
Received May 10, 2018, accepted May 31, 2018, date of publication June 7, 2018, date of current version July 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2845301

Modeling Oscillatory Phase and Phase
Synchronization With Neuronal
Excitation and Input Strength
in Cortical Network
DAMING WANG 1, YAORU SUN 1, FANG WANG 2, AND JIE LI1
1Department of Computer Science and Technology, Tongji University, Shanghai, China
2Department of Computer Science, Brunel University, Uxbridge UB8 3PH, U.K.

Corresponding authors: Yaoru Sun (yaoru@tongji.edu.cn) and Jie Li (jieli@tongji.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61173116 and Grant 91748122, in part by the
Natural Science Foundation Program of Shanghai under Grant 17ZR1431600 and Grant 18ZR1442700, and in part by the Fundamental
Research Funds for Central Universities.

ABSTRACT Neuronal oscillatory phase is suggested to be associated with feature coding, carrying
information for stimulus identity and neuronal activation, while phase synchronization is indicated to be
correlated with signal routing, establishing flexible communication structures for neuronal interactions.
Recent electrophysiological and computational studies have revealed that oscillatory phase has close
relationships with neuronal excitation and input stimulus. To simulate and further investigate these issues,
we simulated orientation columns with a spiking neural network and performed spectral computations
according to physiological experiments. Besides, six network activity states, pre-stimulus, and stimulus
periods were introduced in our simulation for both independent and comparative analyses. The simulation
results demonstrated that gamma band neuronal oscillations existed in the network and even emerged
during pre-stimulus period. An input stimulus orientation, if approximately preferred, could produce smaller
and more concentrated oscillatory phases, but relatively stronger phase synchronization. In particular,
the oscillatory phase and phase synchronization had quantifiable relationships with neuronal excitation
and input strength. With the network activity state transforming gradually from strong oscillation to non-
oscillation, the oscillatory phase became more and more scattered and the strength of phase synchronization
declined significantly. Their relationships with neuronal excitation and input strength became increasingly
unstable, and finally collapsed.

INDEX TERMS Neuronal coherence, neuronal oscillation, pairwise phase consistency PPC, phase
synchronization, spike-LFP phase, spiking neural network.

I. INTRODUCTION
Neuronal activities in numerous cortical and subcortical
areas [1]–[4] of various species [4]–[6] have been regu-
larly observed to exhibit rhythmic dynamics of neuronal
oscillation and synchronization in different frequency bands,
which are suggested to underlie a large number of cogni-
tive functions, including signal routing [2], [7], [8], feature
integration [9], [10], selective attention [11], [12] and
memory [4], [13]. Through physiological experiment,
theoretical analysis and computational investigation, the peri-
somatic inhibition from GABA receptor-mediated interneu-
rons has been found to be critical for the generation of

neuronal rhythmicity [14], [15]. Neuronal oscillation and
synchronization can arise from any network if there exists
appropriately balanced connectivity between pyramidal neu-
ron and interneuron [16], [17], whose period or frequency
is primarily determined by decay time constant of shunting
inhibition [16], [18], [19].

Neuronal oscillatory phase, referred to here as occurrence
of neuronal activities relative to concurrent oscillatory cycle,
is supposed to support sensory feature coding [17] and has
analytical relationships with neuronal excitation and input
stimulus. In hippocampus, a phenomenon of theta-phase pre-
cession is commonly observed, where the spatial information
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an animal traveled can be encoded in theta phase [20]. Spike
phase of a recorded neuron advances earlier and earlier to the
peak of theta cycle, because excitatory drive of the spatial
information becomes stronger and stronger when the animal
traverses through the neuron’s receptive field [21]. Based on
the theta-phase precession, a gamma cycle hypothesis advo-
cates that the amplitude of excitatory input and the excitation
of pyramidal neuron can be converted into a temporal code of
phase value, with stronger external input and neuronal excita-
tion leading to earlier spike phases in the gamma cycle [21].
A subsequent electrophysiological experiment of gamma-
phase shifting in visual cortex is consistent with the hypoth-
esis above [22]. The input orientation stimulus determines
spike phases, which shift systematically as a function of neu-
ronal activation strength. Preferred orientation and stronger
neuronal activation can give rise to earlier spikes and smaller
phases [22].

The following theoretical and computational investi-
gations are in line with the previous hypothesis and
experiments about the relationship of oscillatory phase.
A computational study confirms that a spike phase can
encode stimulus strength in the cortical network, where
the spike phase varies from the late to the earlier part of
the oscillation cycle when an external input of depolar-
izing current increases [23]. Another computational study
demonstrates that the spike phase of a given neuron
decreases when the amplitude of a sinusoidal synaptic input
increases [24].

Furthermore, several evidences have been found to support
the role of oscillatory phase in encoding of cognitive infor-
mation. In visual cortex, neurons in anaesthetized macaques
can encode naturalistic movie stimuli in terms of spike phases
rather than only in light of spike counts [25]. In olfactory bulb,
electrophysiological recordings of an awake mice illustrate
that an individual neuron can encode the timing of opto-
genetical activation relative to the sniff cycle in both the
timing and the amplitude of their responses [26]. In prefrontal
cortex, neuronal information about different objects in short-
term memory can be coded at distinct phases of underlying
oscillations [27]. In hippocampus, it has been indicated that
oscillatory phase can encode, retrieve and segregate different
types of information [28].

Two aspects in association with oscillatory phase are taken
into consideration: phase representation, reflecting neuronal
excitation and property of input stimulus, as well as phase
synchronization, quantifying the strength of neuronal syn-
chronization or phase coincidence in phase domain. For phase
representation, we utilized point spike-LFP (Local Field
Potential) phase in our simulating experiment, which com-
puted the phase of spike time point relative to its background
LFP oscillations [29]. LFP oscillation generally embodies
itself as aggregated synaptic currents and other transmem-
brane potentials within a group of adjacent neurons, thus
spike-LFP coupling indirectly measures neuronal spiking
output and synaptic input [29]. Consequently, the spike-LFP
phase is appropriate for quantifying relationships of oscil-

latory phase and phase synchronization with neuronal input
strength.

With respect to phase synchronization, it is proposed
to quantify the degree to which neuronal spike activ-
ities align with their surrounding oscillations [30], and
guarantee dynamic and reliable communications among
neuronal groups through CTC (Communication through
Coherence) mechanism [7], [31]. Thus far, PLV (Phase
Locking Value) [32], general coherence measure [5], [19],
[33], [34] and PPC (Pairwise Phase Consistency) [29], [35]
are three primary approaches for measuring phase synchro-
nization. Unfortunately, statistical estimates of both the PLV
and the general coherence measure suffer from significant
bias because of variable and uncontrollable sample size.
The PPC measure can overcome this bias by implementing
computation of vector dot product instead of vector addition
operation [35]. Furthermore, a refined PPCmeasure of point-
field P̂2 implements a normalization operation firstly for pairs
of separate trials to make itself unbiased by trial numbers and
phase-spike count dependency. Besides, it eliminates the dot
product operation of oscillatory phase with itself, and only
executes the operation across different trials [29].We adopted
the point-field PPC P̂2 measure, hereinafter called PPC2
measure, to quantify phase synchronization in our simulating
experiment.

However, up to present, there are not too many compu-
tational models to simulate and quantify relationships of
oscillatory phase with neuronal excitation and input stimulus
strength, especially by means of spectral computation and
according to physiological experimental procedure. In par-
ticular, the relationship quantification of phase synchroniza-
tion with neuronal excitation and input strength is even
less. Inspired by the gamma-phase shifting experiment [22],
we investigated detailed properties of oscillatory phase and
phase synchronization, as well as their relationships with
neuronal excitation and input strength in six different net-
work activity states. The oscillatory phase was character-
ized by spike-LFP phase, and the phase synchronization by
PPC2 measure. The neuronal excitation was quantified by
neuronal firing rate, with the input strength by neuronal
synaptic current power and input Poisson rate. Orientation
columns in primary visual cortex were approximately simu-
lated by way of a spiking neural network and PING (Pyrami-
dal Interneuron GammaModel) mechanism [17], [36], which
entailed an indispensable component of inhibitory neurons.
The purpose of constructing orientation columns was not
only because of orientation preference and input orientation
stimulus encountered in physiological experiment, but also
aiming at studying characteristics of oscillatory phase and
phase synchronization in more complicated neural network.

In our simulating experiment, the simulation procedure,
stimulus stimulation, data sampling and the subsequent spec-
tral analysis were approximately analogous to the gamma-
phase shifting study [22]. For comparison, we explored the
neuronal dynamics in six network activity states indepen-
dently and comparatively, which were modulated by different
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levels of Gaussian noise [37]–[39]. Besides, the investigation
was also carried out for a pre-stimulus periodwith no stimulus
and a stimulus period with orientation stimulus. Furthermore,
we implemented a time-resolved analysis for the evolutions
of oscillatory phase and phase synchronization across trial
time with a sliding window. Moreover, the simulating inves-
tigation could reproduce more data and perform more analy-
ses from multiple viewpoints to supplement data deficiency
and condition variations in physiological experiments, for
instance, varying spike and trial numbers for different exper-
iments [35]. Finally, the investigation of oscillatory phase,
phase synchronization and especially their relationships with
neuronal excitation and input strength is proposed to lay the
foundations for cortical computation, including phase-based
feature coding, neuronal communication, selective attention.

II. MATERIALS AND METHODS
A. NEURONAL MODEL
A leaky integrate-and-fire model, adapted from [40], was
adopted in our simulating experiment, the voltage dynamics
of which was according to the following equation:

dV
dt

=
−gL (V−Vrest)+IAMPA+IGABA+Ibg

Cm
+σn

√
2
τn
ξ(t) (1)

where the term V denoted a membrane potential, gL a mem-
brane leaky conductance, Cm a membrane capacitance, and
Ibg a constant tonic background current. IAMPA and IGABA
depicted excitatory and inhibitory synaptic currents respec-
tively. Besides, ξ (t) described a normalized Gaussian white
noise with mean 0 and variance 1 [41], where τn was a time
constant of the Gaussian noise and σn was a varying param-
eter for modulating neuronal network activity state. When-
ever the V surpassed a potential threshold Vthres, an action
potential was engendered and then passed to all neurons
it anatomically connected. Afterwards, the V was reset to
a resting potential Vrest and kept clamped for a refractory
period Tref .

IAMPA = gAMPA (VE − V ) (2)

IGABA = gGABA (VI − V ) (3)
dgAMPA
dt

= −
gAMPA
τAMPA

(4)

dgGABA
dt

= −
gGABA
τGABA

(5)

gAMPA = gAMPA +1gAMPA (6)

gGABA = gGABA +1gGABA (7)

The evolution of conductance-based synaptic currents,
IAMPA and IGABA, obeyed Equations (2) and (3), where
gAMPA and gGABA were excitatory and inhibitory synaptic
conductance. Correspondingly, VE and VI were excitatory
and inhibitory reversal potentials. In general, gAMPA and
gGABA evolved on the basis of Equations (4) and (5), wherein
τAMPA and τGABA were excitatory and inhibitory decay

time constant. However, upon receiving an action potential,
the synaptic conductance evolved in other ways, through
Equations (6) and (7). Besides, 1gAMPA and 1gGABA were
established by synaptic connection weight between intercon-
nected neurons, to be interpreted in the following sections.

B. MODEL ARCHITECTURE
In general, cortical columns are regarded as fundamental
units for cortical organization and have competitive advan-
tages for neuronal computation [17], [42]. Besides, different
orientation stimulus elicited distinct neuronal activations and
spike phases in the gamma-phase shifting study [22]. Conse-
quently, we constructed a spiking neural network to simulate
orientation columns in primary visual cortex. On the left of
Fig. 1(a) are 21 groups of Poisson neurons for simulating
external thalamic spike inputs, with 2100 Poisson neurons
totally, 100 for each Poisson group. From bottom to top on
the right of the Fig. 1(a) are consecutively 21 orientation
columns. Each column was comprised of 100 excitatory
neurons and 25 inhibitory neurons, portrayed by two cuboids,
with same color and number. Consequently, the ratio of the
excitatory versus the inhibitory neurons was 80% vs. 20%,
consistent with experimental and computational evi-
dences [19], [34], [43]. There were 2100 excitatory neu-
rons and 525 inhibitory neurons within the 21 columns in
total, all represented by the leaky integrate-and-fire model
mentioned above. Furthermore, feedforward and reciprocal
synaptic connections were illustrated by arrows, with red
and blue ones representing excitatory and inhibitory synaptic
connectivity respectively. Apparently, the connections within
the 21 orientation columns exhibited PING principle [36].

It has been widely recognized that neurons in visual
cortex are sensitive to orientation stimulus and exhibit
bell-shape tuning curve of firing rate, firing strongly with
preferred orientations [44]. In consequence, both the exci-
tatory and inhibitory neurons in each column were succes-
sively assigned with a preferred orientation, with −π/2 +
π (i− 1)/21 for the ith column. Typically, two far end
columns, the 1st and the 21th ones, had similar orientation
preference, which gave rise to a ring topology of stimulus
sensitivity across columns. Moreover, we also designated the
neurons in the 21 Poisson groups with the same preferred
orientations as their corresponding orientation columns so as
to obtain reliable external spike inputs.

C. SYNAPTIC CONNECTION
Stimulus selectivity, like orientation preference, has been
suggested to be brought about by cortical topography and
anatomical connectivity [45], [46]. A feedforward model
posits that the orientation selectivity simply arises from the
thalamic input projection from LGN (Lateral Geniculate
Nucleus) to visual cortex [44], [45]. A feedback or recurrent
model proposes that the thalamic projection establishes an
initial and mild orientation preference, whereas excitatory
intracortical interconnectedness and inhibitory interconnec-
tion provide an enhanced orientation bias [44], [47]. In our
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FIGURE 1. Model Architecture and Simulation Procedure. (a) Architecture of neuronal network. The left side is 21 groups of
Poisson neurons, and the right is 21 orientation columns, each with a group of excitatory and inhibitory neurons. Black bars with
various directions represent preferred orientations for corresponding columns. Red and blue arrows denote excitatory and
inhibitory synaptic connections respectively. (b) Connection weight matrix within 21 orientation columns. Column numbers are
assigned and duplicated on x- and y- axis, for instance, E-1 and I-1 embodying excitatory and inhibitory neurons from the first
column respectively. (c) Poisson rate of 21 Poisson groups. (d) Overview of simulation procedure.

model, the connectivity from the Poisson groups to their cor-
responding orientation columns was feedforward, one group
to one column, responsible for generating an initial orienta-
tion preference. Their connection weights Wf were constant
and all the same, with a connecting probability ε = 20%.
However, the connection weight within the 21 orientation
columns was determined by feature difference of orientation
preference between presynaptic and postsynaptic neurons,
which reinforced the orientation preference.

Wij = Weβ[cos (2(θpre−θpost))−1] (8)

where preferred orientations for the presynaptic and postsy-
naptic neurons were characterized by θpre and θpost . There
were four instances for the parameter W : WEE , WEI , WIE ,
WII , interpreted as basic connection weights from excitatory
to excitatory, excitatory to inhibitory, inhibitory to excitatory,
inhibitory to inhibitory neurons respectively. In particular,
the parameter WIE was larger than WEI so as to compensate
the inhibitory neurons with a small quantity, which gave rise
to an appropriate balance between excitation and inhibition in
the network [48], [49] (Fig. 1(b)). Besides, a connecting prob-

ability ε = 20% was employed for the recurrent connectivity
as well.

Owing to the same orientation preference, connection
weights for an orientation column with itself were strongest,
no matter what type of neuronal connectivity (Fig. 1(b)).
The connection weights were secondly strongest between
nearby columns on account of similar preferred orientations.
However, the connectionweights were progressively and con-
siderably declined as the feature difference of preferred ori-
entation or spatial distance between columns was increased,
in agreement with experimental findings that the connection
probability decays with distance [19], [50].

D. AFFERENT POISSON INPUT
The 21 Poisson groups, serving as the role of LGN, supplied
external thalamic inputs to orientation columns in visual cor-
tex. The determinant of Poisson rate Rinput depended solely
on the feature difference between the preferred orientation of
a Poisson neuron and the actual orientation of input stimulus,
inspired from [51].

Rinput =
[
cos

(
2
(
θpref − θstim

))
+ 1

]
Fmax (9)
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wherein the parameter θpref denoted the preferred orientation
of a given Poisson neuron, θstim the current orientation of
input stimulus delivered to the experiment, and Fmax a maxi-
mal firing rate.

E. SIMULATION PROCEDURE
As visible in Fig. 1(d), there are 21 orientation columns
upwards successively. In the middle of each column, we con-
tinuously selected 20 excitatory neurons as a neuronal group
and then recorded their spike timings, synaptic and back-
ground currents, from which one LFP channel data was
indirectly simulated. Therefore, 420 neurons and 21 LFP
channels were recorded altogether, with 20 neurons and one
LFP channel corresponding to amicroelectrode recording site
in a physiological experiment.

In our simulating experiment, we modulated the dynamics
of neuronal network by different levels of external Gaussian
noise [37]–[39], and sequentially obtained six network activ-
ity states: state1 (σn = 0.5 mV), state2 (σn = 1.0 mV), state3
(σn = 1.5 mV), state4 (σn = 2.0 mV), state5 (σn = 2.5 mV)
and state6 (σn = 3.0mV). However, the network activity state
could also be regulated by other types of noise or other param-
eters, for instance, synaptic time course, synaptic strength and
periodic external input [51]. For each activity state, we carried
out 20 trials, each composed of a 500 ms pre-stimulus period
and a 1500 ms stimulus period. During pre-stimulus period,
there were merely Poisson spike trains with a lower rate Fbg
and a constant background current Ibg, for simulation of
spontaneous activity in cerebral cortex and maintenance of
minimal activity in neuronal network [52]. During stimulus
period, nevertheless, a stimulus orientation was presented
to simulate drifting gratings. Throughout the experiment,
we only imported a constant stimulus orientation, −π/42,
across all 120 trials. It was the preferred orientation of the
11th orientation column, which could result in strong Poisson
input and high neuronal excitation for this column. Besides,
owing to the effect of response onset transients, we removed
the beginning 250 ms and 120 ms data for pre-stimulus
and stimulus periods respectively [22]. Then, the Poisson
rates of 21 Poisson groups were established by means of
Equation (9) (Fig. 1(c)).

In addition, the column network construction, experiment
simulation and relevant data recording were based on an
open source simulator, a Python package, namely Brian [53].
A time step of 0.1 ms was utilized for numerical Euler inte-
gration. The subsequent theoretical computation and spec-
tral analysis were on the basis of a MATLAB toolbox,
FieldTrip [54], especially its Spike package [22]. Besides,
relevant regression analysis was executed with the aid of
SPSS statistics software.

F. LFP SIMULATION
The LFP data was approximately quantified as the sum of
several absolute values, including excitatory and inhibitory
synaptic currents, as well as tonic background current for
excitatory neurons within an adjacent neuronal group [55],

revised from [19], [49].

LFP = R
(∑n

i=1

(
|IAMPA| + |IGABA| +

∣∣Ibg∣∣)) (10)

where the parameter R simulated microelectrode impedance
in neurophysiological recordings. The term IAMPA depicted
thalamic input current from Poisson spike train, and intracor-
tical excitatory recurrent synaptic current. IGABA exclusively
reflected the inhibitory recurrent synaptic current. Ibg repre-
sented the constant background current. The term n equaled
to 20 because 20 neurons constituted a neuronal group for
simulating a LFP channel. Besides, the sampling frequen-
cies for spike and LFP signal were 10000 Hz and 1000 Hz
respectively, and the LFP signal was bandpass filtered with
0.7-170 Hz. Ultimately, all parameters encountered in our
simulation were customized according to Table. 1.

TABLE 1. Default parameter configuration.

G. SPIKE-LFP PHASE
Around each spike time point of a given neuron, we cut out
20 LFP segments with the exception of the one within the
same orientation column, the centers of which were all in
accordance with the spike time point. Specially, we adopted
varying lengths of LFP segment for different frequencies,
with five periodicities for each frequency, for example,
a 100 ms length LFP segment for a 50 Hz frequency. Through
Discrete Fourier Transform with a Hanning window, all LFP
segments were decomposed into spike-triggered LFP spec-
trum Xi (f ) at a specific frequency, described in Equation (11)
[22].

Xi (f ) =
∑T

t
w (t) xi (t) e−2π jft (11)

X̄i (f ) =
1
20

∑20

j=1

X ji (f )∣∣∣X ji (f )∣∣∣ (12)

2i = angle
(
X̄i (f )

)
(13)

2̄ = angle
(∑N

i
X̄i (f )

)
(14)

wherein w (t) was the Hanning window, xi (t) a LFP segment
data centered around the ith spike. Then the magnitudes of
the spectrum were eliminated through normalization across
20 LFP channels by way of Equation (12) [22]. The term
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FIGURE 2. Neuronal Spike Activity and LFP Signal. (a) Spike raster plots for all neurons in the neuronal network within a 200 ms
interval for state2 during pre-stimulus period, as well as for state1, state3 and state5 during stimulus period. Pois represents
Poisson neurons, Exc and Inh denoting excitatory and inhibitory neurons in 21 orientation columns respectively. (b) Time series
of four LFP signals from the 2nd, the 5th, the 8th and the 11th orientation columns within a 200 ms interval for state4 during
pre-stimulus and stimulus periods.

X ji (f ) represented the spike-triggered LFP spectrum from
the jth LFP channel and the ith spike of a certain neuron.
Afterwards, we could easily derive, at a particular frequency,
a point spike-LFP phase by means of Equation (13). Then a
spike-LFP phase for an individual neuron or a neuronal group
in each network activity state could be obtained through
Equation (14) across all 20 trials. The function angle is a
classical MATLAB function for returning the phase angle of
input complex data.

H. PPC2 MEASURE
With regard to the PPC2 measure adopted in our simu-
lating experiment, we firstly classified the obtained point
spike-LFP phase 2i into 2k,m according to its trial number,
m ∈ {1, · · · ,M}, with M = 20 depicting the trial number
for a network activity state, whereas k ∈ {1, · · · ,Nm}, with
Nm describing the spike number emitted in the mth trial.
Therefore, the term2k,m represented the kth point spike-LFP
phase from the mth trial for a given neuron. The term Uk,m =(
cos

(
2k,m

)
, sin

(
2k,m

))
was a vector representation for a

point spike-LFP phase. Subsequently, we could quantify the
precision of phase synchronization for an individual neuron
in six network activity states by virtue of Equation (15) [29].

PPC2=
1

|M| (|M| − 1)

×

∑
m∈M

∑
l∈M

(∑Nm
k=1

∑Nl
j=1Uk,m · Uj,l

NmNl

)
(15)

where M was defined as {m ∈ {1, · · · ,M} ;Nm > 0}, with
|M| meaning the number of trials having at least one spike.
The operator · was a dot product operation. The PPC2 mea-
sure was unbiased by trial number and spike number because

the sum of the dot product of point spike-LFP phases for each
pair of separate trials was averaged firstly.

I. TIME-RESOLVED ANALYSIS
Apart from the general computation and analysis from
the perspective of the whole trial time, we carried out a
time-resolved spectral analysis with a sliding window, por-
trayed by red rectangles in Fig. 1(d). The sliding window,
75 ms in width, moved with a step of 10 ms. When the sliding
windows moved to a certain time point of 20 trials, there were
20 segments of spike and LFP data, one segment for each
trial. The length of segments was equivalent to the width of
the sliding window. As the windows moved to a new time
point, another new 20 segments of spike and LFP data were
generated. As a matter of fact, the time-resolved analysis
rendered the current 20 trials of numerical recording data to
a continuous series of 20 short-time trials of data, all with a
length of 75 ms. Then we launched computations of spike-
LFP phase and PPC2 value for the obtained series of segment
data to investigate the evolvement of oscillatory phase and
phase synchronization across trial time for all six network
activity states.

III. RESULTS
A. SPIKE ACTIVITY AND LFP SIGNAL
In this section, we investigated neuronal spike activity,
LFP signal and LFP power spectrum, but only some of the
LFP channels and network activity states were illustrated.
The spike raster of Poisson neuron (Pois) during pre-stimulus
period was considerably sparse and uniform (Fig. 2(a)).
As for Poisson neuron during stimulus period, the distribution
of spike raster across neurons was consistent with Poisson
rates of 21 Poisson groups determined previously (Fig. 1(c)).
During stimulus period, both excitatory (Exc) and inhibitory
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FIGURE 3. LFP Power Spectra and Peak Frequencies of LFP Power. (a) Power spectra of six LFP signals for six network activity
states during pre-stimulus period (dotted line) and stimulus period (solid line). The six LFP signals are from the 1st, the 3rd,
the 5th, the 7th, the 9th, and the 11th orientation columns respectively. (b) Peak frequencies of LFP power spectrum from
21 orientation columns for six network activity states during pre-stimulus and stimulus periods.

(Inh) individual neurons exhibited irregular spike activities,
whereas their population neurons displayed rhythmicity and
collective oscillations, in accordance with in vivo [11], [17]
and numerical evidences [19], [51]. The oscillations origi-
nated mechanistically from PING structure including recur-
rent interplay between excitatory and inhibitory neurons [17].
As the parameter σn of Gaussian noise increased, the net-
work activity states transformed from strong oscillation to
weak oscillation or non-oscillation. Besides, the frequencies
of neuronal oscillations during stimulus period were greater
than those during pre-stimulus period, which, however, were
all within gamma range. The oscillatory frequency was pri-
marily dependent on decay time constant of inhibitory synap-
tic conductance and external input [49].

In addition, during stimulus period, oscillation peaks of
both excitatory and inhibitory spike raster from different
orientation columns were fairly heterogeneous (Fig. 2(a)).
The oscillation peak from the 11th column emerged firstly
and then the upward and downward columns in succession,
with the 1st and the 21th columns being the last ones. Because
neurons from the 11th column received the strongest Poisson
spike inputs and were further supplemented by strong exci-
tatory connectivity within the column itself. The peak differ-
ences of spike raster or neuronal oscillations across columns
may lay the foundations for producing different oscillatory
phases. Besides, as parameter σn was increased, the oscil-
latory peak differences across columns became smaller and
smaller.

For LFP signal, owing to slightly consistent oscillations
of excitatory spike raster across columns during pre-stimulus
period, the LFP signals within this period had roughly similar
oscillatory peaks and amplitudes (Fig. 2(b)). However, dur-
ing stimulus period, the peaks of LFP signals were largely
different, with the 11th, the 8th, the 5th and the 2nd chan-
nels one after another for most of the 200 ms interval.
It was in agreement with excitatory oscillations of spike raster

illustrated above. Besides, it has been revealed in a com-
putational simulation that spike discharges with a higher
probability around the trough of LFP oscillations [19].
In consequence, it is reasonable that the peak differ-
ences of LFP signals and spike location specificity pro-
vide a reliable account for the generation of different
oscillatory phases and then different precisions of phase
synchronization.

It has been observed that inhibitory decay time constant
τGABA and stimulus contrast are capable of modulating peak
frequencies [49]. The oscillatory frequency increases mono-
tonically with stimulus contrast [56], [57], whose changes are
regularly modeled as variations in the rate of spike train [49].
In our simulating experiment, we measured LFP power
spectra with a Welch method. The shapes of simulated
LFP powers are in agreement with several physiologi-
cal and computational studies [19], [37], [57] (Fig. 3(a)).
The peak frequencies of power spectra were not only
consistent with the frequencies of raster oscillations and
LFP oscillations, but also within gamma range. From state1 to
state6 during pre-stimulus period, the peak frequencies of
LFP power became larger and larger, however, remain-
ing similar across 21 columns (Fig. 3(b)). From state1 to
state6 during stimulus period, the differences of the peak fre-
quencies across columns became increasingly larger. More-
over, it has been believed that phase coherence is generally
highest around peak frequency of power spectra [49], [58].
Henceforth, the following investigations of spike-LFP phase
and PPC2 value were primarily carried out around the peak
frequencies of LFP power, unless the whole spectrum analy-
sis was illuminated if necessary.

B. NEURONAL FIRING RATE AND SYNAPTIC
CURRENT POWER
We computed neuronal firing rate and synaptic current power
for both 420 individual neurons and 21 neuronal groups.
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FIGURE 4. Neuronal Firing Rate and Synaptic Current Power. (a) Firing rates of 420 individual neurons for six network activity
states during prestimulus and stimulus periods. (b) Similar to (a), but for firing rates of 21 neuronal groups. (c) Synaptic current
power of 420 individual neurons for six network activity states during pre-stimulus and stimulus periods. (d) Similar to (c), but
for synaptic current power of 21 neuronal groups.

The firing rate denoted neuronal excitation, and the synaptic
current power indirectly represented neuronal input strength.
The synaptic current power was obtained through Welch’s
power spectral density estimate for the sum of excitatory
synaptic current and background current projecting to a neu-
ron. During pre-stimulus period, the excitatory spike raster
across orientation columns oscillated with similar densities,
which implicitly suggested similar neuronal excitations and
firing rates. Despite the firing rates of the 420 individual
neurons for this period varied a lot, their distributions across
columns were roughly similar (Fig. 4(a)). Besides, the fir-
ing rates of 21 neuronal groups across columns within this
period were relatively flat (Fig. 4(b)). Owing to the same
Poisson rate of spike inputs and similar neuronal activities
across excitatory neurons and orientation columns during pre-
stimulus period, the synaptic current powers were compara-
tively stationary for both 420 individual neurons (Fig. 4(c))
and 21 neuronal groups (Fig. 4(d)). From state1 to state6 for
both individual neurons and neuronal groups during this
period, the firing rates became slightly larger and larger,
whereas the synaptic current powers became increasingly
smaller.

During stimulus period, the spike raster from the middle
orientation columns had relatively greater densities, which
in consequence indicated stronger neuronal excitations and
higher firing rates. Though to some extent do the firing
rates of 420 individual neurons fluctuated, there were nev-
ertheless slightly higher firing rates for neurons from the
middle columns (Fig. 4(a)). In the case of neuronal groups,
the firing rates across groups were apparently much more
distinct than those across single neurons, with values from
the middle groups larger than the ones from other groups
(Fig. 4(b)). The synaptic current powers of both individual
neurons and neuronal groups were strongest for the mid-
dle columns, and then decreased gradually towards two end
columns (Fig. 4(c) and Fig. 4(d)). From state1 to state6 for
both individual neurons and neuronal groups, the firing rates
became relatively greater and greater, with their differences
across neurons or groups becoming increasingly sharper.
However, the synaptic current powers became smaller and
smaller, which also became growingly similar across neu-
rons and groups. Moreover, no matter firing rate or synap-
tic current power, single neuron or neuronal group during
stimulus period, the tuning curves of both firing rate and
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FIGURE 5. Spike-LFP Phase. (a) Spike-LFP phases in polar coordinates for six network activity states, one row for one state and
one column for one orientation column (Col1 means the 1st orientation column). One polar coordinate has 21 spike-LFP phases,
with blue bar for pre-stimulus period and red bar for stimulus period. Green bar represents spike-LFP phase for a neuronal
group. The radial length equals to unit length, because amplitude is normalized. (b) Spike-LFP phases of 420 individual neurons
for six network activity states during pre-stimulus and stimulus periods. (c) Similar to (b), but for spike-LFP phases
of 21 neuronal groups. (d) Standard deviation (SD) of spike-LFP phases for 21 neuronal groups in six network activity states
during pre-stimulus and stimulus periods.

synaptic current power guaranteed orientation selectivity in
visual cortex [44], [45], also compatible with the Poisson
rates of 21 Poisson groups (Fig. 1(c)).

C. SPIKE-LFP PHASE
In this section, we analyzed spike-LFP phase in both polar
coordinates and Cartesian coordinates. For relatively strong
oscillatory state1 and state2 during pre-stimulus period,
spike-LFP phases of 420 individual neurons were compara-
tively flat and similar, with the exception of several deviating
data (Fig. 5(b)). They were considerably concentrated in each
orientation column, with lower standard deviation values

(Fig. 5(a, b, d)). Spike-LFP phases of 21 neuronal groups
during this period for these oscillatory states possessed simi-
lar attributes (Fig. 5(c)). As the parameter σn was increased,
spike-LFP phases of individual neurons during pre-stimulus
period became more and more scattered, especially for weak
oscillation or non-oscillation from state4 to state6.

For relatively strong oscillation from state1 to state3 during
stimulus period, spike-LFP phases of individual neurons from
the 11th orientation column were smallest, typically smaller
than the ones during pre-stimulus period (Fig. 5(b)). How-
ever, as feature difference of preferred orientation or spatial
distance relative to the 11th column increased, the spike-LFP
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FIGURE 6. Distribution of PPC2 value for 420 individual neurons within a frequency range of 20-140 Hz for six network activity
states during prestimulus and stimulus periods.

phases from the leftward and rightward columns increased
progressively, and the ones from two-side columns were gen-
erally larger than those during pre-stimulus period. Besides,
the spike-LFP phases from the 11th column were most con-
centrated, nevertheless the ones from other columns left-
wards and rightwards became more and more scattered
(Fig. 5(a, b, d)). The spike-LFP phases of neuronal groups for
these states have analogous properties (Fig. 5(c)). For weak
oscillation or non-oscillation from state4 to state6 during
stimulus period, the spike phases of individual neurons, espe-
cially the ones from two-side columns shifted extensively.
Furthermore, although neurons within the same orientation
column had identical orientation preference, similar connec-
tivity and analogous Poisson input, there were still varia-
tions in their spike-LFP phases within the column. Typically,
the larger difference between preferred orientation and actual
input orientation, the more variable the spike phases were.

The input orientation was the same as the preferred orien-
tation of the 11th column, it therefore provided the strongest
Poisson input for this column. Supplemented with strong
lateral connections within the column, the excitatory neurons
from this column fired firstly and then iteratively engendered
roughly synchronous activities of inhibitory neurons, which
in turn exerted shunting inhibition over the entire 21 orien-
tation columns to prevent their neurons from spiking [59].

As a consequence of similar preferred orientations and sec-
ondarily strong Poisson input, excitatory neurons from the
10th and the 12th columns could overcome the shunting inhi-
bition secondly, and likewise generated rhythmic and syn-
chronized inhibitions to prohibit excitatory neurons of other
columns from discharging. Afterwards, similar phenomenon
emerged in the 9th and the 13th columns, with the 1st and the
21th columns the last ones. Therefore, there actually existed
a time sequence of rhythmic inhibitions for 21 orientation
columns, which was primarily responsible for the occurrence
of neuronal oscillations for the 21 columns one after another.
This was the reason why the spike-LFP phases of individual
neurons or neuronal groups across columns were consider-
ably different and in a time order during stimulus period.

D. PAIRWISE PHASE CONSISTENCY PPC2
The PPC2 measure utilized in our simulating experiment
is referred to as a temporal approach for measuring the
strength of phase synchronization and quantifying the degree
to which point spike-LFP phases coincide with specific loca-
tions of LFP oscillations. For six network activity states dur-
ing pre-stimulus period, the PPC2 values across 420 neurons
were similar and quite low (Fig. 6). For strong oscillatory
state1 during stimulus period, most of neurons from the
middle orientation columns had greater PPC2 values, which
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however declined gradually toward two-side columns.
Besides, the significant region of PPC2 values was primarily
within a range from 45 Hz to 95 Hz, which belonged to a
gamma frequency band, matching well with a set of physi-
ological and simulating investigations [5], [22], [52]. From
state1 to state6 during stimulus period, the middle region
with higher PPC2 values became considerably narrower and
narrower.

Then, we investigated the PPC2 values of 420 individ-
ual neurons around the peak frequencies of LFP power
(Fig. 7(a)). For six activity states during pre-stimulus
period, most of 420 neurons came up with comparatively
lower PPC2 values, except for a few departing points. For
state1 during stimulus period, the PPC2 values for most of
the neurons from the 11th orientation columns were rela-
tively larger, the ones for the leftward and rightward columns
gradually decreased. It was consistent with electrophysio-
logical recording studies that a certain degree of coherent
activities is commonly observed within cortical orientation
columns [60], [61]. From state1 to state6 during stimulus
period, PPC2 values of 420 neurons decreased substantially
and became more and more similar.

In addition, we further averaged the PPC2 values across
420 recorded neurons for both pre-stimulus and stimulus peri-
ods (Fig. 7(b)). The peak frequencies of the mean PPC2 val-
ues for both periods were compatible with peak frequencies
of LFP power spectra. Besides, the significant region of the
mean PPC2 values for stimulus period was located between
40Hz and 80Hz, a part of gamma frequency range.Moreover,
in spite of no orientation stimulus during pre-stimulus period,
there still existed slight excitatory oscillations in a gamma
frequency range for state1 and state2, consistent with studies
that synchrony even emerges in a baseline or resting state
because of anatomical connectivity [30]. In addition, from
state1 to state6 for both periods, the mean PPC2 values
declined extensively.

As far as the 11th orientation column was concerned, it
received 22 groups of excitatory inputs, the two strongest of
which originated from its corresponding Poisson group with
the largest Poisson rate, and the 11th column itself with the
relatively highest neuronal excitation. The rest groups of exci-
tatory inputs arose from other 20 columns with comparatively
lower neuronal excitations. Besides, the synaptic connection
strengths from the 11th column itself were the strongest,
whereas the ones from other columns were considerably
weak. Moreover, it has been recognized that the synaptic
inhibition can significantly raise the leakiness of target neu-
rons [24], [62]. Consequently, the 11th orientation column,
as a target network with high neuronal excitation and strong
intracolumn connectivity, was more likely to synchronize
their spiking activities through coincidence detection [16],
and thereby came up with relatively the largest PPC2 values.

E. RELATIONSHIPS FOR OSCILLATORY PHASE
In this section, we primarily investigated relationships of
oscillatory phase with neuronal excitation measured by

FIGURE 7. Distribution of PPC2 Value and Mean PPC2 Value. (a) PPC2
values of 420 individual neurons for six network activity states during
pre-stimulus and stimulus periods. (b) Mean PPC2 value averaged across
420 neurons as a function of frequency 20-140 Hz for six network activity
states during pre-stimulus and stimulus periods. The gray region
represents 95% confidence interval.

neuronal firing rate, as well as input strength characterized by
Poisson rate and neuronal synaptic current power. The firing
rate, Poisson rate and synaptic current power were all linear
variables, whereas, spike-LFP phase was a circular variable.
It was not suitable to use a general linear regression model
to evaluate their relationships, which could not minimize
circular error. Subsequently, we adopted a linear-circular
regression model with an arctangent function, described in
Equation (16) modified from [22]:

2̄i = µ+ α tan−1 (βYi + b)+ εi (16)

wherein 2̄i was a spike-LFP phase for the ith neuron or the
ith neuronal group. Yi was firing rate or synaptic current
power for an individual neuron, or Poisson rate for a neu-
ronal group. The parameter β was the coefficient of regres-
sion slope to be estimated, and εi followed the von Mises
distribution.

For the relationship between spike-LFP phase and neu-
ronal firing rate during stimulus period, we only included
the neurons with PPC2 values under certain thresholds. The
thresholds were {0.3, 0.22, 0.15, 0.03, 0.01, 0.005} for the
six network activity states respectively. Because the neurons,
with higher PPC2 values, were more likely to have similar
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TABLE 2. Parameter estimate of relationships for spike-LFP phase.

point spike-LFP phases, which would be confined to certain
phase intervals relative to the background oscillation. On the
contrary, the neurons with lower PPC2 values probably had
more random spike-LFP phases, therefore more suitable for
the relationship quantification.

From state1 to state3 during stimulus period, three
regression curves with declining slopes were estimated
(Fig. 8(a)). According to Table. 2, the estimated
coefficient β {−0.659,−0.588,−1.089} for the three regres-
sion curves were all negative. It indicated that the spike-
LFP phase decreased as a function of neuronal firing rate,
thus oscillatory phase decreased monotonically with neu-
ronal excitation. It was in agreement with the gamma cycle
hypothesis [21], theta-phase precession phenomenon [20],
the gamma-phase shifting study [22], and other compu-
tational investigations [23], [24]. From state4 to state6,
the spike-LFP phase becamemore andmore scattered, and no
obvious relationship was available between spike-LFP phase
and neuronal firing rate.

For the relationship between spike-LFP phase and Pois-
son rate, we initially set the parameter α = 2. Six regres-
sion curves, again with declining slopes, were estimated
(Fig. 8(b)). Based on Table. 2, the estimated coefficient β
{−0.058, −0.054, −0.043, −0.038, −0.028, −0.040} were
all negative, suggesting that the spike-LFP phase decreased
as a function of Poisson rate. In addition, as evident from
Fig. 8(b), the decreasing speed between spike-LFP phase
and Poisson rate became slower and slower from state1 to
state6. Concerning with the relationship between spike-LFP
phase and neuronal synaptic current power during stimulus
period, four regression curves with declining slopes were
evaluated (Fig. 8(c)). On the basis of Table. 2, the estimated
β {−0.029, −0.177, −0.300, −0.639} for the regression
curves were all negative as well, suggesting that the spike-
LPF phase decreased as a function of synaptic current power.
When the noise parameter σn continued to increase, the quan-
tifiable relationship disappeared as a result of increasingly
dispersed spike-LFP phases. In summary, oscillatory phase
was a monotonically decreasing function of neuronal input
strength for general oscillatory state.

F. RELATIONSHIPS FOR PHASE SYNCHRONIZATION
In this section, we mainly investigated relationships of
phase synchronization with neuronal excitation and neuronal
input strength. Firstly, we measured the relationship between

PPC2 value and neuronal excitation, represented by neuronal
firing rate. The relationship was analyzed by a nonlinear
regression model according to the equation below.

Pi = αeβ(Yi+b) + εi (17)

where the term Pi, i = 1, 2, . . . , 420, was the PPC2 value for
the ith neuron, Yi the neuronal firing rate. The parameter β
was the coefficient of regression slope to be estimated.

From state1 to state3, it was apparent that the scatter plot
in each network activity state encompassed two peaks for
pre-stimulus and stimulus periods respectively (Fig. 9(a)).
Interestingly, the two peaks were around the peak frequencies
of LFP power spectra for relevant periods. Around each
peak point, we split the scatter data into two parts. Then,
by virtue of Equation (17), we implemented nonlinear regres-
sion analyses and obtained a decreasing regression curve1 for
pre-stimulus period, an increasing regression curve2 and a
decreasing regression curve3 for stimulus period. The esti-
mated values of coefficient β and R squared for the regression
curves could be referred to Table. 3.

TABLE 3. Parameter estimate for relationship between PPC2 value and
neuronal firing rate.

The two peaks of the scatter plot were also around the
frequencies of neuronal raster plots and LFP oscillations.
The peak firing rate approaching to oscillatory frequency
implied that the neuron discharged regularly, with one spike
discharging in each oscillatory cycle. It would have greater
likelihood to obtain relatively stronger phase synchroniza-
tion and higher PPC2 value. If the actual firing rate of a
given neuron was smaller or larger than the peak firing rate,
it meant there were no spikes or more than one spikes dur-
ing some of oscillatory cycles. In consequence, the phase
synchronization was correspondingly degraded, thus with
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FIGURE 8. Relationships of Oscillatory Phase with Neuronal Excitation and Input Strength. (a) Spike-LFP phase for individual
neurons as a function of neuronal firing rate. (b) Spike-LFP phase for 21 neuronal groups as a function of input Poisson rate.
(c) Spike-LFP phase for 420 individual neurons as a function of neuronal synaptic current power.

relatively smaller PPC2 value. In general, the strength of
phase synchronization, quantified by PPC2 value, increased
gradually with neuronal excitation when neuronal firing rate
was below oscillatory frequency. However, it decreased pro-
gressively with neuronal excitation when neuronal firing rate
was above oscillatory frequency. Nevertheless, the regular
relationship between phase synchronization and neuronal
excitation no longer sustained as network oscillatory state
became weak or nonexistent.

Secondly, we investigated the relationship between
PPC2 value and input strength, described by Poisson rate
and neuronal synaptic current power. The relationships were
generally analyzed by a regression method of linear curve
estimation with the help of SPSS statistics software. Besides,
we also utilized a nonlinear regression model to measure the
relationship between PPC2 value and Poisson rate, through
Equation (18).

Pi = α + β ln (Yi + b)+ εi (18)

where the term Pi, i = 1, 2, . . . , 21, was the PPC2 value for
the ith neuronal group, Yi the Poisson rate. The parameter β
was the regression coefficient to be estimated.

With respect to the relationship between PPC2 value and
Poisson rate, two regression curves were estimated for each
network activity state (Fig. 9(b)). The regression curve1 was
obtained by the linear curve estimation method, the regres-
sion curve2 by Equation (18). According to Table. 4, the esti-
mated values of coefficient β for the two regression curves in
all six states were all positive, meaning that the PPC2 value
increased as a function of Poisson rate. Furthermore, from
state1 to state6, the parameterβ of the linear curve1 decreased
progressively, implying that the increasing speed between
PPC2 value and Poisson rate became slower and slower.

With regard to the relationship between PPC2 value and
neuronal synaptic current power, we firstly demonstrated
PPC2 value in association with synaptic current power for
420 individual neurons (Fig. 9(c)). Unfortunately, little rela-
tionship information could be inferred from the scatter plot,
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FIGURE 9. Relationships of Phase Synchronization with Neuronal Excitation and Input Strength. (a) PPC2 value for 420
individual neurons as a function of neuronal firing rate. (b) PPC2 value for 21 neuronal groups as a function of input Poisson
rate. (c) PPC2 value for 420 individual neurons as a function of neuronal synaptic current power. (d) Similar to (c), but for
21 neuronal groups.

TABLE 4. Parameter estimate for relationship between PPC2 value and neuronal input strength.

in spite of gradually increasing trend for stimulus period.
Then we quantified the relationship at a neuronal group
level by the linear curve estimation method (Fig. 9(d)).

Based on Table. 4, the estimated coefficientβ for the six states
were all positive, suggesting that PPC2 value increased as a
function of neuronal synaptic current power. In addition, from
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FIGURE 10. Time-Resolved Analyses for Spike-LFP Phase and PPC2 Value. (a) Evolution of spike-LFP phases of 420 recorded
neurons across trial time for six network activity states. For each state, there are a 500 ms pre-stimulus period in the first part
and a 1500 ms stimulus period in the second part. (b) Similar to (a), but for evolution of PPC2 values.

state1 to state6, the coefficient β decreased gradually, indi-
cating that the PPC2 value increased slower and slower with
synaptic current power. In summary, the strength of phase
synchronization increased monotonically with neuronal input
strength for general oscillatory state.

G. TIME-RESOLVED ANALYSIS
In this section, we undertook time-resolved analyses of spike-
LFP phase and PPC2 value for 420 sampled neurons. For
state1 during pre-stimulus period, spike-LFP phases across
420 neurons were roughly similar despite certain variabili-
ties (Fig. 10(a)). The PPC2 values across 420 neurons were
relatively low (Fig. 10(b)). Besides, no matter spike-LFP
phase or PPC2 value for the state1, there were variations at the
beginning of pre-stimulus period. It was partly because the
beginning session was sensitive to the influences imposed by
input stimuli and neuronal activities of last trial. Furthermore,
from state1 to state6 during this period, the spike-LFP phase
fluctuated more and more extensively and the PPC2 values
became increasingly smaller. However, they both retained
similarity across 420 neurons.

For state1 during stimulus period, there were several
attributes implied from Fig. 10. Firstly, the evolutions of
spike-LFP phase and PPC2 value at most time points were
in line with the distributions of spike phase and PPC2 value

in previous sections. Secondly, at the beginning of stimulus
period, the spike phases varied a lot, whereas the PPC2 values
were considerably small and comparatively similar across
420 neurons. It was mainly attributable to the effect of stim-
ulus onset transients [22], compatible with observations in
a visual attention study [11]. Thirdly, the phases from two-
side orientation columns fluctuated extensively, while the
ones from middle columns were comparatively stable after
the stimulus onset interval. However, the PPC2 values from
the middle columns were comparatively larger and increased
firstly, then followed by other nearby columns with lower
PPC2 values. Therefore, less coherent or synchronized neu-
ronal activities, with lower PPC2 values, were not effec-
tive in constraining neuronal spike times and thereby led
to greater phase shifting. Fourthly, although neurons, from
the same column, received similar Poisson input and pos-
sessed analogous synaptic connectivity, it was not uncom-
mon that they would attain slightly heterogeneous neuronal
activities, thus acquiring slightly different spike phases and
PPC2 values within the same column. Furthermore, from
strong oscillation to weak oscillation or non-oscillation, the
middle columns with lower spike-LFP phases and higher
PPC2 values became narrower and narrower, and both the
spike phases and PPC2 values became increasingly similar
across 420 neurons.
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IV. CONCLUSION AND DISCUSSION
In order to investigate oscillatory phase, phase synchroniza-
tion and their analytical relationshipswith neuronal excitation
and input strength for different levels of oscillatory states,
we constructed a spiking neural network with 21 Poisson
groups to provide external thalamic inputs, and 21 columns
to simulate orientation columns in primary visual cortex.
Neurons in different columns were designated with dif-
ferent orientation preferences. The visual stimulation, data
recording and subsequent spectral computation in our study
were roughly analogous to the electrophysiological gamma-
phase shifting experiment [22]. A leaky integrate-and-fire
model was employed in the neuronal network on account
of its biological plausibility and computational efficiency,
which however could be substituted by the Hodgkin-Huxley
model or other neuronal models [63]. Besides, we explored
properties of neuronal dynamics in six network activity states
and for pre-stimulus and stimulus periods independently,
and we also drew a parallel between them for comparison.
In addition, a time-resolved analysis with a sliding window
was also conducted for evolution of neuronal activities across
trial time.

In our simulating experiment, the frequencies of spike
raster and LFP oscillation, as well as the peak frequencies
of LFP power spectra and mean PPC2 values were compar-
atively consistent during pre-stimulus and stimulus periods.
Besides, the significant region of PPC2 values for 420 indi-
vidual neurons was also in accordance with the significant
region of mean PPC2 value during stimulus period, around a
range of 45 Hz - 80 Hz. Altogether, the frequencies encoun-
tered above all belonged to the gamma frequency band, which
thereby confirmed the existence of gamma neuronal rhyth-
micity in cortical network and were also in agreement with
a wide spectrum of physiological experiments [5], [11], [22]
and numerical investigations [19], [33], [52].

For a general oscillatory state, if the preferred orientation
of a given column was the same as or similar to the input
orientation, neurons within the column would receive larger
Poisson input. Supplemented by stronger excitatory recurrent
connections within this column, neurons from the column
would acquire higher neuronal excitations and firing rates.
It could in turn overcome synchronous inhibitions firstly,
discharge earlier and come up with smaller and similar spike-
LFP phases, but larger PPC2 values. In particular, the spike-
LFP phase decreased monotonically with neuronal excitation
and input strength. However, the PPC2 value increased with
neuronal excitation in the first part and decreased in the
second part, but it increased constantly as a function of input
strength. The investigation of oscillatory phase in our study
confirmed the gamma cycle hypothesis [21], also consistent
with the theta-phase precession phenomenon [20] and the
gamma-phase shifting study [22]. When the network activity
state transformed gradually from strong oscillation to weak
oscillation or non-oscillation, spike-LFP phases becamemore
and more scattered and PPC2 values decreased significantly.

Furthermore, the reliable and quantifiable relationships of the
spike-LFP phase and PPC2 value with neuronal excitation
and input strength became increasingly unstable and finally
nonexistent.

Despite the consistency between our research and the
gamma-phase shifting study [22], there are still several sub-
tle differences. Firstly, the neuronal excitation in our sim-
ulation was represented by neuronal firing rate, whereas
the one in the phase shifting study was described by spike
density, a quantity of temporally neighboring spikes on a
short timescale [22]. Secondly, oscillatory phase in our study
was denoted by spike-LFP phase, averaging point spike-LFP
phases across trials. However, the one in the phase shifting
experiment was directly the point spike-LFP phase itself.
However, there was also mean spike-LFP phase for spike
density percentile in the phase shifting study [22]. Lastly,
we quantified phase synchronization by PPC2measure, while
PLV approach was adopted in the phase shifting study [22].
Especially, the PPCmeasure was a bias-free method, the pop-
ulation statistic of which was equivalent to the population
statistic of the squared PLV [29], [35].

Several computational studies have derived similar out-
comes about oscillatory phase and its relationship with exter-
nal input [23], [24]. However, the oscillatory phase employed
in these studies was generally obtained in time domain,
as opposed to implementing spectrum computation in fre-
quency domain as physiological experiments. In a computa-
tional study, synchronous neuronal activities weremodeled as
a periodic sequence of Gaussian peaks, and the phases were
directly defined relative to a reference time of underlying
oscillations [23]. In another computational study, stimulus
inputs were provided by sinusoidal signals, and the phases
were established relative to the sinusoidal signals [24]. How-
ever, the spike-LFP phase in our simulation was derived from
spike-triggered LFP spectrum through Fourier transformation
in frequency domain, which was much similar to physiolog-
ical experimental methods.

Accumulated evidences have suggested that a possible
functional role of oscillatory phase in sensory feature cod-
ing. The oscillation cycle, like the gamma cycle, is pro-
posed to serve as a temporal reference frame. The stimulus
attribute and neuronal functional architecture determine the
level of neuronal excitation, which in turn defines the time
and phase of a neuronal spike relative to the surrounding
cycle [21]. Therefore, the relationship quantifications for
oscillatory phase with neuronal excitation and input strength
are important for feature coding and sensory representation.
Besides, the interaction strength between neuronal groups
is also dependent on their relative phase [5], [16], [52].
In addition to phase coding, there is also firing rate cod-
ing [64]. It is generally utilized either exclusively without
phase coding [65], or concurrently with phase coding [66].
It is assumed that firing rate coding is responsible for discrete
properties of input stimuli, whereas phase coding is used for
tagging relationships for stimulus properties and neuronal
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firing rates, and faster at identifying sensory information than
rate coding [17], [64].

Thus far, the strength of neuronal synchronization is gen-
erally used as a quantification for determining flexible inter-
actions and communications among neuronal groups on the
grounds of the CTC hypothesis [7], [31]. A more coher-
ent or synchronous excitatory input is known to have a
competitive advantage over less coherent ones to entrain a
target network with inhibitory interneurons [62], and the
effectiveness of signal or information gating is dependent
on the degree of neuronal synchronization [23]. Subse-
quently, the relationships of phase synchronization with neu-
ronal excitation and input strength in our model are useful
to guarantee flexible and dynamic functional connectivity
among neuronal groups so as to implement cognitive func-
tions of neuronal communication, signal routing and selective
attention.

For further investigation, we should explore the compu-
tational mechanism of oscillatory phase and phase synchro-
nization at different frequencies [49], [57] and with different
synaptic transmission delays among remote neuronal
populations [19] according to a new CTC hypothesis [31].
Meanwhile, we should also investigate the computational
principle of phase-amplitude and phase-phase coupling
between faster and lower neuronal oscillations [3], [6], [17].
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