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Abstract 27 

A pressuremeter test is a useful tool to explore geomechanical properties by comparing the in-situ 28 

measured stress-strain relationship with proposed soil behaviour. In this paper, a coupled hydro-29 

mechanical finite element model is developed to interpret pressuremeter test data, considering 30 

nonlinear elasticity, tensile fracturing and consolidation of soil. The 1D finite element model reduced 31 

the total number of elements and hence saved computational time without losing accuracy. It is found 32 

that tensile fracturing plays an important role for the cohesive clay, which would lead to 33 

overestimation of the stiffness and strength if the tensile failure is not considered. In addition, 34 

consolidation needs to be considered when the permeability coefficient is between 10−10m/s and 35 

10−8m/s, and the errors of derived stiffness constant and friction angle can reach a maximum of 21% 36 

and 35.5% respectively if neglecting consolidation. 37 
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List of notation  42 

𝛼  stiffness constant 43 

β          exponent of elasticity 44 

p pore pressure 45 

k  permeability coefficient 46 

u  displacement of soil  47 

σt
′   tensile strength 48 

σ3
′    minor principal effective stress  49 

σr
′   radial effective stress 50 

σθ
′   circumferential effective stress 51 

γw   unit weight of water 52 

Kw   bulk modulus of water 53 



εpt   tensile plastic strain 54 

 55 

1 Introduction 56 

The pressuremeter test is a widely used in-situ test to achieve quick and easy measurement of the 57 

stress-strain relationship of soil. By comparing this stress-strain relationship with proposed soil 58 

behaviour, some geomechanical parameters can be determined. It is common sense that the 59 

pressuremeter test can provide accurate estimates of soil properties due to its little soil disturbance in 60 

situ. However, in practice, it has been found that there are still some uncertainties about the 61 

interpretation of test data due to the complexity of soil physical properties.  62 

 63 

In general, interpreting pressuremeter test involve fitting curves to the test data (Clarke 1995; Schnaid 64 

et al. 2000).   This interpreting approach rely either on empirical correlations, or on solving the 65 

boundary problem. Due to the pressuremeter test normally being performed over a short period of 66 

time, a number of analytical models have been proposed to interpret the pressuremeter test in clay 67 

under undrained conditions (Gibson and Anderson, 1961; Wroth, 1982; Jefferies, 1988; Bolton and 68 

Whittle, 1999; Cunha 1994; Cunha 1996). All these studies simplified the pressuremeter test as an 69 

undrained cylindrical cavity expansion in elastic/perfectly plastic clay. Unlike in clay, interpreting the 70 

results of a pressuremeter test in sands or rocks with a high permeability coefficient, the approaches 71 

consider the volume change in drained conditions (Hughes et al., 1977; Houlsby and Withers, 1988; 72 

Withers et al., 1989; Yu and Houlsby, 1991; Yu, 2000; Mo et al., 2014). These analytical methods 73 

bring convenience in curve-fitting analysis when interpreting pressuremeter test data due to the 74 

explicit formulation and hence quick calculation. Numerical method has recently become an effective 75 

and widely-used mathematical tool for modeling more complicated soil behaviour in pressuremeter 76 

test (Yeung and Carter, 1990; Houlsby and Carter, 1993; Ajalloeian and Yu, 1998; Sánchez et al., 77 

2014; Isik et al., 2015). It has been shown that numerical analysis can obtain more accurate results 78 

compared to the analytical method, due to its capacity and flexibility for implementing complex 79 

constitutive models and boundary conditions to simulate the complicated soil behaviours. However, 80 

the degree of complexity of these numerical models inhibits the curve-fitting analysis into general 81 

purpose numerical codes, thus restricting their usefulness in engineering practice. (Emami and 82 

Yasrobi, 2014). In addition, most of these studies neglect the effects of tensile fracturing and 83 

http://link.springer.com/article/10.1007/s10064-014-0649-x#CR49
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consolidation on soil behaviour in this particular geotechnical problem. For some soils with medium 84 

permeability, the soil is partially drained, and hence lie somewhere between the perfectly drained and 85 

undrained conditions. For some cohesive materials, tensile failure may happen before friction failure 86 

during the pressurmeter test. 87 

 88 

This paper depicts numerical modelling based on the 1D finite element (FE) method, purposely 89 

designed for pressuremeter test. This FE modelling allows for considering complex constitutive 90 

models and capturing complete soil response with different geomechanical parameters, including 91 

nonlinear elasticity, permeability coefficient and tensile strength. The comparison of test results with 92 

the numerical reference framework indicates a method to determine the geomechanical parameters of 93 

soil, which will help understand the mechanisms of pressuremeter test. Due to the simplified geometry, 94 

the curve-fitting analysis can be easily incorporated for industry application. Therefore, this 1D finite 95 

element modelling can be a framework for the interpretation of pressuremeter test. 96 

2 Finite Element for coupled hydro-mechanical process 97 

During the pressuremeter test, a rubber membrane of the pressuremeter is expanded to exert 98 

horizontal pressure on the wall of the test cavity. The membrane expands at the constant strain rate, 99 

generally from 0.1% to 1% per minute in typical tests. The successive variation of cavity pressure with 100 

cavity strain is monitored and then compared with those obtained from numerical analysis to 101 

determine the geomechanical parameters. To simulate such a geomechanical process, the 102 

pressuremeter test is simplified as a time-dependent cylindrical cavity expansion in an elastic/plastic 103 

porous medium (soil) coupled with the dissipation of excess pore pressure. Some assumptions have 104 

been adopted based on the theory of continuum mechanics to develop the coupled hydro-mechanical 105 

model for deformable porous geological media: 106 

(1) The soil is treated as a fully saturated medium.  107 

(2) The seepage flow of pore water follows Darcy's law, and the inertia is ignored.  108 

(3) The membrane is assumed to be long enough to ensure that a cylindrical cavity is formed and 109 

this cavity expands and contracts in plain strain condition.  110 

(4) Considering the axial symmetry of geometry, the plane strain model can be further simplified 111 

to a 1D problem, to reduce the computational load without losing accuracy.  112 

 113 



A finite element model in 1D axisymmetric space is built as shown schematically in Figure 1. All the 114 

FE analysis discussed in this paper is based on this model.  This soil layer is located at the centre of 115 

the pressuremeter membrane. The initial cavity radius is 0.045m, same with the radius of 116 

pressuremeter membrane, but this radius would increase with the cavity expansion. The right 117 

boundary lies in the far field, 10m away from cavity center, to avoid boundary effects. Vertical 118 

movement is restrained, and hence the 1D model has only two degrees of freedom: displacement in 119 

radial direction and pore water pressure. The assumed initial condition includes the hydrostatic state 120 

of the soil and pore pressure. There are 120 quadratic elements generated in total, and the mesh 121 

near the pressuremeter is relatively finer than that in the far field. In order to simulate the large soil 122 

deformation in this test, the calculation mesh is modified in each stage. At the end of each stage, the 123 

displacement increment of each node will be added to the coordinates, so that the new family of 124 

radius is updated based on the deformed meshes from the previous stage. 125 

 126 

Figure 1. Sketch of the numerical model to simulate a pressuremeter test 127 

 128 

In the context of the theory of mixtures, the saturated porous medium is viewed as a mixed continuum 129 

of two independent overlapping phases. Its conservation equation can be obtained according to the 130 

principles of continuum mechanics, as shown in Figure 2. 131 

 132 

Figure 2. Soil stress and pore flow velocity in axisymmetric problem 133 

 134 

(1) Axisymmetric elastic equations:  135 

If momentum can be neglected, the stress equilibrium for axisymmetric problem can be written as 136 

follows: 137 

∂σr
′

∂r
+

σr
′ −σθ

′

r
+

∂p

∂r
= 0                                                                       (1) 138 

where σr
′  is the radial effective stress, σθ

′  is the circumferential effective stress, p is the pore pressure, 139 

r is the radial coordinate. 140 

 141 



The strain components for axisymmetric deformation are defined as follows: 142 

𝜀𝑟 =
𝜕𝑢𝑟

𝜕𝑟
                                                                                   (2) 143 

𝜀𝜃 =
𝑢𝑟

𝑟
                                                                                    (3) 144 

where 𝑢𝑟 is the displacement in radial direction, 𝜀𝑟 is the radial strain and 𝜀𝜃 is the circumferential 145 

strain. 146 

 147 

Hence, the volumetric strain can be written by: 148 

εvol = 𝜀𝑟 + 𝜀𝜃 =
𝜕𝑢𝑟

𝜕𝑟
+

𝑢𝑟

𝑟
                                                                     (4) 149 

 150 

The porous medium is assumed to be isotropic. If the shear modulus is assumed, the elastic 151 

constitutive equation can be expressed in terms of stress and strain increments: 152 

dσr
′ =

2Gν

1−2ν
dεvol + 2𝜃dεr                                                                 (5) 153 

dσθ
′ =

2Gν

1−2ν
dεvol + 2Gdεθ                                                                (6) 154 

where G is shear modulus and ν is Poisson’s ratio. 155 

 156 

(2) Axisymmetric seepage equations: 157 

In this study, the flow of pore water obeys Darcy’s law. Hence, the flow velocity 𝑞𝑟 can be written as: 158 

𝑞𝑟 =
k

γw

∂p

∂r
                                                                                  (7) 159 

where k is the permeability coefficient (m/s), γw is the unit weight of water. 160 

 161 

The mass conservation between volumetric strain and water drainage leads to the storage 162 

equation: 163 

1

𝑟

𝜕

𝜕𝑟
(r𝑞𝑟) +

d

dt
εvol −

n

Kw

dp

dt
= 0                                                   (8)    164 

where n is the porosity and Kw is the bulk modulus of pore water.                                               165 

 166 

Taking Equations (4) and (7) into Equation (8):  167 

k

γw

∂2p

∂r2 +
k

γw∙r

∂p

∂r
+

d

dt
(

∂𝑢𝑟

∂r
+

𝑢𝑟

r
) −

n

Kw

dp

dt
= 0                                                   (9)                                                     168 

 169 

The balance of relations, listed above, characterises the fundamental physical properties of matter 170 

independently of its specific material properties. However, in the pressuremeter test, the response of 171 

soil to similar interactions with cavity expansion differs for various geomaterials. Thus, constitutive 172 

relations have to be defined to characterize specific mechanical behaviour. Bolton and Whittle (1999) 173 

indicate that the application of linear elastic analysis to a non-linear elastic problem will give a wrong 174 



interpretation of the distribution of stresses and strains in the pressuremeter test. Hence, a power law 175 

function is applied to simulate the stiffness degradation of the soil, which was first proposed by Gunn 176 

(1992) and Bolton et al. (1993). The stress-strain relationship is expressed as: 177 

𝜏 = 𝛼𝛾𝛽                                                                        (10)                                                 178 

Where 𝜏 is shear stress, 𝛾 is the shear strain,  𝛼 is the stiffness constant and 𝛽 is the exponent of 179 

elasticity.  180 

 181 

In this finite element model, soil is defined as a elastic/perfectly plastic material. The Mohr-Coulomb 182 

model is applied to define the shear strength of the soils at different effective stresses. Except for 183 

shear failure, tensile fracturing is one of the most important processes in the pressuremeter test. It is 184 

a process of initiation and propagation of a thin physical separation when the soil effective stress 185 

drops below the tensile strength. .  186 

 187 

The tension yield function is used, and can be written in the form of the minor principal effective stress: 188 

𝑓𝑡 = σt
′ − σ3

′                                                               (11)                                                    189 

where 𝜎𝑡
′ is the tensile strength and σ3

′  is the minor principal effective stress. During the process of 190 

cavity expansion in clay, because of the increasing difference between the radial and circumferential 191 

stress imposed by the applied pressure, the soil is sheared. The circumferential stress becomes the 192 

minor principal effective stress. If equation (11) is satisfied, tensile fracturing occurs, as shown in 193 

Figure 3.  194 

 195 

Figure 3. Mechanisms of tensile fracturing in undrained conditions (after Mitchell and Soga, 2005) 196 

 197 

Tensile failure happens when the tensile failure criterion is violated. The material still behaves as a 198 

continuum after the occurrence of tensile failure. In addition, the tensile potential function is assumed 199 

to follow the associated flow rule. Under conditions of tensile failure, the tensile strength is assumed 200 

to soften gradually rather than diminishing immediately. The softening law is shown in Figure 4b, 201 

where the tensile strength decreases from σt
′ to zero when the tensile plastic strain 𝜀𝑝𝑡 increases from 202 

0 to 0.01 (Ng 2009). The complete yield surface, incorporating shear and tension yield functions, is 203 

shown in Figure 4a. 204 

https://en.wikipedia.org/wiki/Effective_stress


 205 

Figure 4. (a) complete yield surface (b) softening law of tensile strength 206 

 207 

3 Drained and undrained analysis 208 

Based on the formulations discussed above, an in-house finite element program was written. This is a 209 

procedural finite-element code using generic programming. In order to validate the finite element 210 

model, two different series of case studies were conducted, including drained and undrained analysis.  211 

 212 

To interpret the sand strength in the pressuremeter test, Yu and Houlsby (1991) derived a widely 213 

accepted analytical solution. This solution is based on Cavity Expansion Theory, using the logarithmic 214 

strain and Mohr-Coulomb model parameters. Figure 5 compares Yu and Houlsby’s closed-form 215 

solution and data generated by linear elastic finite element drained analysis with different values of 216 

shear modulus. All parameters are as listed in Table 1 (drained analysis). In this analysis, the pore 217 

pressure on every nodes is fixed as 0, which eliminate the effect of pore pressure on effective stress. 218 

Displacement boundary conditions will be applied on the left boundary abutting the instrument to 219 

simulate the cavity expansion, as shown in Figure 1. The cavity strain increases from 0 to 5%. The 220 

initial effective stress is set as 100kPa. 3 case studies with shear modulus of 50 MPa, 100 MPa and 221 

200 MPa were performed respectively. Yu’s solution matches the FE-generated curve outstandingly 222 

well, which implies that both the elastic/plastic deformation and the large strain formulation have been 223 

properly taken into account.  224 

 225 

Table 1 Soil parameters for drained/undrained analysis 226 

 227 

Figure 5. Cavity expansion curve from numerical drained analysis and analytical solution 228 

 229 

Undrained analysis can be performed  in terms of either effective or total stresses. During the loading 230 

and yielding process, a significant amount of excess pore pressure would be developed.  This excess 231 

pore pressure would lead to a change of the effective stress and therefore influence the shear 232 



strength of the soil. Hence, the success of such analysis relies on whether the adopted constitutive 233 

model can correctly predict the development of effective stress and pore water pressure. If elastic 234 

perfect plastic model used, the prediction of pore water pressure in the pre-failure regime may be 235 

away from the real situation. Bolton and Whittle (1999) derived the undrained shear strength of clay in 236 

the pressuremeter test, assuming that the ground response to loading/unloading is non-linear 237 

elastic/perfectly plastic. A non-linear elastic/perfectly plastic undrained analysis was carried out using 238 

the proposed model in this paper. The hydro-mechanical coupling model can be used to carry out an 239 

effective stress analysis of pressuremeter test when the permeability coefficient k is set as 0.  Figure 240 

6 shows the comparison of Bolton and Whittle’s analytical solution and the results of the finite element 241 

simulation with different stiffness constants. All parameters are as listed in Table 1 (undrained 242 

analysis). Three case studies with different stiffness constant were performed. The numerical result 243 

matches the analytical solution, which indicates that the nonlinear elasticity model has been correctly 244 

implemented, which provides some confidence in using the FE model. 245 

 246 

Figure 6. Cavity expansion curve from numerical undrained analysis and analytical solution 247 

 248 

4 Effects of tensile fracturing 249 

Ng (2009) conducted tests of cavity expansion to simulate a pressuremeter test and tensile fracturing 250 

in cement bentonite. The borehole was modelled by a cylindrical specimen with an inner central 251 

cylindrical cavity. A rubber membrane was inserted into the inner cylindrical cavity of the specimen so 252 

that the injected water could apply pressure to the specimen’s cavity through membrane expansion. 253 

Tests were performed in undrained conditions as the permeability of cement bentonite is very low. 254 

One of the test data is used as reference for comparison with FE analysis in this paper. The purpose 255 

of this paper is to demonstrate the effects of tensile fracturing and consolidation. Only the loading 256 

stage of test is simulated.  257 

 258 

Two series of FE analyses were performed. The first is shear analysis using the Mohr-Coulomb model, 259 

which only considers the shear failure. The second is tensile/shear analysis which considers both 260 

shear failure and tensile failure. All the parameters used in the FE analysis are listed in Table 2. The 261 

calculation was divided into 250 steps. In each step the cavity strain increased 0.02%, as a boundary 262 



condition applied on the left boundary. Permeability coefficient was 0 m/s. The cohesion and the 263 

friction angle were 235 kPa and 20°, according to the undrained triaxial test results of bentonite 264 

material (Joshi et al., 2008). The dilation angle and tensile strength were 0° and 65 kPa, based on the 265 

results of the Brazilian tests (Ng, 2009). The test data from Ng (2009) was used to calibrate the 266 

stiffness constant and exponent of elasticity, as shown in Figure 7. 267 

 268 

Table 2 Soil parameters for shear and tensile/shear analysis 269 

 270 

The FE results are shown in Figure 7. With the same stiffness constant of 8 MPa, the cavity pressure 271 

is 10% larger for the tensile/shear analysis than for the shear analysis when the cavity strain is about 272 

5%. In order to fit the test data with the same degree of accuracy, the stiffness constant needs to be 273 

reduced to 6.5 MPa for the tensile/shear analysis. Hence, it is concluded that failing to consider 274 

tensile fracturing leads to an underestimate of the cavity pressure and hence overestimate of the 275 

stiffness. 276 

 277 

Figure 7. Cavity expansion curve for shear and tensile/shear analysis 278 

 279 

The effective stress paths are presented in Figure 8, in which the change of effective radial stress with 280 

effective circumferential stress at the cavity wall is plotted. For the shear analysis, the increase in 281 

radial stress has a linear relationship with the decrease in circumferential stress until the shear stress 282 

reaches the yield surface. However, in the tensile/shear analysis, this turning point happens much 283 

earlier, when the effective circumferential stress is reduced to the tensile strength of -65 kPa. Due to 284 

tensile strength would soften gradually, it is shown that the effective circumferential stress increases a 285 

little after tensile failure. Between the case of shear analysis with α = 8 MPa and the tensile/shear 286 

analysis with α = 6.5 MPa, there is a marked difference in effective radial stress and circumferential 287 

stress. However, the difference in the cavity pressure at 5% strain is negligible, as shown in Figure 7, 288 

which indicates that considering tensile fracturing produces a much lower estimate of excess pore 289 

pressure during the cavity expansion process. This is reasonable, because the tensile fracture can 290 

lead to relief of the excess pore pressure. 291 



 292 

Figure 8. Stress path at the cavity wall 293 

 294 

The above process can be plotted in the form of Mohr’s circles, as shown in Figure 9. In the shear 295 

analysis, as shown in Figure 9(a), the diameter of the Mohr’s circles continues to increase and the 296 

centre of the Mohr circle keeps constant, initially corresponding to the undrained condition. The 297 

Mohr’s circles finally stop expanding when the Mohr-Coulomb shear failure criterion is violated, and 298 

the effective radial stress reaches 520 kPa. In the tensile/shear analysis, as shown in Figure 9(b) and 299 

9(c), the soil undergoes tensile failure before reaching shear failure. After tensile failure, the centres of 300 

the Mohr’s circles begin to move. The Mohr’s circles finally reach the Mohr-Coulomb shear failure 301 

criterion with a much larger effective radial and circumferential stress than when tensile failure is not 302 

considered.  303 

 304 

Figure 9. Mohr’s circles at the cavity wall: (a) shear analysis (α = 8Mpa); (b) tensile/shear analysis 305 

(α = 6.5Mpa); (c) tensile/shear analysis (α = 8Mpa) 306 

 307 

In practice, the pressuremeter tests on  low permeability soils are usually interpreted using total stress 308 

analysis, the undrained shear strength and elastic modulus can be estimated separately when other 309 

parameters are assumed. In this effective stress analysis, the cohesion and other parameters are 310 

assumed, as shown in Table 2, so that the stiffness constant or friction angle can be determined in 311 

each case study with different value of tensile strength. Figure 10 shows the derived stiffness 312 

constant and friction angle by interpreting data from Ng (2009), assuming that a stiffness constant of 313 

6.5 MPa and a friction angle of 20° are the real values. It seems that a high tensile strength value 314 

used in the model leads to an overestimation of the stiffness constant and friction angle. When the 315 

tensile strength increases beyond 140 kPa, the estimated stiffness constant and friction angle 316 

reaches about 7.9 MPa and 38°, respectively. This case is close to the shear analysis, in which the 317 

stress reaches the shear failure criteria before tensile failure occurs. Therefore, it can be concluded 318 

that tensile fracturing plays an important role in the pressuremeter test, and choosing a suitable 319 

tensile strength is very important in interpreting test data.   320 



The success of this tensile/shear analysis lies on the accurate prediction of tensile failure and 321 

subsequent shear failure. For non-cohesive soil, shear failure would happen before the effective 322 

circumferential stress drops below 0 kPa, and hence the tensile stress will no longer occur. Hence,  323 

the proposed effects of tensile fracturing on pressuremeter test data only applies for cohesive soil, 324 

especially with high cohesion and low tensile strength. This effects reduces with the decreases of soil 325 

cohesion, and tensile/shear analysis becomes completely unnecessary for non-cohesive soil. 326 

  327 

Figure 10. Effect of tensile strength on soil stiffness and strength 328 

 329 

5 Effects of consolidation 330 

Normally, pressuremeter testing in clay is considered an undrained process, but in reality some 331 

consolidation occurs for soil with medium permeability. In this section, a series of finite element 332 

analyses were performed to assess the effects of consolidation on the derived parameters from the 333 

pressuremeter test. To avoid the coupled effects of tensile fracturing and consolidation, the 334 

parameters were based on the shear analysis, as listed in Table 2 (shear analysis). The calculation 335 

was also divided into 250 steps and the cavity strain increased 0.02% in each step. Duration of each 336 

step was 12 seconds, corresponding to a conventional cavity strain rate of 0.1%/min adopted in the 337 

self-boring pressuremeter test.  Figure 11 shows the cavity pressure for different values of the 338 

permeability coefficient. Initially, the cavity pressure increases with increasing cavity strain, and all the 339 

cases coincide to a single curve. After the cavity strain increases over 1%, individual curves show 340 

different behaviour. With a permeability coefficient of 10−8 m/s, the cavity pressure reaches about 341 

1610 kPa when the strain is about 5%. This is much higher than the case of k = 10−10m/s, in which 342 

the highest cavity pressure is about 1450 kPa. In addition, the stress–strain curves for the cases of 343 

the undrained condition and k = 10−11 m/s are identical, and the stress–strain curves for the cases of 344 

the drained condition and k = 10−7 m/s are identical. This indicates that consolidation must be 345 

considered when the permeability coefficient is between 10−10 m/s and 10−8 m/s. 346 

 347 

Figure 11. Cavity expansion curve using consolidation analysis 348 

 349 



The above process was plotted in the form of Mohr’s circles, as shown in Figure 12. For the case of 350 

k = 10−7 m/s, the mean effective stress increases sharply after the Mohr circle violates the tensile 351 

failure criteria, and hence shows a rapid increase in shear strength. For this reason, the cavity 352 

pressure for higher permeability can reach a higher value. 353 

 354 

Figure 12. Mohr circles at the cavity wall using consolidation analysis 355 

 356 

Figure 13 shows the stiffness constant and friction angle derived by interpreting the data from Ng 357 

(2009) when considering consolidation. It seems that the undrained assumption leads to 358 

overestimation of the soil stiffness and strength. When the permeability increases to about 10−7 m/s, 359 

the stiffness constant and friction angle reduce to about 6.3 MPa and 12.9°. The errors are about 21% 360 

and 35.5%, respectively. This study therefore concludes that consolidation is a crucial factor in the 361 

process of the pressuremeter test, especially for soils with medium permeability between 10−10 m/s 362 

and 10−8 m/s. Without considering soil consolidation, the derived geomechanical parameters in 363 

undrained condition may be much higher than the real values. It is unfortunate that making this error 364 

in data interpretation leads to a unsafe design in geotechnical engineering projects. 365 

 366 

Figure 13. Effect of the permeability coefficient on soil stiffness and strength 367 

 368 

6 Conclusions 369 

In this paper, a 1D finite element model was presented as a tool to derive in situ soil parameters, 370 

based on comparing pressuremeter test results with the expected soil responses from FE analysis. 371 

The numerical results perfectly matched the analytical solutions under both drained and undrained 372 

condition, which indicates that FEM is a valid and flexible method for interpreting pressuremeter test 373 

data. The 1D model reduced the total number of elements and hence saved computational time 374 

without losing accuracy. 375 

 376 

Tensile fracturing is one of the most important processes in the pressuremeter test. Good agreement 377 

between the in situ test results and the numerical simulations was obtained. Cavity pressure in the 378 



tensile/shear analysis is lower than in conventional shear analysis, when equivalent stiffness and 379 

shear strengths are used. Hence, for cohesive soil, neglecting to consider tensile failure will lead to 380 

overestimation of the stiffness constant and friction angle. 381 

 382 

Normally, pressuremeter testing in clay is considered as an undrained process, but in reality some 383 

consolidation occurs for the clay with medium permeability. When the permeability coefficient is lower 384 

than 10−11 m/s, the pressuremeter test is assumed to be under undrained conditions. When the 385 

permeability coefficient is between10−8 m/s and 10−10 m/s, consolidation has a large effect on the 386 

results. It seems that the undrained analysis leads to overestimation of the soil stiffness and strength. 387 

When the permeability increases to about 10−7 m/s, the test process is close to a drained condition, 388 

and the errors in the derived stiffness constant and friction angle are about 21% and 35.5%, 389 

respectively.  390 
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Figure 1. Sketch of the numerical model to simulate a pressuremeter test 500 
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Figure 2. Soil stress and pore flow velocity in axisymmetric problem   503 
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Figure 3. Mechanisms of tensile fracturing in undrained conditions (after Mitchell and Soga, 2005) 505 
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Figure 4. (a) complete yield surface (b) softening law of tensile strength 508 
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Figure 5. Cavity expansion curve from numerical drained analysis and analytical solution 513 
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Figure 6. Cavity expansion curve from numerical undrained analysis and analytical solution 515 
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Figure 7. Cavity expansion curve for shear and tensile/shear analysis 518 
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Figure 8. Stress path at the cavity wall 520 
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(c) 527 

Figure 9. Mohr’s circles at the cavity wall: (a) shear analysis (α = 8MPa); (b) tensile/shear analysis 528 
(α = 6.5MPa); (c) tensile/shear analysis (α = 8MPa) 529 
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Figure 10. Effect of tensile strength on soil stiffness and strength 532 
 533 

 534 

Figure 11. Cavity expansion curve using consolidation analysis 535 
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Figure 12. Mohr circles at the cavity wall using consolidation analysis 537 
 538 

 539 

Figure 13. Effect of the permeability coefficient on soil stiffness and strength 540 
 541 
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