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Abstract 

 

Ultrasonic guided waves are routinely used for inspection of pipelines. The technique 

is well established for uncoated pipes where attenuation is very low. However, when 

the pipe is coated, buried or immersed, sound energy will be absorbed by the coating 

or radiate into the surrounding medium. Attenuation will increase and the scanning 

distance will be significantly reduced. The noise level can also increase when the 

condition of the coating material degrades with age and the bonding condition between 

pipe and coating becomes unevenly distributed. The increase of attenuation ratio and 

noise level therefore makes the inspection of ultrasonic waves propagating in coated 

and buried pipelines particularly difficult. It is often desirable to identify small features 

amongst the noise floor. To improve signal to noise ratio under these conditions, two 

techniques are proposed for the study of the propagation of torsional waves in Denso 

Tape coated pipes. A frequency domain, backward wave cancelling algorithm is used 
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to eliminate the reflected waves coming from the backward direction and clean up the 

signal. On this basis, a spectral subtraction method is used, which requires knowledge 

of a small section of pipe that includes no real features, so that the signal from this 

region provides the characteristic noise signature of the pipe itself. The spectrum of the 

noise signature is calculated and then subtracted from the total signal using a sliding 

window technique.  Furthermore, a signal region, for instance，the reflected signal 

from a pipe weld or end, is specified. This represents the characteristic of the incident 

signal and any signal similar in shape will be enhanced using the sliding window 

technique. These two techniques serve to reduce the noise floor and enhance small 

signals that may be buried in it. This is important for ultrasonic non-destructive testing 

applications in coated and buried pipes.  

 

Key words: Guided waves; Denso Tape coated pipe; Backward wave cancelling; 

Spectral subtraction; Spectral enhancement.  

 

I． Introduction 

Ultrasonic guided waves are routinely used for non-destructive inspection of pipelines. 

This is normally based on a pulse-echo principle, and the technique is highly successful 

for pipelines that are uncoated and unburied, so that attenuation is low [1-4]. Recently, 

the technique has been advanced to address problems in more challenging conditions, 

such as coated and/or buried pipelines. The coating material is normally viscoelastic, 

and absorbs sound energy while for buried pipelines, sound energy can leak into the 

surrounding medium. In both cases, attenuation of guided waves is high in the 

conventional long range ultrasonic testing frequency range from 20kHz to 100kHz and 

the effective scanning distance of guided waves is thus significantly reduced.  



Furthermore, in addition to the reduction in signal strength, the noise level can also 

increase, especially for coating materials that have been present for a number of years. 

In this case, bonding conditions between the coating material and the pipe substrate 

become uneven due to pressure changes and temperature variations around the pipe, 

etc., and noise signals are created. It is thus often necessary to identify small signals 

that may be beneath the noise floor and signal interpretation is very challenging, 

because of the randomness of the noise signature. This article studies the propagation 

of torsional waves in a pipe coated with Denso Tape, wrapped evenly onto the pipe by 

a wrapping machine. The maximum coating length studied here was 5.5m, and it can 

already be seen at this length that the reflected signal from a pipe feature (weld) is lower 

than the amplitude of some noise peaks. A spectral subtraction and enhancement 

algorithm is proposed to improve signal to noise ratio. A sliding Hanning window is 

used to remove the noise spectrum and enhance the signal spectrum segment by 

segment. The signal is then reconstructed through inverse Fourier transformation and 

combination of segments.   

The attenuation of guided axisymmetric elastic waves in Bitumen coated pipes has been 

studied by Kirby et al [5, 6] who present a hybrid finite element model to study the 

scattering of torsional and longitudinal waves from axisymmetric defects in coated 

pipes. The material properties of Bitumen are extracted by comparing theoretical 

predictions with experimental measurements for two different incident modes over a 

large frequency range. Kuo and Suh have proposed an analytical model to study 

propagation of longitudinal waves in a multi-layer coated pipe [7]. The influence of 

multi-layer viscoelastic coating materials on wave dispersion and attenuation is 

investigated. Leinov et al have studied the attenuation of axisymmetric elastic waves in 

pipes that are coated and buried [8, 9]. They found that low impedance (product of 



density and the real part of the shear velocity) coating materials could trap sound energy 

inside the pipe so that little energy leaks into the surrounding medium. Duan et al 

presented an efficient one dimensional numerical model to study wave propagation in 

coated and buried pipes [10]. A new stretching function is proposed to allow the model 

to converge quickly even with a thin, perfectly matched layer (PML). A similar sound 

isolation effect could be observed for coating material with impedance larger than that 

of the surrounding medium. However, this isolation may occur at a higher frequency 

range. An extensive list of reference papers can be found in the literature which are 

related to guided wave propagation in coated and/or buried pipes [11-20].  

Benmeddour et al [21] and Duan et al [22, 23] presented a hybrid, finite element model 

to study wave scattering from a non-axisymmetric defect in a solid cylinder, uncoated 

pipe and coated pipe, respectively. A small section of the waveguide is meshed which 

ensured that the model could be executed quickly. The modal amplitude of scattered 

flexural modes is presented, in addition to the usual axisymmetric modes. Duan et al 

[24] further presented a numerical model to study scattering of torsional waves from an 

axisymmetric defect in a buried pipe. The perfectly matched layer method is used to 

close the problem both in the central finite element section and in the uniform modal 

expansion region. Sun et al [25] studied the mode conversion behaviour of Lamb and 

shear-horizontal waves in a plate to longitudinal and torsional guided waves in a pipe. 

EMAT transducers were developed to produce waves in the plate. The plate was then 

wrapped onto the pipe in two different waves, which facilitated the study of different 

mode conversion behaviour. A number of other analytical and numerical techniques 

have been proposed to study wave scattering from discontinuities in waveguides [26-

31].  



These references investigate the physics of the problem. The length of the coated and/or 

buried section in the experimental measurements [5-6, 8-9] was very small, usually less 

than 2m, so that the reflected signal from a defect or pipe end could be identified clearly. 

In practical non-destructive testing applications on coated pipe, a small section of the 

coating is removed to allow the ultrasonic transducers to be mounted onto the wall. If 

the pipe is buried, then excavation work is required to allow access. It is thus desirable 

to scan the longest possible pipe section in a single pass. In this case, the reflected signal 

from a pipe feature can be lower than the noise floor, and interpretation of the signal is 

challenging. To clean up the signal, a common practice is to sum and average the signals 

received from all the transducers in each ring. This then delivers the axisymmetric 

modes. However, because of the differences between transducers, coherent noise can 

appear, in addition to other environmental and electric noise.  

Furthermore, the signal can also be reflected several times between different features 

when interpretation of the signal could be improved by cancelling reflected waves 

coming from the backward direction. Kemp et al proposed a time domain algorithm to 

separate forward and backward acoustic waves using multiple microphones [32]. Two 

calibration runs were carried out to measure the time domain transfer functions for each 

pair of microphones. The loudspeaker and calibration tube are also interchanged 

between these measurements to allow calculation of forward and backward transfer 

functions. This arrangement is difficult in an industrial context, so that Groves and 

Lennox proposed a method to simplify the calibration procedure [33]. A source tube 

run out is used to increase the length of the signal. This allowed forward travelling 

waves to be windowed out and thus forward inter-microphone transfer functions to be 

measured. The backward transfer functions are then calculated by reversing the forward 

travelling waves. Groves and Lennox [33] also tested another wave separation 



algorithm which significantly simplifies the calibration procedure; however, the result 

may include/generate more low frequency interference. These algorithms are proposed 

for acoustic waves propagating in air, and the loudspeaker and microphones are 

separated using a source tube. For elastic waves, the same transducers used to generate 

the waves are used to receive them, so that modifications are required and the transfer 

functions have to be measured in a different way, reported in section III of this paper.  

The wave separation techniques are only used to separate forward and backward 

propagating waves. They can reduce the number of pulses and simplify the 

interpretation of signals, however, they cannot improve signal to noise ratio. When the 

amplitude of the reflected signal is lower than the noise level, additional signal 

processing algorithms are required. Currently, there is no well-established method for 

improving signal to noise ratio for guided waves propagating in coated and/or buried 

pipes. The major difficulty is that the piezoelectric and coherent noise is coming from 

differences between transducers. This type of noise is associated with high order 

flexural modes which are also dispersive [22, 23]. The wave modes of coherent noise 

are unknown and highly problem dependent, thus making them difficult to remove. In 

speech analysis, a spectral subtraction algorithm is widely used to reduce acoustically 

added noise [34-40]. This suppresses stationary noise relative to speech by subtracting 

the spectral noise bias calculated during non-speech activity. A sliding window is used 

to remove noise, segment by segment. This algorithm requires the noise spectrum to be 

estimated accurately. If the noise estimate is not perfect, then remnant noise will appear. 

The remnant noise is distracting to humans and causes hearing fatigue. A number of 

variations have been proposed based on this algorithm. Upadhyay and Karmakar 

presented a comparison and simulation study of different forms of subtraction-type 



algorithms [40]. The task is to produce more pleasant speech with minimal remnant 

noise.  

In this article, the spectral subtraction algorithm is used to remove noise associated with 

the torsional wave T(0,1) propagating in coated pipes. This is important for non-

destructive inspection of coated pipes when the guided wave signal becomes 

comparable to the noise because of its high attenuation due to the coating. Denso Tape 

material is used here, and material properties of the coating have been studied 

theoretically and experimentally by Duan et al [41]. The focus is to clean up the signal 

by removing travelling components of the torsional wave mode reflected from the 

backward direction and improving signal to noise ratio. The frequency domain wave 

separation algorithm is used, and the transfer functions between two rings of 

transducers are calculated by the reflected signals from welds and pipe ends. The 

spectral subtraction method is used to remove environmental, piezoelectric and 

coherent noise. The coherent noise could be a mode converted signal from the T(0,1) 

mode, and is thus related to T(0,1) which  means that it is not possible to remove all the 

coherent noise using the spectral subtraction method. A spectral enhancement 

technique is proposed in which the windowed signal is enhanced if there is a high 

similarity between the signal and a T(0,1) mode. The structure of the paper is as follows. 

The introduction is presented in section I. The experimental procedure is given in 

section II, and the signal processing algorithm is presented in section III. The results 

and discussions are presented in section IV. Finally, conclusions are drawn in section 

V.  

 

II. Experiments 

 



A standard pipe segment is 6m long, and pipelines are constructed by welding these 

segments together. It is thus common to see a series of welds regularly spaced in a long 

pipe run. A typical 18.55m long, 8inch schedule 40 pipe is shown in Fig. 1. The pipe 

was partially covered by Denso Tape coating. A standard wrapping machine (Denso 

250-1200, Winn & Coales Ltd.) was used to wrap the coating evenly onto the pipe. The 

length of the coating was gradually increased from 1m to 5.5m. The pipeline was 

supported by three pipe supports with insulation foam placed between them and the 

pipeline to prevent them scattering any elastic waves.  

 

 

 

 

 

 

 

 

Fig. 1 Structure of the test-rig 

 

A Teletest MK 4 system was used to generate a transient 10-cycle, Hanning-windowed 

T(0,1) wave mode. The Teletest MK 4 has two rings of transducers separated axially 

by 30cm. Each ring has 24 transducers equally spaced around the circumference of the 

pipe. A phase delay was applied between the two rings so that the incident torsional 

wave was generated in the forward direction (marked in Fig. 1) only. In practice a little 

bit of signal could still leak into the backward direction, because the transducers are 

slightly different and themselves generate slightly different phase delays. These 
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transducers were also used to receive the torsional waves reflected from welds and pipe 

ends, etc. To eliminate the influence of higher order flexural modes, the signals received 

by all the transducers in each ring were summed and then averaged. For each ring, an 

averaged signal as a function of time was produced. The waves will be further reflected 

back and forth between pipe ends and welds. The measured reflected signal from 

different features on the pipe is shown in Fig. 2. The centre frequency of the pulse is 

40kHz. The torsional wave speed is 3260 m/s. Multiplication of wave speed and travel 

time gives the travel distance of each signal. Since a pulse-echo principle is used, where 

the signal travels to a feature and returns, this travel distance is divided by two to give 

the distance from the feature to the tool. This is shown on the horizontal axis of Fig. 2.  

In Fig. 2, the features are labelled by comparing the measured distance to the actual 

distance shown in Fig. 1. Note that the pulses can be multiply reflected between welds 

and pipe ends, and so a number of ‘repeated’ signals appear in Fig. 2. The ‘repeated nth 

weld’ in Fig. 2 means that the signal has been reflected by the nth weld and other features, 

thus representing a number of ‘repeated’ pulses associated with the weld. This makes 

the interpretation of the signal difficult, as the number of pulses is much larger than the 

number of features on the pipe. Furthermore, the incident pulse is assumed to propagate 

in the forward direction only, while some incident signal could still leak into the 

backward direction. The leaked signal will then be reflected by the pipe near end and 

welds, etc, and is clearly visible in Fig. 2. In this case, it is possible for the repeated 

signal to be larger than the first reflected signal from the 1st or 2nd weld, due to the 

overlaying of double reflections from the leaked signal and the forward propagating 

incident signal. The detailed wave path analysis will be given in section IV of this paper.  

 



 

 

Fig. 2 Original received signal for a 40kHz centre frequency T(0,1) pulse incident on 

pipe coated with 5.5m Denso Tape.               , ring 𝑎;                 , ring 𝑏.      

 

 

III. Signal processing technique 

Two rings of transducers were used to receive signals reflected back from different pipe 

features. In this paper, the signals received by the first and second rings are denoted by 

𝑝𝑎(𝑡) and 𝑝𝑏(𝑡), respectively. The ring set-up is shown in Fig. 3. The corresponding 

frequency spectra are denoted by 𝑃𝑎(𝜔)  and 𝑃𝑏(𝜔) . A frequency-domain, wave 

separation algorithm can be used to calculate the reflected echoes of the torsional T(0,1) 

wave mode coming from the forward direction [32]: 

𝑃𝑏
−(𝜔) =

𝐻𝑎𝑏(𝜔) ∙ 𝑃𝑎(𝜔) − 𝐻𝑎𝑏(𝜔)𝐻𝑏𝑎(𝜔) ∙ 𝑃𝑏(𝜔)

1 − 𝐻𝑎𝑏(𝜔) ∙ 𝐻𝑏𝑎(𝜔)
 (1) 
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Here, 𝐻𝑎𝑏 is the Fourier transform of the windowed time domain transfer function from 

ring 𝑎 to ring 𝑏, and 𝐻𝑏𝑎 is the corresponding transfer function from ring 𝑏 to ring 𝑎. 

Note that a pulse echo principle is used to identify the locations of features on the pipe, 

and so 𝑃𝑏
− is used to calculate returned echoes from features located in the forward 

direction (see Fig. 3). The reflected echoes from features located in the backward 

direction are eliminated. No additional measurements are required to calculate the 

transfer functions between the two rings: the reflections from the pipe welds and pipe 

ends can themselves be used to calculate the transfer functions. This normalisation 

procedure is detailed in the next section. The inverse Fourier transform of 𝑃𝑏
−(𝜔) gives 

the time domain backward propagating wave 𝑝𝑏
−(𝑡) as:  

𝑝𝑏
−(𝑡)  =

1

2𝜋
∫ 𝑃𝑏

−(𝜔)
∞

−∞

𝑒𝑖𝜔𝑡𝑑𝜔 (2) 

 

pb
−(t) contains both signal and noise. The signal is coming from a short Hanning-

windowed incident pulse and the incident signal is further scattered by features on the 

pipe. The noise could be piezoelectric noise, coherent noise, pipeline noise and 

environmental noise. As a result, signal and noise will normally change with time. To 

eliminate noise and enhance signal, it is desirable to work on segments of pb
−(t), where 

short time pulses can be separated from each other. A Hanning window is thus 

multiplied with pb
−(t), and further spectral techniques are applied to each segment of 

pb
−(t) . The window then slides through the entire duration of pb

−(t) , and all the 

segments are then weighted and summed. The weighting of each segment depends on 

the ratio of the area of overlap between adjacent sliding windows to the individual 

window length. This ensures the signal processing technique covers the whole duration 

of pb
−(t).  



 

Fig. 3 Ring set-up diagram and direction of separated wave 𝑝𝑏
− reflected from pipe 

features located in the forward direction.  

The structure of the sliding Hanning window is shown in Fig. 4. The length of the 

window is related to the duration of the scattered signals. For ultrasonic non-destructive 

testing, it is a normal practice to use 10 cycled Hanning-windowed incident pulses. In 

this case, the length of the sliding window shall be smaller than the length of the 

incident pulse, because the edges of the scattered pulses are normally coloured by noise. 

Furthermore, a small offset between two adjacent windows is set to ensure that the 

scattered signals can be captured by the sliding window and are as close to the centre 

of the window as possible due to the large normalisation amplitude there.   

 

Fig. 4 Sliding Hanning windows at 40kHz.  
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Each segment of 𝑝𝑏
−(𝑡) can be obtained by a weighting of the Hanning window as: 

𝑦𝑛(𝑡)  = 𝑝𝑏
−(𝑡) ∗ hann(𝑡) (3) 

 

Here, hann(𝑡) is the 𝑛th sliding Hanning window shown in Fig. 4, and 𝑦𝑛(𝑡) is the 𝑛th 

segment of 𝑝𝑏
−(𝑡).  

𝑦𝑛(𝑡) can be represented as: 

𝑦𝑛(𝑡) = 𝑠(𝑡) + n(𝑡) (4) 

 

Here, s(t) represents true scattered signals from the features on the pipe, whereas  n(t) 

represents noise. It is assumed that the noise is uncorrelated to the T(0,1) signal, so that 

the power spectrum has no cross-terms [40]: 

|𝑌(𝜔)|2 = |𝑆(𝜔)|2 + |N(𝜔)|2 (5) 

 

𝑌(𝜔) is a complex number at each frequency where the amplitude is represented as 

|𝑌(𝜔)|, and the phase is represented as 𝜃(𝜔). To reconstruct the true signal 𝑆(𝜔) from 

Eq. (5), it is necessary to know the signature of the noise, N(𝜔). This can be done by 

manually selecting a small region from 𝑝𝑏
−(𝑡)  that contains only noise. The noise 

signature can be obtained by Fourier transforming and then averaging the noise 

spectrum. The absolute amplitude of the estimated noise signature is denoted as |Ñ(𝜔)|. 

Its phase is of no importance here and is disregarded. The spectrum of the scattered 

signal can be reconstructed as: 

𝑆̃(𝜔) = √[|𝑌(𝜔)|2 − |Ñ(𝜔)|
2

] 𝑒𝑖𝜃(𝜔) (6) 



 

Here, the phase of the reconstructed signal is assumed to be the same as the phase of 

the original signal, 𝑌(𝜔). This avoids the shift of the pulse signal in the time domain. 

However, the amplitude of the noise signature has been removed. Taking the inverse 

Fourier transform of Eq. (6), and adding the segments gives the time domain signal as: 

𝑠̃(𝑡) = ∑ 𝛼 ∗ 𝑖𝑓𝑓𝑡[𝑆̃(𝜔)] (7) 

 

Here, a weighting coefficient 𝛼 is applied to each segment, because of the overlap 

between windows shown in Fig. 4. The coefficient 𝛼 equals the ratio between the offset 

and the width of the sliding Hanning window (see Fig. 4).  

Eq. (6) removes the noise signature from the original signal. Here, the noise signature 

is assumed to remain constant throughout the time domain. However, this is not always 

the case for guided waves propagating in pipes, where coherent noise can appear in 

different areas, and their spectra will be different in different segments. To further 

enhance the scattered T(0,1) mode, the same sliding window technique Eq. (3) could 

be applied to 𝑠̃(𝑡). The new segment can be denoted as 𝑧𝑛(𝑡), and the Fourier transform 

of the signal gives 𝑍(𝜔). The task is to determine if 𝑧𝑛(𝑡) is T(0,1). This can be done 

by comparing 𝑍(𝜔) with the spectrum of a windowed pulse reflected from a weld. 

(since there are regular welds associated with a pipeline and it is easy to identify at least 

one). The spectrum of the weld signal is denoted as 𝑇(𝜔), and is a baseline T(0,1) mode. 

Both the segment signal 𝑍(𝜔) and the weld signal 𝑇(𝜔) are normalised so that the 

amplitude at the centre frequency of the incident pulse is one. The similarity between 

𝑍(𝜔)  and 𝑇(𝜔)  can be determined by comparing the root-mean-square of their 

difference: 



𝑑𝑠 = rms[𝑍(𝜔) − 𝑇(𝜔)] (8) 

 

If 𝑑𝑠 is close to zero, then 𝑍(𝜔) is similar to 𝑇(𝜔) and 𝑧𝑛(𝑡) can be considered a T(0,1) 

mode. In practice, there will always be some differences between spectra of signals 

reflected from different features, and to avoid missing a true signal from a different 

feature, a threshold value is set to 𝑑𝑠. This is to say, 𝑧𝑛(𝑡) will be considered as a T(0,1) 

mode if 𝑑𝑠 is smaller than the threshold value. The choice of this threshold value will 

be discussed in the next section. In this case, the amplitude of 𝑍(𝜔) will be increased 

by 40dB and the phase of 𝑍(𝜔) remains the same, i.e., 

𝑍̃(𝜔) = 100|𝑍(𝜔)|𝑒𝑖𝜃(𝜔) (9) 

 

The time domain signal 𝑧̃(𝑡)  can be reconstructed by applying an inverse Fourier 

transformation, i.e., Eq. (7) to 𝑍̃(𝜔). Note that the spectrum 𝑇(𝜔) is defect dependent. 

For a non-axisymmetric defect, the spectrum of the defect signal may be very different 

to the spectrum of the weld signal, and identification of the defect signal will be more 

challenging. In this case, the spectral subtraction method is still working, however, the 

spectral enhancement method would require further work on the classification of 

feature signals.  

 

IV. Results and Discussion 

To reduce the number of repeated pulses shown in Fig. 2, the wave cancelling 

algorithm of Eq. (1) can be used. This requires the transfer functions between the two 

rings of transducers to be calculated. For acoustic pulse reflectometry applications, a 

usual practice is to use an additional calibration tube, and interchange positions of the 



loudspeaker and the calibration tube. However, for ultrasonic guided wave 

propagation problems, the installation of an additional calibration tube is not an 

option because the transducers used to generate ultrasonic waves are also used to 

receive waves. Furthermore, if the position of the Teletest transducers is changed, 

then the coupling between the tool and the pipe wall will also be changed, and this 

would change the transducer transmitting and receiving characteristics. It is preferable 

to keep the position of the tool fixed while calculating the transfer functions of the 

two rings. A convenient way to do this is to use existing axisymmetric features on the 

pipe, for instance, welds and pipe ends etc. In Fig. 2, two pulses are windowed which 

can be used to calculate the transfer functions of the two rings.  

A zoomed-in view of these two pulses is shown in Fig. 5. Note that the main incident 

wave is generated in the forward direction (see Fig. 3), and the interest is in the 

forward direction, so that any wave coming from the backward direction is of no 

interest. The first windowed pulse from Fig. 2 is used to calculate the transfer function 

from ring 𝑎 to ring 𝑏, and the second windowed pulse is used to calculate the transfer 

function from ring 𝑏 to ring 𝑎. The wave paths for these two pulses are shown in Figs. 

5(a) and (b). In Fig. 5(a), the pulse is reflected from the 1st weld only. This pulse then 

passes the tool, and is reflected by the near pipe end. The pulse will then travel in the 

forward direction and will be received by the tool again, as shown in Fig. 5(b). The 

second pulse is slightly larger than the first, because the second pulse represents the 

overlaying of two pulses. The leaked signal will be reflected by the near pipe end and 

then by the 1st weld, and arrive at the tool at exactly the same time. The paths of these 

two pulses starting in opposite directions are shown in Fig. 5(b), and it can be seen 

that their travel distances are equal. This means that the transfer function from ring 𝑎 

to ring 𝑏 is accurately captured supposing that the weld is axisymmetric. The transfer 



function from ring 𝑏 to ring 𝑎 is further compromised by the presence of the leaked 

signal coming from the other direction. However, the amplitude of the leaked signal is 

very small compared to the incident signal in the forward direction. This can be 

verified by checking the leaked signal in Fig. 2, which is also reflected from the 1st 

weld but is much smaller than the signal reflected back from the forward incident 

pulse. The influence of the leaked signal is thus ignored in calculating the transfer 

functions.  
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Fig. 5 Reflected pulses for calculating transfer functions between the two rings.(a) 

wave propagation from ring 𝑎 to ring 𝑏; (b) wave propagation from ring 𝑏 to ring 

𝑎.               , ring 𝑎;                 , ring 𝑏.      

 

Substitution of the transfer functions into Eq. (1) and the subsequent implementation 

of the inverse Fourier transform deliver 𝑝𝑏
−(𝑡), i.e.,  the reflected signal from the 

forward direction, shown in Fig. 6. Note that a Butterworth bandpass filter has been 

used to filter the transfer functions. A 10-cycle, Hanning-windowed incident pulse 

centred at 40kHz is used for Figs. 2 and 6. Based on this, the Butterworth filter has a 

passband from 30kHz to 50kHz, and a stopband below 10kHz and above 70kHz with 

an attenuation of 30dB. This eliminates possible noise signature that lies beyond the 

bandwidth of the incident signal. If the centre frequency of the incident pulse is 

changed, then the bandwidth of the filter must be changed accordingly. Furthermore, 

the transducers cannot receive signals when they are transmitting signals, so that there 

is normally a blind region when the transducers start to produce the 10-cycle, 

Hanning-windowed incident pulse. To avoid the influence of this blind region, the 

signal (see Fig. 2) that lies between zero and 2m has been set to zero.  

After these procedures, Fig. 6 shows that the number of pulses has been significantly 

reduced and most of the repeated and leaked pulses have been removed. There is one 

repeated pulse from the 1st and 2nd weld respectively. The repeated signal from the 2nd 

weld is larger than the repeated signal from the 1st weld. This is because the repeated 

signal from the 2nd weld is actually the overlaying of two pulses. The pathway 

analysis for these pulses is shown in Fig. 7. These pathways all start from the Teletest 

tool and finish at the tool where the signal is recorded. Each time a pulse is reflected 



by a feature, the pathway arrow line in Fig. 7 is moved downwards a little to avoid 

overlaying the lines. For the repeated signal from the 1st weld, there is only one 

pathway. However, for the repeated signal from the 2nd weld, two different wave 

pathways can be identified, and the travel distances of these two pathways are exactly 

the same. This means that the repeated signal from the 2nd weld represents the 

overlaying of two pulses and explains why the repeated signal from the 2nd weld is 

larger than the repeated signal from the 1st weld. A clear space time diagram has been 

presented by Amir et al [42] which demonstrates how forward and backward waves 

travel in space and time. Fig. 6 also shows that the reflected signal from the 3rd weld 

is very small. This is because the 1st and 2nd welds are uncoated, whereas the 3rd weld 

is coated by Denso Tape. The attenuation ratio is very high in the coated section of 

the pipe. The length of coating is 4.45m between the tool and the 3rd weld. Following 

a semi-analytical finite element method derived by Duan et al [41] for coated and 

buried pipes, the attenuation of T(0,1) is calculated to be 2.8 dB/m at 40kHz for the 

current Denso Tape coated pipe. This gives a total attenuation of 24.9 dB. The 

difference between the reflected signal from the 2nd and 3rd welds in Fig. 6 shows an 

attenuation of 24.3 dB. The numerical and experimental attenuations are thus 

consistent. This level of attenuation ratio shows the difficulty of using ultrasonic 

waves to inspect coated pipes. It is relatively straightforward to extract features from 

pipe sections that are uncoated. However, once the pipe is coated, the reflected signal 

from the coated section is much reduced and it is necessary to improve signal to noise 

ratio to identify small features.  



 

Fig. 6 Reflected signal 𝑝𝑏
−(𝑡) for 40kHz pulse incident on pipe coated with 5.5m 

Denso Tape. 

 

 

 

 

 

 

 

Fig. 7 Wave pathway analysis for repeated pulses associated with the 1st and 2nd weld. 

To use the spectral subtraction method, the noise region must be specified so that the 

noise spectrum Ñ(𝜔) can be estimated. This requires knowledge of some sections of 

the pipe or of the signal. In Fig. 6, signal distance between 2m and 3.5m is specified 
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as the noise region. This is the region between the Teletest tool and the 1st weld. The 

pipe in this region is uniform without any features, and the noise is coming from 

piezoelectric, coherent and environmental noise. The noise spectrum Ñ(𝜔) can be 

estimated from this region. The segmentation of the signal Eq. (2) requires a Hanning 

window to be applied to this region. The width of the sliding Hanning window is 

equivalent to an 8-cycle, Hanning-windowed pulse while the incident signal is a 10-

cycle, Hanning-windowed pulse. The amplitude of the first and last cycle is very 

small and often coloured by noise, so that the sliding window width is set slightly 

smaller than the width of the incident signal. An 8-cycle window width is used 

throughout this study. Eqs. (3)-(5) then give the estimated noise spectrum of the 

signal after an averaging process. This noise spectrum can be removed from the whole 

signal through the sliding window method. The offset between two adjacent windows 

is 10% of the window width. Eqs. (6) and (7) deliver the post-processed signal 𝑠̃(𝑡) 

shown in Fig. 8.  

In Fig. 8, the reflected signal from the 1st weld has been normalised, so that the 

maximum signal amplitude is the same before and after spectral subtraction. The 

figure is also zoomed-in to show the small peaks close to the noise floor more clearly. 

The large peaks are of no concern here, because they can be captured and interpreted 

clearly. It can be seen that the noise floor is significantly reduced after the spectral 

subtraction, so that the reflected signal from the 3rd weld emerges naturally. The 

amplitude of the pulse is reduced because of the removal of the noise signature. 

However, there are a few peaks that have amplitude larger than the amplitude of the 

reflected signal from the 3rd weld. These peaks could lead to misinterpretation if one 

is trying to identify small features from these peaks. It is of course possible, and often 

normal practice, to simply consider all peaks smaller than 10% of the amplitude of a 



weld to be noise. This is to say, any signal which has an amplitude that is 20dB 

smaller than the reflected signal from a weld, could be considered noise. In that case, 

the 3rd weld would not be identified as a signal, and valuable information is lost.  

  

Fig. 8 Reflected signal before and after spectral subtraction for 40kHz pulse incident 

on pipe coated with 5.5m Denso Tape .               , before subtraction, i.e., 

𝑝𝑏
−(𝑡);                 ,  after subtraction, i.e., 𝑠̃(𝑡). 

To further clean up the noise floor, the spectral enhancement method is used on the 

basis of 𝑠̃(𝑡), shown in Fig. 8. This requires the knowledge of a known signal 𝑇(𝜔). 

The reflected signal from the 1st weld is truncated and transformed to the frequency 

domain, giving 𝑇(𝜔), and Eq. (8) is then used to determine if a signal is similar to 

𝑇(𝜔) after normalisation. This works because the incident signal is a 10-cycle, 

Hanning-windowed torsional wave mode, and any scattered signal from narrow 

axisymmetric features shall also be a 10-cycle, Hanning-windowed torsional wave 

mode. Thus all the scattered axisymmetric pulses will have almost the same shape, 

with a difference only in amplitude and arrival time. Note that for relatively large 
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length axisymmetric features, it might be possible for resonance and anti-resonance 

frequencies to appear, which is not considered in this paper. The amplitudes of two 

pulses can be normalised, so that their maximum amplitudes are the same at the centre 

frequency of the incident pulse (40kHz here). Eq. (8) then determines the similarity of 

two pulses between the frequency bandwith of 25kHz and 55kHz. After a number of 

parametric studies, the threshold is set to be 0.2 and any signal with an 𝑟𝑚𝑠 difference 

less than 0.2 will be considered to be a scattered signal, rather than noise, and will be 

enhanced. The sliding window technique is used. The window width and the offset 

value are kept the same.  

The post processed signal after spectral enhancement, i.e., 𝑧̃(𝑡), is shown in Fig. 9. 

The signal is normalised so that the reflected signal from the 1st weld is equal in 

amplitude before and after spectral enhancement. Because the scattered pulses are 

enhanced, and the noise is not, the relative difference between scattered pulses and 

noise will be increased, as shown in Fig. 9. Furthermore, since the width of the sliding 

window is equivalent to an 8-cycle, Hanning-windowed pulse, and the offset between 

windows is only 10% of the window width, it is possible to find a small number of 

windowed pulses that belong to a single 10-cycle, Hanning-windowed pulse. In this 

case, only the first windowed pulse is enhanced by Eq. (9). The combined effect of 

spectral subtraction and enhancement is that the noise floor is cleaned up with only a 

low number of small peaks remaining. This helps to identify any potential signal 

beneath the noise floor, such as the reflection from the 3rd weld. This is especially 

important for ultrasonic non-destructive pipe testing under coated or buried 

conditions, because of the high attenuation of waves propagating in these structures. 

To clear up the noise floor further, additional work on the classification of signal and 

noise signatures is required.  



  

Fig. 9 Reflected signal before and after spectral enhancement for 40kHz pulse 

incident on pipe coated with 5.5m Denso Tape .               , before enhancement, i.e., 

𝑠̃(𝑡);                 , after enhancement, i.e., 𝑧̃(𝑡).  

 

The spectral subtraction and enhancement algorithm has been tested at different 

frequencies under a number of different test conditions. In Fig. 1, the coating was 

incrementally wrapped onto the pipe from right to left, allowing measurements to be 

taken at different coating lengths. For conciseness only some of these results are 

reported here. Fig. 10 shows the measured signal under a different test condition, 

where the coating length is 3m, and the incident wave is a 10-cycle, 35kHz centred, 

Hanning-windowed pulse. Following the same procedure, the backward wave 

cancelling algorithm based on Eqs. (1) and (2) has been used to cancel waves coming 

from the backward side of the tool. The signal shown in Fig. 10 is very similar to that 

shown in Fig. 6. However, the reflection from the 3rd weld and the far pipe end is 

much stronger in Fig. 10 than in Fig. 6, because of the reduced length of coating. The 
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length of coating between the 2nd and 3rd weld is 1.95m. The semi-analytical finite 

element model [41] calculates the attenuation to be 2.8 dB/m at 35kHz for the Denso 

Tape coated pipe. This gives a total attenuation of 10.9 dB between the 2nd and 3rd 

weld based on a pulse echo procedure. In Fig. 10, the attenuation between the 

reflected signal from the 2nd and 3rd weld is measured to be 11.1 dB. The theoretical 

and experimental attenuations are highly consistent.  

 

Fig. 10 Reflected signal 𝑝𝑏
−(𝑡) for 35kHz centre frequency pulse incident on pipe 

coated with 3m Denso Tape.   

 

To clean up the noise floor, the spectral subtraction and enhancement technique is 

used. The results are shown in Figs. 11 and 12 respectively. The width of the sliding 

window is equivalent to an 8-cycle, Hanning-windowed pulse, and the offset ratio is 

10%.  The noise spectrum, N(𝜔) in Eqs. (5) and (6), is calculated based on the signal 

truncated between the distance of 2m and 3.5m. The signal spectrum,  𝑇(𝜔) in Eq. 

(8), is calculated based on the pulse reflected from the 1st weld. The threshold value 
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𝑑𝑠 is 0.2. It can be seen that the noise signature in Fig. 10 is very different to that 

shown in Fig. 6. This is because the centre frequency of the pulse is different. 

Furthermore, the tests were carried out at different times, so that environmental noise 

is likely to be different and temperature variation could also play a role. However, the 

algorithm is effective in cleaning up the noise floor under different noise conditions 

and most of the noise peaks have been removed. A few small noise peaks are still 

visible which could be removed by reducing the threshold value 𝑑𝑠. However, 

reducing the threshold value will increase the chance of missing a real signal from a 

pipe feature as well. It is better to leave a small number of noise peaks in the figure, 

than accidentally remove a true signal from the measurement. However, the algorithm 

does significantly improve the ease of discriminating small features from the noise 

floor, if one is seeking small features under coated or buried conditions.     
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Fig. 11 Reflected signal before and after spectral subtraction for 35kHz pulse incident 

on pipe coated with 3m Denso Tape.               , before subtraction, i.e., 

𝑝𝑏
−(𝑡);                 ,  after subtraction, i.e., 𝑠̃(𝑡). 

 

 

 

 

  

Fig. 12 Reflected signal before and after spectral enhancement for 35kHz pulse 

incident on pipe coated with 3m Denso Tape .               , before enhancement, i.e., 

𝑠̃(𝑡);                 , after enhancement, i.e., 𝑧̃(𝑡).  

 

V. Conclusions 

The article investigates signal processing techniques to improve signal to noise ratio 

associated with torsional wave propagation in Denso Tape coated pipes. The coating 
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material heavily absorbs sound energy, so that attenuation of the torsional wave is 

very high. For a coating length that is 5.5m long, the reflected signal from a weld 

beneath the coating is already lower than the maximum amplitude of the noise peaks. 

This makes the interpretation of the signal difficult, especially under the coated 

section. To clean up the signal, a wave separation algorithm is used to remove 

reflected waves coming from the backward direction along the pipe. This reduces the 

number of repeated pulses. A spectral subtraction and enhancement technique is then 

used to improve signal to noise ratio. This requires a noise region to be specified, and 

a sliding Hanning window is used to divide the noise region into segments. A Fourier 

transform is applied to each segment, and the noise spectrum is obtained by frequency 

domain averaging all the segments in the noise region.  

 

Once the averaged noise spectrum is obtained, it can be removed from the total signal 

using the sliding window technique. The Hanning window is applied to each signal 

segment. This avoids the discontinuity between adjacent segments. The segments are 

reconstructed by inverse Fourier transformation, and then combined in the time 

domain. The noise floor has been significantly cleaned up after this procedure. With 

this basis, the spectral enhancement technique is applied. A known signal region is 

specified and the spectrum of this signal is compared to the spectrum of all other 

segments. If the spectrum of any segment is close to the signal spectrum, i.e., the root 

mean square difference is small, then the segment is classified as a signal region and 

the amplitude of this region will be increased by 40dB. This is equivalent to reducing 

the noise level by 40dB if the amplitude of the signal is normalised to keep the 

maximum amplitude of the signal the same before and after spectral enhancement. 

After application of these techniques, most of the noise peaks are removed. The very 



few that remain require further work. These noise peaks could possibly be removed 

by investigating further an algorithm that classifies signal features more accurately 

and robustly. Further work also involves study of non-axisymmetric defects, and 

classification and extraction of signatures from non-axisymmetric defects.  
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