

A Metaheuristic Ant Colony Optimization Algorithm for

Symmetric and Asymmetric Traveling Salesman Problems

A thesis submitted for the degree of Doctor of Philosophy

by

Lilysuriazna Binti Raya

Department of Mathematics

Brunel University London

March 2018

i

Abstract

This research addresses solving two types of Travelling Salesman Problems (TSP) which are the

symmetric TSP (STSP) and the asymmetric TSP (ATSP). The TSP is a problem of finding a

minimal length closed tour that visits each city once. If the distances between each pair of cities

are the same in both directions, the problem is a STSP, otherwise, it is an ATSP.

 In this thesis, a new metaheuristic algorithm which is based on Ant Colony Optimization

(ACO) is proposed to solve these problems. The key idea is to enhance the ability of exploration

and exploitation by incorporating a metaheuristic approach with an exact method. A new

strategy for creating ‘Intelligent Ants’ is introduced to construct the solution tours. This strategy

aims at reducing the computational time by heuristically fixing part of the solution tour and

improving the accuracy of the solutions through the usage of a solver, specifically for large size

instances. Moreover, this proposed algorithm employs new ways of depositing and evaporating

pheromone. A different approach of global updating of pheromone is proposed in which the

pheromone is deposited only on the edges belonging to the colony-best ant and evaporated only

on the edges belonging to the colony-worst ant that are not in the colony-best ant.

 Additionally, the parameters of the proposed algorithm which include the number of

colonies, the number of ants in each colony, the relative influence of the pheromone trail 𝛼 and

the pheromone evaporation rate 𝜌 are expressed as a function of the problem size. Comparisons

with other sets of parameter values suggested in the literature have been investigated which

illustrate the advantages of the choice of the proposed parameter settings.

 Further, in order to evaluate the performance of the proposed algorithm, a set of standard

benchmark problems from the TSPLIB with up to 442 cities were solved and the results

obtained were compared with other approaches from the literature. The proposed algorithm has

proven to be competitive and shows better performance in 63% of the 16 algorithms in terms of

solution quality and obtained the optimum solutions in 70% of the 33 instances, proving that it

is a good alternative approach to solve these hard combinatorial optimisation problems.

ii

Acknowledgements

“In the name of Allah, the Most Gracious and the Most Merciful”

 Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this

thesis.

 Firstly, I would like to express my sincere appreciation and gratitude to my supervisor Dr

Cormac A. Lucas for his guidance, useful advice, and encouragement. His invaluable help of

constructive comments and suggestions throughout the experimental and thesis works have

contributed to the success of this research. Not forgetting Dr Paresh Date and Dr Diana Roman

for their insightful feedback and suggestions to widen the research perspectives.

 I am also deeply thankful to the Brunel Graduate School for their support and help

towards my postgraduate affairs. My acknowledgement also goes to all the technicians and

office staffs of Department of Mathematics, Brunel University London especially to Mr Nalin

Soni for their co-operation.

 I wish to express my unqualified thanks to my parents, Hj Raya Bin Hj Yunus and Hjh

Noorizan Binti Mohd Saad for their tremendous encouragements and prayers that always guided

me to the right way. I could never have accomplished this dissertation without your love,

support and understanding. To my brother, sister and other family members: thank you for your

eternal love and support.

 Sincere thanks to my beloved friends who have been my cheerleaders! Your kind words

and encouragement have carried me through this journey and your hugs have kept me sane.

 Last but not least, special appreciation and gratefulness to my home country, Malaysia

and Majlis Amanah Rakyat (MARA) for the financial support throughout my PhD studies.

 Thank you so much!

iii

Declaration

I, Lilysuriazna Binti Raya, here declare that the work presented in his thesis was carried out by

myself at Brunel University London except where references are cited, and no part of this work

has been previously submitted to Brunel University London, nor any other academic institution,

for admission to a higher degree.

Lilysuriazna Binti Raya

March 2018

iv

List of Figures

Figure 1.1: Illustrative example of DFJ subtour elimination constraints 7

Figure 1.2: Illustration of the nearest-neighbour selection ... 16

Figure 1.3: Illustration of the cheapest-insertion heuristic .. 17

Figure 1.4: Illustration of the farthest-insertion heuristic ... 18

Figure 1.5: Illustration of the 2-opt move ... 20

Figure 1.6: Illustration of the 3-opt interchange ... 21

Figure 1.7: Basic principle of ACO metaheuristic (Blum C. , 2005) .. 32

Figure 1.8: Pseudo-code of the ACO metaheuristic.. 34

Figure 2.1: Double Bridge Experiments ... 46

Figure 3.1: Partial solution route constructed in the tour construction phase 57

Figure 3.2: A closed solution tour constructed following the IA procedure 57

Figure 5.1: Fixing the position and out-degree arc of the first node ... 85

Figure 5.2: Fixing the position and out-degree arcs of the second node 85

Figure 5.3: Fixing the position and in-degree arcs of the second node 86

Figure 5.4: The nodes position and out-degree arcs of the fixed nodes 86

Figure 5.5: The in-degree arcs of the fixed nodes ... 86

Figure 6.1: Percentage of the best solutions found by each algorithm applied to the STSP

instances. .. 97

Figure 6.2: Percentage of the best solutions found by each algorithm applied to the ATSP

instances. .. 99

Figure 6.3: Percentage of the best solutions found by each algorithm applied to both STSP and

ATSP .. 101

Figure 6.4: The overall performance of the proposed algorithm on the TSP benchmark problems

 .. 104

Figure 6.5: The overall performance of the proposed algorithm against other algorithms 105

Figure 6.6: Percentage of the optimal solutions found by each algorithm 105

Figure 6.7: Percentage of the optimal solutions found by each algorithm 106

Figure 6.8: Percentage of the optimal solutions found by each algorithm applied to the STSP

instances ... 107

v

List of Tables

Table 3.1: List of solution tours of ulysses16 in the first colony ... 62

Table 3.2: List of solution tours of ulysses16 in the second colony .. 64

Table 4.1: Best solutions found for a different number of ants.. 70

Table 4.2: Best solutions found for different value of the relative importance of pheromone

trail parameter 𝛼 ... 71

Table 4.3 : Different evaporation rate value when 𝛼 = 𝑛2 and 𝛼 = 0.5𝑛2 72

Table 4.4 : Computational time for different evaporation rate value .. 73

Table 4.5: ACO parameters setting for the experimental runs ... 73

Table 4.6: Comparative results for MACO and MACOd on berlin52,eil76 and krob100

instances ... 74

Table 5.1: Effect of different heuristics applied in the first colony on STSP benchmark

problems ... 78

Table 5.2: Effect of different heuristics applied in the first colony on ATSP benchmark

problems ... 78

Table 5.3: STSP: Impact of different upper bound values on the efficiency of the proposed

algorithm .. 81

Table 5.4: ATSP: Impact of different upper bound values on the efficiency of the proposed

algorithm .. 81

Table 5.5: STSP: Variants percentage of variables fixed .. 83

Table 5.6: ATSP: Variants percentage of variables fixed .. 83

Table 5.7: STSP: Impact of variable-fixing procedure on the performance of the proposed

algorithm .. 87

Table 5.8: ATSP: Impact of variable-fixing procedure on the performance of the proposed

algorithm .. 87

Table 6.1: Maximum number of colonies for the symmetric and asymmetric TSP instances . 91

Table 6.2: The performance of the MACO on 8 STSP instances .. 91

Table 6.3: The performance of the MACOd on 8 STSP instances .. 92

Table 6.4: The performance of the MACO when the variables fixed is 25% 92

Table 6.5: Comparative experimental results... 93

Table 6.6: A comparison of the proposed MACO algorithm with RABNET-TSP, GSA-ACS-

PSO, GA-PSO-ACO, SEE, ACO-ABC, PSO-ACO-3OPT, SSA, REACSGA and

AEAS according to the best solutions and relative errors. 94

file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660332
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660332
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660333
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660333
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660334
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660334
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660335
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660335
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660336
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660337
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660338
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660338
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660339
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660339
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660345
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660345
file:///C:/Users/User/Desktop/TSP/Weekly%20Progress%20Results/Work%20To%20Date%20Report/tEMPLATE/RAYA%20Lilysuriazna__PhD%20Thesis__Final%20DRAFT.docx%23_Toc509660345

vi

Table 6.7: The overall performance comparison of the MACO with RABNET-TSP, SEE, SSA

ACO-ABC, GA-PSO-ACO, GSA-ACS-PSO, PSO-ACO-3OPT, REACSGA and

AEAS on the STSP instances. .. 96

Table 6.8: The performance of the MACO on ATSP instances ... 98

Table 6.9: The performance of the MACOd on ATSP instances ... 98

Table 6.10: Comparative experimental results on the ATSP benchmark problems 99

Table 6.11: A comparison of the proposed MACO algorithm with GVNS, RAI and IGA

according to the best solutions and relative errors. .. 100

Table 6.12: The overall performance comparison of the proposed MACO algorithm with

MACO, RAI, IGA and GVNS on the ATSP instances. 100

Table 6.13: A comparison of the proposed MACO algorithm with ACS, MMAS, ABO and IBA

according to the best solutions and relative errors. .. 102

Table 6.14: The overall performance comparison of the proposed MACO algorithm with ACS,

MMAS, ABO and IBA on the STSP and ATSP instances. 103

vii

List of Algorithms

Algorithm 1.1: Ant Colony Optimization .. 34

viii

Acronyms

ABC Artificial Bee Colony

ABO African Buffalo Optimization

ACO Ant Colony Optimization

ACS Ant Colony System

AEAS Annealing Elitist Ant System

AS Ant System

ATSP Asymmetric Traveling Salesman Problem

B&B Branch-and-bound

B&C Branch-and-cut

BA Bat Algorithm

BCO Bee Colony Optimization

BWAS Best-Worst Ant System

COP Combinatorial Optimization Problem

EAS Elitist Ant System

FLC Fuzzy Logic Controller

GA Genetic Algorithm

GVNS Guided Variable Neighbourhood Search

IA Intelligent Ants

IBA Improved Bat Algorithm

IGA Improved Genetic Algorithm

IP Integer Programming

LP Linear Programming

ix

MACO Modified Ant Colony Optimization (The Proposed Algorithm)

MACOd Modified Ant Colony Optimization using Dorigo’s Parameter Value

MIP Mixed Integer Programming

MMAS Max-Min Ant System

mTSP Multiple Traveling Salesman Problem

NN Nearest-neighbour

NN2-opt Nearest-neighbour with 2-opt

PS-ACO Particle Swarm-Ant Colony Optimization

PSO Particle Swarm Optimization

RAI Randomized Arbitrary Insertion

R-AS Rank-based Ant System

SA Simulated Annealing

SEE Pheromone Correction Strategy

SI Swarm Intelligence

SOQ Sequential Ordering Problem

SSA Swarm Simulated Annealing

STSP Symmetric Traveling Salesman Problem

TS Tabu Search

TSP Traveling Salesman Problem

x

Contents

Abstract…………………………………………………………………………………i

Acknowledgements .. ii

Declaration ……………………………………………………………………………iii

List of Figures ... iv

List of Tables …………………………………………………………………………..v

List of Algorithms ... vii

Acronyms…………………………………………………………………………..viii

Contents……………………………………………………………………………….x

Chapter 1 Introduction .. 1

 Classification of the Travelling Salesman Problem.. 3 1.1

1.1.1 Asymmetric Traveling Salesman Problem…………………………3

1.1.2 Symmetric Traveling Salesman Problem……………………………4

1.1.1.1 A Euclidean TSP ... 5

1.1.3 The Multi Traveling Salesman Problem…………………………..5

1.2 Different Formulations of the TSP ... 6

1.2.1 The Dantzig-Fulkerson-Johnson Formulation………………………6

1.2.2 The Miller-Tucker-Zemlin Formulation……………………………8

1.2.3 The Gavish and Graves Formulation………………………………..8

1.2.4 The Claus Formulations……………………………………………..9

1.3 Solution Methods to the Travelling Salesman Problem 10

1.3.1 Exact Algorithms…………………………………………………10

1.3.1.1 Brute-force Method ... 10

1.3.1.2 Branch-and-bound ... 11

1.3.1.3 Cutting Plane ... 13

1.3.1.4 Branch-and-cut……………………………………………13

1.3.1.5 Other Approaches………………………………………….14

1.3.2 Heuristic Algorithms……………………………………………..14

1.3.2.1 Constructive Heuristics.. 15

1.3.2.1.1 Nearest-neighbour .. 16

xi

1.3.2.1.2 Insertion Heuristic .. 16

1.3.2.2 Improvement Heuristics .. 19

1.3.2.2.1 2-opt ... 19

1.3.2.2.2 3-opt ... 21

1.3.3 Metaheuristics……………………………………………………..21

1.3.3.1 Local Search Based Metaheuristics 23

1.3.3.1.1 Simulated Annealing .. 23

1.3.3.1.2 Tabu Search ... 25

1.3.3.1.3 Variable Neighbourhood Search 26

1.3.3.1.4 Reactive Bone Algorithm 27

1.3.3.2 Population-Based Metaheuristics .. 28

1.3.3.2.1 Genetic Algorithms .. 28

1.3.3.2.2 Particle Swarm Optimization 29

1.3.3.2.3 Bat Algorithm .. 30

1.3.3.2.4 Other Population-Based Metaheuristics

Approaches .. 31

1.3.3.2.5 Ant Colony Optimization 32

1.3.3.3 Hybrid Metaheuristics ... 34

1.3.4 Other Approaches…………………………………………………..35

1.4 Survey on the Traveling Salesman Problems Solution Methods.................... 36

1.5 Overview of the Research ... 41

1.6 Outline of the Thesis ... 42

Chapter 2 Ant Colony Optimization .. 44

2.1 Ant Colony Optimization Metaheuristics ... 44

2.2 Foraging Behaviour of Real Ants ... 45

2.3 The Design of Artificial Ants ... 47

2.4 Ant System ... 47

2.5 Elitist Ant System ... 49

2.6 The Rank-based Ant System .. 50

2.7 The MAX-MIN Ant System ... 50

2.8 The Ant Colony System ... 51

xii

2.9 Summary ... 52

Chapter 3 Proposed Modified ACO Algorithm for Symmetric and Asymmetric

TSP .. 53

3.1 Introduction... 53

3.2 Algorithm Notations ... 54

3.2.1 Initialization………………………………………………………55

3.2.2 Tour Construction…………………………………………………55

3.2.2.1 Intelligent Ants Strategy .. 56

3.2.2.1.1 An Illustrative Example 56

3.2.2.2 Local Search Strategy57

3.2.3 Pheromone Update………………………………………………….58

3.3 Design of the Proposed Algorithm ... 59

3.3.1 Algorithm…………………………………………………………60

3.3.2 An Illustrative Example…………………………………………..61

3.4 Conclusion .. 65

Chapter 4 The ACO and its Parameters .. 66

4.1 Introduction... 66

4.2 Experimental Settings ... 67

4.3 Parameter Tuning for the ACO Algorithm ... 67

4.4 Parameter Tuning for the Proposed Algorithm .. 69

4.5 The Number of Ants in a Colony ... 70

4.6 Relative Influence of Pheromone Trail 𝜶 and Relative Influence of Heuristic

Information 𝜷 .. 71

4.7 Evaporation Rate .. 72

4.8 Comparative Analysis of the Proposed Algorithm Using Different Set of

Parameter Values .. 73

4.9 Conclusion .. 74

Chapter 5 Factors Influencing the Performance of the Proposed Algorithm 76

5.1 Introduction... 76

5.2 Test Instances.. 76

5.3 Termination Criterion ... 77

5.4 Factors Influencing the Performance of the Search Strategy 77

5.4.1 Impact of Different Solution Approach Used in the First Colony…79

xiii

5.4.2 Impact of Bound Strengthening…………………………………..80

5.4.3 Number of Variables Fixed in the Tour Construction Phase……..82

5.4.4 Variable-Fixing Rules…………………………………………….84

5.4.4.1 An Illustrative Example ... 84

5.4.4.2 Computational Results and Numerical Analysis 88

5.5 Conclusion .. 88

Chapter 6 Experimental Results for the Proposed Algorithm 90

6.1 Test Instances and Termination Criterion... 90

6.2 Computational Results and Numerical Analysis for the Proposed Algorithm

Applied to the Symmetric TSP ... 90

6.3 Computational Results and Numerical Analysis of the Proposed Algorithm

Applied to Asymmetric TSP ... 97

6.4 Comparison with Other Algorithms Tested with Both Symmetric and

Asymmetric TSP Benchmark Problems ... 101

6.5 Numerical Analysis .. 103

6.6 Conclusion .. 107

Chapter 7 Conclusions ... 109

7.1 Overview... 109

7.2 Contribution .. 110

7.3 The Idea for Future Work ... 111

References………………………………………………………………………….112

1

Chapter 1

Introduction

An optimization problem is defined by a set of decision variables, an objective function and a

possible set of constraints. It is a process of minimizing or maximizing the objective function

by finding values of the decision variables that satisfy the set of constraints. Let 𝑓 be an

objective function, 𝑋 a feasible set and ℝ a solution space. The optimization problem is

formulated as:

max/min {𝑓(𝑥)|𝑥 ∈ 𝑋, 𝑋 ⊆ ℝ} 1.1

If 𝑥 ∈ 𝑋 then 𝑥 is called a feasible solution. Otherwise, 𝑥 is an infeasible solution. In general,

optimization models are classified according to characteristics of the decision variables,

constraints or objective function. If the classification is based on the nature of the equations

for the objective function and the constraints, the optimization problem is classified as linear

or nonlinear problems. On the other hand, if the classification is based on types of variables,

the optimization problems are classified as continuous optimization or discrete optimization

problems. Further, if the solution space is discrete, then the problem is a combinatorial

optimization problem (COP). The COPs are easy to state but difficult to solve (Osman &

Kelly, 1996). Additionally, many COPs can be formulated as mathematical programming

problems.

 Meanwhile, the optimization problem is a linear programming problem (LP) if the

objective function is a linear function in the form of (Dantzig, 1963):

𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 1.2

for some 𝑐𝑖 ∈ ℝ , 𝑖 = 1, … , 𝑛. Besides, the feasible region is the solution set to a finite

number of linear inequality or equality constraints associated with some linear combination of

the decision variables in the form:

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 {
≤
=
≥

} 𝑏 1.3

Chapter 1 Introduction

2

In other words, a feasible solution is a solution for which all the constraints are satisfied while

the feasible region is the set containing all these feasible solutions.

 Mathematically, these linear programming models can be defined as a method of

finding the maximum or minimum value of the objective function satisfying a set of linear

constraints. In particular, it is a process of finding the values of decision variables 𝑥𝑗 that

maximize or minimize the objective function. It can be written as follows:

max/min ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

1.4

subject to

∑ 𝑎𝑖𝑗𝑥𝑗 {
≤
=
≥

} 𝑏𝑖 𝑖 = 1, … , 𝑚

𝑛

𝑗=1

1.5

𝑥𝑗 ≥ 0 𝑗 = 1, … , 𝑛 1.6

where 𝑐𝑗, 𝑎𝑖𝑗 and 𝑏𝑖 are constants.

 Since the decision variables that satisfy all the linear constraints of the problem are

called a feasible solution, then 𝑥 is a feasible solution if 𝑥 ∈ 𝑋 . Otherwise, 𝑥 is an infeasible

solution.

 Furthermore, if some or all of the variables in 1.6 are restricted to integer values, then,

the LP is an integer programming (IP). Three types of IP models are:

 Pure integer programming : if all the variables are integers.

 Mixed integer programming : if only some of the variables are restricted to be integer

values.

 Binary integer programming : all the variables are binary (restricted to the values of 0

or 1).

Hence, if there are no integer variables, then it is an LP, if no continuous variables are

present, then it is a pure IP, and if both integer and continuous variables are present, then it is

a mixed integer programming (Kolman & Beck, 1995).

Chapter 1 Introduction

3

 An example of a widely studied combinatorial optimization problem is the Traveling

Salesman Problem (TSP). This research is aimed on finding the optimal solution or an

approximate solution to two types of TSPs. In the next section, there are definitions,

classifications, and formulations for the TSPs.

 Classification of the Travelling Salesman Problem 1.1

The TSP is defined by having a set of cities where the distances between each city pair is

known. The problem is to plan a route that visits each city once and ends where it starts.

 The simplicity of its formulation has led to numerous remarkable applications in many

areas such as vehicle routing (Bektas, 2006), data transmission in a computer network (Ali &

Kamoun, 1993), scheduling (Bigras, Gamache, & Savard, 2008) and (Baez, Angel-Bello, &

Alvarez, 2016), air traffic management (Furini, Persiani, & Toth, 2016), printed-circuit-

boards manufacturing (Fujimura, Fujiwaki, Kwaw, & Tokataka, 2001) , robot navigation

(Barral, Perrin, Dombre, & Liegeois, 1999) and data partitioning (Cheng, Lee, & Wong,

2002). In these instances, the main goal is to find the optimal tour when the cost or distance

between each location is known. In brief, it is a process of determining an order of how each

location is visited once and the total cost incurred or the total distance travelled is a minimum.

 The general form of the TSP was first studied by mathematicians starting in the 1920’s

in Vienna, notably by Karl Menger (Applegate, Bixby, Chvatal, & Cook, 1998). The TSP

then was studied by Princeton’s mathematical community during the 1930’s. In the 1940’s,

Merrill Flood publicised the name TSP within the mathematical community on mass (Lawler,

Lenstra, Kan, & Shmoys, 1985).

 The TSP can be classified into different classes according to the properties of the cost

matrix or the type of graph. The common classification of TSP is symmetric TSP (STSP),

asymmetric TSP (ATSP), and mult TSP (mTSP).

1.1.1 Asymmetric Traveling Salesman Problem

The asymmetric TSP is defined as the problem of finding a minimal length closed tour that

visits each city once. The distances between each pair of cities are not necessarily the same in

both directions. In general, paths may not even exist in both directions.

Chapter 1 Introduction

4

 Consider a graph 𝐺 = (𝑉, 𝐸) , where 𝑉 = {𝑣1, … , 𝑣𝑛} is a set of 𝑛 cities, and 𝐸 =

{(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉} is the set of arcs. Let 𝑥𝑖𝑗 be a decision variable and 𝐶 = (𝑐𝑖𝑗) is a cost matrix

associated with edge (𝑖, 𝑗) ∈ 𝐸. The formulation of the asymmetric TSP can be stated as

follows (Punnen, 2007):

minimize ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝐸
𝑖≠𝑗

1.7

subject to

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1 𝑗 = 1, … , 𝑛
1.8

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1 𝑖 = 1, … , 𝑛
1.9

+ subtour elimination constraints, 1.10

𝑥𝑖𝑗 = 0 or 1, (𝑖, 𝑗) ∈ 𝐸 1.11

 Constraints 1.8 and 1.9 are the in-degree and out-degree for each vertex, which ensures

that each vertex leaves and enters each node exactly once; constraints 1.10 ensure that the

tour is connected with no subtour while constraints 1.11 is the integrality constraint.

1.1.2 Symmetric Traveling Salesman Problem

The symmetric TSP is a particular case of the asymmetric TSP (Punnen, 2007) . The

symmetric TSP implies that the distance between two cities is the same in each direction.

Additionally, this symmetry halves the number of feasible solutions.

 Consider the graph 𝐺 = (𝑉, 𝐸) defined previously in Section 1.1.1. The formulation of

the symmetric TSP is given by (Punnen, 2007):

minimize ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝐸
𝑖<𝑗

1.12

subject to

Chapter 1 Introduction

5

∑ 𝑥𝑖𝑘

𝑖<𝑘

+ ∑ 𝑥𝑘𝑗

𝑗>𝑘

= 2 𝑖, 𝑗, 𝑘 = 1, … , 𝑛
1.13

+ subtour elimination constraints, 1.14

𝑥𝑖𝑗 = 0 or 1, 𝑖, 𝑗 ∈ 𝐸 1.15

Constraints 1.13 are referred to as degree constraints, enforcing that the tour uses

exactly two of the edges incident on each node; constraints 1.14 and 1.15 are subtour

elimination constraints and integrality constraints,respectively.

If the distances 𝑐𝑖𝑗 satisfy the triangle inequality 𝑐𝑖𝑗 + 𝑐𝑗𝑘 ≥ 𝑐𝑖𝑘 for all distinct cities

𝑖, 𝑗, 𝑘 then, the symmetric TSP is a metric TSP. The triangle inequality ensures that a direct

path between two vertices is at least as short as any indirect path. If the distances 𝑐𝑖𝑗 satisfies

the Euclidean norm and obeys the triangle inequality, then the metric TSP is a Euclidean TSP.

1.1.1.1 A Euclidean TSP

An instance of a Euclidean TSP is a complete graph 𝐺 with its vertices in a Euclidean space.

The distance of any two vertices 𝑣𝑖 = (𝑥𝑖 , 𝑦𝑖) and 𝑣𝑗 = (𝑥𝑗, 𝑦𝑗) in a Euclidean TSP is given

by 𝑑(𝑣𝑖, 𝑣𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
. In other words, the cost is the length of the straight

line between the two points.

1.1.3 The Multi Traveling Salesman Problem

The Multi Traveling Salesman Problem (mTSP) is a generalization of the TSP which consists

of a set of 𝑛 nodes (cities) and a set of 𝑚 salesmen located at a single depot node. The

remaining cities that are to be visited are called intermediate nodes. Therefore, it is a problem

of determining a set of routes for 𝑚 salesmen who start and end at the depot or home city

such that each intermediate node is visited exactly once and the total cost of visiting all nodes

is minimized (Bektas, 2006). Note that the cost metric can be defined in terms of distance,

time, etc. Some possible variations of the problem are:

 Single depot : In the single depot case, all salesman start from and end their tours at a

single central depot.

Chapter 1 Introduction

6

 Multiple depots: In the multiple depot cases with a number of salesmen located at

each, the final destination of the salesman can either be their original depot or any

depot with the restriction that, at each depot, the initial number of the salesman

remains the same after all the travel.

 Number of salesmen: The number of salesman appearing in the problem may be a

bounded variable or fixed a priori.

 Fixed charges: If the number of salesman in the problem is a bounded variable, the

usage of each salesman in the solution usually has an associated fixed cost. In this

case, the minimization of this bounded variable may also be of concern.

 Time windows: Certain cities need to be visited in specific time periods, named as

time windows. This extension of the mTSP is referred to as mTSP with Time

Windows (mTSPTW).

 Other restrictions: These additional constraints may consist of bounds on the number

of nodes each salesman visits, the maximum or minimum distance or travelling

duration a salesman travels or other special restrictions.

1.2 Different Formulations of the TSP

The standard formulation for the TSP was suggested by Dantzig, Fulkerson and Johnson

(G.B.Dantzig, Fulkerson, & Johnson, 1954) in 1954. Dantzig, Fulkerson and Johnson

formulated the problem as a zero-one linear program involving 𝑂(𝑛2) variables and 𝑂(2𝑛)

linear constraints (Padberg & Sung, 1991). Since their formulation has an exponentially large

number of constraints, many researchers have proposed alternative formulations of the TSP

that involve only a polynomial number of constraints. For the sake of brevity, only three are

mentioned here which are Miller, Tucker and Zemlin (Miller, Tucker, & Zemlin, 1960),

Gavish and Graves (Gavish & Graves, 1978) and Claus (Claus, 1984).

1.2.1 The Dantzig-Fulkerson-Johnson Formulation

The Dantzig-Fulkerson-Johnson (DFJ) formulation associates a binary variable 𝑥𝑖𝑗 with each

edge (𝑖, 𝑗) which is equal to 1 if and only if the edge appears in the optimal tour. They have

Chapter 1 Introduction

7

formulated the subtour elimination constraints 1.10 and 1.14 as follows (G.B.Dantzig,

Fulkerson, & Johnson, 1954):

∑ 𝑥𝑖𝑗 ≤ |𝑆| − 1 ∀ 𝑆 ⊂ 𝑉
𝑖,𝑗∈𝑆

, 𝑆 ≠ ∅
1.16

 The subtour elimination constraints 1.16 are derived based on the fact that the number

of nodes for every tour or subtour must be equal to the number of arcs. Thus, to form a tour

without forming a subtour, for every subset that consists of 2 or 𝑛 − 1 cities , the number of

arcs must be less than the number of cities, where 𝑆 is a nonempty proper subset of all nodes

𝑉, and |𝑆| is the number of cities in 𝑆. Otherwise, constraints 1.16 are violated since its left-

hand side value would be equal to |𝑆| and its right-hand side value equal to |𝑆| − 1.

Moreover, constraints 1.16 are only valid for 2 ≤ |𝑆| ≤ 𝑛 − 2 due to constraints 1.8,1.9 and

1.13.

Figure 1.1: Illustrative example of DFJ subtour elimination constraints

 Consider the subtour 1 → 2 → 4 → 1 in Figure 1.1 with 𝑉 = {1,2,3,4,5,6} and

𝑆 = {1,2,4}. This subtour could not be satisfied since ∑ 𝑥𝑖𝑗 ≰ |𝑆| − 1𝑖,𝑗∈𝑆 , that is

∑ 𝑥𝑖𝑗 = 𝑥12 + 𝑥24 + 𝑥41 = 3 𝑖,𝑗∈𝑆 and |𝑆| − 1 = 2

Thus the corresponding constraints 1.16 would be violated.

Likewise, the subtour 3 → 6 → 5 → 3 in Figure 1.1 with 𝑆 = {3,5,6} would also violate

constraints 1.16 since

∑ 𝑥𝑖𝑗 = 𝑥36 + 𝑥65 + 𝑥53 = 3 𝑖,𝑗∈𝑆 and |𝑆| − 1 = 2.

1

2

4

3

5

6

Chapter 1 Introduction

8

1.2.2 The Miller-Tucker-Zemlin Formulation

Alternatively, Miller, Tucker and Zemlin (MTZ) proposed another formulation for a more

general TSP using a polynomial number of subtour elimination constraints by introducing

additional continuous variables 𝑢𝑖 namely node potentials. The MTZ subtour elimination

constraints for 1.10 and 1.14 are then stated as (Miller, Tucker, & Zemlin, 1960) :

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1 ∀𝑖 ≠ 𝑗 = 2, … , 𝑛 1.17

The subtour elimination constraints 1.17 indicate the order of the corresponding node in the

tour. The formulation involves 𝑂(𝑛2) variables and 𝑂(𝑛2) constraints (Oncan, Altinel, &

Laporte, 2009).

 The indices 𝑢𝑖 represent the position of node 𝑖 ≥ 2 in the tour assuming that the tour

starts at node 1. Hence, node 1 has position 1. The constraints defining node potential prevent

subtours by providing a simple contradiction upon surrogating the last set of constraints in

1.17 over nodes in any subtour that does not involve the node 1.

 For example, consider the subtour 3 → 6 → 5 → 3 in Figure 1.1 with 𝑥36 = 𝑥65 =

𝑥53 = 1 and 𝑢3 = 1, 𝑢6 = 2 and 𝑢5 = 3. From constraints 1.17, three corresponding

constraints are:

𝑢3 − 𝑢6 + 6𝑥36 = 1 − 2 + 6(1) = 5 ≤ 5 (satisfied)

𝑢6 − 𝑢5 + 6𝑥65 = 2 − 3 + 6(1) = 5 ≤ 5 (satisfied)

𝑢5 − 𝑢3 + 6𝑥53 = 3 − 1 + 6(1) = 8 > 5 (violated)

 It can be seen clearly that the subtour violates the last constraint.

1.2.3 The Gavish and Graves Formulation

In 1978, Gavish and Graves (G&G) proposed a single commodity flow problem that extends

the MTZ formulation of TSP. Both MTZ and G&G use the same number of variables but

differ in their constraints set. Imagine that the salesman carries 𝑛 − 1 units of commodity

when he leaves node 1, and delivers 1 unit of this commodity to each other node. Let the 𝑥𝑖𝑗

be defined as in DFJ, G&G uses additional flow variables 𝑦𝑖𝑗 indicating the amount of flow

Chapter 1 Introduction

9

on arc (𝑖, 𝑗). The G&G formulation of the subtour elimination constraints are stated as

(Gavish & Graves, 1978):

∑ 𝑦𝑖𝑗 − ∑ 𝑦𝑗𝑖 = 1

𝑛

𝑗=2
𝑗≠𝑖

𝑛

𝑗=1
𝑗≠𝑖

 𝑖 = 2, … , 𝑛
1.18

0 ≤ 𝑦𝑖𝑗 ≤ (𝑛 − 1)𝑥𝑖𝑗 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖 1.19

𝑥𝑖𝑗 = 0 or 1, 𝑖, 𝑗 ∈ 𝐸 1.20

For fixed values of the variables 𝑥𝑖𝑗 , the two sets of constraints 1.18 and 1.19 yield a

network flow problem in which the variables 𝑦𝑖𝑗 take integer values. Constraints 1.18

guarantee that each client receives one unit of flow; constraints 1.19 ensure that the flow on

each arc leaving the nodes does not exceed a specified capacity. The G&G formulation has

𝑂(𝑛2) variables and 𝑂(𝑛2) constraints (Oncan, Altinel, & Laporte, 2009) .

1.2.4 The Claus Formulations

Moreover, Claus presented a multi-commodity flow formulation with 𝑛 − 1 commodities, 1

unit of each for each customer. This formulation introduces non-negative continuous

variables 𝑤𝑖𝑗
𝑘 representing the amount of the 𝑘th commodity passing directly from node 𝑖 to

node 𝑗. The formulation is as follows (Claus, 1984):

∑ 𝑤𝑖𝑗
𝑘 − ∑ 𝑤𝑗𝑖

𝑘 = 0

𝑛

𝑖=2

𝑛

𝑖=1

 𝑗, 𝑘 = 2, … , 𝑛 , 𝑗 ≠ 𝑘
1.21

∑ 𝑤1𝑖
𝑘 = 1

𝑛

𝑖=2

 𝑘 = 2, … , 𝑛 1.22

∑ 𝑤𝑖𝑘
𝑘

𝑛

𝑖=1

= 1 𝑘 = 2, … , 𝑛 1.23

0 ≤ 𝑤𝑖𝑗
𝑘 ≤ 𝑥𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛; 𝑖 ≠ 𝑗; 𝑘 = 2, … , 𝑛 1.24

Chapter 1 Introduction

10

 𝑥𝑖𝑗 = 0 or 1, 𝑖, 𝑗 ∈ 𝐸 1.25

Constraints 1.21 ensure that a commodity leaves a vertex if it is not its final destination;

constraints 1.22 guarantee that each commodity leaves the depot and is delivered to a vertex;

constraints 1.23 ensure that each vertex gets exactly one commodity. The coupling constraints

1.24 indicate that flow of any commodity is allowed on the arc (𝑖, 𝑗) only if that arc is

included in the solution. In other words, variable 𝑤𝑖𝑗
𝑘 is equal to 1 if and only if the

commodity going from vertex 1 to vertex 𝑘 flows on arc (𝑖, 𝑗).

 The Claus formulation involves 𝑂(𝑛3) variables and 𝑂(𝑛3) constraints (Oncan, Altinel,

& Laporte, 2009).

1.3 Solution Methods to the Travelling Salesman Problem

The TSP is a typical example of hard combinatorial optimization problems that have intrigued

mathematicians and computer scientists for years. Traditional optimization techniques such as

linear programming, non-linear programming and dynamic programming have frequently

been used for solving the TSP. However, these algorithms are computationally expensive

since they examine potentially every feasible solution in order to identify the optimum

solution. For this reason, heuristic or approximate algorithms are often preferred to exact

algorithms for solving the large TSPs in practice.

1.3.1 Exact Algorithms

These types of algorithms theoretically are guaranteed to find an optimal solution although

they can only be successfully used for modestly sized problem instances. Such methods

include brute-force, cutting planes, branch-and-bound, branch-and-cut, and dynamic

programming.

1.3.1.1 Brute-force Method

A brute force method is a straightforward approach directly based on the problem’s statement

and definitions of the concepts involved. The brute-force method for solving the TSP would

be to check every possible route and take the shortest one as the answer. If there are 𝑁 cities

Chapter 1 Introduction

11

to choose from, then there will be (𝑛 − 1)! maximum possible Hamiltonian cycles for an

asymmetric TSP (directed graph) and (𝑛 − 1)! 2⁄ maximum possible Hamiltonian cycles for

a symmetric TSP (undirected graph).

 However, the factorial function (𝑛 − 1)! grows larger when 𝑛 becomes larger as it

needs to generate (𝑛 − 1)! number of permutations for all the n cities. Hence, the time needed

for solving the TSP grows enormously even for modern computers.

1.3.1.2 Branch-and-bound

The branch-and-bound (B&B) was first proposed by (Land & Doig, 1960) in the 1960s and is

typically used to solve discrete optimisation problems. The underlying idea of a B&B

algorithm lies in finding an optimal solution and proving its optimality by successive

partitioning of the feasible set. The word ‘branch’ in the B&B refers to the partitioning

process while the word ‘bound’ refers to the process of defining lower bounds for

subproblems. In other words, it is a method of searching for an optimal solution based on the

successive partitioning of the solution space.

 The solution of a problem with a B&B algorithm is usually described as a search

through a search tree in which the root node corresponds to the original problem and each

other node is a subproblem of the original problem. For most cases, a feasible solution to the

problem is produced in advance using a heuristic and the value thereof is used as the current

best solution or incumbent. In each iteration of a B&B algorithm, a node is selected for

exploration from the list of live nodes corresponding to unexplored feasible subproblems

using some selection strategy. It is then followed by the branching strategy in which two or

more children of the selected node are constructed through the addition of constraints to the

subproblem of the node. In this way, the subspace is subdivided into smaller subspaces. For

each of these subproblems, the bound for the node is calculated, and this value is used to

discard certain subproblems from further consideration. When there are no more unexplored

parts of the solution space left, the search in the whole B&B tree terminates and the optimal

solution is the value of the current best solution.

In general, the essential components of the B&B for a discrete optimisation problem are:

 A relaxation of the original problem: Relaxation means some or all constraints are

dropped which result in additional feasible solutions. A good relaxation is the one

Chapter 1 Introduction

12

that gives a strong lower bound and is easy to solve. A common form of relaxation is

linear relaxation, which removes the requirement that the variables be integers

(Miller S. J., 2017). A Lagrangian relaxation removes complicating constraints by

adding them to the objective function, assigned with a Lagrangian multiplier

(Williams, 2006). The bounds calculated by Lagrangian relaxation are tight yet

computationally demanding.

 The quality of the upper bound and lower bound: Upper bound is the value of the

best feasible solution or incumbent. Lower bound is the value of the objective

function to the current node, which is not possible to reach any successor node with a

smaller value than this lower bound in case the current node is expanded further. If

the upper bound of any subproblem is larger than the incumbent, the subproblem is

added to the list of active nodes to be expanded further during the search. If not, then

it will be fathomed.

 The branching rule: The branching rule determines how children (newly generated

nodes) are generated from a subproblem. A good branching rule is one that

generates few successors of a node of the search tree, and generates strongly

constrained subproblems (Balas & Toth, 1983). Some of the most common variable

selection strategies for MIP are the most infeasible rule, strong branching and

pseudo-cost branching.

 The subproblem (node) selection rule: The subproblem selection rule determines the

order in which unexplored subproblems are selected for exploration. Three popular

ways of subproblem selection are breadth-first, depth-first search and heuristic

search.

 In addition to these, a key element to a good B&B algorithm is a low initial incumbent

solution to facilitate fathoming of the nodes as early as possible. For this reason, the initial

feasible solution is normally obtained by a heuristic or metaheuristic. If no such heuristic

exists, the initial value of the incumbent is set to infinity. Besides, pruning or fathoming is

significant in minimising the number of nodes generated in the B&B search tree by removing

regions of the search space that cannot lead to a better solution. Three types of pruning are:

(i) Pruning by infeasibility: The subproblem has no feasible linear programming

solution, and further partitioning would not lead to feasibility again.

Chapter 1 Introduction

13

(ii) Pruning by optimality: The subproblem has an integer optimum, and further

partitioning would not improve the solution.

(iii) Pruning by bound: The upper bound of the subproblem optimum is less than or equal

to the lower bound of the original problem.

 In summary, the efficiency of the B&B method is dependent on the sharpness of the

bound and the effort involved in computing the bound. A good upper bound is significant to

keep the size of the B&B tree as small as possible (Raidl & Puchinger, 2008). Therefore, a

heuristic or metaheuristic is usually applied at some nodes in the search tree (Raidl &

Puchinger, 2008). Also note that although a feasible solution is often found early in the B&B

search tree, the confirmation of optimality requires longer CPU time to be proved (Dowsland,

2014).

1.3.1.3 Cutting Plane

This method solves optimization problems through a series of relaxations whose feasible sets

are progressively tightened through the addition of valid inequalities. These valid inequalities

are called cuts. The added cuts will not affect the original problem but will affect the relaxed

problem by increasing the chance of finding a solution. This method can be applied to

optimization problems by iteratively solving the relaxation problem with cuts as additional

constraints until the solution at the current relaxation problem equals the current upper bound

or incumbent. Here, the value of the incumbent is the optimal solution to the problem

(Gomory, 1958).

1.3.1.4 Branch-and-cut

The branch-and-cut (B&C) algorithm incorporates the cutting plane method in the B&B

algorithm. The cutting plane can be applied at the root node or at every node in the search

tree. This will produce a smaller sized tree (Mitchell J. E., 2011), (Williams, 2006). The B&C

adds cutting planes to a tight relaxed subproblem by deleting a set of solutions for the relaxed

subproblem. The deleted solutions are not feasible to the unrelaxed subproblem (Hoffman &

Padberg, 1991).

 In particular, the B&C algorithm combines the advantages of the B&B and cutting

plane methods. The enumeration benefits from the cutting plane, where the lower bound

Chapter 1 Introduction

14

obtained from the enumeration tree is better than the bound obtained from the B&B tree

(Naddef & Rinaldi, 2002). Conversely, the cutting plane benefits from the enumeration,

where the separation algorithm can be more active when it is used with branching (Naddef &

Rinaldi, 2002). In addition, the B&C reduces the size of the search tree which helps to

increase the size of the solvable instances. However, it also increases the time at each node in

the search tree (Hoffman & Padberg, 1991).

1.3.1.5 Other Approaches

There are also other exact methods in the literature to solve the TSP such as:

 Cut-and-solve: Cut-and-solve uses a search path instead of the search tree. At each

node in the search path, it solves two easy subproblems which are a relaxed problem

and a spare problem. The advantages of this are that the iterative search strategy will

not choose the wrong branch since it has only one branch, and the memory

requirements are minimal (Climer & Zhang, 2006).

 Column Generation: This technique adds extra variables to the problem to avoid an

excessive number of constraints (Williams, 2006). It is also considered as a dual of

the cutting plane approach (Raidl & Puchinger, 2008).

 Dynamic Programming: This is an enumerative method with a divide-and-conquer-

strategy with four elements: stages, states, decisions and policies (Dowsland, 2014) .

The problem is handled in smaller parts in a sequential way so that small

subproblems are solved first before their solutions are stored for future reference.

Likewise, larger subproblems are solved by a recursion formula from the smaller

ones. In other words, the next stage is calculated from the previous stage in a bottom-

up manner.

1.3.2 Heuristic Algorithms

In practice, not all problems can be solved by exact algorithms due to many reasons such as a

problem with a large number of constraints or huge search space. These types of problem will

have an enormous feasible solution space and hence the optimal solution will be difficult to

find (Michalewicz & Fogel, 2004). For these reasons, other solution methods are needed such

as heuristics or metaheuristics.

Chapter 1 Introduction

15

 Heuristic algorithms can be described as a trial and error approach when finding an

optimal solution is impractical. Though there is no proven guarantee of the solution quality,

some heuristic algorithms perform very well in practice and produce high-quality solutions in

reasonable time. Theoretically, it is a procedure that produces a good feasible solution but not

necessarily optimal (Hillier & Lieberman, 2010). This technique produces an approximate

solution without guarantee of optimality. Heuristics such as local search can find near-optimal

solutions within reasonable running times. It begins with an initial solution searching in its

neighbourhood to find a solution that is better than the current one until no better solution is

found.

 The performance of an approximate algorithm can be measured by the running time

and the quality of the solution (Aarts & Lenstra, 2003). The running time is given by the CPU

time while the solution quality is measured by calculating the ratio between the value of the

final solution obtained by the heuristic and the optimal solution obtained from the literature

(Aarts & Lenstra, 2003). Unfortunately, each heuristic is designed for a specific type of

problem and treats only that problem, efficiently (Michalewicz & Fogel, 2004).

 Rego and Clover in (Rego & Glover, 2007) classified heuristics for the TSP into two

classes, tour construction procedures and tour improvement procedures. The tour

construction procedure builds an initial solution while the tour improvement procedure starts

from an initial solution and seeks a better one by iteratively searching the neighbourhood

(Rego & Glover, 2007). In accordance to (Rego & Glover, 2007), the heuristics in this thesis

are divided into two groups which are constructive heuristics and improvement heuristics.

1.3.2.1 Constructive Heuristics

These heuristics focus on constructing a feasible solution with the main interest on the cost

and not an improvement (Silberholz & Golden, 2010). The tour construction heuristic starts

with an empty solution and repeatedly, tries to extend the current solution until a complete

solution is obtained. Generally, tour construction heuristics can be split into three phases

which are initialization, selection and insertion. The initialization phase determines the choice

of the initial sub-cycle or starting point while the selection phase specifies a criterion of

choosing the next nodes to be added to the current solution. The insertion phase decides the

position of the new selected nodes into the current solution (Cordeau J.-F. , Laporte,

Chapter 1 Introduction

16

Savelsbergh, & Vigo, 2007) . The most commonly use constructive heuristics are nearest-

neighbour and insertion heuristics.

1.3.2.1.1 Nearest-neighbour

This heuristic is obtained by applying the greedy approach to the TSP provided that the tour

being constructed grows in a connected way. This procedure starts from a randomly chosen

initial city, finds the closest unvisited city to the current city and inserts that city at the end of

the current partial solution (Rader, 2010). The same procedure is recursively applied until all

vertices have been included in the tour and no subtours exist. Typically, the same process is

repeated with each city selected as the initial one and the best among the 𝑛 tours generated in

this process is selected as the output of this algorithm. The node selection procedure of this

algorithm is illustrated in Figure 1.2.

5

4

6

4

3

23

23

5

3
54

34

21

3

5 6

4

Figure 1.2: Illustration of the nearest-neighbour selection

Suppose that the current partial sequence of a six-city TSP is 1 → 6 → 4 → 2; from city 2, the

distances to other unvisited cities are

𝑑23 = 3 𝑑25 = 4

Since city 3 is the closest to city 2, city 3 would be added to the sequence, yielding

1 → 6 → 4 → 2 → 3.

1.3.2.1.2 Insertion Heuristic

The insertion heuristic is based on the insertion of a node in a particular tour. There are

several variations depending on rules and criteria for the insertion phase such as cheapest-

insertion and farthest-insertion.

Chapter 1 Introduction

17

1.3.2.1.2.1 Cheapest-insertion Heuristics

The cheapest-insertion heuristic maintains a subtour until it becomes a tour. In each step, it

simultaneously determines which unvisited node should be added next and wherein the

subtour it should be inserted to achieve the smallest increase in the subtour length. Given a

subtour 𝑆, it finds an arc (𝑖, 𝑗) and a city 𝑟 not in 𝑆 such that the index 𝑐𝑖𝑟 + 𝑐𝑟𝑗 − 𝑐𝑖𝑗 is

minimal and then inserts 𝑟 between 𝑖 and 𝑗 (Rader, 2010). The selection process is repeated

until a tour is obtained. Further, this procedure can also be repeated with each city as the

initial city and the best of the tours obtained taken as the output. The cheapest-insertion

method is illustrated in Figure 1.3.

4

65

10

11

7

2

3

1

12 7

6

9
9

3

12

12

10

8

4

65

11

7

2

3

1

12 7

6

9
9

3

12

12

10

8

Figure 1.3: Illustration of the cheapest-insertion heuristic

From subtour (1,2,3), two possible nodes to be inserted are node 4 and 7.

If node 4 is inserted, the tour cost increase is

𝑐24 + 𝑐43 − 𝑐23 = 12 + 11 − 8 = 15

If node 7 is inserted, the tour cost increase is

𝑐17 + 𝑐73 − 𝑐13 = 12 + 9 − 10 = 11

So, node 7 is to be inserted, which leads to a new loop (1,2,3,7).

1.3.2.1.2.2 Farthest-insertion Heuristics

This heuristic begins with a tour that visits the two cities which are farthest apart. The next

city to be inserted is the farthest node from any node in the current tour in such a way that the

increase in the subtour length is minimized (Golden, Bodin, Doyle, & Jr, 1980). The farthest-

insertion method is illustrated in Figure 1.4.

Chapter 1 Introduction

18

1

6

5

4

2

3

1

6

4

3

5

2

1

6

4

5

2

3

1

4

5

2

3

6

4

5

6

3

2

1
4

5

6

3

2

1

Figure 1.4: Illustration of the farthest-insertion heuristic

Chapter 1 Introduction

19

1.3.2.2 Improvement Heuristics

In contrast to tour construction algorithms, improvement heuristics are often used to improve

initial solutions generated by other heuristics. Starting from an initial solution, an

improvement heuristic applies simple modifications such as exchanges of edges to obtain new

solutions of possibly better cost. If an improving solution is found, it then becomes the current

solution and the process iterates. Otherwise a local minimum has been identified. The most

common ways to improve an initial tour generated by construction heuristics for TSP are 2-

opt and 3-opt local searches.

1.3.2.2.1 2-opt

The 2-opt is a simple local search algorithm that works by doing small changes on a tour and

then checking if the solution quality improves. The 2-opt algorithm removes two edges from

the tour, creating two new subtours, then reconnecting them in a new different way so that it

forms a correct tour, only if the sum of the length of the newly arranged edges is less than the

sum of the length of the deleted edges (Reinelt, 1994). This is frequently referred to as a 2-opt

move and this process is repeated until no further improvement can be obtained. The 2-opt

move is illustrated in Figure 1.5.

Consider a tour 1 − 3 − 2 − 4 − 5 − 1 with the length of 30 units as shown in Figure 1.5. ,

possible edges to be changed are:

 Iteration 1 : Edges (1,3), (2,4) with (1,2), (3,4)

 Iteration 2 : Edges (1,3), (4,5) with (1,4), (3,5)

 Iteration 3 : Edges (3,2), (4,5) with (3,4), (2,5)

 Iteration 4 : Edges (3,2), (5,1) with (3,5), (2,1)

In iterations 1, 2 and 3, 2-opt is not preserved since the resultant tours have longer tours than

the tour before the swap. However, replacing edges (3,2), (5,1) with (3,5), (2,1) in iteration

4 decreases the tour length by 1 unit thus this 2-opt move is accepted.

Chapter 1 Introduction

20

4

5

8

10

4

96

6 9

7

21

3

4 5

4

5

8

10

4

96

6 9

7

21

3

4 5

Iteration 1: swap (1,3), (2,4) with (1,2), (3,4) ; 𝑙𝑎𝑓𝑡𝑒𝑟 = 32 > 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30

4

5

8

10

4

96

6 9

7

21

3

4 5

4

5

8

10

4

96

6 9

7

21

3

4 5

Iteration 2: swap (1,3), (4,5) with (1,4), (3,5) ; 𝑙𝑎𝑓𝑡𝑒𝑟 = 37 > 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30

4

5

8

10

4

96

6 9

7

21

3

4 5

4

5

8

10

4

96

6 9

7

21

3

4 5

Iteration 3: swap (3,2), (4,5) with (3,4), (2,5) ; 𝑙𝑎𝑓𝑡𝑒𝑟 = 35 > 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30

4

4

5

8

10

4

96

6 9

7

21

3

4 5

4

5

8

10

4

96

6 9

7

21

3

4 5

Iteration 4: swap (3,2), (5,1) with (3,5), (2,1) ; 𝑙𝑎𝑓𝑡𝑒𝑟 = 29 < 𝑙𝑏𝑒𝑓𝑜𝑟𝑒 = 30 (new tour)

Figure 1.5: Illustration of the 2-opt move

Chapter 1 Introduction

21

1.3.2.2.2 3-opt

The 3-opt algorithm works analogously to the 2-opt heuristic, but instead of removing two

edges, the exchange removes three edges from the current solution to replace them with three

new edges not previously included in the current solution (Rego & Glover, 2007).

 A 3-opt move can be seen as two or three 2-opt moves. So, if a tour is 3-optimal, it is

also 2-optimal (Helsgaun, 2000). A 3-opt exchange provides better solutions than 2-opt

exchange, but it is significantly slower in CPU time. The 3-opt move is illustrated as in Figure

1.6.

1

8

2

7

3

6

4

5

Figure 1.6: Illustration of the 3-opt interchange

1.3.3 Metaheuristics

Metaheuristics are considered a powerful approach applied to solving difficult combinatorial

optimization problems and can achieve good results (Gendreau & Potvin, 2005). It consists of

heuristics that are based on some metaheuristic rules.

 The motivation behind the metaheuristics approach is to explore the search space in an

effective and efficient way (Blum & Roli, 2008). Examples of metaheuristics are simulated

annealing (Nikolaev & Jacobson, 2010), tabu search (Glover & Laguna, 1997), genetic

algorithms (Davis, 1991) and ant colony optimization (Dorigo & Stutzle, 2010), etc.

 The formal definition of metaheuristics can be described as an iterative master process

that guides and modifies the operations of a subordinate heuristic by combining intelligently

different concepts for exploring and exploiting the search space to produce near-optimal

solutions. By this combination, metaheuristics aim to improve the quality of solutions

compared with classical heuristics but with better computing time (Laporte, Gendreau,

Chapter 1 Introduction

22

Potvin, & Semet, 2000). A high or low-level procedure or a simple local search, or a

construction method are examples of the subordinate heuristics.

 Two basic classes of metaheuristics are local search metaheuristics and evolutionary

algorithms. The local search approach finds good solutions by iteratively making changes to a

current solution. In each step of the search, the current solution is replaced by another solution

found in the neighbourhood, normally the best solution of that neighbourhood. However,

local search metaheuristics easily get trapped in local optima and do not guarantee global

optimum solutions. Thus, many metaheuristics were proposed to improve local search

heuristics in order to find better solutions including simulated annealing (Kirkpatrick, Gelatt,

& Vecchi, 1983), tabu search (Fred Glover, 1986) and ACO (Dorigo, Maniezzo, & Colorni,

1991).

 In general, metaheuristics can be compared based on the following properties which

would guarantee both their practical and theoretical aspect (Hansen, Mladenovic, Brimberg,

& Moreno, 2010):

1. Simplicity: the metaheuristic should be founded on a simple and clear principle which

is applicable for a wide variety of problems.

2. Precision: the steps of metaheuristics should be expressed in precise mathematical

terms.

3. Coherence: all the steps of metaheuristics for a specific problem should logically

follow the metaheuristic’s principle.

4. Effectiveness: the metaheuristic for a specific problem should find a good or an

approximate solution in a reasonable computational time.

5. Efficiency: the metaheuristics for a specific problem should find optimal or near-

optimal solutions for most realistic instances.

6. Robustness: the metaheuristics performance should be consistent for different

instances not only for specific instances.

7. User-friendliness: the metaheuristics should be easy to understand and easy to

implement, which best implies that the metaheuristics have as few parameters as

possible and ideally none.

Chapter 1 Introduction

23

8. Generality: the metaheuristic should lead to good results for several types of

problems.

9. Interactivity: the metaheuristic should enable the user to improve the resolution

process.

10. Multiplicity: the metaheuristic should be able to present some near-optimal solutions.

 Metaheuristic algorithms can be classified into many categories such as nature-inspired

and non-nature-inspired, population-based and single-solution based, single neighbourhood

and various neighbourhood structure and, memory usage and memory-less methods (Birattari,

Paquete, Stutzle, & Varrentrapp, 2001). The most common classification of metaheuristics is

single solution-based and population-based metaheuristics (BoussaiD, Lepagnot, & Siarry,

2013) . In this thesis, metaheuristics are classified based on the number of solutions used by a

metaheuristic at any time as follows (Sorensen & Glover, 2016):

1. Local Search Based Metaheuristics: These types of metaheuristics iteratively make

small changes to a single solution (Sorensen & Glover, 2016). For example,

simulated annealing and tabu search.

2. Population-based: These algorithms iteratively combine solutions into new ones

(Sorensen & Glover, 2016). Such algorithms are genetic algorithms and ant colony

optimization.

3. Hybrid Metaheuristics: The combination of metaheuristics and the techniques of

optimization. (Sorensen & Glover, 2016).

1.3.3.1 Local Search Based Metaheuristics

1.3.3.1.1 Simulated Annealing

Simulated Annealing (SA) is inspired by the analogy to a physical annealing process. It

provides a means to escape the local optimum by accepting moves that are not necessarily

better than the current objective function value in order to find the global optimum (Nikolaev

& Jacobson, 2010). In practice, there are four components to any SA algorithm for

combinatorial search which are a brief problem representation, a neighbourhood function, a

transition model and a cooling schedule (Aarts, Korst, & Laarhoven, 1997).

Chapter 1 Introduction

24

 Let 𝑧 denote the objective function value for the current trial solution, 𝑧1 is the

objective function value for the current candidate to be the next trial solution, and ζ is a

parameter used to determine acceptance of the candidate to be the next trial solution if the

candidate value is not better than the value of the current solution (Hillier & Lieberman,

2010). The SA algorithm starts with an initial solution in the feasible region and uses move

selection rules to move to the next trial solution. Assuming the objective is maximization of

the objective function, the move selection rule is:

 accept movement to the next trial solution if its value is better than the current

solution;

 otherwise, if no better solution is found in the neighbourhood of the current solution

- move to the immediate neighbour only if a random number 𝜉 generated from

a uniform distribution (0,1) is less than the probability of acceptance

Prob {acceptance} = 𝑒𝑥 where 𝑥 =
𝑧𝑖 − 𝑧

ζ

- otherwise, keep the current solution.

During the search, the value of ζ gradually decreases and each value of ζ can be used with a

determined number of iterations. When the desired number of iterations has been performed

at the smallest value of ζ in the temperature schedule, the process is terminated and the best

trial solution found at any iteration is accepted as the final solution (Hillier & Lieberman,

2010).

 The SA is different from local search in three aspects (Michalewicz & Fogel, 2004):

1. How the procedures stop: The SA is executed until the stopping conditions are

satisfied while the local search is executed until no improvement is found.

2. The way the SA moves: it not only moves to better solutions but also accepts

solutions based on the current temperature ζ.

3. The value of the parameter ζ in the SA is updated periodically during the search: this

parameter value influences the outcome of the SA.

The probabilistic rule used by the SA to moves between the candidate solutions accepts the

neighbourhood as the new current position if the solution found is better than the current one.

Chapter 1 Introduction

25

Otherwise, either accept this new solution anyway or continues the search again in the same

neighbourhood for another solution (Michalewicz & Fogel, 2004).

 In general, the stopping conditions of the SA can be the maximum number of iterations,

or the maximum number of iterations when none of the immediate neighbours of the current

trial solution is accepted (Hillier & Lieberman, 2010).

 The SA approach has been applied to the TSP by a number of researchers including

Bonomi and Lutton (Bonomi & Lutton, 1984), Rossier, Troyon and Liebling (Rossier,

Troyon, & Liebling, 1986), Golden and Skiscim (Golden & Skiscim, 1986) and Nahar, Sahni

and Shragowitz (Nahar, Sahni, & Shragowitz, 1986), with a different degree of success.

However, the SA has proved to be less efficient to solving the TSP than heuristic methods

that have more knowledge about the problem (Coppin, 2004).

1.3.3.1.2 Tabu Search

Tabu Search (TS) is considered an extension of a classical local search with the addition of

short-term memory (Gendreau & Potvin, 2010). The first proposition for the TS method was

made in 1986 by Glover (Fred Glover, 1986) and it has been applied to a wide-ranging

number of applications such as vehicle routing (Cordeau & Laporte, 2005), machine

scheduling (Taillard, 1990), the maximum clique problem (Gendreau, Soriano, & Salvail,

1993) and the quadratic assignment problem (Skorin-Kapov, 1990) .

The basic elements of TS are the search space, the neighbourhood structure, the short-

term tabu lists, and aspiration criteria. The search space is the space of all possible solutions

that can be considered during the search (Gendreau & Potvin, 2010) . At each iteration of TS,

a local transformation is applied to the current solution defining a set of neighbouring

solutions in the search area (Gendreau & Potvin, 2010). Aspiration criteria state that the tabus

can be ignored if there is no chance of cycling. In other words, it accepts movements to tabu

moves if it produces solutions that are better than the current solution (Gendreau & Potvin,

2010).

The TS uses a local search procedure to find a local optimum and then moves to any

point in the neighbourhood. If a better solution is found in the neighbourhood of the current

trial solution, the local search procedure is applied again to find a new local optimum (Hillier

& Lieberman, 2010). While classical local search methods stop when they encounter a local

Chapter 1 Introduction

26

optimum with regard to the modifications they allow, the TS continues moving to the best

non-improving solution it can find.

To prevent a repetition of the same local optimum, the tabu list will record each move

in tabu moves, so that a tabu list is updated during the running of the algorithm (Glover &

Laguna, 1997). For the best use of memory in the tabu search, the tabu list should be used

efficiently. There are three basic principles to managing the tabu list (Hertz, Taillard, &

Werra, 1997):

 Size of the tabu list : A list that is too short may not prevent cycling, whilst a long list

may expand the search and increase the number of visited solutions. Though, it is

often difficult to determine the size of a tabu list that prevents cycling and does not

excessively restrict the search for all instances of a given size. Hence, an effective

way of avoiding this is to vary the size of the tabu list (Hertz, Taillard, & Werra,

1997) .

 Intensification of the search : Defined as exploring a portion of the promising

neighbourhood more thoroughly, implying that the portion of the neighbourhood

contains very good solutions (Hillier & Lieberman, 2010). In order to intensify the

search, the size of the tabu list should be decreased for a small number of iterations

(Hertz, Taillard, & Werra, 1997).

 Diversification : Indicates searching into previously unexplored areas of the

neighbourhood (Hillier & Lieberman, 2010). A common way to diversify the search

is to randomly execute several random restarts (Hertz, Taillard, & Werra, 1997).

 Different stopping criteria such as a fixed number of iterations, a fixed number of

consecutive iterations if there is no improvement in the best objective function value , or a

fixed amount of CPU time can be used for the TS termination criteria (Hillier & Lieberman,

2010). For more information on TS and its application to TSP see (Knox, 1994) , (Gendreau,

2003), (Gendreau & Potvin, 2010) and (Basu, 2012).

1.3.3.1.3 Variable Neighbourhood Search

The variable neighbourhood search (VNS) was suggested by Mladenovic and Hansen in 1997

(Mladenovic & Hansen, 1997). Its basic idea is to escape from local optima trap by changing

Chapter 1 Introduction

27

the neighbourhood structure. It explores distant neighbourhoods of the current incumbent

solution, and moves from there to a new one if and only if the improvement was made. For

more information on VNS and its application to TSP see (Hansen & Mladenovic, 2001) and

(Hansen, Mladenovic, Brimberg, & Moreno, 2010).

1.3.3.1.4 Reactive Bone Algorithm

The reactive bone algorithm (RBA) is a population-based method proposed by (Darani,

Dolatnejad, & Yousefikhoshbakht, 2015) to solve the TSP. It is a modification of a Bone-

Route method which was first introduced for solving the vehicle routing problem by

Tarantilis and Kiranoudis in 2002 (Tarantilis & Kiranoudis, 2002). The Bone-Route algorithm

constructs a new solution out of sequences of nodes or bones of the previous solutions. The

construction of the new solution is based on the Adaptive Memory concept introduced in

(Rochat & Taillard, 1995) which describes a pool of good solutions that are dynamically

updated throughout the solution search process. Some components of these solutions are

extracted from the pool periodically and combined to construct a new solution. The extraction

criteria of the Bone-Route algorithm are:

1. Bone length – the number of nodes that must compose a bone.

2. Bone frequency – the number of stored routes in the pool that must include a bone in their

routes.

However, the RBA has made two main modifications to the Bone-Route approach which are:

1. Value of the bone size systematically changes during run time.

2. Bone frequency maximum- the maximum number of stored routes in the pool that must

include a bone.

 Since the bone size and the bone frequency express the degree of similarity among the

new solution and the previously stored solutions in the pool, the RBA modification ensures

that the new solution is more similar to other solutions in the pool, whenever their value is

high.

Chapter 1 Introduction

28

1.3.3.2 Population-Based Metaheuristics

1.3.3.2.1 Genetic Algorithms

Genetic algorithms (GAs) were first used by John Holland in 1975 (Holland, 1992). Holland’s

GA was inspired by the natural evolution cycle such as restricted alphabet genotype, pairwise

parent selection, mating and mutation. In the GAs, bit strings play the role of the

chromosome, with individual bit sets playing the role of genes. In other words, the genotype-

phenotype mapping in GAs relies on a bit partitioning into bit sets. To recombine strings,

Holland used the idea of genetic crossover and mutation (Reeves C. R., 1997) . Crossover is

defined as the substitution of some genes from one parent with parallel genes in the other

parent (Reeves C. R., 1997). Mutation means random changes in the specific genes in the

phenotype (Mitchell M. , 1998). There are two strategies to generate offspring; the first one is

to use crossover and mutation while the second strategy uses either crossover or mutation

(Reeves C. , 2003).

 The GAs are usually started with a population of feasible trial solutions. A random

process is used to select some of the feasible solutions from the population to become parents

and then randomly pair up the best parents to produce new feasible solutions (children)

(Hillier & Lieberman, 2010). If an infeasible solution (miscarriage) is obtained, this process

is repeated until a feasible solution is found. The stopping conditions could be the number of

iterations or CPU time. The outline of a typical GA is given as follows (Mitchell M. , 1998):

1. Randomly initialize a population;

2. Calculate the fitness function of each individual in the population;

3. Select a pair of parent chromosomes based on the fitness value to create a new

generation by applying mutation, or crossover;

4. Substitute the current population with the new population.

5. If the stopping condition is satisfied, stop. Otherwise, go to step 2.

In most cases, the performance of the GA is dependent on the genetic operators used. The

four main operators for the GAs are given below (Affenzeller, Winkler, Wagner, & Beham,

2009):

Chapter 1 Introduction

29

 Parent Selection: selecting an individual from the population to be a parent based on

its fitness. The selection process can be done through various methods such as

proportional selection, linear-rank selection or tournament selection.

 Crossover: The process of joining two individuals (parents) to produce two new

individuals (offspring). There are a number of crossover techniques including single

point crossover and multiple point crossovers. Single point crossover divides the

chromosome of each parent into two parts (head and tail) by using a random cut. The

tail of the first parent connects with the head of the second parent and the tail of the

second parent connects with the head of the first parent to produce two new offspring.

 Mutation: It allows an undirected change to the area of the search by randomly

replacing one value of a gene (bit) in a specific position, but it happens randomly

with very low frequency.

 Replacement: This operator decides which newly generated individual will be chosen

to be a member of the new generation. There are many strategies for the replacement

mechanism such as generational replacement, elitism and tournament replacement.

Two main concerns to be considered when implementing GAs are the size of the population

and the technique used to choose the individuals (Reeves C. , 2003). The initial population is

usually assumed to be random while the size of the population is normally chosen based on

the required level of efficiency and effectiveness (Reeves C. , 2003). Since principally the

GAs could run forever, a stopping condition is needed in practice. Common stopping

conditions could be a number of fitness evaluations or computer run time, etc. For more

information on GAs and its application see (Mitchell M. , 1998), (Taiwo, Mayowa, & Ruka,

2013) and (Sastry, Goldberg, & Kendall, 2014).

1.3.3.2.2 Particle Swarm Optimization

The particle swarm optimization (PSO) is an evolutionary algorithm inspired by a social

behavior such as bird flocking and fish schooling introduced by Eberhart and Kennedy in

1995 (Kennedy & Eberhart, 1995). In PSO, each intelligent individual searching for an

optimal position is called a particle. Each particle represents a candidate solution that can be

evaluated by a preset evaluation function. Flying in a multidimensional search space, a

particle changes its velocity dynamically based on its own flying experience and the flying

experience of its colleagues.

http://www.engr.iupui.edu/~eberhart

Chapter 1 Introduction

30

 The PSO algorithm begins with randomly initialising a swarm of particles, then

iteratively adjusts the flying trajectory of each particle toward its personal best position called

local optimum and toward the best particle of swarm or global optimum, and finally achieves

an optimal solution.

 The initial position vectors 𝑥𝑖(0) and velocity vectors 𝑣𝑖(0) are randomly selected over

the search space. Then these particles evolve all through space according to two essential

reasoning capabilities: a memory of their own best position and knowledge of the global or

their neighbourhood’s best. The evolution for each particle 𝑖 is given by

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 1.26

where 𝑥𝑖(𝑡) and 𝑣𝑖(𝑡) are the position and the velocity of particle 𝑖 at time 𝑡 , respectively.

 The PSO algorithm is influenced by a number of control parameters such as swarm

size, neighbourhood size, inertia weight, acceleration coefficients, and number of iterations.

Hence, implementing a PSO algorithm requires a careful selection of these parameters.

1.3.3.2.3 Bat Algorithm

The bat algorithm (BA) is an algorithm based on the echolocation behaviour of bats (Yang,

2010). The echolocation is the use of sound waves and echoes to determine the location of

objects in space. Bats use echolocation to navigate, detect prey and avoid obstacles in the dark

by emitting a loud sound pulse and listen for the echo that bounces back from the surrounding

objects. The sound pulses and the signal bandwith varies in properties and can be correlated

with their hunting strategies, depending on the species.

The BA is formulated by idealizing the echolocation behaviour of bats as follows:

1. Bats use echolocation to sense distance and differentiate between food, prey and

background barriers.

2. Bats fly randomly with velocity 𝑣𝑖 at position 𝑥𝑖 with a fixed frequency 𝑓𝑚𝑖𝑛, varying

wavelength λ and loudness 𝐴0 to search for prey. They can automatically adjust the

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission

𝑟 ∈ [0,1] depending on the proximity of their target;

Chapter 1 Introduction

31

3. Although the loudness can vary in many ways, they assume that the loudness varies from

a large (positive) 𝐴0 to a minimum constant value 𝐴𝑚𝑖𝑛.

1.3.3.2.4 Other Population-Based Metaheuristics Approaches

 Artificial Bee Colony

Artificial Bee Colony (ABC) was introduced by Dervis Karaboga in 2005, motivated

by the intelligent behaviour of honey bees. In the ABC system, the colony of artificial

bees consists of three different groups namely employed, onlooker and scout

(Karaboga, 2005). The employee bees work on the collection of food to the hive at a

specific food source. The onlooker bees patrol the employees to verify when a specific

food source is not worth anymore while the scout bees are responsible for looking for

new food sources locations. In this algorithm, a food source denotes a possible solution

to the optimization problem, and the quality of the food source is defined by the cost of

the objective function on that position. Therefore, the ABC system combines local

search methods, carried out by employed and onlooker bees, with global search

methods, managed by onlookers and scouts, attempting to balance exploration and

exploitation process.

 African Buffalo Optimization

The African Buffalo (ABO) Optimization was proposed by Odili, Kahar and Anwar in

(Odili, Kahar, & Anwar, 2015). The ABO algorithm models the three characteristic

behaviours of the African buffalos that enable their search for pastures. These

characteristics include extensive memory capacity, cooperative cum communicative

ability and democratic nature borne out of extreme intelligence. The extensive memory

capacity enables the buffalos to keep track of their routes through thousands of

kilometres in the African landscape. Furthermore, the ‘waaa’ sound is an alarm call

used to tell the herd to keep moving if the present location is unfavourable, lacks

pasture or is dangerous. In other instances, the same ‘waaa’ sound is used to invite

other buffalos to come to the aid of other animals in danger. On the other hand, the

‘maaa’ vocalizations are used to signal to the buffalo herd to stay on to exploit the

present location as it holds promise of good grazing pastures and is safe. The third

attribute of the buffalos is their democratic nature borne out of extreme intelligence. In

http://mf.erciyes.edu.tr/ogrgor/index.asp?bolum=51&id=101

Chapter 1 Introduction

32

cases there are opposing calls by members of the herd, the buffalos have a unique way

of doing an ‘election’ where the majority decision determines the next line of action.

These three characteristics mark out African buffalos as one of the most organized and

successful herbivores of all time (Odili, Kahar, & Anwar, 2015).

1.3.3.2.5 Ant Colony Optimization

The Ant Colony Optimization (ACO) is part of swarm intelligence and imitates the behaviour

of ants during the process of moving food from the source to the colony by using shortest

routes (Dorigo & Stutzle, 2004). It uses artificial ants to find solutions to combinatorial

optimization problems.

 The artificial ants use heuristic information and pheromone values for guiding the

search process. The heuristic information that is normally available for many problems,

together with a stochastic component in the ACO lead the ants towards more promising

solutions. This stochastic component allows the ants to build a wide variety of different

solutions and explore a larger number of solutions.

Combinatorial
Optimisation

problem

solution
components

pheromone
model

probabilistic
solution

construction

pheromone
value

update

Initialisation of
pheromone values

ACO

Figure 1.7: Basic principle of ACO metaheuristic (Blum C. , 2005)

 The basic steps in solving an optimization problem using the metaheuristic of ACO are

shown in Figure 1.7. For a given combinatorial optimization problem, a finite set 𝐶 of

solution components has to be derived to construct solutions to the COP. The pheromone

model, which is a set of pheromone values Τ, has to be defined afterwards. This set of values

is used to parameterize the probabilistic model. The pheromone values 𝜏𝑖 ∈ Τ are usually

Chapter 1 Introduction

33

associated with solution components. Broadly speaking, the ACO approach normally solves

an optimization problem by repeating the following two steps as a loop (Blum C. , 2005):

 Candidate solutions are constructed using the pheromone model which represents a

parameterized probability distribution over the solution space;

 The candidate solutions are further employed to modify the pheromone values which

are deemed to bias the future sampling toward high-quality solutions.

 In general, the ACO metaheuristic contains three main procedures (Dorigo & Stutzle,

2004) which are Construct Solutions, Update Pheromones and Daemon Actions.

 Construct Solutions is the procedure where an ant constructively builds a solution of

the considered problem by moving through neighbour nodes of the problem construction’s

graph. They move by applying a stochastic local decision policy that makes use of

pheromone trails and heuristic information. After the ants have completed their solutions,

they evaluate the quality of their solution, which will be used in the Update Pheromone

procedure to decide how much pheromone to deposit.

 Update Pheromone is the procedure by which the pheromone trail values are updated

based on the latest experience of the colony. The update phases consist of decreasing and

increasing the pheromone intensity on the trails. Pheromone evaporation is applied to

decrease pheromone values to encourage exploration and prevents stagnation whilst

pheromone deposit is adapted to increase the pheromone values that belong to good solutions

the ants have generated. The amount of pheromone deposited strongly depends on the quality

of the particular solution that each path found. Hence, the intensity of pheromone will be

biased towards the best solutions found so far.

 On the other hand, Daemon Actions is an optional procedure where an additional

enhancement to the original solution or a centralized action is implemented that cannot be

done by a single ant. For example, the use of local search methods or to lay extra pheromone

on the best solution found so far. The pseudo code of the standard ACO algorithm is shown

in Figure 1.8.

For more information on the ACO and some of its applications see (Dorigo & Caro, 1999),

(Cordon, Herrera, & Stutzle, 2002), (Dorigo & Stutzle, 2004), (Dorigo, Birattari, & Stutzle,

2006) and (López-Ibáñez, Stützle, & Dorigo, 2016).

Chapter 1 Introduction

34

Algorithm 1.1: Ant Colony Optimization

 Set parameters, initialize pheromone trials

 while (termination condition not met) do

 Solution Construction Phase

 Pheromone Update Phase

 Daemon Actions Phase //optional

 end-while

 return best solution

Figure 1.8: Pseudo-code of the ACO metaheuristic

1.3.3.3 Hybrid Metaheuristics

A hybrid metaheuristic is defined as a combination of a metaheuristic with other

metaheuristics, or with parts of other metaheuristics, or with other optimization techniques

(Blum & Roli, 2008). The hybrid optimizers are effective in reducing the CPU time and

improving the quality of the solution (Riadl & Puchinger, 2008). The hybrid metaheuristics

take advantage of the strengths of each of the individual algorithms and synergy to produce a

more effective hybrid system (Raidl, Puchinger, & Blum, 2010).

 Different classifications for the hybrid metaheuristics can be found in the literature.

Blum & Roli (Blum & Roli, 2008) classified hybrid metaheuristic approaches as either

collaborative combinations or integrative combinations. Collaborative combinations exchange

the information between optimization techniques that executed sequentially, intertwined or in

parallel (Puchinger & Raidl, 2005). Integrative combinations mean that one technique is a

subordinate of another technique (Puchinger & Raidl, 2005).

 An example of a hybrid metaheuristic is the hybridization of metaheuristic with B&B.

This integrative combination can be done in two different ways (Blum & Roli, 2008):

 the use of B&B within a metaheuristic such as ACO to improve the efficiency of the

metaheuristic search process.

 the use of the metaheuristic within B&B to reduce the CPU time and minimize the

search tree in B&B.

Chapter 1 Introduction

35

 Alternatively,Raidl et al. in (Raidl, Puchinger, & Blum, 2010) classify a hybrid

metaheuristic according to the following criteria:

1. Hybridized algorithms: such as a mixture of parts of some metaheuristic strategies, or

combination of metaheuristics with general techniques from operational research and

artificial intelligence.

2. Level of hybridization: the strength of the hybridization; high-level combinations (no

direct relationship of the internal workings of the algorithms) and low-level

combinations (strongly dependent on each other).

3. Order of execution: in batch execution, algorithms are performed in sequential order

while in an intertwined or parallel way, information is exchanged in a bidirectional

way.

4. Control strategy: integrative (one is part of the other algorithm); or collaborative

(each one of them is not part of the other, but they swap information).

For more reviews on the hybrid metaheuristics see (Cotta-Porras, 1998), (Dumitrescu &

Stutzle, 2003), (Raidl, 2006) , (Blum, Roli, & Sampels, 2008) , (Blum, Puchinger, Raidl, &

Roli, 2010) and (Ting, Yang, Cheng, & Huang, 2015).

1.3.4 Other Approaches

There are also other metaheuristic approaches in the literature use to solve the TSP such as:

 Artificial Neural Network :

An artificial neural network or ANN is a computing system whose central theme is

borrowed from the analogy of biological neural networks (Mehrotra, Mohan, & Ranka,

2000). ANN is also reffered to as artificial neural systems, neural nets or parallel

distributed processing systems. The essential element of this paradigm is the novel

structure of the information processing system. In a neural network, each node

performs some simple computations and each connection conveys a signal from one to

another, labeled by a number called the connection strength or weight indicating the

extent to whch a signal is amplified or diminished by a connection. One of the most

significant attributes of a neural network is its ability to learn by interacting with its

environmnet or with information sources (Hassoun, 1995). An ANN is configured for a

specific application, such as pattern recognition (Basu, Bhattacharyya, & Kim, 2010) or

Chapter 1 Introduction

36

data classification through a learning process (Gu, Liu, Li, & Yuan-Yuan Huang,

2008).

 Artificial Immune System :

The Artificial Immune System (AIS) is inspired by the natural immune system for

solving computational problems. Three immunological principles primarily used in AIS

are the clonal selection principle, the negative selection mechanism and the immune

network theory (Malim & Halim, 2012).

1.4 Survey on the Traveling Salesman Problems Solution Methods

According to (Alejandro Rodríguez; Rubén Ruiz, 2010), the methods designed for symmetric

TSP instances may not be adapted easily to solve asymmetric TSP. This might be the reasons

why the literature is rich for symmetric TSPs as well as for asymmetric TSPs but slightly poor

for both symmetric and asymmetric TSP. Nevertheless, this section provides a brief overview

of related works for comparison with the proposed algorithm according to the type of TSP

considered. Some papers that address the solutions to the symmetric TSP are:

 Crowder and Padberg in (Crowder & Padberg, 1980) reported the optimal solutions

for 10 large-scale symmetric travelling salesman problems with a size between 48

and 318 cities using a cutting-plane approach coupled with branch-and-bound. In

their algorithm, variables are fixed at either zero or one to reduce the size of the

problems. On average, this fixing strategy has reduced the number of variables

obtained by 5% of the original number of variables. Further, this algorithm has shown

impressive results when applied to large-scale zero-one linear programming problems

with a number of zero-one variables between 33 and 2750 (Crowder, Johnson, &

Padberg, 1983).

 A paper by Pasti and Castro (Pasti & Castro, 2006) in 2006 presented a metaheuristic

approach for solving the TSP based on a neural network and artificial immune system

called RABNET-TSP. This hybrid algorithm has a single-layer self-organizing neural

network architecture with a learning procedure aimed at locating one network cell at

each position of a city of the TSP instance to be solved. A modification to the

RABNET-TSP was proposed by Masutti and Castro in (A.S.Masutti & Castro, 2009)

to improve the efficacy and the computational time of the algorithm. The modified

RABNET-TSP is applied to several STSP benchmark problems and the results

https://www.omicsonline.org/open-access/an-overview-of-application-of-artificial-immune-system-in-swarm-roboticsystems-2168-9695-1000127.php?aid=53117

Chapter 1 Introduction

37

obtained are compared with the original RABNET-TSP and other algorithms from the

literature. Despite competitive results reported, greater computational time is required

to solve these problems.

 In 2011, Chen and Chien (Chen & Chien, 2011) described a hybrid of four

algorithms; GA , SA , ACS and particle swarm optimization (PSO) to solve the TSP.

This algorithm is called the genetic simulated annealing ant colony system with

particle swarm optimization techniques or GSA-ACS-PSO. The ACS is used to

generate the initial population of the genetic algorithm while the SA played the role

of a mutation in the GA. The authors claimed that the GSA-ACS-PSO average

solution and the percentage deviation of the average solution to the optimal solution

results on 25 STSP benchmark problems are better than those existing algorithms.

However, the performance of the GSA-ACS-PSO decreases as the size of instances

increases, in particular for instances with more than 100 cities.

 Deng et al. (Deng, et al., 2012) . This paper introduced a novel two-stage hybrid

swarm intelligence optimization algorithm or GA-PSO-ACO for solving the TSP.

The GA-PSO-ACO is based on GAs, PSO and ACO, and is divided into two stages.

In the first stage, the GA and PSO are used to obtain a series of sub-optimal solutions

to adjust the initial pheromone value in the ACO. In the second stage, the algorithm

employs the advantages of the parallel, positive feedback and high-accuracy of

solution to accomplish solving the whole problem. The numerical results on 35 STSP

benchmark problems showed that the solution qualities of the GA-PSO-ACO are

better than the TS, GAs, PSO, ACO and PS-ACO but with longer CPU time. Besides,

the performance of the GA-PSO-ACO becomes worse as the size of instances

increased.

 Tuba and Jovanovic (Tuba & Jovanovic, 2013) in 2003 suggested a pheromone

correction strategy (SEE) that was based on the analysis of properties of the best-

found tour to ACO algorithm which only activated when the search algorithm has

started to stagnate. This strategy adds a new heuristic for determining the

undesirability of edges belonging to the tour and significantly decreases their

pheromone values. Computational experiments on 11 TSP benchmark problems from

the TSPLIB library with up to 200 cities showed that this algorithm is more efficient

than the basic ACO and the particle swarm optimization.

Chapter 1 Introduction

38

 In 2015, Gunduz et al. proposed a new hierarchic approach known as ACO-ABC that

uses patch construction and improvement heuristics to solve the TSP in (Gunduz,

Kiran, & Ozceylan, 2015). The ACO is used as the path constructor and the results

obtained are improved using the artificial bee colony (ABC). The computational

experiments conducted on 10 STSP benchmark problems showed that the ACO-ABC

produces better quality solutions with less computational time than the individual

approaches of ACO and ABC. However, based on the optimal solutions stated in their

paper, only 2 instances were solved to optimality out of the 10 test instances.

 Mahi et al. (Mahi, Baykan, & Kodaz, 2015) in 2015 recommended a new hybrid

algorithm based on PSO, ACO and 3-opt for solving small TSP instances called PSO-

ACO-3opt. The PSO is used to optimize the values of two main parameters of ACO

that affect the performance of the ACO algorithm, and the 3-opt is used to escape

from the local optima found by the ACO algorithm. The PSO-ACO-3opt was tested

on 10 STSP benchmark problems with up to 200 cities. Although the computational

results showed that the performance of the PSO-ACO-3opt is better or similar to

other methods compared such as RABNET-TSP and ACO-ABC, only 50% of the test

instances were solved to optimality.

 In 2016, inspired by the learning ability of the ACO algorithm, Wang et al. (Wang,

Lin, Zhong, & Zhang, 2016) suggested a swarm SA (SSA) to improve the efficiency

of the SA algorithm for TSP. The SSA employs a swarm of agents running SA

algorithm collaboratively and stores learned knowledge in a pheromone matrix. The

pheromone matrix is then used to guide the generation of candidate solutions. The

comparative experiments showed that the SSA has better performance than GSA-

ACS-PSO (Chen & Chien, 2011) and GA-PSO-ACO (Deng, et al., 2012). Despite the

good quality solutions, the SSA shows rather poor performance for instances larger

than 200 cities.

 Yousefikhoshbakht et al. (Yousefikhoshbakht, Malekzadeh, & Sedighpour, 2016) in

2016 presented an algorithm called REACSGA for solving the TSP. REACSGA is a

reactive bone algorithm that employs the ACS for generating initial diversified

solutions and modified GA improvement procedure for improving the initial

solutions. The proposed algorithm was tested on 19 TSP benchmark problems

involving 24 to 318 cities. The computational results showed that the REACSGA

Chapter 1 Introduction

39

yields better solutions than the genetic algorithm, ACS, GSA-ACS-PSO (Chen &

Chien, 2011), PSO (Zhong, Zhang, & Chen, 2007) and bee colony optimization

(BCO) (Wong, Low, & Chong, 2008). Even so, the solutions qualities of the

REACSGA are decreased for instances with 100 or larger cities.

 In 2016, Mohsen (Mohsen, 2016) described a new hybridize metaheuristic algorithm

termed annealing elitist ant system with mutation operator or AEAS to solve the TSP.

This algorithm integrates the advantages of ACO, SA, mutation operator and local

search. The SA and mutation operation were used to increase the ant's population

diversity while the local search helps to exploit the current search area efficiently.

The simulation results reported on 24 STSP benchmark problems showed that the

AEAS outperformed GSA-ACS-PSO (Chen & Chien, 2011), SSA (Wang, Lin,

Zhong, & Zhang, 2016), REACSGA (Yousefikhoshbakht, Malekzadeh, &

Sedighpour, 2016) and PSO-ACO-3opt (Mahi, Baykan, & Kodaz, 2015).

The following works discusses the solutions to asymmetric TSPs:

 In 2001, Burke et. al (Burke, Cowling, & Keuthen, 2001) presented a Guided

Variable Neighbourhood Search (GVNS) approach which embedded an exact

algorithm into a local search heuristic in order to exhaustively search promising

regions of the solution space. The GVNS was applied on TSPLIB instances with sizes

ranging from 17 to 458 cities. Despite being capable of improving the results

obtained by its constituent heuristic, the number of optimal solutions obtained is

considered low with only 11%.

 In 2005, Brest and Zerovnik (Brest & Zerovnik, 2005) proposed a heuristic approach

based on the arbitrary insertion algorithm or a relaxation of the cheapest insertion

algorithm known as Randomized Arbitrary Insertion or RAI. The numerical results

showed that the RAI found the optimal solutions in 85% of the test instances.

 Abdoun et al (Abdoun, Tajani, Abouchabaka, & Khatir, 2016) in 2016 introduced a

new operator called Crossover Inverse Mark operator (XIM) for the ATSP in order

to improve the solution obtained by GAs. The effectiveness of this Improved Genetic

Algorithm (IGA) approach was evaluated using standard benchmark instances from

TSPLIB with sizes up to 443 cities. Although the authors claimed that the new

operator is able to obtain a better solution, the numerical results showed that the best

Chapter 1 Introduction

40

results yielded by the IGA approach for all the benchmark problems are far from the

optimal solutions except for the br17 instance.

Moreover, several works that review the solution to both symmetric and asymmetric TSP are:

 Gambardella and Dorigo in 1996 introduced the Ant Colony System (ACS) that

increases the importance of exploitation of information collected by previous ants

with respect to exploration of the search space. The strategies used to achieve this are

the usage of a pseudorandom proportional rule that guides the ants to choose the next

city to move to and a strong elitist approach to update pheromone trails by allowing

only the ant that produced the best solution to update the pheromone trails. The ACS

was tested on 6 STSP instances with size ranging from 51 to 1577 cities and 5 ATSP

instances with size ranging from 43 to 170 cities. Its application to both symmetric

and asymmetric TSP obtained excellent results with over 99% accuracy.

 In 1997, Stutzle and Hoos (Stutzle & Hoos, 1997) suggested a variant of the ant

system known as MAX-MIN Ant System (MMAS) by introducing upper and lower

bounds to the values of the pheromone trails. These trail bounds alleviate the early

stagnation and thus increase the exploration of tours. The computational results on

several TSP instances show that the MMAS was the best performing algorithm at that

time.

 Odili and Kahar (Odili & Kahar, 2016) in 2016 proposed a new metaheuristic

algorithm inspired by the behaviour of African buffalos called African Buffalo

Optimization (ABO). The ABO belongs to the swarm intelligence (SI) algorithms

which are based on the social behaviour in animals. This algorithm aims to achieve

greater exploitation and exploration of the search space and faster speed in reaching

the optimal results with relatively fewer parameters. The ABO was implemented to

solve 35 STSP and 6 ATSP benchmark problems with accuracy over 98%. Despite

the competitive results obtained, only 5 STSP and none of the ATSP instances were

solved to optimality.

 In 2016, Osaba et al. (Osaba, Yang, Diaz, Lopez-Garcia, & Carballedo, 2016)

described an improved version of the basic bat algorithm (BA) known as IBA to

solve both the symmetric and asymmetric TSP. BA was initially suggested by Yang

(Yang, 2010) in 2010 and is based on the echolocation behaviour of microbats which

Chapter 1 Introduction

41

have the skill to find their prey and discriminate different kinds of insects even in

complete darkness. The BA was compared to some popular techniques such as GA,

evolutionary simulated annealing (Yip & Pao, 1995) and the Island-based Distributed

GA (Alba & Troya, 1999) on 22 STSP instances with size ranging from 30 to 1002

cities and 15 ATSP instances with size ranging from 17 to 323 cities. Although the

comparative results showed that the IBA algorithm outperformed all other algorithms

in most of the instances, the performances of the IBA is quite poor for instances with

size more than 150 cities for symmetric TSP and more than 60 cities for asymmetric

TSP.

1.5 Overview of the Research

This research investigates the application of a new modified ACO algorithm to solve both

symmetric and asymmetric TSP which utilizing a partial optimization technique and 2-opt

local search. The basic algorithmic framework of this proposed algorithm is the framework of

the ACO. However, in the tour construction mechanism, only parts of the solution tour is

constructed using a new proposed state transition rule, aided by intelligent ants. The other

remaining part of the solution tour is optimized by a solver. Unlike the basic ACO algorithm,

the probabilistic decision rule for this proposed algorithm is biased on pheromone information

while the initial pheromone value is calculated as the inverse function of the distance between

two nodes. At each iteration, a 2-opt local search is applied to possibly improve the local

solution.

 The role of the intelligent ant in the tour construction mechanism is to ensure that the

best solution is inherited by the next generation (iteration) preventing the best ant of the next

colony having a worse value than the best ant of the current solution. This accelerates the

convergence rate of the algorithm.

 After the completion of the tour construction phase, the value of the pheromone is

updated. Only arcs that belong to the colony-best-ant are updated, and the amount of the

pheromone deposited by the ant is determined by the constant parameter 𝛼 and the solution

quality of the colony-best-ant. The parameter 𝛼 is calculated as the square of the problem

size. Likewise, the pheromone evaporation rule works only on all arcs belonging to the

Chapter 1 Introduction

42

colony-worst-ant that are not in the colony-best-ant. The pheromone evaporation parameter 𝜌

is proportional to the inverse of the square of the problem size.

1.6 Outline of the Thesis

The structure of the thesis is as follows:

 Chapter 1 presents three variants of TSPs which are symmetric, asymmetric and

multiple TSP. Detailed formulations of the TSP are explained focusing on different types of

subtour elimination constraints particularly by Dantzig-Fulkerson-Johnson, Miller-Tucker-

Zemlin, Gavish and Graves, and Claus. Besides, basic formulation types of TSPs are

presented. However, this research only focuses on the first two types of the TSP which are the

symmetric and asymmetric TSP. This followed by a basic information about the solution

methods: Exact methods that find the optimal solution such as the brute-force method,

branch-and-bound, cutting plane, branch-and-cut, cut and solve, column generation, and

dynamic programming; Heuristic algorithms that find approximate solutions such as:

constructive heuristics and improvement heuristics, and metaheuristics are classified into

three groups, and are presented with basic information as follows:

1. Local search based metaheuristics such as simulated annealing (SA) and tabu search

(TS).

2. Population-based metaheuristics such as genetic algorithm (GA) and Ant Colony

Optimization (ACO).

3. Hybrid metaheuristic.

 Chapter 2 provides background information of the Ant Colony Optimization (ACO)

and its solution construction mechanism. An overview of different types of ACO algorithms

such as Ant System, Elitist Ant System and Ant System are also included.

 Chapter 3 describes the main procedures of the proposed algorithm; the tour

construction process, pheromone update process and enhancement process. The tour

construction process of the proposed algorithm uses a different formulation of state transition

rule than the basic ACO; new ways of depositing and evaporating pheromone, and a different

approach to global updating of pheromone. This proposed algorithm also uses a special agent

Chapter 1 Introduction

43

called ‘Intelligent Ants’ to work together with the state transition rule in the tour construction

process. The concept of the intelligent ants is further described with an illustrated example.

 Chapter 4 demonstrates the implementation and performance of the new proposed state

transition rule of ACO to construct the solution tour. Issues relating to the ACO parameters

such as initial pheromone value, the maximum number of ants in each colony, the maximum

number of colonies are discussed and described through an empirical study. The

computational experiments were conducted on three randomly selected TSP standard

benchmark problems from the TSPLIB library.

 Chapter 5 examines the factors that influence the performance of the proposed

algorithm such as bound restriction, variable fixing, edge fixing and representation of the

Subtour Elimination Constraints. Eight STSP and six ATSP benchmark problems were used

to illustrate the effect of each of these factors.

 Chapter 6 investigates the performance of the proposed algorithm on both symmetric

and asymmetric TSP. Two kinds of experiments were carried out on 33 TSP benchmarks

problems taken from the TSPLIB library. The first kind was used to evaluate the performance

of the proposed algorithm using ACO parameters suggested in Chapter 4 against the

performance of the proposed algorithm using the set of parameter values recommended in the

literature by Dorigo. The second was carried out to compare performance with other studies

available in the literature.

 Chapter 7 concludes the thesis with a discussion of possible future research directions.

44

Chapter 2

Ant Colony Optimization

This chapter presents a brief overview to ACO, approaches to building ACO algorithms and an

overview of different types of ACO algorithms.

2.1 Ant Colony Optimization Metaheuristics

The ACO algorithms are inspired by the behaviour of ants to find the shortest path to a food

source from their nest. These ants find such a path very quickly by using indirect

communication via pheromones. This inspiring behaviour is exploited in artificial ants that

construct solutions for a given problem by carrying out random walks on a construction graph.

The random walk and the resulting solution depend on pheromone values which represent the

values on the edges of the construction graph. Concisely, the probability of traversing a certain

edge depends on its pheromone value.

 The main idea behind an ant algorithm is to use a form of artificial stigmergy to

coordinate societies of artificial agents. One of the most prominent examples of the ant

algorithm is the ACO. The ACO is inspired by the foraging behaviour of ant colonies and is

used in solving the discrete optimization problem.

 In the ACO algorithms, ants are agents programmed to find an optimal combination of

elements of a given set that maximizes some utility function. Edges are used as solution

components when applying the ACO algorithms to the TSP. The pheromone trails 𝜏𝑖𝑗 associated

to each edge 𝑖, 𝑗 in the TSP refer to the desirability of visiting city 𝑗 from the current city 𝑖. The

amount of pheromone trail is proportional to the quality of the ant's path where a shorter path

usually results in a greater amount of pheromone. If the ACO algorithm is applied to the

symmetric TSP instances, the pheromone trails are also symmetric 𝜏𝑖𝑗
𝑡 = 𝜏𝑗𝑖

𝑡 .

 At the beginning of the solution construction process, 𝑚 numbers of ants are placed on a

randomly chosen start city. Then, in each construction step, each ant chooses the next unvisited

Chapter 2 Solution Methods

45

city probabilistically, biased by the pheromone trail 𝜏𝑖𝑗 and locally available heuristic

information, which is a function of the edge length. This solution construction process

terminates when all the cities have been visited. Once all ants have constructed a tour, the

pheromone trails are updated. Edges that are used most frequently by many ants and contained

in the shortest tour will usually receive more pheromone and thus are more likely to be chosen

in a future iteration of the algorithm.

2.2 Foraging Behaviour of Real Ants

Although most ants are almost blind, to get around, they communicate and gain information

about their world by relying on touch from the sensitive antennae, and the smell of chemicals

called pheromones. Some ant species in particular, such as Lasius Niger or the Argentine ant

Iridomyrmex humilis (Goss, Aron, Deneubourg, & Pasteels, 1989), use a special kind of

substance called trail pheromones to reinforce the optimum paths between food sources and

their nest. To be more specific, these ants lay pheromones on the paths they take, and these

pheromone trails act as stimuli because the ants are attracted to follow the paths that have

relatively more pheromones.

 As a result, an ant that has decided to follow a path due to the pheromone trail on that

path reinforces it further by laying its pheromone too. This process can be assumed as a self-

reinforcement process since the more ants that follow a specific path, the more likely that it

becomes the path that will be followed by other ants in the colony.

 The pheromone trail-laying and following behaviour of some ant species have been

investigated in controlled experiments by several researchers. Deneubourg et al. (Deneubourg,

Aron, Goss, & Pasteels, 1990) demonstrated the foraging of a colony of ants through the

double-bridge experiments. In these experiments, the nest of ants of the Argentine ant species

Iridomyrmex humilis and the food sources are connected through two different paths. The

behaviour is examined by varying the ratio between the lengths of the two paths of the double

bridge as shown in Figure 2.1.

 In the first experiment, both paths were set to be of equal length as can be seen in Figure

2.1 (a). The result showed that initially, the ants chose the two paths randomly since there was

no pheromone on either of the paths yet. After a while, due to random fluctuations, one of the

Chapter 2 Solution Methods

46

two paths was followed by a few more ants and so more pheromone was accumulated on that

path. Eventually, the whole colony converged to follow that same path.

Nest Food

(a) Paths have equal length

Nest Food

 (b) Paths have different length

Figure 2.1: Double Bridge Experiments

 In the second experiment, the length of one path was two times as long as the other one as

in Figure 2.1(b). Initially, the ants again choose either of the two paths randomly. The ants that

had chosen the shortest path arrived at the food source faster and began their return to the nest

earlier. Consequently, pheromone accumulated faster on the shortest path, and most of the ants

converged to this path.

 Besides, Deneubourg et al. (Deneubourg, Aron, Goss, & Pasteels, 1990) were also

interested in investigating what would happen if a shorter path was added after the ants had

converged to one path. They found that the shorter alternative that was offered after

convergence was never discovered by the colony. The majority of the ants continued following

the longer branch reinforcing it more. This stagnation is caused by the high pheromone

concentration and by the slow evaporation of pheromone, and the real ants always follow the

suboptimal path even if there is a shorter one.

Chapter 2 Solution Methods

47

2.3 The Design of Artificial Ants

The double bridge experiments in Section 2.2 show that the ant colonies have a built-in

optimization capability. These ant colonies make a probabilistic movement to find the shortest

path between their nest and the food source based on the intensity of pheromone. In the ACO

algorithm, artificial ants or agents are used to find good solutions to difficult combinatorial

optimization problems. These artificial ants have the properties of the real ants. Blum in (Blum

C. , 2005) explains the significant difference between the characteristics of the artificial ants and

the real ants are as follows:

 When foraging for food, real ants will evaluate the intensity of pheromone along their

way from the nest to the food source. Contradictorily, artificial ants will evaluate a

solution with respect to some quality measure, which is used to determine the intensity

of pheromone during their return trip to the nest.

 The real ants might not take the same path on their way to the food sources and on their

return trip to their nest. However, each of the artificial ants moves from the nest to the

food sources and follows the same path to return.

 The real ants lay pheromone each time they move back and forth to the nest while the

artificial ants deposit artificial pheromone only on their way back to the nest.

 The earliest ant algorithm was introduced by Dorigo et al. in 1991 and was called the Ant

System (AS) (Colorni, Dorigo, & Maniezzo, 1991), (Dorigo, Maniezzo, & Colorni, 1996).

Dorigo and Gambardella then proposed the Ant Colony System (ACS) (Dorigo & Gambardella,

1997a) (Dorigo & Gambardella, 1997b) in 1996 while Stützle and Hoos proposed the MAX-

MIN Ant System (MMAS) (Stützle & Hoos, 2000). The ACO has drawn much attention, and

various extended versions of the ACO paradigm were proposed, such as the Best-Worst Ant

System (BWAS) (Cordon O. , Herrera, Viana, & Moreno, 2000) and the Rank-based Ant

System (R-AS) (Bullnheimer, Hartl, & Strauss, 1999a).

2.4 Ant System

The Ant System (AS) is the first ACO algorithm proposed in the literature as a means of solving

the TSP (Colorni, Dorigo, & Maniezzo, 1991). The AS consists of an initial phase and two

Chapter 2 Solution Methods

48

iterative main phases of the ant system which are ants’ solution construction and pheromone

update. In the initial phase, the pheromone trails are set with an equal amount of pheromone 𝜏0,

such that ∀(𝑖, 𝑗), 𝜏𝑖𝑗 = 𝜏0 .

 In every iteration, 𝜇 ants construct their solution concurrently, each one starting from a

randomly chosen city. Each ant 𝑘 builds a solution city-by-city using a probabilistic decision

rule, called random proportional rule. At each construction step, the city selected is added to the

partial solution of the ant. In particular, the probability that ant 𝑘 chooses the next city 𝑗, when

the last city in the partial tour is 𝑖, is defined as follows:

 𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑢]𝛼[𝜂𝑖𝑢]𝛽
𝑢∈𝑁𝑖

𝑘

 𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘 2.1

where 𝜏𝑖𝑗 is the present pheromone trail, 𝜂𝑖𝑗 is the heuristic information available a priori, 𝛼

and 𝛽 are the constant parameters that determine the relative influence of pheromone trail and

the heuristic information, respectively, and 𝑁𝑖
𝑘 is the neighbourhood of unvisited cities of ant 𝑘

when its current city is 𝑖. The heuristic information is defined as

𝜂𝑖𝑗 =
1

𝑐𝑖𝑗
 2.2

which is inversely proportional to the distance between city 𝑖 and 𝑗 .

 After all ants build a feasible solution 𝑇𝑘 , the pheromone trails are updated. At the

beginning, all the pheromone trails are lowered by a constant factor 𝜌, due to the pheromone

evaporation, such that:

𝜏𝑖𝑗
𝑡+1 = (1 − 𝜌) 𝜏𝑖𝑗

𝑡 ∀(𝑖, 𝑗) ∈ 𝐸 2.3

given that 0 < 𝜌 ≤ 1 is the pheromone evaporation rate, which helps the ants to eliminate

pheromone trails that are not used frequently and have been created from bad decisions

previously taken. After evaporation, all ants deposit pheromone on the arcs of their path as

follows:

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∑ ∆𝜏𝑖𝑗
𝑘

𝜇

𝑘=1

, ∀(𝑖, 𝑗) ∈ 𝐸 2.4

Chapter 2 Solution Methods

49

where ∆𝜏𝑖𝑗
𝑘 is the amount of pheromone ant 𝑘 deposits on the arcs that belong to its tour 𝑇𝑘 ,

and is defined as follows:

∆𝜏𝑖𝑗
𝑘 = {

1

𝐿𝑘 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇𝑘

0 otherwise
 2.5

where 𝐿𝑘 is the tour cost of the tour 𝑇𝑘 constructed by ant 𝑘. As a result, the amount of

pheromone of each ant is proportional to the solution quality. Hence, the better the ants tour, the

more pheromone an ant deposits. For more information on AS and its application see (Maniezzo

& Colorni, 1999) and (Cordon, Herrera, & Stutzle, 2002).

2.5 Elitist Ant System

This was the first improvement on the original AS introduced in Dorigo et al. (Dorigo,

Maniezzo, & Colorni, 1996), (Dorigo, Maniezzo, & Colorni, 1991). The Elitist Ant System

(EAS) uses an elitist strategy where the best ant deposits additional pheromone to the edges of

its tour. The initial phase and the solution construction are the same as in the AS algorithm.

However, after the pheromone evaporation, all the ants deposit pheromone as follows:

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∑ ∆𝜏𝑖𝑗
𝑘

𝜇

𝑘=1

+ 𝑒∆𝜏𝑖𝑗
𝑏𝑠, ∀(𝑖, 𝑗) ∈ 𝐸 2.6

where ∆𝜏𝑖𝑗
𝑘 is defined as in equation 2.5, 𝑒 is the parameter that determines the influence of the

elitist strategy and ∆𝜏𝑖𝑗
𝑏𝑠 is defined as follows:

 ∆𝜏𝑖𝑗
𝑏𝑠 = {

1

𝐿𝑏𝑠 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇𝑏𝑠

0 otherwise
 2.7

where 𝐿𝑏𝑠 is the tour cost of tour 𝑇𝑏𝑠 which is constructed by the best-so-far ant. Note that the

best-so-far ant is a special ant that may not belong to the population in every colony. For more

information on EAS refer (Dorigo & Stutzle, 2004).

Chapter 2 Solution Methods

50

2.6 The Rank-based Ant System

The Rank-based Ant System (R-AS) was proposed by Bullnheimer et al. (Bullnheimer, Hartl,

& Strauss, 1999a). In this R-AS, each ant deposits an amount of pheromone proportional to its

rank where the best-so-far ant always deposits a higher amount of pheromone than the other

ants as in the EAS. The initial phase and the solution construction are the same as in the AS

algorithm. Though, after pheromone evaporation, all the ants are ranked according to their

solution quality such that only the 𝜔 − 1 best-ranked ants and the best-so-far ant are allowed to

deposit pheromone. Formally, the pheromone update in the R-AS is according to:

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∑ (𝜔 − 𝑟)∆𝜏𝑖𝑗
𝑟

𝜔−1

𝑟=1

+ 𝜔∆𝜏𝑖𝑗
𝑏𝑠 ∀(𝑖, 𝑗) ∈ 𝐸 2.8

where ∆𝜏𝑖𝑗
𝑏𝑠 is defined as in equation 2.7 and ∆𝜏𝑖𝑗

𝑟 = 1 𝐿𝑟⁄ where 𝐿𝑟 is the tour cost of 𝑇𝑟of the

r-th best-ranked ant.

For more information on R-AS and its application see (Bullnheimer, Hartl, & Strauss, 1999b) ,

(Dorigo & Stutzle, 2004) and (Capriles, Fonseca, Barbosa, & Lemonge, 2007).

2.7 The MAX-MIN Ant System

The MAX-MIN Ant System (MMAS) is an improved algorithm of the EAS proposed by Stutzle

and Hoos (Stützle & Hoos, 2000). Contrary to the previous AS variations, the MMAS only

allows either the best-so-far ant or the colony-best ant to deposit pheromone. However, the

initial phase and the solution construction phase are still the same as in the AS algorithm,

whereas the pheromone update is defined as follows:

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 , ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑒𝑠𝑡 2.9

where ∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 = 1 𝐿𝑏𝑒𝑠𝑡⁄ . In case the best-so-far ant is allowed to deposit pheromone

∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 =

1

𝐿𝑏𝑠
 2.10

while in the case the colony-best ant is allowed to deposit pheromone

Chapter 2 Solution Methods

51

∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 =

1

𝐿𝑖𝑏
 2.11

where 𝐿𝑏𝑠 is the tour cost of the best-so-far ant, and 𝐿𝑖𝑏 is the tour cost of the best ant of the

current colony.

 Moreover, the pheromone trails are bounded in the interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], where 𝜏𝑚𝑖𝑛 and

𝜏𝑚𝑎𝑥 are the lower and upper limits, respectively. Since only the best ant is allowed to deposit

pheromone, high intensity of pheromone may be generated on a suboptimal solution. Hence, the

mechanism that restricts the range of the pheromone trails avoids stagnation behaviour. Finally,

in the case of search stagnation or if no improvement is found for a given number of algorithmic

iterations , the pheromone trails are re-initialized to an estimate of the upper pheromone trail

limit to increase exploration.

For more information on MMAS and its applications refer to (Dorigo & Stutzle, 2004), (Stutzle

& Hoos, 1996), (Afshar, 2006), (Socha, Knowles, & Sampels, 2002), (Zecchin, et al., 2003).

2.8 The Ant Colony System

The Ant Colony System (ACS) was introduced by Dorigo (Dorigo, Maniezzo, & Colorni,

1996); (Dorigo & Gambardella, 1997b) to improve the performance of the AS. The ACS is

primarily different from the AS in three aspects:

 State transition rule.

 Global pheromone updating rules.

 Local pheromone updating rule.

 The modification to the state transition rule is done to provide the ability to achieve a

balance between exploring new arcs and exploiting accumulated knowledge about the problem.

An ant 𝑘 in city 𝑖 chooses the city 𝑗 to move to following the rule:

𝑗 = {
 arg max

𝑢∈𝑁𝑖
𝑘 {[𝜏𝑖𝑢]∝[𝜂𝑖𝑢]𝛽} 𝑖𝑓 𝑞 < 𝑞0

 𝐽 𝑖𝑓 𝑞 > 𝑞0

 2.12

where 𝑞 is a random variable uniformly distributed over [0,1] and a predefined parameter 𝑞0

(0 ≤ 𝑞0 ≤ 1). 𝐽 is a random variable determined in accordance with equation 2.1. It can be

Chapter 2 Solution Methods

52

seen that the ACS transition rule is identical to the AS’s when 𝑞 > 𝑞0 . This strategy obviously

increases the variety of any searching, thus avoiding any premature falling into the local optimal

solution.

 In the AS, all ants are allowed to deposit pheromone after completing their tours while in

the ACS, only the ant that has produced the best solution since the beginning of the trail is

allowed to globally update the intensity of pheromone on the edges. The global pheromone

updating rule is stated as follows:

𝜏𝑖𝑗
𝑡+1 = (1 − 𝜌)𝜏𝑖𝑗

𝑡 + 𝜌. ∆ 𝜏𝑖𝑗
𝑡 ∀(𝑖, 𝑗) ∈ 𝐸 2.13

and ∆𝜏𝑖𝑗
𝑡 is defined as :

∆𝜏𝑖𝑗
𝑡 = {

1

𝐿+ 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇+

0 otherwise
 2.14

where 𝑇+ is the best tour since the beginning of the trail, 𝐿+ is the length of 𝑇+ and 𝜌 is a

decay parameter .

 Moreover, while building a solution, ants change their pheromone level by applying the

local updating rule as in equation 2.15.

𝜏𝑖𝑗
𝑡+1 = (1 − 𝜌)𝜏𝑖𝑗

𝑡 + 𝜌. 𝜏0 ∀(𝑖, 𝑗) ∈ 𝐸 2.15

where 0 < 𝜌 ≤ 1 is a decay parameter and 𝜏0 = (𝑛. 𝐿𝑛𝑛)−1 is the initial values of the

pheromone.

For more information on the ACS and its application see (Dorigo & Gambardella, 1997b) and

(Gambardella & Dorigo, 1996).

2.9 Summary

This chapter has reviewed the motivation, frameworks and variants of the ACO. In the next

chapter, the new proposed modified ACO approach will be introduced and discussed in detail.

53

Chapter 3

Proposed Modified ACO Algorithm for Symmetric and

Asymmetric TSP

In this chapter, a new formulation of the state transition rule will be implemented to select

candidate solutions during the tour construction phase. Besides, a different approach to global

updating of pheromone and new ways of depositing and evaporating pheromone are employed

in the pheromone update phase. In addition, a special agent named ‘Intelligent Ants’ is also

introduced to work with the state transition rule in the tour construction phase. Finally, an

example is included to demonstrate the working process of the proposed algorithm.

3.1 Introduction

As mentioned in Chapter 2, there are three phases to ACO algorithms, namely the construction

phase, the pheromone update phase, and the optional daemon phase. In the construction phase,

the ants iteratively construct candidate solutions on which they may deposit pheromone. An ant

constructs a candidate solution starting with an empty solution and iteratively adds the solution

component until the complete candidate solution is generated. After the solution construction is

completed, the ant will enter the pheromone update phase. In this phase, the ant gives feedback

on the solution that has been constructed by depositing pheromone on that solution’s

components. Normally, solution components which are used by many ants or are part of better

solutions will receive a higher amount of pheromone and, thus, will more likely be used by the

ants in the future iterations of the algorithm. Conversely, the pheromone trails are decreased by

a factor 𝜌 which is called the evaporation factor.

 The ants’ solutions are not guaranteed to be optimal with respect to local changes and

hence, more explorations are needed to search for global changes. However, the balance

between exploration and exploitation has to be considered carefully. Excessive exploitation will

reduce the diversity of the solution by focusing only on the neighbourhood and lead the search

to local optima quickly. At the same time, extreme exploration will increase the diversity of

Chapter 3 The Proposed Algorithm

54

solutions but slow down the search’s speed. So, an improper balance will lead to ineffective

algorithms.

3.2 Algorithm Notations

The following notation is used in the proposed algorithm where index 𝑘 denotes ant and indexes

𝑖 and 𝑗 denotes cities.

𝑁 = {1, … , 𝑛} : the set of cities

𝑡 = {1, … , 𝑚} : the set of colonies

𝑘 = {1, … , 𝑞} : the number of ants used in each colony

𝑁𝑖
𝑘 : set of unvisited adjacent cities for ant 𝑘 from city 𝑖

𝛼 : the relative importance of pheromone trail

𝜏𝑖𝑗 : pheromone intensity between cities 𝑖 and 𝑗

𝜏𝑖𝑗
𝑡 : the pheromone information between cities 𝑖 and 𝑗 at colony 𝑡

𝜌 : the pheromone evaporation rate

𝑢𝑖 : the position of city 𝑖 in the solution tour

𝑇𝑘𝑎

𝑡 : the tour constructed following the new proposed state transition rule of ant

𝑘 at colony 𝑡

𝐿𝑘𝑎

𝑡 : the length of the solution tour constructed following the new proposed state

transition rule of ant 𝑘 at colony 𝑡

𝑇𝑘
𝑡 : the solution tour of ant 𝑘 at colony 𝑡

𝐿𝑘
𝑡 : the length of the solution tour of ant 𝑘 at colony 𝑡

𝑇𝑏𝑒𝑠𝑡
𝑡 : the colony-best solution tour of colony 𝑡

𝐿𝑏𝑒𝑠𝑡
𝑡 : the length of the colony-best solution tour of colony 𝑡

𝑇𝑤𝑜𝑟𝑠𝑡
𝑡 : the colony-worst solution tour of colony 𝑡

𝐿𝑤𝑜𝑟𝑠𝑡
𝑡 : the length of the colony-worst solution tour of colony 𝑡

Chapter 3 The Proposed Algorithm

55

3.2.1 Initialization

In the basic ACO algorithm, the initial pheromone concentration is uniformly distributed. Thus,

the probability of ants choosing other feasible directions at any node (city) is almost the same.

Therefore, the ACO will take a lot of time to determine the feasible solution which results in

slow convergence speed in the early stage of the algorithm. Although an ant is associated with

heuristic information which provides local information of the problem, balancing the

exploitation (pheromone value) and exploration (heuristic information) of the search needs

many experiments and experience.

 For that reasons, in the proposed algorithm, the initial quantities of the pheromone

concentration are determined according to equation 3.1 where 𝑐𝑖𝑗 represents the cost between

node 𝑖 and node 𝑗. Equation 3.1 indicates that when the distance between cities 𝑖 and 𝑗 is short,

the quantity of pheromone between cities 𝑖 and 𝑗 is large and hence, the probability to visit city 𝑗

from city 𝑖 become higher and vice versa. In short, the edges which have higher cost, obtain

lower pheromone making the desirability of that edge to decrease

𝜏𝑖𝑗
0 =

1

𝑐𝑖𝑗
, ∀𝑖, 𝑗 ∈ 𝑁

3.1

3.2.2 Tour Construction

In the tour construction phase, 𝑞 ants independently visit each city exactly once. Each ant starts

from a randomly selected city, and probabilistically chooses the edge to follow among those that

lead to yet unvisited cities. The probability of choosing city 𝑗 from city 𝑖 at colony 𝑡 for ant 𝑘 is

computed by equation 3.2.

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗

∑ 𝜏𝑖𝑗𝑗∈𝑁𝑖
𝑘

 𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑘

 0 𝑖𝑓 𝑗 ∉ 𝑁𝑖
𝑘

3.2

where 𝑁𝑖
𝑘 is the set of unvisited adjacent cities for ant 𝑘 in city 𝑖, and 𝜏𝑖𝑗 denotes a quantity of

pheromone between cities 𝑖 and 𝑗.

Chapter 3 The Proposed Algorithm

56

3.2.2.1 Intelligent Ants Strategy

In the ACO algorithm, an ant is a simple computational agent which iteratively constructs a

solution for the problem at hand. In the proposed algorithm, a strategy of ‘Intelligent Ants’ (IA)

that combines a partial fixing approach with a local search method is implemented. This

strategy has demonstrated effective practical procedures for commonly observed instances of

important discrete optimization problems such in the works by (Crowder, Johnson, & Padberg,

1983) and (Crowder & Padberg, 1980). The partial fixing approach fixes a predefined number

of arcs and leaves the remaining unfixed nodes to the solver to decide. This strategy helps at

reducing the computational time by heuristically fixing part of the solution tour and improving

the accuracy of the solutions through the usage of the solver. The ‘Intelligent Ants’ procedure is

summarised as follows:

Step 0: Initialize the value for 𝑇𝑘𝑎

𝑡 , 𝐿𝑘𝑎

𝑡 , 𝑇𝑘
𝑡 = {} and 𝐿𝑘

𝑡 = ∞.

For 𝑥(𝑖, 𝑗) ∈ 𝑇𝑘𝑎

𝑡 and 𝑢𝑖 ≠ last (𝑇𝑘𝑎

𝑡) :

Step 1: Fix the first 𝑋 ∗ 𝑛 number of cities form the initial solution tour.

Step 2: Complete the solution tour constructed in Step 1 using the solver and update the 𝑇𝑘
𝑡

and 𝐿𝑘
𝑡 .

For instance, if the size of partial fixing is set to 50% of the total number of nodes, then 𝑋 = 0.5

and the number of nodes to be fixed is 0.5 ∗ 𝑛. Note that 0 ≤ 𝑋 ≤ 1. For example, for berlin52

instance with 52 cities, the size of partial fixing is 26 nodes while for u159 instance with 159

cities, the size of the partial fixing is 80 nodes.

3.2.2.1.1 An Illustrative Example

Consider a TSP benchmark problem ulysses16 with 𝑛 = 16 and 𝑋 = 0.5 ;

Step 1: In the tour construction phase, nodes are gradually added to the solution tour according

to the state transition rule in equation 3.2. When the number of nodes in the solution

tour has reached the maximum number of nodes allowed in the ‘Intelligent Ant’

procedure, stop. Otherwise, repeat the same process.

Chapter 3 The Proposed Algorithm

57

Step 2: The solver is used to build a complete closed tour based on the partial route constructed

in Step 1.

Figure 3.1 and Figure 3.2 illustrate the partial fixing process in the IA procedure for ulysses16.

15 5 11 9 10 1 8 13

Figure 3.1: Partial solution route constructed in the tour construction phase

15 5 11 9 10 1 8 13 12 16 3 2 4 14 7 6

Figure 3.2: A closed solution tour constructed following the IA procedure

3.2.2.2 Local Search Strategy

In the interest of effectiveness and efficiency, a local search technique called 2-opt is adopted in

the proposed algorithm. The local search is applied after the ants have constructed a feasible

solution which allows the algorithm to search for a solution that might have a lower cost. The 2-

opt move in general consists of removing two random edges and reconnecting the resulting

paths into a new tour. The pair that gives the shortest tour among all pairs of edges after the 2-

opt exchange will be chosen. This procedure is iterated until no such pair of edges is found. The

2-opt local search procedure is defined as below:

Step 0: Initialize the solution tour 𝑇𝑘
𝑡 and its length 𝐿𝑘

𝑡 .

For 𝑥(𝑖, 𝑗) ∈ 𝑇𝑘
𝑡 , 𝑢𝑖 = 1, … , 𝑛 − 1, 𝑢𝑗 > 𝑢𝑖 and 𝑢𝑗 < 𝑛 :

Step 1:
Swap the position of a pair of cities (𝑢𝑖, 𝑢𝑗) from the solution tour and calculate its

new length 𝐿𝑘
𝑡∗.

Step 2:
If the new length 𝐿𝑘

𝑡∗ is shorter than the previous one 𝐿𝑘
𝑡 , update the 𝑇𝑘

𝑡 and 𝐿𝑘
𝑡 .

Otherwise, swap a different pair of cities from the solution tour.

Step 3: Repeat Step 1-2 until no other shorter tour is possible.

Chapter 3 The Proposed Algorithm

58

3.2.3 Pheromone Update

The pheromone updating rule is meant to simulate the change in the amount of pheromone due

to both the addition of new pheromone deposited by ants on the visited edges and for

pheromone evaporation (Dorigo & Gambardella, 1997a). By using this rule, ants will search in a

wide neighbourhood of the best previous schedule.

 In the proposed algorithm, the pheromone is deposited only on the edges belonging to the

colony-best solution. Likewise, the pheromone is evaporated only on the edges belonging to the

colony-worst solution that are not in the colony-best solution. The underlying idea of the

proposed strategy in the context of the proposed algorithm is to place extra emphasis on the best

edges found in each colony and make edges of the colony-worst solution become less attractive

provided that these edges are not part of the colony-best solution.

 In order to prevent the solution from falling into a local optimum, the pheromone

evaporation is utilized. Every quantity of pheromone is reduced with the following equation:

𝜏𝑖𝑗
𝑡+1 = 𝜌 ∙ 𝜏𝑖𝑗

𝑡 ; (𝑖, 𝑗) ∈ 𝑇𝑤𝑜𝑟𝑠𝑡∗
𝑡 3.3

where

𝑇𝑤𝑜𝑟𝑠𝑡∗
𝑡 = {(𝑖, 𝑗)|(𝑖, 𝑗) ∈ {𝑇𝑘

𝑤𝑜𝑟𝑠𝑡 ∩ 𝑇𝑘
𝑏𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅}}

3.4

In this way, the edges of the colony’s longest path 𝑇𝑤𝑜𝑟𝑠𝑡∗
𝑡 become less desirable.

Following the pheromone evaporation, the colony-best ant deposits pheromone as follows:

𝜏𝑖𝑗
𝑡+1 = 𝜏𝑖𝑗

𝑡 + ∆𝜏𝑖𝑗
𝑡𝑏𝑒𝑠𝑡 (𝑖, 𝑗) ∈ 𝑇𝑏𝑒𝑠𝑡

𝑡 3.5

where ∆𝜏𝑖𝑗
𝑡𝑏𝑒𝑠𝑡 is a quantity of pheromone between cities 𝑖 and 𝑗 deposited by the colony-best ant

and computed based on the following formula:

∆𝜏𝑖𝑗
𝑡𝑏𝑒𝑠𝑡 = {

𝛼

𝐿𝑏𝑒𝑠𝑡
𝑡 if (𝑖, 𝑗) belongs to 𝑇𝑏𝑒𝑠𝑡

𝑡

0 otherwise

 3.6

Given that 𝐿𝑏𝑒𝑠𝑡
𝑡 is the length of the colony-best solution and 𝛼 is the persistence of the

pheromone trail.

Chapter 3 The Proposed Algorithm

59

 In such a way, the edges of the shortest path of the colony become more attractive and are

updated based on the values of the 𝐿𝑏𝑒𝑠𝑡
𝑡 .The lower the value of the 𝐿𝑏𝑒𝑠𝑡

𝑡 , the greater the

pheromone deposited on the visited edges.

3.3 Design of the Proposed Algorithm

The proposed algorithm starts by adopting the Nearest-neighbour heuristic with the 2-opt local

search to construct its first colony. The solution with the minimum tour length is considered as

the colony-best solution 𝑇𝑏𝑒𝑠𝑡
𝑡 and is set as the first ant of the next colony.

 Then, at colony 𝑡 + 1 provided that 𝑡 ≥ 1, the proposed algorithm begins by randomly

placing ants in the nodes of the graph in which every ant moves to a new node and the

parameters controlling the algorithm are updated. Assuming that the TSP is represented as a

closed connected graph, each edge is labelled by trail intensity 𝜏𝑖𝑗
𝑡 at colony 𝑡. An ant decides

the next node with a probability that is based on the distance to that node and the amount of trail

intensity on the connecting edge. A function 𝑝𝑖𝑗
𝑘 is considered to favour the selection of an edge

that has a high intensity of pheromone trail when 𝑁𝑖
𝑘 are the unvisited neighbours of node 𝑖 by

ant 𝑘 and 𝑗 ∈ 𝑁𝑖
𝑘.

 However, the numbers of nodes selected to be included in the solution tour are dependent

on the predefined value in the IA strategy. When the number of nodes selected is equal to the

predefined value, the IA uses the solver to construct a complete tour with minimum tour length.

If the tour constructed is greater than the current best solution, the tour is terminated. Otherwise,

a 2-opt local search is applied to further enhance the tour. This tour construction phase is

repeated until all the ants have completed their tours.

 Once all the ants have constructed a tour, the pheromone trails are updated. The

pheromone updating rule enforces two things; pheromone evaporation which stops pheromone

trails from unlimited accumulation, and pheromone deposit which makes the favourite edges

have stronger pheromone trails. In each colony, only the ant that generates the colony-best

solution 𝑇𝑏𝑒𝑠𝑡
𝑡 is allowed to globally update the pheromone. Likewise, the pheromone

evaporation is only applied on all arcs belonging to the colony-worst solution 𝑇𝑤𝑜𝑟𝑠𝑡
𝑡 that were

not in the colony-best solution 𝑇𝑏𝑒𝑠𝑡
𝑡 , and the amount of its evaporation is dependent on

the pheromone evaporation rate 𝜌. After the evaporation process, the quantity of pheromone

Chapter 3 The Proposed Algorithm

60

deposited on each arc of the colony-best solution is inversely proportional to the cost of the

colony-best solution.

 Before the algorithm starts the next iteration, the colony-best solution is used as a new set

of cities, 𝑁 as well as being the first ant in the following colony. Therefore, the colony-best

solution is also the global-best solution which prevents a worse quality solution in the next

colony. The algorithm runs until the maximum number of colonies allowed is reached.

3.3.1 Algorithm

The algorithm proposed is described as follows:

Step 0: Initialize the initial value for 𝜏𝑖𝑗
𝑡 =

1

𝑐𝑖𝑗
 , 𝑇𝑏𝑒𝑠𝑡

1 = {}, 𝑇𝑤𝑜𝑟𝑠𝑡
𝑡 = {}, 𝐿𝑏𝑒𝑠𝑡

1 = 0 and

𝐿𝑤𝑜𝑟𝑠𝑒
𝑡 = ∞ .

For 𝑡 = {1}, 𝑘 = {1, … , 𝑞} :

Step 1: Randomly pick an initial city.

Step 2: Choose the next city to move to from the list of unvisited cities using the Nearest-

neighbour approach.

Step 3: Repeat Step 2 until all unvisited cities have been visited and compute the tour length.

Step 4: Apply the 2-opt local search and update the 𝑇𝑘
𝑡 and 𝐿𝑘

𝑡 .

Step 5: Repeat Step 1-4 until all ants have constructed their solutions.

Step 6: Calculate and update the 𝑇𝑏𝑒𝑠𝑡
𝑡 and 𝐿𝑏𝑒𝑠𝑡

𝑡 .

For 𝑡 = {2, … , 𝑚} and 𝑘 = {1}:

 Let 𝑇1
𝑡 = 𝑇𝑏𝑒𝑠𝑡

𝑡−1 and 𝐿1
𝑡 = 𝐿𝑏𝑒𝑠𝑡

𝑡−1 .

For 𝑡 = {2, … , 𝑚} , 𝑘 = {2, … , 𝑞}:

Step 1: Randomly pick an initial city.

Chapter 3 The Proposed Algorithm

61

Step 2: Choose the next city to move to from the list of unvisited cities using the new

proposed state transition rule.

Step 3: Repeat Step 2 until all unvisited cities have been visited.

Step 4: Fix the first 𝑋 ∗ 𝑛 number of the cities in Step 3.

Step 5: Complete the solution tour constructed in Step 4 using the solver and check for

feasibility.

Step 6: If the solution tour found in Step 5 is feasible, apply the 2-opt local search and return

𝑇𝑘
𝑡 and 𝐿𝑘

𝑡 . Otherwise, let 𝑇𝑘
𝑡 = {} and 𝐿𝑘

𝑡 = ∞.

Step 7: Repeat Step 1-6 until all ants have constructed their tours.

Step 8: Calculate and update the 𝑇𝑏𝑒𝑠𝑡
𝑡 , 𝑇𝑤𝑜𝑟𝑠𝑡

𝑡 , 𝐿𝑏𝑒𝑠𝑡
𝑡 and 𝐿𝑤𝑜𝑟𝑠𝑡

𝑡 .

Step 9: Reinforce the pheromone value on the arcs belong to the 𝑇𝑏𝑒𝑠𝑡
𝑡 and evaporate on the

arcs belong to the 𝑇𝑤𝑜𝑟𝑠𝑡
𝑡 but not in the 𝑇𝑏𝑒𝑠𝑡

𝑡 .

3.3.2 An Illustrative Example

A symmetric instance with 16-cities is used to demonstrate the procedures when the proposed

algorithm is applied. In this example, the number of cities 𝑛 is 16 and the value of 𝑋 in the IA

procedure is 0.5; hence the number of nodes to be fixed is 8 (excluding the first node). If the

number of colonies and ants is, respectively, 15% and 20% of the problem size, then the number

of colonies is 2 and the number of ants in each colony is 3. The algorithm works as follows:

Colony 1:

 In this colony, 0.2𝑛 number of ants build their solutions using the Nearest-neighbour

heuristic with 2-opt local search as shown in Table 3.1. After all the ants have

constructed their tours, the tour with the minimum length will be chosen as the

colony-best solution 𝑇𝑏𝑒𝑠𝑡
1 .

Chapter 3 The Proposed Algorithm

62

Ant Route

1
𝑇1

1 : 16 12 13 14 7 6 15 5 11 9 10 8 4 2 3 1

𝐿1
1 : 7068

2
𝑇2

1 : 16 12 13 14 7 6 15 5 11 9 10 8 4 2 3 1

𝐿2
1 : 7068

3
𝑇3

1 : 9 11 5 15 14 13 6 7 12 16 1 8 4 2 3 10

𝐿3
1 : 7033

Table 3.1: List of solution tours of ulysses16 in the first colony

 From the solutions in Table 3.1, the colony-best solution is

𝑇𝑏𝑒𝑠𝑡
1 : 9 11 5 15 14 13 6 7 12 16 1 8 4 2 3 10

𝐿𝑏𝑒𝑠𝑡
𝑡 : 7033

Colony 2:

 The first ant in this colony inherited the previous colony-best solution as its solution

tour. Thus, 𝑇1
2 ≡ 𝑇𝑏𝑒𝑠𝑡

1 .

 The other ants construct their route following the new proposed state transition rule,

IA and the 2-opt procedure. As displayed in Table 3.2, a ‘list of visited cities’ is

created using the state transition rule while the ‘IA’ fixes the first half of the ‘list of

visited cities’ and sends this partial route to the solver. The ‘solution tour’ is the

solution tour generated by the solver. The ‘2-opt’ is the resultant tour of the 2-opt

moves. These procedures are repeated for each ant in the colony.

 After all the ants have constructed their routes, the route with the shortest length is

selected as the colony-best solution and the route with the longest length is selected as

the colony-worst solution. Therefore,

𝑇𝑏𝑒𝑠𝑡
2 = 𝑇3

2:

(8,1)(1,16)(16,12)(12,13)(13,14)(14,7)(7,6)

(6,15)(15,5)(5,11)(11,9)(9,10)(10,3)(3,2)(2,4)

𝐿𝑏𝑒𝑠𝑡
2 : 6913

and

Chapter 3 The Proposed Algorithm

63

𝑇𝑤𝑜𝑟𝑠𝑡
2 = 𝑇2

2:

(7,6)(6,15)(15,5)(5,11)(11,9)(9,10)(10,4)(4,2)

(2,3)(3,16)(16,1)(1,8)(8,14)(14,13)(13,12)

𝐿𝑤𝑜𝑟𝑠𝑡
2 : 7157

 Before moving to the next colony, arcs belonging to the colony-best ant will receive

 more pheromone while arcs belonging to the colony-worst solution that are not in the

 colony-best solution will receive less pheromone.

Arcs that belong to the colony-worst solution :

𝑇𝑤𝑜𝑟𝑠𝑡
2 :

(7,6)(6,15)(15,5)(5,11)(11,9)(9,10)(10,4)(4,2)

(2,3)(3,16)(16,1)(1,8)(8,14)(14,13)(13,12)

Arcs that belong to the colony-best solution :

𝑇𝑏𝑒𝑠𝑡
2 :

(8,1) (1,16) (16,12) (12,13) (13,14)(14,7)(7,6)

(6,15)(15,5)(5,11)(11,9)(9,10)(10,3)(3,2)(2,4)

Hence, the arcs belongings to the colony-worst solution but not in the colony-best

solution are

𝑇𝑤𝑜𝑟𝑠𝑡
2 :

(7,6) (6,15) (15,5) (5,11) (11,9) (9,10) (10,4) (4,2)

(2,3) (3,16) (16,1) (1,8) (8,14) (14,13) (13,12) (12,7)

𝑇𝑏𝑒𝑠𝑡
2 :

(8,1) (1,16) (16,12) (12,13) (13,14)(14,7) (7,6) (6,15)

(15,5) (5,11) (11,9) (9,10) (10,3) (3,2) (2,4) (4,8)

𝑇𝑘
𝑤𝑜𝑟𝑠𝑡 ∩ 𝑇𝑘

𝑏𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ̅
 : (10,4) (3,16) (8,14) (12,7).

Chapter 3 The Proposed Algorithm

64

Ant Route

1

𝑇1
2 : 9 11 5 15 14 13 6 7 12 16 1 8 4 2 3 10

𝐿1
2 : 7033

2

List of visited cities :

7 6 15 5 11 9 10 2 4 8 1 16 12 13 14 3

IA :

7 6 15 5 11 9 10 2 4

Solution tour:

7 6 15 5 11 9 10 2 4 3 16 1 8 14 13 12 (7665)

2opt :

7 6 15 5 11 9 10 4 2 3 16 1 8 14 13 12 (7157)

𝑇2
2 : 7 6 15 5 11 9 10 4 2 3 16 1 8 14 13 12

𝐿2
2 : 7157

3

List of visited cities :

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4

IA :

8 1 16 12 13 14 7 6 15

Solution tour:

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4 (6913)

2opt :

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4 (6913)

𝑇3
2 : 8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4

𝐿3
2 : 6913

Table 3.2: List of solution tours of ulysses16 in the second colony

Chapter 3 The Proposed Algorithm

65

 The pheromones update phases will deposit and evaporate the following arcs

 accordingly:

Deposit :(8,1)(1,16)(16,12)(12,13)(13,14)(14,7)(7,6)

(6,15)(15,5)(5,11)(11,9)(9,10)(10,3)(3,2)(2,4)

Evaporation :(10,4) (3,16) (8,14) (12,7)

 The procedure is terminated when the number of colonies reached 15% of the problem

 size. Therefore, the solution tour produced by the proposed algorithm is

8 1 16 12 13 14 7 6 15 5 11 9 10 3 2 4

 with the length of 6913 unit.

3.4 Conclusion

This research proposes a new method based on the ant colony optimization for solving STSP

and ATSP problems. This algorithm implemented a new state transition rule formulation along

with an ‘Intelligent Ants’ strategy to construct a solution tour with minimum length. The 2-opt

local search is then employed to enhance this tour before the pheromone is updated. The

pheromone is evaporated on arcs belonging to the colony-worst solution provided that it does

not belong to the colony-best solution while the pheromone is deposited only on arcs belonging

to the colony-best solution. An illustrative example of a 16-cities problem is also included in

this chapter to demonstrate the procedures of the proposed algorithm.

 The choice of ACO parameters setting applied to the proposed algorithm is described in

Chapter 4 while Chapter 5 shows experimental results in determining the best approach or value

that helps to boost the performance of the proposed algorithm.

66

Chapter 4

The ACO and its Parameters

The main parameters of the ACO algorithm include pheromone concentration information 𝛼,

heuristic information 𝛽, pheromone evaporation rate 𝜌 and the number of ants in the colony 𝑚.

Setting up the values of these parameters is crucial for good performances of an algorithm. In

practice, parameter values are usually selected by experimental comparisons as in (Dorigo &

Stutzle, 2004) or through adaptive parameter setting as in the works of Watanabe, Pilat and

Gambardella.

4.1 Introduction

The study of the impact of various parameters on the behaviour of the ACO algorithms has been

an important subject since the first articles by (Dorigo, Maniezzo, & Colorni, 1996). The values

of these parameters determine whether the algorithm will find an optimal or near-optimal

solution, and whether it will find such a solution efficiently. However, finding the appropriate

settings of an algorithm’s parameters is considered to be a non-trivial task and a substantial

amount of work has been devoted to it.

 The process of finding the appropriate setting of these parameters are commonly known

as parameter setting and can be further categorized into parameter tuning and parameter control

(Eiben, Hinterding, & Michalewicz, 1999). Parameter tuning can be expressed as a process of

finding the correct combination of an algorithm's parameters for each individual problem in

order to find the optimal solution (Bhríde, McGinnity, & McDaid, 2005). Meanwhile, Eiben et.

al. (Eiben, Hinterding, & Michalewicz, 1999) defined parameter tuning as an approach for

finding good values of the parameters before deploying the algorithm and then running the

algorithm using these values, which remain fixed during the run. Alternatively, parameter

control starts a run with initial parameter values that are changed during the run. For instance,

parameter setting methods are classified depending on whether they attempt to set parameters

before the run (tuning) or during the run (control).

Chapter 4 The ACO Parameters

67

4.2 Experimental Settings

In the following experiments, three STSP benchmark problems were considered from the

TSPLIB where the number of cities varied from 52 to 100. A numeric value in the problem

name indicates the number of cities in that instance. As an example, berlin52 has 52 cities.

 The proposed algorithm (MACO) was implemented in AMPL (AMPL, 2013) using

CPLEX 12.5.1.0 as the MIP solver and the computational experiments were conducted on

a PC with an Intel (R) Core (TM) i5-3470 processor with 3.20 GHz and 8.00 GB of RAM.

4.3 Parameter Tuning for the ACO Algorithm

The behaviour of the ACO algorithm depends strongly on the values given to its parameters. In

most ACO applications, parameter values are kept constant throughout each run of the

algorithm. However, varying the parameters at computation time may enhance the performance

of the algorithm. In the ACO literature, several strategies have been proposed and tested for

modifying parameters while solving a problem instance.

 Dorigo and Gambardella (Dorigo & Gambardella, 1997a) have proposed the optimum ant

colony size in ACS. Their experimental observation has shown that the ACS works well

when the number of ants is 10. In addition, they conclude that the optimum number of ants is

influenced by the problem size.

 Gambardella and Dorigo (Gambardella & Dorigo, 2000) expressed the parameter 𝑞0 in

equation 2.12 as a function of the problem size for a sequential ordering problem (SOP). The

value of 𝑞0 is given by 𝑞0 = 1 − 𝑠 𝑛⁄ which makes 𝑞0 dependent on the problem size 𝑛 and

𝑠 is the expected number of nodes selected by the probabilistic transition rule.

 Pilat and White (Pilat & White, 2002) suggested two hybrid methods which incorporate

GA into ACS. The first method uses a GA to evolve a population of genetically modified ants to

improve the performance of the ACO algorithm. However, this algorithm did not find

significant results in determining optimum solutions when compared to the ACS. The second

method uses a GA to evolve the optimal parameter values used in the ACS. The algorithm

results suggested that the performance of the ACS can be improved by using these values.

Again, it concludes that the performance of the algorithm is influenced by the parameter values.

Chapter 4 The ACO Parameters

68

 Watanabe and Matsui (Watanabe & Matsui, 2003) developed a mechanism to

dynamically tune the size of the candidate set in the ACS. This candidate set was used to restrict

the search space only to promising regions. With this mechanism, it is not necessary to set the

size of the candidate set in advance. The computational results with several graph colouring

instances indicate that the proposed control mechanism can potentially improve the efficiency of

the ACS, especially for large optimization problems.

 Qin et al. (Qin, et al., 2006) used self-adaptive ACO to solve a phylogenetic tree

construction problem. The adaptive term in this algorithm refers to dynamically tuning the value

of parameters 𝛼 and 𝛽. The tuning method is based on the strength of the pheromone on the

edges. At the initial stage of the algorithm, the pheromone value on each edge is relatively

small. To speed up the convergence, the ants should select the path according to the heuristic

information. Thus, the value of parameter 𝛼 should be relatively large at this stage. After some

iteration, the pheromone values on the edges are increased, thus, their influence will become

more and more important. Therefore, the value of 𝛽 will be relatively large. Experimental

results show that the proposed method has better performance than the GA.

 Hao et al. (Hao, Cai, & Huang, 2006) introduced an adaptive parameter strategy based on

PSO for the ACO. The PSO works by moving particle swarms which contain ACO parameters

in the search space when a new best solution is encountered. The test results on 10 benchmark

TSP problems show that the PSO-ACS performs better than the ACS. In addition, Hao with

different groups of researchers also examined dynamic parameter tuning for the weight

importance of heuristic information 𝛽 (Huang, Yang, Hao, & Cai, 2006) and trail

persistence 𝜌 (Hao, Huang, Qin, & Cai, 2007), and proved that both algorithms are more

effective than the traditional ACO.

 Favuzza et. al. (Favuzza, Graditi, & Sanseverino, 2006) used an adaptive instead of

fixed, parameter 𝑞0 as in equation 2.12 to push exploration or exploitation to escape local

minimum for a dynamic optimization problem. The parameter 𝑞0 varies adaptively based on the

number of unimproved iterations. If the number of unimproved iterations reaches a certain

value, then the value of the parameter 𝑞0 will be decreased allowing the algorithm to focus its

attention on the diversification process. Once the algorithm leaves the local convergence,

the 𝑞0 value will be increased, allowing the intensification process to happen. The proposed

Chapter 4 The ACO Parameters

69

algorithm has proven to be robust in finding the optimal reinforcement strategy for a

distribution system problem.

 Randall (Randall, 2004) proposed a near parameter free ACO. The author integrated the

parameter search process with the running of ACO and thus removes the need of tuning the

parameters by hand. The proposed method shows comparable results to the standard

implementation of ACO.

 Amir et al (Amir, Badr, & Farag, 2007) developed a Fuzzy Logic Controller (FLC)

module embedded in the ACS algorithm. The FLC is used to tune the parameters 𝛽 and 𝑞0

according to robust performance measures of the algorithm. The rule-base of the fuzzy

controller represents the fuzzy rules that govern the performance of the ACS algorithm in

response to the changes in the parameters’ values. The fuzzy rules were deduced using a genetic

algorithm that produces its output with the help of a data set. The test results show that the

adaptive ACS converged faster and outperformed the standard ACS.

 Castillo et al. (Castillo, Neyoy, Soria, Melin, & Valdez, 2015) presented a new fuzzy

approach to prevent the total convergence through the dynamic variation of parameter 𝛼 in the

ACO by maintaining a certain reference level of the average lambda branching factor. This

average lambda branching factor is used to provides an indication of the size of the search space

effectively explored and measured the distribution of the values of the pheromone trails. When

the value of the average lambda branching factor reference level changed, the value of the

parameter 𝛼 is increased to maintain the diversity of the search. The proposed strategy shows an

improvement when compared to the AS, R-AS and EAS.

4.4 Parameter Tuning for the Proposed Algorithm

The process of finding the appropriate parameter values for metaheuristic search algorithm can

be a time consuming and tedious task. An alternative approach to setting good initial parameter

settings is desired. Therefore, in order to reduce the amount of time spent in tuning the

parameters, the parameters of the proposed algorithm are expressed as a function of the problem

size. In such a way, the proposed algorithm can be used on various problem instances in which

the number of ants 𝑚, 𝛼 and 𝜌 are peculiar to each problem.

Chapter 4 The ACO Parameters

70

4.5 The Number of Ants in a Colony

In the ACO algorithm, the number of ants in each colony determines the diversification in the

search space. As an ant represents a solution and determines the diversification of the search

space, a small number of ants tend not to find a good solution due to a low exploration of the

search space. Contrarily, a large number of ants can sometimes be too much and does not reflect

an improvement of the current best solution. Also, it requires more computational processing

time.

 For certain computational conditions such as maximum computation time, the number of

ants plays a critical parameter for determining the trade-off between the maximum numbers of

colonies and broadness of the search at each of the colony.

 In order to estimate the optimal number of ants and investigate their impact on the

proposed algorithm solutions, five conditions were proposed:

 the first one with ants equal to 5% of the problem size

 the second with ants equal to 10% of the problem size

 the third with ants equal to 15% of the problem size

 the fourth with ants equal to 20% of the problem size

 the fifth with ants equal to 25% of the problem size

𝛼 = 1 𝜌 = 0.5 colonies = 5

Benchmark

problems

Number of ants (𝑚)

0.5𝑛 0.1𝑛 0.15𝑛 0.2𝑛 0.25𝑛

berlin52 10384 9519 9452 8500 8664

eil76 682 719 742 689 752

krob100 32822 35293 27229 28860 30502

Table 4.1: Best solutions found for a different number of ants

As displayed in Table 4.1, the numerical results indicate that the number of ants needed to find

the best solution is:

 berlin52 - 20% of the problem size

 eil76 - 5% of the problem size

Chapter 4 The ACO Parameters

71

 krob100 - 15% of the problem

Hence, the number of ants needed to find the best solution for all the three instances is at most

20% of the problem size.

4.6 Relative Influence of Pheromone Trail 𝜶 and Relative Influence

of Heuristic Information 𝜷

These two parameters are used to weight the influence of the pheromone trail and heuristic

information in the ants’ solution construction phase. In the case of 𝛼 = 0, nodes with better

heuristic preference have a higher probability of being selected, thus making the algorithm close

to a classical probabilistic greedy algorithm. Likewise, if 𝛽 = 0, only the pheromone trails are

considered to guide the constructive process, which may cause a quick stagnation. This

stagnation normally occurs if the pheromone trails associated with some transitions are

significantly higher than the remainder, making the ants always build the same solutions,

usually a local optima. Therefore, there is a need to establish a proper balance between the

importance of heuristic and pheromone trail information.

 However, in the proposed algorithm, the heuristic information 𝛽 is not considered in the

solution construction process. This would allow the proposed algorithm to simulate a real-world

situation where such kind of information may not be available or too expensive to compute.

 In order to estimate the value of the relative influence of pheromone trail parameter 𝛼 on

the proposed algorithm solution, four conditions were proposed which are 0.5𝑛2, 𝑛2, 0.5𝑛3 and

𝑛3 where 𝑛 represents the problem size.

𝑚 = 0.2𝑛 𝜌 = 0.5 colonies = 5

Benchmark

problems
𝑛

𝛼

0.5𝑛2 𝑛2 0.5𝑛3 𝑛3

berlin52 52 7775 7775 7920 7920

eil76 76 581 602 602 602

krob100 100 23142 2295 23656 23656

Table 4.2: Best solutions found for different value of the relative importance

of pheromone trail parameter 𝛼

Chapter 4 The ACO Parameters

72

 Table 4.2 presents the best result of the simulations for each condition. These results

denote that the most promising value for the pheromone trail parameter 𝛼 is either 0.5𝑛2 or 𝑛2.

4.7 Evaporation Rate

The pheromone evaporation rate 𝜌 which represents the degree of pheromone evaporation,

reflects the degree of mutual influence among ants. The value of 𝜌 prevents the infinite

accumulation of pheromone effectively and helps to eliminate the trails of solutions that may

bias the ants to search in non-promising areas of the search space. If the evaporation rate value

is too small, the global search ability of the proposed algorithm will be reduced. Conversely, it

will improve the global search ability but with slower convergence speed.

 In order to estimate the best value of the pheromone evaporation rate on the proposed

algorithm solution, four possible values were proposed for the pheromone evaporation rate:

 1 0.5𝑛2⁄

 1
𝑛2⁄

 1
0.5𝑛3⁄

 𝑛3

Besides, two different values of the pheromone trail parameter 𝛼 are considered for each of the

above conditions which are 0.5𝑛2 and 𝑛2.

 𝑚 = 0.2𝑛 colonies = 5

Benchmark

problem

𝛼 = 0.5𝑛2 𝛼 = 𝑛2

𝜌

1

0.5𝑛2

1

𝑛2
 0.5𝑛3 𝑛3

1

0.5𝑛2

1

𝑛2
 0.5𝑛3 𝑛3

berlin52 11854 7860 7860 7860 7920 7920 7920 7920

eil76 793 595 595 595 602 602 602 602

krob100 42295 23137 23137 23137 23137 23137 23137 23137

Table 4.3 : Different evaporation rate value when 𝛼 = 𝑛2 and 𝛼 = 0.5𝑛2

Chapter 4 The ACO Parameters

73

 Table 4.3 compares the performance of the proposed algorithm with a different

combination of parameter values for the test instances. These results show that for all the test

instances, good solutions were obtained when the value of the pheromone trail parameter 𝛼 is

0.5𝑛2 and the pheromone evaporation rate 𝜌 is either
1

𝑛2 or 0.5𝑛3 or 𝑛3.

Benchmark

problem

𝛼 = 0.5𝑛2

𝜌 =
1

0.5𝑛2
 𝜌 =

1

𝑛2
 𝜌 = 0.5𝑛3 𝜌 = 𝑛3

berlin52 11854, [44.518] 7860,[223.963] 7860,[231.437] 7860,[228.407]

eil76 793,[347.141] 595,[422.226] 595,[449.623] 595,[457.698]

krob100 42295,[5482.96] 23137,[6405.08] 23137,[6681.08] 23137,[6559.01]

Table 4.4 : Computational time for different evaporation rate value

 Further, Table 4.4 showed that among these three possible combinations, 𝛼 = 0.5𝑛2 and

𝜌 =
1

𝑛2 has a better computational time than others. Note that for each combination in Table

4.4, the value in brackets represents the computational time while the other value represents the

best solution found for that instances. Therefore, it can be concluded that the best parameters

combination for the proposed algorithm are 𝛼 = 0.5𝑛2 and 𝜌 =
1

𝑛2.

4.8 Comparative Analysis of the Proposed Algorithm Using

Different Set of Parameter Values

The parameter settings for the experimental runs are shown in Table 4.5. The parameter's value

for the proposed algorithm using Dorigo’s (MACOd) is from (Dorigo, Maniezzo, & Colorni,

1996) while the value of the parameters for the proposed algorithm (MACO) are summarised

from Section 4.5, Section 4.6 and Section 4.7.

Algorithm
Parameters

𝑚 𝛼 𝛽 𝜌 Colonies

MACOd 𝑛 1 - 0.5 10

MACO 0.2𝑛 0.5𝑛2 -
1

𝑛2
 10

Table 4.5: ACO parameters setting for the experimental runs

Chapter 4 The ACO Parameters

74

Benchmark

problem
 MACOd MACO

berlin52

Optimal solution 8257 7775

Number of colonies 10 8

CPU time (seconds) 3057.31 624.261

eil76

Optimal solution 559 567

Number of colonies 10 10

CPU time (seconds) 7482.93 1766.91

krob100

Optimal solution 24155 22842

Number of colonies 5 9

CPU time (seconds) 35812.3 11860.4

Table 4.6 : Comparative results for MACO and MACOd on berlin52,eil76 and

krob100 instances

Based on the results presented in Table 4.6, it can be seen that:

 For berlin52 : the MACO has better solutions quality, less number of iterations and

better CPU time when compared to the MACOd.

 For eil76 : although the solution quality of the M-ACO is slightly worse from the

MACOd, the CPU time recorded for the MACO is 76% less than the

CPU time of the MACOd.

 For krob100 : the MACO is more effective and efficient than the MACOd .

4.9 Conclusion

The ACO parameters of the MACO are chosen depending on the problem size. This will

significantly reduce the time spent for parameter tuning. In addition, the MACO has proved that

these parameters value are able to achieve good solutions for the test instances with less

computational time.

Chapter 4 The ACO Parameters

75

 Based on the computational experiments on these three datasets, it can be concluded that

the most possible ideal combinations of parameters for the MACO are:

 The number of ants is at most 20% of the problem size ; 𝑚 = 0.2𝑛

 The relative influence of the pheromone trail is 50% of the square of the problem size ;

𝛼 = 0.5𝑛2

 The pheromone evaporation rate is computed as an inverse square of the problem size;

𝜌 = 1 𝑛2⁄

 The next chapter will review some of the factors that play an important role in the

performance of the proposed algorithm. Thus, unless stated otherwise, the parameters in the

subsequent investigation are set to these values.

76

Chapter 5

Factors Influencing the Performance of the Proposed

Algorithm

This chapter discusses the implementations and factors that influence the performance of the

proposed algorithm. The investigation will be based on computation experiments, which will be

made on two set of benchmark problems; selected STSP and ATSP instances from the TSPLIB

standard library.

5.1 Introduction

In general, the performance of an algorithm can be evaluated mainly in two aspects which are

effectiveness and efficiency. Effectiveness may refer to the quality of the solution concerning

the objective function value while efficiency usually relates to the computational cost required

to run the algorithm. An algorithm is said to be efficient if its computational cost is at or below

some reasonable amount of time on an available computer. The two most common ways to

measure computational cost are speed and memory usage. The speed or time complexity

defines the amount of time needed for an algorithm to execute. Likewise, the memory usage

describes the amount of memory required for an algorithm to execute.

 However, in practice, there are various factors which can affect the efficiency and

computational time of an algorithm such as the language used, type of computing hardware and

optimisation in the compiler. To minimise the effects of such factors, few strategies have been

implemented on the proposed algorithm including variable fixing, bound tightening, a heuristic

approach used to construct the initial solution and a number of variables fixed in the tour

construction phase.

5.2 Test Instances

The experiments were carried out on 8 STSP and 6 ATSP benchmark problems selected from

the TSPLIB standard library. The selected benchmark problems range in size from 17 cities up

to 323 cities. The best-known solutions for these problems were taken from the (TSPLIB,

Chapter 5 Factors Influencing the Proposed Algorithm

77

2014b). A city in a benchmark problem is represented as a coordinate; therefore, the TSP cost

matrix is calculated by the Euclidean distance as in equation 5.1 and then rounded off to the

nearest integer.

𝑐𝑖𝑗 = 𝑖𝑛𝑡 (√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

) 5.1

The following measures are used in order to evaluate the performance of the proposed algorithm

in all the subsequent tables:

 Best-known solution - best solution given by the TSPLIB.

 Best – best solution found by the algorithm.

 Relative error (RE) - indicates how close the solution is to the best-known solution and

calculated by:

RE =
best solution − best known solution

best known solution
× 100 5.2

 CPU time – time, in seconds, when the best solution is found.

5.3 Termination Criterion

The proposed algorithm terminates when a specific number of colonies is reached. In this

research, the number of colonies is set to be 15% of the problem size. In addition, the following

conditions are applied when running the experiments:

 Time limit : The limit on the CPU time spent solving before terminating a search

is 150 seconds.

 Solution limit : The limit on the number of feasible solutions found before

terminating a search is set to 25.

5.4 Factors Influencing the Performance of the Search Strategy

Factors that were considered to improve the overall performance of the proposed algorithm are

the heuristic approach used to produce the initial solution, the bound strengthening, the number

Chapter 5 Factors Influencing the Proposed Algorithm

78

B
en

ch
m

ar
k

p
ro

b
le

m
s

B
es

t-
k
n
o

w
n

so
lu

ti
o

n

M
A

C
O

M

A
C

O
 w

it
h
 N

N
2

-o
p

t

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e

N
u

m
b

er
 o

f

co
lo

n
ie

s

b
er

li
n
5

2

7
5

4
2

7
7

7
5

3
.0

9

9
6

.9
9

8

7
7

7
5

3
.0

9

2
0

5
.7

7

ei
l7

6

5
3

8

5
6

7

5
.3

9

4
6

7
.1

1

0

5
3

8

0
.0

0

1
9

5
.5

1

6

p
r7

6

1
0

8
1
5

9

1
0

9
0
4

3

0
.8

2

1
1

0
4

.3

7

1
0

9
0
4

3

0
.8

2

5
8

9
.1

5

8

k
ro

a1
0

0

2
1

2
8
2

2
1

9
8
1

3
.2

8

5
7

7
6

.7
2

1
3

2
1

2
8
2

0
.0

0

2
9

8
3

.1
4

7

k
ro

b
1

0
0

2
2

1
4
1

2
2

2
1
1

0
.3

2

5
3

6
9

.0
5

1
5

2
2

1
9
9

0
.2

6

2
7

3
6

.9
8

8

p
r1

3
6

9
6

7
7
2

9
6

7
7
2

0
.0

0

1
7

2
2
6

.5

1
1

9
6

7
7
2

0
.0

0

1
6

1
4
5

1
1

u
1

5
9

4

2
0

8
0

4
2

0
8
0

0
.0

0

2
0

1
1

2

4
2

0
8
0

0
.0

0

1
0

7
9
3

.7

8

p
r2

2
6

8
0

3
6
9

8
0

3
6
9

0
.0

0

1
0

1
5
4

5

1
8

8
0

3
6
9

0
.0

0

2
7

1
4
7

.2

6

T
ab

le
 5

.1
:

E
ff

ec
t

o
f

d
if

fe
re

n
t

h
eu

ri
st

ic
s

ap
p
li

ed
 i

n
 t

h
e

fi
rs

t
co

lo
n
y
 o

n
 S

T
S

P
 b

en
ch

m
ar

k
 p

ro
b

le
m

s

B
en

ch
m

ar
k

p
ro

b
le

m
s

B
es

t-
k
n
o

w
n

so
lu

ti
o

n

M
A

C
O

M

A
C

O
 w

it
h
 N

N
2

-o
p

t

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e

N
u

m
b

er
 o

f

co
lo

n
ie

s

b
r1

7

3
9

6
6

6
9

.2
3

0
.1

8

1

4
2

7
.6

9

0

1

ft
v
3

3

1
2

8
6

1
3

6
9

6
.4

5

3
.9

3
1

5

1
3

4
0

4
.2

0

1
.5

7
6

3

ft
v
4

7

1
7

7
6

1
8

2
5

2
.7

6

6
3

.2
1
2

7

1
9

0
7

7
.3

8

3
7

.6
4
3

7

ft
7

0

3
8

6
7
3

3
9

0
1
7

0
.8

9

2
6

7
.1

7

7

3
9

0
1
5

0
.8

8

5
3

0
.0

3
7

9

ft
v
1

7
0

2

7
5

5

2
7

5
5

0
.0

0

1
5

4
8
4

.3

1
4

2
7

6
4

0
.3

3

4
4

1
8

.4
2

1
3

rb
g
3

2
3

1
3

2
6

1
9

2
0

4
4

.8
0

1
5

6
4
5

.1

1
6

1
6

8
0

2
6

.7
0

0

1

T
ab

le
 5

.2
:

E
ff

ec
t

o
f

d
if

fe
re

n
t

h
eu

ri
st

ic
s

ap
p
li

ed
 i

n
 t

h
e

fi
rs

t
co

lo
n
y
 o

n
 A

T
S

P
 b

en
ch

m
ar

k
 p

ro
b

le
m

s

Chapter 5 Factors Influencing the Proposed Algorithm

79

of variables fixed in the tour construction phase and the variable-fixing rules.

5.4.1 Impact of Different Solution Approach Used in the First Colony

In the proposed algorithm, the best solution found in the first colony is set as the upper bound

for the objective function. This value will be updated immediately if a better solution is found.

Ever since the initial solution will become the upper bound for the objective function, a good

initial solution would be an important factor for achieving good results.

 To investigate the effect of a different approach used in the first colony to produce the

initial solution, a simple Nearest-neighbour with 2-opt (NN2-opt) heuristic is used as a

comparison. Table 5.1 and Table 5.2 show the comparative results conducted on 8 STSP and 6

ATSP benchmark problems. The best solution for each instance is detailed in bold.

 As can be seen in Table 5.1, the MACO with NN2-opt heuristic produces better quality

solutions than the MACO in 37.5% of the instances (3 out of 8) and finds the same best

solutions with the MACO in 62.5% of the eight instances including berlin52, pr76, pr136, u159

and pr226. Further, in most of the instances, the MACO with NN2-opt heuristic demonstrates

lower CPU time and relative error than the MACO. Also, when both heuristics found the same

best solution, the CPU time and number of colonies for the MACO with NN2-opt are better than

the MACO heuristic.

 Likewise, Table 5.2 shows that the MACO with NN2-opt heuristic obtains better quality

solutions in 66.7% of the ATSP instances (4 out of 6) while the MACO finds better quality

solutions in 33.3% of the six instances. Also, the average relative error and CPU time for the

MACO with NN2-opt is less than the MACO for most of the benchmark problems.

 In general, the numerical results in Table 5.1 and Table 5.2 illustrated that the MACO

with NN2-opt heuristic produced better quality solutions and CPU time than the MACO for

both symmetric and asymmetric TSP benchmark problems. Hence, as expected, a different

heuristic approach used to generate the initial solution can affect the overall performance of the

proposed algorithm. In particular, the MACO with NN2-opt heuristic adopted in the first colony

has produced a better initial solution and provides good upper bounds which have contributed to

positive results on the overall performance of the proposed algorithm.

Chapter 5 Factors Influencing the Proposed Algorithm

80

5.4.2 Impact of Bound Strengthening

Another strategy executed for improving the effectiveness and efficiency of the proposed

algorithm is to strengthen the upper bound of the objective function. Upper bounds play a

significant role in improving the convergence rate of an algorithm by allowing the fathoming of

nodes whose lower bound is greater than the smallest upper bound and therefore reducing the

final size of the B&B tree. Moreover, tightening the upper bounds can significantly reduce the

solution space due to the combinatorial nature of the problem. An upper bound on the solution

of a given node can be obtained in several ways. In the proposed algorithm, the best-so-far

solution is used to update the value of the upper bound. To further understand the impact of the

upper bound on the performance of the MACO, two different values were considered for the

upper bounds of the objective function:

 UBI : The best-so-far solution

 UBII : 1.1 of the best-so-far solution

 Table 5.3 illustrates the results of running the proposed algorithm on 8 symmetric TSP

benchmark problems with different upper bound values imposed on the objective function. The

experimental results showed that UBI and UBII have tremendously reduced the CPU time for

most of the benchmark problems. As shown in Table 5.3, the UBI obtains better quality

solutions in 25% of the instances (2 out of 8) and worse quality solutions in 37.5% of the

instances (3 out of 8) while the UBII and ‘No Bound’ find better quality solutions in 37.5% of

the instances (3 out of 8) and worse solutions in 12.5% of the instance (1 out of 8), respectively.

 Nevertheless, all the three conditions found the same best solution to 2 instances which

are pr136 and u159. For pr136 instance, the ‘No Bound’ obtained the best solution with the

minimum CPU time followed by the UBI and UBII with respectively, 26% and 75% more CPU

time than the first condition. Contrarily, for u159 instance, the UBII found the best solution with

the minimum CPU time while the UBI and ‘No Bound’ recorded 56% and 70% more CPU time

than the UBII, respectively. In addition, the UBII found the optimal solutions to u159 and pr226

instances with great CPU time.

 On the other hand, Table 5.4 shows that for the 6 instances, the UBI finds better quality

solution in 50% of the instances (3 out of 6) and in 16.7% of the instances (1 out of 6) for the

UBII and ‘No Bound’, respectively. For br17 instance, all the 3 cases found the same best

solution but the minimum CPU time is reported for the UBI.

Chapter 5 Factors Influencing the Proposed Algorithm

81

B
en

ch
m

ar
k

p

ro
b

le
m

s

B
es

t-

k
n

o
w

n

so
lu

ti
o
n

N
o
 B

o
u

n
d

U
B

 I

U
B

 I
I

B
es

t
R

E

C
P

U
 t

im
e

N
o
.

o
f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e
N

o
.

o
f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e
N

o
.

o
f

co
lo

n
ie

s

b
er

li
n

5
2

7
5
4
2

7
7
7
5

3
.0

9

9
6
.9

9
4

8

7
7
7
5

3
.0

9

1
7
0

.2
3

6

8

7
7
9
2

3
.3

1

1
8
7

.5
1

3

7

ei
l7

6

5
3
8

5
6
7

5
.3

9

4
6
7

.1
0

2

1
0

5
3
8

0
.0

0

5
0
.0

4
8

1
0

5
3
8

0
.0

0

1
8
7

.5
3

8

8

p
r7

6

1
0
8
1

5
9

1
0
9
0

4
3

0
.8

2

1
1
0
4

.3

7

1
0
8
1

5
9

0
.0

0

1
3
3
3

.2
5

6

1
0
9
0

4
3

0
.8

2

1
3
1

.4
7

3

k
ro

a1
0
0

2
1
2
8

2

2
1
9
8

1

3
.2

8

5
7
7
6

.7
2

1
3

2
2
2
0

5

4
.3

4

1
1
3
6

.9
4

7

2
1
3
4

5

0
.3

0

3
0
2
3

.3
9

1
2

k
ro

b
1
0
0

2
2
1
4

1

2
2
2
1

1

0
.3

2

5
3
6
9

.0
5

1
5

2
2
3
9

6

1
.1

5

7
4
0
5

.3
4

1
5

2
2
2
3

9

0
.4

4

6
0
2
3

.6
3

1
1

p
r1

3
6

9
6
7
7

2

9
6
7
7

2

0
.0

0

1
7
2
2

6
.5

1

1

9
6
7
7

2

0
.0

0

2
1
6
6

4
.2

1

5

9
6
7
7

2

0
.0

0

3
0
0
8

1
.3

2

0

u
1
5
9

4
2
0
8

0

4
2
0
8

0

0
.0

0

2
0
1
1

2

4
2
0
8

0

0
.0

0

8
8
3

.7
1

8

2

4
2
0
8

0

0
.0

0

5
9
5

.9
4

1

2

p
r2

2
6

8
0
3
6

9

8
0
3
6

9

0
.0

0

1
0
1
5

4
5

1
8

8
0
7
6

9

0
.5

0

9
1
5
8

3
.7

1

6

8
0
3
6

9

0
.0

0

3
0
0
1

9

6

T
ab

le
 5

.3
:

S
T

S
P

:
Im

p
ac

t
o

f
d

if
fe

re
n
t

u
p
p

er
 b

o
u
n
d

 v
al

u
es

 o
n
 t

h
e

ef
fi

ci
en

cy
 o

f
th

e
p
ro

p
o

se
d

 a
lg

o
ri

th
m

B
en

ch
m

ar
k

p

ro
b

le
m

s

B
es

t
-

k
n

o
w

n

so
lu

ti
o
n

N
o
 B

o
u

n
d

U
B

 I

U
B

 I
I

B
es

t
R

E

C
P

U

ti
m

e

N
o
.

o
f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e
N

o
.

o
f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e
N

o
.

o
f

co
lo

n
ie

s

b
r1

7

3
9

6
6

6
9
.2

3

0
.1

8

1

6
6

6
9
.2

3

0
.0

5
7

1

6
6

6
9
.2

3

0
.0

9
1

1

ft
v
3

3

1
2
8
6

1
3
6
9

6
.4

5

3
.9

3
1

5

1
3
2
4

2
.9

5

2
.7

8
8

5

1
3
8
8

7
.9

3

2
.5

7
2

4

ft
v
4

7

1
7
7
6

1
8
2
5

2
.7

6

6
3
.2

1
2

7

1
7
8
4

0
.4

5

3
1
.0

3

7

1
7
9
0

0
.7

9

3
8
.9

4
2

7

ft
7
0

3
8
6
7

3

3
9
0
1

7

0
.8

9

2
6
7

.1
7

7

3
8
8
0

8

0
.3

5

3
9
.6

6
7

9

3
8
9
6

7

0
.7

6

1
3
5

.9
4

5

1
0

ft
v
1

7
0

2
7
5
5

2
7
5
5

0
.0

0

1
5
4
8

4
.3

1

4

2
8
2
5

2
.5

4

5
1
3

.2
4

2

6

2
7
5
5

0
.0

0

1
1
2
2

.9
8

5

rb
g
3

2
3

1
3
2
6

1
9
2
0

4
4
.8

0

1
5
6
4

5
.1

1

6

2
9
8
0

1
2
4

.7
4

5
6
7

.4
9

2

4

2
3
9
9

8
0
.9

2

2
4
7

.2
4

2

 T
ab

le
 5

.4
:

A
T

S
P

:
Im

p
ac

t
o
f

d
if

fe
re

n
t

u
p
p
er

 b
o

u
n

d
 v

al
u
es

 o
n
 t

h
e

ef
fi

ci
en

cy
 o

f
th

e
p

ro
p

o
se

d
 a

lg
o

ri
th

m

Chapter 5 Factors Influencing the Proposed Algorithm

82

 Thus, it can be concluded that having a sharp upper bound on the objective function

reduces the CPU time while not affecting the quality of the solutions. According to the

numerical results in Table 5.3 and Table 5.4, the ideal upper bound for the STSP is the UBII

(1.1 times of the best-so-far solution) while the best upper bound for the ATSP is UBI (the best-

so-far solution).

5.4.3 Number of Variables Fixed in the Tour Construction Phase

As mentioned in Chapter 3, the number of variables fixed in the tour construction phase is 50%

of the problem size (Case I). To investigate the impact of this value on the overall performance

of the proposed algorithm, two more conditions were considered:

 Case 0 : 25% of the problem size

 Case II : 75% of the problem size

Table 5.5 and Table 5.6 , respectively, display the experimental results for Case 0, Case I and

Case II on symmetric and asymmetric TSP instances.

 As presented in Table 5.5, the benchmark problems were solved to optimality in 87.5%

of the instances (7 out of 8) for Case 0 , in 37.5% in relation to Case I (3 out of 8) and in

12.5% in relation to Case II (1 out of 8). The average relative error recorded for Case 0 is 0.6%,

1.61% for Case I and 27.37% for Case II. However, in spite of the solution quality, Case II

displayed the lowest average CPU time followed by Case I and Case 0. Also, Table 5.5 shows

that the best solutions for the two largest benchmark problems considered which are u159 and

pr226 instances were obtained for Case 1.

 On the other hand, the experimental results in Table 5.6 illustrate that the best solutions

for the ATSP were found when the number of variables fixed in the tour construction phase is

25% of the problem size. For all the instances, Case 0 found the optimal solutions in 50% of

instances (3 out of 6) with an average relative error of 5.25%. The average relative error

reported for Case I and Case II are 20.7% and 36.5% respectively.

 For instance, less number of variables fixed in the tour construction phase would lead to a

better solution quality for both symmetric and asymmetric TSP. However, if the main

consideration is to improve the effectiveness of the proposed algorithm, Case I would be a

better option for a good trade-off between the solution quality and CPU time.

Chapter 5 Factors Influencing the Proposed Algorithm

83

B
en

ch
m

ar
k

p

ro
b

le
m

s

B
es

t

k
n

o
w

n

so
lu

ti
o
n

N
u

m
b

er
 o

f
v
ar

ia
b

le
s

fi
x
ed

2
5
%

5

0
%

7

5
%

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f
co

lo
n

ie
s

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f
co

lo
n

ie
s

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f
co

lo
n

ie
s

b
er

li
n

5
2

7
5
4
2

7
5
4
2

0

6
4
.2

7
3

3

7
7
7
5

3
.0

9

9
6
.9

9
4

8

1
0
4
1

3

3
8
.0

7

1
7
7

.0
7

8

8

ei
l7

6

5
3
8

5
3
8

0

1
6
2

.5
4

2

3

5
6
7

5
.3

9

4
6
7

.1
0

2

1
0

7
3
2

3
6
.0

6

6
2
.9

1
3

1
1

p
r7

6

1
0
8
1

5
9

1
0
8
1

5
9

0

5
6
6

.3
8

2

1
0
9
0

4
3

0
.8

2

1
1
0
4

.3

7

1
3
4
1

0
1

2
3
.9

9

1
5
8

.6
7

3

4

k
ro

a1
0
0

2
1
2
8

2

2
1
2
8

2

0

3
9
4
9

.1
7

4

2
1
9
8

1

3
.2

8

5
7
7
6

.7
2

1
3

3
1
7
0

7

4
8
.9

9

3
8
8
2

.4
5

1
4

k
ro

b
1
0
0

2
2
1
4

1

2
2
1
4

1

0

3
1
9
4

.6
4

3

2
2
2
1

1

0
.3

2

5
3
6
9

.0
5

1
5

3
1
1
8

5

4
0
.8

5

5
3
0
3

.8
6

1
5

p
r1

3
6

9
6
7
7

2

9
6
7
7

2

0

1
4
5
7

8
.5

5

9
6
7
7

2

0
.0

0

1
7
2
2

6
.5

1

1

1
2
0
8

1
7

2
4
.8

5

1
9
9
1

1
.5

1

9

u
1
5
9

4
2
0
8

0

4
2
0
8

0

0

6
1
8
8

.1

2

4
2
0
8

0

0
.0

0

2
0
1
1

2

4
2
0
8

0

0
.0

0

2
1
7
4

.8
7

3

p
r2

2
6

8
0
3
6

9

8
4
2
3

0

4
.8

0

1
3
9
7

6
2

2
1

8
0
3
6

9

0
.0

0

1
0
1
5

4
5

1
8

8
5
3
3

8

6
.1

8

7
4
3
1

4
.1

2

8

T
ab

le
 5

.5
:

S
T

S
P

:
V

ar
ia

n
ts

 p
er

ce
n
ta

g
e

o
f

v
ar

ia
b
le

s
fi

x
ed

B
en

ch
m

ar
k

p
ro

b
le

m
s

B
es

t
k

n
o
w

n

so
lu

ti
o
n

N
u

m
b

er
 o

f
v
ar

ia
b

le
s

fi
x
ed

2
5
%

5

0
%

7

5
%

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e
N

u
m

b
er

 o
f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e
N

u
m

b
er

 o
f

co
lo

n
ie

s

b
r1

7

3
9

4
0

2
.5

6

2
.6

7
7

3

6
6

6
9
.2

3

0
.1

8

1

5
7

4
6
.1

5

0
.3

1
8

3

ft
v
3

3

1
2
8
6

1
2
8
6

0
.0

0

1
7
.2

9
5

4

1
3
6
9

6
.4

5

3
.9

3
1

5

1
8
2
2

4
1
.6

8

1
.3

4
3

4

ft
v
4

7

1
7
7
6

1
7
7
6

0
.0

0

1
8
.3

5
8

3

1
8
2
5

2
.7

6

6
3
.2

1
2

7

2
5
0
5

4
1
.0

5

2
4
.7

0
5

6

ft
7
0

3
8
6
7

3

3
8
7
0

7

0
.0

9

7
9
.1

2
7

3

3
9
0
1

7

0
.8

9

2
6
7

.1
7

7

4
1
6
0

0

7
.5

7

9
7
.7

6
5

9

ft
v
1

7
0

2
7
5
5

2
7
5
5

0
.0

0

3
6
9
1

.5
5

2

2
7
5
5

0
.0

0

1
5
4
8

4
.3

1

4

3
0
4
4

1
0
.4

9

1
3
3
4

5
.5

2

5

rb
g
3

2
3

1
3
2
6

1
7
1
0

2
8
.9

6

1
8
1
8

0
1

4
5

1
9
2
0

4
4
.8

0

1
5
6
4

5
.1

1

6

2
2
8
4

7
2
.2

5

4
5
6
7

.9
5

2
9

T
ab

le
 5

.6
:

A
T

S
P

:
V

ar
ia

n
ts

 p
er

ce
n
ta

g
e

o
f

v
ar

ia
b
le

s
fi

x
ed

Chapter 5 Factors Influencing the Proposed Algorithm

84

5.4.4 Variable-Fixing Rules

According to a survey by Atamturk and Savelsbergh (Atamturk & Savelsbergh, 2005), variable-

fixing procedures are used in many of linear-relaxation-based solvers. In this research, the

variable-fixing rules are considered as an essential component of the proposed algorithm due to

its significant influence on the algorithm computational time. Indeed, a proper implementation

of this procedure is critical to speed up the resolution of the successive decision problems.

 In general, the ‘fixing’ operation means that a variable gets permanently assigned to a

constant value. However, it was not clear that the solver used in this research could detect all the

redundancies introduced by the variable-fixing rules in the tour construction phase and thus has

caused the high computational times. As a consequence, forcing the variable-fixing explicitly

using the fix, drop, unfix and restore commands may eliminate those redundant constraints. By

doing this, only the immediate relevant variables and constraints are sent to the solver. Hence, it

helps to enhance the computational performance of the symmetric and asymmetric TSP.

 The variable fixing-rules use for this proposed algorithm are summarised as follows:

For any unfixed variable 𝑥𝑖𝑗 :

(a) if 𝑖 is the initial city and 𝑥𝑖𝑗 = 1 , then:

 i) 𝑢𝑖 can be assigned a rank of 1;

 ii) 𝑥𝑖𝑘 can be fixed to 0 for all 𝑘 ∈ 𝑉, 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗.

(b) if 𝑢𝑖 ≠ 0 and 𝑢𝑗 ≠ (𝑛 − 1) then ignore the out-degree and in-degree constraints as in

 equation 1.8 and 1.9, respectively. Thus;

 i) let 𝑢𝑗 = (𝑢𝑖 + 1) ;

 ii) let 𝑥𝑖𝑗 equal to 1 and 𝑥𝑖𝑘 to 0 for all 𝑘 ∈ 𝑉, 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗.

5.4.4.1 An Illustrative Example

The general procedure of the variable-fixing rules implemented in the proposed algorithm is

shown in Figure 5.1- Figure 5.5. The straight line arrow represents x[k, k1] = 1 while dashed

arrow represent x[k, k1] = 0. Consider a 6-city instance with 𝑉 = {1,2,3,4,5,6} :

Chapter 5 Factors Influencing the Proposed Algorithm

85

Step 1 : In Figure 5.1, if the first node selected is 𝑘 = 2 and the shortest distance from

node 2 is to node 3; fix the position of the first node by letting 𝑢[2] = 1 and

x[2,3] = 1. Following the rules stated in (a) ii) above, let x[k, k1] = 0 for all

𝑘1 ≠ 3 and 𝑘 ≠ 𝑘1.

Figure 5.1: Fixing the position and out-degree arc of the first node

Step 2(a) : Repeat Step 1 for 𝑘 = 3 and next(𝑘) = 1. See Figure 5.2

Figure 5.2: Fixing the position and out-degree arcs of the second node

Step 2(b) : When the position of the node considered is greater than 1, the in-degree

constraints implies that x[k1, k] = 0 for all 𝑘1 ≠ 2 and 𝑘 ≠ 𝑘1. See Figure 5.3.

Chapter 5 Factors Influencing the Proposed Algorithm

86

Figure 5.3: Fixing the position and in-degree arcs of the second node

Step 3 : Repeat Step 1-2 for all nodes excluding the last node. See Figure 5.4 and Figure

5.5.

Figure 5.4: The nodes position and out-degree arcs of the fixed nodes

Figure 5.5: The in-degree arcs of the fixed nodes

Chapter 5 Factors Influencing the Proposed Algorithm

87

B
en

ch
m

ar
k

p
ro

b
le

m
s

B
es

t-
k
n
o

w
n

so
lu

ti
o

n

W
it

h
o

u
t

v
ar

ia
b

le
-f

ix
in

g
 r

u
le

s
W

it
h
 v

ar
ia

b
le

-f
ix

in
g
 r

u
le

s

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e

N
u

m
b

er
 o

f

co
lo

n
ie

s

b
er

li
n
5

2

7
5

4
2

7
7

7
5

3
.0

9

4
5

5
.0

4

8

7
7

7
5

3
.0

9

9
6

.9
9
4

8

ei
l7

6

5
3

8

5
5

5

3
.1

6

1
7

3
7

.1
9

1
1

5
6

7

5
.3

9

4
6

7
.1

0
2

1

0

p
r7

6

1
0

8
1
5

9

1
0

9
7
9

1

1
.5

1

7
6

7
4

.9
0

1
1

1
0

9
0
4

3

0
.8

2

1
1

0
4

.3

7

k
ro

a1
0

0

2
1

2
8
2

2
1

3
4
5

0
.3

0

2
5

7
0
4

.6
0

1

4

2
1

9
8
1

3
.2

8

5
7

7
6

.7
2

1

3

k
ro

b
1

0
0

2
2

1
4
1

2
2

5
8
0

1
.9

8

2
4

9
5
1

.7
0

1

5

2
2

2
1
1

0
.3

2

5
3

6
9

.0
5

1

5

p
r1

3
6

9
6

7
7
2

9
6

7
7
2

0

5
2

4
9
7

.3

1
4

9
6

7
7
2

0
.0

0

1
7

2
2
6

.5

1
1

u
1

5
9

4

2
0

8
0

4
2

0
8
0

0

7
6

3
0

.5

2

4
2

0
8
0

0
.0

0

2
0

1
1

2

p
r2

2
6

8
0

3
6
9

9
0

6
3
5

1
2

.7
7

2
2

7
8
5

6

3
4

8
0

3
6
9

0
.0

0

1
0

1
5
4

5

1
8

T
ab

le
 5

.7
:

S
T

S
P

:
Im

p
ac

t
o
f

v
ar

ia
b
le

-f
ix

in
g
 p

ro
ce

d
u
re

 o
n
 t

h
e

p
er

fo
rm

an
ce

 o
f

th
e

p
ro

p
o

se
d

 a
lg

o
ri

th
m

B
en

ch
m

ar
k

p
ro

b
le

m
s

B
es

t-
k
n
o

w
n

so
lu

ti
o

n

W
it

h
o

u
t

v
ar

ia
b

le
-f

ix
in

g
 r

u
le

s
W

it
h
 v

ar
ia

b
le

-f
ix

in
g
 r

u
le

s

B
es

t
R

E

C
P

U
 t

im
e

N
u

m
b

er
 o

f

co
lo

n
ie

s
B

es
t

R
E

C

P
U

 t
im

e

N
u

m
b

er
 o

f

co
lo

n
ie

s

b
r1

7

3
9

6
6

6
9

.2
3

1
.8

0
6

1

6
6

6
9

.2
3

0
.1

8

1

ft
v
3

3

1
2

8
6

1
3

6
9

6
.4

5

5
0

.7

5

1
3

6
9

6
.4

5

3
.9

3
1

5

ft
v
4

7

1
7

7
6

2
0

7
6

1
6

.8
9

2
2

3
.0

2
4

7

1
8

2
5

2
.7

6

6
3

.2
1
2

7

ft
7

0

3
8

6
7
3

3
9

0
1
7

0
.8

9

4
4

2
3

.3
4

7

3
9

0
1
7

0
.8

9

2
6

7
.1

7

7

ft
v
1

7
0

2

7
5

5

2
8

8
2

4
.6

1

4
3

9
4
9

.2

2
4

2
7

5
5

0
.0

0

1
5

4
8
4

.3

1
4

rb
g
3

2
3

1
3

2
6

1
9

6
9

4
8

.4
9

1
8

9
1
1

4

4
2

1
9

2
0

4
4

.8
0

1
5

6
4
5

.1

1
6

T
ab

le
 5

.8
:

A
T

S
P

:
Im

p
ac

t
o
f

v
ar

ia
b
le

-f
ix

in
g
 p

ro
ce

d
u
re

 o
n
 t

h
e

p
er

fo
rm

an
ce

 o
f

th
e

p
ro

p
o

se
d

 a
lg

o
ri

th
m

Chapter 5 Factors Influencing the Proposed Algorithm

88

5.4.4.2 Computational Results and Numerical Analysis

Table 5.7 shows that the proposed algorithm with the variable-fixing rules obtains better quality

solutions in 37.5% of the benchmark problems (3 out of 8) while the proposed algorithm without

the variable-fixing rules found better quality solutions in 25% of the benchmark problems (2 out

of 8). Although both approaches found the same best solutions for berlin52, pr136 and u159

instances, the CPU times reported for the proposed algorithm with the variable-fixing rules is

less than half of the CPU time reported for the other algorithm. Besides, the average CPU time

for the proposed algorithm with the variable-fixing rules has improved by 61.6% when

compared to the average CPU time for the proposed algorithm without the variable-fixing rules.

 Likewise, as presented in Table 5.8, the results obtain by the proposed algorithm with the

variable-fixing rules are more efficient and effective than the proposed algorithm without the

variable-fixing rules. The average relative error for the proposed algorithm with the variable-

fixing rules and without variable-fixing rules are 20.7% and 24.43% respectively. In conclusion,

in spite of the solution quality, the variable-fixing rule implemented in the proposed algorithm

has successfully reduced the average CPU time by 86.7%.

5.5 Conclusion

The experimental results have shown that each factor has a different impact on the overall

performance of the proposed algorithm. In particular, a good initial solution produced in the

first colony leads to a better quality solution while strengthening the bounds help to reduce the

CPU time and contributes to fast convergence. Besides, fixing a small number of nodes in the

tour construction phase could produce better quality solutions but with higher CPU time. In

most cases, the less number of nodes fixed could improve the effectiveness of the proposed

algorithm while a higher number of nodes fixed could improve the efficiency of the proposed

algorithm. Also, applying the variable-fixing rules in the tour construction phase could

significantly improve the efficiency of the proposed algorithm.

 Therefore, the empirical results suggest the following strategies to enhance the

performance of the proposed algorithm for solving the TSPs:

Chapter 5 Factors Influencing the Proposed Algorithm

89

 The NN2-opt heuristic will be used as a tour construction approach in the first colony of

the proposed algorithm for both symmetric and asymmetric TSPs.

 The ideal upper bound for the proposed algorithm are :

 Symmetric TSP : upper bound = 1.1(best-so-far solution)

 Asymmetric TSP : upper bound = best-so-far solution

 A number of variables fixed in the solution construction phase are:

 Symmetric TSP : 50% of the problem size

 Asymmetric TSP : 25% of the problem size.

 Although the solver could detect all the redundancies, the experimental results

demonstrated that it is best to remove all the possible redundancies in the algorithm which also

helps to speed up the CPU time.

 In the next chapter, all experiments of the proposed algorithm will be based on the above

settings, except when indicated differently.

90

Chapter 6

Experimental Results for the Proposed Algorithm

This chapter provides a comprehensive comparison of the proposed algorithm with other

algorithms available in the literature. Each algorithm is compared according to the types of TSP

benchmark problems solved such as symmetric or asymmetric.

6.1 Test Instances and Termination Criterion

A total of 33 TSP benchmark problems consisting of 15 ATSP and 18 STSP instances are used

to evaluate both the effectiveness and efficiency of the proposed algorithm. For the asymmetric

TSP, the size of the instance is shown by the numerical suffix in the dataset name except for the

problem class ‘ftv’ for which the size of instances is equal to number of cities + 1. For example,

for ftv33, the problem size is 34 while for ftv47, the problem size is 48.

 The terminating condition is the number of colonies (iterations). The maximum number

of colonies for each instance is listed in Table 6.1.

6.2 Computational Results and Numerical Analysis for the Proposed

Algorithm Applied to the Symmetric TSP

 Two kinds of experiments were carried out to evaluate the performance of the proposed

algorithm (MACO). The first experiment examines MACO’s performance on symmetric TSP

instances using a set of ACO parameter values as suggested in Chapter 4 against a set of ACO

parameter values recommended by (Dorigo, Maniezzo, & Colorni, 1996). For simplification,

the latter algorithm is called MACOd. The second set of experiments compares the performance

of the MACO with other studies in the literature applied to symmetric TSP instances. For each

benchmark problem, the results of the MACO algorithm are reported as best, relative error

(RE), number of colonies and CPU time.

 In all the following tables, column ‘best-known solution’ denotes the best tour length as

reported in the TSPLIB standard library, column ‘best’ denotes the best solution found by each

algorithm and column ‘RE’ reveals the percentage deviation of the best solution (best) in

Chapter 6 Experimental Results

91

comparison to the best-known solution. The ‘-‘ sign indicates the result was not available in the

respective study or source. Most of all, it should be noted that the comparisons are only based

on the quality of the best solutions on comparable results. Therefore, a better algorithm is

considered to be those whose values of best and relative error (RE) are smaller than those of the

other algorithms.

No Instance Max no. of colonies No Instance Max no. of colonies

1 eil51 8 18 pcb442 66

2 berlin52 8 19 br17 3

3 st70 11 20 ftv33 5

4 eil76 11 21 ftv35 5

5 pr76 11 22 ftv38 6

6 kroa100 15 23 p43 6

7 krob100 15 24 ftv44 7

8 eil101 15 25 ftv47 7

9 lin105 16 26 ry48p 7

10 pr124 19 27 ft53 8

11 pr136 20 28 ftv55 8

12 ch150 23 29 ftv64 10

13 u159 24 30 ftv70 11

14 d198 30 31 ft70 11

15 kroa200 30 32 kro124p 15

16 pr226 34 33 ftv170 26

17 lin318 48

Table 6.1: Maximum number of colonies for the symmetric and asymmetric TSP instances

Benchmark

Problems

Best-known

solution
Best RE

No. of

Colonies
CPU time

berlin52 7542 7916 4.96 6 168.656

st70 675 683 1.19 5 94.809

eil76 538 538 0 5 35.001

pr76 108159 108159 0 7 698.82

kroa100 21282 21282 0 4 344.34

krob100 22141 22199 0.26 12 7543.09

u159 42080 42080 0 8 7703.1

pr226 80369 80369 0 7 33704.5

Table 6.2: The performance of the MACO on 8 STSP instances

Chapter 6 Experimental Results

92

In the first experiments, the results obtained by the MACO algorithm are given in Table 6.2 and

the results obtained by the MACOd are given in Table 6.3. Results of these experiments are

comparatively provided in Table 6.5 where the best results are emphasised in bold.

 Table 6.2 shows that the MACO finds the best-known solution to all benchmark problems

except for berlin52, st70 and krob100 while the MACOd finds the optimal solution to 1 instance

as depicted in Table 6.3. However, for berlin52, st70 and krob100, if the number of nodes fixed

in the tour construction phase is reduced from 50% to 25% of the problem size, those instances

were solved to optimality as shown in Table 6.4.

Benchmark

Problems

Best-known

solution
Best RE

No. of

Colonies
CPU time

berlin52 7542 7542 0 3 20.29

st70 675 696 3.11 3 684.33

eil76 538 546 1.49 3 57.24

pr76 108159 114656 6.01 3 2796.42

kroa100 21282 22152 4.09 2 273.2

krob100 22141 22971 3.75 3 2117.99

u159 42080 44597 5.98 5 5567.22

pr226 80369 81063 0.86 2 7745.59

Table 6.3: The performance of the MACOd on 8 STSP instances

Benchmark

Problems

Best-known

solution
Best RE

No. of

Colonies
CPU time

berlin52 7542 7542 0 2 174.48

st70 675 675 0 3 977.90

krob100 22141 22141 0 10 15672.6

Table 6.4: The performance of the MACO when the variables fixed is 25%

 of the problem size

 Further, as can be seen in Table 6.5, for the 8 STSP benchmark problems, the MACO

finds the optimal solutions to 5 instances while the MACOd finds the optimal solution to 1

instance. Although the MACOd found the optimal solution for berlin52, the algorithm yields

worse solutions for the other 7 instances. Besides, the computational results displayed in Table

6.5 also show that the MACOd easily gets trapped in local optima thus reported less number of

colonies and CPU time. Likewise, the relative errors of the MACOd are much higher than the

MACO, indicating that the MACO has a better search capability than the MACOd.

Chapter 6 Experimental Results

93

Benchmark

Problems

Best-

known

solution

Algorithm Best RE
No. of

colonies
CPU time

berlin52 7542
MACOd 7542 0 3 20.29

MACO 7916 4.96 6 168.656

st70 675
MACOd 696 3.11 3 684.33

MACO 683 1.19 5 94.809

eil76 538
MACOd 546 1.49 3 57.24

MACO 538 0 5 35.001

pr76 108159
MACOd 114656 6.01 3 2796.42

MACO 108159 0 7 698.82

kroa100 21282
MACOd 22152 4.09 2 273.2

MACO 21282 0 4 344.34

krob100 22141
MACOd 22971 3.75 3 2117.99

MACO 22199 0.26 12 7543.09

u159 42080
MACOd 44597 5.98 5 5567.22

MACO 42080 0 8 7703.1

pr226 80369
MACOd 81063 0.86 2 7745.59

MACO 80369 0 7 33704.5

Table 6.5: Comparative experimental results

 In the second experiments, the comparisons are made with 9 algorithms presented in the

literature which are the RABNET-TSP (A.S.Masutti & Castro, 2009), GSA-ACS-PSO (Chen &

Chien, 2011), GA-PSO-ACO (Deng, et al., 2012), SEE (Tuba & Jovanovic, 2013), ACO-ABC

(Gunduz, Kiran, & Ozceylan, 2015), PSO-ACO-3Opt (Mahi, Baykan, & Kodaz, 2015), SSA

(Wang, Lin, Zhong, & Zhang, 2016), REACSGA (Yousefikhoshbakht, Malekzadeh, &

Sedighpour, 2016) and AEAS (Mohsen, 2016). The experimental results for these algorithms

are shown in Table 6.6 while the comparative analysis is summarised in Table 6.7 and Figure

6.1, respectively.

 As can be seen in Table 6.7, the proposed algorithm has performed better than the ACO-

ABC in 75% of the instances (6 out of 8), in 66.67% in relation to the GA-PSO-ACO (8 out of

12), in 60% of the instances in relation to RABNET-TSP (6 out of 10) and in 44.44% in relation

to PSO-ACO-3OPT (4 out of 9). Furthermore, the proposed algorithm yielded equal solutions to

the SEE in 27.27% of the instances (3 out of 11). Besides, although the proposed algorithm

obtained fewer numbers of best solutions than the GSA-ACS-PSO, SSA, REACSGA and

AEAS, the number of the optimal solutions found for all cases are more than 55%.

Chapter 6 Experimental Results

94

B
en

ch
m

ar
k

P
ro

b
le

m
s

B
es

t-
k
n
o

w
n

so
lu

ti
o

n

M
A

C
O

R

A
B

N
E

T
-T

S
P

S

E
E

G

A
-P

S
O

-A
C

O

A
C

O
-A

B
C

B
es

t
R

E

B
es

t
R

E

B
es

t
R

E

B
es

t
R

E

B
es

t
R

E

ei
l5

1

4
2

6

4
3

2

1
.4

1

4
2

7

0
.2

3

4
2

7

0
.2

3

4
2

6

0

4
3

1
.7

4

1
.3

5

b
er

li
n
5

2

7
5

4
2

7
9

1
6

4
.9

6

7
5

4
2

0

7
5

4
2

0

7
5

4
4

.3
7

0
.0

3

7
5

4
4

.3
7

0
.0

3

st
7

0

6
7

5

6
8

3

1
.1

9

-
-

6
7

5

0

6
7

9
.6

0

.6
8

6
8

7
.2

4

1
.8

1

ei
l7

6

5
3

8

5
3

8

0

5
4

1

0
.5

6

5
3

8

0

5
4

5
.3

9

1
.3

7

5
5

1
.0

7

2
.4

3

p
r7

6

1
0

8
1
5

9

1
0

8
1
5

9

0

-
-

1
0

8
3
5

8

0
.1

8

1
0

9
2
0

6

0
.9

7

1
1

3
7
9

8
.5

6

5
.2

1

k
ro

a1
0

0

2
1

2
8
2

2
1

2
8
2

0

2
1

3
3
3

0
.2

4

2
1

2
8
2

0

-
-

2
2

1
2
2

.7
5

3

.9
5

k
ro

b
1

0
0

2
2

1
4
1

2
2

1
9
9

0
.2

6

2
2

3
4
3

0
.9

1

-
-

-
-

-
-

ei
l1

0
1

6
2

9

6
2

9

0

6
3

8

1
.4

3

-
-

6
3

3
.0

7

0
.6

5

6
7

2
.7

1

6
.9

5

li
n
1

0
5

1

4
3

7
9

1
4

3
7
9

0

1
4

3
7
9

0

1
4

3
7
9

0

1
4

3
9
7

0
.1

3

-
-

p
r1

2
4

5
9

0
3
0

5
9

0
3
0

0

-
-

5
9

0
3
0

0

5
9

0
5
1

0
.0

4

-
-

p
r1

3
6

9
6

7
7
2

9
6

7
7
2

0

-
-

9
6

7
8
1

0
.0

1

-
-

-
-

ch
1

5
0

6

5
2

8

6
5

2
8

0

6
6

0
2

1
.1

3

-
-

-
-

6
6

4
1

.6
9

1
.7

4

u
1

5
9

4

2
0

8
0

4
2

0
8
0

0

-
-

4
2

0
8
0

0

4
2

3
9
5

0
.7

5

-
-

k
ro

a2
0

0

2
9

3
6
8

2
9

3
6
8

0

2
9

6
0
0

0
.7

9

2
9

4
9
0

0
.4

2

2
9

7
3
1

1
.2

4

-
-

li
n
3

1
8

4

2
0

2
9

4
3

2
9
6

3
.0

1

4
2

8
3
4

1
.9

2

-
-

4
2

6
3
3

1
.4

4

-
-

p
cb

4
4
2

5
0

7
7
8

5
0

7
7
8

0

-
-

-
-

5
1

4
1
4

1
.2

5

-
-

T
ab

le
 6

.6
:

A
 c

o
m

p
ar

is
o
n

 o
f

th
e

p
ro

p
o
se

d
 M

A
C

O
 a

lg
o
ri

th
m

 w
it

h
 R

A
B

N
E

T
-T

S
P

,
G

S
A

-A
C

S
-P

S
O

,
G

A
-P

S
O

-A
C

O
,

S
E

E
,

A
C

O
-

A
B

C
,

P
S

O
-A

C
O

-3
O

P
T

,
S

S
A

,
R

E
A

C
S

G
A

 a
n
d
 A

E
A

S
 a

cc
o
rd

in
g
 t

o
 t

h
e

b
es

t
so

lu
ti

o
n

s
an

d
 r

el
at

iv
e

er
ro

rs
.

Chapter 6 Experimental Results

95

B
en

ch
m

ar
k

P
ro

b
le

m
s

B
es

t-
 k

n
o

w
n

so
lu

ti
o

n

G
S

A
-A

C
S

-P
S

O

P
S

O
-A

C
O

-3
O

P
T

S

S
A

R

E
A

C
S

G
A

A

E
A

S

B
es

t
R

E

B
es

t
R

E

B
es

t
R

E

B
es

t
R

E

B
es

t
R

E

ei
l5

1

4
2

6

4
2

7

0
.2

3

4
2

6

0

4
2

6

0

4
2

6

0

4
2

6

0

b
er

li
n
5

2

7
5

4
2

7
5

4
2

0

7
5

4
2

0

7
5

4
2

0

7
5

4
2

0

7
5

4
2

0

st
7

0

6
7

5

-

-

6
7

6

0
.1

5

6
7

5

0

-

-

-

-

ei
l7

6

5
3

8

5
3

8

0

5
3

8

0

5
3

8

0

5
3

8

0

5
3

8

0

p
r7

6

1
0

8
1
5

9

-

-

-

-

1
0

8
1
5

9

0

-

-

-

-

k
ro

a1
0

0

2
1

2
8
2

2
1

2
8
2

0

2
1

3
0
1

0
.0

9

2
1

2
8
2

0

2
1

2
8
2

0

2
1

2
8
2

0

k
ro

b
1

0
0

2

2
1

4
1

2
2

1
4
1

0

-

-

2
2

1
4
1

0

2
2

1
4
1

0

2
2

1
4
1

0

ei
l1

0
1

6
2

9

6
3

0

0
.1

6

6
3

1

0
.3

2

6
2

9

0

6
2

9

0

6
2

9

0

li
n
1

0
5

1

4
3

7
9

1
4

3
7
9

0

1
4

3
7
9

0

1
4

3
7
9

0

1
4

3
7
9

0

1
4

3
7
9

0

p
r1

2
4

5
9

0
3
0

-

-

-

-

5
9

0
3
0

0

-

-

-

-

p
r1

3
6

9
6

7
7
2

-

-

-

-

-

-

-

-

-

-

ch
1

5
0

6

5
2

8

6
5

2
8

0

6
5

3
8

0
.1

5

6
5

2
8

0

-

-

6
5

2
8

0

u
1

5
9

4

2
0

8
0

-

-

-

-

4
2

0
8
0

0

-

-

-

-

k
ro

a2
0

0

2
9

3
6
8

2
9

3
8
3

0
.0

5

2
9

4
6
8

0
.3

4

2
9

3
6
8

0

2
9

3
6
8

0

2
9

3
6
8

0

li
n
3

1
8

4

2
0

2
9

4
2

4
8
9

1
.0

9

-

-

4
2

0
8
1

0
.1

2

4
2

5
4
3

1
.2

2

4
2

0
2
9

0

p
cb

4
4
2

5
0

7
7
8

-

-

-

-

5
0

8
2
0

0
.0

8

-

-

-

-

T
ab

le
 6

.6
:

A
 c

o
m

p
ar

is
o
n

 o
f

th
e

p
ro

p
o
se

d
 M

A
C

O
 a

lg
o
ri

th
m

 w
it

h
 R

A
B

N
E

T
-T

S
P

,
G

S
A

-A
C

S
-P

S
O

,
G

A
-P

S
O

-A
C

O
,

S
E

E
,

A
C

O
-A

B
C

,

P
S

O
-A

C
O

-3
O

P
T

,
S

S
A

,
R

E
A

C
S

G
A

 a
n
d
 A

E
A

S
 a

cc
o
rd

in
g
 t

o
 t

h
e

b
es

t
so

lu
ti

o
n
s

an
d
 r

el
at

iv
e

er
ro

rs
.

Chapter 6 Experimental Results

96

Approach
No. of

instances

Optimal Solution Best Solution Worse solution Equal solution

No. % No. % No. % No.

MACO

10

6 60.00 6 60 3 30.00

1 10
RABNET-TSP 2 20.00 3 30 7 70.00

MACO

11

8 72.73 3 27.27 3 27.27

5 45.45
SEE 7 63.64 3 27.27 3 27.27

MACO

12

8 66.67 8 66.67 4 33.33

0 0
GA-PSO-ACO 1 8.33 4 33.33 8 66.67

MACO

8

5 62.5 6 75 2 25

0 0
ACO-ABC 0 0 2 25 6 75

MACO

10

6 60 2 20 4 40

4 40
GSA-ACS-PSO 6 60 4 40 2 20

MACO

9

6 66.67 4 44.44 3 33.33

2 22.22 PSO-ACO-

3OPT
4 44.44 3 33.33 4 44.44

MACO

15

10 66.67 1 6.67 5 33.33
9 60

SSA 13 86.67 5 33.33 1 6.67

MACO

9

5 55.56 0 0 4 44.44

5 55.56
REACSGA 8 88.89 4 44.44 0 0

MACO

10

6 60 0 0 4 40

6 60
AEAS 10 100 4 40 0 0

Table 6.7: The overall performance comparison of the MACO with RABNET-TSP, SEE, SSA

ACO-ABC, GA-PSO-ACO, GSA-ACS-PSO, PSO-ACO-3OPT, REACSGA and AEAS on the

STSP instances.

According to Figure 6.1, the proposed MACO algorithm is better than the RABNET-TSP, GA-

PSO-ACO, ACO-ABC and PSO-ACO-3OPT.

 In summary, the numerical results illustrated that the proposed MACO algorithm is

competitive when compared to the other existing algorithms with accuracy more than 95% in all

of the benchmark problems considered. On top of that, the computational results also

demonstrated that the proposed algorithm provides good performance on large-scale instances

in reasonable computation time.

Chapter 6 Experimental Results

97

Figure 6.1: Percentage of the best solutions found by each algorithm applied to the

STSP instances.

6.3 Computational Results and Numerical Analysis of the Proposed

Algorithm Applied to Asymmetric TSP

 For this category, the comparison is made on the results obtained by the MACO and

MACOd on 7 ATSP benchmark problems taken from the TSPLIB standard library. The results

obtained by the MACO are displayed in Table 6.8 and the results obtained by MACOd are

displayed in Table 6.9. Table 6.10 compares these results with the best results shown in bold.

 As shown in Table 6.8, all the benchmark problems were solved to optimality within a

reasonable CPU time. In contrast, only 14.3% of the benchmark problems were solved to

optimality for the MACOd as shown in Table 6.9.

 From the experimental results displayed in Table 6.10, for the 7 ATSP benchmark

problems, the MACO once again outperformed the MACOd and found the optimal solutions to

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00
B

es
t

S
o

lu
ti

o
n
 (

%
)

Proposed Algorithm Compared Algorithm

Chapter 6 Experimental Results

98

all of the instances while the MACOd finds the optimal solution to only 1 instance. Although in

most cases, the CPU times of the MACOd are lower than the MACO, the average relative error

for the MACOd are higher than the MACO.

Benchmark

Problems

Best-known

solution
Best RE

No. of

colonies
CPU time

ftv33 1286 1286 0 2 2.05

ftv44 1613 1613 0 4 8.09

ry48p 14422 14422 0 4 173.41

ftv55 1608 1608 0 5 28.86

ftv70 1950 1950 0 6 549.51

kro124p 36230 36230 0 3 1713.42

ftv170 2755 2755 0 3 1852.44

Table 6.8: The performance of the MACO on ATSP instances

Benchmark

Problems

Best-known

solution
Best RE

No. of

colonies
CPU time

ftv33 1286 1286 0 2 3.50

ftv44 1613 1647 2.11 2 7.55

ry48p 14422 14617 1.35 6 62.20

ftv55 1608 1724 7.21 2 196.40

ftv70 1950 2105 7.95 2 60.15

kro124p 36230 38694 6.80 13 4039.7

ftv170 2755 2915 5.81 3 390.71

Table 6.9: The performance of the MACOd on ATSP instances

 Further comparisons are made with 3 algorithms presented in the literature which are

Guided Variable Neighbourhood Search (GVNS) by (Burke, Cowling, & Keuthen, 2001),

Randomized Arbitrary Insertion (RAI) by (Brest & Zerovnik, 2005) and Improved Genetic

Algorithm (IGA) by (Abdoun, Tajani, Abouchabaka, & Khatir, 2016) .

 According to the experimental results in Table 6.11, Table 6.12 and Figure 6.2, the

proposed MACO algorithm has outperformed the GVNS and IGA algorithms with respect to

best solutions. As can be seen in Table 6.12, the proposed algorithm is more efficient when

compared to the GVNS in 64.29% of the instances (9 out of 14), and in 93.33% in relation to

the IGA (14 out of 15). Additionally, the computational results of the proposed algorithm and

the RAI show that these algorithms have a close competition with RAI produced 3 better

Chapter 6 Experimental Results

99

solutions than the proposed algorithm while the proposed algorithm yielded 2 better solutions

than the RAI. Though, for all cases, the numbers of the optimal solutions found by the proposed

algorithm are between 64% and 67%.

Benchmark

Problems

Best-known

solution
Algorithm Best RE

No. of

colonies
CPU time

ftv33 1286
MACOd 1286 0 2 3.5

MACO 1286 0 2 2.05

ftv44 1613
MACOd 1647 2.11 2 7.55

MACO 1613 0 5 8.09

ry48p 14422
MACOd 14617 1.35 6 62.2

MACO 14422 0 5 173.41

ftv55 1608
MACOd 1724 7.21 2 196.4

MACO 1608 0 3 28.86

ftv70 1950
MACOd 2105 7.95 2 60.15

MACO 1950 0 6 549.51

kro124p 36230
MACOd 38694 6.80 13 4039.7

MACO 36230 0 5 1713.42

ftv170 2755
MACOd 2915 5.81 3 390.71

MACO 2755 0 4 1852.44

Table 6.10: Comparative experimental results on the ATSP benchmark problems

Figure 6.2: Percentage of the best solutions found by each algorithm applied to the

ATSP instances.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

MACO vs GVNS MACO vs RAI MACO vs IGA

64.29

13.33

93.33

7.14

20

6.67

B
es

t
S

o
lu

ti
o

n
 (

%
)

Proposed Algorithm Compared Algorithm

Chapter 6 Experimental Results

100

Benchmark

problems

Best-

known

solution

MACO GVNS RAI IGA

Best RE Best RE Best RE Best RE

br17 39 40 2.56 39 0 39 0 39 0

ftv33 1286 1286 0 1290 0.29 1286 0 2021 57.15

ftv35 1473 1475 0.14 1474 0.09 1473 0 2559 73.73

ftv38 1530 1532 0.13 1536 0.37 1530 0 2786 82.09

p43 5620 5628 0.14 5621 0.01 5620 0 5743 2.19

ftv44 1613 1613 0 1623 0.60 1613 0 3320 105.83

ftv47 1776 1776 0 1778 0.10 1776 0 3305 86.09

ry48p 14422 14422 0 14462 0.28 14422 0 22268 54.40

ft53 6905 6905 0 6913 0.12 6905 0 16032 132.18

ftv55 1608 1608 0 1609 0.08 1608 0 3742 132.71

ftv64 1839 1839 0 1847 0.44 1839 0 4849 163.68

ftv70 1950 1950 0 1966 0.82 1950 0 5604 187.38

ft70 38673 38707 0.09 38723 0.13 38850 0.47 56671 46.54

kro124p 36230 36230 0 - - 36241 0.03 101284 179.56

ftv170 2755 2755 0 2805 1.83 2755 0 16982 516.41

Table 6.11: A comparison of the proposed MACO algorithm with GVNS, RAI and IGA

according to the best solutions and relative errors.

Approach
No. of

instances

Optimal Solution Best Solution Worse solution Equal solution

No. % No. % No. % No. %

MACO
14

9 64.29 9 64.29 1 7.14
0 0

GVNS 1 7.14 1 7.14 9 64.29

MACO
15

10 66.67 2 13.33 4 26.67
9 60

RAI 13 86.67 3 20.00 2 13.33

MACO
15

10 66.67 14 93.33 1 6.67
0 0

IGA 1 6.67 1 6.67 14 93.33

Table 6.12: The overall performance comparison of the proposed MACO algorithm

with MACO, RAI, IGA and GVNS on the ATSP instances.

Chapter 6 Experimental Results

101

6.4 Comparison with Other Algorithms Tested with Both Symmetric

and Asymmetric TSP Benchmark Problems

 In this section, the proposed algorithm is compared with other studies available in the

literature applied to both symmetric and asymmetric TSP. The proposed algorithm was verified

on a set of 30 benchmark problems with sizes ranging from 51 to 318 cities. Table 6.13 makes a

comparison of the experimental results of the proposed algorithm with the ACS (Gambardella &

Dorigo, 1996), MMAS (Stutzle & Hoos, 1997), African Buffalo Optimization (ABO) by (Odili

& Kahar, 2016) and Improved BAT Algorithm (IBA) by (Osaba, Yang, Diaz, Lopez-Garcia, &

Carballedo, 2016) with respect to the best solutions. Besides, the comparative analyses of these

results are displayed in Table 6.14 and Figure 6.3.

Figure 6.3: Percentage of the best solutions found by each algorithm applied to both

STSP and ATSP

 As can be seen in Figure 6.3, the proposed algorithm has outperformed the ACS, MMAS,

ABO and IBA in terms of optimal solutions and best solution. In particular, according to Table

6.14, the proposed algorithm has yielded better results than the ACS and MMAS in 42.86% of

the instances (3 out of 7), respectively, in 66.67% in relation to the ABO (12 out of 18), and in

40.91% in relation to the IBA (9 out of 22). On average, the numbers of optimal solutions

obtained by the proposed algorithm are over 57% in each case.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

MACO vs ACS MACO vs MMAS MACO vs ABO MACO vs IBA

42.86
42.86

66.67

40.91

28.57 28.57 27.78
31.82

B
es

t
S

o
lu

ti
o

n
 (

%
)

Proposed Algorithm Compared Algorithm

Chapter 6 Experimental Results

102

Benchmark

Problems

Best-

known

solution

MACO ACS MMAS ABO IBA

Best RE Best RE Best RE Best RE Best RE

eil51 426 432 1.41 426 0 426 0 426 0 426 0

berlin52 7542 7916 4.96 - - - - 7542 0 7542 0

st70 675 683 1.19 - - - - 676 0.15 675 0

eil76 538 538 0 - - - - 538 0 539 0.19

pr76 108159 108159 0 - - - - 108167 0.01 - -

kroa100 21282 21282 0 21282 0 21282 0 21311 0.14 21282 0

krob100 22141 22199 0.26 - - - - 22160 0.09 - -

eil101 629 629 0 - - - - 640 1.75 634 0.79

lin105 14379 14379 0 - - - - 14419 0.28 - -

pr124 59030 59030 0 - - - - - - 59030 0

pr136 96772 96772 0 - - - - - - 97547 0.8

ch150 6528 6528 0 - - - - 6532 0.06 - -

d198 15780 15927 0.93 15888 0.68 15963 1.16 - - - -

kroa200 29368 29368 0 - - - - 29370 0.01 - -

lin318 42029 43296 3.01 - - - - 42101 0.17 - -

br17 39 40 2.56 - - - - - - 39 0

ftv33 1286 1286 0 - - - - - - 1286 0

ftv35 1473 1475 0.14 - - - - - - 1473 0

ftv38 1530 1532 0.13 - - - - - - 1530 0

p43 5620 5628 0.14 - - - - 5645 0.44 5620 0

ftv44 1613 1613 0 - - - - - - 1613 0

ftv47 1776 1776 0 - - - - - - 1796 1.13

ry48p 14422 14422 0 14422 0 14422 0 14440 0.12 14422 0

ft53 6905 6905 0 - - - - - - 7001 1.39

ftv55 1608 1608 0 - - - - - - 1608 0

ftv64 1839 1839 0 - - - - - - 1879 2.18

ftv70 1950 1950 0 - - - - 1955 0.26 2111 8.26

ft70 38673 38707 0.09 38781 0.28 38690 0.04 38753 0.21 39901 3.18

kro124p 36230 36230 0 36241 0.03 36416 0.51 36275 0.12 37538 3.61

ftv170 2755 2755 0 2774 0.69 2787 1.16 2795 1.45 - -

Table 6.13: A comparison of the proposed MACO algorithm with ACS, MMAS, ABO and IBA

according to the best solutions and relative errors.

Chapter 6 Experimental Results

103

Approach
No. of

instances

Optimal Solution Best Solution Worse solution Equal solution

No. % No. % No. % No. %

MACO
7

4 57.14 3 42.86 2 28.57
2 28.57

ACS 3 42.86 2 28.57 3 42.86

MACO
7

4 57.14 3 42.86 2 28.57
2 28.57

MMAS 3 42.86 2 28.57 3 42.86

MACO
18

11 61.11 12 66.67 5 27.78
1 5.56

ABO 3 16.67 5 27.78 12 66.67

MACO
22

14 63.64 9 40.91 7 31.82
6 27.27

IBA 13 59.09 7 31.82 9 40.91

Table 6.14: The overall performance comparison of the proposed MACO algorithm with

ACS, MMAS, ABO and IBA on the STSP and ATSP instances.

6.5 Numerical Analysis

According to the computational results, the numerical analysis indicates the following:

 The proposed algorithm provides good solution quality for both symmetric and

asymmetric TSP benchmark problems with up to 442 cities. As illustrated in Figure 6.4,

the percentage of the optimal solutions achieved by the proposed algorithm on 15 ATSP

and 18 STSP problem instances are 67%, respectively. In particular, as shown in Table

6.6 and Table 6.13, the average relative error for both the STSP and ATSP are below

1% and the accuracy of the proposed algorithm is over 97% for all of the instances

except for berlin52 where it obtained 95%.

 In comparison to alternative algorithms considered in this research, the computational

results show that the performance of the proposed algorithm is equal or better than most

of these algorithms in terms of best solutions. As summarised in Figure 6.5, despite the

types of TSP instances used to validate the effectiveness of these algorithms, the

proposed algorithm shows better performance than the other 10 algorithms including

RABNET-TSP, GA-PSO-ACO, ACO-ABC, SEE, PSO-ACO-3OPT, GVNS, IGA,

ACS, ABO and IBA. Further, the proposed algorithm demonstrates an equal

Chapter 6 Experimental Results

104

performance with the MMS but a worse performance when compared to the GSA-ACS-

PSO, SSA, REACSGA, AEAS and RAI. However, for instances with size larger than

100 cities, the proposed algorithm shows competitive results when compared to these

algorithms. In particular, the proposed algorithm found better solutions than the SSA for

lin318 and pcb442 as shown in Table 6.7. Moreover, as displayed in Table 6.11, the

proposed algorithm shows an equal or better performance than the RAI for kro124p and

ftv170, and have a close competition with REACSGA and AEAS for instances with

cities between 101 and 318.

Figure 6.4: The overall performance of the proposed algorithm on the TSP benchmark

problems

Optimal

67%

Non-optimal

33%

STSP

Optimal

67%

Non-optimal

33%

ATSP

Chapter 6 Experimental Results

105

Figure 6.5: The overall performance of the proposed algorithm against other algorithms

Figure 6.6: Percentage of the optimal solutions found by each algorithm

applied to both ATSP and STSP

 The proposed algorithm exhibited excellent performance as compared to other

algorithms applied to both symmetric and asymmetric TSP. As presented in Figure 6.6,

Better

63%

Worse

31%

Equal

6%

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

MACO vs ACS MACO vs MMS MACO vs ABO MACO vs IBA

57.14 57.14
61.11

63.64

42.86 42.86

16.67

59.09

O
p

ti
m

al
 S

o
lu

ti
o

n

(%
)

Proposed Algorithm Compared Algorithm

Chapter 6 Experimental Results

106

the proposed algorithm obtained a higher number of optimal solutions than the other

algorithms in all cases.

 Figure 6.7: Percentage of the optimal solutions found by each algorithm

applied to the ATSP instances

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

MACO vs GVNS MACO vs RAI MACO vs IGA

64.29 66.67 66.67

7.14

86.67

6.67

O
p

ti
m

al
 S

o
lu

ti
o

n
 (

%
)

Proposed Algorithm Compared Algorithm

Chapter 6 Experimental Results

107

 Figure 6.8: Percentage of the optimal solutions found by each algorithm applied to

the STSP instances

 In term of optimal solutions, the proposed algorithm demonstrated a good performance

with regards to other algorithms applied to the symmetric or asymmetric TSP. In

particular, as shown in Figure 6.7, for each case, the proposed algorithm has obtained

the optimal results in more than 64% of the ATSP instances. Likewise, the proposed

algorithm has achieved the optimal solutions in over 55% of the STSP benchmark

problems as displayed in Figure 6.8.

6.6 Conclusion

 This chapter has demonstrated that the proposed MACO algorithm is able to produce

good quality solutions for both symmetric and asymmetric TSPs within a reasonable CPU time.

In particular, the performance of the proposed algorithm is highly competitive with regards to

other studies in the literature designed for solving symmetric or asymmetric TSP. The relative

errors reported on all the benchmark problems are below 5% for symmetric TSPs and 3% for

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

O
p

ti
m

al
 S

o
lu

ti
o

n
 (

%
)

Proposed Algorithm Compared Algorithm

Chapter 6 Experimental Results

108

asymmetric TSPs. Similarly, the results achieved by the proposed MACO algorithm are very

good in comparison to ACS, MMAS, ABO and IBA with more than 95% accuracy.

 Additionally, the performance of the proposed MACO algorithm is better than the

MACOd for both symmetric and asymmetric TSP instances. This indicates an appropriate

choice of the ACO parameters settings which enables the proposed algorithm to be used for new

problems without the need for parameter tuning thus helping to save time and cost.

 The following chapter will conclude all the findings, contributions and future direction of

this research.

109

Chapter 7

Conclusions

7.1 Overview

This research addressed two types of travelling salesman problems (TSP), the symmetric TSP

and the asymmetric TSP. These problems can be used to model several practical problems,

especially in scheduling and vehicle routing, thus the interest in researching how to solve them.

Though exact methods can be used to solve these problems, it is not an alternative when the

problem size increases, due to the exponentially increasing CPU times. Therefore, an ACO

based algorithm was developed to solve both problems in an attempt to provide a good

alternative to exact methods. In this chapter, a summary of scientific contributions and future

research directions are presented. The main contribution of this thesis is the modified ACO

algorithm with adaptive parameter settings for solving the symmetric and asymmetric TSP.

 The first two chapters of this thesis gave an extensive review on the basic formulations of

the TSP and solutions approaches applied to solve the TSP. This provided a complete picture of

both TSP and ACO theoretical properties. In the following chapter, the new proposed approach

was presented with an illustrative example. Chapter 4 suggested an adaptive setting for the ACO

parameters used in the said approach while in Chapter 5 some factors that influence the

performance of the proposed algorithm such as bound restriction and variable fixing were

reviewed.

 In Chapter 6, the proposed algorithm was compared with several algorithms in the

literature. For the symmetric TSP, the comparisons were made with the RABNET-TSP

(A.S.Masutti & Castro, 2009), GSA-ACS-PSO (Chen & Chien, 2011), GA-PSO-ACO (Deng, et

al., 2012), SEE (Tuba & Jovanovic, 2013), ACO-ABC (Gunduz, Kiran, & Ozceylan, 2015),

PSO-ACO-3Opt (Mahi, Baykan, & Kodaz, 2015), SSA (Wang, Lin, Zhong, & Zhang, 2016),

REACSGA (Yousefikhoshbakht, Malekzadeh, & Sedighpour, 2016) and AEAS (Mohsen,

2016). Meanwhile, for the asymmetric TSP, the comparisons were made with the GVNS

(Burke, Cowling, & Keuthen, 2001), RAI (Brest & Zerovnik, 2005) and IGA (Abdoun, Tajani,

Abouchabaka, & Khatir, 2016). The comparisons for both symmetric and asymmetric TSP were

made with the ACS (Gambardella & Dorigo, 1996), MMAS (Stutzle & Hoos, 1997), ABO

Chapter 7 Conclusions

110

(Odili & Kahar, 2016) and IBA (Osaba, Yang, Diaz, Lopez-Garcia, & Carballedo, 2016). The

computational comparisons have shown that the proposed approach has produced competitive

or better results than the other algorithms. In addition, this chapter also has proved that the

choice of parameter setting to be used in the proposed approach has contributed to a good

performance of the algorithm.

7.2 Contribution

The goal of this research is to offer an alternative approach to solve both the symmetric and

asymmetric TSP problems with adaptive parameter settings in a reasonable CPU time. The

technical and conceptual contributions contained in this thesis are divided into three parts and

briefly discussed below:

 The first part proposes a new approach to solve the symmetric and asymmetric TSP. A

detailed review of the proposed algorithm which includes tour construction process,

pheromone update process and enhancement process is described. In the tour

construction process, a new formulation of the state transition rule has been proposed.

This strategy aims at reducing the computational time by heuristically fixing part of the

solution tour and improving the accuracy of the solutions through the usage of the

solver.

 Further, in the pheromone update process, a different approach has been adopted in

which the pheromone is deposited only on the edges belonging to the colony-best

solution and evaporated only on the edges belonging to the colony-worst solution but

not in the colony-best solution. Moreover, to prevent a worse quality solution in the

next colony, the colony-best solution has been used as the first ant in the following

colony.

 The second part suggests an adaptive parameter settings strategy of ACO parameters

used in the proposed approach. Those parameters are the number of colonies, the

number of ants in each colony, the relative influence of the pheromone trail 𝛼 and

pheromone evaporation rate 𝜌. These parameters have been defined as a function of the

problem size.

Chapter 7 Conclusions

111

 The last part presents the experimental results and performance of the proposed

algorithm. The core contributions of this chapter lie in the empirical validation of the

effectiveness of the proposed algorithm and the ability of the adaptive parameter setting

strategy in producing good solutions.

 In order to provide a comprehensive validation of the algorithm, the proposed

algorithm has been tested over a reasonable set of instances from the TSPLIB. A

computational comparison between the results obtained using the set of parameter

settings suggested in the literature and the ones proposed in this thesis has been

performed, showing advantages of the proposed parameter setting.

 Further, these experimental results have been compared to other algorithms in the

literature and the solutions obtained were competitive with the ones obtained with

another algorithm designed for symmetric TSP or asymmetric TSP or both.

Nevertheless, the numbers of the optimal or best solutions found by the proposed

algorithm were always better than the other algorithms designed for both symmetric and

asymmetric TSP.

 Therefore, the proposed algorithm has been a good alternative method to solve the

TSP problems, having demonstrated a good performance over the existing heuristics.

7.3 The Idea for Future Work

The ‘Intelligent Ant’ strategy introduced in this thesis may be improved with a different value

of 𝑋 depending on the phase or situation of the algorithm. For instance, the number of nodes

fixed in the tour construction process could be changed if the gap between the colony-best

solution and the colony-worst solution is less than a certain value to diversify the search space.

For larger problems, which may include thousands of nodes, the number of ants in the colony

could be reduced by setting the number of nodes to be fixed on a per ant basis. In a case of

stagnation, the search area could be set in differently for each ant or colony.

112

References

Alejandro Rodríguez; Rubén Ruiz. (2010). The effect of asymmetry on traveling

salesman problems.

AMPL. (2013). AMPL Optimization Inc. United States.

TSPLIB. (2014a). Retrieved July 7, 2014, from http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsplib.html

TSPLIB. (2014b). Retrieved July 7, 2014, from http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/stsp-sol.html

A.S.Masutti, T., & Castro, L. N. (2009). A self-organizing neural network using ideas

from the immune system to solve the traveling salesman problem. Information

Sciences, 179(10), 1454-1468.

Aarts, E. H., & Lenstra, J. K. (2003). Introduction. In E. Aarts, & J. K. Lenstra (Eds.),

Local search in combinatorial optimization (pp. 1-18). Princeton University

Press, Princeton and Oxford.

Aarts, E. H., Korst, J. H., & Laarhoven, P. J. (1997). Simulated annealing. In E. Aarts,

& J. K. Lenstra (Eds.), Local Search in Combinatorial Optimization (pp. 91-

120). John Wiley & Sons Ltd.

Abdoun, O., Tajani, C., Abouchabaka, J., & Khatir, H. E. (2016). Improved Genetic

Algorithm to Solve Asymmetric Traveling Salesman Problem. International

Journal of Open Problems in Computer Science & Mathematics, 9(4), 42-55.

Affenzeller, M., Winkler, S., Wagner, S., & Beham, A. (2009). Genetic Algorithms and

Genetic Programming : modern concepts and practical applications. CRC

Press.

Afshar, M. (2006). Afshar, M. H. (2006). Application of a max–min ant system to joint

layout and size optimization of pipe networks. Engineering optimization, 38(3),

299-317.

Alba, E., & Troya, J. M. (1999). A survey of parallel distributed genetic algorithms.

Complexity, 4(4), 31-52.

Ali, M. K., & Kamoun, F. (1993). Neural Networks for Shortest Path Computation and

Routing in Computer Networks. IEEE Transactions on Neural Networks, 4(6),

941-952.

Amir, C., Badr, A., & Farag, I. (2007). A Fuzzy Logic Controller for Ant Algorithms.

Computing and Information Systems, 11(2), 26.

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. (1998). On the solution of

traveling salesman problems. Documenta Mathematica Journal der Deutschen

Mathematiker-Vereinigung, International Congress of Mathematicians, 645-

656.

Atamturk, A., & Savelsbergh, M. W. (2005). Integer-Programming Software Systems.

Annals of Operations Research, 140, 67–124.

113

Baez, S., Angel-Bello, F., & Alvarez, A. (2016). Time-dependent formulation for

minimizing total completion time in a parallel machine scheduling problem with

dependent setup times. IFAC-PapersOnLine, 49(12), 857-862.

Balas, E., & Toth, P. (1983). Branch and Bound Methods for the Traveling Salesman

Problem.

Barral, D., Perrin, J.-P., Dombre, E., & Liegeois, A. (1999). An Evolutionary Simulated

Annealing Algorithm for Optimizing Robotic Task Point Ordering. Proceeding

of the 1999 IEEE lntemational Symposium on Assembly and Task Planning, (pp.

157-162). Porto,Portugal.

Basu, J. K., Bhattacharyya, D., & Kim, T.-h. (2010). Use of Artificial Neural Network

in Pattern Recognition. International Journal of Software Engineering and Its

Applications, 23-33.

Basu, S. (2012). Tabu Search Implementation on Traveling Salesman Problem and Its

Variations: A Literature Survey. American Journal of Operations Research,

163-173.

Bektas, T. (2006). The multiple traveling salesman problem : an overview of

formulations and solution procedures. Omega, 34(3), 209-219.

Bhríde, F. M., McGinnity, T., & McDaid, L. (2005). Landscape classification and

problem specific reasoning for genetic algorithms. Kybernetes, 34(9/10), 1469-

1495.

Bigras, L.-P., Gamache, M., & Savard, G. (2008). The time-dependent traveling

salesman problem and single machine scheduling problems with sequence

dependent setup times. Discrete Optimization, 5(4), 685-699.

Birattari, M., Paquete, L., Stutzle, T., & Varrentrapp, K. (2001). Classification of

Metaheuristics and Design of Experiments for the Analysis of Components.

Tech. Rep AIDA-01-05.

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of

Life Reviews, 2, 353-373.

Blum, C., & Roli, A. (2008). Hybrid Metaheuristics : An Introduction. In C. Blum, A.

Roli, & M. Sampels (Eds.), Hybrid Metaheuristics : An Emerging Approach to

Optimization (pp. 1-30). Springer.

Blum, C., Puchinger, J., Raidl, G., & Roli, A. (2010). A Brief Survey on Hybrid

Metaheuristics. Proceedings of BIOMA, (pp. 3-18).

Blum, C., Roli, A., & Sampels, M. (Eds.). (2008). Hybrid Metaheuristics. An Emerging

Approach to Optimization. Springer.

Bonomi, E., & Lutton, J.-L. (1984). The N-city Travelling Salesman Problem :

Statistical Mechanics and the Metropolis Algorithm. SIAM Review, 26(4), 551-

568.

BoussaiD, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization

metaheuristics. Information Sciences : an International Journal, 237, 82-117.

114

Brest, J., & Zerovnik, J. (2005). A Heuristic for the Asymmetric Traveling Salesman

Problem. MIC2005. The 6th Metaheuristics International Conference, (pp. 145-

150). Vienna,Austria.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999a, January). A New Rank Based

Version of the Ant System - A Computational Study. Central European Journal

of Operations Research, 7(1), 25-38.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999b). An improved ant System algorithm

for thevehicle Routing Problem. Annals of operations research, 89, 319-328.

Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Eff ective Local and Guided

Variable Neighbourhood Search Methods for the Asymmetric Travelling

Salesman Problem. In E. J. Boers (Ed.), Applications of Evolutionary

Computing. EvoWorkshops 2001. Lecture Notes in Computer Science, vol 2037

(pp. 203-212). Springer.

Capriles, P. V., Fonseca, L. G., Barbosa, H. J., & Lemonge, A. C. (2007). Rank-based

ant colony algorithms for truss weight minimization with discrete variables.

Communications in numerical methods in engineering, 23(6), 553-575.

Castillo, O., Neyoy, H., Soria, J., Melin, P., & Valdez, F. (2015). A new approach for

dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its

application in fuzzy control of a mobile robot. Applied Soft Computing, 28, 150-

159.

Chen, S.-M., & Chien, C.-Y. (2011). Solving the traveling salesman problem based on

the genetic simulated annealing ant colony system with particle swarm

optimization techniques. Expert Systems with Applications, 38(12), 14439-

14450.

Cheng, C.-H., Lee, W.-K., & Wong, K.-F. (2002). A Genetic Algorithm-Based

Clustering Approach for Database Partitioning. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 32(3), 215-230.

Claus, A. (1984, March). A New Formulation for the Traveling Salesman Problem.

SIAM Journal on Algebraic Discrete Methods, 5(1), 21-25.

Climer, S., & Zhang, W. (2006). Cut and Solve:An iterative search strategy for

combinatorial optimization problems. Artificial Intelligence, 170, 714-738.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed Optimization by ant

colonies. European Conference on Artifical Life (pp. 134-142). Paris: Elsevier

Publishing.

Coppin, B. (2004). Artificial Intelligence Illuminated. Jones and Bartlett Publishers.

Cordeau, J.-F., & Laporte, G. (2005). Tabu Search Heuristics for the Vehicle Routing

Problem. In P. R. Sharda, P. D. Voβ, C. Rego, & B. Alidaee (Eds.),

Metaheuristic Optimization via Memory and Evolution. Kluwer Academic

Publisher.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., & Vigo, D. (2007). Vehicle Routing.

In C. Barnhart, & G. Laporte (Eds.), Handbooks in Operations Research and

Management Science (pp. 367-). North-Holland.

115

Cordon, O., Herrera, F., & Stutzle, T. (2002). A Review on the Ant Colony

Optimization Metaheuristic : Basis,Models and New Trends. Mathware and Soft

Computing, 9(2-3), 141-175.

Cordon, O., Herrera, F., Viana, I. F., & Moreno, L. (2000). A New ACO Model

Integrating Evolutionary Computation Concepts: The Best-Worst Ant System.

Proceedings of ANTS’2000. Brussels, Belgium.

Cotta-Porras, C. (1998). A study of hybridisation techniques and their application to the

design of evolutionary algorithms. AI Communications, 11(3,4), 223-224.

Crowder, H., & Padberg, M. W. (1980). Solving Large-Scale Symmetric Travelling

Salesman Problems to Optimality. Management Science, 26(5), 495-509.

Crowder, H., Johnson, E. L., & Padberg, M. (1983). Solving Large-Scale Zero-One

Linear Programming Problems. Operations Research, 31(5), 803-834.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University

Press.

Darani, N. M., Dolatnejad, A., & Yousefikhoshbakht, M. (2015). A reactive bone route

algorithm for solving the traveling salesman problem. Journal of Industrial

Engineering and Management Studies, 2(2), 13-25.

Davis, L. (1991). Handbook of Genetic Algorithm. New York: Van Nostrand Reinhold.

Deneubourg, J., Aron, S., Goss, S., & Pasteels, J. M. (1990). The Self-Organizing

Exploratory Pattern of the. Journal of lnsect Behavior, 3(2), 159-168.

Deng, W., Chen, R., He, B., Liu, Y., Yin, L., & Guo, J. (2012). A novel two-stage

hybrid swarm intelligence optimization algorithm and application. Soft

Computing, 16(10), 1707--1722.

Dorigo, M., & Caro, G. D. (1999). Ant Colony Optimization : A New Meta-Heuristic.

Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. 2, pp.

1470-1477. IEEE.

Dorigo, M., & Gambardella, L. M. (1997a). Ant Colony System:A Cooperative

Learning Approach to the Traveling Salesman Problem. IEEE Transactions on

Evolutionary Computation, 1(1), 53–66.

Dorigo, M., & Gambardella, L. M. (1997b). Ant colonies for the travelling salesman

problem. Biosystems, 43(2), 73-81.

Dorigo, M., & Stutzle, T. (2004). Ant Colony Optimization. MIT Press.

Dorigo, M., & Stutzle, T. (2010). Ant Colony Optimization : Overview and Recent

Advances. In M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of Metaheuristics.

International Series in Operation Research and Management Science (Vol.

146). Springer.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant Colony Optimization Artificial Ants

as a Computational Intelligence Technique. IEEE Computational Intelligence

Magazine, 1(4), 28-39.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive Feedback as a Search

Strategy. Politecnico Di Milano, DipartimentoI Di Elettronica.

116

Dorigo, M., Maniezzo, V., & Colorni, A. (1996, February). Ant System: Optimization

by a colony of cooperating agents. IEEE Transaction on Systems, Man, and

Cybernetics - Part B, 26(1), 29-41.

Dowsland, K. A. (2014). Classical Techniques. In E. K. Burke, & G. Kendall (Eds.),

Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques (Second Edition ed., pp. 19-65). Springer.

Dowsland, K. A. (2014). Classical Techniques. In E. Burke, & G. Kendall (Eds.),

Search Methadologies: Introductory Tutorials in Optimization and Decision

Support Techniques (pp. 19-65). Springer.

Dumitrescu, I., & Stutzle, T. (2003). Combinations of Local Search and Exact

Algorithms. In G. R. al. (Ed.), Applications of Evolutionary Computation (pp.

211-223).

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter Control in

Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation,

3(2), 124-141.

Favuzza, S., Graditi, G., & Sanseverino, E. R. (2006). Adaptive and Dynamic Ant

Colony Search Algorithm for Optimal Distribution Systems Reinforcement

Strategy. Applied Intelligence, 24, 31-42.

Fred Glover. (1986, January). Future paths for integer programming and links to

artificial intelligence. Computers & Operations Research, 13(5), 533-549.

Fujimura, K., Fujiwaki, S.-i., Kwaw, O.-C., & Tokataka, H. (2001). Optimization of

electronic chip-mounting machine using SOM-TSP method with 5 dimensional

data. Proc. ICII, 4, pp. 26-31.

Furini, F., Persiani, C. A., & Toth, P. (2016). The Time Dependent Traveling Salesman

Planning Problem in Controlled Airspace. Transportation Research Part B, 90,

38-55.

G.B.Dantzig, Fulkerson, D., & Johnson, S. (1954). Solution of a large-scale traveling

salesman problem. Journal of the Operations Research Society of America, 2(4),

393-410.

Gambardella, L. M., & Dorigo, M. (1996). Solving symmetric and asymmetric TSPs by

ant colonies. Proceedings of IEEE International Conference on Evolutionary

Computation (pp. 622-627). IEEE.

Gambardella, L. M., & Dorigo, M. (2000). An Ant Colony System Hybridized with a

New Local Search for the Sequential Ordering Problem. INFORMS Journal on

Computing, 12(3), 237-255.

Gavish, B., & Graves, S. C. (1978). The Travelling Salesman Problem and Related

Problems. Operation Research Centre. Cambridge: Massachusetts Institute of

Technology.

Gendreau, M. (2003). An Introduction to Tabu Search. In F. Glover, & G. A.

Kochenberger (Eds.), Handbook of Metaheuristics. International Series in

Operational Research & Management Science (Vol. 57, pp. 37-54). Springer.

Gendreau, M., & Potvin, J.-Y. (2005). Metaheuristics in Combinatorial Optimization.

Annals of Operation Research, 140, 189-213.

117

Gendreau, M., & Potvin, J.-Y. (2010). Tabu Search. In M. Gendreau, & J.-Y. Potvin

(Eds.), Handbook of Metaheuristic (pp. 41-59). Springer.

Gendreau, M., Soriano, P., & Salvail, L. (1993). Solving the Maximum Clique Problem

Using A Tabu Search Approach. Annals of Operation Research, 43(1-4), 385-

403.

Glover, F., & Laguna, M. (1997). Tabu Search. Kluwer Academic Publisher.

Golden, B. L., & Skiscim, C. C. (1986). Using Simulated Annealing to SOlve Routing

and Location Problems. Naval Research Logistics Quarterly, 33, 261-279.

Golden, B., Bodin, L., Doyle, T., & Jr, W. S. (1980). Approximate Traveling Salesman

Algorithms. Operations Research, 28(3,Part 2), 694-711.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society, 64, 275-278.

Goss, S., Aron, S., Deneubourg, J., & Pasteels, J. (1989). Self-organized Shortcuts in

the Argentine Ant. Naturwissenschaften, 76, 579- 581.

Gu, X. F., Liu, L., Li, J.-P., & Yuan-Yuan Huang, J. L. (2008). Data Classification

based on Artificial Neural Networks. 2008 International Conference on

Apperceiving Computing and Intelligence Analysis. IEEE.

Gunduz, M., Kiran, M. S., & Ozceylan, E. (2015). A hierarchic approach based on

swarm intelligence to solve the traveling salesman problem. Turkish Journal of

Electrical Engineering & Computer Sciences, 103-117.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search : Principles and

applications. European Journal of Operational Research, 130, 449-467.

Hansen, P., Mladenovic, N., Brimberg, J., & Moreno, J. (2010). Variable

Neighbourhood Search. In M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of

Metaheuristics (pp. 61-86).

Hao, Z., Huang, H., Qin, Y., & Cai, R. (2007). An ACO Algorithm with Adaptive

Volatility Rate of Pheromone Trail. In Y. Shi, G. D. Albada, J. Dongarra, & P.

M. Sloot (Ed.), Computational Science-ICCS 2007, (pp. 1167-1170).

Hao, Z.-F., Cai, R.-C., & Huang, H. (2006). An Adaptive Parameter Control Strategy

for ACO. Proceedings of the Fifth International Conference on Machine

Learning and Cybernetics, (pp. 203-206).

Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks. MIT Press.

Haykin, S. (1999). Neural Networks A Comprehensive Foundation. USA: Prentice-Hall

International, Inc.

Helsgaun, K. (2000). An Effective Implementation of the Lin-Kernighan Traveling

Salesman Heuristic. European Journal of Operational Research, 126, 106-130.

Hertz, A., Taillard, E., & Werra, D. d. (1997). Tabu search. In E. Aarts, & J. K. Lenstra

(Eds.), Local Search in Combinatorial Optimization (pp. 121-136). John Wiley

& Sons Ltd.

Hillier, F. S., & Lieberman, G. J. (2010). Introduction to Operations Research.

McGraw-Hill.

118

Hoffman, K. L., & Padberg, M. (1991). Improving LP-Representations of Zero-One

Linear Programs for Branch-and-Cut. ORSA Journal on Computing, 3(2), 121-

134.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems:An Introductory

Analysis with Application to Biology,Control, and Artificial Intelligence. First

MIT Press.

Huang, H., Yang, X., Hao, Z., & Cai, R. (2006). A Novel ACO Algorithm with

Adaptive Parameter. In D.-S. Huang, K. Li, & G. W. Irwin (Ed.), International

Conference on Intelligent Computing, ICIC 2006, (pp. 12-21).

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm For Numerical

Optimization. Erciyes university, Engineering Faculty, Computer Engineering

Department.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of

ICNN'95 - International Conference on Neural Networks. IEEE.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Science, 220, 671-680.

Knox, J. (1994). Tabu Search Performance on the Symmetric Traveling Salesman

Problem. Computers & Operations Research, 21(8), 867-876.

Kolman, B., & Beck, R. E. (1995). Elementary Linear Programming with Applications.

Academic Press.

Land, A., & Doig, A. (1960). An Automatic Method of Solving Discrete Programming

Problems. Econometrica, 28(3), 497--520.

Laporte, G., Gendreau, M., Potvin, J.-Y., & Semet, F. (2000). Classical and modern

heuristics for the vehicle routing problem. International Transactions in

Operational Research, 7(4-5), 285-300.

Lawler, E. L., Lenstra, J. K., Kan, A. H., & Shmoys, D. B. (1985). The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley

& Sons.

López-Ibáñez, M., Stützle, T., & Dorigo, M. (2016). Ant Colony Optimization : A

Component-Wise Overview. In R. Martí, P. Panos, & M. G. Resende (Eds.),

Handbook of Heuristics (pp. 1-37). Springer.

Mahi, M., Baykan, O. K., & Kodaz, H. (2015). A new hybrid method based on Particle

Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for

Traveling Salesman Problem. Applied Soft Computing, 30, 484-490.

Malim, M. R., & Halim, F. A. (2012). Immunology and Artificial Immune Systems.

International Journal on Artificial Intelligence Tools, 21(6). doi:

10.1142/S0218213012500315

Maniezzo, V., & Colorni, A. (1999). The Ant System Applied to the Quadratic

Assignmnet Problem. IEEE Transactions on Knowledge and Data Engineering,

11(5), 769-778.

Mehrotra, K., Mohan, C. K., & Ranka, S. (2000). Elements of Artificial Neural

Networks. Massachusetts Institute of Technology.

119

Michalewicz, Z., & Fogel, D. B. (2004). How to Solve It :Modern Heuristics. Springer.

Miller, C., Tucker, A., & Zemlin, R. (1960, October). Integer Programming

Formulation of Traveling Salesman Problems. Journal of the ACM, 7(4), 326-

329.

Miller, S. J. (2017). Mathematics of Optimization: How to do things faster. American

Mathematical Society.

Mitchell, J. E. (2011). Branch and Cut. In J. J. Cochran, J. Louis Anthony Cox, P.

Keskinocak, J. P. Kharoufeh, & J. C. Smith (Eds.), Wiley Encyclopedia of

Operations Research and Management Science. John Wiley & Sons.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. First MIT Press.

Mladenovic, N., & Hansen, P. (1997). Variable Neighborhood Search. Computers &

Operations Research, 24(11), 1097-1100.

Mohsen, A. M. (2016). Annealing Ant Colony Optimization with Mutation Operator for

Solving TSP. Computational Intelligence and Neuroscience.

Naddef, D., & Rinaldi, G. (2002). Branch and Cut Algortihms for the Capacited VRP.

In P. Toth, & D. Vigo (Eds.), The Vehicle Routing Problem (pp. 53-84). Society

of Industrial and Applied Mathematics.

Nahar, S., Sahni, S., & Shragowitz, E. (1986). Simulated Annealing and COmbinatorial

Optimization. 23rd ACM/IEEE Design Automation Conference, (pp. 293-299).

Nikolaev, A. G., & Jacobson, S. H. (2010). Simulated Annealing. In M. Gendreau, & J.

Potvin (Eds.), Handbook of Metaheuristics (pp. 1-40). Springer .

Odili, J. B., & Kahar, M. N. (2016). Solving the Traveling Salesman's Problem using

the African Buffalo Optimization. Computational Intelligence and

Neuroscience.

Odili, J. B., Kahar, M. N., & Anwar, S. (2015). African Buffalo Optimization: A

Swarm-Intelligence Technique. Procedia Computer Science, 76, 443-448.

Oncan, T., Altinel, I. K., & Laporte, G. (2009). A comparative analysis of several

asymmetric traveling salesman problem formulations. Computers & Operations

Research, 36, 637-654.

Osaba, E., Yang, X.-S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). An

improved discrete bat algorithm for symmetric and asymmetric Traveling

Salesman Problems. Engineering Applications of Artificial Intelligence, 48, 59-

71.

Osman, I. H., & Kelly, J. P. (1996). Meta-heuristics:An Overview. In I. H. Osman, & J.

P. Kelly (Eds.), Meta-heuristics:Theory & Application (pp. 1-22). Kluwer

Academic Publisher.

Padberg, M., & Sung, T.-Y. (1991). An analytical comparison of different formulations

of the travelling salesman problem. Mathematical Programming, 52, 315-357.

Pasti, R., & Castro, L. N. (2006). A Neuro-Immune Network for Solving the Traveling

Salesman Problem . International Joint Conference on Neural Networks, (pp.

3760-3766).

120

Pilat, M. L., & White, T. (2002). Using Genetic Algorithm to Optimize ACS-TSP. In D.

M., D. C. G., & S. M. (Eds.), Ant Algorithms. ANTS 2002. Lecture Notes in

Computer Science (Vol. 2463, pp. 282-287). Springer,Berlin, Heidelberg.

Priddy, K. L., & E.Keller, P. (2005). Artificial Neural Networks: An Introduction. The

Society of Photo-Optical Instrumentation Engineers.

Puchinger, J., & Raidl, G. R. (2005). Combining Metaheuristics and Exact Algorithms

in Combinatorial Optimization : A Survey and Classification. In J. Mira, & J. R.

Alvarez (Eds.), Artificial Intelligence and Knowledge Engineering Applications:

A Bioinspired Approach. IWINAC 2005 (Lecture Notes in Computer Science

ed., Vol. 3562, pp. 41-53). Springer,Berlin,Heidelberg.

Punnen, A. P. (2007). The Traveling Salesman Problem:Applications,Formulations and

Variations. In G. Gutin, & A. P. Punnen (Eds.), The Traveling Salesman

Problem and Its Variations (pp. 1-28). USA: Springer.

Qin, L., Luo, J., Chen, Z., Guo, J., Chen, L., & Pan, Y. (2006). Phelogenetic Tree

Construction using Self adaptive Ant Colony Algorithm. Proceedings of the

First International Multi-Symposiums on Computer and Computational Sciences

(IMSCCS'06) (pp. 179-187). IEEE.

Rader, D. J. (2010). Deterministic Operation Research : Models and Methods in Linear

Optimization. John Wiley & Sons.

Raidl, G. R. (2006). A Unified View on Hybrid Metaheuristics. In A. F. al. (Ed.),

Hybrid Metaheuristics. HM 2006. Lecture Notes in Computer Science (Vol.

4030, pp. 1-12). Springer.

Raidl, G. R., & Puchinger, J. (2008). Combining (Integer) Linear Programming

Techniques and Metaheuristics for Combinatorial Optimization. In C. Blum, A.

Roli, & M. Samples (Eds.), Hybrid Metaheuristics An Emerging Approach to

Optimization (pp. 31-62). Springer.

Raidl, G. R., & Puchinger, J. (2008). Combining (Integer) Linear Programming

Techniques and Metaheuristics for Combinatorial Optimization. In C. Blum, M.

O. Aguilera, A. Roli, & M. Sampels (Eds.), Hybrid Metaheuristics An Emerging

Approach to Optimization (pp. 31-62). Springer.

Raidl, G. R., Puchinger, J., & Blum, C. (2010). Metaheuristic Hybrids. In M. Gendreau,

& J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp. 469-496). Springer.

Randall, M. (2004). Near Parameter Free Ant Colony Optimisation. In M. Dorigo, M.

Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stutzle (Ed.), 4th

Internation Workshop, ANTS 2004, (pp. 374-381).

Reeves, C. (2003). Genetic Algorithms. In F. Glover, & G. A. Kochenberger (Eds.),

Handbook of Metaheuristics. International Series in Operations Research &

Management Science (Vol. 57, pp. 55-82). Springer.

Reeves, C. R. (1997). Genetic Algoithms for the Operations Researcher. INFORMS

Journal on Computing, 9(3), 231-250.

Rego, C., & Glover, F. (2007). Local search and metaheuristics. In G. Gutin, & A. P.

Punnen (Eds.), The Traveling Salesman Problem and Its Variations (pp. 309-

368). Springer.

121

Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP

Applications. Springer.

Riadl, G. R., & Puchinger, J. (2008). Combining (Integer) Linear Programming

Techniques and Metaheuristics for Combinatorial Optimization. In C. Blum, M.

O. Aguilera, A. Roli, & M. Sampels (Eds.), Hybrid Metaheuristics An Emerging

Approach to Optimization (pp. 31-62). Springer.

Rochat, Y., & Taillard, E. D. (1995). Probabilistic Diversification and Intensification in

Local Search for Vehicle Routing. Journal of Heuristics, 1(1), 147-167.

Rossier, Y., Troyon, M., & Liebling, T. M. (1986). Probabilistic exchange algorithm

and Euclidean traveling: Salesman problems. Operations Research Spektrum, 8,

151-164.

Sastry, K., Goldberg, D. E., & Kendall, G. (2014). Genetic Algorithms. In E. K. Burke,

& G. Kendall (Eds.), Search Methodologies. Introductory Tutorials in

Optimization and Decision Support Techniques (pp. 93-117). Springer.

Silberholz, J., & Golden, B. (2010). Comparison of Metaheuristics. In M. Gendreau, &

J.-Y. Potvin (Eds.), Handbook of Metaheuristics (pp. 625-640). Springer.

Skorin-Kapov, J. (1990). Tabu Search Applied to the Quadratic Assignment Problem.

ORSA Journal on Computing, 2(1), 33-45.

Socha, K., Knowles, J., & Sampels, M. (2002). A MAX-MIN Ant System for the

University Course Timetabling Problem. In M. Dorigo, G. D. Caro, & M.

Samples (Eds.), Ant Algorithms: Third International Workshop, ANTS 2002,

Brussels, Belgium, September 12-14, 2002. Proceedings (Vol. 2463). Springer

Science & Business Media.

Sorensen, K., & Glover, F. (2016). Metaheuristics. In S. I. Gass, & M. C. Fu (Eds.),

Encylopedia of Operations Research and Management Science (pp. 960-970).

New York: Springer.

Stutzle, T., & Hoos, H. (1997). MAX-MIN Ant System and Local Search for the

Traveling Salesman Problem. Proceeding of IEEE Conference on Evolutionart

Computation, (pp. 309-314). Indianapolis.

Stutzle, T., & Hoos, H. (1997). MAX-MIN Ant System and Local Search for the

Traveling Salesman Problem. Proceeding of IEEE Conference on Evolutionart

Computation, (pp. 309-314). Indianapolis.

Stutzle, T., & Hoos, H. H. (1996). Improving the Ant System:A detailed report on the

MAX-MIN Ant System. FG Intellektik, FB Informatik,TU

Darmstadt,Germany,Tech. Rep. AIDA-96-12.

Stützle, T., & Hoos, H. H. (2000). MAX –MIN Ant System. Future Generation

Computer Systems, 16, 889-914.

Taillard, E. (1990). Some Efficient Heuristic Methods for the Flow Shop Sequencing

Problem. European Journal of Opertaional Research, 47, 65-74.

Taiwo, O. S., Mayowa, O. O., & Ruka, K. B. (2013). Application of Genetic Algorithm

to Solve Traveling Salesman Problem. International Journal of Advanced

Research (IJOAR), 1(4), 27-46.

122

Tarantilis, C., & Kiranoudis, C. (2002). BoneRoute: An Adaptive Memory-Based

Method for Effective Fleet Management. Annals of Operations Research, 115,

227-241.

Ting, T. O., Yang, X.-S., Cheng, S., & Huang, K. (2015). Hybrid Metaheuristic

Algorithms: Past, Present, and Future. In X.-S. Yang (Ed.), Recent Advances in

Swarm Intelligence and Evolutionary Computation (pp. 71-83). Springer.

Tuba, M., & Jovanovic, R. (2013). Improved ACO Algorithm with Pheromone

Correction Strategy for the Traveling Salesman Problem. International Journal

of Computers Communications & Control, 8(3), 477-485.

Vanderbei, R. J. (2001). Linear Programming Foundations and Extensions Second

Edition. Springer Science+Business Media,LLC.

Wang, C., Lin, M., Zhong, Y., & Zhang, H. (2016). Swarm simulated annelaing

algorithm with knowledge-based sampling for travelling salesman problem. Int.

J. Intelligent Systems Technologies and Applications, 15(1), 74-94.

Watanabe, I., & Matsui, S. (2003). Improving the Performance of ACO Algorithms by

Adaptive Control of Candidate Set. Evolutionary Computation, 2003. CEC'03.

The 2003 Congress. 2, pp. 1355--1362. IEEE.

Williams, H. P. (2006). The Formulation and Solution of Discrete Optimisation Models.

In G. Appa, L. Pitsoulis, & H. P. Williams (Eds.), Handbook on Modelling for

Discrete Optimization (pp. 3-38). Springer.

Williams, H. P. (2006). The Formulation and Solution of Discrete Optimisation Models.

In Handbook on Modelling for Discrete Optimization (G. M. Appa, L. Pitsoulis,

& H. Williams, Trans., pp. 3-38). Springer.

Wong, L.-P., Low, M. Y., & Chong, C. S. (2008). A Bee Colony Optimization

Algorithm for Traveling Salesman Problem. Modeling & Simulation,2008.

AICIMS 08. Second Asia International Conference, (pp. 818-823).

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In J. R. González, D.

A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired

Cooperative Strategies for Optimization (NICSO 2010). Studies in

Computational Intelligence (Vol. 284, pp. 65-74). Springer, Berlin, Heidelberg.

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In J. R. González, D.

A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature Inspired

Cooperative Strategies for Optimization (NICSO 2010). Springer, Berlin,

Heidelberg.

Yip, P. P., & Pao, Y.-H. (1995). Combinatorial Optimization with Use of Guided

Evolutionary Simulated Annealing. IEEE Transactions on Neural Networks,

6(2), 290-295.

Yousefikhoshbakht, M., Malekzadeh, N., & Sedighpour, M. (2016). Solving the

Traveling Salesman Problem Based on The Genetic Reactive Bone Route

Algorithm whit Ant Colony System. International Journal of Production

Management and Engineering, 4(2), 65-73.

Zecchin, A. C., Maier, H. R., Simpson, A. R., Roberts, A. J., Berrisford, M. J., &

Leonard, M. (2003). Max–Min Ant System applied to water distribution system

123

optimisation. International Congress on Modelling and Simulation

(MODSIM03), Modelling and Simulation, (pp. 795-800).

Zhong, W.-l., Zhang, J., & Chen, W.-n. (2007). A Novel Discrete Particle Swarm

Optimization to Solve Traveling Salesman Problem. Evolutionary Computation,

3283-3287.

