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Abstract: This paper investigates and outlines a cost-energy optimised pathway for the UK food
manufacturing industry to attain the national Greenhouse Gas (GHG) emission reduction target
of 80%, relative to 1990 levels, by 2050. The paper employs the linear programming platform
TIMES, and it models the current and future technology mix of the UK food manufacturing industry.
The model considers parameters such as capital costs, operating costs, efficiency and the lifetime
of technologies to determine the cheapest pathway to achieve the GHG emission constraints.
The model also enables future parametric analyses and can predict the influence of different economic,
trade and dietary preferences and the impact of technological investments and policies on emissions.
The study showed that for the food manufacturing industry to meet the emission reduction targets
by 2050 the use of natural gas as the dominant source of energy in the industry at present, will have
to be replaced by decarbonised grid electricity and biogas. This will require investments in Anaerobic
Digestion (AD), Combined Heat and Power (CHP) plants driven by biogas and heat pumps powered
by decarbonised electricity.

Keywords: UK food manufacturing; energy efficiency; emission reduction; combined heat and power

1. Introduction

1.1. Context

By 2050, the global population is predicted to reach 9.7 billion [1]. Driven by many factors,
including population growth, the global primary energy consumption has maintained a consistent
rise over the years (an average of 1.7% growth in the last 10 years, [2]). It therefore becomes
necessary to decarbonise energy systems and improve energy efficiency across all sectors of various
economies. The industrial sector (including the non-combusted use of fuels) currently consumes
about 50% of all global energy and feedstock fuels [3], which is projected to increase by an average of
1.2%/year, up until 2040. The quantity and type of fuels consumed in the industrial sector vary
across countries, depending on the quantity and quality of the output of the economy, and on
their technological development. Three distinct industry categories are identified: energy-intensive
manufacturing, non-energy-intensive manufacturing, and nonmanufacturing. The food and drink
industry is categorised as energy-intensive [4]. World over, the food sector is a major energy consumer
and emissions producer. In the US for instance, the sector accounted for about 15.7% of the national
energy consumption in 2007 [5], with some processing aspects such as cooking, cooling, and freezing
contributing an average share of 15–20% of the total US food system energy use [6]. In the EU,
the amount of energy necessary to cultivate, process, pack and distribute food accounted for 17%
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of the gross energy and 26% of the overall final energy consumption in 2013 [7]. Processing alone,
accounted for 28% of this energy. Even more significant proportions are reported in some developing
countries such as Brazil, China and India, each of which has massive food industries. In Brazil
for instance, the food industry is the largest energy consumer in the entire industrial sector [8].
The UK food and drink industry is one of the largest emitters of CO2 in the UK [9], it consumed as
much as 24.6 TWh of energy and emitted approximately 9.1 MtCO2e, or just over 1% of the total
UK CO2 emissions in 2014 [10] and is the fourth-highest industrial energy user in the country [11].
In view of the resolutions of the United Nations Framework on Climate Change, and the subsequent
Kyoto Protocol and Paris Agreement on emission reduction targets of the various countries of
the world, improving energy-efficiency and decarbonising food manufacturing operations become
critical. The UK is already working towards delivering these agreements through the UK Climate
Change Act which targets at least, an 80% reduction in greenhouse gas emissions by 2050, relative to
the 1990 levels [12,13]. The UK food and drink manufacturing sector has reduced its emissions from
energy use by 42% between 1990 and 2015 [10]. However, to meet the required overall targets in
the long-term, further reductions are required across the board, and in the food industry in particular.
The Climate Change Committee has assessed that an annual reduction rate of 3% is required to enable
the UK to meet the national target of 80% emission reduction by 2050 [14]. The analysis performed in
this paper will further reinforce the pathway for the food processing sector in view of what technologies
will aid the sector to successfully contribute to the national emission reduction.

1.2. UK Food Processing Industry

In its entirety, the UK Food industry is a complex and interactive chain involving different stages
as illustrated in Figure 1. It comprises of many actors within the chain, but is also reliant on third party
sectors such as the energy generation sector and the materials producing/ disposal sector.

Figure 1. Schematic of main stages in the food chain [15].

The UK food and drink processing industry is also quite diverse with many subsectors such as
dairy, brewery, distilling, sugar, confectionery, bakery, rendering, meat processing, fish and seafood,
poultry, malting, soft drinks, animal feed, oil and fat, glucose, canned food, ice cream, and pet food.
Each of these subsectors has very specific processing technologies, which can be aggregated.

The main processing operations applied all through the entire food and drink sector include
materials reception and treatment; size reduction, mixing and forming; separation techniques;
product processing techniques; heat processing; and post-processing operations. The biggest
sub-sectors are cereals, bakery, meat, dairy, seafood and “other groceries” [11]. The most widespread
technologies for the sector and their share in energy consumption can be divided as follows: Boilers:
54%; Direct heating: 27%; Motors: 12%; Refrigeration: 5%; and Compressed air: 2%. The sector mainly
consumes natural gas (about 67%), followed by electricity, and a small amount of oil and coal. The high
heat demand of several processes, together with the emissions from electricity consumption mainly
make up the food and drink manufacturing sector CO2 emissions [11]. From the aforementioned,
the majority of energy goes into heating activities (refer to natural gas, boiler & direct heating
data mentioned before). The concurrent decarbonisation of the UK electricity grid creates
opportunities to reduce emissions and non-renewable energy consumption by the electrification
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of heat. Pasteurisation and sterilisation activities could well be served by microwaves, ohmic heating
(for conductive foods), pulsed electric fields, high pressure processing (with high volume fill ratios),
and similar technologies, which in addition, impart superior nutritional and sensory attributes.
Microwave-combination techniques e.g., microwave-infrared and microwave-hot air impingement
techniques could be effective for baking operations. High coefficient of performance heat pumps could
be useful in utilising waste heat for drying activities, while microwave combination systems could
also be deployed. Membrane processes such as reverse osmosis and ultra-filtration could be promising
alternatives for conventional thermal evaporation. Traditional pinch technology and mathematical
programming-based heat recovery remain relevant in these systems. Improved automation would
be helpful in all cases to steer individual processes and systems within the narrow limits of optimal
operation. For motors and motor-operated systems the use of variable frequency drives is desirable.
Waste generated during processing operations could be valorised and/or converted to energy using
anaerobic digestion, fermentation, torrefaction and similar technologies. Combined heat and power
systems could also be developed.

Many of the technologies may apply to niche industries within the food processing sector,
whilst other technologies can have a broader impact on the sector as a whole. This study
aims at identifying the technologies as well as the source of energy used by the technologies to
lower energy consumption and CO2 emissions, as similarly performed by Griffin et al. [13] for
the pulp and paper sector in the UK. The technologies are aggregated based on their end-uses,
as opposed to being product-specific, mainly due to any unavailability of data to perform such
product-specific investigations.

1.3. Analytical Approaches Used in the Literature

Mistry and Smith [16] researched, on behalf of the UK Department of Environment,
Food and Rural Affairs (DEFRA), the techno-economics of CHP plants in the UK using livestock
and other wastes as feedstock. Their model employed the internal rate of return (IRR) as a gauge
of the efficiency of the investment. The model used a simple capital-cost relationship based on
limited available data and different subsidy rate scenarios, to conclude that currently only 3.5% of UK
dairy livestock would benefit from using on-farm integrated Anaerobic Digester (AD) and Combined
Heat-Power (CHP) system, where the biogas generated from the AD is fed to the CHP on site.
Similarly, Dolan et al. [17] employed an IRR approach to quantify the techno-economic feasibility
of CHP plants in the UK using source isolated organic wastes, whereby the conclusion was that
under the government’s energy incentives, selling excess heat and electricity from CHP plants would
double the IRR. Zglobisz et al. [18] used the IRR method to examine the impact of UK policies on
the deployment of AD plants using food wastes as the feedstock. The major drawback of using IRR is
that it considers the investment related to the technology as a stand-alone investment, which is not
the case when analysing the energy performance of different economic sectors.

Other modelling approaches include the use of Life Cycle Analysis (LCA) and Life Cycle Cost (LCC),
with examples such as Mohamad et al. [19], Brandao et al. [20], Schmidt Rivera et al. [21],
Willersinn et al. [22], amongst others. The main benefit of the LCA and LCC modelling approaches
is that they study the particular sector or product in a very detailed manner, but at the expense of extensive
time consumption and the possibility of conducting parametric analyses at such detailed level. Furthermore,
the lack of standardisation in LCA and LCC analyses prevents or complicates comparison studies [23].

Other studies have employed the Input-Output modelling approach. Canning et al. [5]
employed the input-output analysis of the National US food system to trace the energy flow of
roughly 400 industries, using data obtained from two federal sources. Zhang et al. [24] employed
multi-regional input-output model to track the embodied energy for various sectors in China in
2007. Bekhet and Abdullah [25] studied the agricultural energy chain in Malaysia, in an attempt
to reduce food imports, minimise energy consumption and increase the yield of the agricultural
industry. The observations from these previous studies, and from others [26] have shown that
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input-output models provide an aggregate overview of the energy flow of the sectors in question,
allowing the user to analyse inter-industry relationships, with data usually obtained from the same
sources (improving data consistency) and providing weights of the individual inputs to the final
results allowing the user to determine the most consequential input. However, the main drawbacks
are that input-output models tend to stop at demand along the chain, and generally ignore wastes.
The aggregation of data at high level obtained from input-output tables prevents the determination of
process-specific energy hotspots along the chain, and the low frequency of national input-output tables
from the government statistics office further introduces uncertainty into the models [26]. The latter
drawback increases the difficulty in the creation of trends and model validation.

In summary, therefore, previous studies have focused mainly on using IRR, LCA,
LCC and Input-Output models to determine the economic viability of food systems, considering
the system as a stand-alone investment or aggregated system. However, the food industry is
a complex system, and many factors such as the technologies, food demand, food diet, energy
costs, food wastes and food trade, all interact with each other to create the food system. Therefore,
in order to adequately study the system, a comprehensive model encompassing these various factors
should be employed. This study employs the linear programming technique to analyse the energy
performance of technologies used in the food manufacturing sector. Linear programming techniques
have been widely used in modelling food, bioenergy and farming management decisions such as:
Jones and Salter [27]; Kassier [28]; Ballarin et al. [29]; Jablonski et al. [30], where the objective
function—total costs or net profit margins—can either be minimised or maximised, respectively,
subject to technical, economic, environmental and resource constraints. The IEA-ETSAP TIMES
(The Integrated MARKAL-EFOM System) model generator is used here to link the technologies,
energy and cost parameters of the food processing sector in a partial equilibrium model, and together
with a technology-rich foundation, this allows the quantification of energy mix over a multi-period
time horizon [31]. TIMES uses a linear optimisation objective function which determines the least-cost
pathway by minimising the total discounted system costs (or maximising the total discounted consumer
and producer surplus) in order to satisfy the sector’s exogenous energy demands, subject to technical,
economic, environmental and resource constraints. Adopting a partial equilibrium solution strategy,
the TIMES model assumes a perfect foresight as decisions are made with full knowledge of future
policy, technical, economic developments and available resources [32]. A full description of the sets,
attributes, variables, and equations of the TIMES model is available in Reference [32].

The simultaneous consideration of the various technologies in this TIMES model allows
the determination of the real performance of the emission reduction constraints, as it accounts
for the price competitiveness and the net present value (NPV) of all technologies simultaneously.
This is preferred as opposed to using more isolationist methods of discounted cash flow, such as
the ordinary Internal Rate of Return (IRR) method, which considers the capital and operating
(including electricity/ fuel) costs of different technologies on their own, and later allowing
the comparison of these technologies based on their IRR. The TIMES model provides a solution
with the absolute monetary and energy quantities (i.e., NPV) of technologies, as opposed to ratios
(such as the IRR), which is particularly crucial in cases where project/technology/sector sizes vary.

As mentioned in Section 1.2 and as alluded to in this section, the UK food processing industry
is a highly interactive sector with both the sectors in the food chain, as well as third party sectors,
particularly with the UK energy sector. In this regards, the model to be used should be able to capture
this interactivity and adapt the overall model with regards to the different demands of the food sector.

2. Methodology

2.1. Modelling Approach

The UKTM (UK TIMES MODEL) is used in this paper. UKTM is a National UK energy model
which comprises of various sectors, including power generation, transport, processing, residential,
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service and agricultural sectors. The TIMES model is a least-cost optimisation model based on life
cycle costs of different technologies. It is a partial equilibrium demand-driven model assuming
perfect foresight and information, and fully competitive markets, representing the entire UK energy
system [33]. A more detailed explanation can be found in Reference [34].

UKTM has been used in various energy systems analyses by the UK’s Department for Business,
Energy and Industrial Strategy and the Committee for Climate Change [33]. Furthermore, UKTM has
been used for various research outputs, including Daly et al. [35] who looked at the non-domestic
upstream GHG emissions of the UK; Fais et al. [36] who studied the role of the overall UK industrial
sector; Fais et al. [37] who studied the impact of technology uncertainty on future low carbon pathways;
and Nerini et al. [33] who investigated the influence of myopic decision making on the model.

The UKTM in its original form studies the energy usage of its sectors at relatively high levels,
which does not provide improvements to specific industries within each sector. Hence in this
study, the processing sector of UKTM was further disaggregated, as shown in Figure 2, to include
the food processing sector in Table 1, as well as all the technologies found in Table 2. Figure 2
shows that the Energy inputs obtained from the original UKTM are fed to the technologies used in
the modified food processing sector, based on the food demand constrained to the model. The model
also accounts for the use of Anaerobic Digesters and Combined-Heat Power (CHP) systems to generate
onsite electricity and heat. Any excess electricity or biogas is assumed to be released to the grid,
although priority is given to onsite usage.

Figure 2. Schematic of UKTM Modified Food Processing Industry.

The simulations were divided into a ‘Business As Usual’ (BAU) case where there are no GHG
emission constraints, and the ‘Low Greenhouse’ case (LGH) where the 80% GHG emission reduction
target is constrained into the model. The simulation horizon is defined from 2010–2050, where 2010
is the base year. One of the crucial aspects for using this model is that it enables the performance of
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the sector to be analysed with the interaction of other industries, particularly the power generation
industry, which is crucial in determining the embedded emissions in the energy used.

2.2. Model Disaggregation

2.2.1. Industry Disaggregation

The food manufacturing industry was disaggregated with respect to the Standard Industry Classification
(SIC) codes employed by the UK Office of National Statistics (ONS). This was done in order to facilitate
the corroboration of data used in the study and national statistics from the ONS. The SIC classification is as
per Table 1. The main source of data for the UK is the Office of National Statistics (ONS), which publishes
environmental accounts data (which include energy use and GHG emissions) and the annual business
inquiry (ABI) data for specific industries.

Table 1. SIC2007 breakdown of food manufacturing industry [38].

SIC2007
Reference Class Name Description Energy Consumed

(2015)—MToe
kT of

CO2e—2015

SIC 10.1
Processing and preserving
of meat and production of
meat products

- Processing/preserving meat
and poultry meat
- Production of meat
and poultry meat products

0.72 1135

SIC 10.2–3

Processing and preserving
of fish, crustaceans,
molluscs, fruit
and vegetables

- Processing and preserving of fish,
crustaceans, molluscs, fruit and vegetables
- Processing and preserving of potatoes
- Manufacture of fruit and vegetable juice
- Other processing and preserving of fruit
and vegetables

0.51 998

SIC 10.4 Manufacture of vegetable
and animal oils and fats

- Manufacture of oils and fats
- Manufacture of margarine and similar
edible fats

0.04 81

SIC 10.5 Manufacture of
dairy products

- Operation of dairies and cheese making
- Liquid milk and cream production
- Butter and cheese production
- Manufacture of milk products (other
than liquid milk and cream, butter, cheese)
- Manufacture of ice cream

0.48 859

SIC 10.6
Manufacture of grain mill
products, starches
and starch products

- Grain milling
- Manufacture of breakfast cereals
and cereals-based foods
- Manufacture of starches and
starch products

0.38 642

SIC 10.7 Manufacture of bakery
and farinaceous products

- Manufacture of bread, fresh
pastries/cakes, rusks and biscuits,
preserved pastries/cakes, pastas, couscous,
and similar farinaceous products

0.69 1209

SIC 10.8 Manufacture of other
food products

- Manufacture of sugar, cocoa, chocolate,
sugar confectionery, condiments,
seasonings, prepared meals, homogenised
food preparations
- Processing of tea and coffee

0.72 1506

SIC 11.01-06 Manufacture of
alcoholic beverages

- Distilling, rectifying and blending
of spirits
- Manufacture of wine, cider, non-distilled
fermented beverages, beer and malt.

0.72 1316

SIC 11.07 Manufacture of soft drinks
- Manufacture of soft drinks
- Production of mineral waters and other
bottled waters

0.17 182

A survey of the UK food manufacturing industry by the Food and Drink Federation (FDF) reveals
the energy consumption distribution to be as shown in Figure 3. We observe that heat generation from
gas boilers represents a significant proportion (56%) of the energy used in the industry, followed by
direct gas heating (22%), natural gas Combined Heat and Power CHP (14%), grid electricity (7%)
and biomass direct heating (1%). These data have been integrated into the model to represent the base
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year technologies, and enable the model to build on this database to predict future technology mix in
the industry, based on the linear optimisation model described in Section 2.1.

Figure 3. Energy consumption (2010–2015) ratio in the UK food manufacturing industry [39].

2.2.2. Technology Disaggregation

The UKTM power generation sector consists of electricity generated from fossil fuels
(coal, natural gas and oil), renewable energy sources (wind, solar, hydro, biogas and biomass)
and nuclear energy. These resources are fed into various types of technologies including combustion,
gas turbines, onshore/ offshore wind turbines and small/large scale PV plants. UKTM consists
of a large database of technologies which includes the efficiencies, capital costs, operating costs
and lifetimes of these technologies. The database has been developed in collaboration with
the UK Department for Business, Energy and Industrial Strategy (BEIS) [40], to enable an accurate
representation of the energy generation sector of the UK. Refer to the schematic in Figure 2 for
more information.

The UK food manufacturing module, developed in this study and incorporated in UKTM,
consists of a variety of technologies associated with different food types and SIC Classifications,
as shown in Table 2. The technologies include both current and novel technologies with potential
application in the future.
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Table 2. List of Food Manufacturing technologies investigated.

Technologies Attributes
Fuel Source

Coal Fuel
Oil

Gas
Oil

Natural
Gas

Burning
Oil LPG Electricity Biomass

Boilers
Efficiency 78.8% 85.9% 78.8% 80.0% 78.8% 78.8% 95.0% 80.0%
CAPEX 737 123 134 104 134 134 187.2 737
OPEX 18 6 7 3.5 7 7 6.3 18

Direct-fired Ovens
Efficiency 31.5% 34.4% 31.5% 32.0% 31.5% 31.5% 41.2% 31.5%
CAPEX 2858 627 684 510 683 683 3060 2858
OPEX 70 31 34 17 34 34 30.6 70

Indirect-fired
Ovens

Efficiency 14.8% 16.1% 14.8% 15.0% 14.8% 14.8% - 15.0%
CAPEX 1340 294 321 239 320 320 - 1361
OPEX 149 66 73 36 73 73 - 147

CHP

Overall Efficiency 67% 73% 67% 68% 67% - - 67%
Heat Power Ratio

(CHPR) 2.9 2.6 2.5 1.6 2.5 - - 2.9

CAPEX 1700 404 382 5035 382 - - 1700
OPEX 15 4 3 46 3 - - 15

Conventional Air
Drying

Efficiency 69% 75% 69% 70% 69% 69% 57% 69%
CAPEX 893 160 166 140 166 167 248 134
OPEX 22 8 8 4 8 8 1.2 21

Motor-Drives
Application

Efficiency - - - - - - 93% -
CAPEX - - - - - - 56 -
OPEX - - - - - - 3 -

Pumps
Efficiency - - - - - - 79% -
CAPEX - - - - - - 220 -
OPEX - - - - - - 12 -

Compressed Air
Efficiency - - - - - - 79% -
CAPEX - - - - - - 590 -
OPEX - - - - - - 30 -

Walk-in Chilling
Efficiency - - - - - - 345% (COP) -
CAPEX - - - - - - 59 -
OPEX - - - - - - 3 -

Walk-in Freezing
Efficiency - - - - - - 172% (COP) -
CAPEX - - - - - - 95 -
OPEX - - - - - - 10 -

Homogenisation/
Centrifugal
Separation

Efficiency - - - - - - 81% -
CAPEX - - - - - - 278 -
OPEX - - - - - - 13.84 -

Fans
Efficiency - - - - - - 79% -
CAPEX - - - - - - 270 -
OPEX - - - - - - 15 -

Anaerobic Digester
(AD)

Efficiency-Energy - - - - - - -
60% (biogas

generated/energy
content of feedstock)

CAPEX - - - - - - - 17.13
OPEX - - - - - - - 1.2

Lighting-Metal
Halide

Efficiency (Lm/W) - - - - - - 95 -
CAPEX - - - - - - 13 -
OPEX - - - - - - 0.64 -

Lighting-Sodium
Efficiency (Lm/W) - - - - - - 105 -

CAPEX - - - - - - 11 -
OPEX - - - - - - 0.54 -

Lighting-Fluorescent
Efficiency (Lm/W) - - - - - - 100 -

CAPEX - - - - - - 87 -
OPEX - - - - - - 4 -

Lighting-LED
Efficiency (Lm/W) - - - - - - 125 -

CAPEX - - - - - - 65 -
OPEX - - - - - - 0.64 -

Freezing-Batch Air
Efficiency - - - - - - 154% (COP) -
CAPEX - - - - - - 144 -
OPEX - - - - - - 38 -

Freezing-Continuous
Efficiency - - - - - - 122% (COP) -
CAPEX - - - - - - 225 -
OPEX - - - - - - 59 -
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Table 2. Cont.

Freezing-
Vertical Plates

Efficiency - - - - - - 167% (COP) -
CAPEX - - - - - - 104 -
OPEX - - - - - - 10 -

Heat Pumps
(Air-Source)

Efficiency - - - - - - 220% -
CAPEX - - - - - - 113 -
OPEX - - - - - - 12 -

Heat Pumps
(Ground Source)

Efficiency - - - - - - 250% (COP) -
CAPEX - - - - - - 141.25 -
OPEX - - - - - - 15 -

Heat Pumps
(Water Source)

Efficiency - - - - - - 500% (COP) -
CAPEX - - - - - - 282.5 -
OPEX - - - - - - 30 -

Note: 1. CAPEX are given in £m/GW_output, or £m/GWe_output for CHP systems, and OPEX are given in
£m/PJ_output, or £m/PJe_output. 2. The refrigerant leakage rate from refrigeration equipments was assumed to be
10% annually, as per industry average. 3. The efficiencies of heat pumps are obtained from studies and surveys
conducted by the Carbon Trust [41]. 4. Drying efficiencies refers to the PJ of moisture removed per PJ of energy
input, and was obtained by multiplying the efficiency of the boilers with the fan for Conventional air drying.

The list of technologies detailed in Table 2 comprise the main technologies used as inputs to
the Food Manufacturing model. The list is a working database, whereby, as information is obtained on
new technologies, they can be added to ensure an updated list of technologies in the model. The model
then employs these technologies to determine the cheapest combination of technologies which can
satisfy the demand and emission reduction targets. The technology discount rate was set at the UK
technology average rate of 3% [42], and the degression rate at 5% as per the UK Historical average.

Table 3. Amount of Waste generated by the sector and respective biogas production.

Mt of Wastes (Food, Effluents,
Sludge) per Mt of Food Demand Biogas PJ/Mt of Waste

2010 2015 >2025

Meat sector 0.381 0.349 0.319 14.20
Fish, Fruits and Vegs 0.157 0.123 0.096 4.12

Grains and starch products 1.00 0.976 0.952 5
Animal and vegetable oil Products 0.4 0.383 0.369 14.20

Bakery products 0.4 0.323 0.261 7.391
Dairy products 0.4 0.384 0.370 14.20

Other food items 0.5 0.365 0.267 7.391
Alcoholic drinks 0.017 0.0169 0.016 0.00112

Soft drinks and water 0.050 0.0472 0.0443 6.124 × 10−5

Animal feed 0.381 0.3653 0.352 7.391
Tobacco 0.029 0.0279 0.0269 7.391

Note: referring to Table 3, the energy content of the biogas is based on the average calorific content of representative
products in the sector. For the cases of bakery, other food, animal feed and tobacco, the values PJ/Mt of waste
have been assumed similar to the average of the other food items. The effects of reduction in food wastes in food
manufacturing have been accounted for with respect to the Courtauld commitment trends as set out by WRAP [43].

In UKTM, if a technology capacity investment rate is unconstrained, the model can decide to
invest any capacity of the technology at any time period. This does not necessarily represent reality
as technology investment depends on the availability, the perception of the benefits associated with
the technology and the anticipated investment rate of a technology. Hence, in order to make the model
more accurately represent reality in new technology adoption in specific industries, annual capacity
growth constraints have been applied to limit the rate of adoption of technologies. This specifically
refers to the rate of growth of a technology’s capacity (Mt in the case of AD) in year ‘y’, with respect to
the previous year ‘y − 1’, i.e., Capy = Capy−1 × growth-rate.

For instance, the average growth rate of AD in food industries was estimated from the surveys
and workshop conducted by Parson Brinckerhoff, DECC and BIS as part of the 2050 Industrial
roadmaps (GOV.UK roadmaps, 2017). This report does not explicitly refer to AD but to bioenergy,
and due to lack of information, the bioenergy data was also employed for AD. The maximum
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applicability rate of bioenergy is 50% of all food industry. However, only a maximum of 33% of
applicable industries has surveyed to be prone to adopt bioenergy. Hence, the share of industries
prone to AD is 16.5%, producing a growth rate of 1 + (16.5/36) = 1.005 (where 36 is the number of
years simulated by the group of consultants). The growth rate is used in UKTM to limit the adoption
of AD in the chain, to represent real-world penetration of a technology. It should be noted that
this study explicitly models scenarios which are not influenced by external government incentives.
The results obtained are thus obtained by natural market and technological forces influencing
the overall discounted costs of the linear UKTM model employed in this paper.

2.2.3. Demand Disaggregation

The demand for the food manufacturing sector was also divided according to the SIC
classifications used throughout this study. Demand is assumed to increase with the expected growth
rate of the UK population, based on ONS estimates as shown in Figure 4 [44].

Figure 4. Population growth index [44].

The analysis assumed that the food mix and dietary preferences of the population remain similar
to that of the base year through the simulation horizon. This assumption may not remain entirely
valid for the modelling horizon but provides a starting point in investigating and understanding
the factors that influence the choice of technologies in the UK food manufacturing sector and their
potential impact. However, any shift from processed to no or minimally processed foods in the future
will have an impact, and this will be considered through scenario analysis studies that will be carried
out and reported later in the project.

Another assumption made in the study is that food Import/Export ratios will remain the same
over the simulation horizon as those of the base year. Again, international market forces and policies
that may be adopted by the UK government as a result of Brexit will have an impact on this.
The influence of any changes in the import/export ratios on the impact of technologies that may
be adopted in the future will be considered in future work in this project.

3. Simulation Results and Analysis

3.1. Overview of Simulation Results

Figure 5 shows the variation of the energy consumption and emissions of the food manufacturing
sector in 2050 based on the Business As Usual (BAU) scenario where the projections do not include
any constraints on GHG emissions, but rather, the food industry uses the lower-cost technologies
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and energy vectors for food production to satisfy demand. The shaded areas represent the energy
consumption in PJ, whilst the dotted line represents the reduction in GHG emissions, relative to
1990 levels. It should be noted that the CO2e emissions rate at the start of the modelling period in 2010
is 60% that of 1990, based on estimates of reductions achieved by the industry between 1990 and 2010,
provided by the Food and Drink Federation [45]. It can be seen from Figure 5 that in the BAU scenario,
reduction in CO2 emissions will reach 28% of 1990 levels, a reduction of 32% over the simulation
period. This demonstrates that even without the imposition of GHG emission constraints on the food
industry, it will be economically more beneficial for the industry to migrate from fossil to low carbon
fuel and technologies. It can be observed from Figure 5 that this migration will take place through
the replacement of LPG, LFO, Kerosene, HFO, Coal and Natural gas by biogas and biomass. Biogas is
then primarily used to produce electricity through CHP technologies as shown in Section 3.3. In this
case, the benefits arise from the use of biogas and biomass which are produced from wastes, as shown
in Table 3, generated in the food factories, as opposed to having to purchase energy feedstock from
the market.

Figure 5. Energy consumption and emissions for the Business As Usual (BAU) scenario Consumption.

Figure 6 shows the predicted variation of energy consumption and emissions for the period to 2050
for the 80% GHG reduction target, relative to 1990 levels. It can be observed that the overall reduction
in energy consumption will be similar to the BAU case, partly because the energy requirements of
the food industry are the same for both the BAU and 80%-GHG cases (due to same food demand),
and also because the BAU case already achieves a least overall cost (capital and operation costs)
solution from sourcing energy and adopting efficient technologies, mainly through the adoption of
AD technology. The reduction in GHG emissions in 2050 relative to 2010 will, however, be higher than
the BAU case, at 49%, compared to the 32%. This reduction shows that although the UK reduction is
mandated at 80%, relative to 1990 levels, the food industry has the potential to exceed this reduction to
a value of 89%, mainly because of the emissions associated with the consumption of grid electricity is
reduced (see Figure 7) and the availability of onsite feedstocks to generate biogas. Also (to a lesser
extent), the improvement relative to the BAU case lies in the elimination of coal and biomass feedstock
(with their respective combustion-related emissions) and replacement with mainly biogas, and grid
electricity. (Note that the feedstock considered for AD in UKTM includes all organic wastes such as
food, sludge, and effluents, and excludes the feedstock that goes to animal feed. The next sections
therefore focus on the impact of electrifying the food manufacturing industry, and the use of Biogas
generated from wastes from the UK food manufacturing sector.
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Figure 6. Energy consumption and emissions for the 80% GHG reduction scenario. (Note that legends
and colours in Figures 5 and 6 are aligned in sequential order for ease of interpretation).

Figure 7. Changes in emission factors from Grid Electricity.

3.2. Impact of Electrifying the Food Manufacturing Sector

The main difference between the BAU and the LGH cases arises from the fact that the emissions
associated with grid electricity are lower in the LGH scenario, as obtained from UKTM. In the UK,
power generation produces the highest amount of emissions (36% of all emissions) [11] and also has
a high potential of emissions reduction due to the current dominance of fossil fuels. In this regard,
the UKTM model has shown that with the imposition of the 80% GHG reductions, associated carbon
emission factors with power generation and grid electricity will also change as shown in Figure 7.
This results from a drastic change in the fuel sources used to generate electricity, i.e., a drastic shift
from fossil fuel to renewable and nuclear sources of energy, as shown in Figure 8.
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Figure 8. (a) Fuel source for generating electricity in the BAU case; (b) fuel source for generating
electricity in the LGH case. (Note that legends and colours in Figure 8 are aligned in sequential order
for ease of interpretation).
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3.3. Impact of Using Biogas Generated from Waste

The use of organic wastes (food, sludge, effluents) in the food industry is observed to contribute
significantly to energy production. These refer to wastes that exclude the current ratio and are re-used,
such as in animal feedstocks.

Of all organic wastes produced in the industry, 92% of all waste feedstocks go to AD and are
consumed through CHPs, whilst the remaining 8% are dried and processed to be burned in biomass
boilers. The trend in the use of Biogas is shown in Figure 9. However, towards the end of
the simulation horizon, biogas produced is solely used for the purpose of CHP. We note that the other
technologies primarily produce heat as the secondary energy, and hence are valid only for heat
requiring processes. The fact that the CHP technology can produce both heat and electricity makes it
a very versatile technology, and by using biogas makes it an even more overall energy-to-cost-efficient
technology. In this regards, CHP technology is the preferred method to employ biogas in the model as
the simulation progresses. The performance of CHPs is further explained in Section 3.4.

Figure 9. End-Use of biogas generated from anaerobic digesters in the LGH case. (Note that legends
and colours in Figure 9 are aligned in sequential order for ease of interpretation).

3.4. Electricity and Heat use in the LGH Case

Figure 10 show the progression of the end-uses of electricity and fuel by the food manufacturing
industry. Note that heat refers to the use of fuel to generate heat directly (such as gas boilers), or through
the use of auxiliary heat (such as in CHPs), as opposed to heating applications performed through
the use of electricity (such as electric ovens or electric boilers).
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Figure 10. (a) Electricity end-uses in the LGH case; (b) fuel end-uses in the LGH case. (Note that
legends and colours in Figure 10 are aligned in sequential order for ease of interpretation).

We observe from Figure 10 that the use of electricity increases, whilst heat reduces over
the simulation horizon for the LGH case, even though food demand is increasing. This is mainly
due to the industry adopting more efficient technologies such as CHPs and air-source heat pumps,
which have considerably shifted the use of traditional heat (i.e. primary burning of fuel to produce
heat), to secondary sources of heat through the use of electricity to produce heat. This has resulted in an
apparent shift of energy end-use from heat to electricity as shown in Figure 10. These observations are
in accordance with conclusions drawn by the Climate Change Committee and BEIS [40], which suggests
that 2050 heat will be largely by air-source heat pumps for the majority of the building stock, and this
study further shows that on the industrial level, CHPs will also be prominent.
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Figure 11 shows the total energy generated from the use of CHP (particularly gas turbine CHPs
which produce high temperature waste heat, as opposed to internal combustion engine, for instance)
which consumes biogas to produce heat and electricity.

Figure 11. Energy generated from CHP through the use of natural gas and biogas.

Figure 11 shows a significant increase in the generation of heat and electricity from CHP
technologies in the industry. The source of fuel is both natural gas and biogas until 2030, and thereafter,
only biogas is used in CHPs as shown in Figure 4. The dip in energy produced between 2020 and 2030
is due to the base year capacity of CHP gradually reducing over its lifetime of 25 years from the base
year, and the model gradually having to install new CHP capacity until 2035, where all the base
CHPs have to be replaced. The simulation results have shown that in a UK economy constrained by
the 80% reduction in GHG emissions, the food manufacturing sector will become heavily dependent
on Gas Turbine CHPs, fuelled by biogas, and electricity from a decarbonised grid.

4. Conclusions

This study investigated the energy and technology mix of the food processing industry in the UK
in order to provide a benchmark where policy makers, industry leaders and factory operators can
base decisions to invest in order to enable the sector to comply with the 80% emissions reduction by
2050, relative to the 1990 levels. The results show that the industry will have to change drastically
to using approximately 30% decarbonised grid electricity and 70% biogas, as opposed to the current
ratio of 92% natural gas and 7% grid electricity. This is particularly due to the fact that the majority of
UK emissions come from power generated from fossil fuels, and in that respect the power generation
sector will have to be decarbonised. The model predicts a reduction in carbon factors of grid electricity,
which will in turn translate to a lower embedded carbon emissions in the food processing industry
using grid electricity.

The results also show that the use of fossil fuels and natural gas will be completely reduced
towards 2050 for both the base and LGH cases, and partly replaced by grid electricity, and heat
and electricity generated on-site from CHP using biogas from AD with organic waste as feedstock.
Of all wastes produced, 92% of wastes will go to AD and be consumed through CHPs, whilst
the remaining 8% is dried and processed to be burned in biomass boilers. All biogas generated
from AD will tend to go to CHPs towards 2050 to generate both heat and electricity. This model has
shown that in a low greenhouse gas UK economy, the food processing sector will become heavily
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dependent on Gas Turbine CHPs, fuelled by biogas, and electricity from a decarbonised grid. This will
involve particular investments into anaerobic digesters, CHPs, heat pumps and general electrification
of the industry. The model has calculated a total discounted investment cost of £4.1tn for the BAU
case and £4.6tn for the LGH case over the entire simulation horizon. The results from this paper
are in line with the observations made from focus group and modelling works carried out by BEIS
(then DECC) [11]) which showed that grid decarbonisation, electrification of heat and biomass/biogas
used in CHPs should become the prominent technologies to enable the UK food Manufacturing
industry to meet its emission targets.

It should be noted, however, that the UK is currently in a turbulent economic situation with Brexit,
and this adds another degree of complexity in modelling the economy. However, the purpose of this
research is to develop a model allowing parametric simulations and analyses to develop trends under
different economic, trade and dietary situations, and hence develop a basis for relevant policy makers
to make decisions.
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