  A good branching rule is one that 

generates few successors of a node of the search tree, and generates strongly 

constrained subproblems (Balas & Toth, 1983).  Some of the most common variable 

selection strategies for MIP are the most infeasible rule, strong branching and 

pseudo-cost branching. 

 The subproblem (node) selection rule: The subproblem selection rule determines the 

order in which unexplored subproblems are selected for exploration. Three popular 

ways of subproblem selection are breadth-first, depth-first search and heuristic 

search.  

 In addition to these, a key element to a good B&B algorithm is a low initial incumbent 

solution to facilitate fathoming of the nodes as early as possible. For this reason, the initial 

feasible solution is normally obtained by a heuristic or metaheuristic.  If no such heuristic 

exists, the initial value of the incumbent is set to infinity. Besides, pruning or fathoming is 

significant in minimising the number of nodes generated in the B&B search tree by removing 

regions of the search space that cannot lead to a better solution. Three types of pruning are: 

(i) Pruning by infeasibility: The subproblem has no feasible linear programming 

solution, and further partitioning would not lead to feasibility again. 
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(ii) Pruning by optimality: The subproblem has an integer optimum, and further 

partitioning would not improve the solution. 

(iii) Pruning by bound:  The upper bound of the subproblem optimum is less than or equal 

to the lower bound of the original problem.  

 In summary, the efficiency of the B&B method is dependent on the sharpness of the 

bound and the effort involved in computing the bound. A good upper bound is significant to 

keep the size of the B&B tree as small as possible (Raidl & Puchinger, 2008). Therefore, a 

heuristic or metaheuristic is usually applied at some nodes in the search tree (Raidl & 

Puchinger, 2008). Also note that although a feasible solution is often found early in the B&B 

search tree, the confirmation of optimality requires longer CPU time to be proved (Dowsland, 

2014). 

1.3.1.3 Cutting Plane  

This method solves optimization problems through a series of relaxations whose feasible sets 

are progressively tightened through the addition of valid inequalities. These valid inequalities 

are called cuts. The added cuts will not affect the original problem but will affect the relaxed 

problem by increasing the chance of finding a solution. This method can be applied to 

optimization problems by iteratively solving the relaxation problem with cuts as additional 

constraints until the solution at the current relaxation problem equals the current upper bound 

or incumbent. Here, the value of the incumbent is the optimal solution to the problem 

(Gomory, 1958).  

1.3.1.4 Branch-and-cut  

The branch-and-cut (B&C) algorithm incorporates the cutting plane method in the B&B 

algorithm. The cutting plane can be applied at the root node or at every node in the search 

tree. This will produce a smaller sized tree (Mitchell J. E., 2011), (Williams, 2006). The B&C 

adds cutting planes to a tight relaxed subproblem by deleting a set of solutions for the relaxed 

subproblem. The deleted solutions are not feasible to the unrelaxed subproblem (Hoffman & 

Padberg, 1991).  

 In particular, the B&C algorithm combines the advantages of the B&B and cutting 

plane methods.  The enumeration benefits from the cutting plane, where the lower bound 
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obtained from the enumeration tree is better than the bound obtained from the B&B tree 

(Naddef & Rinaldi, 2002). Conversely, the cutting plane benefits from the enumeration, 

where the separation algorithm can be more active when it is used with branching (Naddef & 

Rinaldi, 2002). In addition, the B&C reduces the size of the search tree which helps to 

increase the size of the solvable instances. However, it also increases the time at each node in 

the search tree (Hoffman & Padberg, 1991). 

1.3.1.5 Other Approaches 

There are also other exact methods in the literature to solve the TSP such as: 

 Cut-and-solve: Cut-and-solve uses a search path instead of the search tree. At each 

node in the search path, it solves two easy subproblems which are a relaxed problem 

and a spare problem. The advantages of this are that the iterative search strategy will 

not choose the wrong branch since it has only one branch, and the memory 

requirements are minimal (Climer & Zhang, 2006).  

 Column Generation: This technique adds extra variables to the problem to avoid an 

excessive number of constraints (Williams, 2006).  It is also considered as a dual of 

the cutting plane approach (Raidl & Puchinger, 2008).  

 Dynamic Programming: This is an enumerative method with a divide-and-conquer-

strategy with four elements: stages, states, decisions and policies (Dowsland, 2014) . 

The problem is handled in smaller parts in a sequential way so that small 

subproblems are solved first before their solutions are stored for future reference. 

Likewise, larger subproblems are solved by a recursion formula from the smaller 

ones. In other words, the next stage is calculated from the previous stage in a bottom-

up manner. 

1.3.2 Heuristic Algorithms  

In practice, not all problems can be solved by exact algorithms due to many reasons such as a 

problem with a large number of constraints or huge search space. These types of problem will 

have an enormous feasible solution space and hence the optimal solution will be difficult to 

find (Michalewicz & Fogel, 2004). For these reasons, other solution methods are needed such 

as heuristics or metaheuristics.  
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 Heuristic algorithms can be described as a trial and error approach when finding an 

optimal solution is impractical. Though there is no proven guarantee of the solution quality, 

some heuristic algorithms perform very well in practice and produce high-quality solutions in 

reasonable time. Theoretically, it is a procedure that produces a good feasible solution but not 

necessarily optimal (Hillier & Lieberman, 2010). This technique produces an approximate 

solution without guarantee of optimality. Heuristics such as local search can find near-optimal 

solutions within reasonable running times. It begins with an initial solution searching in its 

neighbourhood to find a solution that is better than the current one until no better solution is 

found. 

 The performance of an approximate algorithm can be measured by the running time 

and the quality of the solution (Aarts & Lenstra, 2003). The running time is given by the CPU 

time while the solution quality is measured by calculating the ratio between the value of the 

final solution obtained by the heuristic and the optimal solution obtained from the literature 

(Aarts & Lenstra, 2003). Unfortunately, each heuristic is designed for a specific type of 

problem and treats only that problem, efficiently (Michalewicz & Fogel, 2004). 

 Rego and Clover in (Rego & Glover, 2007) classified heuristics for the TSP into two 

classes, tour construction procedures and tour improvement procedures. The tour 

construction procedure builds an initial solution while the tour improvement procedure starts 

from an initial solution and seeks a better one by iteratively searching the neighbourhood 

(Rego & Glover, 2007). In accordance to (Rego & Glover, 2007), the heuristics in this thesis 

are divided into two groups which are constructive heuristics and improvement heuristics. 

1.3.2.1 Constructive Heuristics 

These heuristics focus on constructing a feasible solution with the main interest on the cost 

and not an improvement (Silberholz & Golden, 2010). The tour construction heuristic starts 

with an empty solution and repeatedly, tries to extend the current solution until a complete 

solution is obtained. Generally, tour construction heuristics can be split into three phases 

which are initialization, selection and insertion. The initialization phase determines the choice 

of the initial sub-cycle or starting point while the selection phase specifies a criterion of 

choosing the next nodes to be added to the current solution. The insertion phase decides the 

position of the new selected nodes into the current solution (Cordeau J.-F. , Laporte, 
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Savelsbergh, & Vigo, 2007) . The most commonly use constructive heuristics are nearest-

neighbour and insertion heuristics. 

1.3.2.1.1 Nearest-neighbour 

This heuristic is obtained by applying the greedy approach to the TSP provided that the tour 

being constructed grows in a connected way. This procedure starts from a randomly chosen 

initial city, finds the closest unvisited city to the current city and inserts that city at the end of 

the current partial solution (Rader, 2010). The same procedure is recursively applied until all 

vertices have been included in the tour and no subtours exist. Typically, the same process is 

repeated with each city selected as the initial one and the best among the 𝑛 tours generated in 

this process is selected as the output of this algorithm. The node selection procedure of this 

algorithm is illustrated in Figure 1.2. 
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Figure 1.2: Illustration of the nearest-neighbour selection 

Suppose that the current partial sequence of a six-city TSP is 1 → 6 → 4 → 2; from city 2, the 

distances to other unvisited cities are 

𝑑23 = 3    𝑑25 = 4    

Since city 3 is the closest to city 2, city 3 would be added to the sequence, yielding  

1 → 6 → 4 → 2 → 3. 

1.3.2.1.2 Insertion Heuristic 

The insertion heuristic is based on the insertion of a node in a particular tour. There are 

several variations depending on rules and criteria for the insertion phase such as cheapest-

insertion and farthest-insertion. 
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1.3.2.1.2.1 Cheapest-insertion Heuristics 

The cheapest-insertion heuristic maintains a subtour until it becomes a tour. In each step, it 

simultaneously determines which unvisited node should be added next and wherein the 

subtour it should be inserted to achieve the smallest increase in the subtour length. Given a 

subtour 𝑆, it finds an arc (𝑖, 𝑗) and a city 𝑟 not in 𝑆 such that the index  𝑐𝑖𝑟 + 𝑐𝑟𝑗 − 𝑐𝑖𝑗 is 

minimal and  then inserts 𝑟  between 𝑖  and 𝑗  (Rader, 2010). The selection process is repeated 

until a tour is obtained. Further, this procedure can also be repeated with each city as the 

initial city and the best of the tours obtained taken as the output. The cheapest-insertion 

method is illustrated in Figure 1.3. 
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Figure 1.3: Illustration of the cheapest-insertion heuristic 

From subtour  (1,2,3), two possible nodes to be inserted are node 4 and 7. 

If node 4 is inserted, the tour cost increase is 

𝑐24 + 𝑐43 − 𝑐23 = 12 + 11 − 8 = 15 

If node 7 is inserted, the tour cost increase is 

𝑐17 + 𝑐73 − 𝑐13 = 12 + 9 − 10 = 11 

So, node 7 is to be inserted, which leads to a new loop (1,2,3,7). 

1.3.2.1.2.2 Farthest-insertion Heuristics 

This heuristic begins with a tour that visits the two cities which are farthest apart. The next 

city to be inserted is the farthest node from any node in the current tour in such a way that the 

increase in the subtour length is minimized (Golden, Bodin, Doyle, & Jr, 1980). The farthest-

insertion method is illustrated in Figure 1.4. 
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Figure 1.4: Illustration of the farthest-insertion heuristic 
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1.3.2.2 Improvement Heuristics 

In contrast to tour construction algorithms, improvement heuristics are often used to improve 

initial solutions generated by other heuristics. Starting from an initial solution, an 

improvement heuristic applies simple modifications such as exchanges of edges to obtain new 

solutions of possibly better cost. If an improving solution is found, it then becomes the current 

solution and the process iterates. Otherwise a local minimum has been identified. The most 

common ways to improve an initial tour generated by construction heuristics for TSP are 2-

opt and 3-opt local searches. 

1.3.2.2.1  2-opt 

The 2-opt is a simple local search algorithm that works by doing small changes on a tour and 

then checking if the solution quality improves. The 2-opt algorithm removes two edges from 

the tour, creating two new subtours, then reconnecting them in a new different way so that it 

forms a correct tour, only if the sum of the length of the newly arranged edges is less than the 

sum of the length of the deleted edges (Reinelt, 1994). This is frequently referred to as a 2-opt 

move and this process is repeated until no further improvement can be obtained. The 2-opt 

move is illustrated in Figure 1.5.  

Consider a tour  1 − 3 − 2 − 4 − 5 − 1 with the length of 30 units as shown in Figure 1.5. , 

possible edges to be changed are:  

 Iteration 1 : Edges (1,3), (2,4) with (1,2), (3,4) 

 Iteration 2 : Edges (1,3), (4,5) with (1,4), (3,5) 

 Iteration 3 : Edges (3,2), (4,5) with (3,4), (2,5) 

 Iteration 4 : Edges (3,2), (5,1) with (3,5), (2,1) 

In iterations 1, 2 and 3, 2-opt is not preserved since the resultant tours have longer tours than 

the tour before the swap. However, replacing edges (3,2), (5,1) with (3,5), (2,1) in iteration 

4 decreases the tour length by 1 unit thus this 2-opt move is accepted. 
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Iteration 1: swap (1,3), (2,4) with (1,2), (3,4) ;   𝑙𝑎𝑓𝑡𝑒𝑟 = 32 > 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30 
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Iteration 2:  swap (1,3), (4,5) with (1,4), (3,5) ;    𝑙𝑎𝑓𝑡𝑒𝑟 = 37 > 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30 
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Iteration 3: swap (3,2), (4,5) with (3,4), (2,5) ;    𝑙𝑎𝑓𝑡𝑒𝑟 = 35 > 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30 
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Iteration 4: swap (3,2), (5,1) with (3,5), (2,1) ;   𝑙𝑎𝑓𝑡𝑒𝑟 = 29 < 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30  (new tour) 

Figure 1.5: Illustration of the 2-opt move 
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1.3.2.2.2  3-opt 

The 3-opt algorithm works analogously to the 2-opt heuristic, but instead of removing two 

edges, the exchange removes three edges from the current solution to replace them with three 

new edges not previously included in the current solution (Rego & Glover, 2007). 

  A 3-opt move can be seen as two or three 2-opt moves. So, if a tour is 3-optimal, it is 

also 2-optimal (Helsgaun, 2000). A 3-opt exchange provides better solutions than 2-opt 

exchange, but it is significantly slower in CPU time. The 3-opt move is illustrated as in Figure 

1.6.  
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Figure 1.6: Illustration of the 3-opt interchange 

1.3.3 Metaheuristics 

Metaheuristics are considered a powerful approach applied to solving difficult combinatorial 

optimization problems and can achieve good results (Gendreau & Potvin, 2005). It consists of 

heuristics that are based on some metaheuristic rules. 

 The motivation behind the metaheuristics approach is to explore the search space in an 

effective and efficient way (Blum & Roli, 2008). Examples of metaheuristics are simulated 

annealing (Nikolaev & Jacobson, 2010), tabu search (Glover & Laguna, 1997), genetic 

algorithms (Davis, 1991) and ant colony optimization (Dorigo & Stutzle, 2010), etc.   

 The formal definition of  metaheuristics can be described as an iterative master process 

that guides and modifies the operations of a subordinate heuristic by combining intelligently 

different concepts for exploring and exploiting the search space to produce near-optimal 

solutions. By this combination, metaheuristics aim to improve the quality of solutions 

compared with classical heuristics but with better computing time (Laporte, Gendreau, 
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Potvin, & Semet, 2000). A high or low-level procedure or a simple local search, or a 

construction method are examples of the subordinate heuristics.  

 Two basic classes of metaheuristics are local search metaheuristics and evolutionary 

algorithms. The local search approach finds good solutions by iteratively making changes to a 

current solution. In each step of the search, the current solution is replaced by another solution 

found in the neighbourhood, normally the best solution of that neighbourhood. However, 

local search metaheuristics easily get trapped in local optima and do not guarantee global 

optimum solutions. Thus, many metaheuristics were proposed to improve local search 

heuristics in order to find better solutions including simulated annealing (Kirkpatrick, Gelatt, 

& Vecchi, 1983), tabu search (Fred Glover, 1986) and ACO (Dorigo, Maniezzo, & Colorni, 

1991).  

 In general, metaheuristics can be compared based on the following properties which 

would guarantee both their practical and theoretical aspect (Hansen, Mladenovic, Brimberg, 

& Moreno, 2010): 

1. Simplicity: the metaheuristic should be founded on a simple and clear principle which 

is applicable for a wide variety of problems. 

2. Precision: the steps of metaheuristics should be expressed in precise mathematical 

terms. 

3. Coherence: all the steps of metaheuristics for a specific problem should logically 

follow the metaheuristic’s principle. 

4. Effectiveness: the metaheuristic for a specific problem should find a good or an 

approximate solution in a reasonable computational time. 

5. Efficiency: the metaheuristics for a specific problem should find optimal or near-

optimal solutions for most realistic instances. 

6. Robustness: the metaheuristics performance should be consistent for different 

instances not only for specific instances. 

7. User-friendliness: the metaheuristics should be easy to understand and easy to 

implement, which best implies that the metaheuristics have as few parameters as 

possible and ideally none. 
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8. Generality: the metaheuristic should lead to good results for several types of 

problems. 

9. Interactivity: the metaheuristic should enable the user to improve the resolution 

process. 

10. Multiplicity: the metaheuristic should be able to present some near-optimal solutions. 

 Metaheuristic algorithms can be classified into many categories such as nature-inspired 

and non-nature-inspired, population-based and single-solution based, single neighbourhood 

and various neighbourhood structure and, memory usage and memory-less methods (Birattari, 

Paquete, Stutzle, & Varrentrapp, 2001). The most common classification of metaheuristics is 

single solution-based and population-based metaheuristics (BoussaiD, Lepagnot, & Siarry, 

2013) . In this thesis, metaheuristics are classified based on the number of solutions used by a 

metaheuristic at any time as follows (Sorensen & Glover, 2016): 

1.  Local Search Based Metaheuristics: These types of metaheuristics iteratively make 

small changes to a single solution (Sorensen & Glover, 2016). For example, 

simulated annealing and tabu search. 

2.   Population-based: These algorithms iteratively combine solutions into new ones 

(Sorensen & Glover, 2016). Such algorithms are genetic algorithms and ant colony 

optimization. 

3.   Hybrid Metaheuristics: The combination of metaheuristics and the techniques of 

optimization. (Sorensen & Glover, 2016).   

1.3.3.1 Local Search Based Metaheuristics 

1.3.3.1.1 Simulated Annealing  

Simulated Annealing (SA) is inspired by the analogy to a physical annealing process. It 

provides a means to escape the local optimum by accepting moves that are not necessarily 

better than the current objective function value in order to find the global optimum (Nikolaev 

& Jacobson, 2010). In practice, there are four components to any SA algorithm for 

combinatorial search which are a brief problem representation, a neighbourhood function, a 

transition model and a cooling schedule (Aarts, Korst, & Laarhoven, 1997). 
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 Let 𝑧 denote the objective function value for the current trial solution, 𝑧1 is the 

objective function value for the current candidate to be the next trial solution, and ζ is a 

parameter used to determine acceptance of the candidate to be the next trial solution if the 

candidate value is not better than the value of the current solution (Hillier & Lieberman, 

2010). The SA algorithm starts with an initial solution in the feasible region and uses move 

selection rules to move to the next trial solution. Assuming the objective is maximization of 

the objective function, the move selection rule is: 

 accept movement to the next trial solution if its value is better than the current 

solution; 

 otherwise, if no better solution is found in the neighbourhood of the current solution 

- move to the immediate neighbour only if a random number 𝜉 generated from 

a uniform distribution (0,1) is less than the probability of acceptance 

Prob {acceptance} = 𝑒𝑥      where      𝑥 =
𝑧𝑖 − 𝑧

ζ
 

- otherwise, keep the current solution. 

During the search, the value of ζ gradually decreases and each value of  ζ can be used with a 

determined number of iterations. When the desired number of iterations has been performed 

at the smallest value of  ζ in the temperature schedule, the process is terminated and the best 

trial solution found at any iteration is accepted as the final solution (Hillier & Lieberman, 

2010).  

 The SA is different from local search in three aspects (Michalewicz & Fogel, 2004): 

1. How the procedures stop: The SA is executed until the stopping conditions are 

satisfied while the local search is executed until no improvement is found. 

2. The way the SA moves: it not only moves to better solutions but also accepts 

solutions based on the current temperature ζ.   

3. The value of the parameter ζ in the SA is updated periodically during the search: this 

parameter value influences the outcome of the SA. 

The probabilistic rule used by the SA to moves between the candidate solutions accepts the 

neighbourhood as the new current position if the solution found is better than the current one. 
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Otherwise, either accept this new solution anyway or continues the search again in the same 

neighbourhood for another solution (Michalewicz & Fogel, 2004). 

 In general, the stopping conditions of the SA can be the maximum number of iterations, 

or the maximum number of iterations when none of the immediate neighbours of the current 

trial solution is accepted (Hillier & Lieberman, 2010). 

 The SA approach has been applied to the TSP by a number of researchers including 

Bonomi and Lutton (Bonomi & Lutton, 1984), Rossier, Troyon and Liebling (Rossier, 

Troyon, & Liebling, 1986), Golden and Skiscim (Golden & Skiscim, 1986) and Nahar, Sahni 

and Shragowitz (Nahar, Sahni, & Shragowitz, 1986), with a different degree of success. 

However, the SA has proved to be less efficient to solving the TSP than heuristic methods 

that have more knowledge about the problem (Coppin, 2004). 

1.3.3.1.2  Tabu Search  

Tabu Search (TS) is considered an extension of a classical local search with the addition of 

short-term memory (Gendreau & Potvin, 2010). The first proposition for the TS method was 

made in 1986 by Glover (Fred Glover, 1986) and it has been applied to a wide-ranging 

number of applications such as vehicle routing (Cordeau & Laporte, 2005), machine 

scheduling (Taillard, 1990), the maximum clique problem (Gendreau, Soriano, & Salvail, 

1993) and the quadratic assignment problem (Skorin-Kapov, 1990) . 

The basic elements of TS are the search space, the neighbourhood structure, the short-

term tabu lists, and aspiration criteria. The search space is the space of all possible solutions 

that can be considered during the search (Gendreau & Potvin, 2010) . At each iteration of TS, 

a local transformation is applied to the current solution defining a set of neighbouring 

solutions in the search area (Gendreau & Potvin, 2010). Aspiration criteria state that the tabus 

can be ignored if there is no chance of cycling. In other words, it accepts movements to tabu 

moves if it produces solutions that are better than the current solution (Gendreau & Potvin, 

2010).  

The TS uses a local search procedure to find a local optimum and then moves to any 

point in the neighbourhood. If a better solution is found in the neighbourhood of the current 

trial solution, the local search procedure is applied again to find a new local optimum (Hillier 

& Lieberman, 2010). While classical local search methods stop when they encounter a local 
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optimum with regard to the modifications they allow, the TS continues moving to the best 

non-improving solution it can find.  

To prevent a repetition of the same local optimum, the tabu list will record each move 

in tabu moves, so that a tabu list is updated during the running of the algorithm (Glover & 

Laguna, 1997). For the best use of memory in the tabu search, the tabu list should be used 

efficiently. There are three basic principles to managing the tabu list (Hertz, Taillard, & 

Werra, 1997): 

 Size of the tabu list : A list that is too short may not prevent cycling, whilst a long list 

may expand the search and increase the number of visited solutions. Though, it is 

often difficult to determine the size of a tabu list that prevents cycling and does not 

excessively restrict the search for all instances of a given size. Hence, an effective 

way of avoiding this is to vary the size of the tabu list (Hertz, Taillard, & Werra, 

1997) . 

 Intensification of the search : Defined as exploring a portion of the promising 

neighbourhood more thoroughly, implying that the portion of the neighbourhood 

contains very good solutions (Hillier & Lieberman, 2010). In order to intensify the 

search, the size of the tabu list should be decreased for a small number of  iterations 

(Hertz, Taillard, & Werra, 1997). 

 Diversification : Indicates searching into previously unexplored areas of the 

neighbourhood (Hillier & Lieberman, 2010). A common way to diversify the search 

is to randomly execute several random restarts (Hertz, Taillard, & Werra, 1997). 

 Different stopping criteria such as a fixed number of iterations, a fixed number of 

consecutive iterations if there is no improvement in the best objective function value , or a 

fixed amount of CPU time can be used for the TS termination criteria (Hillier & Lieberman, 

2010). For more information on TS and its application to TSP see (Knox, 1994) , (Gendreau, 

2003), (Gendreau & Potvin, 2010) and (Basu, 2012). 

1.3.3.1.3  Variable Neighbourhood Search 

The variable neighbourhood search (VNS) was suggested by Mladenovic and Hansen in 1997 

(Mladenovic & Hansen, 1997). Its basic idea is to escape from local optima trap by changing 
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the neighbourhood structure. It explores distant neighbourhoods of the current incumbent 

solution, and moves from there to a new one if and only if the improvement was made. For 

more information on VNS and its application to TSP see (Hansen & Mladenovic, 2001) and 

(Hansen, Mladenovic, Brimberg, & Moreno, 2010). 

1.3.3.1.4  Reactive Bone Algorithm 

The reactive bone algorithm (RBA) is a population-based method proposed by (Darani, 

Dolatnejad, & Yousefikhoshbakht, 2015) to solve the TSP. It is a modification of a Bone-

Route method which was first introduced for solving the vehicle routing problem by 

Tarantilis and Kiranoudis in 2002 (Tarantilis & Kiranoudis, 2002). The Bone-Route algorithm 

constructs a new solution out of sequences of nodes or bones of the previous solutions. The 

construction of the new solution is based on the Adaptive Memory concept introduced in 

(Rochat & Taillard, 1995) which describes a pool of good solutions that are dynamically 

updated throughout the solution search process. Some components of these solutions are 

extracted from the pool periodically and combined to construct a new solution. The extraction 

criteria of the Bone-Route algorithm are: 

1.  Bone length – the number of nodes that must compose a bone. 

2.  Bone frequency – the number of stored routes in the pool that must include a bone in their 

routes.  

However, the RBA has made two main modifications to the Bone-Route approach which are:  

1.   Value of the bone size systematically changes during run time.  

2.  Bone frequency maximum- the maximum number of stored routes in the pool that must 

include a bone.  

 Since the bone size and the bone frequency express the degree of similarity among the 

new solution and the previously stored solutions in the pool, the RBA modification ensures 

that the new solution is more similar to other solutions in the pool, whenever their value is 

high.  
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1.3.3.2 Population-Based Metaheuristics 

1.3.3.2.1 Genetic Algorithms  

Genetic algorithms (GAs) were first used by John Holland in 1975 (Holland, 1992). Holland’s 

GA was inspired by the natural evolution cycle such as restricted alphabet genotype, pairwise 

parent selection, mating and mutation. In the GAs, bit strings play the role of the 

chromosome, with individual bit sets playing the role of genes. In other words, the genotype-

phenotype mapping in GAs relies on a bit partitioning into bit sets. To recombine strings, 

Holland used the idea of genetic crossover and mutation (Reeves C. R., 1997) . Crossover is 

defined as the substitution of some genes from one parent with parallel genes in the other 

parent (Reeves C. R., 1997). Mutation means random changes in the specific genes in the 

phenotype (Mitchell M. , 1998). There are two strategies to generate offspring; the first one is 

to use crossover and mutation while the second strategy uses either crossover or mutation 

(Reeves C. , 2003). 

 The GAs are usually started with a population of feasible trial solutions. A random 

process is used to select some of the feasible solutions from the population to become parents 

and then randomly pair up the best parents to produce new feasible solutions (children) 

(Hillier & Lieberman, 2010). If an infeasible solution (miscarriage) is obtained, this process 

is repeated until a feasible solution is found. The stopping conditions could be the number of 

iterations or CPU time. The outline of a typical GA is given as follows (Mitchell M. , 1998): 

1. Randomly initialize a population; 

2. Calculate the fitness function of each individual in the population; 

3. Select a pair of parent chromosomes based on the fitness value to create a new 

generation by applying mutation, or crossover; 

4. Substitute the current population with the new population. 

5. If the stopping condition is satisfied, stop. Otherwise, go to step 2. 

In most cases, the performance of the GA is dependent on the genetic operators used. The 

four main operators for the GAs are given below (Affenzeller, Winkler, Wagner, & Beham, 

2009): 
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 Parent Selection: selecting an individual from the population to be a parent based on 

its fitness. The selection process can be done through various methods such as 

proportional selection, linear-rank selection or tournament selection. 

 Crossover: The process of joining two individuals (parents) to produce two new 

individuals (offspring). There are a number of crossover techniques including single 

point crossover and multiple point crossovers. Single point crossover divides the 

chromosome of each parent into two parts (head and tail) by using a random cut. The 

tail of the first parent connects with the head of the second parent and the tail of the 

second parent connects with the head of the first parent to produce two new offspring. 

 Mutation: It allows an undirected change to the area of the search by randomly 

replacing one value of a gene (bit) in a specific position, but it happens randomly 

with very low frequency. 

 Replacement: This operator decides which newly generated individual will be chosen 

to be a member of the new generation. There are many strategies for the replacement 

mechanism such as generational replacement, elitism and tournament replacement.  

Two main concerns to be considered when implementing GAs are the size of the population 

and the technique used to choose the individuals (Reeves C. , 2003). The initial population is 

usually assumed to be random while the size of the population is normally chosen based on 

the required level of efficiency and effectiveness (Reeves C. , 2003). Since principally the 

GAs could run forever, a stopping condition is needed in practice. Common stopping 

conditions could be a number of fitness evaluations or computer run time, etc. For more 

information on GAs and its application see (Mitchell M. , 1998), (Taiwo, Mayowa, & Ruka, 

2013) and (Sastry, Goldberg, & Kendall, 2014). 

1.3.3.2.2 Particle Swarm Optimization 

The particle swarm optimization (PSO) is an evolutionary algorithm inspired by a social 

behavior such as bird flocking and fish schooling introduced by Eberhart and Kennedy  in 

1995 (Kennedy & Eberhart, 1995). In PSO, each intelligent individual searching for an 

optimal position is called a particle. Each particle represents a candidate solution that can be 

evaluated by a preset evaluation function. Flying in a multidimensional search space, a 

particle changes its velocity dynamically based on its own flying experience and the flying 

experience of its colleagues.  

http://www.engr.iupui.edu/~eberhart
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 The PSO algorithm begins with randomly initialising a swarm of particles, then 

iteratively adjusts the flying trajectory of each particle toward its personal best position called 

local optimum and toward the best particle of swarm or global optimum, and finally achieves 

an optimal solution.  

 The initial position vectors 𝑥𝑖(0) and velocity vectors 𝑣𝑖(0) are randomly selected over 

the search space. Then these particles evolve all through space according to two essential 

reasoning capabilities: a memory of their own best position and knowledge of the global or 

their neighbourhood’s best. The evolution for each particle 𝑖 is given by  

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 1.26 

where 𝑥𝑖(𝑡)  and 𝑣𝑖(𝑡) are the position and the velocity of particle 𝑖 at time 𝑡 , respectively. 

 The PSO algorithm is influenced by a number of control parameters such as swarm 

size, neighbourhood size, inertia weight, acceleration coefficients, and number of iterations. 

Hence, implementing a PSO algorithm requires a careful selection of these parameters. 

1.3.3.2.3  Bat Algorithm 

The bat algorithm (BA) is an algorithm based on the echolocation behaviour of bats (Yang, 

2010). The echolocation is the use of sound waves and echoes to determine the location of 

objects in space. Bats use echolocation to navigate, detect prey and avoid obstacles in the dark 

by emitting a loud sound pulse and listen for the echo that bounces back from the surrounding 

objects. The sound pulses and the signal bandwith varies in properties and can be correlated 

with their hunting strategies, depending on the species.  

The BA is formulated by idealizing the echolocation behaviour of bats as follows: 

1. Bats use echolocation to sense distance and differentiate between food, prey and 

background barriers.  

2. Bats fly randomly with velocity 𝑣𝑖 at position 𝑥𝑖 with a fixed frequency  𝑓𝑚𝑖𝑛, varying 

wavelength λ and loudness 𝐴0 to search for prey. They can automatically adjust the 

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission 

𝑟 ∈ [0,1] depending on the proximity of their target;  
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3. Although the loudness can vary in many ways, they assume that the loudness varies from 

a large (positive) 𝐴0 to a minimum constant value  𝐴𝑚𝑖𝑛. 

1.3.3.2.4  Other Population-Based Metaheuristics Approaches 

 Artificial Bee Colony  

Artificial Bee Colony (ABC) was introduced by Dervis Karaboga in 2005, motivated 

by the intelligent behaviour of honey bees. In the ABC system, the colony of artificial 

bees consists of three different groups namely employed, onlooker and scout 

(Karaboga, 2005). The employee bees work on the collection of food to the hive at a 

specific food source. The onlooker bees patrol the employees to verify when a specific 

food source is not worth anymore while the scout bees are responsible for looking for 

new food sources locations. In this algorithm, a food source denotes a possible solution 

to the optimization problem, and the quality of the food source is defined by the cost of 

the objective function on that position. Therefore, the ABC system combines local 

search methods, carried out by employed and onlooker bees, with global search 

methods, managed by onlookers and scouts, attempting to balance exploration and 

exploitation process. 

 

 African Buffalo Optimization 

The African Buffalo (ABO) Optimization was proposed by Odili, Kahar and Anwar in 

(Odili, Kahar, & Anwar, 2015). The ABO algorithm models the three characteristic 

behaviours of the African buffalos that enable their search for pastures. These 

characteristics include extensive memory capacity, cooperative cum communicative 

ability and democratic nature borne out of extreme intelligence. The extensive memory 

capacity enables the buffalos to keep track of their routes through thousands of 

kilometres in the African landscape. Furthermore, the ‘waaa’ sound is an alarm call 

used to tell the herd to keep moving if the present location is unfavourable, lacks 

pasture or is dangerous. In other instances, the same ‘waaa’ sound is used to invite 

other buffalos to come to the aid of other animals in danger. On the other hand, the 

‘maaa’ vocalizations are used to signal to the buffalo herd to stay on to exploit the 

present location as it holds promise of good grazing pastures and is safe. The third 

attribute of the buffalos is their democratic nature borne out of extreme intelligence. In 

http://mf.erciyes.edu.tr/ogrgor/index.asp?bolum=51&id=101


Chapter 1                           Introduction 

32 

 

cases there are opposing calls by members of the herd, the buffalos have a unique way 

of doing an ‘election’ where the majority decision determines the next line of action. 

These three characteristics mark out African buffalos as one of the most organized and 

successful herbivores of all time (Odili, Kahar, & Anwar, 2015).  

1.3.3.2.5  Ant Colony Optimization  

The Ant Colony Optimization (ACO) is part of swarm intelligence and imitates the behaviour 

of ants during the process of moving food from the source to the colony by using shortest 

routes (Dorigo & Stutzle, 2004). It uses artificial ants to find solutions to combinatorial 

optimization problems.  

 The artificial ants use heuristic information and pheromone values for guiding the 

search process.  The heuristic information that is normally available for many problems, 

together with a stochastic component in the ACO lead the ants towards more promising 

solutions. This stochastic component allows the ants to build a wide variety of different 

solutions and explore a larger number of solutions. 

Combinatorial 
Optimisation 

problem

solution 
components

pheromone 
model

probabilistic 
solution 

construction

pheromone 
value 

update

Initialisation of 
pheromone values

ACO

 

Figure 1.7: Basic principle of ACO metaheuristic (Blum C. , 2005) 

 The basic steps in solving an optimization problem using the metaheuristic of ACO are 

shown in Figure 1.7. For a given combinatorial optimization problem, a finite set 𝐶 of 

solution components has to be derived to construct solutions to the COP.  The pheromone 

model, which is a set of pheromone values Τ, has to be defined afterwards. This set of values 

is used to parameterize the probabilistic model. The pheromone values 𝜏𝑖  ∈ Τ are usually 
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associated with solution components. Broadly speaking, the ACO approach normally solves 

an optimization problem by repeating the following two steps as a loop (Blum C. , 2005):  

 Candidate solutions are constructed using the pheromone model which represents a 

parameterized probability distribution over the solution space;  

 The candidate solutions are further employed to modify the pheromone values which 

are deemed to bias the future sampling toward high-quality solutions.  

 In general, the ACO metaheuristic contains three main procedures (Dorigo & Stutzle, 

2004) which are Construct Solutions, Update Pheromones and Daemon Actions.  

 Construct Solutions is the procedure where an ant constructively builds a solution of 

the considered problem by moving through neighbour nodes of the problem construction’s 

graph.  They move by applying a stochastic local decision policy that makes use of 

pheromone trails and heuristic information. After the ants have completed their solutions, 

they evaluate the quality of their solution, which will be used in the Update Pheromone 

procedure to decide how much pheromone to deposit. 

 Update Pheromone is the procedure by which the pheromone trail values are updated 

based on the latest experience of the colony. The update phases consist of decreasing and 

increasing the pheromone intensity on the trails. Pheromone evaporation is applied to 

decrease pheromone values to encourage exploration and prevents stagnation whilst 

pheromone deposit is adapted to increase the pheromone values that belong to good solutions 

the ants have generated. The amount of pheromone deposited strongly depends on the quality 

of the particular solution that each path found. Hence, the intensity of pheromone will be 

biased towards the best solutions found so far. 

 On the other hand, Daemon Actions is an optional procedure where an additional 

enhancement to the original solution or a centralized action is implemented that cannot be 

done by a single ant. For example, the use of local search methods or to lay extra pheromone 

on the best solution found so far.  The pseudo code of the standard ACO algorithm is shown 

in Figure 1.8.  

For more information on the ACO and some of its applications see (Dorigo & Caro, 1999), 

(Cordon, Herrera, & Stutzle, 2002), (Dorigo & Stutzle, 2004), (Dorigo, Birattari, & Stutzle, 

2006) and (López-Ibáñez, Stützle, & Dorigo, 2016). 
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Algorithm 1.1: Ant Colony Optimization 

  Set parameters, initialize pheromone trials 

           while (termination condition not met) do 

                      Solution Construction Phase 

                      Pheromone Update Phase 

                      Daemon Actions Phase //optional 

            end-while 

  return best solution 

Figure 1.8: Pseudo-code of the ACO metaheuristic 

1.3.3.3 Hybrid Metaheuristics 

A hybrid metaheuristic is defined as a combination of a metaheuristic with other 

metaheuristics, or with parts of other metaheuristics, or with other optimization techniques 

(Blum & Roli, 2008). The hybrid optimizers are effective in reducing the CPU time and 

improving the quality of the solution (Riadl & Puchinger, 2008). The hybrid metaheuristics 

take advantage of the strengths of each of the individual algorithms and synergy to produce a 

more effective hybrid system (Raidl, Puchinger, & Blum, 2010).  

 Different classifications for the hybrid metaheuristics can be found in the literature. 

Blum & Roli (Blum & Roli, 2008) classified hybrid metaheuristic approaches as either 

collaborative combinations or integrative combinations. Collaborative combinations exchange 

the information between optimization techniques that executed sequentially, intertwined or in 

parallel (Puchinger & Raidl, 2005). Integrative combinations mean that one technique is a 

subordinate of another technique (Puchinger & Raidl, 2005). 

 An example of a hybrid metaheuristic is the hybridization of metaheuristic with B&B. 

This integrative combination can be done in two different ways (Blum & Roli, 2008): 

 the use of B&B within a metaheuristic such as ACO to improve the efficiency of the 

metaheuristic search process. 

 the use of the metaheuristic within B&B to reduce the CPU time and minimize the 

search tree in B&B. 



Chapter 1                           Introduction 

35 

 

 Alternatively,Raidl et al. in (Raidl, Puchinger, & Blum, 2010) classify a hybrid 

metaheuristic according to the following criteria: 

1.  Hybridized algorithms: such as a mixture of parts of some metaheuristic strategies, or 

combination of metaheuristics with general techniques from operational research and 

artificial intelligence. 

2.   Level of hybridization: the strength of the hybridization; high-level combinations (no 

direct relationship of the internal workings of the algorithms) and low-level 

combinations (strongly dependent on each other). 

3.   Order of execution: in batch execution, algorithms are performed in sequential order 

while in an intertwined or parallel way, information is exchanged in a bidirectional 

way. 

4. Control strategy: integrative (one is part of the other algorithm); or collaborative 

(each one of them is not part of the other, but they swap information).  

For more reviews on the hybrid metaheuristics see (Cotta-Porras, 1998), (Dumitrescu & 

Stutzle, 2003), (Raidl, 2006) , (Blum, Roli, & Sampels, 2008) , (Blum, Puchinger, Raidl, & 

Roli, 2010) and (Ting, Yang, Cheng, & Huang, 2015). 

1.3.4 Other Approaches 

There are also other metaheuristic approaches in the literature use to solve the TSP such as: 

 Artificial Neural Network : 

An artificial neural network or ANN is a computing system whose central theme is 

borrowed from the analogy of biological neural networks (Mehrotra, Mohan, & Ranka, 

2000). ANN is also reffered to as artificial neural systems, neural nets or parallel 

distributed processing systems. The essential element of this paradigm is the novel 

structure of the information processing system. In a neural network, each node 

performs some simple computations and each connection conveys a signal from one to 

another, labeled by a number called the connection strength or weight indicating the 

extent to whch a signal is amplified or diminished by a connection. One of the most 

significant attributes of a neural network is its ability to learn by interacting with its 

environmnet or with information sources (Hassoun, 1995). An ANN is configured for a 

specific application, such as pattern recognition (Basu, Bhattacharyya, & Kim, 2010) or 
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data classification through a learning process (Gu, Liu, Li, & Yuan-Yuan Huang, 

2008).  

 Artificial Immune System : 

The Artificial Immune System (AIS) is inspired by the natural immune system for 

solving computational problems. Three immunological principles primarily used in AIS 

are the clonal selection principle, the negative selection mechanism and the immune 

network theory (Malim & Halim, 2012). 

1.4 Survey on the Traveling Salesman Problems Solution Methods 

According to (Alejandro Rodríguez; Rubén Ruiz, 2010), the methods designed for symmetric 

TSP instances may not be adapted easily to solve asymmetric TSP. This might be the reasons 

why the literature is rich for symmetric TSPs as well as for asymmetric TSPs but slightly poor 

for both symmetric and asymmetric TSP. Nevertheless, this section provides a brief overview 

of related works for comparison with the proposed algorithm according to the type of TSP 

considered.  Some papers that address the solutions to the symmetric TSP are: 

 Crowder and Padberg in (Crowder & Padberg, 1980) reported the optimal solutions 

for 10 large-scale symmetric travelling salesman problems with a size between 48 

and 318 cities using a cutting-plane approach coupled with branch-and-bound. In 

their algorithm, variables are fixed at either zero or one to reduce the size of the 

problems. On average, this fixing strategy has reduced the number of variables 

obtained by 5% of the original number of variables. Further, this algorithm has shown 

impressive results when applied to large-scale zero-one linear programming problems 

with a number of zero-one variables between 33 and 2750 (Crowder, Johnson, & 

Padberg, 1983).  

 A paper by Pasti and Castro (Pasti & Castro, 2006) in 2006 presented a metaheuristic 

approach for solving the TSP based on a neural network and artificial immune system 

called RABNET-TSP. This hybrid algorithm has a single-layer self-organizing neural 

network architecture with a learning procedure aimed at locating one network cell at 

each position of a city of the TSP instance to be solved.  A modification to the 

RABNET-TSP was proposed by Masutti and Castro in (A.S.Masutti & Castro, 2009) 

to improve the efficacy and the computational time of the algorithm. The modified 

RABNET-TSP is applied to several STSP benchmark problems and the results 

https://www.omicsonline.org/open-access/an-overview-of-application-of-artificial-immune-system-in-swarm-roboticsystems-2168-9695-1000127.php?aid=53117
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obtained are compared with the original RABNET-TSP and other algorithms from the 

literature. Despite competitive results reported, greater computational time is required 

to solve these problems. 

 In 2011, Chen and Chien (Chen & Chien, 2011) described a hybrid of four 

algorithms; GA , SA , ACS and particle swarm optimization (PSO) to solve the TSP. 

This algorithm is called the genetic simulated annealing ant colony system with 

particle swarm optimization techniques or GSA-ACS-PSO. The ACS is used to 

generate the initial population of the genetic algorithm while the SA played the role 

of a mutation in the GA.  The authors claimed that the GSA-ACS-PSO average 

solution and the percentage deviation of the average solution to the optimal solution 

results on 25 STSP benchmark problems are better than those existing algorithms. 

However, the performance of the GSA-ACS-PSO decreases as the size of instances 

increases, in particular for instances with more than 100 cities. 

 Deng et al.  (Deng, et al., 2012) . This paper introduced a novel two-stage hybrid 

swarm intelligence optimization algorithm or GA-PSO-ACO for solving the TSP. 

The GA-PSO-ACO is based on GAs, PSO and ACO, and is divided into two stages. 

In the first stage, the GA and PSO are used to obtain a series of sub-optimal solutions 

to adjust the initial pheromone value in the ACO. In the second stage, the algorithm 

employs the advantages of the parallel, positive feedback and high-accuracy of 

solution to accomplish solving the whole problem. The numerical results on 35 STSP 

benchmark problems showed that the solution qualities of the GA-PSO-ACO are 

better than the TS, GAs, PSO, ACO and PS-ACO but with longer CPU time. Besides, 

the performance of the GA-PSO-ACO becomes worse as the size of instances 

increased. 

 Tuba and Jovanovic (Tuba & Jovanovic, 2013) in 2003 suggested a pheromone 

correction strategy (SEE) that was based on the analysis of properties of the best-

found tour to ACO algorithm which only activated when the search algorithm has 

started to stagnate. This strategy adds a new heuristic for determining the 

undesirability of edges belonging to the tour and significantly decreases their 

pheromone values. Computational experiments on 11 TSP benchmark problems from 

the TSPLIB library with up to 200 cities showed that this algorithm is more efficient 

than the basic ACO and the particle swarm optimization.  
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 In 2015, Gunduz et al. proposed a new hierarchic approach known as ACO-ABC that 

uses patch construction and improvement heuristics to solve the TSP in (Gunduz, 

Kiran, & Ozceylan, 2015).  The ACO is used as the path constructor and the results 

obtained are improved using the artificial bee colony (ABC). The computational 

experiments conducted on 10 STSP benchmark problems showed that the ACO-ABC 

produces better quality solutions with less computational time than the individual 

approaches of ACO and ABC. However, based on the optimal solutions stated in their 

paper, only 2 instances were solved to optimality out of the 10 test instances. 

 Mahi et al. (Mahi, Baykan, & Kodaz, 2015) in 2015 recommended a new hybrid 

algorithm based on PSO, ACO and 3-opt for solving small TSP instances called PSO-

ACO-3opt. The PSO is used to optimize the values of two main parameters of ACO 

that affect the performance of the ACO algorithm, and the 3-opt is used to escape 

from the local optima found by the ACO algorithm. The PSO-ACO-3opt was tested 

on 10 STSP benchmark problems with up to 200 cities. Although the computational 

results showed that the performance of the PSO-ACO-3opt is better or similar to 

other methods compared such as RABNET-TSP and ACO-ABC, only 50% of the test 

instances were solved to optimality. 

 In 2016, inspired by the learning ability of the ACO algorithm, Wang et al. (Wang, 

Lin, Zhong, & Zhang, 2016) suggested a swarm SA (SSA) to improve the efficiency 

of the SA algorithm for TSP. The SSA employs a swarm of agents running SA 

algorithm collaboratively and stores learned knowledge in a pheromone matrix. The 

pheromone matrix is then used to guide the generation of candidate solutions. The 

comparative experiments showed that the SSA has better performance than GSA-

ACS-PSO (Chen & Chien, 2011) and GA-PSO-ACO (Deng, et al., 2012). Despite the 

good quality solutions, the SSA shows rather poor performance for instances larger 

than 200 cities.  

 Yousefikhoshbakht et al. (Yousefikhoshbakht, Malekzadeh, & Sedighpour, 2016) in 

2016 presented an algorithm called REACSGA for solving the TSP. REACSGA is a 

reactive bone algorithm that employs the ACS for generating initial diversified 

solutions and modified GA improvement procedure for improving the initial 

solutions. The proposed algorithm was tested on 19 TSP benchmark problems 

involving 24 to 318 cities. The computational results showed that the REACSGA 



Chapter 1                           Introduction 

39 

 

yields better solutions than the genetic algorithm, ACS, GSA-ACS-PSO (Chen & 

Chien, 2011), PSO (Zhong, Zhang, & Chen, 2007) and bee colony optimization 

(BCO) (Wong, Low, & Chong, 2008). Even so, the solutions qualities of the 

REACSGA are decreased for instances with 100 or larger cities.  

 In 2016, Mohsen (Mohsen, 2016) described a new hybridize metaheuristic algorithm 

termed annealing elitist ant system with mutation operator or AEAS to solve the TSP. 

This algorithm integrates the advantages of ACO, SA, mutation operator and local 

search. The SA and mutation operation were used to increase the ant's population 

diversity while the local search helps to exploit the current search area efficiently. 

The simulation results reported on 24 STSP benchmark problems showed that the 

AEAS outperformed GSA-ACS-PSO (Chen & Chien, 2011), SSA (Wang, Lin, 

Zhong, & Zhang, 2016), REACSGA (Yousefikhoshbakht, Malekzadeh, & 

Sedighpour, 2016) and PSO-ACO-3opt (Mahi, Baykan, & Kodaz, 2015).  

The following works discusses the solutions to asymmetric TSPs: 

 In 2001, Burke et. al (Burke, Cowling, & Keuthen, 2001) presented a Guided 

Variable Neighbourhood Search (GVNS) approach which embedded an exact 

algorithm into a local search heuristic in order to exhaustively search promising 

regions of the solution space. The GVNS was applied on TSPLIB instances with sizes 

ranging from 17 to 458 cities. Despite being capable of improving the results 

obtained by its constituent heuristic, the number of optimal solutions obtained is 

considered low with only 11%. 

 In 2005, Brest and Zerovnik (Brest & Zerovnik, 2005) proposed a heuristic approach 

based on the arbitrary insertion algorithm or a relaxation of the cheapest insertion 

algorithm known as Randomized Arbitrary Insertion or RAI. The numerical results 

showed that the RAI found the optimal solutions in 85% of the test instances. 

 Abdoun et al (Abdoun, Tajani, Abouchabaka, & Khatir, 2016) in 2016 introduced a 

new operator called Crossover Inverse Mark operator (XIM)  for the ATSP in order 

to improve the solution obtained by GAs. The effectiveness of this Improved Genetic 

Algorithm (IGA) approach was evaluated using standard benchmark instances from 

TSPLIB with sizes up to 443 cities. Although the authors claimed that the new 

operator is able to obtain a better solution, the numerical results showed that the best 
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results yielded by the IGA approach for all the benchmark problems are far from the 

optimal solutions except for the br17 instance. 

Moreover, several works that review the solution to both symmetric and asymmetric TSP are: 

 Gambardella and Dorigo in 1996 introduced the Ant Colony System (ACS) that 

increases the importance of exploitation of information collected by previous ants 

with respect to exploration of the search space.  The strategies used to achieve this are 

the usage of a pseudorandom proportional rule that guides the ants to choose the next 

city to move to and a strong elitist approach to update pheromone trails by allowing 

only the ant that produced the best solution to update the pheromone trails. The ACS 

was tested on 6 STSP instances with size ranging from 51 to 1577 cities and 5 ATSP 

instances with size ranging from 43 to 170 cities. Its application to both symmetric 

and asymmetric TSP obtained excellent results with over 99% accuracy. 

 In 1997, Stutzle and Hoos (Stutzle & Hoos, 1997) suggested a variant of the ant 

system known as MAX-MIN Ant System (MMAS) by introducing upper and lower 

bounds to the values of the pheromone trails. These trail bounds alleviate the early 

stagnation and thus increase the exploration of tours. The computational results on 

several TSP instances show that the MMAS was the best performing algorithm at that 

time. 

 Odili and Kahar (Odili & Kahar, 2016) in 2016 proposed a new metaheuristic 

algorithm inspired by the behaviour of African buffalos called African Buffalo 

Optimization (ABO). The ABO belongs to the swarm intelligence (SI) algorithms 

which are based on the social behaviour in animals. This algorithm aims to achieve 

greater exploitation and exploration of the search space and faster speed in reaching 

the optimal results with relatively fewer parameters. The ABO was implemented to 

solve 35 STSP and 6 ATSP benchmark problems with accuracy over 98%. Despite 

the competitive results obtained, only 5 STSP and none of the ATSP instances were 

solved to optimality. 

 In 2016, Osaba et al. (Osaba, Yang, Diaz, Lopez-Garcia, & Carballedo, 2016) 

described an improved version of the basic bat algorithm (BA) known as IBA to 

solve both the symmetric and asymmetric TSP. BA was initially suggested by Yang 

(Yang, 2010) in 2010 and is based on the echolocation behaviour of microbats which 
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have the skill to find their prey and discriminate different kinds of insects even in 

complete darkness. The BA was compared to some popular techniques such as GA, 

evolutionary simulated annealing (Yip & Pao, 1995) and the Island-based Distributed 

GA (Alba & Troya, 1999) on 22 STSP instances with size ranging from 30 to 1002 

cities and 15 ATSP instances with size ranging from 17 to 323 cities. Although the 

comparative results showed that the IBA algorithm outperformed all other algorithms 

in most of the instances, the performances of the IBA is quite poor for instances with 

size more than 150 cities for symmetric TSP and more than 60 cities for asymmetric 

TSP. 

1.5 Overview of the Research 

This research investigates the application of a new modified ACO algorithm to solve both 

symmetric and asymmetric TSP which utilizing a partial optimization technique and 2-opt 

local search. The basic algorithmic framework of this proposed algorithm is the framework of 

the ACO. However, in the tour construction mechanism, only parts of the solution tour is 

constructed using a new proposed state transition rule, aided by intelligent ants. The other 

remaining part of the solution tour is optimized by a solver. Unlike the basic ACO algorithm, 

the probabilistic decision rule for this proposed algorithm is biased on pheromone information 

while the initial pheromone value is calculated as the inverse function of the distance between 

two nodes. At each iteration, a 2-opt local search is applied to possibly improve the local 

solution. 

 The role of the intelligent ant in the tour construction mechanism is to ensure that the 

best solution is inherited by the next generation (iteration) preventing the best ant of the next 

colony having a worse value than the best ant of the current  solution. This accelerates the 

convergence rate of the algorithm.  

 After the completion of the tour construction phase, the value of the pheromone is 

updated. Only arcs that belong to the colony-best-ant are updated, and the amount of the 

pheromone deposited by the ant is determined by the constant parameter 𝛼 and the solution 

quality of the colony-best-ant. The parameter 𝛼 is calculated as the square of the problem 

size.  Likewise, the pheromone evaporation rule works only on all arcs belonging to the 
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colony-worst-ant that are not in the colony-best-ant. The pheromone evaporation parameter 𝜌 

is proportional to the inverse of the square of the problem size. 

1.6 Outline of the Thesis  

The structure of the thesis is as follows: 

 Chapter 1 presents three variants of TSPs which are symmetric, asymmetric and 

multiple TSP. Detailed formulations of the TSP are explained focusing on different types of 

subtour elimination constraints particularly by Dantzig-Fulkerson-Johnson, Miller-Tucker-

Zemlin, Gavish and Graves, and Claus. Besides, basic formulation types of TSPs are 

presented. However, this research only focuses on the first two types of the TSP which are the 

symmetric and asymmetric TSP. This followed by a basic information about the solution 

methods: Exact methods that find the optimal solution such as the brute-force method, 

branch-and-bound, cutting plane, branch-and-cut, cut and solve, column generation, and 

dynamic programming; Heuristic algorithms that find approximate solutions such as: 

constructive heuristics and improvement heuristics, and metaheuristics are classified into 

three groups, and are presented with basic information as follows: 

1. Local search based metaheuristics such as simulated annealing (SA) and tabu search 

(TS). 

2. Population-based metaheuristics such as genetic algorithm (GA) and Ant Colony 

Optimization (ACO).  

3. Hybrid metaheuristic. 

 Chapter 2 provides background information of the Ant Colony Optimization (ACO) 

and its solution construction mechanism. An overview of different types of ACO algorithms 

such as Ant System, Elitist Ant System and Ant System are also included. 

 Chapter 3 describes the main procedures of the proposed algorithm; the tour 

construction process, pheromone update process and enhancement process. The tour 

construction process of the proposed algorithm uses a different formulation of state transition 

rule than the basic ACO; new ways of depositing and evaporating pheromone, and a different 

approach to global updating of pheromone. This proposed algorithm also uses a special agent 
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called ‘Intelligent Ants’ to work together with the state transition rule in the tour construction 

process. The concept of the intelligent ants is further described with an illustrated example.  

 Chapter 4 demonstrates the implementation and performance of the new proposed state 

transition rule of ACO to construct the solution tour. Issues relating to the ACO parameters 

such as initial pheromone value, the maximum number of ants in each colony, the maximum 

number of colonies are discussed and described through an empirical study. The 

computational experiments were conducted on three randomly selected TSP standard 

benchmark problems from the TSPLIB library. 

 Chapter 5 examines the factors that influence the performance of the proposed 

algorithm such as bound restriction, variable fixing, edge fixing and representation of the 

Subtour Elimination Constraints. Eight STSP and six ATSP benchmark problems were used 

to illustrate the effect of each of these factors. 

 Chapter 6 investigates the performance of the proposed algorithm on both symmetric 

and asymmetric TSP. Two kinds of experiments were carried out on 33 TSP benchmarks 

problems taken from the TSPLIB library. The first kind was used to evaluate the performance 

of the proposed algorithm using ACO parameters suggested in Chapter 4 against the 

performance of the proposed algorithm using the set of parameter values recommended in the 

literature by Dorigo. The second was carried out to compare performance with other studies 

available in the literature. 

 Chapter 7 concludes the thesis with a discussion of possible future research directions.
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Chapter 2  

Ant Colony Optimization 

This chapter presents a brief overview to ACO, approaches to building ACO algorithms and an 

overview of different types of ACO algorithms.  

2.1 Ant Colony Optimization Metaheuristics 

The ACO algorithms are inspired by the behaviour of ants to find the shortest path  to a food 

source from their nest. These ants find such a path very quickly by using indirect 

communication via pheromones. This inspiring behaviour is exploited in artificial ants that 

construct solutions for a given problem by carrying out random walks on a construction graph. 

The random walk and the resulting solution depend on pheromone values which represent the 

values on the edges of the construction graph.  Concisely, the probability of traversing a certain 

edge depends on its pheromone value.  

 The main idea behind an ant algorithm is to use a form of artificial stigmergy to 

coordinate societies of artificial agents. One of the most prominent examples of the ant 

algorithm is the ACO. The ACO is inspired by the foraging behaviour of ant colonies and is 

used in solving the discrete optimization problem.  

 In the ACO algorithms, ants are agents programmed to find an optimal combination of 

elements of a given set that maximizes some utility function. Edges are used as solution 

components when applying the ACO algorithms to the TSP. The pheromone trails 𝜏𝑖𝑗 associated 

to each edge 𝑖, 𝑗 in the TSP refer to the desirability of visiting city 𝑗 from the current city 𝑖. The 

amount of pheromone trail is proportional to the quality of the ant's path where a shorter path 

usually results in a greater amount of pheromone. If the ACO algorithm is applied to the 

symmetric TSP instances, the pheromone trails are also symmetric  𝜏𝑖𝑗
𝑡 = 𝜏𝑗𝑖

𝑡  . 

 At the beginning of the solution construction process, 𝑚 numbers of ants are placed on a 

randomly chosen start city. Then, in each construction step, each ant chooses the next unvisited 



Chapter 2                                                                                                            Solution Methods 

45 

 

city probabilistically, biased by the pheromone trail  𝜏𝑖𝑗 and locally available heuristic 

information, which is a function of the edge length. This solution construction process 

terminates when all the cities have been visited. Once all ants have constructed a tour, the 

pheromone trails are updated. Edges that are used most frequently by many ants and contained 

in the shortest tour will usually receive more pheromone and thus are more likely to be chosen 

in a future iteration of the algorithm. 

2.2 Foraging Behaviour of Real Ants 

Although most ants are almost blind, to get around, they communicate and gain information 

about their world by relying on touch from the sensitive antennae, and the smell of chemicals 

called pheromones. Some ant species in particular, such as Lasius Niger or the Argentine ant 

Iridomyrmex humilis (Goss, Aron, Deneubourg, & Pasteels, 1989), use a special kind of 

substance called trail pheromones to reinforce the optimum paths between food sources and 

their nest. To be more specific, these ants lay pheromones on the paths they take, and these 

pheromone trails act as stimuli because the ants are attracted to follow the paths that have 

relatively more pheromones.  

 As a result, an ant that has decided to follow a path due to the pheromone trail on that 

path reinforces it further by laying its pheromone too. This process can be assumed as a self-

reinforcement process since the more ants that follow a specific path, the more likely that it 

becomes the path that will be followed by other ants in the colony.   

 The pheromone trail-laying and following behaviour of some ant species have been 

investigated in controlled experiments by several researchers. Deneubourg et al. (Deneubourg, 

Aron, Goss, & Pasteels, 1990) demonstrated the foraging of a colony of ants through the 

double-bridge experiments. In these experiments, the nest of ants of the Argentine ant species 

Iridomyrmex humilis and the food sources are connected through two different paths.  The 

behaviour is examined by varying the ratio between the lengths of the two paths of the double 

bridge as shown in Figure 2.1.  

 In the first experiment, both paths were set to be of equal length as can be seen in Figure 

2.1 (a). The result showed that initially, the ants chose the two paths randomly since there was 

no pheromone on either of the paths yet. After a while, due to random fluctuations, one of the 
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two paths was followed by a few more ants and so  more pheromone was accumulated on that 

path. Eventually, the whole colony converged to follow that same path. 

Nest Food

 

(a) Paths have equal length   

Nest Food

 

 (b) Paths have different length 

Figure 2.1: Double Bridge Experiments 

  

 In the second experiment, the length of one path was two times as long as the other one as 

in Figure 2.1(b). Initially, the ants again choose either of the two paths randomly. The ants that 

had chosen the shortest path arrived at the food source faster and began their return to the nest 

earlier. Consequently, pheromone accumulated faster on the shortest path, and most of the ants 

converged to this path.  

 Besides, Deneubourg et al. (Deneubourg, Aron, Goss, & Pasteels, 1990) were also 

interested in investigating what would happen if a shorter path was added after the ants had 

converged to one path. They found that the shorter alternative that was offered after 

convergence was never discovered by the colony. The majority of the ants continued following 

the longer branch reinforcing it more. This stagnation is caused by the high pheromone 

concentration and by the slow evaporation of pheromone, and the real ants always follow the 

suboptimal path even if there is a shorter one. 
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2.3 The Design of Artificial Ants 

The double bridge experiments in Section 2.2 show that the ant colonies have a built-in 

optimization capability. These ant colonies make a probabilistic movement to find the shortest 

path between their nest and the food source based on the intensity of pheromone. In the ACO 

algorithm, artificial ants or agents are used to find good solutions to difficult combinatorial 

optimization problems. These artificial ants have the properties of the real ants. Blum in (Blum 

C. , 2005) explains the significant difference between the characteristics of the artificial ants and 

the real ants are as follows:  

 When foraging for food, real ants will evaluate the intensity of pheromone along their 

way from the nest to the food source. Contradictorily, artificial ants will evaluate a 

solution with respect to some quality measure, which is used to determine the intensity 

of pheromone during their return trip to the nest.  

 The real ants might not take the same path on their way to the food sources and on their 

return trip to their nest. However, each of the artificial ants moves from the nest to the 

food sources and follows the same path to return.  

 The real ants lay pheromone each time they move back and forth to the nest while the 

artificial ants deposit artificial pheromone only on their way back to the nest.   

 The earliest ant algorithm was introduced by Dorigo et al. in 1991 and was called the Ant 

System (AS) (Colorni, Dorigo, & Maniezzo, 1991), (Dorigo, Maniezzo, & Colorni, 1996). 

Dorigo and Gambardella then proposed the Ant Colony System (ACS) (Dorigo & Gambardella, 

1997a) (Dorigo & Gambardella, 1997b) in 1996 while Stützle and Hoos proposed the MAX-

MIN Ant System (MMAS) (Stützle & Hoos, 2000). The ACO has drawn much attention, and 

various extended versions of the ACO paradigm were proposed, such as the Best-Worst Ant 

System (BWAS) (Cordon O. , Herrera, Viana, & Moreno, 2000) and the Rank-based Ant 

System (R-AS) (Bullnheimer, Hartl, & Strauss, 1999a). 

2.4 Ant System  

The Ant System (AS) is the first ACO algorithm proposed in the literature as a means of solving 

the TSP (Colorni, Dorigo, & Maniezzo, 1991). The AS consists of an initial phase and two 
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iterative main phases of the ant system which are ants’ solution construction and pheromone 

update. In the initial phase, the pheromone trails are set with an equal amount of pheromone 𝜏0, 

such that ∀(𝑖, 𝑗), 𝜏𝑖𝑗 = 𝜏0 . 

 In every iteration, 𝜇 ants construct their solution concurrently, each one starting from a 

randomly chosen city. Each ant 𝑘 builds a solution city-by-city using a probabilistic decision 

rule, called random proportional rule. At each construction step, the city selected is added to the 

partial solution of the ant. In particular, the probability that ant 𝑘 chooses the next city 𝑗, when 

the last city in the partial tour is 𝑖, is defined as follows:    

      𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑢]𝛼[𝜂𝑖𝑢]𝛽
𝑢∈𝑁𝑖

𝑘

                 𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘       2.1 

where 𝜏𝑖𝑗  is the present pheromone trail, 𝜂𝑖𝑗  is the heuristic information available a priori, 𝛼  

and 𝛽  are the constant parameters that determine the relative influence of pheromone trail and 

the heuristic information, respectively, and 𝑁𝑖
𝑘   is the neighbourhood of unvisited cities of ant 𝑘 

when its current city is 𝑖. The heuristic information is defined as 

𝜂𝑖𝑗 =
1

𝑐𝑖𝑗
 2.2 

which is inversely proportional to the distance between city 𝑖 and  𝑗 .  

 After all ants build a feasible solution 𝑇𝑘 , the pheromone trails are updated. At the 

beginning, all the pheromone trails are lowered by a constant factor 𝜌, due to the pheromone 

evaporation, such that: 

𝜏𝑖𝑗
𝑡+1 = (1 − 𝜌)  𝜏𝑖𝑗

𝑡              ∀(𝑖, 𝑗) ∈ 𝐸 2.3 

given that 0 < 𝜌 ≤ 1  is the pheromone evaporation rate, which helps the ants to eliminate 

pheromone trails that are not used frequently and have been created from bad decisions 

previously taken. After evaporation, all ants deposit pheromone on the arcs of their path as 

follows: 

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∑ ∆𝜏𝑖𝑗
𝑘

𝜇

𝑘=1

,    ∀(𝑖, 𝑗) ∈ 𝐸 2.4 
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where ∆𝜏𝑖𝑗
𝑘  is the amount of pheromone ant 𝑘 deposits on the arcs that belong to its tour 𝑇𝑘  , 

and is defined as follows: 

∆𝜏𝑖𝑗
𝑘 = {

1

𝐿𝑘                 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇𝑘

0                       otherwise
  2.5 

where 𝐿𝑘  is the tour cost of the tour 𝑇𝑘 constructed by ant 𝑘. As a result, the amount of 

pheromone of each ant is proportional to the solution quality. Hence, the better the ants tour, the 

more pheromone an ant deposits. For more information on AS and its application see (Maniezzo 

& Colorni, 1999) and (Cordon, Herrera, & Stutzle, 2002). 

2.5 Elitist Ant System  

This was the first improvement on the original AS introduced in Dorigo et al. (Dorigo, 

Maniezzo, & Colorni, 1996), (Dorigo, Maniezzo, & Colorni, 1991). The Elitist Ant System 

(EAS) uses an elitist strategy where the best ant deposits additional pheromone to the edges of 

its tour. The initial phase and the solution construction are the same as in the AS algorithm. 

However, after the pheromone evaporation, all the ants deposit pheromone as follows: 

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∑ ∆𝜏𝑖𝑗
𝑘

𝜇

𝑘=1

+ 𝑒∆𝜏𝑖𝑗
𝑏𝑠,               ∀(𝑖, 𝑗) ∈ 𝐸 2.6 

where ∆𝜏𝑖𝑗
𝑘  is defined as in equation 2.5, 𝑒  is the parameter that determines the influence of the 

elitist strategy and ∆𝜏𝑖𝑗
𝑏𝑠 is defined as follows: 

                                         ∆𝜏𝑖𝑗
𝑏𝑠 = {

1

𝐿𝑏𝑠                 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇𝑏𝑠

0                       otherwise
 2.7 

where 𝐿𝑏𝑠 is the tour cost of tour  𝑇𝑏𝑠 which is constructed by the best-so-far ant. Note that the 

best-so-far ant is a special ant that may not belong to the population in every colony. For more 

information on EAS refer (Dorigo & Stutzle, 2004). 
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2.6 The Rank-based Ant System  

The Rank-based Ant System (R-AS) was proposed by Bullnheimer et al. (Bullnheimer, Hartl, 

& Strauss, 1999a).  In this R-AS, each ant deposits an amount of pheromone proportional to its 

rank where the best-so-far ant always deposits a higher amount of pheromone than the other 

ants as in the EAS. The initial phase and the solution construction are the same as in the AS 

algorithm. Though, after pheromone evaporation, all the ants are ranked according to their 

solution quality such that only the 𝜔 − 1 best-ranked ants and the best-so-far ant are allowed to 

deposit pheromone. Formally, the pheromone update in the R-AS is according to: 

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∑ (𝜔 − 𝑟)∆𝜏𝑖𝑗
𝑟

𝜔−1

𝑟=1

+ 𝜔∆𝜏𝑖𝑗
𝑏𝑠        ∀(𝑖, 𝑗) ∈ 𝐸 2.8 

where ∆𝜏𝑖𝑗
𝑏𝑠 is defined as in equation 2.7 and ∆𝜏𝑖𝑗

𝑟 = 1 𝐿𝑟⁄  where 𝐿𝑟 is the tour cost of  𝑇𝑟of the 

r-th  best-ranked ant. 

For more information on R-AS and its application see (Bullnheimer, Hartl, & Strauss, 1999b) , 

(Dorigo & Stutzle, 2004) and (Capriles, Fonseca, Barbosa, & Lemonge, 2007). 

2.7 The MAX-MIN Ant System  

The MAX-MIN Ant System (MMAS) is an improved algorithm of the EAS proposed by Stutzle 

and Hoos (Stützle & Hoos, 2000). Contrary to the previous AS variations, the MMAS only 

allows either the best-so-far ant or the colony-best ant to deposit pheromone. However, the 

initial phase and the solution construction phase are still the same as in the AS algorithm, 

whereas the pheromone update is defined as follows: 

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 ,               ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑒𝑠𝑡 2.9 

where ∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 = 1 𝐿𝑏𝑒𝑠𝑡⁄ . In case the best-so-far ant is allowed to deposit pheromone 

∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 =

1

𝐿𝑏𝑠
 2.10 

while in the case the colony-best ant is allowed to deposit pheromone 
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∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 =

1

𝐿𝑖𝑏
 2.11 

where  𝐿𝑏𝑠 is the tour cost of the best-so-far ant, and 𝐿𝑖𝑏 is the tour cost of the best ant of the 

current colony. 

 Moreover, the pheromone trails are bounded in the interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], where 𝜏𝑚𝑖𝑛 and 

𝜏𝑚𝑎𝑥 are the lower and upper limits, respectively. Since only the best ant is allowed to deposit 

pheromone, high intensity of pheromone may be generated on a suboptimal solution. Hence, the 

mechanism that restricts the range of the pheromone trails avoids stagnation behaviour. Finally, 

in the case of search stagnation or if no improvement is found for a given number of algorithmic 

iterations , the pheromone trails are re-initialized to an estimate of the upper pheromone trail 

limit to increase exploration. 

For more information on MMAS and its applications refer to (Dorigo & Stutzle, 2004), (Stutzle 

& Hoos, 1996), (Afshar, 2006), (Socha, Knowles, & Sampels, 2002), (Zecchin, et al., 2003). 

2.8 The Ant Colony System  

The Ant Colony System (ACS) was introduced by Dorigo (Dorigo, Maniezzo, & Colorni, 

1996); (Dorigo & Gambardella, 1997b) to improve the performance of the AS. The ACS is 

primarily different from the AS in three aspects: 

 State transition rule. 

 Global pheromone updating rules. 

 Local pheromone updating rule. 

 The modification to the state transition rule is done to provide the ability to achieve a 

balance between exploring new arcs and exploiting accumulated knowledge about the problem. 

An ant 𝑘 in city 𝑖 chooses the city 𝑗 to move to following the rule: 

𝑗 = {
            arg max

𝑢∈𝑁𝑖
𝑘  {[𝜏𝑖𝑢]∝[𝜂𝑖𝑢]𝛽}                𝑖𝑓 𝑞 < 𝑞0

                                      𝐽                                      𝑖𝑓 𝑞 > 𝑞0

  2.12 

where 𝑞 is a random variable uniformly distributed over [0,1] and a predefined parameter 𝑞0  

(0 ≤ 𝑞0 ≤ 1).  𝐽  is a random variable determined in accordance with equation 2.1. It can be 
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seen that the ACS transition rule is identical to the AS’s when  𝑞 > 𝑞0 . This strategy obviously 

increases the variety of any searching, thus avoiding any premature falling into the local optimal 

solution. 

 In the AS, all ants are allowed to deposit pheromone after completing their tours while in 

the ACS, only the ant that has produced the best solution since the beginning of the trail is 

allowed to globally update the intensity of pheromone on the edges. The global pheromone 

updating rule is stated as follows: 

𝜏𝑖𝑗
𝑡+1 = (1 − 𝜌)𝜏𝑖𝑗

𝑡   + 𝜌. ∆ 𝜏𝑖𝑗
𝑡             ∀(𝑖, 𝑗) ∈ 𝐸 2.13 

and ∆𝜏𝑖𝑗
𝑡  is defined as : 

∆𝜏𝑖𝑗
𝑡 = {   

1

𝐿+                         𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇+

0                              otherwise
  2.14 

where  𝑇+ is the best tour since the beginning of the trail, 𝐿+  is the length of  𝑇+ and 𝜌 is a 

decay parameter . 

  Moreover, while building a solution, ants change their pheromone level by applying the 

local updating rule as in equation 2.15.  

𝜏𝑖𝑗
𝑡+1 = (1 − 𝜌)𝜏𝑖𝑗

𝑡   + 𝜌. 𝜏0               ∀(𝑖, 𝑗) ∈ 𝐸 2.15 

where  0 < 𝜌 ≤ 1 is a decay parameter and  𝜏0 = (𝑛. 𝐿𝑛𝑛)−1  is the initial values of the 

pheromone. 

For more information on the ACS and its application see (Dorigo & Gambardella, 1997b) and 

(Gambardella & Dorigo, 1996). 

2.9 Summary 

This chapter has reviewed the motivation, frameworks and variants of the ACO. In the next 

chapter, the new proposed modified ACO approach will be introduced and discussed in detail.  
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Chapter 3  

Proposed Modified ACO Algorithm for Symmetric and 

Asymmetric TSP 

In this chapter, a new formulation of the state transition rule will be implemented to select 

candidate solutions during the tour construction phase. Besides, a different approach to global 

updating of pheromone and new ways of depositing and evaporating pheromone are employed 

in the pheromone update phase. In addition, a special agent named ‘Intelligent Ants’ is also 

introduced to work with the state transition rule in the tour construction phase. Finally, an 

example is included to demonstrate the working process of the proposed algorithm. 

3.1 Introduction 

As mentioned in Chapter 2, there are three phases to ACO algorithms, namely the construction 

phase, the pheromone update phase, and the optional daemon phase. In the construction phase, 

the ants iteratively construct candidate solutions on which they may deposit pheromone. An ant 

constructs a candidate solution starting with an empty solution and iteratively adds the solution 

component until the complete candidate solution is generated. After the solution construction is 

completed, the ant will enter the pheromone update phase. In this phase, the ant gives feedback 

on the solution that has been constructed by depositing pheromone on that solution’s 

components. Normally, solution components which are used by many ants or are part of better 

solutions will receive a higher amount of pheromone and, thus, will more likely be used by the 

ants in the future iterations of the algorithm. Conversely, the pheromone trails are decreased by 

a factor 𝜌 which is called the evaporation factor. 

 The ants’ solutions are not guaranteed to be optimal with respect to local changes and 

hence, more explorations are needed to search for global changes. However, the balance 

between exploration and exploitation has to be considered carefully. Excessive exploitation will 

reduce the diversity of the solution by focusing only on the neighbourhood and lead the search 

to local optima quickly. At the same time, extreme exploration will increase the diversity of 
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solutions but slow down the search’s speed. So, an improper balance will lead to ineffective 

algorithms.  

3.2 Algorithm Notations 

The following notation is used in the proposed algorithm where index 𝑘 denotes ant and indexes  

𝑖 and  𝑗 denotes cities. 

𝑁 = {1, … , 𝑛}   : the set of cities  

𝑡 = {1, … , 𝑚}   : the set of colonies 

𝑘 = {1, … , 𝑞} : the number of ants used in each colony 

𝑁𝑖
𝑘 : set of unvisited adjacent cities for ant 𝑘 from city 𝑖 

𝛼 : the relative importance of pheromone trail 

𝜏𝑖𝑗 : pheromone intensity between cities 𝑖 and 𝑗 

𝜏𝑖𝑗
𝑡  : the pheromone information between cities 𝑖 and 𝑗 at colony 𝑡 

𝜌 : the pheromone evaporation rate  

𝑢𝑖 : the position of city 𝑖 in the solution tour 

𝑇𝑘𝑎

𝑡  : the tour constructed following the new proposed state transition rule of ant 

𝑘 at colony 𝑡 

𝐿𝑘𝑎

𝑡  : the length of the solution tour constructed following the new proposed state 

transition rule of ant 𝑘 at colony 𝑡 

𝑇𝑘
𝑡 : the solution tour of ant 𝑘 at colony 𝑡 

𝐿𝑘
𝑡  : the length of the solution tour of ant 𝑘 at colony 𝑡 

𝑇𝑏𝑒𝑠𝑡
𝑡  : the colony-best solution tour of colony 𝑡 

𝐿𝑏𝑒𝑠𝑡
𝑡  : the length of the colony-best solution tour of colony 𝑡 

𝑇𝑤𝑜𝑟𝑠𝑡
𝑡  : the colony-worst solution tour of colony 𝑡 

𝐿𝑤𝑜𝑟𝑠𝑡
𝑡  : the length of the colony-worst solution tour of colony 𝑡 

 



Chapter 3                                                                                                  The Proposed Algorithm 

55 

 

3.2.1 Initialization 

In the basic ACO algorithm, the initial pheromone concentration is uniformly distributed. Thus, 

the probability of ants choosing other feasible directions at any node (city) is almost the same. 

Therefore, the ACO will take a lot of time to determine the feasible solution which results in 

slow convergence speed in the early stage of the algorithm. Although an ant is associated with 

heuristic information which provides local information of the problem, balancing the 

exploitation (pheromone value) and exploration (heuristic information) of the search needs 

many experiments and experience. 

  For that reasons, in the proposed algorithm, the initial quantities of the pheromone 

concentration are determined according to equation 3.1 where  𝑐𝑖𝑗 represents the cost between 

node 𝑖 and node 𝑗. Equation 3.1 indicates that when the distance between cities 𝑖 and 𝑗 is short, 

the quantity of pheromone between cities 𝑖 and 𝑗 is large and hence, the probability to visit city 𝑗 

from city 𝑖 become higher and vice versa. In short, the edges which have higher cost, obtain 

lower pheromone making the desirability of that edge to decrease 

𝜏𝑖𝑗
0 =

1

𝑐𝑖𝑗
,   ∀𝑖, 𝑗 ∈ 𝑁 

3.1 

3.2.2 Tour Construction 

In the tour construction phase, 𝑞 ants independently visit each city exactly once. Each ant starts 

from a randomly selected city, and probabilistically chooses the edge to follow among those that 

lead to yet unvisited cities. The probability of choosing city 𝑗 from city 𝑖 at colony 𝑡 for ant 𝑘 is 

computed by equation 3.2. 

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗

∑ 𝜏𝑖𝑗𝑗∈𝑁𝑖
𝑘

                            𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘

    0                                       𝑖𝑓 𝑗 ∉ 𝑁𝑖
𝑘

 

3.2 

where 𝑁𝑖
𝑘 is the set of unvisited adjacent cities for ant 𝑘 in city 𝑖, and  𝜏𝑖𝑗 denotes a quantity of 

pheromone between cities 𝑖 and 𝑗.  
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3.2.2.1 Intelligent Ants Strategy  

In the ACO algorithm, an ant is a simple computational agent which iteratively constructs a 

solution for the problem at hand. In the proposed algorithm, a strategy of ‘Intelligent Ants’ (IA) 

that combines a partial fixing approach with a local search method is implemented. This 

strategy has demonstrated effective practical procedures for commonly observed instances of 

important discrete optimization problems such in the works by (Crowder, Johnson, & Padberg, 

1983) and (Crowder & Padberg, 1980). The partial fixing approach fixes a predefined number 

of arcs and leaves the remaining unfixed nodes to the solver to decide. This strategy helps at 

reducing the computational time by heuristically fixing part of the solution tour and improving 

the accuracy of the solutions through the usage of the solver. The ‘Intelligent Ants’ procedure is 

summarised as follows: 

Step 0: Initialize the value for  𝑇𝑘𝑎

𝑡  , 𝐿𝑘𝑎

𝑡 ,  𝑇𝑘
𝑡 = {}  and 𝐿𝑘

𝑡 = ∞. 

For  𝑥(𝑖, 𝑗) ∈ 𝑇𝑘𝑎

𝑡    and   𝑢𝑖 ≠ last (𝑇𝑘𝑎

𝑡 )  : 

Step 1: Fix the first 𝑋 ∗ 𝑛  number of cities form the initial solution tour.  

Step 2: Complete the solution tour constructed in Step 1 using the solver and update the  𝑇𝑘
𝑡 

and 𝐿𝑘
𝑡 . 

For instance, if the size of partial fixing is set to 50% of the total number of nodes, then 𝑋 = 0.5 

and the number of nodes to be fixed is 0.5 ∗ 𝑛. Note that 0 ≤ 𝑋 ≤ 1. For example, for berlin52 

instance with 52 cities, the size of partial fixing is 26 nodes while for u159 instance with 159 

cities, the size of the partial fixing is 80 nodes.  

3.2.2.1.1 An Illustrative Example 

Consider a TSP benchmark problem ulysses16 with 𝑛 = 16 and  𝑋 = 0.5 ; 

Step 1:  In the tour construction phase, nodes are gradually added to the solution tour according 

to the state transition rule in equation 3.2. When the number of nodes in the solution 

tour has reached the maximum number of nodes allowed in the ‘Intelligent Ant’ 

procedure, stop.  Otherwise, repeat the same process.  
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Step 2: The solver is used to build a complete closed tour based on the partial route constructed 

in Step 1. 

Figure 3.1 and Figure 3.2 illustrate the partial fixing process in the IA procedure for ulysses16. 

15 5 11 9 10 1 8 13 

Figure 3.1: Partial solution route constructed in the tour construction phase 

15 5 11 9 10 1 8 13 12 16 3 2 4 14 7 6 

Figure 3.2: A closed solution tour constructed following the IA procedure 

3.2.2.2 Local Search Strategy 

In the interest of effectiveness and efficiency, a local search technique called 2-opt is adopted in 

the proposed algorithm. The local search is applied after the ants have constructed a feasible 

solution which allows the algorithm to search for a solution that might have a lower cost. The 2-

opt move in general consists of removing two random edges and reconnecting the resulting 

paths into a new tour. The pair that gives the shortest tour among all pairs of edges after the 2-

opt exchange will be chosen. This procedure is iterated until no such pair of edges is found. The 

2-opt local search procedure is defined as below: 

Step 0: Initialize the solution tour 𝑇𝑘
𝑡 and its length 𝐿𝑘

𝑡   . 

For  𝑥(𝑖, 𝑗) ∈ 𝑇𝑘
𝑡 , 𝑢𝑖 = 1, … , 𝑛 − 1, 𝑢𝑗 > 𝑢𝑖 and 𝑢𝑗 < 𝑛 : 

Step 1: 
Swap the position of a pair of cities (𝑢𝑖, 𝑢𝑗) from the solution tour and calculate its 

new length 𝐿𝑘
𝑡∗. 

Step 2: 
If the new length 𝐿𝑘

𝑡∗ is shorter than the previous one  𝐿𝑘
𝑡  , update the 𝑇𝑘

𝑡 and  𝐿𝑘
𝑡 . 

Otherwise, swap a different pair of cities from the solution tour. 

Step 3: Repeat Step 1-2 until no other shorter tour is possible. 
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3.2.3 Pheromone Update 

The pheromone updating rule is meant to simulate the change in the amount of pheromone due 

to both the addition of new pheromone deposited by ants on the visited edges and for 

pheromone evaporation (Dorigo & Gambardella, 1997a). By using this rule, ants will search in a 

wide neighbourhood of the best previous schedule.   

  In the proposed algorithm, the pheromone is deposited only on the edges belonging to the 

colony-best solution. Likewise, the pheromone is evaporated only on the edges belonging to the 

colony-worst solution that are not in the colony-best solution. The underlying idea of the 

proposed strategy in the context of the proposed algorithm is to place extra emphasis on the best 

edges found in each colony and make edges of the colony-worst solution become less attractive 

provided that these edges are not part of the colony-best solution. 

 In order to prevent the solution from falling into a local optimum, the pheromone 

evaporation is utilized. Every quantity of pheromone is reduced with the following equation: 

𝜏𝑖𝑗
𝑡+1 = 𝜌 ∙ 𝜏𝑖𝑗

𝑡    ;                        (𝑖, 𝑗) ∈ 𝑇𝑤𝑜𝑟𝑠𝑡∗
𝑡  3.3 

where 

𝑇𝑤𝑜𝑟𝑠𝑡∗
𝑡 = {(𝑖, 𝑗)|(𝑖, 𝑗) ∈ {𝑇𝑘

𝑤𝑜𝑟𝑠𝑡 ∩ 𝑇𝑘
𝑏𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅}} 

3.4 

In this way, the edges of the colony’s longest path 𝑇𝑤𝑜𝑟𝑠𝑡∗
𝑡  become less desirable.  

Following the pheromone evaporation, the colony-best ant deposits pheromone as follows: 

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∆𝜏𝑖𝑗
𝑡𝑏𝑒𝑠𝑡                            (𝑖, 𝑗) ∈ 𝑇𝑏𝑒𝑠𝑡

𝑡  3.5 

where ∆𝜏𝑖𝑗
𝑡𝑏𝑒𝑠𝑡 is a quantity of pheromone between cities 𝑖 and 𝑗 deposited by the colony-best ant 

and computed based on the following formula:  

∆𝜏𝑖𝑗
𝑡𝑏𝑒𝑠𝑡 =  {

𝛼

𝐿𝑏𝑒𝑠𝑡
𝑡                          if  (𝑖, 𝑗) belongs to 𝑇𝑏𝑒𝑠𝑡

𝑡

0 otherwise

 3.6 

Given that  𝐿𝑏𝑒𝑠𝑡
𝑡  is the length of the colony-best solution and  𝛼 is the persistence of the 

pheromone trail.  
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 In such a way, the edges of the shortest path of the colony become more attractive and are 

updated based on the values of the 𝐿𝑏𝑒𝑠𝑡
𝑡 .The lower the value of the  𝐿𝑏𝑒𝑠𝑡

𝑡 , the greater the 

pheromone deposited on the visited edges. 

3.3 Design of the Proposed Algorithm 

The proposed algorithm starts by adopting the Nearest-neighbour heuristic with the 2-opt local 

search to construct its first colony. The solution with the minimum tour length is considered as 

the colony-best solution 𝑇𝑏𝑒𝑠𝑡
𝑡  and is set as the first ant of the next colony. 

 Then, at colony 𝑡 + 1 provided that 𝑡 ≥ 1, the proposed algorithm begins by randomly 

placing ants in the nodes of the graph in which every ant moves to a new node and the 

parameters controlling the algorithm are updated. Assuming that the TSP is represented as a 

closed connected graph, each edge is labelled by trail intensity 𝜏𝑖𝑗
𝑡  at colony 𝑡. An ant decides 

the next node with a probability that is based on the distance to that node and the amount of trail 

intensity on the connecting edge. A function 𝑝𝑖𝑗
𝑘  is considered to favour the selection of an edge 

that has a high intensity of pheromone trail when  𝑁𝑖
𝑘 are the unvisited neighbours of node 𝑖 by 

ant 𝑘 and  𝑗 ∈ 𝑁𝑖
𝑘.  

 However, the numbers of nodes selected to be included in the solution tour are dependent 

on the predefined value in the IA strategy. When the number of nodes selected is equal to the 

predefined value, the IA uses the solver to construct a complete tour with minimum tour length. 

If the tour constructed is greater than the current best solution, the tour is terminated. Otherwise, 

a 2-opt local search is applied to further enhance the tour. This tour construction phase is 

repeated until all the ants have completed their tours. 

 Once all the ants have constructed a tour, the pheromone trails are updated. The 

pheromone updating rule enforces two things; pheromone evaporation which stops pheromone 

trails from unlimited accumulation, and pheromone deposit which makes the favourite edges 

have stronger pheromone trails. In each colony, only the ant that generates the colony-best 

solution 𝑇𝑏𝑒𝑠𝑡
𝑡  is allowed to globally update the pheromone. Likewise, the pheromone 

evaporation is only applied on all arcs belonging to the colony-worst solution 𝑇𝑤𝑜𝑟𝑠𝑡
𝑡  that were 

not in the colony-best solution 𝑇𝑏𝑒𝑠𝑡
𝑡 , and the amount of its evaporation is dependent on 

the pheromone evaporation rate 𝜌. After the evaporation process, the quantity of pheromone 
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deposited on each arc of the colony-best solution is inversely proportional to the cost of the 

colony-best solution.  

 Before the algorithm starts the next iteration, the colony-best solution is used as a new set 

of cities, 𝑁  as well as being the first ant in the following colony. Therefore, the colony-best 

solution is also the global-best solution which prevents a worse quality solution in the next 

colony.  The algorithm runs until the maximum number of colonies allowed is reached.  

3.3.1 Algorithm 

The algorithm proposed is described as follows: 

Step 0: Initialize the initial value for 𝜏𝑖𝑗
𝑡 =

1

𝑐𝑖𝑗
  , 𝑇𝑏𝑒𝑠𝑡

1 = {}, 𝑇𝑤𝑜𝑟𝑠𝑡
𝑡 = {}, 𝐿𝑏𝑒𝑠𝑡

1 = 0 and  

𝐿𝑤𝑜𝑟𝑠𝑒
𝑡 = ∞ . 

For 𝑡 = {1},  𝑘 = {1, … , 𝑞} : 

Step 1: Randomly pick an initial city.  

Step 2: Choose the next city to move to from the list of unvisited cities using the Nearest-

neighbour approach. 

Step 3: Repeat Step 2 until all unvisited cities have been visited and compute the tour length. 

Step 4: Apply the 2-opt local search and update the 𝑇𝑘
𝑡 and 𝐿𝑘

𝑡 . 

Step 5: Repeat Step 1-4 until all ants have constructed their solutions. 

Step 6: Calculate and update the  𝑇𝑏𝑒𝑠𝑡
𝑡  and  𝐿𝑏𝑒𝑠𝑡

𝑡 . 

For 𝑡 = {2, … , 𝑚}  and  𝑘 = {1}: 

 Let  𝑇1
𝑡 = 𝑇𝑏𝑒𝑠𝑡

𝑡−1  and 𝐿1
𝑡 = 𝐿𝑏𝑒𝑠𝑡

𝑡−1 . 

For 𝑡 = {2, … , 𝑚} ,  𝑘 = {2, … , 𝑞}: 

Step 1: Randomly pick an initial city.  
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Step 2: Choose the next city to move to from the list of unvisited cities using the new 

proposed state transition rule. 

Step 3: Repeat Step 2 until all unvisited cities have been visited. 

Step 4: Fix the first  𝑋 ∗ 𝑛 number of the cities in Step 3. 

Step 5: Complete the solution tour constructed in Step 4 using the solver and check for 

feasibility. 

Step 6: If the solution tour found in Step 5 is feasible, apply the 2-opt local search and return 

𝑇𝑘
𝑡 and 𝐿𝑘

𝑡 . Otherwise, let 𝑇𝑘
𝑡 = {} and 𝐿𝑘

𝑡 = ∞. 

Step 7: Repeat Step 1-6 until all ants have constructed their tours. 

Step 8: Calculate and update the 𝑇𝑏𝑒𝑠𝑡
𝑡 , 𝑇𝑤𝑜𝑟𝑠𝑡

𝑡 , 𝐿𝑏𝑒𝑠𝑡
𝑡  and  𝐿𝑤𝑜𝑟𝑠𝑡

𝑡 . 

Step 9: Reinforce the pheromone value on the arcs belong to the 𝑇𝑏𝑒𝑠𝑡
𝑡  and evaporate on the 

arcs belong to the 𝑇𝑤𝑜𝑟𝑠𝑡
𝑡  but not in the 𝑇𝑏𝑒𝑠𝑡

𝑡 . 

3.3.2 An Illustrative Example 

A symmetric instance with 16-cities is used to demonstrate the procedures when the proposed 

algorithm is applied. In this example, the number of cities 𝑛 is 16 and the value of 𝑋 in the IA 

procedure is 0.5; hence the number of nodes to be fixed is 8 (excluding the first node). If the 

number of colonies and ants is, respectively, 15% and 20% of the problem size, then the number 

of colonies is 2 and the number of ants in each colony is 3. The algorithm works as follows: 

Colony 1: 

 In this colony, 0.2𝑛 number of ants build their solutions using the Nearest-neighbour 

heuristic with 2-opt local search as shown in Table 3.1. After all the ants have 

constructed their tours, the tour with the minimum length will be chosen as the 

colony-best solution  𝑇𝑏𝑒𝑠𝑡
1 .  
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Ant Route 

1 
𝑇1

1 : 16 12 13 14 7 6 15 5 11 9 10 8 4 2 3 1 

𝐿1
1 : 7068 

2 
𝑇2

1 : 16 12 13 14 7 6 15 5 11 9 10 8 4 2 3 1 

𝐿2
1 : 7068 

3 
𝑇3

1 : 9 11 5 15 14 13 6 7 12 16 1 8 4 2 3 10 

𝐿3
1 : 7033 

Table 3.1: List of solution tours of ulysses16 in the first colony 

 From the solutions in Table 3.1, the colony-best solution is 

𝑇𝑏𝑒𝑠𝑡
1  : 9 11 5 15 14 13 6 7 12 16 1 8 4 2 3 10 

𝐿𝑏𝑒𝑠𝑡
𝑡   : 7033 

Colony 2: 

 The first ant in this colony inherited the previous colony-best solution as its solution 

tour. Thus, 𝑇1
2 ≡ 𝑇𝑏𝑒𝑠𝑡

1 . 

 The other ants construct their route following the new proposed state transition rule, 

IA and the 2-opt procedure. As displayed in Table 3.2, a ‘list of visited cities’ is 

created using the state transition rule while the ‘IA’ fixes the first half of the ‘list of 

visited cities’ and sends this partial route to the solver. The ‘solution tour’ is the 

solution tour generated by the solver. The ‘2-opt’ is the resultant tour of the 2-opt 

moves. These procedures are repeated for each ant in the colony. 

 After all the ants have constructed their routes, the route with the shortest length is 

selected as the colony-best solution and the route with the longest length is selected as 

the colony-worst solution. Therefore, 

𝑇𝑏𝑒𝑠𝑡
2 = 𝑇3

2: 

(8,1)(1,16)(16,12)(12,13)(13,14)(14,7)(7,6) 

(6,15)(15,5)(5,11)(11,9)(9,10)(10,3)(3,2)(2,4) 

𝐿𝑏𝑒𝑠𝑡
2  :  6913 

and 
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𝑇𝑤𝑜𝑟𝑠𝑡
2 =  𝑇2

2: 

(7,6)(6,15)(15,5)(5,11)(11,9)(9,10)(10,4)(4,2) 

(2,3)(3,16)(16,1)(1,8)(8,14)(14,13)(13,12) 

𝐿𝑤𝑜𝑟𝑠𝑡
2 : 7157 

   Before moving to the next colony, arcs belonging to the colony-best ant will receive    

 more pheromone while arcs belonging to the colony-worst solution that are not in the 

 colony-best solution will receive less pheromone. 

Arcs that belong to the colony-worst solution : 

 

𝑇𝑤𝑜𝑟𝑠𝑡
2 :  

(7,6)(6,15)(15,5)(5,11)(11,9)(9,10)(10,4)(4,2) 

(2,3)(3,16)(16,1)(1,8)(8,14)(14,13)(13,12) 

Arcs that belong to the colony-best solution : 

𝑇𝑏𝑒𝑠𝑡
2  : 

(8,1) (1,16) (16,12) (12,13) (13,14)(14,7)(7,6) 

(6,15)(15,5)(5,11)(11,9)(9,10)(10,3)(3,2)(2,4) 

Hence, the arcs belongings to the colony-worst solution but not in the colony-best 

solution are 

𝑇𝑤𝑜𝑟𝑠𝑡
2 : 

(7,6) (6,15) (15,5) (5,11) (11,9) (9,10)  (10,4)  (4,2) 

(2,3) (3,16) (16,1) (1,8)  (8,14) (14,13) (13,12) (12,7) 

𝑇𝑏𝑒𝑠𝑡
2  : 

(8,1)  (1,16) (16,12) (12,13) (13,14)(14,7) (7,6) (6,15) 

(15,5) (5,11) (11,9)  (9,10)  (10,3)  (3,2) (2,4) (4,8) 

 

𝑇𝑘
𝑤𝑜𝑟𝑠𝑡 ∩ 𝑇𝑘

𝑏𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅
 : (10,4) (3,16) (8,14) (12,7). 
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Ant Route 

1 

𝑇1
2 : 9 11 5 15 14 13 6 7 12 16 1 8 4 2 3 10 

𝐿1
2 : 7033 

 

2 

List of visited cities : 

7 6 15 5 11 9 10 2 4 8 1 16 12 13 14 3 

IA : 

7 6 15 5 11 9 10 2 4 

Solution tour:  

7 6 15 5 11 9 10 2 4 3 16 1 8 14 13 12 (7665) 

  

2opt : 

7 6 15 5 11 9 10 4 2 3 16 1 8 14 13 12 (7157) 

  

𝑇2
2 : 7 6 15 5 11 9 10 4 2 3 16 1 8 14 13 12 

𝐿2
2 : 7157 

 

3 

List of visited cities : 

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4 

IA : 

8 1 16 12 13 14 7 6 15 

Solution tour:   

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4  (6913) 

 

2opt : 

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4  (6913) 

 

𝑇3
2 : 8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4   

𝐿3
2 : 6913 

 

Table 3.2: List of solution tours of ulysses16 in the second colony
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  The pheromones update phases will deposit and evaporate the following arcs 

 accordingly: 

Deposit      :(8,1)(1,16)(16,12)(12,13)(13,14)(14,7)(7,6) 

(6,15)(15,5)(5,11)(11,9)(9,10)(10,3)(3,2)(2,4)   

Evaporation  :(10,4) (3,16) (8,14) (12,7) 

  The procedure is terminated when the number of colonies reached 15% of the problem 

 size. Therefore, the solution tour produced by the proposed algorithm is   

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4 

  with the length of 6913 unit. 

3.4 Conclusion 

This research proposes a new method based on the ant colony optimization for solving STSP 

and ATSP problems. This algorithm implemented a new state transition rule formulation along 

with an ‘Intelligent Ants’ strategy to construct a solution tour with minimum length. The 2-opt 

local search is then employed to enhance this tour before the pheromone is updated. The 

pheromone is evaporated on arcs belonging to the colony-worst solution provided that it does 

not belong to the colony-best solution while the pheromone is deposited only on arcs belonging 

to the colony-best solution. An illustrative example of a 16-cities problem is also included in 

this chapter to demonstrate the procedures of the proposed algorithm.  

 The choice of ACO parameters setting applied to the proposed algorithm is described in 

Chapter 4 while Chapter 5 shows experimental results in determining the best approach or value 

that helps to boost the performance of the proposed algorithm. 
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Chapter 4  

 

The ACO and its Parameters  

The main parameters of the ACO algorithm include pheromone concentration information 𝛼, 

heuristic information 𝛽, pheromone evaporation rate 𝜌  and the number of ants in the colony  𝑚. 

Setting up the values of these parameters is crucial for good performances of an algorithm. In 

practice, parameter values are usually selected by experimental comparisons as in (Dorigo & 

Stutzle, 2004) or through adaptive parameter setting as in the works of Watanabe, Pilat and 

Gambardella. 

4.1 Introduction 

The study of the impact of various parameters on the behaviour of the ACO algorithms has been 

an important subject since the first articles by (Dorigo, Maniezzo, & Colorni, 1996). The values 

of these parameters determine whether the algorithm will find an optimal or near-optimal 

solution, and whether it will find such a solution efficiently. However, finding the appropriate 

settings of an algorithm’s parameters is considered to be a non-trivial task and a substantial 

amount of work has been devoted to it.  

 The process of finding the appropriate setting of these parameters are commonly known 

as parameter setting and can be further categorized into parameter tuning and parameter control 

(Eiben, Hinterding, & Michalewicz, 1999). Parameter tuning can be expressed as a process of 

finding the correct combination of an algorithm's parameters for each individual problem in 

order to find the optimal solution (Bhríde, McGinnity, & McDaid, 2005). Meanwhile, Eiben et. 

al. (Eiben, Hinterding, & Michalewicz, 1999) defined parameter tuning as an approach for 

finding good values of the parameters before deploying the algorithm and then running the 

algorithm using these values, which remain fixed during the run. Alternatively, parameter 

control starts a run with initial parameter values that are changed during the run. For instance, 

parameter setting methods are classified depending on whether they attempt to set parameters 

before the run (tuning) or during the run (control). 
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4.2  Experimental Settings 

In the following experiments, three STSP benchmark problems were considered from the 

TSPLIB where the number of cities varied from 52 to 100. A numeric value in the problem 

name indicates the number of cities in that instance. As an example, berlin52 has 52 cities. 

 The proposed algorithm (MACO) was implemented in AMPL (AMPL, 2013) using 

CPLEX 12.5.1.0 as the MIP solver and the computational experiments were conducted on 

a PC with an Intel (R) Core (TM) i5-3470 processor with  3.20 GHz  and 8.00 GB of RAM. 

4.3 Parameter Tuning for the ACO Algorithm 

The behaviour of the ACO algorithm depends strongly on the values given to its parameters. In 

most ACO applications, parameter values are kept constant throughout each run of the 

algorithm. However, varying the parameters at computation time may enhance the performance 

of the algorithm. In the ACO literature, several strategies have been proposed and tested for 

modifying parameters while solving a problem instance. 

 Dorigo and Gambardella (Dorigo & Gambardella, 1997a) have proposed the optimum ant 

colony size in ACS. Their experimental observation has shown that the ACS works well 

when the number of ants is 10. In addition, they conclude that the optimum number of ants is 

influenced by the problem size.  

 Gambardella and Dorigo (Gambardella & Dorigo, 2000)  expressed the parameter 𝑞0  in 

equation 2.12 as a function of the problem size for a sequential ordering problem (SOP). The 

value of 𝑞0 is given by  𝑞0 = 1 − 𝑠 𝑛⁄   which makes 𝑞0  dependent on the problem size  𝑛 and  

𝑠  is the expected number of nodes selected by the probabilistic transition rule. 

 Pilat and White (Pilat & White, 2002)  suggested two hybrid methods which incorporate 

GA into ACS. The first method uses a GA to evolve a population of genetically modified ants to 

improve the performance of the ACO algorithm. However, this algorithm did not find 

significant results in determining optimum solutions when compared to the ACS. The second 

method uses a GA to evolve the optimal parameter values used in the ACS. The algorithm 

results suggested that the performance of the ACS can be improved by using these values. 

Again, it concludes that the performance of the algorithm is influenced by the parameter values.  
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 Watanabe and Matsui (Watanabe & Matsui, 2003) developed a mechanism to 

dynamically tune the size of the candidate set in the ACS. This candidate set was used to restrict 

the search space only to promising regions. With this mechanism, it is not necessary to set the 

size of the candidate set in advance. The computational results with several graph colouring 

instances indicate that the proposed control mechanism can potentially improve the efficiency of 

the ACS, especially for large optimization problems. 

 Qin et al. (Qin, et al., 2006)  used self-adaptive ACO to solve a phylogenetic tree 

construction problem. The adaptive term in this algorithm refers to dynamically tuning the value 

of parameters 𝛼 and  𝛽. The tuning method is based on the strength of the pheromone on the 

edges. At the initial stage of the algorithm, the pheromone value on each edge is relatively 

small. To speed up the convergence, the ants should select the path according to the heuristic 

information. Thus, the value of parameter 𝛼  should be relatively large at this stage. After some 

iteration, the pheromone values on the edges are increased, thus, their influence will become 

more and more important. Therefore, the value of  𝛽 will be relatively large. Experimental 

results show that the proposed method has better performance than the GA. 

 Hao et al. (Hao, Cai, & Huang, 2006)  introduced an adaptive parameter strategy based on 

PSO for the ACO. The PSO works by moving particle swarms which contain ACO parameters 

in the search space when a new best solution is encountered. The test results on 10 benchmark 

TSP problems show that the PSO-ACS performs better than the ACS. In addition, Hao with 

different groups of researchers also examined dynamic parameter tuning for the weight 

importance of heuristic information 𝛽 (Huang, Yang, Hao, & Cai, 2006) and trail 

persistence 𝜌  (Hao, Huang, Qin, & Cai, 2007), and proved that both algorithms are more 

effective than the traditional ACO. 

 Favuzza et. al. (Favuzza, Graditi, & Sanseverino, 2006)  used an adaptive instead of 

fixed, parameter 𝑞0 as in equation 2.12 to push exploration or exploitation to escape local 

minimum for a dynamic optimization problem. The parameter 𝑞0 varies adaptively based on the 

number of unimproved iterations. If the number of unimproved iterations reaches a certain 

value, then the value of the parameter 𝑞0 will be decreased allowing the algorithm to focus its 

attention on the diversification process. Once the algorithm leaves the local convergence, 

the 𝑞0 value will be increased, allowing the intensification process to happen. The proposed 
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algorithm has proven to be robust in finding the optimal reinforcement strategy for a 

distribution system problem. 

 Randall (Randall, 2004) proposed a near parameter free ACO. The author integrated the 

parameter search process with the running of ACO and thus removes the need of tuning the 

parameters by hand. The proposed method shows comparable results to the standard 

implementation of ACO. 

 Amir et al (Amir, Badr, & Farag, 2007) developed a Fuzzy Logic Controller (FLC) 

module embedded in the ACS algorithm. The FLC is used to tune the parameters 𝛽  and 𝑞0 

according to robust performance measures of the algorithm. The rule-base of the fuzzy 

controller represents the fuzzy rules that govern the performance of the ACS algorithm in 

response to the changes in the parameters’ values. The fuzzy rules were deduced using a genetic 

algorithm that produces its output with the help of a data set. The test results show that the 

adaptive ACS converged faster and outperformed the standard ACS.  

 Castillo et al. (Castillo, Neyoy, Soria, Melin, & Valdez, 2015) presented a new fuzzy 

approach to prevent the total convergence through the dynamic variation of parameter 𝛼 in the 

ACO by maintaining a certain reference level of the average lambda branching factor. This 

average lambda branching factor is used to provides an indication of the size of the search space 

effectively explored and measured the distribution of the values of the pheromone trails. When 

the value of the average lambda branching factor reference level changed, the value of the 

parameter 𝛼 is increased to maintain the diversity of the search. The proposed strategy shows an 

improvement when compared to the AS, R-AS and EAS. 

4.4 Parameter Tuning for the Proposed Algorithm 

The process of finding the appropriate parameter values for metaheuristic search algorithm can 

be a time consuming and tedious task. An alternative approach to setting good initial parameter 

settings is desired. Therefore, in order to reduce the amount of time spent in tuning the 

parameters, the parameters of the proposed algorithm are expressed as a function of the problem 

size. In such a way, the proposed algorithm can be used on various problem instances in which 

the number of ants  𝑚, 𝛼  and 𝜌 are peculiar to each problem. 
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4.5 The Number of Ants in a Colony 

In the ACO algorithm, the number of ants in each colony determines the diversification in the 

search space. As an ant represents a solution and determines the diversification of the search 

space, a small number of ants tend not to find a good solution due to a low exploration of the 

search space. Contrarily, a large number of ants can sometimes be too much and does not reflect 

an improvement of the current best solution. Also, it requires more computational processing 

time. 

 For certain computational conditions such as maximum computation time, the number of 

ants plays a critical parameter for determining the trade-off between the maximum numbers of 

colonies and broadness of the search at each of the colony. 

 In order to estimate the optimal number of ants and investigate their impact on the 

proposed algorithm solutions, five conditions were proposed:  

 the first one with ants equal to 5% of the problem size  

 the second with ants equal to 10% of the problem size 

 the third with ants equal to 15% of the problem size 

 the fourth with ants equal to 20% of the problem size 

 the fifth with ants equal to 25% of the problem size 

𝛼 = 1      𝜌 = 0.5   colonies = 5 

Benchmark 

problems 

Number of ants (𝑚) 

0.5𝑛 0.1𝑛  0.15𝑛  0.2𝑛 0.25𝑛 

berlin52 10384  9519  9452 8500 8664 

eil76 682  719 742 689 752 

krob100 32822 35293 27229 28860 30502 

Table 4.1:  Best solutions found for a different number of ants  

As displayed in Table 4.1, the numerical results indicate that the number of ants needed to find 

the best solution is: 

 berlin52  -  20% of the problem size 

 eil76        -  5% of the problem size  
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 krob100  - 15% of the problem  

Hence, the number of ants needed to find the best solution for all the three instances is at most 

20% of the problem size. 

4.6 Relative Influence of Pheromone Trail 𝜶  and Relative Influence 

of Heuristic Information  𝜷 

These two parameters are used to weight the influence of the pheromone trail and heuristic 

information in the ants’ solution construction phase. In the case of  𝛼 = 0, nodes with better 

heuristic preference have a higher probability of being selected, thus making the algorithm close 

to a classical probabilistic greedy algorithm. Likewise, if  𝛽 = 0, only the pheromone trails are 

considered to guide the constructive process, which may cause a quick stagnation. This 

stagnation normally occurs if the pheromone trails associated with some transitions are 

significantly higher than the remainder, making the ants always build the same solutions, 

usually a local optima. Therefore, there is a need to establish a proper balance between the 

importance of heuristic and pheromone trail information. 

 However, in the proposed algorithm, the heuristic information 𝛽 is not considered in the 

solution construction process. This would allow the proposed algorithm to simulate a real-world 

situation where such kind of information may not be available or too expensive to compute. 

 In order to estimate the value of the relative influence of pheromone trail parameter 𝛼  on 

the proposed algorithm solution, four conditions were proposed which are 0.5𝑛2, 𝑛2, 0.5𝑛3 and  

𝑛3 where 𝑛 represents the problem size. 

𝑚 = 0.2𝑛      𝜌 = 0.5    colonies = 5 

Benchmark 

problems 
𝑛 

𝛼 

0.5𝑛2 𝑛2 0.5𝑛3 𝑛3 

berlin52 52 7775 7775 7920 7920 

eil76 76 581 602 602 602 

krob100 100 23142 2295 23656 23656 

Table 4.2: Best solutions found for different value of the relative importance 

of pheromone trail parameter 𝛼 
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 Table 4.2 presents the best result of the simulations for each condition. These results 

denote that the most promising value for the pheromone trail parameter 𝛼 is either 0.5𝑛2 or 𝑛2.   

4.7 Evaporation Rate  

The pheromone evaporation rate 𝜌 which represents the degree of pheromone evaporation, 

reflects the degree of mutual influence among ants. The value of 𝜌 prevents the infinite 

accumulation of pheromone effectively and helps to eliminate the trails of solutions that may 

bias the ants to search in non-promising areas of the search space. If the evaporation rate value 

is too small, the global search ability of the proposed algorithm  will be reduced. Conversely, it 

will improve the global search ability but with slower convergence speed. 

 In order to estimate the best value of the pheromone evaporation rate on the proposed 

algorithm solution, four possible values were proposed for the pheromone evaporation rate: 

 1 0.5𝑛2⁄  

 1
𝑛2⁄   

 1
0.5𝑛3⁄    

 𝑛3 

Besides, two different values of the pheromone trail parameter 𝛼 are considered for each of the 

above conditions which are  0.5𝑛2 and  𝑛2.  

   𝑚 = 0.2𝑛          colonies = 5 

Benchmark 

problem 

𝛼 = 0.5𝑛2 𝛼 = 𝑛2 

𝜌 

1

0.5𝑛2
 

1

𝑛2
 0.5𝑛3 𝑛3 

1

0.5𝑛2
 

1

𝑛2
 0.5𝑛3 𝑛3 

berlin52 11854 7860 7860 7860 7920 7920 7920 7920 

eil76 793 595 595 595 602 602 602 602 

krob100 42295 23137 23137 23137 23137 23137 23137 23137 

Table 4.3 : Different evaporation rate value when 𝛼 = 𝑛2 and 𝛼 = 0.5𝑛2 
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 Table 4.3 compares the performance of the proposed algorithm with a different 

combination of parameter values for the test instances. These results show that for all the test 

instances, good solutions were obtained when the value of the pheromone trail parameter 𝛼 is 

0.5𝑛2 and the pheromone evaporation rate 𝜌 is either  
1

𝑛2  or  0.5𝑛3  or  𝑛3.   

Benchmark 

problem 

𝛼 = 0.5𝑛2 

𝜌 =
1

0.5𝑛2
 𝜌 =

1

𝑛2
 𝜌 = 0.5𝑛3 𝜌 = 𝑛3 

berlin52 11854, [44.518] 7860,[223.963] 7860,[231.437] 7860,[228.407] 

eil76 793,[347.141] 595,[422.226] 595,[449.623] 595,[457.698] 

krob100 42295,[5482.96] 23137,[6405.08] 23137,[6681.08] 23137,[6559.01] 

Table 4.4 : Computational time for different evaporation rate value 

 Further, Table 4.4 showed that among these three possible combinations, 𝛼 = 0.5𝑛2 and  

𝜌 =
1

𝑛2  has a better computational time than others. Note that for each combination in Table 

4.4, the value in brackets represents the computational time while the other value represents the 

best solution found for that instances.  Therefore, it can be concluded that the best parameters 

combination for the proposed algorithm are 𝛼 = 0.5𝑛2 and  𝜌 =
1

𝑛2. 

4.8 Comparative Analysis of the Proposed Algorithm Using 

Different Set of Parameter Values 

The parameter settings for the experimental runs are shown in Table 4.5. The parameter's value 

for the proposed algorithm using Dorigo’s (MACOd) is from (Dorigo, Maniezzo, & Colorni, 

1996) while the value of the parameters for the proposed algorithm (MACO) are summarised 

from Section 4.5, Section 4.6 and Section 4.7. 

Algorithm 
Parameters 

𝑚 𝛼 𝛽 𝜌 Colonies 

MACOd 𝑛 1 - 0.5 10 

MACO 0.2𝑛 0.5𝑛2 - 
1

𝑛2
 10 

Table 4.5: ACO parameters setting for the experimental runs 
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Benchmark 

problem 
 MACOd MACO 

berlin52 

Optimal solution 8257 7775 

Number of colonies 10 8 

CPU time (seconds) 3057.31 624.261 

eil76 

Optimal solution 559 567 

Number of colonies 10 10 

CPU time (seconds) 7482.93 1766.91 

krob100 

Optimal solution 24155 22842 

Number of colonies 5 9 

CPU time (seconds) 35812.3 11860.4 

Table 4.6 : Comparative results for MACO and MACOd on berlin52,eil76 and 

krob100 instances 

Based on the results presented in Table 4.6, it can be seen that: 

 For berlin52 : the MACO has better solutions quality, less number of iterations and 

better CPU time when compared to the MACOd. 

 For eil76      : although the solution quality of the M-ACO is slightly worse from the 

MACOd, the CPU time recorded for the MACO is 76% less than the 

CPU  time of the MACOd. 

 For krob100 : the MACO is more effective and efficient than the MACOd . 

4.9 Conclusion   

The ACO parameters of the MACO are chosen depending on the problem size.  This will 

significantly reduce the time spent for parameter tuning. In addition, the MACO has proved that 

these parameters value are able to achieve good solutions for the test instances with less 

computational time.   
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 Based on the computational experiments on these three datasets, it can be concluded that 

the most possible ideal combinations of parameters for the MACO are: 

 The number of ants is at most  20%  of the problem size ; 𝑚 = 0.2𝑛       

 The relative influence of the pheromone trail  is  50% of the square of the problem size ; 

𝛼 = 0.5𝑛2 

 The pheromone evaporation rate is computed as an inverse square of the problem size; 

𝜌 = 1 𝑛2⁄   

 The next chapter will review some of the factors that play an important role in the 

performance of the proposed algorithm. Thus, unless stated otherwise, the parameters in the 

subsequent investigation are set to these values.  
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Chapter 5  

 

Factors Influencing the Performance of the Proposed 

Algorithm  

This chapter discusses the implementations and factors that influence the performance of the 

proposed algorithm. The investigation will be based on computation experiments, which will be 

made on two set of benchmark problems; selected STSP and ATSP instances from the TSPLIB 

standard library.  

5.1 Introduction 

In general, the performance of an algorithm can be evaluated mainly in two aspects which are 

effectiveness and efficiency. Effectiveness may refer to the quality of the solution concerning 

the objective function value while efficiency usually relates to the computational cost required 

to run the algorithm. An algorithm is said to be efficient if its computational cost is at or below 

some reasonable amount of time on an available computer. The two most common ways to 

measure computational cost are speed and memory usage.  The speed or time complexity 

defines the amount of time needed for an algorithm to execute. Likewise, the memory usage 

describes the amount of memory required for an algorithm to execute. 

 However, in practice, there are various factors which can affect the efficiency and 

computational time of an algorithm such as the language used, type of computing hardware and 

optimisation in the compiler. To minimise the effects of such factors, few strategies have been 

implemented on the proposed algorithm including variable fixing, bound tightening, a heuristic 

approach used to construct the initial solution and a number of variables fixed in the tour 

construction phase.  

5.2  Test Instances  

The experiments were carried out on 8 STSP and 6 ATSP benchmark problems selected from 

the TSPLIB standard library. The selected benchmark problems range in size from 17 cities up 

to 323 cities. The best-known solutions for these problems were taken from the (TSPLIB, 
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2014b). A city in a benchmark problem is represented as a coordinate; therefore, the TSP cost 

matrix is calculated by the Euclidean distance as in equation 5.1 and then rounded off to the 

nearest integer. 

𝑐𝑖𝑗 = 𝑖𝑛𝑡 (√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

) 5.1 

The following measures are used in order to evaluate the performance of the proposed algorithm 

in all the subsequent tables: 

 Best-known solution - best solution given by the TSPLIB. 

 Best – best solution found by the algorithm. 

 Relative error (RE)  - indicates how close the solution is to the best-known solution and 

calculated by: 

RE =
best solution − best known solution

best known solution
× 100 5.2 

 CPU time – time, in seconds, when the best solution is found. 

5.3  Termination Criterion 

The proposed algorithm terminates when a specific number of colonies is reached. In this 

research, the number of colonies is set to be 15% of the problem size. In addition, the following 

conditions are applied when running the experiments:  

 Time limit       :  The limit on the CPU time spent solving before terminating a search 

is 150 seconds.   

 Solution limit : The limit on the number of feasible solutions found before 

terminating a search is set to 25.    

5.4  Factors Influencing the Performance of the Search Strategy 

Factors that were considered to improve the overall performance of the proposed algorithm are 

the heuristic  approach used to produce the initial solution, the bound strengthening, the  number  
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of variables fixed in the tour construction phase and the variable-fixing rules. 

5.4.1 Impact of Different Solution Approach Used in the First Colony  

In the proposed algorithm, the best solution found in the first colony is set as the upper bound 

for the objective function.  This value will be updated immediately if a better solution is found. 

Ever since the initial solution will become the upper bound for the objective function, a good 

initial solution would be an important factor for achieving good results.  

 To investigate the effect of a different approach used in the first colony to produce the 

initial solution, a simple Nearest-neighbour with 2-opt (NN2-opt) heuristic is used as a 

comparison. Table 5.1 and Table 5.2 show the comparative results conducted on 8 STSP and 6 

ATSP benchmark problems.  The best solution for each instance is detailed in bold. 

 As can be seen in Table 5.1, the MACO with NN2-opt heuristic produces better quality 

solutions than the MACO in 37.5% of the instances (3 out of 8) and finds the same best 

solutions with the MACO in 62.5% of the eight instances including berlin52, pr76, pr136, u159 

and pr226.  Further, in most of the instances, the MACO with NN2-opt heuristic demonstrates 

lower CPU time and relative error than the MACO. Also, when both heuristics found the same 

best solution, the CPU time and number of colonies for the MACO with NN2-opt are better than 

the MACO heuristic. 

          Likewise, Table 5.2 shows that the MACO with NN2-opt heuristic obtains better quality 

solutions in 66.7% of the ATSP instances (4 out of 6) while the MACO finds better quality 

solutions in 33.3% of the six instances. Also, the average relative error and CPU time for the 

MACO with NN2-opt is less than the MACO for most of the benchmark problems.  

 In general, the numerical results in Table 5.1 and Table 5.2 illustrated that the MACO 

with NN2-opt heuristic produced better quality solutions and CPU time than the MACO for 

both symmetric and asymmetric TSP benchmark problems. Hence, as expected, a different 

heuristic approach used to generate the initial solution can affect the overall performance of the 

proposed algorithm. In particular, the MACO with NN2-opt heuristic adopted in the first colony 

has produced a better initial solution and provides good upper bounds which have contributed to 

positive results on the overall performance of the proposed algorithm. 
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5.4.2 Impact of Bound Strengthening 

Another strategy executed for improving the effectiveness and efficiency of the proposed 

algorithm is to strengthen the upper bound of the objective function. Upper bounds play a 

significant role in improving the convergence rate of an algorithm by allowing the fathoming of 

nodes whose lower bound is greater than the smallest upper bound and therefore reducing the 

final size of the B&B tree. Moreover, tightening the upper bounds can significantly reduce the 

solution space due to the combinatorial nature of the problem. An upper bound on the solution 

of a given node can be obtained in several ways. In the proposed algorithm, the best-so-far 

solution is used to update the value of the upper bound. To further understand the impact of the 

upper bound on the performance of the MACO, two different values were considered for the 

upper bounds of the objective function: 

 UBI   : The best-so-far solution   

 UBII : 1.1 of the best-so-far solution 

 Table 5.3 illustrates the results of running the proposed algorithm on 8 symmetric TSP 

benchmark problems with different upper bound values imposed on the objective function. The 

experimental results showed that UBI and UBII have tremendously reduced the CPU time for 

most of the benchmark problems. As shown in Table 5.3, the UBI obtains better quality 

solutions in 25% of the instances (2 out of 8) and worse quality solutions in 37.5% of the 

instances (3 out of 8) while the UBII and ‘No Bound’ find better quality solutions in 37.5% of 

the instances (3 out of 8) and worse solutions in 12.5% of the instance (1 out of 8), respectively.

 Nevertheless, all the three conditions found the same best solution to 2 instances which 

are pr136 and u159. For pr136 instance, the ‘No Bound’ obtained the best solution with the 

minimum CPU time followed by the UBI and UBII with respectively, 26% and 75% more CPU 

time than the first condition. Contrarily, for u159 instance, the UBII found the best solution with 

the minimum CPU time while the UBI and ‘No Bound’ recorded 56% and 70% more CPU time 

than the UBII, respectively. In addition, the UBII found the optimal solutions to u159 and pr226 

instances with great CPU time. 

 On the other hand, Table 5.4 shows that for the 6 instances, the UBI finds better quality 

solution in 50% of the instances (3 out of 6) and in 16.7% of the instances (1 out of 6) for the 

UBII and ‘No Bound’, respectively. For br17 instance, all the 3 cases found the same best 

solution but the minimum CPU time is reported for the UBI. 
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 Thus, it can be concluded that having a sharp upper bound on the objective function 

reduces the CPU time while not affecting the quality of the solutions. According to the 

numerical results in Table 5.3 and Table 5.4, the ideal upper bound for the STSP is the UBII 

(1.1 times of the best-so-far solution) while the best upper bound for the ATSP is UBI (the best-

so-far solution). 

5.4.3 Number of Variables Fixed in the Tour Construction Phase  

As mentioned in Chapter 3, the number of variables fixed in the tour construction phase is 50% 

of the problem size (Case I). To investigate the impact of this value on the overall performance 

of the proposed algorithm, two more conditions were considered: 

 Case 0   : 25% of the problem size  

 Case II  : 75% of the problem size 

Table 5.5 and Table 5.6 , respectively, display the experimental results for Case 0, Case I and 

Case II on symmetric and asymmetric TSP instances. 

  As presented in Table 5.5, the benchmark problems were solved to optimality in 87.5% 

of the instances (7 out of 8) for Case 0 , in 37.5%  in relation to Case I (3 out of 8) and  in 

12.5% in relation to Case II (1 out of 8).  The average relative error recorded for Case 0 is 0.6%, 

1.61% for Case I and 27.37% for Case II. However, in spite of the solution quality, Case II 

displayed the lowest average CPU time followed by Case I and Case 0. Also, Table 5.5 shows 

that the best solutions for the two largest benchmark problems considered which are u159 and 

pr226 instances were obtained for Case 1. 

 On the other hand, the experimental results in Table 5.6 illustrate that the best solutions 

for the ATSP were found when the number of variables fixed in the tour construction phase is 

25% of the problem size. For all the instances, Case 0 found the optimal solutions in 50% of 

instances (3 out of 6) with an average relative error of 5.25%. The average relative error 

reported for Case I and Case II are 20.7% and 36.5% respectively. 

 For instance, less number of variables fixed in the tour construction phase would lead to a 

better solution quality for both symmetric and asymmetric TSP. However, if the main 

consideration is to improve the effectiveness of the proposed algorithm, Case I would be a 

better option for a good trade-off between the solution quality and CPU time. 
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5.4.4 Variable-Fixing Rules 

According to a survey by Atamturk and Savelsbergh (Atamturk & Savelsbergh, 2005), variable-

fixing procedures are used in many of linear-relaxation-based solvers. In this research, the 

variable-fixing rules are considered as an essential component of the proposed algorithm due to 

its significant influence on the algorithm computational time. Indeed, a proper implementation 

of this procedure is critical to speed up the resolution of the successive decision problems. 

 In general, the ‘fixing’ operation means that a variable gets permanently assigned to a 

constant value. However, it was not clear that the solver used in this research could detect all the 

redundancies introduced by the variable-fixing rules in the tour construction phase and thus has 

caused the high computational times. As a consequence, forcing the variable-fixing explicitly 

using the fix, drop, unfix and restore commands may eliminate those redundant constraints. By 

doing this, only the immediate relevant variables and constraints are sent to the solver. Hence, it 

helps to enhance the computational performance of the symmetric and asymmetric TSP.  

 The variable fixing-rules use for this proposed algorithm are summarised as follows: 

For any unfixed variable  𝑥𝑖𝑗 :  

(a) if  𝑖 is the initial city and 𝑥𝑖𝑗 = 1 , then: 

 i)    𝑢𝑖  can be assigned a rank of 1;   

 ii)  𝑥𝑖𝑘 can be fixed to 0 for all 𝑘 ∈ 𝑉, 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗. 

(b)  if  𝑢𝑖 ≠ 0 and  𝑢𝑗 ≠ (𝑛 − 1) then ignore the out-degree and in-degree constraints as in 

 equation 1.8 and 1.9, respectively. Thus; 

 i)    let   𝑢𝑗 = (𝑢𝑖 + 1) ;   

 ii)  let 𝑥𝑖𝑗 equal to 1 and  𝑥𝑖𝑘 to  0 for all 𝑘 ∈ 𝑉, 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗. 

5.4.4.1 An Illustrative Example  

The general procedure of the variable-fixing rules implemented in the proposed algorithm is 

shown in Figure 5.1- Figure 5.5. The straight line arrow represents  x[k, k1] = 1 while dashed 

arrow represent x[k, k1] = 0. Consider a 6-city instance with  𝑉 = {1,2,3,4,5,6} : 
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Step 1 : In Figure 5.1, if the first node selected is 𝑘 = 2 and the shortest distance from 

node 2 is to node 3; fix the position of the first node by letting 𝑢[2] = 1  and 

x[2,3] = 1. Following the rules stated in (a) ii) above, let  x[k, k1] = 0 for all 

𝑘1 ≠ 3 and 𝑘 ≠ 𝑘1. 

 

Figure 5.1: Fixing the position and out-degree arc of the first node 

Step 2(a)   :  Repeat Step 1 for 𝑘 = 3 and next(𝑘) = 1. See Figure 5.2 

 
Figure 5.2: Fixing the position and out-degree arcs of the second node 

Step 2(b) : When the position of the node considered is greater than 1, the in-degree 

constraints implies that  x[k1, k] = 0 for all 𝑘1 ≠ 2 and 𝑘 ≠ 𝑘1. See Figure 5.3. 
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Figure 5.3: Fixing the position and in-degree arcs of the second node 

Step 3 : Repeat Step 1-2 for all nodes excluding the last node. See Figure 5.4 and Figure 

5.5. 

 

Figure 5.4: The nodes position and out-degree arcs of the fixed nodes 

 

Figure 5.5: The in-degree arcs of the fixed nodes 
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5.4.4.2 Computational Results and Numerical Analysis  

Table 5.7 shows that the proposed algorithm with the variable-fixing rules obtains better quality  

solutions in 37.5% of the benchmark problems (3 out of 8) while the proposed algorithm without 

the variable-fixing rules found better quality solutions in 25% of the benchmark problems (2 out 

of 8). Although both approaches found the same best solutions for berlin52, pr136 and u159 

instances, the CPU times reported for the proposed algorithm with the variable-fixing rules is 

less than half of the CPU time reported for the other algorithm. Besides, the average CPU time 

for the proposed algorithm with the variable-fixing rules has improved by 61.6% when 

compared to the average CPU time for the proposed algorithm without the variable-fixing rules. 

 Likewise, as presented in Table 5.8, the results obtain by the proposed algorithm with the 

variable-fixing rules are more efficient and effective than the proposed algorithm without the 

variable-fixing rules. The average relative error for the proposed algorithm with the variable-

fixing rules and without variable-fixing rules are 20.7% and 24.43% respectively. In conclusion, 

in spite of the solution quality, the variable-fixing rule implemented in the proposed algorithm 

has successfully reduced the average CPU time by 86.7%.   

5.5 Conclusion  

The experimental results have shown that each factor has a different impact on the overall 

performance of the proposed algorithm. In particular, a good initial solution produced in the 

first colony leads to a better quality solution while strengthening the bounds help to reduce the 

CPU time and contributes to fast convergence. Besides, fixing a small number of nodes in the 

tour construction phase could produce better quality solutions but with higher CPU time. In 

most cases, the less number of nodes fixed could improve the effectiveness of the proposed 

algorithm while a higher number of nodes fixed could improve the efficiency of the proposed 

algorithm. Also, applying the variable-fixing rules in the tour construction phase could 

significantly improve the efficiency of the proposed algorithm.  

 Therefore, the empirical results suggest the following strategies to enhance the 

performance of the proposed algorithm for solving the TSPs: 
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 The NN2-opt heuristic will be used as a tour construction approach in the first colony of 

the proposed algorithm for both symmetric and asymmetric TSPs. 

 The ideal upper bound for the proposed algorithm are  : 

  Symmetric TSP   :  upper bound = 1.1(best-so-far solution) 

  Asymmetric TSP :  upper bound = best-so-far solution 

 A number of variables fixed in the solution construction phase are: 

 Symmetric TSP   :  50% of the problem size  

 Asymmetric TSP : 25% of the problem size. 

 Although the solver could detect all the redundancies, the experimental results 

demonstrated that it is best to remove all the possible redundancies in the algorithm which also 

helps to speed up the CPU time. 

 In the next chapter, all experiments of the proposed algorithm will be based on the above 

settings, except when indicated differently.    
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Chapter 6  

 

Experimental Results for the Proposed Algorithm 

This chapter provides a comprehensive comparison of the proposed algorithm with other 

algorithms available in the literature. Each algorithm is compared according to the types of TSP 

benchmark problems solved such as symmetric or asymmetric.   

6.1 Test Instances and Termination Criterion  

A total of 33 TSP benchmark problems consisting of 15 ATSP and 18 STSP instances are used 

to evaluate both the effectiveness and efficiency of the proposed algorithm. For the asymmetric 

TSP, the size of the instance is shown by the numerical suffix in the dataset name except for the 

problem class ‘ftv’ for which the size of instances is equal to number of cities + 1. For example, 

for ftv33, the problem size is 34 while for ftv47, the problem size is 48. 

 The terminating condition is the number of colonies (iterations). The maximum number 

of colonies for each instance is listed in Table 6.1. 

6.2 Computational Results and Numerical Analysis for the Proposed 

Algorithm Applied to the Symmetric TSP  

 Two kinds of experiments were carried out to evaluate the performance of the proposed 

algorithm (MACO).  The first experiment examines MACO’s performance on symmetric TSP 

instances using a set of ACO parameter values as suggested in Chapter 4 against a set of ACO 

parameter values recommended by (Dorigo, Maniezzo, & Colorni, 1996). For simplification, 

the latter algorithm is called MACOd. The second set of experiments compares the performance 

of the MACO with other studies in the literature applied to symmetric TSP instances. For each 

benchmark problem, the results of the MACO algorithm are reported as best, relative error 

(RE), number of colonies and CPU time. 

 In all the following tables, column ‘best-known solution’ denotes the best tour length as 

reported in the TSPLIB standard library, column ‘best’ denotes the best solution found by each 

algorithm and column ‘RE’ reveals the percentage deviation of the best solution (best) in 
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comparison to the best-known solution. The ‘-‘ sign indicates the result was not available in the 

respective study or source. Most of all, it should be noted that the comparisons are only based 

on the quality of the best solutions on comparable results. Therefore, a better algorithm is 

considered to be those whose values of best and relative error (RE) are smaller than those of the 

other algorithms. 

No Instance Max no. of colonies  No Instance Max no. of colonies 

1 eil51 8  18  pcb442 66 

2 berlin52 8  19 br17 3 

3 st70 11  20 ftv33 5 

4 eil76 11  21 ftv35 5 

5 pr76 11  22 ftv38 6 

6 kroa100 15  23 p43 6 

7 krob100 15  24 ftv44 7 

8 eil101 15  25 ftv47 7 

9 lin105 16  26 ry48p 7 

10 pr124 19  27 ft53 8 

11 pr136 20  28 ftv55 8 

12 ch150 23  29 ftv64 10 

13 u159 24  30 ftv70 11 

14 d198 30  31 ft70 11 

15 kroa200 30  32 kro124p 15 

16 pr226 34  33 ftv170 26 

17 lin318 48     

Table 6.1: Maximum number of colonies for the symmetric and asymmetric TSP instances 

Benchmark 

Problems 

Best-known 

solution 
Best RE 

No. of 

Colonies 
CPU time 

berlin52 7542 7916 4.96 6 168.656 

st70 675 683 1.19 5 94.809 

eil76 538 538 0 5 35.001 

pr76 108159 108159 0 7 698.82 

kroa100 21282 21282 0 4 344.34 

krob100 22141 22199 0.26 12 7543.09 

u159 42080 42080 0 8 7703.1 

pr226 80369 80369 0 7 33704.5 

Table 6.2: The performance of the MACO on 8 STSP instances 
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In the first experiments, the results obtained by the MACO algorithm are given in Table 6.2 and 

the results obtained by the MACOd are given in Table 6.3. Results of these experiments are 

comparatively provided in Table 6.5 where the best results are emphasised in bold. 

 Table 6.2 shows that the MACO finds the best-known solution to all benchmark problems 

except for berlin52, st70 and krob100 while the MACOd finds the optimal solution to 1 instance 

as depicted in Table 6.3. However, for berlin52, st70 and krob100, if the number of nodes fixed 

in the tour construction phase is reduced from 50% to 25% of the problem size, those instances 

were solved to optimality as shown in Table 6.4. 

Benchmark 

Problems 

Best-known 

solution 
Best RE 

No. of 

Colonies 
CPU time 

berlin52 7542 7542 0 3 20.29 

st70 675 696 3.11 3 684.33 

eil76 538 546 1.49 3 57.24 

pr76 108159 114656 6.01 3 2796.42 

kroa100 21282 22152 4.09 2 273.2 

krob100 22141 22971 3.75 3 2117.99 

u159 42080 44597 5.98 5 5567.22 

pr226 80369 81063 0.86 2 7745.59 

Table 6.3: The performance of the MACOd on 8 STSP instances 

Benchmark 

Problems 

Best-known 

solution 
Best RE 

No. of 

Colonies 
CPU time 

berlin52 7542 7542 0 2 174.48 

st70 675 675 0 3 977.90 

krob100 22141 22141 0 10 15672.6 

Table 6.4: The performance of the MACO when the variables fixed is 25%  

 of the problem size 

 Further, as can be seen in Table 6.5, for the 8 STSP benchmark problems, the MACO 

finds the optimal solutions to 5 instances while the MACOd finds the optimal solution to 1 

instance. Although the MACOd found the optimal solution for berlin52, the algorithm yields 

worse solutions for the other 7 instances. Besides, the computational results displayed in Table 

6.5 also show that the MACOd easily gets trapped in local optima thus reported less number of 

colonies and CPU time. Likewise, the relative errors of the MACOd are much higher than the 

MACO, indicating that the MACO has a better search capability than the MACOd. 
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Benchmark 

Problems 

Best-

known 

solution 

Algorithm Best RE 
No. of 

colonies 
CPU time 

berlin52 7542 
MACOd 7542 0 3 20.29 

MACO 7916 4.96 6 168.656 

st70 675 
MACOd 696 3.11 3 684.33 

MACO 683 1.19 5 94.809 

eil76 538 
MACOd 546 1.49 3 57.24 

MACO 538 0 5 35.001 

pr76 108159 
MACOd 114656 6.01 3 2796.42 

MACO 108159 0 7 698.82 

kroa100 21282 
MACOd 22152 4.09 2 273.2 

MACO 21282 0 4 344.34 

krob100 22141 
MACOd 22971 3.75 3 2117.99 

MACO 22199 0.26 12 7543.09 

u159 42080 
MACOd 44597 5.98 5 5567.22 

MACO 42080 0 8 7703.1 

pr226 80369 
MACOd  81063 0.86  2 7745.59 

MACO 80369 0 7 33704.5 

Table 6.5: Comparative experimental results 

 In the second experiments, the comparisons are made with 9 algorithms presented in the 

literature which are the RABNET-TSP (A.S.Masutti & Castro, 2009), GSA-ACS-PSO (Chen & 

Chien, 2011), GA-PSO-ACO (Deng, et al., 2012), SEE (Tuba & Jovanovic, 2013), ACO-ABC 

(Gunduz, Kiran, & Ozceylan, 2015), PSO-ACO-3Opt (Mahi, Baykan, & Kodaz, 2015), SSA 

(Wang, Lin, Zhong, & Zhang, 2016), REACSGA (Yousefikhoshbakht, Malekzadeh, & 

Sedighpour, 2016) and AEAS (Mohsen, 2016). The experimental results for these algorithms 

are shown in Table 6.6 while the comparative analysis is summarised in Table 6.7 and Figure 

6.1, respectively. 

 As can be seen in Table 6.7, the proposed algorithm has performed better than the ACO-

ABC in 75% of the instances (6 out of 8), in 66.67% in relation to the GA-PSO-ACO (8 out of 

12), in 60% of the instances in relation to RABNET-TSP (6 out of 10) and in 44.44% in relation 

to PSO-ACO-3OPT (4 out of 9). Furthermore, the proposed algorithm yielded equal solutions to 

the SEE in 27.27% of the instances (3 out of 11). Besides, although the proposed algorithm 

obtained fewer numbers of best solutions than the GSA-ACS-PSO, SSA, REACSGA and 

AEAS, the number of the optimal solutions found for all cases are more than 55%.  
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Approach 
No. of 

instances 

Optimal Solution Best Solution Worse solution Equal solution 

No. % No. %  No. % No. 

MACO 

10 

6 60.00 6 60 3 30.00 

1 10 
RABNET-TSP 2 20.00 3 30 7 70.00 

MACO 

11 

8 72.73 3 27.27 3 27.27 

5 45.45 
SEE 7 63.64 3 27.27 3 27.27 

MACO 

12 

8 66.67 8 66.67 4 33.33 

0 0 
GA-PSO-ACO 1 8.33 4 33.33 8 66.67 

MACO 

8 

5 62.5 6 75 2 25 

0 0 
ACO-ABC 0 0 2 25 6 75 

MACO 

10 

6 60 2 20 4 40 

4 40 
GSA-ACS-PSO 6 60 4 40 2 20 

MACO 

9 

6 66.67 4 44.44 3 33.33 

2 22.22 PSO-ACO-

3OPT 
4 44.44 3 33.33 4 44.44 

MACO 

15 

10 66.67 1 6.67 5 33.33 
9 60 

SSA 13 86.67 5 33.33 1 6.67 

MACO 

9 

5 55.56 0 0 4 44.44 

5 55.56 
REACSGA 8 88.89 4 44.44 0 0 

MACO 

10 

6 60 0 0 4 40 

6 60 
AEAS 10 100 4 40 0 0 

Table 6.7: The overall performance comparison of the MACO with RABNET-TSP, SEE, SSA 

ACO-ABC, GA-PSO-ACO, GSA-ACS-PSO, PSO-ACO-3OPT, REACSGA and AEAS on the 

STSP instances. 

According to Figure 6.1, the proposed MACO algorithm is better than the RABNET-TSP, GA-

PSO-ACO, ACO-ABC and PSO-ACO-3OPT. 

 In summary, the numerical results illustrated that the proposed MACO algorithm is 

competitive when compared to the other existing algorithms with accuracy more than 95% in all 

of the benchmark problems considered. On top of that, the computational results also 

demonstrated that the proposed algorithm provides good performance on large-scale instances 

in reasonable computation time. 

 



Chapter 6                                                                                                        Experimental Results 

97 

 

 

Figure 6.1: Percentage of the best solutions found by each algorithm applied to the 

STSP instances. 

6.3 Computational Results and Numerical Analysis of the Proposed 

Algorithm Applied to Asymmetric TSP  

 For this category, the comparison is made on the results obtained by the MACO and 

MACOd on 7 ATSP benchmark problems taken from the TSPLIB standard library. The results 

obtained by the MACO are displayed in Table 6.8 and the results obtained by MACOd are 

displayed in Table 6.9. Table 6.10 compares these results with the best results shown in bold. 

 As shown in Table 6.8, all the benchmark problems were solved to optimality within a 

reasonable CPU time. In contrast, only 14.3% of the benchmark problems were solved to 

optimality for the MACOd as shown in Table 6.9. 

 From the experimental results displayed in Table 6.10, for the 7 ATSP benchmark 

problems, the MACO once again outperformed the MACOd and found the optimal solutions to 
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all of the instances while the MACOd finds the optimal solution to only 1 instance. Although in 

most cases, the CPU times of the MACOd are lower than the MACO, the average relative error 

for the MACOd are higher than the MACO.  

Benchmark 

Problems 

Best-known 

solution 
Best RE 

No. of 

colonies 
CPU time 

ftv33 1286 1286 0 2 2.05 

ftv44 1613 1613 0 4 8.09 

ry48p 14422 14422 0 4 173.41 

ftv55 1608 1608 0 5 28.86 

ftv70 1950 1950 0 6 549.51 

kro124p 36230 36230  0 3 1713.42 

ftv170 2755 2755  0 3 1852.44 

Table 6.8: The performance of the MACO on ATSP instances 

Benchmark 

Problems 

Best-known 

solution 
Best RE 

No. of 

colonies 
CPU time 

ftv33 1286 1286 0 2 3.50 

ftv44 1613 1647 2.11 2 7.55 

ry48p 14422 14617 1.35 6 62.20 

ftv55 1608 1724 7.21 2 196.40 

ftv70 1950 2105 7.95 2 60.15 

kro124p 36230 38694 6.80 13 4039.7 

ftv170 2755 2915 5.81 3 390.71 

Table 6.9: The performance of the MACOd on ATSP instances 

  Further comparisons are made with 3 algorithms presented in the literature which are 

Guided Variable Neighbourhood Search (GVNS) by (Burke, Cowling, & Keuthen, 2001), 

Randomized Arbitrary Insertion (RAI) by (Brest & Zerovnik, 2005) and Improved Genetic 

Algorithm (IGA) by (Abdoun, Tajani, Abouchabaka, & Khatir, 2016) .  

 According to the experimental results in Table 6.11, Table 6.12 and Figure 6.2, the 

proposed MACO algorithm has outperformed the GVNS and IGA algorithms with respect to 

best solutions. As can be seen in Table 6.12, the proposed algorithm is more efficient when 

compared to the GVNS in 64.29% of the instances (9 out of 14),  and in 93.33% in relation to 

the IGA (14 out of 15). Additionally, the computational results of the proposed algorithm and 

the RAI show that these algorithms have a close competition with RAI produced 3 better 
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solutions than the proposed algorithm while the proposed algorithm yielded 2 better solutions 

than the RAI. Though, for all cases, the numbers of the optimal solutions found by the proposed 

algorithm are between 64% and 67%. 

Benchmark 

Problems 

Best-known 

solution 
Algorithm Best RE 

No. of 

colonies 
CPU time 

ftv33 1286 
MACOd 1286 0 2 3.5 

MACO 1286 0 2 2.05 

ftv44 1613 
MACOd 1647 2.11 2 7.55 

MACO 1613 0 5 8.09 

ry48p 14422 
MACOd 14617 1.35 6 62.2 

MACO 14422 0 5 173.41 

ftv55 1608 
MACOd 1724 7.21 2 196.4 

MACO 1608 0 3 28.86 

ftv70 1950 
MACOd 2105 7.95 2 60.15 

MACO 1950 0 6 549.51 

kro124p 36230 
MACOd 38694 6.80 13 4039.7 

MACO 36230  0 5 1713.42 

ftv170 2755 
MACOd 2915 5.81 3 390.71 

MACO 2755  0 4 1852.44 

Table 6.10: Comparative experimental results on the ATSP benchmark problems 

 

Figure 6.2: Percentage of the best solutions found by each algorithm applied to the 

ATSP instances. 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

MACO vs GVNS MACO vs RAI MACO vs IGA

64.29 

13.33 

93.33 

7.14 

20 

6.67 

B
es

t 
S

o
lu

ti
o

n
 (

%
) 

Proposed Algorithm Compared Algorithm



Chapter 6                                                                                                        Experimental Results 

100 

 

Benchmark 

problems 

Best-

known 

solution 

MACO GVNS RAI IGA  

Best RE Best RE Best RE Best RE 

br17 39 40 2.56 39 0 39 0 39 0 

ftv33 1286 1286 0 1290 0.29 1286 0 2021 57.15 

ftv35 1473 1475 0.14 1474 0.09 1473 0 2559 73.73 

ftv38 1530 1532 0.13 1536 0.37 1530 0 2786 82.09 

p43 5620 5628 0.14 5621 0.01 5620 0 5743 2.19 

ftv44 1613 1613 0 1623 0.60 1613 0 3320 105.83 

ftv47 1776 1776 0 1778 0.10 1776 0 3305 86.09 

ry48p 14422 14422 0 14462 0.28 14422 0 22268 54.40 

ft53 6905 6905 0 6913 0.12 6905 0 16032 132.18 

ftv55 1608 1608 0 1609 0.08 1608 0 3742 132.71 

ftv64 1839 1839 0 1847 0.44 1839 0 4849 163.68 

ftv70 1950 1950 0 1966 0.82 1950 0 5604 187.38 

ft70 38673 38707 0.09 38723 0.13 38850 0.47 56671 46.54 

kro124p 36230 36230  0 - - 36241 0.03 101284 179.56 

ftv170 2755 2755  0 2805 1.83 2755  0 16982 516.41 

Table 6.11: A comparison of the proposed MACO algorithm with GVNS, RAI and IGA 

according to the best solutions and relative errors. 

 

Approach 
No. of 

instances 

Optimal Solution Best Solution Worse solution Equal solution 

No. % No. % No. % No. % 

MACO 
14 

9 64.29 9 64.29 1 7.14 
0 0 

GVNS 1 7.14 1 7.14 9 64.29 

MACO 
15 

10 66.67 2 13.33 4 26.67 
9 60 

RAI 13 86.67 3 20.00 2 13.33 

MACO 
15 

10 66.67 14 93.33 1 6.67 
0 0 

IGA 1 6.67 1 6.67 14 93.33 

Table 6.12: The overall performance comparison of the proposed MACO algorithm 

with MACO, RAI, IGA and GVNS on the ATSP instances. 
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6.4 Comparison with Other Algorithms Tested with Both Symmetric 

and  Asymmetric TSP Benchmark Problems  

 In this section, the proposed algorithm is compared with other studies available in the 

literature applied to both symmetric and asymmetric TSP. The proposed algorithm was verified 

on a set of 30 benchmark problems with sizes ranging from 51 to 318 cities. Table 6.13 makes a 

comparison of the experimental results of the proposed algorithm with the ACS (Gambardella & 

Dorigo, 1996), MMAS (Stutzle & Hoos, 1997), African Buffalo Optimization (ABO) by (Odili 

& Kahar, 2016) and Improved BAT Algorithm (IBA) by (Osaba, Yang, Diaz, Lopez-Garcia, & 

Carballedo, 2016) with respect to the best solutions. Besides, the comparative analyses of these 

results are displayed in Table 6.14 and Figure 6.3. 

 

Figure 6.3: Percentage of the best solutions found by each algorithm applied to both 

STSP and ATSP 

 As can be seen in Figure 6.3, the proposed algorithm has outperformed the ACS, MMAS, 

ABO and IBA in terms of optimal solutions and best solution. In particular, according to Table 

6.14, the proposed algorithm has yielded better results than the ACS and MMAS in 42.86% of 

the instances (3 out of 7), respectively, in 66.67%  in relation to the ABO (12 out of 18), and in 

40.91% in relation to the IBA (9 out of 22). On average, the numbers of optimal solutions 

obtained by the proposed algorithm are over 57% in each case.  
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Benchmark 

Problems 

Best- 

known 

solution 

MACO ACS MMAS  ABO IBA 

Best RE Best RE Best RE Best RE Best RE 

eil51 426 432 1.41 426 0 426 0 426 0 426 0 

berlin52 7542 7916 4.96 -  -  -  -  7542 0 7542 0 

st70 675 683 1.19 -  -  -  -  676 0.15 675 0 

eil76 538 538 0 -  -  -  -  538 0 539 0.19 

pr76 108159 108159 0 -  -  -  -  108167 0.01 -  -  

kroa100 21282 21282 0 21282 0 21282 0 21311 0.14 21282 0 

krob100 22141 22199 0.26 -  -  -  -  22160 0.09 -  -  

eil101 629 629 0 -  -  -  -  640 1.75 634 0.79 

lin105 14379 14379 0 -  -  -  -  14419 0.28 -  -  

pr124 59030 59030 0 -  -  -  -  -  -  59030 0 

pr136 96772 96772 0 -  -  -  -  -  -  97547 0.8 

ch150 6528 6528 0 -  -  -  -  6532 0.06 -  -  

d198 15780 15927 0.93 15888 0.68 15963 1.16 -  -  -  -  

kroa200 29368 29368 0 -  -  -  -  29370 0.01 -  -  

lin318 42029 43296 3.01 -  -  -  -  42101 0.17 -  -  

br17 39 40 2.56 -  -  -  -  -  -  39 0 

ftv33 1286 1286 0 -  -  -  -  -  -  1286 0 

ftv35 1473 1475 0.14 -  -  -  -  -  -  1473 0 

ftv38 1530 1532 0.13 -  -  -  -  -  -  1530 0 

p43 5620 5628 0.14 -  -  -  -  5645 0.44 5620 0 

ftv44 1613 1613 0 -  -  -  -  -  -  1613 0 

ftv47 1776 1776 0 -  -  -  -  -  -  1796 1.13 

ry48p 14422 14422 0 14422 0 14422 0 14440 0.12 14422 0 

ft53 6905 6905 0 -  -  -  -  -  -  7001 1.39 

ftv55 1608 1608 0 -  -  -  -  -  -  1608 0 

ftv64 1839 1839 0 -  -  -  -  -  -  1879 2.18 

ftv70 1950 1950 0 -  -  -  -  1955 0.26 2111 8.26 

ft70 38673 38707 0.09 38781 0.28 38690 0.04 38753 0.21 39901 3.18 

kro124p 36230 36230  0 36241 0.03 36416 0.51 36275 0.12 37538 3.61 

ftv170 2755 2755  0 2774 0.69 2787 1.16 2795 1.45 -  -  

Table 6.13: A comparison of the proposed MACO algorithm with ACS, MMAS, ABO and IBA 

according to the best solutions and relative errors. 
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Approach 
No. of 

instances 

Optimal Solution Best Solution Worse solution Equal solution 

No. % No. % No. % No. % 

MACO 
7 

4 57.14 3 42.86 2 28.57 
2 28.57 

ACS 3 42.86 2 28.57 3 42.86 

MACO 
7 

4 57.14 3 42.86 2 28.57 
2 28.57 

MMAS 3 42.86 2 28.57 3 42.86 

MACO 
18 

11 61.11 12 66.67 5 27.78 
1 5.56 

ABO 3 16.67 5 27.78 12 66.67 

MACO 
22 

14 63.64 9 40.91 7 31.82 
6 27.27 

IBA 13 59.09 7 31.82 9 40.91 

Table 6.14: The overall performance comparison of the proposed MACO algorithm with 

ACS, MMAS, ABO and IBA on the STSP and ATSP instances. 

6.5 Numerical Analysis  

According to the computational results, the numerical analysis indicates the following:  

 The proposed algorithm provides good solution quality for both symmetric and 

asymmetric TSP benchmark problems with up to 442 cities. As illustrated in Figure 6.4, 

the percentage of the optimal solutions achieved by the proposed algorithm on 15 ATSP 

and 18 STSP problem instances are 67%, respectively. In particular, as shown in Table 

6.6 and Table 6.13, the average relative error for both the STSP and ATSP are below 

1% and the accuracy of the proposed algorithm is over 97% for all of the instances 

except for berlin52 where it obtained 95%. 

 In comparison to alternative algorithms considered in this research, the computational 

results show that the performance of the proposed algorithm is equal or better than most 

of these algorithms in terms of best solutions. As summarised in Figure 6.5, despite the 

types of TSP instances used to validate the effectiveness of these algorithms, the 

proposed algorithm shows better performance than the other 10 algorithms including 

RABNET-TSP, GA-PSO-ACO, ACO-ABC, SEE, PSO-ACO-3OPT, GVNS, IGA, 

ACS, ABO and IBA. Further, the proposed algorithm demonstrates an equal 
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performance with the MMS but a worse performance when compared to the GSA-ACS-

PSO, SSA, REACSGA, AEAS and RAI. However, for instances with size larger than 

100 cities, the proposed algorithm shows competitive results when compared to these 

algorithms. In particular, the proposed algorithm found better solutions than the SSA for 

lin318 and pcb442 as shown in Table 6.7. Moreover, as displayed in Table 6.11, the 

proposed algorithm shows an equal or better performance than the RAI for kro124p and 

ftv170, and have a close competition with REACSGA and AEAS for instances with 

cities between 101 and 318. 

 
 

Figure 6.4: The overall performance of the proposed algorithm on the TSP benchmark 

problems 
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Figure 6.5: The overall performance of the proposed algorithm against other algorithms 

 

 

Figure 6.6: Percentage of the optimal solutions found by each algorithm  

applied to both ATSP and STSP 
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the proposed algorithm obtained a higher number of optimal solutions than the other 

algorithms in all cases. 

 

 Figure 6.7: Percentage of the optimal solutions found by each algorithm  

applied to the ATSP instances 
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      Figure 6.8: Percentage of the optimal solutions found by each algorithm applied to 

the STSP instances 

 In term of optimal solutions, the proposed algorithm demonstrated a good performance 

with regards to other algorithms applied to the symmetric or asymmetric TSP. In 

particular, as shown in Figure 6.7, for each case, the proposed algorithm has obtained 

the optimal results in more than 64% of the ATSP instances. Likewise, the proposed 

algorithm has achieved the optimal solutions in over 55% of the STSP benchmark 

problems as displayed in Figure 6.8.  

6.6  Conclusion 

 This chapter has demonstrated that the proposed MACO algorithm is able to produce 

good quality solutions for both symmetric and asymmetric TSPs within a reasonable CPU time. 

In particular, the performance of the proposed algorithm is highly competitive with regards to 

other studies in the literature designed for solving symmetric or asymmetric TSP. The relative 

errors reported on all the benchmark problems are below 5% for symmetric TSPs and 3% for 
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asymmetric TSPs. Similarly, the results achieved by the proposed MACO algorithm are very 

good in comparison to ACS, MMAS, ABO and IBA with more than 95% accuracy. 

 Additionally, the performance of the proposed MACO algorithm is better than the 

MACOd for both symmetric and asymmetric TSP instances. This indicates an appropriate 

choice of the ACO parameters settings which enables the proposed algorithm to be used for new 

problems without the need for parameter tuning thus helping to save time and cost. 

 The following chapter will conclude all the findings, contributions and future direction of 

this research. 
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Chapter 7  

 

Conclusions  

7.1 Overview 

This research addressed two types of travelling salesman problems (TSP), the symmetric TSP 

and the asymmetric TSP. These problems can be used to model several practical problems, 

especially in scheduling and vehicle routing, thus the interest in researching how to solve them. 

Though exact methods can be used to solve these problems, it is not an alternative when the 

problem size increases, due to the exponentially increasing CPU times. Therefore, an ACO 

based algorithm was developed to solve both problems in an attempt to provide a good 

alternative to exact methods. In this chapter, a summary of scientific contributions and future 

research directions are presented. The main contribution of this thesis is the modified ACO 

algorithm with adaptive parameter settings for solving the symmetric and asymmetric TSP.  

 The first two chapters of this thesis gave an extensive review on the basic formulations of 

the TSP and solutions approaches applied to solve the TSP. This provided a complete picture of 

both TSP and ACO theoretical properties. In the following chapter, the new proposed approach 

was presented with an illustrative example. Chapter 4 suggested an adaptive setting for the ACO 

parameters used in the said approach while in Chapter 5 some factors that influence the 

performance of the proposed algorithm such as bound restriction and variable fixing were 

reviewed.  

 In Chapter 6, the proposed algorithm was compared with several algorithms in the 

literature. For the symmetric TSP, the comparisons were made with the RABNET-TSP 

(A.S.Masutti & Castro, 2009), GSA-ACS-PSO (Chen & Chien, 2011), GA-PSO-ACO (Deng, et 

al., 2012), SEE (Tuba & Jovanovic, 2013), ACO-ABC (Gunduz, Kiran, & Ozceylan, 2015), 

PSO-ACO-3Opt (Mahi, Baykan, & Kodaz, 2015), SSA (Wang, Lin, Zhong, & Zhang, 2016), 

REACSGA (Yousefikhoshbakht, Malekzadeh, & Sedighpour, 2016) and AEAS (Mohsen, 

2016). Meanwhile, for the asymmetric TSP, the comparisons were made with the GVNS 

(Burke, Cowling, & Keuthen, 2001), RAI (Brest & Zerovnik, 2005) and IGA (Abdoun, Tajani, 

Abouchabaka, & Khatir, 2016). The comparisons for both symmetric and asymmetric TSP were 

made with the ACS (Gambardella & Dorigo, 1996), MMAS (Stutzle & Hoos, 1997), ABO 
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(Odili & Kahar, 2016) and IBA (Osaba, Yang, Diaz, Lopez-Garcia, & Carballedo, 2016). The 

computational comparisons have shown that the proposed approach has produced competitive 

or better results than the other algorithms. In addition, this chapter also has proved that the 

choice of parameter setting to be used in the proposed approach has contributed to a good 

performance of the algorithm. 

7.2 Contribution 

The goal of this research is to offer an alternative approach to solve both the symmetric and 

asymmetric TSP problems with adaptive parameter settings in a reasonable CPU time. The 

technical and conceptual contributions contained in this thesis are divided into three parts and 

briefly discussed below: 

 The first part proposes a new approach to solve the symmetric and asymmetric TSP. A 

detailed review of the proposed algorithm which includes tour construction process, 

pheromone update process and enhancement process is described. In the tour 

construction process, a new formulation of the state transition rule has been proposed. 

This strategy aims at reducing the computational time by heuristically fixing part of the 

solution tour and improving the accuracy of the solutions through the usage of the 

solver. 

 Further, in the pheromone update process, a different approach has been adopted in 

which the pheromone is deposited only on the edges belonging to the colony-best 

solution and evaporated only on the edges belonging to the colony-worst solution but 

not in the colony-best solution. Moreover, to prevent a worse quality solution in the 

next colony, the colony-best solution has been used as the first ant in the following 

colony.  

 The second part suggests an adaptive parameter settings strategy of ACO parameters 

used in the proposed approach. Those parameters are the number of colonies, the 

number of ants in each colony, the relative influence of the pheromone trail 𝛼  and 

pheromone evaporation rate 𝜌. These parameters have been defined as a function of the 

problem size.  
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 The last part presents the experimental results and performance of the proposed 

algorithm. The core contributions of this chapter lie in the empirical validation of the 

effectiveness of the proposed algorithm and the ability of the adaptive parameter setting 

strategy in producing good solutions.  

 In order to provide a comprehensive validation of the algorithm, the proposed 

algorithm has been tested over a reasonable set of instances from the TSPLIB. A 

computational comparison between the results obtained using the set of parameter 

settings suggested in the literature and the ones proposed in this thesis has been 

performed, showing advantages of the proposed parameter setting. 

 Further, these experimental results have been compared to other algorithms in the 

literature and the solutions obtained were competitive with the ones obtained with 

another algorithm designed for symmetric TSP or asymmetric TSP or both. 

Nevertheless, the numbers of the optimal or best solutions found by the proposed 

algorithm were always better than the other algorithms designed for both symmetric and 

asymmetric TSP. 

 Therefore, the proposed algorithm has been a good alternative method to solve the 

TSP problems, having demonstrated a good performance over the existing heuristics. 

7.3 The Idea for Future Work 

The ‘Intelligent Ant’ strategy introduced in this thesis may be improved with a different value 

of 𝑋 depending on the phase or situation of the algorithm. For instance, the number of nodes 

fixed in the tour construction process could be changed if the gap between the colony-best 

solution and the colony-worst solution is less than a certain value to diversify the search space. 

For larger problems, which may include thousands of nodes, the number of ants in the colony 

could be reduced by setting the number of nodes to be fixed on a per ant basis. In a case of 

stagnation, the search area could be set in differently for each ant or colony.  
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