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Abstract

This paper describes a new formulation of the radial integration boundary element method (RIBEM) for

two-dimensional non-homogeneous convection-diffusion-reaction problems with variable source terms. The

radial integration method (RIM) is implemented to transform the resulting domain integral into equivalent

boundary integrals, and thus a boundary-only integral equation formulation can be achieved. The fundamen-

tal solution of the steady-state convection-diffusion-reaction equation with constant coefficients is employed.

The integral representation formula for the convection-diffusion-reaction problem with source term is ob-

tained from Green’s second identity. Numerical applications are included for five different cases, for which

analytical solutions are available, to establish the validity of the proposed approach and to demonstrate

convergence and efficiency of the proposed technique. Results obtained show that the RIBEM produced an

excellent agreement with the analytical solutions and the results do not present oscillations or damping of

the wave front, as may appear in other numerical techniques.

Keywords: Convection-diffusion-reaction problem; Radial integration method; Boundary element method;

Source term; Domain integral

1. Introduction

A simple and robust transformation technique, called the radial integration method (RIM), was developed

by Gao [1] which not only can transform any complicated domain integral to the boundary without using

particular solutions, but can also remove various singularities appearing in the domain integrals [2, 3].

Based on the RIM, the RIBEM was developed and applied to handle a wide range of engineering and5

mathematical problems including non-homogeneous steady-state and transient heat conduction problems,

acoustics problems, diffusion problems, elastoplasticity and other mechanical problems [1, 4, 5, 6, 7, 8, 9].

Yang and Gao [10] proposed a new boundary element technique to handle transient heat conduction

problems, for which the RIM is implemented to transfer the domain integral associated with the time

derivative of temperatures, and the radial integral is evaluated numerically. The RIM can be applied to10
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the combination of power series expansion operated on the parameter plane of intrinsic coordinates [11] or

for the projection plane of global coordinates [12, 13], for which it can evaluate different types of singular

boundary integrals numerically [14].

Recently, Feng [15] proposed a new type of single integral equation technique to solve transient heat

conduction problems in multi-media with variable thermal properties. The same author has also derived15

an interface integral equation method to solve general multi-media mechanical problems by considering the

discontinuity of the stress-strain constitutive relationship during the transformation from elastic to plastic

regions [16]. Feng also proposed a new BEM formulation without initial stresses for solving two and three-

dimensional elastoplastic problems [17].

Yang et al . [18, 19] successfully derived a series of analytical expressions for evaluating radial integrals,20

which are utilised in the RIM for converting the domain integrals into equivalent boundary integrals. By using

these analytical expressions, the computation time spent in the numerical calculation of radial integrals can

be considerably reduced. This technique has been implemented to handle non-homogeneous heat conduction,

non-homogeneous elasticity and thermoelasticity problems. However, in the derivation of the analytical radial

integral expressions, some special circumstances may appear which will influence the accuracy of the results25

[14].

The RIBEM was successfully derived and implemented for the free vibration analysis of anisotropic plates

[20], and to thermoelasticity, elastic inclusion problems, creep damage mechanics problems, transient heat

conduction problems, and viscous flow problems [9, 21, 22, 23, 24]. Owing to the advantages of the RIM,

mainly that particular solutions are not required and various domain integrals appearing in the same integral30

equation can be dealt with simultaneously, RIM-based BEMs have gained considerable attention from many

BEM researchers [25, 26, 27].

The radial integral in the RIBEM formulation is usually calculated by utilising Gaussian quadrature,

which requires it to be computed at each Gaussian point of the boundary element under consideration.

Evaluating the radial integrals numerically, especially for a three-dimensional non-linear and large-scale non-35

homogeneous problem, is highly time-consuming and this will lead to a reduction of the performance and

the efficiency of this numerical method [17, 24].

A brief outline of this paper is as follows: Section 2 shows the representation of the non-homogeneous

convection-diffusion-reaction equation with source term. Section 3 derives the boundary element formulation

of the governing equation using the fundamental solution of the corresponding equation without a source.40

In section 4, the RIM formulation is developed for the 2D non-homogeneous convection-diffusion-reaction

problem with source term, followed in section 5 by domain integrals with weakly-singular integrand for

this model. Space discretisation of the RIBEM formulation for the corresponding problem is discussed in

section 6, while section 7 gives a description of the assembly of the RIBEM system. Section 8 compares

and discusses the solution profiles for the present numerical experiments with the analytical solution of the45

tested cases. Some error indicators were used to represent the convergence rate and the solution behaviour.
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Computational aspects are included to demonstrate the performance of this approach in section 9. Finally,

some conclusions and remarks are provided in the last section.

2. Non-homogeneous convection-diffusion-reaction problem with source term

The solution of convection-diffusion-reaction problems is a difficult task for all numerical methods because50

of the nature of the governing equation, which includes first-order and second-order partial derivatives in

space [28, 29, 30, 31, 32]. The convection-diffusion-reaction equation with source term is the basis of many

physical and chemical phenomena, and its use has also spread into economics, financial forecasting and other

fields [33].

Our mathematical model, i.e. non-homogeneous two-dimensional convection-diffusion-reaction problem

with source term over a domain Ω in R2 limited by a boundary Γ, for isotropic materials, is governed by the

following partial differential equation:

D∇2φ (x, y)− vx
∂φ (x, y)

∂x
− vy

∂φ (x, y)

∂y
− k φ (x, y) = S (x, y) (1)

x, y ∈ Ω ⊂ Rd

In Eq.(1), φ represents the concentration of a substance, treated as a function of space, Γ is a bounded

domain in Rd, d is the dimension of the problem. The velocity components vx and vy along the x and y

directions are assumed to be constant in space. Besides, D is the diffusivity coefficient, k represents the

first-order reaction constant or adsorption coefficient and S (x, y) represents the source term. The boundary

conditions are

φ = φ̄ over ΓD (2)

q =
∂φ

∂n
= q̄ over ΓN (3)

where ΓD and ΓN are the Dirichlet (essential) and Neumann (natural) parts of the boundary with Γ =55

ΓD ∪ ΓN , and ΓD ∩ ΓN = ∅ (see Fig. 1). The parameter that describes the relative influence of the

convective and diffusive components is called Péclet number, Pé = |v|L/D, where v =
(
v2
x + v2

y

)1/2
is the

velocity and L is a characteristic length of the domain. For small values of Pé, Eq.(1) behaves as a parabolic

differential equation, while for large values the equation becomes more like hyperbolic. These changes in the

structure of the differential equation according to the value of the Péclet number have significant effects on60

its numerical solution.

3. Boundary element formulation of non-homogeneous convection-diffusion-reaction problems

with source term

Let us consider a region Ω ⊂ R2 bounded by a piecewise smooth boundary Γ. The transport of φ in

the presence of a reaction term is governed by the two-dimensional convection-diffusion-reaction Eq.(1).
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Figure 1: Definition of domain, boundary, and constant boundary elements

The variable φ can be interpreted as temperature for heat transfer problems, concentration for dispersion

problems, etc, and will be herein referred to as a concentration. For the sake of obtaining an integral equation

equivalent to the partial differential equation (1), a fundamental solution of Eq.(1) is necessary. Equation (1)

can be transformed into an equivalent integral equation by applying a weighted residual technique. Starting

with the weighted residual statement:∫
Ω

(
D∇2φ (x, y)− vx

∂φ (x, y)

∂x
− vy

∂φ (x, y)

∂y
− k φ (x, y)

)
φ∗dΩ =

∫
Ω

S (x, y)φ∗dΩ (4)

and integrating by parts twice the Laplacian and once the first-order derivatives, the following equation is

obtained:

φ (ξ) = D

∫
Γ

φ∗
∂φ

∂n
dΓ− D

∫
Γ

φ
∂φ∗

∂n
dΓ−

∫
Γ

φφ∗ v̄n dΓ −
∫
Ω

S (x, y)φ∗ dΩ (5)

where v̄n = v.n, n is the unit outward normal vector and the dot stands for scalar product. In the above

equation, φ∗ is the fundamental solution of the convection-diffusion-reaction equation without source term.

For two-dimensional problems, φ∗ is of the form

φ∗ (ξ, χ) =
1

2πD
exp−( v.r

2D )K0 (µr) (6)

where

µ =

[( v̄

2D

)2

+
k

D

] 1
2

(7)

in which ξ and χ are the source and field points, respectively, and r is the modulus of r, the distance vector

between the source and field points. The derivative of the fundamental solution with respect to the outward

normal direction is given by

∂φ∗

∂n
=

1

2πD
exp−( v̄.r

2D )
[
−µK1 (µr)

∂r

∂n
− v̄n

2D
K0 (µr)

]
(8)

In the above, K0 and K1 are Bessel functions of second kind, of orders zero and one, respectively. The

exponential term is responsible for the inclusion of the correct amount of ’upwind’ into the formulation [34].

Expression (5) is valid for source points ξ inside the domain Ω. A similar expression can be obtained, by a
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limit analysis, for source points ξ on the boundary Γ, in the form

c (ξ)φ (ξ) = D

∫
Γ

φ∗
∂φ

∂n
dΓ − D

∫
Γ

φ
∂φ∗

∂n
dΓ−

∫
Γ

φφ∗ v̄n dΓ −
∫
Ω

S (x, y)φ∗ dΩ (9)

in which c (ξ) is a function of the internal angle the boundary Γ makes at point ξ [32].

4. The radial integration method for transforming general domain integrals to the boundary65

Given a two-dimensional domain Ω bounded by a boundary Γ, define a Cartesian coordinate system

(χ1, χ2) and a polar coordinate system (r, θ) with origin at the source point ξ = (ξ1, ξ2). The relationships

between the Cartesian and polar coordinate systems are:

r1 = χ1 − ξ1 = r cos (θ) (10)

r2 = χ2 − ξ2 = r sin (θ)

where 0 ≤ θ ≤ 2π and r is the distance between the source point ξ and a field point χ. The relationship

between a differential domain in the Cartesian system and the polar system is given by

dΩ = dχ1 dχ2 = J dr dθ = r dr dθ (11)

where J = |∂ (χ1, χ2) /∂ (r, θ)| = r is the Jacobian. We can notice from Fig. 2 that when the field point is

located on the boundary, we can obtain the following relation [35]

rdθ = dΓ cosϕ = dΓ
rini
r

(12)

where ϕ is the angle between the normal of the differential arc rdθ with radius r with the differential boundary

Γ with outward normal ni, with the summation subscript i taking the values 1 to 2. Substituting Eq.(12) in

(11) and re-arranging, we obtain

dΩ = r dr ds (13)

where

ds =
1

r

∂r

∂n
dΓ (14)

for which the following expressions are employed

∂r

∂n
= r,ini (15)

r,i =
∂r

∂χi
=
ri
r

=
(χi − ξi)

r
(16)

r,ir,i = 1 (17)
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Figure 2: Relationship between differential elements rdθ and dΓ

Now, a function in Cartesian coordinates can be written in polar coordinates and integrated as follows:∫
Ω

f (χ) dΩ =

∫
s

{∫ r(χ)

0

f (χ) rαdr

}
ds (χ) =

∫
s

F (χ) ds (χ) (18)

where

F (χ) =

∫ r(χ)

0

f (χ) rαdr (19)

In Eqs.(18) and (19), α = 1 for the two-dimensional case and α = 2 for the three-dimensional case. The

symbol f (χ) means the variable f takes values on the boundary Γ (see Fig. 2). Substituting expression (14)

into (18), we obtain ∫
Ω

f (χ) dΩ =

∫
Γ

1

rα
∂r

∂n
F (χ) dΓ (χ) (20)

The following notes are crucial for the RIM, especially for Eqs.(19) and (20):

• Although the derivation is in a polar coordinate system, the variables are now operated in the Cartesian

coordinate system.

• The equations are valid for a source point ξ located at both internal and boundary nodes.

• The most attractive feature of the RIM is that the transformation (20) is very simple and has similar70

forms for both 2D and 3D. It can remove various singularities appearing in domain integrals since rα

is included in the radial integral in expression (19).

In order to transform a domain integral to a boundary one, the main task is to calculate the radial

integral in Eq.(20), which can be done analytically for simple kernels. We have written a simple Matlab

code for analytical integration of Eq.(20) which can integrate many given functions f (χ), however, for75

complicated functions, numerical integration techniques are required [2, 3].

• In order to evaluate the RIM in Eq.(19), the coordinates χ1, χ2 in f (χ) need to be expressed in terms

of the distance r using:

χi = ξi + r,i r; i = 1, 2. (21)
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where the quantities ξi and r,i are constants for the radial integral in Eq.(19).

• Weak singularities involved in the integrand f (χ) have been transformed to the boundary. Conse-

quently, no singularities exist at internal nodes for such integrands.

• Expression (20) can be computed using constant, linear and higher-order boundary elements in the80

same way as in the standard BEM.

5. RIM formulation for domain integrals with weakly-singular integrand

It is known that, in a domain integral, if the integrand includes the term 1/rα, then when n ≤ α (α = 1)

in 2D and (α = 2) in 3D, this integrand is weakly singular as the source point approaches the field point. For

such an integrand, Eq.(19) shows that the singularity is explicitly eliminated after multiplying by the term85

rα. After integrating Eq.(19), F (χ) will include a term rm where m is equal to or greater than 1. This makes

the transformed boundary integral (20) weakly singular when the source point approaches the boundary.

For strongly singular integrands f (χ), which includes 1/rn with n > 1, Eq.(19) cannot omit the singularity

completely. However, for some special functions, for example the strain kernels in elastoplastic integral

equations, the idea of differentiating Eqs.(20) and (19) can be utilised to remove the strong singularities [35].90

From Eqs.(19) and (20), we can see that the key task for the transformation of domain to boundary

integrals is the evaluation of the radial integral (19). For most kernel functions involved in domain integrals

in BEM for mechanical and potential problems, Eq.(19) can be analytically integrated. For some very

complicated functions, it may be difficult to do this. In that case, numerical integration techniques, such as

Gaussian quadrature, may be used to compute the radial integral for every field point χ. To use Gaussian

quadrature, the following variable transformation is required:

r =
r (χ)

2
η +

r (χ)

2
, (−1 ≤ η ≤ 1) (22)

When the source term S (x, y) is variable, then the RIM can be implemented to transform the domain

integral appearing in Eq.(5). The radial integral can be evaluated by direct implementation (analytically) as

described in section 4 when the source term is constant whilst for variable source terms, numerical integration

will be implemented. Using Eqs.(21) and (22), the radial integral (19) can be expressed as:

F (χ) =

∫ +1

−1

f (χ (η))

(
r (χ)

2
η +

r (χ)

2

)α
r (χ)

2
dη (23)

=

(
r (χ)

2

)α+1 Ng∑
n=1

(1 + ηn)
α
f (χ (ηn))wn

where Ng is the number of Gaussian points, ηn are the Gaussian point coordinates and wn is the associated

weight. In this work, 60 Gauss points are used for increased accuracy.

7



6. Space discretisation of the RIBEM formulation for 2D convection-diffusion-reaction model

with source term

For numerical solution of the problem, Eq.(9) can be written in discretised form in which the integrals95

over the boundary are approximated by a summation of integrals over individual boundary elements, i.e.

ci φi = D

N∑
j=1

∫
Γj

φ∗
∂φ

∂n
dΓ −D

N∑
j=1

∫
Γj

(
∂φ∗

∂n
+
vn
D
φ∗
)
φdΓ

−
N∑
j=1

∫
Γj

1

r

∂r

∂n

(r
2

)2
Ng∑
n=1

(1 + ξn) f (χ (ξn))wn

φ∗dΓ (24)

where the index i stands for values at the source point ξi, Ng is the number of integration points and N the

number of boundary elements. In the above expression, it can be noticed that:

∂φ∗

∂n
+
vn
D
φ∗ =

1

2πD
exp(−v.r

2D )
[
−µK1 (µr)

∂r

∂n
+
vn
2D

K0 (µr)

]
(25)

Next, the constant functions φ and ∂φ
∂n within each element are approximated by their nodal values. Therefore,

the following expression is obtained

ciφi =

N∑
j=1

(Gij qj −Hij φj) +Bi (26)

Note that the two influence matrices can be represented as:

Gij = D

∫
Γj

φ∗dΓ (27)

and

Hij = D

∫
Γj

(
∂φ∗

∂n
+
vn
D
φ∗
)
dΓ (28)

with

Bi =

∫
Γj

1

r

∂r

∂n

(r
2

)2
Ng∑
n=1

(1 + ξn) f (χ (ξn))wn

φ∗ dΓ (29)

The above expression (26) involves N values of φ and q = ∂φ
∂n , half of which are prescribed as boundary

conditions. In order to calculate the remaining unknowns, it is necessary to generate N equations. This can

be done by using a simple collocation technique, i.e. by making the equation be satisfied at the N nodal100

points. The ci values have been incorporated into the diagonal coefficients of matrix H. After introducing the

boundary conditions, the system is reordered and solved by a direct method, for instance, Gauss elimination

or LU decomposition.

The result is a system of equations of the form:

Hφ = Gq +B (30)
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where B is the term representing the radial integral for the source term as in Eq.(5). Evaluation of the

coefficients of matrices H, G and vector B is carried out numerically. It should be noted that the diagonal

coefficients of matrix G have a weak singularity of the logarithmic type, and are calculated using the self-

adaptive scheme of Telles [36]. The coefficients Hii can be calculated, in the absence of the reaction term, by

noting that a consistent solution for a prescribed uniform concentration along the boundary can be obtained

if matrix H is singular, i.e.

Hii = −
N∑
j=1

Hij (i 6= j) (31)

However, when k 6= 0, there is a flux when a uniform concentration is applied (or, in other words, the zero

flux state cannot be achieved for a uniform concentration distribution). In this case, the coefficients Hii105

have to be evaluated explicitly [37]. These terms are composed of two parts, one being a sum of integrals

of the form Hij and the other the free term ci. The former also possesses a logarithmic singularity, and is

calculated using Telles’ scheme [36]. The free terms ci depend only on geometry, and have the same values

as for Laplace’s equation [38].

7. Error norms indicators110

To measure the quality of the approximation solutions, we need to utilise some appropriate error norms.

In this work, we use boundary L∞ and RMS error norms, which can be equally evaluated from the boundary

solution alone in contrast to the energy norm which requires solutions to be known at internal nodes as well

[39]. In what follows, all the error norms are based on the analytical solutions. In our context, there are two

ways to present the solution convergence and accuracy, either by the root mean square error or by using an115

average relative error. Our goal here is to study the convergence rates to show accuracy and convergence of

the proposed method.

To check the convergence of the proposed method, the root-mean-square (RMS) error is introduced:

RMS =

√√√√ 1

N

N∑
i=1

|φi,numer − φi,exact|2 (32)

The root mean square norm is based on the difference between the simulation results φnumer and the

analytical solution φexact.

Finally, we can define the L∞ error norm by:

L∞ = ‖eφ‖∞ = Max |φexact − φnumer| (33)

Here, φnumer, φexact, φnumer,max and φnumer,min represent the calculated solution value, the analytical120

solution value and the maximum and minimum analytical solution values in the domain, respectively. N is

the total number of elements.
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8. Numerical experiments and results

The present section is concerned with numerical tests of the RIBEM for the solution of two-dimensional

non-homogeneous convection-diffusion-reaction problems with constant and variable source terms. We shall125

examine five case studies with known analytical solutions to quantitatively and qualitatively assess the

convergence, accuracy and robustness of the proposed formulation. All numerical computations were coded

using Matlab 2016a Version 9.

8.1. Experiment 1: Two-dimensional non-homogeneous convection-diffusion-reaction problem over a square-

shaped region with constant source term130

In this test, a two-dimensional transport problem with constant source term has been examined to analyse

the validity of the present formulation. This problems deals with a square cross-section with unit dimensions.

We assume the diffusivity D = 1, the reaction value k = 0, and velocity component vy = 0. We shall consider

the cases where S = 5, 10, 50, 100 and 500.

The mixed boundary conditions are as follows: For vertical faces, i.e. x = 0 and x = 1, Dirichlet boundary

conditions are imposed:

φ = 0; x = 0, 0 ≤ y ≤ 1

φ = 1; x = 1, 0 ≤ y ≤ 1

and zero fluxes (Neumann boundary conditions) for the horizontal faces, i.e. y = 0 and y = 1:

q =
∂φ

∂n
= 0; y = 0, 0 ≤ x ≤ 1

q =
∂φ

∂n
= 0; y = 1, 0 ≤ x ≤ 1

The analytical solution of the problem is given by

φ (x, y) = φ0 +
S

vx
x+

φL − φ0 − (SL/vx)

exp
(
vxL
D

)
− 1

[
exp

(
vxLx

D

)
− 1

]
(34)

The geometry is discretised into 120 equally-spaced constant elements, 30 on each side as shown in Fig.3.135

8.1.1. Positive velocity

The concentration φ at boundary nodes along the faces y = 0 and y = 1 is investigated. Figure 4 displays

the numerical and analytical solutions along the bottom and the top sides of the channel for S = 5 and

vx = 10. Next, Fig. 5 presents RIBEM and analytical solutions for S = 10 and vx = 30. Figure 6 presents

the numerical and analytical solutions for S = 50 and vx = 15. Figure 7 shows the numerical and exact140

solutions for S = 500 and vx = 20. Figure 8 presents the solution for S = 100 and vx = 500. Figure 9

shows the variation of the concentration profile along the horizontal faces for a high value of the source

term S = 500 and velocity vx = 500, compared to the analytical solution, in which case the Péclet number
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Figure 3: Geometry and model discretisation with unit side length
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Figure 4: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 5, vx = 10: comparison between the analytical

(solid line) and numerical (star points) solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis(m)

0

0.2

0.4

0.6

0.8

C
on

ce
nt

ra
tio

n 
(k

g/
m

3
)

RIBEM
Analytical

Figure 5: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 10, vx = 30: comparison between the

analytical (solid line) and numerical (star points) solutions

is Pé = 500. All figures display the expected behaviour for the concentration profiles at different Péclet

numbers and with various source term values, showing an excellent agreement with the analytical results.145

To examine the variation of the concentration profiles at different positions at the bottom face, Table 1

shows the numerical and analytical solutions for S = 50 and vx = 50.
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Figure 6: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 50, vx = 15: comparison between the

analytical (solid line) and numerical (star points) solutions
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Figure 7: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 500, vx = 20: comparison between the

analytical (solid line) and numerical (star points) solutions

Table 1: Results of RIBEM for convection-diffusion-reaction problem at Pé = 50

x RIBEM Analytical

0.1 0.1124 0.1167

0.2 0.2131 0.2167

0.3 0.3136 0.3167

0.4 0.4139 0.4167

0.5 0.5141 0.5167

0.6 0.6143 0.6167

0.7 0.7144 0.7167

0.8 0.8146 0.8167

0.9 0.9151 0.9167

To assess the convergence of the boundary concentrations with mesh refinement, Table 2 presents the

global errors for L∞ and RMS. The accuracy of the results for the RIBEM is very good as both the RMS
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Figure 8: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 100, vx = 500: comparison between the

analytical (solid line) and numerical (star points) solutions
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Figure 9: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 500, vx = 500: comparison between the

analytical (solid line) and numerical (star points) solutions

error norm and the relative error in L∞ norm are of the order 10−3. The simulation and the analytical150

solutions on two-dimensional refined meshes are computed with good agreement. The calculated errors are

cast in the RMS error norm and are plotted in Fig. 10. This comparison represents the different global error

solutions for this case study.
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Table 2: L∞ and RMS norms of RIBEM for convection-diffusion-reaction problem with different values of Péclet number.

Péclet number, L∞ and RMS error norms in φ, Experiment 1

Mesh size Pé = 15 Pé = 20 Pé = 25 Pé = 30

‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS

20 1.3×10−2 6.4×10−3 7.3×10−3 3.6×10−3 4.2×10−3 2.2×10−3 2.6×10−3 1.4×10−3

40 1.2×10−2 5.5×10−3 7.3×10−3 3.3×10−3 4.8×10−3 2.2×10−3 3.4×10−3 1.6×10−3

80 9.8×10−3 4.8×10−3 6.0×10−3 2.9×10−3 4.2×10−3 2.0×10−3 5.3×10−3 1.5×10−3

100 9.3×10−3 4.8×10−3 5.6×10−3 2.7×10−3 3.8×10−3 1.9×10−3 5.3×10−3 1.5×10−3

200 8.8×10−3 4.4×10−3 5.1×10−3 2.5×10−3 3.3×10−3 1.6×10−3 3.6×10−3 1.2×10−3

400 8.6×10−3 4.3×10−3 4.9×10−3 2.4×10−3 3.1×10−3 1.5×10−3 2.2×10−3 1.1×10−3
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Figure 10: RMS Errors Norms: RIBEM results with spatial meshes for Pé = 1. Convergence for the concentration φ with

increasing nodes for experiment 1.

8.1.2. Negative velocity

We now solve this problem with negative velocities to provide further validation of the proposed scheme.155

Figure 11 displays the solutions for S = 10 and vx = −10. In Fig. 12 the velocity has been increased to
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Figure 11: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 10, vx = −10: comparison between the

analytical (solid line) and numerical (star points) solutions
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vx = −80 and S = 80. The Péclet number in this case is 80. Then, the value of S is considered as 100
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Figure 12: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 80, vx = −80: comparison between the

analytical (solid line) and numerical (star points) solutions

to make the velocity and the concentration profiles significantly sharp in the opposite direction. Figure 13

compares the BEM and analytical solutions for this case. Once again, the results show very good agreement

for a Péclet number equal to 50 in this case. Finally, Fig. 14 presents the solutions for a higher value of
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Figure 13: Variation of concentration profile φ along face y = 0 and y = 1 for S = 100, vx = −50: comparison between the

analytical (solid line) and numerical (star points) solutions

160

the source coefficient S = 500 with vx = −20. Throughout this section, the figures for negative velocities

Figure 14: Variation of concentration profile φ along faces y = 0 and y = 1 for S = 500, vx = −20: comparison between the

analytical (solid line) and numerical (star points) solutions

show very good agreement between the numerical and the analytical solutions, for the concentration profile

results at different values of the Péclet number and with different source term values. We observe that the

numerical solutions are non-oscillatory and are in good agreement with the analytical solutions in all cases.
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8.1.3. Convergence with spatial mesh refinement165

To assess the convergence of the boundary concentration φ with spatial mesh refinement, we present global

errors in L∞ and RMS norms with different mesh sizes at different values of Péclet number, as presented

in Table 2 and Fig. 10. The L∞ error norm quoted is the error between the boundary concentration of

the simulated and the analytical solutions. The results with these various element sizes indicate very small

relative errors in L∞ and RMS, respectively, showing very good solution behaviour and convergence for this170

problem.

The proposed scheme shows in Fig. 10 convergence with mesh refinement. Very small values of the

relative error in the L∞ and RMS norms have been obtained. Spatially, the solution seen in the mentioned

figure converges quickly; for small and large N roughly errors of the order 10−3 for the L∞ and RMS norms

are observed.175

8.2. Experiment 2: Two-dimensional convection-diffusion-reaction problem over a square channel and ex-

ponential diffusivity-dependent source term

Consider a convection-diffusion-reaction problem with a variable source term, subject to mixed boundary

conditions: For vertical faces, i.e. x = 0 and x = 1, Dirichlet boundary conditions are imposed:

φ = 1; x = 0, 0 ≤ y ≤ 1

φ = 0; x = 1, 0 ≤ y ≤ 1

and zero fluxes (Neumann boundary conditions) for the horizontal faces, i.e. y = 0 and y = 1:

q =
∂φ

∂n
= 0; y = 0, 0 ≤ x ≤ 1

q =
∂φ

∂n
= 0; y = 1, 0 ≤ x ≤ 1

The source term varies in the form:

S (x, y) =
2 e( 1

D )[
D e( x

D )
(

e( 1
D ) − 1

)] (35)

The analytical solution of the problem is given by

φ (x, y) =
exp(−xD )− exp(−1

D )

1− exp(−1
D )

(36)

This case study is discretised into 120 equally spaced constant elements, 30 on each side as shown in Fig.

3. Figure 15 presents the solution with velocity vx = 10 and diffusivity value D = 100. Table 3 shows a

comparison between the simulation and the analytical solutions at different positions at the bottom side for180

Pé = 0.1. To compare the different global solutions errors, the RMS error norm is used for this case study.

Figure 16 demonstrates the solution at velocity value vx = 0.05 and diffusivity coefficient D = 100. Table 4

shows a comparison between the simulation and the analytical solutions with diffusivity value D = 100 and
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Figure 15: Variation of concentration profile φ along faces y = 0 and y = 1: comparison between the analytical (solid line) and

numerical (star points) solutions

Table 3: Results of RIBEM for convection-diffusion-reaction problem at Pé = 0.1

x RIBEM Analytical

0.1 0.8883 0.8828

0.2 0.7912 0.7825

0.3 0.6932 0.6823

0.4 0.5944 0.5821

0.5 0.4947 0.4821

0.6 0.3940 0.3822

0.7 0.2925 0.2823

0.8 0.1900 0.1826

0.9 0.0864 0.0830
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Figure 16: RMS Errors Norms: RIBEM results with spatial meshes for Pé = 0.01. Convergence for the concentration φ with

increasing nodes for experiment 2.

various values of vx = 0.01, 0.1, 1, 10. To assess the convergence of the concentration φ with spatial mesh

refinement, we present L∞ and RMS errors norms with different element sizes for different Péclet numbers185
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Table 4: L∞ and RMS norms of RIBEM for convection-diffusion-reaction problem with different values of Péclet number.

Péclet number, L∞ and RMS error norms in φ, Experiment 2

Mesh size Pé = 0.0001 Pé = 0.001 Pé = 0.01 Pé = 0.1

‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS

20 5.3×10−3 2.5×10−3 5.4×10−3 2.5×10−3 5.8×10−3 2.6×10−3 1.2×10−2 6.9×10−3

40 2.9×10−3 1.0×10−3 2.9×10−3 1.1×10−3 3.1×10−3 1.3×10−3 1.2×10−2 6.6×10−3

80 1.5×10−3 4.4×10−4 1.5×10−3 4.5×10−4 6.1×10−3 8.1×10−4 1.2×10−2 6.5×10−4

100 1.2×10−3 3.2×10−4 1.2×10−3 3.4×10−4 1.4×10−3 7.6×10−4 1.2×10−2 6.5×10−3

200 5.9×10−4 1.3×10−4 6.0×10−4 1.5×10−4 1.3×10−3 6.9×10−4 1.2×10−2 6.5×10−3

400 3.0×10−4 5.8×10−5 3.0×10−4 1.0×10−4 1.3×10−3 6.8×10−4 1.2×10−2 6.5×10−3

in Table 4. The accuracy of the results for the RIBEM is excellent as the L∞ and RMS relative error norms

are of the order 10−2 to 10−5 in this test case.

8.2.1. Convergence with spatial mesh refinement

To analyse the convergence of the proposed numerical method, Fig. 16 depicts the RMS relative errors

of the numerical results at different meshes, obtained by using the proposed RIBEM with respect to the190

number of boundary elements, where the results were yielded at 120 calculation points uniformly-spaced

over the relevant domain. The global errors obtained with various choices of spatial meshes for the boundary

concentration φ in the L∞ and RMS error norms with different element sizes at different values of Péclet

numbers is presented in Table 4 and Fig. 16. The findings with these various element sizes indicate very small

relative errors in L∞ and RMS norms for all figures in this case study. Therefore, we can safely draw the195

conclusion that the present methodology is accurate and convergent for the computation of two-dimensional

convection-diffusion-reaction problem with a variable source term.

8.3. Experiment 3: Two-dimensional non-homogeneous convection-diffusion-reaction problem over a square

domain with sinusoidal (cosenoidal) source term

Next, we consider another problem whose domain is defined as a unit square. We consider the case where

the source term S (x, y) = 3 sin (x) − cos (x). The test case is discretised into 120 equally spaced constant

elements, 30 on each side as shown in Fig. 3. Therefore, the non-homogeneous 2D convection-diffusion-

reaction problem can be re-written as

D∇2φ− vx
∂φ

∂x
− vy

∂φ

∂y
− k φ = 3 sin (x)− cos (x) (37)

subject to the mixed boundary conditions: For vertical faces, i.e. x = 0 and x = 1, non-homogeneous

Dirichlet boundary conditions are imposed

φ = sin (0) ; x = 0, 0 ≤ y ≤ 1

18



φ = sin (1) ; x = 1, 0 ≤ y ≤ 1

and zero lateral fluxes (Neumann boundary conditions) for horizontal faces, i.e. y = 0 and y = 1:

q =
∂φ

∂n
= 0; y = 0, 0 ≤ x ≤ 1

q =
∂φ

∂n
= 0; y = 1, 0 ≤ x ≤ 1

The analytical solution of the problem is given by

φ (x, y) = sin (x) (38)

Figure 17 shows the simulation and the exact solutions using vx = −1, k = 0 and D = 1. Then, Fig. 18
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Figure 17: Variation of concentration profile φ along faces y = 0 and y = 1 for vx = −1, D = 1: comparison between the

analytical (solid line) and numerical (star points) solutions

200

presents the solutions using vx = −4 and D = 5. It can be seen that the simulation and the exact solutions

show very good agreement. Figure 19 displays the numerical solution for the concentration profile φ by using
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Figure 18: Variation of concentration profile φ along faces y = 0 and y = 1 for vx = −4, D = 5: comparison between the

analytical (solid line) and numerical (star points) solutions

vx = −50 and D = 100. Next, Fig. 20 shows the simulation and the exact solutions using vx = −5, D = 10

and k = 2.

To compare the different global solutions errors, the RMS error norm is shown in Fig. 21 for coarse and205

refined meshes. These error measures are computed for vx = −1, D = 1 and k = 0. The plots show that the
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Figure 19: Variation of concentration profile φ along faces y = 0 and y = 1 for vx = −50, D = 100: comparison between the

analytical (solid line) and numerical (star points) solutions
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Figure 20: Variation of concentration profile φ along faces y = 0 and y = 1 for vx = −5, D = 10 and k = 2: comparison

between the analytical (solid line) and numerical (star points) solutions
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Figure 21: RMS Error Norm: RIBEM results with spatial meshes at Pé = 1. Convergence for the concentration φ with

increasing nodes for experiment 3.

numerical solutions obtained from the present method capture the characteristic features of the analytical

solution even for coarse meshes.

Table 5 shows a comparison between the simulation and the analytical solutions where vx = −1, D = 1,

k = 0. This table shows the same level of accuracy at different positions along the face y = 0.210
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Table 5: Results of RIBEM for convection-diffusion-reaction problem at Pé = 1

x RIBEM Analytical

0.1 0.1168 0.1164

0.2 0.2220 0.2150

0.3 0.3207 0.3114

0.4 0.4131 0.4047

0.5 0.4997 0.4940

0.6 0.5814 0.5783

0.7 0.6586 0.6569

0.8 0.7315 0.7289

0.9 0.7995 0.7936

Table 6: L∞ and RMS norms of RIBEM for convection-diffusion-reaction problem with different values of Péclet number.

Péclet number, L∞ and RMS error norms in φ, Experiment 3

Mesh size Pé = 0.001 Pé = 0.01 Pé = 0.1 Pé = 1

‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS

20 0.1840 0.0839 0.1424 0.0658 0.0481 0.1026 0.0152 0.0068

40 0.1610 0.0734 0.1284 0.0593 0.0934 0.0452 0.0124 0.0049

80 0.1526 0.0694 0.1210 0.0569 0.0891 0.0442 0.0099 0.0040

100 0.1510 0.0687 0.1199 0.0565 0.0885 0.0440 0.0094 0.0038

200 0.1477 0.0678 0.1175 0.0559 0.0870 0.0438 0.0090 0.0036

400 0.1461 0.0674 0.1163 0.0557 0.0862 0.0437 0.0087 0.0035

In addition, to show the convergence of the boundary concentration φ with spatial mesh refinement, we

present L∞ and RMS errors norms with different element sizes for different Péclet numbers in Table 6. The

accuracy of the results for the RIBEM is excellent using a high value of diffusivity D = 100, as the L∞ and

RMS relative error norms are of order 10−1 to 10−3 for all values of the Péclet number.

8.3.1. Convergence with spatial mesh refinement215

The global errors obtained for the boundary concentration φ in L∞ and RMS errors norms with different

mesh sizes at different values of the Péclet number are presented in Table 6 and Fig. 21. The numerical

outcomes with these various element sizes indicate small relative error in both L∞ and RMS norms with

good convergence behaviour of solution as shown in all figures. The calculated relative errors are obtained

in the RMS error norm and are plotted against mesh sizes in Fig. 21. It can be seen that the errors are220

reduced with continuous mesh refinement for low Péclet number, whereas the error is reduced by an order

of magnitude for Pé=1. Further, for all spatial mesh refinement, the RIBEM for problem 3 produced an
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accurate behaviour of the boundary concentration even with a small number of boundary elements.

8.4. Experiment 4: Two-dimensional non-homogeneous convection-diffusion-reaction problem over a square

panel with parabolic source term225

This problem has been modelled as two-dimensional over a unit square, Ω = {(x1, x2) : x1, x2 ∈ (0, 1)}.

The last tested case is a non-homogeneous 2D convection-diffusion-reaction problem described by

D∇2φ− vx
∂φ

∂x
− vy

∂φ

∂y
− k φ = −2

(
3x2 + 1

)
(39)

We assume the diffusivity is D = 1, reaction coefficient k = 2, and the constant velocity components are

vx = 6 and vy = 0. The analysis is conducted with a discretisation of 120 equally spaced constant elements,

30 on each face. The boundary conditions are imposed as follows:

(i) Neumann boundary conditions at the horizontal faces i.e. y = 0 and y = 1:

∂φ

∂n
(x, 0) =

∂φ

∂n
(x, 1) = 0,

(ii) Dirichlet boundary conditions at the vertical faces i.e. x = 1 and x = 0:

φ (1, y) = 5.5

φ (0, y) = 0.5

The analytical solution of the problem can be expressed as

φ (x, y) = exp (3x)

[(
−7 exp (−3) + 6 cosh

√
5

sinh
(√

5
) )

sinh
(√

5x
)
− 6 cosh

(√
5x
)]

+
3

2
x2 +

9

2
x +

13

2
(40)

Table 7: Results of RIBEM for convection-diffusion-reaction problem at Pé = 6

x RIBEM Analytical

0.1 0.5166 0.5098

0.2 0.5409 0.5265

0.3 0.5802 0.5592

0.4 0.6478 0.6236

0.5 0.7690 0.7483

0.6 0.9923 0.9835

0.7 1.4081 1.4165

0.8 2.1842 2.1971

0.9 3.6157 3.5807

Table 7 shows that the current simulation results are in good agreement with the analytical solution.

This table provides the solutions along different positions at the bottom side of the domain. The simulation
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Table 8: L∞ and RMS norms of RIBEM for convection-diffusion-reaction problem with different values of Péclet number.

Péclet number, L∞ and RMS error norms in φ, Experiment 4

Mesh size Pé = 4 Pé = 6 Pé = 10

‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS ‖eφ‖∞ ‖eφ‖RMS

12 0.7817 0.3703 0.0695 0.0379 0.8693 0.3602

40 0.7511 0.3309 0.0671 0.0306 0.9066 0.3094

80 0.7522 0.3269 0.0659 0.0288 0.9319 0.3118

100 0.7513 0.3263 0.0656 0.0285 0.9280 0.3127

200 0.7485 0.3252 0.0650 0.0283 0.9377 0.3145

400 0.7484 0.3249 0.0646 0.0283 0.9402 0.3152

errors are presented in Table 8, in which it can observed that different error norms have been calculated for

the present method. We can see the relative error and the convergence behaviour of this experiment are

reasonable at different values of the Péclet number. Moreover, it is worth noting that the results obtained230

with the RIBEM are accurate with all choices of spatial meshes.

To compare the different global solutions errors, the RMS error norms are shown in Fig. 22 for coarse

and refined spatial meshes at low Péclet number, i.e. Pé = 6. Further, the convergence behaviour shown
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Figure 22: RMS Error Norm: RIBEM results with spatial meshes at Pé = 6. Convergence for the concentration φ with

increasing nodes for experiment 4.

in Fig. 22 indicates that we can have a convergent solution with the RIBEM scheme. Figure 23 presents

the solution using vx = 6, D = 1 and k = 2. This plot shows the concentration profiles of φ along both235

horizontal faces, i.e. y = 0 and y = 1, where the predicted results for the concentration agree quite well

with the corresponding analytical solutions. Figure 24 shows the simulated and the analytical solutions by

considering vx = 10, D = 1.5 and k = 0.5. From these figures, it can be seen that the proposed method can

accurately predict the numerical solution for the convective-diffusive-reactive problem with source term.
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Figure 23: Variation of concentration profiles φ along faces y = 0 and y = 1 with vx = 6, D = 1 and k = 2: comparison between

the analytical (solid line) and numerical (star points) solutions
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Figure 24: Variation of concentration profiles φ along faces y = 0 and y = 1 with vx = 10, D = 1.5 and k = 0.5: comparison

between the analytical (solid line) and numerical (star points) solutions

8.5. Experiment 5: Two-dimensional non-homogeneous convection-diffusion-reaction problem over a circular240

domain with non-linear source term

This problem has been modelled as two-dimensional over a unit disk, Ω =
{

(x, y) : x2 + y2 ≤ 1
}

. The

last tested case is a non-homogeneous 2D convection-diffusion-reaction problem described by

D∇2φ− vx
∂φ

∂x
= S (x, y) (41)

where S (x, y) and the Dirichlet boundary condition are computed from the analytical solution as shown in

Eq.(41):

φ (x, y) = exp (−0.5 vx x) sin (0.5 vx y) (42)
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Figure 25: The computational and evaluational domain of a unit disk with 160 uniformly scattered internal points.

8.5.1. Positive velocity

Figure 26 presents the solution using vx = 1, D = 1 and k = 0. The plot shows the concentration profiles

of φ for 160 selected internal points along the diagonals where the predicted results for the concentration245

agree quite well with the corresponding analytical solution. The boundary is discretised into 150 constant

elements.
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Figure 26: Variation of concentration profiles φ for selected internal points with positive velocity: comparison between the

analytical (solid line) and numerical (star points) solutions

8.5.2. Negative velocity

Figure 27 presents the solution using vx = −1, D = 1 and k = 0. This plot shows the concentration

profiles of φ for 160 selected internal nodes along the diagonals and, once again, the predicted results for the250
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concentration agree quite well with the corresponding analytical solution.
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Figure 27: Variation of concentration profiles φ for selected internal points with negative velocity: comparison between the

analytical (solid line) and numerical (star points) solutions

9. Conclusions and discussions

A new formulation of the RIBEM is developed for the two-dimensional non-homogeneous convection-

diffusion-reaction problem with source term. The fundamental solution of the corresponding problem without

source term is implemented in this work. The formulation is the first attempt to solving two-dimensional255

convection-diffusion-reaction problems with constant and variable source terms in which the BEM modelling

described does not require any internal points and internal cells. The domain integral involved is transformed

into equivalent boundary integral using the RIM, and a boundary-only integral equation formulation is

achieved.

Numerical applications for 2D non-homogeneous problems are demonstrated to show the validity of the260

proposed technique, and its accuracy was evaluated by applying it to five tests with different velocity fields.

Moreover, numerical results show that the RIBEM does not present oscillations or damping of the wave front

as may appear in other numerical techniques.

The results presented in section 8 show the versatility of the RIBEM approach to solve non-homogeneous

convection-diffusion-reaction problems involving variable source terms. We can note a distinct advantage of265

the present approach, which shows very good accuracy for different types of source terms. It is obvious that,

as the velocity increases, the concentration distribution becomes steeper and more difficult to reproduce with

numerical models.

The absolute errors in the RMS and the L∞ norms have been investigated in all case studies for the

proposed technique. Analytical solutions are employed to examine the accuracy of the present method.270

Several numerical tests have been carried out to assess the performance and demonstrate the capacity to

handle a wide range of situations in the context of convection-diffusion-reaction problems with source term.
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