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Abstract 

The inexorable increase in penetration of clean energies and responsive loads in the Distribution 

Network (DN), introduces new technical challenges for network operators. The responsibilities of 

Distribution Network Operators (DNOs) are being adjusted to cope with current system challenges 

and they are transitioning to Distribution System Operators (DSOs), taking a more active role in 

dynamically managing power flows across the network. Further, the advancement in distribution 

automation technologies provides greater opportunities for energy consumers to take more 

effective participation in demand reduction schemes and DSOs can be enablers of Demand 

Response (DR). Hence, the functionality of DR can be considered an alternative, lower cost, 

carbon-saving and flexible solution to defer network reinforcement. This forms the rationale 

behind this thesis, which aims to provide an in-depth investigation of the potential responsiveness 

in residential demand and its effect on constraint management of the DN.  

The main contribution of this thesis is the design, development and implementation of a Multi 

Agent System (MAS) framework for active DN management through residential DR. One 

advantage of the proposed platform is the capability of integrating both centralised and 

decentralised DR control mechanisms. It employs the responsiveness of demand from both loads 

shifting and shedding through price-based and incentive-based DR respectively. The feasibility 

and effectiveness of such a platform has been evaluated by developing and implementing the DR 

mechanism in three levels. The DR algorithm for several static and dynamic electricity tariffs, 

(Time of Use (ToU), Day-Ahead (DA) and Real Time Pricing (RTP)), is designed and developed 

in Low Voltage (LV) feeders. This is then expanded and implemented in a Medium Voltage (MV) 

feeder under an RTP environment. Finally, two incentive-based DR schemes: emergency and local 

community DR, are merged in the MV/LV network to improve its reliability and security. 

The implementation of the MAS framework demonstrated its configurability and scalability 

through three case studies under different scenarios. One novel aspect of this research is the 

consideration of customers’ characteristics in the design of the DR algorithms. In addition, at MV 

level, the tariffs and the required DR are allocated to each LV feeder specifically taking into 

account their DR potential and participation effects on the overall network performance. The 

simulation results at LV level show that maximum peak demand reduction and the most flattened 

load profile are achieved with RTP. At MV/LV network, MAS provides a community 

environment where the consumers can collaborate to decrease their overall demand. Moreover, the 

local community can reduce their dependency on the grid during daytime with PV generation. It is 

concluded that DR trading can benefit all players economically and also lessen DN violations from 

stipulated limits.  
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Chapter 1 Introduction 
 

1.1 Motivation 

The electrical power network of Great Britain (GB) is being pushed to its capacity limit due 

to a significant increase in distributed renewable energy sources and increasing demand. 

Since the control and management of conventional power systems mostly rely on increasing 

generation and network capacity in line with demand, expansion of network infrastructures is 

vital to maintaining security of supply in the future. This expansion is a time-consuming 

process and would require costly investments. Demand Response (DR) is an alternative 

solution for reducing overall costs, improving network capability and flexibility, as well as 

delaying future network investments. In the GB transmission network, DR is an established 

tool in controlling and supporting the network under stress condition. However, its 

implementation in the Distribution Networks (DNs) of GB has been very limited so far. The 

future role of DR in electricity DN is getting more significant due to the ever increasing 

importance of consumer engagement in peak reduction, flexible demand sources and 

advanced distribution automation technologies. Moreover, the emerging capabilities of recent 

sophisticated programmes provide the achievability of more intelligent, efficient and flexible 

DR. This is reflected in the transformation of DR’s role from typically shaving peak demands 

to becoming an increasingly valuable tool to manage the modern electricity network. Hence, 

the motivation behind this research is the knowledge gap in DR effectiveness at distribution 

level and the current limited understanding of how residential flexible loads can be employed 

to improve distribution systems’ reliability and efficiency.  

1.1.1 Environmental Concerns  

According to the World Energy Council, the definition of sustainability of energy is based on 

three core dimensions: energy security, energy equity and environmental sustainability [1]. 

The effect of environmental issues such as climate change can have a direct influence on 

these aspects of energy sustainability. Consequently, the need to decarbonise electricity 

generation is a key player in environmental sustainability. Through the Climate Change Act 

2008 [2], GB took the lead in the environmental policies and in setting legally binding 

‘carbon budgets’ in the world. Under the proposed legislation, the emission of carbon dioxide 

should be cut by 80% of the 1990 baseline by 2050, with an interim target of at least 27% by 
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2020 [3]. Accordingly, the Committee on Climate Change recommended that the carbon 

intensity of power generation should be reduced by 90% by 2030 [4]. The total electricity 

generation in 2016 was 337.7 TWh with 42% from fossil fuels, 4% from nuclear and 19% 

from Renewable Energy (RE) sources [5]. Based on this decarbonisation action plan, by 2020 

the renewable sources should provide 15% of energy demand [6]. Besides, increasing the 

penetration of REs, improves the security and reliability of GB’s future energy supply by 

decreasing the dependency level of energy from fossil fuel. 

Along with deploying clean energy technologies, there is a great requirement for improving 

the energy usage efficiency. This refers to the goal to use less energy to provide the same 

service. Thus, the energy bills can be reduced and the carbon reduction objectives can be met.  

In April 2013, the Department of Energy and Climate Change (DECC) set GB’s ambitious 

Energy Efficiency policy target to 18% reduction in final energy consumption relative to the 

2007 business-as-usual projection [7]. In this respect, the energy demand reduction by 2020 

for residential sectors is estimated to be approximately 6%. On the other hand, the need for 

electricity is increasing due to the introduction of new loads into the network, e.g., plug-in 

Electrical Vehicles (EVs) [8], increased use of electronic devices, etc. A 28% growth in the 

total annual residential electricity  demand is anticipated in 2050 compare to 2017 [9]. 

1.1.2 Challenges in the Distribution Network 

In GB, fourteen Distribution Network Operators (DNOs) are in charge of distributing 

electricity from the transmission network owned by National Grid (NG) to their licenced 

areas [10]. Their main responsibility is to develop and maintain the distribution network 

efficiently and economically. This is done by monitoring and determining the network 

operational status of the distribution of electricity on a real time basis and upgrading the 

infrastructure based on planning. The safety and reliability of the electricity that is provided 

to customers is assessed by the government regulator for Electricity and Natural Gas Markets, 

Ofgem [11]. DNOs do not generate or sell energy; this is addressed by energy suppliers who 

purchase the electricity from the electricity producers, e.g., power stations [12]. 

The classical control techniques of DN focus more on average load and demand management 

[13, 14]. In the contemporary GB power network, monitoring the network operational status 

is performed centrally using Supervisory Control and Data Acquisition (SCADA) system. 

However the control of the network is undertaken at transmission level. The resilience of DN 
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is satisfied by redundancy of infrastructure equipped with a level of over-capacity. When 

performing routine maintenance, upgrading network infrastructure or repairing failed 

components, this allows various parts of the network to be shut down without compromising 

supply to consumers [15]. This type of network management is due to the conventional 

unidirectional power flow and predominantly passive characteristic of the power network. 

However, since the increase in RE and Distributed Generation (DG) can reverse the power 

flow, this becomes a bi-directional flow. Moreover, due to the uncertainty and intermittency 

of these sources, technical issues within the DN, e.g., increasing voltage profile levels, 

transient voltage variations and harmonic distortions [16] are probable. Therefore, this creates 

a need to upgrade traditional DNs towards more intelligent platforms for controlling and 

coordinating these clean energy sources.  

DR can be an alternative solution which also provides a great source of power flexibility in 

the network. The alignment between generation from RE and the demand can be notably 

increased [17]. For instance, DR enables the shifting of demand to times of relatively high 

REs generation and low load. At household level, increasing the number of installed DGs 

enables DR to evolve further and maintain the demand-supply balance in a real-time 

environment [18]. In this way, DG and flexible load resources can be directly controlled by 

their owners [19] to improve the reliability and security of DNs. Consumers can maximise 

the local usage of DGs and thus increase their independency from power grid. This can result 

in accommodating increased RE and DGs in constrained areas with limited grid connection. 

Feed-in-tariffs can also provide the opportunity for residential consumers to sell their local 

generation to the grid. In addition, DR can contribute in the network management through 

other valuable sources such as provision of firm capacity and operational flexibility. The 

former can eliminate the need for conventional peaking capacity especially in high REs 

penetration [20]. In the latter, DR can provide operating reserves to the system to avoid the 

need for loading the thermal generators partially [21].  

Another challenge in the future of DN is the changes in the load shapes due to the 

introduction and growth of new loads in the network. According to the UK energy 

consumption 2016 report, the total domestic electricity consumption has significantly 

changed due to a 46% increase in the number of households, as well as a 17% population 

increase since 1970 [22]. Therefore, in spite of improvement in the efficiency of home 

appliances, their frequency of use, cyclic length as well as energy consumption are rising 
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[23]. National Grid creates and develops energy scenarios each year to visualise and plan the 

UK future energy evolution landscape. In 2017, four scenarios have been determined which 

consider various potential pathways that can affect the future of energy. These are consumer 

power, two degrees, steady state and slow progression as shown in Figure 1-1 [9]. 

 

Figure 1-1: UK future energy scenarios 2017 [9] 

The impact of these scenarios by 2050 on the residential annual electricity demand is shown 

in Figure 1-2. As can be seen, consumer power has the deepest increase in electricity demand 

among all scenarios where it has been anticipated that the demand reaches to 152TWh 

excluding EVs. This increment is 132TWh for both slow progression and steady state and 

116TWh for two degrees scenarios. 

Theses show a great need for coordinating various loads in order to minimise peak loads. DR 

can notably mitigate the negative impacts of integration these new loads by optimising the 

operation time [24]. For instance, the appliances scheduling can be managed to shift the 

charging of EVs to off-peak times without creating inconvenience to the end user. This can 

ultimately reshape the consumers’ loads towards more flattened demand profiles over time. 

Therefore, DR can not only effectively contribute in relieving power flow constraints in the 

DN but can also provide integration of more additional loads. 
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Figure 1-2: The predication of annual residential electricity demand by 2050, as estimated future energy 

scenarios [6] 

In spite of the discussed challenges in the DN, the advancement of automated infrastructure 

technologies in the DN provides new opportunities for electricity customers to engage in 

demand curtailment plans. This consequently creates new roles for the DNOs [25]. For 

instance, the majority of UK households will be equipped with smart meters by 2020 [26]. 

This two-way communication infrastructure between customers, DNOs and suppliers, 

enables the development in the electricity markets to introduce and apply various electricity 

tariffs and feed-in tariffs. Employing domestic DR in a number of trials has proven that 

providing DR to DN can be considered as an alternative, lower cost, carbon-saving and 

flexible solution to defer network reinforcement compared to the existing methods. These 

trials are explored in depth in the next chapter. The financial saving could be passed onto all 

consumers in the form of lower bills.  

Based on the above discussion, by accommodating the penetrations of the new loads and 

generation as well as new technologies, GB is poised for a significant transformation in how 

electricity is generated and consumed. DNOs will be required to adapt and invest more 

smartly to manage this new energy demand-supply paradigm [27]. Accordingly, the 

management of the DN should be developed towards more decentralised energy networks 

which need System Operators (SOs) at the local distribution level of the network. Moreover, 

the operation of DN should be undertaken in a real-time environment with actual flows on the 

network. In the attempt to provide a smart and active DN in GB, the traditional passive 

managing role of DNOs is now changing to Distribution System Operators (DSOs). This 

change is defined by the Energy Networks Association (ENA) board as the TSO-DSO project 
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[28]. The project, divided into four main work streams including T-D definition, impact 

assessment, regulatory enactment and design, building and testing, has been anticipated to be 

completed by 2030 [29].  

In general, three main tasks should be considered in the transformation of traditional DNOs: 

active control management of DN, more local control of supply-demand balance and 

increasing and improving the customer engagement [30]. Accordingly, two complementary 

strategies are used: planning out ahead the functions of a DSO and innovation. The latter 

refers to trials of new approaches in supervising and controlling the network and accordingly 

using the data to provide a smart flexible network. Among market innovations and 

opportunities, Demand Side Management (DSM) and DR are well-known tools in providing 

direct benefits to the DN in relation to energy demand reduction [31]. The characteristics and 

challenges in the future of managing demand-supply and considering the role of DR in 

shifting from DNO to DSO are shown in Figure 1-3. 
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Figure 1-3: Features and challenges in the transition from DNO to DSO and DR as an alternative 

1.2 Distribution Network Management 

This section discusses in depth the concept of DSM and DR along with their respective role 

in current and future power networks. In this thesis, the DR controller refers to a load 
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management system that implements DR services at either household or network level. The 

procedures and methodologies that enable DR are known as the DR activation strategies. 

1.2.1 Demand Side Management and Demand Response 

DSM refers to a series of programmes designed with the intention of changing the consumer 

energy usage pattern to help in balancing the generation and supply [32]. According to [33]: 

“Demand-side management encompasses the entire range of management functions 

associated with directing demand-side activities, including programme planning, evaluation, 

implementation, and monitoring”. This concept was first introduced in the late 1970s where 

the DSM was categorised into two different schemes: energy efficiency and DR [34, 35] as 

illustrated in Figure 1-4. In general, the focus of energy efficiency is on long-term benefits 

with reduction in overall energy consumption and peak demand. On the other hand, DR 

emphasises on reducing peak demands for short periods of time when there is a need for load 

reduction, e.g., during peak demands periods. Since this thesis is focussed on DR, an in-depth 

discussion on this topic is presented in this chapter and the next. 

 

Figure 1-4: Components and categorisation of DSM and DR in UK [36, 37] 

DR is a class of DSM programmes in which the customers receive some incentives from 

energy suppliers for reducing electricity consumption during peak periods or under network 

stress conditions [38]. Management of energy usage patterns can also lead to an overall peak  

demand reduction, demand curve reshaping and increased sustainability of the grid, thus 

reducing the overall cost and carbon emission levels [39]. DR can dramatically diminish 
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power generation costs for DSOs and lower bills for consumers [40, 39]. In general, DR has 

been considered as one of the noticeable technologies to improve the operation, economy, 

security and reliability of the electricity network [41, 42]. 

 Customers can participate in DR through three different responses: on-site standby energy 

generation, load shedding and load shifting. In the first one, customers can respond to 

demand reduction instructions by meeting some of their electricity needs through onsite or 

backup emergency generator [43]. Therefore, their demand will be reduced with only minor 

loss of their comfort level. In load shedding, customers reduce their usage during high price 

periods or DR program events, e.g., by turning off lights or turning down the air conditioner 

thermostat, which may result in temporary loss of their comfort level. The last one involves 

updating the schedules of appliances based on the price over specific time periods. In this 

case, using shiftable appliances such as washing machines or dishwashers can be delayed 

from higher peak-time prices to lower non-peak time.  

1.2.2 MV/LV Network Management with Demand Response 

The topology of Medium Voltage (MV) and Low-Voltage (LV) networks is typically radial. 

In GB, primary substations voltages are 33 kV to 11 kV and the secondary level is 11 kV to 

415 V. In order to determine the DN capacity under all loading conditions and network 

configurations, AC load-flow analysis is crucial. The load flow through each node of the 

network is affected by the disposition and loading of each prior node point and by the system 

losses [44]. As a consequence, the load flow is limited by some constraints. The recent DNO 

projects and trials are mainly focussed on the active management of the power flow with 

concerns regarding voltage and/or thermal constraints [45]. This is because these are the main 

constraints in the integration of new loads and generation in the DN. Accordingly, the 

attention towards loss mitigation has lessened compared to the traditional power networks. In 

this regard, these two key constraints are considered in this thesis and are discussed together 

with the role of DR in relieving them.  

Thermal Constraints: The temperature of the electrical components in the network can 

significantly rise through heat dissipation. As current flowing through components such as 

line conductors and transformers increases, their temperature rises. Therefore, exceeding their 

thermal limit may cause undesirable situations, e.g., thermal expansion, increase in electrical 

resistance, and the thermal breakdown of components. The temperature limit and accordingly 
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thermal capacity of a component/line depend on its physical characteristics. Therefore, the 

thermal rates of components in a network are considered as a constraint. Thermal rating of 

each MV/LV line or the maximum capacity of a transformer are both defined as the 

maximum current or MVA that can be transferred over the line/transformer without 

exceeding their specified maximum operating temperature [46]. 

Voltage Constraint: Voltage limits are among the most prominent constraints in a DN. These 

are essentially determined based on the quality of feeding the Low Voltage (LV) consumers. 

This is because most LV end-users’ appliances do not have voltage-adjustable capabilities.  

The limit for LV connection points in the UK is determined within the statutory limits of 

+10% and -6% of the nominal 230V [47]. The voltage of each node point varies according to 

its location in the DN as it is dependent on the node’s injected or consumed power. In a DN 

without DG, the voltage profile gradually decreases along the feeder. Therefore, 

characterising the DN in terms of strong and weak parts can be achieved by analysing voltage 

profiles at different locations in the DN. 

The constraints in the DN can be managed by controlling the power flow. DR can effectively 

contribute in relieving those constraints by reducing peak demands and thus controlling 

overloading on the network. This can also help in flattening the total load profiles of 

consumers. In the current GB network, the DR mainly focusses on the temporary reduction of 

the power flow in the DN by offering incentives to willing participants. However, with the 

increasing importance and attention being paid to DR schemes, the role of the DR can go 

further and incorporate new features. For instance system operators can be enabled to 

participate in supply security schemes. 

1.2.3 Active Distribution Network Management 

Under the DSO model, network entities can take more active role in order to manage the 

demand and generation locally. As a result, Active Distribution Network Management 

(ADNM) can be securely operated and developed. ADNM integrates different components in 

the power network through intelligent metering and advanced communications in order to 

monitor and control the network. In this way, new technologies, e.g., DGs, flexible loads, 

storage devices and etc., can be implemented in an efficient way to run and manage the 

network safely while improving network operation. ADNM can reduce the expensive 

investment of network reinforcement and connection costs. The core of the ADNM is the 
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Distribution Management System (DMS) which supervises the network operation. This is 

done through real-time/near-real-time measurements or forecasting methods in order to 

determine the required control signals for either consumers or generators. DMS 

communicates with the Intelligent Electronic Devices (IEDs) that are distributed across the 

DN with protection and operation purposes.  

Since conventional networks are mostly centralised, the current implementation of ADNM 

control schemes in many systems can face several limitations. In such systems, a 

comprehensive knowledge of the total system is needed as the decision-making is taken via a 

single centralised point. Thus, any failure in central management could cause problematic 

operational issues. Another drawback is that the computational formulation of the centralised 

controller is complex and this complexity increases with the network extension. Moreover, 

the data communications is complicated due to the huge data interaction among active 

components in ADNM. Therefore, a decentralised mechanism needs to be integrated with the 

centralised control to allow local decision-making during failures or system stress conditions. 

For instance, constraint management at the MV feeder can be done by the local measurement 

at LV feeder. This can be extended to a more distributed ADNM in which each LV feeder 

can have a control level access in order to take some local actions. 

One of the methods for improving the ADNM system is using the Multi-Agent System 

(MAS). Each agent can act independently which improves the total system resilience and 

robustness as they are not affected by any local failure at component or communication 

pathway  [48]. One advantage of such a framework compare to centralised control scheme is 

the greater scalability due to provision of intelligent and computing power at each agent. The 

complex calculation burden of a centralised controller is lessened using a decentralised 

approach. The communication timing as well as the complication of the communication 

interactions in the network is reduced. This enables the optimisation of the network with the 

same computational burden of the conventional centralised ADNM and also save the costly 

central processor. Since the framework implemented in this thesis is based on MAS structure 

and a thorough description is provided in chapter 3. 

1.3 Research Aim and Objectives 

The aim of this research is to develop and implement a decentralised MAS ADNM platform 

in order to activate DR services from residential load responsiveness in MV/LV feeders. 
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Under MAS framework, different DR participants can be integrated in the network to enable 

optimal and widespread functionalities of DR at distribution level. Therefore, DR trading can 

maximise social welfare for all DR participants, e.g., end users, DSOs and energy suppliers. In 

order to achieve this aim, the following research objectives have been defined: 

Objective 1. Design and develop a decentralised ADNM in a MAS framework for 

managing the LV feeders through available residential flexible loads in real time.  

Objective 2. Implement and evaluate the proposed price-based DR in a unified centralised 

and decentralised ADNM with the view to manage the MV network constraints though 

LV feeders. 

Objective 3. Investigate the effectiveness of combining the proposed DR mechanism with 

incentive-based DR schemes, aiming to improve the security and reliability of MV/LV 

network.  

The summary of the proposed DR control strategies, scenarios and advantages in order to 

meet the objectives of this thesis is provided in Table 1-1. 

Table 1-1: Main DR strategies and advantages of proposed DR-based MAS ADNM framework 

Control level Objectives DR type Price signal Advantages 

LV feeders 

Mitigate the 

distribution 

transformer 

overloading 

Price-based, 

voluntary, 

load shifting 

ToU / 

Day-ahead / RTP 

Fully decentralised DR 

control mechanism and 

independent decision-making 

at each LV feeder from a 

central controller at MV 

feeder 

 

MV feeders 

 

Constraint 

management 

(voltage and 

thermal limits) 

and power loss 

reduction 

Price-based, 

voluntary, 

load shifting 

RTP 

Simplify the computational 

processing and 

communications, 

complexity doesn’t increase 

by the size of the network, 

easy to tune 

 

MV/LV 

feeders 

Congestion 

management, 

Maximise local 

usage of 

renewable 

generation 

Incentive-

based, 

contractual 

obligation, 

voluntary, 

load shedding 

Complimentary 

incentives: feed-

in-tariffs and a 

novel reward for 

local utilisation of 

generation  

Merging the advantages of 

both price-based and 

incentive based DR and thus 

improving the reliability and 

security of demand-supply 

balance 
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1.4 Research Methodology 

Based on the aforementioned objectives, the overall design structure and implementation of 

the DR-MAS-based ADNM platform are focused on two levels: MV and LV feeders. For 

both cases, the same methodology is employed and is as follows: 

 Designing the DR management architecture consisting of a physical and a cyber-layer: 

 Cyber layer: A MAS framework is constructed. The architecture of agents, their 

behaviour, attributes and interactions, in the proposed system are defined. 

 Physical layer: A typical DN, consisting of several MV feeders connected to 

residential consumers through lateral LV feeders, is modelled.  The required data for 

each consumer, including daily load profile, willingness to DR participation and price 

elasticity to demand is determined from a pilot’s dataset. 

 Developing DR mechanisms at the LV feeder, for distribution transformer and the home 

level, and MV/LV feeder for distribution substation and LV feeders. Real time pricing 

will be considered for the first two objectives and a novel reward scheme for the last one.  

 Implementing the proposed DR-MAS-based ADNM in the typical DN in order to tackle 

overloading issues by controlling the power flows in MV/LV feeders.  

 Evaluating the feasibility and efficiency of the proposed framework. The performance of 

the proposed control algorithms and the dynamic behaviour of the system, including the 

proposed agents, under normal and network stress conditions are investigated through 

simulations for one typical day period.  

1.5 Principal Research Contributions to Knowledge 

The work in this thesis contributes to the activation and implementation of ADNM through 

residential demand responsiveness. The main output of this research provides an 

understanding of how residential flexible loads can be used as an alternative low-carbon and 

low-cost solution for tackling future challenges in the GB distribution network. The principal 

research contributions to knowledge can be summarised as follows: 
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 Development of a novel DR-MAS-based ADNM framework for local management of 

distribution transformer overloading under day–ahead and real time environment with the 

following original features: 

 Optimal load scheduling for shiftable appliances based on consumption behaviours 

and dissatisfaction factor of different clusters of consumers taking into account their 

social and technical attributes. 

 Price prediction model for the above home energy management system to improve its 

accuracy in real time environment.   

 Two probabilistic methods in order to determine the quantity of both potential and 

available DR in each LV feeder. The former has been designed for day-ahead analysis 

whereas the latter is applicable in real time. This has been done based on aggregation 

of responsiveness load from different clusters of households within that LV feeder. 

 A new four-level piece-wise linear cost function design for energy suppliers to 

implement real time tariffs based on required and available DR or for day-ahead 

tariffs on required and potential of DR.  

 Design and implementation of a new  DR-MAS-based ADNM framework for voltage and 

current constraint management of MV feeders through available DR at LV feeders under 

real time environment with the following novel achievements: 

 A less computationally demanding decision-making for households on the starting 

point of any available shiftable appliance compared to optimisation methods.  

 An optimal DR control mechanism for DSOs to determine the amount and most 

effective locations of the required load curtailment over specific time horizon.  This 

has been determined based on the available DR from LV feeders, voltage sensitivity 

of each bus, voltage deviation and power loss indexes considering thermal, voltage 

and power loss constraints. 

 A new real time tariff based on a two-level piece-wise linear cost function for each 

LV feeder according to their DR availability as well as the total required DR at the 

network.   

 An original wide-area DR framework that demonstrates the advantages of the DR-

MAS based ADNM by applying the proposed methodologies for smart distribution 

system. 
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 An original unified price-based and incentive-based DR scheme to mitigate possible 

network congestions and ensure the performance of the DR-MAS-based ADNM 

including the following contributions: 

 Optimisation of the households’ electricity usage in the community level based on 

reduction of their demand dependency on the power grid by utilising local RE 

sources. 

 A probabilistic method in to determine the quantity of demand that can be shed during 

emergency conditions for each cluster of customers.  

 A DR management scheme for local aggregators at LV feeders to maximise their 

local usage of available renewable generation.  

 An emergency DR scheme at LV feeders with a merit order based on the DR potential 

of different clusters of contractual customers. 
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1.7 Organisation of the thesis 

The work in this thesis is structured as follows.  

Chapter 2 – Demand Response as Enabler for Active Distribution Network Management: 

A critical analysis of relevant literature is presented in this chapter. The review looks into 

past attempts at activating and applying DR with the focus on residential areas. Various DR 

mechanisms are classified and a comparative analysis is performed. Implementation of DR 

services to manage the DN is investigated at both consumer and network level. Moreover, a 

summary of more prominent DR pilots and projects in the GB is provided. Finally the 

potential of residential load responsiveness as well as challenges in implementing DR are 

discussed. 
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Chapter 3 - Proposed MAS Framework: This chapter introduces the proposed MAS 

framework and focusses on its cyber layer. The general model including the MAS 

architecture and platform is described. The overall methodology for each of the three 

objectives of the thesis as well as the role of each stakeholder in the network is explained in 

detail. The MAS structure and DR mechanism in each case study is elaborated along with 

mathematical formulation.  

Chapter 4 – Parameters for Multi Agent System Modelling: The simulation environment 

and modelling is described. A comprehensive description of the dataset and extracted 

information to create the load profiles of households is explained in detail. A 

characterisation-based clustering technique considering customers personal attributes such as 

social, technical, educational and financial, is applied. External factors including time, day 

and seasonal effects, are also taken into account. The set up parameters for each objective are 

determined. In addition, a general description of the network features before implementing 

DR is provided. 

Chapter 5 – Simulation Results and Discussion: The main contributions of this thesis are 

presented in this chapter. For each objective, the proposed methodologies explained in 

chapter 3 are implemented to investigate the feasibility, as well as the effectiveness, of the 

proposed DR-MAS-based framework for ADNM. For this purpose, various scenarios are 

considered and the simulation results are compared. Comprehensive analytical investigation 

on the results obtained and the advantages of the proposed model are provided. The effect of 

satisfaction level of households on the quantity of available DR, and hence the performance 

of the DR mechanism, is studied. 

Chapter 6 - Conclusion and Future Work: The conclusion of this thesis is presented in this 

final chapter along with an overview of the work that have been undertaken to fulfil the aim 

and objectives of this research. The key findings and achieved results are presented and 

discussed. Finally, further possible investigations and recommendations for this work are 

provided. 
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Chapter 2 Demand Response as Enabler for Active Distribution 

Network Management 

2.1 Introduction 

The objective of this chapter is to investigate and review the resources, development and 

performance of the DR for the residential sector with the focus on the activation strategies. 

Different DR frameworks and schemes, with the focus on GB networks, are explained in detail. 

The research papers studied for this literature review have been classified in terms of the year, 

Figure 2.1(a), and the type of the publication, Figure 2.1 (b). A hierarchical breakdown of the DR 

mechanism based on categories adopted in this thesis is depicted in Figure 2-2 (a). The DR 

activation strategies are categorised and studied in two levels: consumers and network. An 

illustration of the division of these categories is depicted in Figure 2.2 (b). The application of DR 

in managing different constraints in the DN is investigated and categorised in Figure 2.2 (c). A 

detailed discussion of these categories is provided in sections 2.4 and 2.5. Several pilot studies 

along with the requirements, capabilities and challenges for the effective implementation and 

operation of DR approaches are also part of this comprehensive literature review.  

 
(a) 

 

(b) 

 

Figure 2-1: Comparative analysis of literature search based on year (a) and type of publication (b) 
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(a) 

 

 

(b)                                                           (c) 

Figure 2-2: Classification of DR mechanism based on DR control level (a), focus (b) and strategy (c) 

 

2.2 Classification of DR Programmes 

Different criteria have been used in the literature to classify DR programmes. The two main 

classifications are incentive-based DR and price-based rate programmes, as depicted in 

Figure 2-3. 
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Figure 2-3: Time-based classification of DR programmes [227] 

The former refers to programmes where the participants receive predefined contractual 

incentives for providing DR services mainly during system stress conditions, e.g., grid 

congestions. In the latter, consumers are offered time varying tariffs in different timeslot 

during the day. The price-based rate DR, the focus of this thesis, is usually more appropriate 

for residential customers while the incentive-based ones are better suited for larger 

customers, e.g., commercial ones [49].   

2.2.1 Incentive-Based Demand Response Programmes 

Direct Load Control (DLC): DR participants, in a pre-agreed contract, give remote access to 

the network operators for controlling their appliances such as air conditioner, or dishwasher. 

This can directly address contingencies of the power system and enhance its reliability. In the 

GB, a DLC programme, the “NINES” trial, has been implemented with a view to control 

electric storage heating during grid emergencies or peak demand periods [50].  

Interruptible/Curtailed (I/C) Load Programmes: Participants agree with pre-defined load 

reduction/curtailment to receive set incentives. Non-responders may get penalties by higher 

cost of electricity depending on the terms and conditions. Residential loads are typically 

considered as aggregated loads by a third party entity and this eases the network operators’ 

management and communications.  

Demand Bidding/Buyback (DB) Programmes: Unlike DLC and I/C programmes, DB 

provide the potential for consumers to take part in wholesale electricity market by offering 

bids for specific load curtailment. Bids less than the market price are accepted and customers 

are obliged to curtail the committed demand to avoid sanctions. These programmes are 
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considered as low-risk for customers and operate in short periods, typically a day or hour 

ahead.  

Capacity Markets (CM) Programmes: These act as reserve generator capacity in which DR 

participants pledge to provide specific load curtailment. The participants should be able to 

demonstrate the ability to provide a minimum load curtailment as they receive compensation 

even if they are not called to curtail. Customers receive the price notification on a day-ahead 

basis and can be penalised if they do not comply. Unlike DB, these programmes operate over 

medium and long timeframes. Such a programme was recently introduced in GB where bids 

are made from both Demand Side Response (DSR), embedded generation and electricity 

storage, as well as new and existing generation capacity, Combined Heat and Power (CHP), 

[51].  

Ancillary Service Markets (ASM) Programmes: These act as operating reserve services 

which enable interested customers to bid their load reduction in the spot-market [52]. Large 

and regular energy consumers are the main participants in this programme and the type of 

reserve that is supplied is based on the extent and promptness of the customer’s response.  

Emergency Demand Response (EDR) Programmes: DR participants receive pre-defined 

incentives for demand curtailment during reliability events such as voltage instability, 

network congestions, and operating reserve shortfalls. The duration of DR event is usually 

regulated by the system operator and partakers are notified in advance to respond to EDR. 

Participation in this scheme is voluntary and therefore non-responders are not subjected to 

any penalty. 

2.2.2 Price-Based Rate Programmes 

Fixed pricing: This is the traditional pricing scheme where the price is constant over specific 

period of time, e.g., season or year. Therefore, reducing energy bill is only possible by simply 

using less electricity.  

Time-of-Use (ToU) Rates: The price rate is defined for pre-determined periods of time 

during the day or week. The customers are informed of these prices days to months ahead. 

ToU rates reflect the average price of wholesale market, typically with higher rates during 

peak time. ToU is another form of fixed rates with more pricing bands during a typical day. 

[53] showed that peak demand reduction through ToU is the weakest approach among DR 

schemes. This could be due to two main reasons. Firstly, customers do not receive any 
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practical incentive for power reduction. Secondly, prices are attractive only for off-peak 

periods while they remain relatively high for peak-demand hours. Currently, the ToU tariff in 

GB, also known as the Economy 7 tariff, has two pricing bands: one for day and one for night 

[54].  

Dynamic (dToU) Time-of-Use Rates: This is a derived form of ToU in which the notification 

of changes in price is shorter, e.g. one hour ahead. Though the price can be set nearer to the 

actual electricity price, this comes with the trade-off of customers losing foresight and hence 

the promptness in their response. An example of such a tariff is Low Carbon London (LCL) 

that was trialled in London, aiming to investigate the potential of dToU in residential 

responsiveness to DR [55]. This trial is discussed in more detail in section 2.6. 

Critical Peak Pricing (CPP): This price scheme is another type of ToU tariff comprising 

higher than average ToU rates during critical peaks. The new energy price is usually 

announced to participants a day ahead. CPP increases the reliability of the system during 

critical conditions by engaging more participants and consequently providing greater demand 

curtailment. However, the probability of negative net benefits for energy suppliers is high 

[56].  

Real-Time Pricing (RTP): This programme provides dynamically varying prices in a 

uniform time step, thus reflecting the real price of wholesale market. Therefore, consumers 

can adopt their usage to their advantage based on the actual energy price. The need for 

continuous real-time communication for risk-averse domestic users, the complexity of big 

data exchange as well as the lack of communications infrastructures between the energy 

supplier and the customers are the main challenges for implementing RTP scheme. An 

alternative RTP-based solution is the Day-Ahead RTP (DA-RTP) [57] wherein the predicted 

prices over time for the next day are announced to the customers beforehand.  

Vickrey-Clarke-Groves (VCG): The price for each time period is calculated by a centralised 

mechanism based on load profile information provided from voluntary customers [58]. In the 

aim of encouraging customers to provide truthful information, some incentives are paid to 

participants. The VCG pricing scheme can be used for lowering power consumption or load 

shifting purposes.  
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2.3 Players, Prerequisites and Interactions in GB Demand Response 

DR services are an efficient alternative for new generation sources and can be treated under a 

market-based layout. As a result, the modern power system can be modelled as a networked 

environment where DR participants can interact with each other. 

This is suitable for assessment of both technical and economic aspects of the DN. Regulated 

market participants, e.g., Transmission System Operators (TSOs), DSOs and deregulated 

players such as aggregators and producers are connected and interchange information among 

each other [59]. Moreover, developments in the modern electricity network have introduced 

new roles and relationships for all those who interact with the electricity system. A general 

block diagram of the data flow between different market players in the GB energy network is 

presented in Figure 2.4. The relevant players, include consumers, energy suppliers, DSOs, 

aggregators, with Ofgem as the regulatory body. Besides, in GB power network, the 

interaction between consumers and other authorised entities is undertaken by the Data 

Communication Company (DCC). The role and functionality of this interface is given in 

chapter 4. They are described below with emphasis on communications and interactions. 
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Figure 2-4: Block diagram of entities in the DR framework 
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Consumers: The rollout of smart meters has enabled consumers to take an active role in the 

market and created new sources of flexibility. Consumers are able to not only provide 

information regarding their demand over time, but also monitor and control their 

consumptions near real time. The impact assessment published by Ofgem in 2010, shows that 

the total consumer savings was £6.43 billion which consisted of energy savings of £4.23 

billion and load shifting/ToU tariffs of £1.06 billion [60]. However, in order to enable an 

automatic and intelligent DR control scheme, consumers also need to be equipped with Home 

Energy Management Systems (HEMS). 

Energy Suppliers: They trade energy by purchasing electricity from either wholesale markets 

or directly from generators and selling it to their individual customers. Currently there are six 

main suppliers in GB (British Gas, EDF Energy, RWE npower, E.ON UK, Scottish Power 

and SSE) as well as several other medium/small-size ones, each offering different tariffs [61]. 

The main aim of these suppliers is to provide competitive tariffs and incentives to customers 

in order to increase their market share. This is the rationale behind the move towards a more 

dynamic tariff, which would be possible with the implementation of smart meters. 

Distribution System Operators: As discussed in chapter 1, in the current GB power network, 

DNOs are responsible for controlling and maintaining the power equipment in the DNs, e.g. 

power lines, underground cables and substations. On the other hand, DSOs are also designed 

to deliver a secure network by providing system services, such as voltage control, network 

restoration, etc., and by controlling power flow in the active DN. There are 14 licensed 

DNOs, owned by six different groups, each responsible for a specific geographical area [62]. 

The cost of DNO/DSO services is added to the consumers’ bill, but the total revenue that can 

be collected from customers are set and controlled by Ofgem. The DNOs/DSOs are also 

incentivised by Ofgem to investigate novel innovations for improving the efficiency and 

power quality of the system. 

Aggregators: In today’s competitive electricity market, a DR aggregator acts as an interface 

between a group of energy consumers and other stockholders [59]. The reason behind the use 

of this third-party entity is to enable the individual small responsiveness demand to actively 

participate in DR programmes. Aggregators are mainly responsible for satisfying all 

connecting participants’ interests.  
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2.4 Demand Response Activation Strategies for Residential Consumers 

Residential DR controllers can be classified into two levels; discrete level [63, 64, 65, 66, 67, 

68, 69, 70, 71, 72] and aggregated level [73, 74, 75, 76]. Discrete level activates the DR 

control mechanism for a single user while aggregated level adopts a centralised DR control 

strategy for multiple users in a neighbourhood area. A review of these levels, with respect to 

price-based rate DR, is explored next.  

2.4.1 Discrete Level 

HEMS are utilised to optimise home energy usage by managing controllable appliances. The 

principal method of achieving DR via Home Energy Management System (HEMS) is to 

reduce power usage of particular flexible loads. Thus, customers can save money by reducing 

the overall demand, even in fixed tariffs or by consuming less power during system stress in 

CPP tariffs. With the introduction of more variable rate energy tariffs, e.g., ToU or RTP, 

HEMS helps customers to further increase their economic benefits and consequently provides 

greater DR. HEMS can schedule appliances that consume power in adjustable timeslots 

where their operations can be stopped, adjusted, or shifted to other timeslots. Based on such 

an energy management mechanism, HEMS can therefore be classified into three areas: 

conventional, advanced and smart HEMS. The focus of the first category is solely on load 

management, assuming a time-based price signal [63, 64, 65, 66] while the second one also 

considers the energy price prediction [67, 68, 69, 70]. The smart HEMS on the other hand, 

applies an intelligent learning-based DR strategy [71, 72]. The fundamental DR methodology 

in the two last groups are essentially the same as conventional HEMS, with the difference of 

embedding more advanced capabilities to improve the performance and accuracy of the 

system. For the sake of relevance only the first two categories will be dealt with in this thesis.  

2.4.1.1 Conventional HEMS  

When designing DR algorithms for HEMS, several considerations have to be taken into 

account.   

Appliances models and constraints: The major appliances studied, modelled and which have 

the highest potential of contribution in DR schemes are: 

 Shiftable appliances: wet appliances [77], EV [78] 

 Non-shiftable appliances: heat pumps [79], air conditioner [80] 

 On-site generation: PV [81], storage system [82] 
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The appliances constraints can generally be classified as either technical or user constraints. 

The former refers to individual characteristics of each specific appliance such as: 

 Task constraints: Starting and ending time, continuity and consecutiveness for each task 

of shiftable appliances; 

 Energy constraints:  For shiftable appliances, total cycle operation to be completed within 

a day and the minimum and maximum required energy consumption for non-shiftable 

appliances; 

 Storage system constraints: Storage level, charge and discharge limits of battery charges; 

 Comfort constraints: Minimum and maximum temperature of water heater, fridge/freezer, 

air conditioner and electric heater. 

User constraints on the other hand, relate to the satisfaction and comfort level of customers 

and include: 

 Time constraints: Maximum waiting time, limits for starting and ending times of shiftable 

appliances; 

 Thermal constraints: Thermal comfort level of non-shiftable weather-based appliances. 

 Objective function and solver: The objective of DR controllers at consumer level is 

primarily to reduce electricity cost by either minimising the total electricity consumption [65] 

or maximising overall net utility [64]. This aim can be also achieved by minimisation of peak 

hourly load [63] which ultimately results in bill saving. This goal of the DR can be modelled 

as a single objective function. On the other hand, some HEMS incorporate more targets such 

as minimisation of the total electricity price and peak load [63] or minimisation of the total 

electricity price and dissatisfaction [67, 66]which can be expressed by a multi-objective 

function. 

Defining the objective function of HEMS is dependent on the nature of the objective 

function, the variables and constraints, which can be linear, non-linear, convex or non-

convex.  If all or some of the variables of the objective function are integers, then the 

problem is considered as an integer or a mixed-integer problem respectively. Considering 

shiftable appliances, as dealt with in this thesis, binary decision variables are needed to 

determine their start-up as well as their operation status (on/off). Therefore, the optimisation 

problem can be formulated as a mixed integer combinatorial problem [83] and solved by 

Mixed-Integer Programming (MIP). This methodology can be further extrapolated to either 
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Mixed Integer Linear Programming (MILP) or Mixed Integer Non Linear Programming 

(MINLP). 

A load scheduling objective function is usually formulated using MILP due to the complex 

nature of the MINLP methodology for solving such problem. MILP is applied by 

simplification and using a limited number of appliance models [84] or by considering the 

relaxed version of the optimisation problem [66]. Another approach [64] utilised the 

Generalized Benders Decomposition (GBD) to develop an algorithm for solving MINLP 

problems for optimal load scheduling without relaxation. The proposed algorithm provides a 

higher flexibility for integrating a wider variety of appliances with different characteristics.  

DR type: Apart from DR decision variables, the control strategy of the DR procedure is also 

dependent on the incentives introduced to customers to reduce/shift their demands. In 

conventional HEMS, the price of electricity during energy scheduling period can be set as 

either a static tariff, e.g., ToU [63, 64], or a dynamic tariff, e.g., RTP [85, 65, 66]. Although 

the overall optimisation strategies in both tariffs are similar, RTP provides a more dynamic 

environment. It is worth noting that for time-variant conditions, a dynamic optimisation 

framework should be implemented. Consequently, the price and problem constraints should 

be updated after receiving new price. In RTP-based tariff, the HEMS decides on load 

scheduling based on a day-ahead pricing information. The uncertainty in RTP can be 

modelled through probabilistic methods such as Monte Carlo iterative method [65].  

2.4.1.2 Advanced HEMS  

In a RTP, the price changes dynamically at regular time interval. Therefore, the capability for 

predicting the upcoming price needs to be integrated with conventional HEMS. Embedding a 

price predictor in a HEMS enables planning ahead and results in more accurate and optimal 

management of the household energy consumption [86]. 

 A general model for combining HEMS with price predictor under a dynamic pricing 

framework is illustrated in Figure 2-5. Using real-time prices fed to smart meters by the 

electricity supplier, the price predictor unit determines the price. Then an optimal scheduling 

of residential consumers is achieved through HEMS.  

 



 

 

 

 

27 

Forecasting 
24 Hours
 Ahead

Energy 
Management 

System

Smart 
Meter

DR

Wind Power

Photovoltaic Power

Power Demand

Field Area 
Network

Home area 
network Power Line

Real Time Prices

 

Figure 2-5: HEMS with price prediction capability [87] 

The price of electricity for each time interval can be affected by several factors particularly 

the wholesale market prices. Apart from the inherent complexity in predicting these prices, 

there are other factors that influence the pricing. The time of day, e.g., afternoons or nights, 

and the type of day, for instance a week day or weekend, a hot summer day or a cold winter 

day, are a few of these factors [68]. Although using such information can potentially be 

useful in predicting the price values, yet it will not be enough for a high degree of accuracy. 

This can be explained by the fact that electricity price does not directly depend on the 

absolute demand as long as the network constraint is satisfied [67].  

Several models have been developed to forecast the upcoming prices using different 

parameters. These models were initially based on the conservation rates model with Inclining 

Block Tariff (IBT) [88] where the price is a linear function of total demand. Some utility 

companies have since the 1980s adopted a two-level IBT model for their pricing tariff [89, 

90, 91]. This model is used to determine the DA-RTP and RTP for the proposed framework 

in this thesis as explained in detail in chapter 3.  

A basic approach to estimate load and price is using historical data and prior knowledge [68]. 

Mathematically, this can be modelled as: 

  𝐶ℎ = 𝑝̂ℎ(𝑙ℎ) = {
𝑎̂ℎ ,                 ∀   0 ≤ 𝑙ℎ ≤ 𝑐̂ℎ
𝑏̂ℎ ,                    ∀   𝑙ℎ > 𝑐̂ℎ

                                                (2.1) 
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where, h denotes the hour of the day, 𝑝̂ℎ is the predicted price, 𝑙ℎ is the total load and 𝑐̂ℎ 

represents the threshold.  

The payment linearly increases with the amount of energy consumption in a default price 𝑎̂ℎ 

and once the energy exceeds the pre-determined threshold 𝑐̂ℎ, the price changes to a higher 

value 𝑏̂ℎ. This model can reveal the generation cost in RTP environments. The threshold 

parameter is usually constant on a daily basis but may vary over seasonal changes. 

Generally, the estimation of parameters âh and b̂h from equation (2.1) is done using 

statistical analysis such as Linear Prediction Model (LPM). An example [67] where equation 

(2.1) is considered as a piecewise linear function is shown in equation (2.2)  

 

𝐶𝑖,𝑡+1 = {
∝1 𝑙ℎ + 𝛽1 ,            ∀    0 ≤ 𝑙ℎ ≤ 𝑐̂ℎ
∝2 𝑙ℎ + 𝛽2 ,                   ∀   𝑙ℎ > 𝑐̂ℎ

                                                      (2.2) 

 

A norm approximation by Newton’s method [67] is applied to estimate the slopes ∝1and ∝2 

of price function. β1 and β2 are constants which reflect the fixed prices, e.g. fixed cost of 

generation. Using historical data, the load is normalised and scaled in order to fit the 

simulation.  

Another approach [68] applied a weighted average price prediction filter to the RTP to obtain 

the optimal values of the coefficients 𝑎̂ℎ and 𝑏̂ℎ of equation (2.1). Based on the statistical 

analysis of demand and price, in yearly, monthly, weekly and daily basis, they showed that 

the prediction of prices for each day is likely to be related to the price of the previous day, the 

day before the previous day, and the same day of the previous week. Therefore, as an 

example, the 𝑎̂ℎ can be obtained by: 

𝑎̂ℎ[𝑡] =  𝑘1𝑎ℎ[𝑡 − 1] + 𝑘2𝑎ℎ[𝑡 − 2] + 𝑘7𝑎ℎ[𝑡 − 7]                                       (2.3) 

 

Where, 𝑎ℎ[𝑡 − 1], 𝑎ℎ[𝑡 − 2]and 𝑎ℎ[𝑡 − 7] represents the previous day, day before that and 

the same day from the previous week of parameter 𝑎̂ℎ respectively. Simulation results verify 

the effectiveness of integrating HEMS with a price predictor. They were successful in not 

only reducing users’ payments but also in decreasing of Peak-to-Average Ratio (PAR) in load 

demand. The proposed model has an average prediction error of 13% and result in 1.3% 

reductions in user's energy cost when the RTP is known only for the next two hours. 

A two-step adjustment process is proposed in [69], day-ahead scheduling and RTP 

adjustment. First, a deterministic problem for optimal load scheduling for the next day is 
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solved by the day-ahead prediction of spot prices. Then, based on updated information of 

RTP, the scheduling is adjusted to deal with uncertainties introduced by errors in prices 

prediction. 

  A two-level IBT model for defining electricity pricing tariff is depicted in Figure 2-6 where 

Cmin and Cmax are the minimum and maximum electricity price. 

 

Figure 2-6: Two-level piecewise linear pricing function 

Artificial intelligence techniques have also been considered for price prediction. A day ahead 

price prediction model proposed in [70] was applied in [68] and then further developed by 

using Artificial Neural Network (ANN). The results show that although both LPM and ANN 

methods are efficient in reducing bill cost comparing to RTP without prediction model, with 

better results achieved by LPM.  

It should be noted that in terms of residential household, price predictors should have low 

computational complexity to be implemented easily for energy scheduling purposes. Based 

on the above discussions, it is clear that the deployment of the optimal energy consumption 

scheduling schemes with a price predictor, specifically in a RTP environment, is beneficial 

for both the end users and the utility companies. However, in order to achieve the most 

efficient DR, residential loads need to be considered as an aggregated model. This adds 

another level of complexity which triggers the need for a third party entity to manage the 

communication as well as the interactions between different components in the network. This 

is discussed in detail in the next section. 

2.4.2 Aggregated Level  



 

 

 

 

30 

Time-varying prices DR integrated with HEMS can improve the efficiency of power 

networks. However, a non-coordinated response of DR participants may lead to drastic peak 

rebounds at non-peak periods with lower prices. Accordingly, a distributed and aggregated 

DR management model is required to coordinate DR schemes in order to alleviate the effects 

of peak rebounds. The objective of DR load scheduling at aggregated levels is to flatten the 

total load profile [73] of aggregated demands while minimising end users energy cost. In 

most literature, however, load scheduling has been based on a day-ahead pricing. Several DR 

control methodologies have been developed to meet these objectives. 

Game Theory: This model is based on a theory where the end users’ roles are that of players 

and the daily schedules of demands are their strategies [92]. One study adopted this theory to 

model an incentive-based energy consumption algorithm [74]. The optimal solution of the 

proposed energy usage scheduling game was achieved at the Nash equilibrium. Each 

participant has to submit its strategy in response to the current total load and tariffs in the 

network. The privacy concerns of users are maintained since users do not need to reveal their 

information regarding energy consumption schedules to others. The results for a single 

aggregator connected to 10 customers with up to 20 shiftable and 20 non-shiftable appliances, 

showed a reduction of 17% in Peak-to-Average Power Ratio (PAPR) and 18% in energy cost. 

It is to be noted that in order to solve the non-linear PAPR minimisation objective, a new 

auxiliary variable is introduced to convert the problem to a linear programme. The 

optimisation problem was then solved using the Interior Point Method (IPM) programming 

technique. 

Distributed DR: In this model, each autonomous HEMS makes individual and independent 

decision for load scheduling. This is done based on the information received from the energy 

supplier. This information comprises the electricity sale prices and total load profile of the 

network. Subsequently, HEMS sends back the updated daily schedule of their loads to the 

energy supplier. A methodology is presented in [75] in which the aggregator’s objective was 

solved in two steps. After receiving the optimal daily load schedule from all HEMS, the 

aggregator firstly calculates the total load profile in the form of load flattening objective. An 

evenly distributed total load profile is then achieved in the second stage when the HEMS 

asynchronously update their schedules, taking into account their least energy expenses. The 

scheduling problem is solved by a format for a day-ahead load scheduling with 15-minute 
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resolution. Applying the proposed methodology to 50 customers in a Finnish DN, it was 

observed that the peak load decreased by 22.40% and the load factor improved by 19.63%.  

Centralised DR: The difference between this model and the previous one is that a centralised 

DR controller is applied to gather the information regarding load patterns as well as user 

preferences from customers. Then the load schedule is updated and sent to each user as in the 

proposed mechanism in [76]. The HEMS agents are charged based on not only their day-

ahead allocation but also on accuracy of their actual energy usage. The purpose behind 

introducing this new scheme was that in practice, the customers might not always be exactly 

compatible to the day-ahead energy allocation. This methodology is based on a two-stage 

mechanism. In the first stage, the DR controller allocates hourly load schedules to each 

household based on information received from them a day-ahead. Then, the marginal 

allocation for each household is computed, aiming to share the cost of energy among them. 

The customer faithfulness aspect of the proposed strategy is achieved by a penalty/reward 

scheme inspired by the Prisoner’s Dilemma standard. The objective function becomes a 

Mixed Integer Quadratic Problem due to quadratic nature of the price function which is 

computationally intractable especially in large-scale. Therefore, the problem is reformulated 

as a MILP by approximating the quadratic objective function with a piecewise linear 

function. One drawback of this mechanism is the potential privacy breach and security issue 

arising from households having to reveal and report their private information.  

In above models, the prices are modelled by a typical time-varying electricity sale price or 

using the IBT model. In the latter, the actual energy cost can be considered as an ascending 

and convex function which can be modelled as a class of quadratic function [93] as shown in 

equation 2.4. 

𝐶ℎ = 𝐶̂ℎ  (𝑙ℎ)   = 𝑎̂ℎ𝑙ℎ
2 + 𝑏̂ℎ𝑙ℎ + 𝑐̂ℎ          , ∀  𝑎̂

ℎ > 0, 𝑏̂ℎ, 𝑐̂ℎ ≥ 0                                    (2.4) 

It is worth noting that equations 2.1 and 2.2 are in fact adopted forms of equation (2.4) with 

different coefficients in order to make the cost function smoother. However, for simplicity 𝑏̂ℎ 

and 𝑐̂ℎ are assumed to be zero. 

2.5 Demand Response Application for Distribution Network Management 

From a power network’s point of view, the contribution of residential flexible load in 

managing the DN can be studied at two levels: local DR and wide-area DR management. The 

first one refers to managing the LV networks where the customers connected to a MV/LV 
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transformer. The aim is to manage the transformer overloading and voltage constraints 

through individual consumer’s demand responsiveness. The latter analyses the role of DR at 

MV/LV network level where the aim is to manage the constraint, e.g., voltage or current, at 

through DR provided from aggregation of households in each LV feeder. Recent studies have 

demonstrated the advantages of applying residential DR from both technical and 

economic/commercial perspectives in DN [94, 95, 96, 97, 98, 99, 100, 101, 102]. 

The operational problems at DN such as voltage drops and overloading of network 

components occur mainly during periods of large aggregation of loads. This necessitates 

immediate actions to mitigate the constraints in the DN. Hence, from a technical perspective, 

studies are mainly focused on incentive-based DR programmes [103, 104, 105, 97], although 

market-based have been utilised [106, 107, 108] for wide-area DR management as well. This 

is due to the fact that the involvement of additional market entities such as aggregators, 

retailers and/or energy providers is needed at wide-area level.  The role of these entities is to 

procure flexibility DR through their stockholders. However, similar to incentive-based DR 

approaches, DR is provided by consumers having contractual agreements. Moreover, in 

practice, if critical issues occur when the available flexibility can no longer be procured by 

the market-based control, direct approaches for load curtailment are then required [107]. 

Hence, a combination of both DR mechanisms guarantees the successfulness of utilising DR 

in generation-demand balancing of the DN [109]. 

The focus of this section is on the DR algorithms and methodologies that implement DR 

services at DN. The objective function of DR controller is examined from both the economic 

and technical point of view. The economic targets of DR mechanism refer to the 

consideration of electricity cost and incentive in the objective function of Residential 

Demand Response Aggregator (RDRA). The latter is a local aggregator that exchanges 

information with its relevant households. Therefore, the economic target is categorised at 

local DR level. The focus of DR aggregator, as discussed in section 2.4.2, is on the household 

profit maximisation while RDRA here considers its own benefit as well.  

2.5.1 Local DR 

In local DR the system model comprises one system operator that serves a secondary 

substation, which plays the role of an aggregator, connected to several domestic loads. 
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However, details about the DR request and control strategies from the system operator are not 

a requisite and are assumed to be known.   

2.5.1.1 Economic Targets  

As previously discussed, integrating individual households in a wide DR management system 

is the key to successfully managing demand-supply equilibrium in the DN. When designing 

an aggregated DR framework, the three key features that need to be addressed are end users’ 

combinatorial preferences, private information and scalability [58]. A diverse range of studies 

have been undertaken on the role, effect and behaviour of RDRA [110, 111]. Several 

attempts have been made with the aim of providing a dynamic energy management 

framework through simulating RDRA [74, 112, 113]. Based on the objective/s of RDRA, the 

literature in this section is divided into the following three main categories:  

 RDRA profit maximisation [75, 114, 115]  

 Social welfare maximisation [116, 117, 118]  

 RDRA in electricity market [119, 120] 

The first two categories focus on single RDRA which serves multiple customers. The last one 

considers several RDRAs within the competitive electricity market.  

RDRA profit maximisation: RDRAs compete to sell DR services to the system operator by 

providing compensation to consumers in order to modify their consumption patterns. The 

profit maximisation of RDRA has been modelled by many [116, 117], where the general 

problem has been expressed as: 

                                max  {R − ∑ Ch (Ph)h∈H }                                                                        (2.5) 

The term R refers to the revenue of the RDRA and the second term (∑ 𝐶ℎ (𝑃ℎ)ℎ∈𝐻 ) is the 

incentive paid back to customers. An optimisation model to solve this problem was proposed 

[116] and was based on Genetic algorithm (GA) technique [116], with customer behaviour 

learning. Two different learning algorithms were proposed for shiftable and curtailed loads 

separately. In terms of shiftable load, the aim was to procure the probability distribution 

patterns of various responsiveness demands to dynamic day-ahead prices. For curtailed load, 

the algorithm attempted to forecast the hourly quantity of responsiveness demands based on 

changes in price. Implementing the proposed algorithm resulted in an 11.08% increase in 

profit of RDRA for an aggregation of 100 households, with 5 shiftable appliances per 

household. 
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Pricing design for RDRA have been introduced in order to help RDRA in market decision-

making and pricing model design. An example of such an approach can be found in [118] 

where the objective function of the RDRA was to maximise consumer surplus, the difference 

between the total amount that households agrees to pay and actual payment. The optimisation 

problem was formulated as a function of the dynamic price signals from the RDRA, the 

benefit function, and the loss of consumer comfort factors. The price signals were determined 

day-ahead pricing through a post-forecast treatment technique [121].The results showed 

savings in consumer bills of about 20% along with flatter load curves as was expected. 

Although the operation of RDRA can be extended to schedule in RTP, the data privacy and 

security of customers has not been considered in the proposed framework.  

Social Welfare Maximisation: In the methodology adopted in 2.4.2, it was assumed that the 

goal of customers is always in line with RDRA. However, in this category, both RDRA and 

HEMS seek to achieve their own interests. The framework proposed in [75] was extended in 

[114] to provide a unified approach to combine the RDRA objective in reshaping the load 

profiles and customers’ interests in reducing energy expenses. Moreover, since the whole 

procedure in the proposed model is in a parallel architecture instead of a sequential process as 

in [75], long processing time as well as communication problems are solved. 

A combination of RTP and ToU with incentives were proposed in [115] with the aim of 

alleviating the overloading issues in the DN. One of the main features of this methodology is 

that the network loss as well as power flow equations and limits are also included in the 

energy balance constraint of the optimisation problem. The non-linear parts in the constraints 

is linearised using Special-Ordered-Sets-of-type 2 (SOS2) technique [122, 123]. The results 

show the effectiveness of DR management system in managing network overloading in the 

presence of high penetration of Plug-in EVs. Furthermore, better results can be achieved with 

RTP as compared to ToU tariffs. 

RDRA in Electricity Market: The main focus of studies in this category is the modelling of 

the electricity market with several competing RDRAs connected to end users. The aim of the 

system operator is to minimise the network operational cost by offering rewards to RDRAs. 

Therefore, each RDRA attempts to maximise its profit by providing and selling the maximum 

DR services to the SO. However, there is a minimum threshold in amount of demand 

reduction provision for participants. The minimum DR is 10MW for frequency response 

service in UK [124]. All entities in the market are essentially self-interested and non-
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cooperative. This emphasises the importance of modelling a comprehensive framework that 

facilitates the SO’s access to a full understanding of all DR-related parameters and examining 

the interaction of all participants in the DR market.  

Towards this scope, a multi layer-based model was presented in [119], as illustrated in Figure 

2-7, to investigate the behaviour of participants in the market. The first layer includes the 

DRAs, suppliers and renewable energy producers while the end users are modelled in the 

second layer. Additionally, an incomplete information game theory algorithm was used to 

represents the interaction between participants in the market for day-ahead as well as real-

time markets. 

Independent 
Service 

Operator

Plug-in Electrical 
Vehicle Aggregators

Retailers DR Aggregators
First Laye

r
Se

co
n

d
 Laye

r Plug-in Electrical Vehicle 
Owners

Consumers
 

Figure 2-7: Multi-layer framework introduced in [119]  

A hierarchical market system was introduced in [120], as presented in Figure 2-8, consisting 

of three levels in an RDRA framework for a day-ahead market. In the first level, the reward 

per unit of cost reduction is announced by the system operator with the aim of minimising 

cost. The next level involves competition between the RDRAs where each of them sends its 

offers to the SO, following negotiations with their relevant households. Finally, the system 

operator rewards the accepted offers. The results showed that all participants can benefit from 

this proposed branch-model as a result of negotiation between aggregated households. This 

study assumed that the response received from end users by each related RDRA is reliable. 
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However, the effectiveness of this assumption cannot be guaranteed due to additional 

incentives resulting from deliberate customer misreporting. 

Electric Utility Operator

Aggregator1 AggregatorJ

Household 1 Household i Household l Household N

Reward for DR service

Total demand pattern 
from each aggregator Demand load pattern

Compensation across
 From each aggregator

… …

…

 

Figure 2-8: Hierarchical framework proposed in [120] 

2.5.1.2 Technical targets 

Generally, DR improves the lifetime of network components and the reliability of the electric 

distribution systems. In [94] the aging of the 80 kVA distribution transformer loaded close to 

the rated load was reduced up to 75% through DR provided by wet appliances of 20 

households. Similarly, the analysis in [125] specified significant increment of lifetime of 

MV/LV transformer by integrating PV and DR in the distribution feeder. [95] employed an 

on-load tap changer at the secondary transformer to adjust the LV network demand. This 

resulted in the reduction of thermal constraints, annual network losses and of the paper 

insulation temperature of the cables, as well as improvement of voltage.  

On the other hand, DR can help to manage the operational issues of the network by informing 

consumers through DR event signals. When a DR event occurs, the transformer or LV feeder 

aggregator/agent allocates the demand reduction boundary to each consumer or directly cut 

required load curtailment. The first action refers to EDR programmes where consumers can 

voluntary control their consumption whereas the latter is mostly for DLC programmes. 
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Therefore, the proposed load control strategies do not depend solely on the cost of electricity 

usage but also on the users’ characteristics, preferences, flexibility and satisfactions. 

The LV feeder controller deals with two challenges: the strategies to determine the allowable 

demand boundary for each household and the techniques to exchange the information with 

consumers. In the first one, three methods are used for load curtailment: Curtailment 

Potential Scheme (CPS), Flexibility Energy Scheme (FES) and a combination of them [126].  

In the CPS, the total amount of required curtailment is calculated and distributed 

correspondingly among each household at the network by considering individual available 

DR. In the FES, the household’s characteristics are also considered in the objective function 

of LV controller. Therefore, the DR mechanism seeks to maximise the comfort level of the 

consumers while maintaining the constraints of the network. However, this may result in 

more complex computational process since more advanced optimisation techniques are 

required.  Table 2-1 shows a summary of the research work for this category. 

  Table 2-1: Classification of methodologies in determining the allowable demand boundary for each 

household 

Methodology CPS FES CPS/FES 

Ref. [103] [127] [128] 

[129] [130] [131] 

[104] [105] [132] [133] 

[134] [135] [136] [137] 
[126] 

In an attempt towards overcoming operational issues in LV feeders through DR, two main 

issues have to be considered; controlling transformer overloading and voltage support.  

Overloading Management: Overloading issues at LV feeders occur due to exceeding the 

maximum capacity of either the primary or secondary transformers. In such conditions, DR 

events usually incorporate two features, the duration of DR event and the required amount of 

load shedding. The overall methodology aims to keep the instantaneous power demand at 

MV/LV transformer/LV feeder under specific limit during DR events.  

Several strategies have been introduced and analysed in order to tackle the overloading 

challenges in LV networks with direct switching actions. A proposed advanced DR control 

mechanism [103] was based on hosting capacity and maximum allowable local generation, to 

relieve congestions with directly control of the output of renewable sources. A merit-order 
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based direct control mechanism for HPs and EVs, was presented [104] and verified the 

feasibility of achieving 100% PV penetration in the studied LV network. 

An analytic hierarchy process-based EDR strategy was proposed in [105] to reduce the power 

demand at the transformer level during system stress conditions. The total demand reduction 

was determined by demand deduction from the sorted consumption queue. In this regard, the 

controller at transformer level sorted all reported demands (kW) ascendingly. Then, the 

boundary demand for each consumer was determined at the point that the aggregated demand 

of households is equal or less than the total demand reduction. However, regardless of 

consumers’ particular characteristics, the demand limit that was assigned to them during a 

DR event was the same. Therefore, following a DR event, the system is faced the probability 

of getting affected because of excessively power demand rise (e.g., demand restrike). This 

problem is addressed in a MAS-based framework [132, 131] by simultaneously minimising 

the potential rebound power demand at transformer level. Thus, the impact of undesirable 

new peak demand at the transformer after ending a DR event can be alleviated. Moreover, the 

interests of consumers regarding supplying critical loads, preserving comfort level, and 

minimising shiftable appliance’s waiting time during a DR event, are taken into account in 

parallel. 

Voltage control: The focus of a large volume of literature on mitigating both under-voltage 

and overvoltage problems at the LV network is in active power curtailment of PV inverters. 

Different types of droop control methods, namely P-V [127, 128], Q-V [128, 129] and P-f 

[130] have implemented as effective tools to alleviate network constraints. For instance, 

[138] devised a sensitivity-based droop characteristic to allow a uniform curtailment for 

connected PV inverters in a radial distribution feeder. [127] presented a MAS based 

hierarchical approach that combined droop-based local control with a centralised overlaying 

control to curtail the PV injection among the consumers based on CPS. The P-V droop 

control mechanism in [126] is presented and is based on a linear function of voltage deviation 

magnitude. During normal operation, the output active power of the PV inverter is set at the 

maximum point and is reduced following voltage issues. These methods are not detailed here 

as they are out of the scope of this thesis.  

On the other hand, decentralised approaches have been also proposed at the distribution 

transformer level to control power intensive appliances in the household. Such an approach 

was introduced in [133] where the demand curtailment allocated to each household depended 
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on houses electrical panel size. However, at LV feeders, voltage issues are mainly considered 

in unified-based approaches along with congestion management considering flexible loads. 

Unified Approach: In the two previous categories, the proposed techniques aimed to manage 

the LV network constraints separately. However, in practice, these issues are subject to time-

variable constraints and can change in hourly, daily, monthly or seasonal basis. Furthermore, 

there is a correlative nature between these network constraints and several researches have 

addressed this issue through a unified-based approach. 

A unified approach focussed on agent-based hierarchical architecture is presented in [126] to 

deal with both network congestions and voltage limit violations over time. The DR 

curtailment scheme was based on predefined bilateral agreements. A CPS-DLC scheme was 

adopted to control the amount of injected power from the residential PV inverters. LV 

aggregator sent the curtailment requests to appropriate connection points using FES for 

controlling HPs. MIP technique was used to determine curtailment locations. This is a good 

example of integrating CPS-DLC scheme and FES. 

Another approach proposed a novel Customer Rewards (CR) scheme based on a two-level 

hierarchical control scheme [134]. The aim of the primary controller is to improve the feeder 

voltage profile while maintaining it within a permissible band. This was done by load shifting 

response where the customers were dynamically rewarded on a day-basis. Customer 

flexibility as well as satisfaction are also considered in the decision-making process of the 

controller for load adjustment. The secondary controller is responsible for regulating the 

transformer overloading through peak load shaving. The result showed the effectiveness of 

the proposed CR schemes to shave the peak loads. However, appliance characteristics were 

not taken into account in this process.  

[97] proposed a new approach that can be provided to all EVs over a charging period while 

ensuring that network will not exceed the statuary limits. Instead of minimising power losses 

and/or voltage deviations, the objective of the optimisation technique was to maximise the 

total amount of energy to mitigate the constraints. The voltage and thermal loading were 

considered for the network transformer and the mains cable connecting the transformer to the 

network. Results show that by controlling the charging rate of individual vehicles, high 

penetrations can be accommodated on existing residential networks with little or no need for 

upgrading network infrastructure. 



 

 

 

 

40 

2.5.2 System Wide DR Management 

Constraint management for two principal operational issues, contingency and voltage 

violation, at DN is discussed in this section. The focus of DR control mechanism is on the 

MV network where the system operator interacts with RDRAs in LV feeders to improve the 

reliability and security of the DN. In addition, a summary of the proposed DR management 

framework for ADNM in the literature is provided. 

2.5.2.1 Congestion Management 

Congestions in distribution networks can result when demand or generation at a certain point 

exceeds its maximum capacity. Generally, contingency occurs in MV network which requires 

the load reduction across the network. Managing the load flexibility at feeder level is 

advantageous and results in more local, competitive and accurate DR control.  Therefore, due 

to the radial topology of LV networks, the households within each feeder can be treated 

individually and be connected to one aggregator. The typical market-based DR methodology 

to control the congestion at DN comprises 3 stages; firstly each aggregator optimises its 

individual profile of contracted consumers in order to provide local DR services. Then they 

send an initial demand bids based on the available DR (responsiveness demand) from their 

relative households to the DSO in a day-ahead/real time market. On receiving the bids, the 

DSO assesses the congestion status of the network by running Alternative Current Optimal 

Power Flow (ACOPF). If any congestion is detected, distribution congestion price is 

calculated. Then, aggregators reschedule their bids based on new predicted spot price and 

distribution congestion price. In most literature, flexible demand from aggregated residential 

appliances, was considered instead of multiple generation units since they are adaptable with 

the changes in the price. 

In terms of market based DR approaches, the congestion price has been calculated through 

various methods such as the Locational Marginal Pricing (LMP) [106] or dynamic thermal 

model of the transformer [107]. In [106] the simulation result for 30 nodes verified the 

feasibility of the proposed method with less than 1.0% night overloading and 2% morning 

peak overloading. The proposed model in [107] for half-yearly and annual performances 

showed a significant cost saving and demand reduction during congestion times through price 

adjustment. However, in case of non-adequate DR flexibility during congestion periods, more 

direct approaches of curtailment are required. In this regards, An MIP-based selection 

mechanism is presented in [108] to procure a synergy between direct and indirect control 
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approaches for congestion management. The flexible demands are calculated through two 

capacity market programmes which were based on the amount of power that can be 

maintained at all times and that can be curtailed during network emergency situations. 

A different real-time market price is introduced in [96] aiming to deplete the overloading 

issues through price-responsive HPs to local price discrimination in each consumer zone. In 

this respect, a price controller was deployed in each zone that can receive the centrally 

dispatched RTP in the market. If overloading occurs, a supplementary zone-price is added to 

the market price by the local controller. Therefore, consumers in the related zone are 

motivated to decrease their consumption, and thereby eliminate overload. Although the 

feasibility of combining such auxiliary services by small flexible units with a centralised 

control scheme was verified, several technical challenges and social questions were raised. 

For instance, customers having to pay for any local problem on the network could reduce 

their willingness to participate in the proposed pricing scheme.  

2.5.2.2 Voltage Violation Control 

Intermittent and unpredictable DGs or load demands as well as contingencies in the DN, may 

usually cause voltage violation at some buses. Voltage instability in DN could lead to voltage 

collapse and consequently power blackouts. Thus, identifying the strengths and weakness of 

buses in the network is essential to improve the stability of the system. The effectiveness of 

DR in reducing voltage drops across the distribution feeders and boosting the voltage at the 

far end of the feeders have been demonstrated by many [139, 140, 135, 137]. Similar to local 

DR management, studies in the voltage instability issues at MV/LV level rely mainly on load 

shedding with incentive-based DR including DLC or EDR. Therefore, responsive loads have 

a pre-signed contracts for participating in load curtailment schemes when is required.  

In order to design and implement an efficient DR control mechanism, it is essential to find 

out the optimal load shedding of the feeder. This gives rise to two challenges: the amount of 

load shedding and the effective location/s where DR should be applied. The common way to 

determine the optimum buses for load shedding is using voltage sensitivity analysis. This is a 

matrix of voltage sensitivity of all buses related to changes in the generation and load 

parameters (P and Q) on the other buses in the network. Several methods are used to derive 

the voltage sensitivity in MV/LV networks. These include:  
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 Voltage Deviation Index (VDI) [141, 142, 143, 144] 

  Updated version of Jacobian matrix [145, 146] 

  Direct approach dependent on the topology of the network [147, 148] 

 Adjoint network model [149] 

 Y-matrix model [150] 

 Constant current model [151]  

 Bus power flow model [136, 152]  

Using information about the voltage sensitivity of buses in the network, two methodologies to 

shed the required amount of demand for mitigating voltage issues have been developed: 

 A loop procedure was applied in which the load reduction starts from the weakest buses 

that have the largest voltage deviation magnitude from required voltage change. The 

procedure continues and stops when the value of required voltage change becomes lower 

or equal to zero [139, 140]. This method has been used where the total amount of required 

load shedding is not known. 

 A Distributed Curtailment methodology which consisted of sharing the total quantity of 

load shedding among buses according to the magnitude of their voltage sensitivity [135, 

137]. This method has been used where the total amount of required load shedding was 

already calculated [137]. On the other hand, optimisation techniques have been used in 

instances where the amount of load curtailment is unknown [135]. The problem was 

modelled as single or multiple objective functions, considering voltage as a constraint. 

The main aim was to find the minimum required load curtailment, e.g., [135], or 

maximum load capacity of each bus, e.g., [136].  

2.5.2.3 Active Distribution Network Management Framework 

This section reviews the literature on modelling of ADNM framework when implementing 

DR services. The overall system model comprises a set of households interacting with a Load 

Service Entity (LSE), e.g., DSO. The aim is to present a distributed DR scheme that 

computes an optimal demand schedule. The difference between these proposed models with 

the ones presented in section 2.51.1 is that the level of DR control is at distribution level 

rather than local level. Moreover, the associated power flow and system operational 

constraints of the DN are considered in the DR model. 
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Participating households in DR schemes receive the control signal from LSE through HEMS. 

Then, they coordinate their appliances’ operations in order to meet the required objective 

during a DR event. The objectives of the DR model are to manage the operating of household 

loads in order to: 

 Maximise the social welfare  

 Keep the overall network demand below a certain limit during peak hours  

 Satisfy the appliance operational constraints, the power flow constraints, and the system 

operational constraints  

A residential DR was formulated in [153, 154] as an ACOPF problem. A multi objective 

function for the DR scheme was proposed, to maximise the aggregated consumers demand 

and minimise power losses in the DN. The results demonstrated two effects of DR that can be 

applied when designing a DR programme; first, the location effect where the feeder is more 

sensitive to changes in demand at the buses located at the end of the feeder. The Second one 

is the rebound effect where a new peak can occur after the DR event ends if the parameters 

are not selected properly. A DLC scheme was applied in order to enable LSE to adjust 

consumption of residential customers.  

In general, implementing DR in a wide-area network needs a control framework and structure 

that integrates different entities with distinctive attitudes and objectives, as illustrated 

previously. In this way, flexible demand from residential customers can ensure the network 

security and reliability while satisfying all DR players’ goals. In this regards, three models 

have been presented by studies; multi-layer framework (Figure 2-9), hierarchical framework 

(Figure 2-8), and MAS framework (Figure 2-7). The first one consists of different layers 

where each entity in each layer has similar roles or attributes. For instance, in the proposed 

multi-layer framework in [119], the players participating directly in electricity markets are 

modelled in the first layer. In the second-layer, agents connect to one of the first-layer agents 

in order to take part in the markets. The hierarchical structure consists of different levels 

where the entities in each level communicate with their upper level [120]. The top level is the 

main DR controller, and in the lowest level, end users are allocated. This structure is also 

known as supervisor-employee model. In the MAS, each network entity is modelled as an 

agent with specific behaviour, attitudes and objectives [127]. Agents can communicate with 

each other in order to achieve their goals. 
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Figure 2-9: MAS framework proposed in [67] 

2.6 Overview of GB Demand Response Innovation Pilots  

Innovation projects refer to novel solutions as alternatives for costly upgrading of the current 

DN to economically benefit customers and the DNO [155]. This section provides a review of 

related innovation trials and a summary of the state of knowledge as applicable to residential 

DR in GB. The most recent projects relevant to this thesis are categorised and detailed in this 

section and a summary is provided in Table 2-2. 

 

 



 

 

 

 

45 

Table 2-2: Summary of major innovation pilots in GB network with the focus on DR 

Trial Organisation Location 
Time 

Period 
Category Innovation Scale 

Solutions and 

Technologies 

Communication 

Strategies 
Investment Key Lessons Learned 

Solent 

Achieving Value 

from Efficiency 

Scottish and 

Southern 

Electricity 
Networks 

(SSEN) 

Solent Ongoing Education 

Testing cost 

effectiveness of 

energy efficiency 
measurements and 

engagement 

4,600 

homes 

Financial incentive, 
Community energy 

coaches 

Deploying LED 

lighting 

Personalized data-

driven messaging,  
one-by-one 

written contact, 

community 

engagement 

£7 million 

Consumers engaged 

better with local 

community than DNOs 

Energywise 
UK Power 

Networks 

Tower 
Hamlets, 

East London 

 2014 – 

2017 
Education 

Testing the effects 

of demand reduction 

techniques for fuel 

poor customers 

538 

homes 

ToU, incentives 

(vouchers, etc.) 

 

Smart meters, smart 

energy monitor and 

devices, temperature 
monitoring 

equipment 

Face-to-face 
communication, 

dedicated support 

line, community 
engagement, 

tailored 

engagement 
strategy and 

materials 

£5.49 

million 

Successful engagement 

due to tailored approach 

Activating 

Community 

Engagement 

Northern 

Powergrid 

County 

Durham 

2015 – 

2017 
Incentives 

Community 
engagement through 

online gaming to 

achieve demand 

reduction 

- 

Incentives based on 

demand reduction, 

 

Smart plugs 

 

Online game, 

Posters, flyers, 
educational 

programme, 

council website, 
community 

engagement 

£1.1 

million 

 Complete understanding 

at a participant level is 

crucial 

 Importance of providing 

adequate and not 
overwhelming 

information to 

participants 

Power Savers 

Challenge 

Electricity 
North West 

(ENWL) 
Stockport 

2013 - 

2015 
Incentives 

Increasing capacity 

for renewable 

energy generation 

on the DN 

251 

homes 

Incentives based on 

the consumption of 

previous year 

 

LED light bulbs, 

shower timers, Plug-

in timers 

Newsletter, 

online, events and 

advice, home 

display, 
community 

engagement 

 

- 
 Participants well 

supported and engaged 

 Demand reduced 
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Trial Organisation Location 
Time 

Period 
Category Innovation Scale 

Solutions and 

Technologies 

Communication 

Strategies 
Investment Key Lessons Learned 

Community 

Energy Action 

Western Power 

Distribution 

(WPD) 

10 locations 

from central 

to south 
west 

England 

2012- 

2013 
Incentive 

Assessing the 

feasibility of 
reducing peak 

demand by DSM in 

predictable and 

reliable 

834 homes 

Cash incentives for 

each peak and 
overall consumption 

reductions targets 

for each community 

Online, 

Newsletter, 

Leaflet, g, door 

knocking 

- 

Methodology was not 
successful and not 

recommended as a way to 

reduce demand 

Sola Bristol 

Western Power 
Distribution 

(WPD) 
Bristol 2011-2016 

Integrating 
low-carbon 

tech. 

Assessing feasibility 
of integrating low-

carbon tech. using 

new technologies 
and storage 

management 

61 homes 

Sunshine tariff 

(ToU) 

 

PV, energy storage, 

DC circuits 

Home display, 

community 

engagement, 

website 

£2.8 

million 

 Understanding of 

customers’’ use of 

energy to maximise and 

tune energy management 

 More than 60% 

customers engagement 
required for significant 

effect on DR 

My Electric 

Avenue 

Scottish and 

Southern 

Energy (SSE) 

Across UK 2013-2015 

Integrating 

low-carbon 

tech. 

Directly control EVs 

to manage local LV 

network 

- 

Lease on EV at a 

reduced rate, 
free/minimal cost 

charging point 

installation, Esprit 
(innovative piece of 

technology for 

directly controlling 

EV charging) 

Local community 

event and 

engagement, 
newsletter, social 

media 

£9 million 

 Need of intervention 

with increase in the 

penetration of EVs 

Forecast of around £2.2 

billion savings by 2050 

Customer 

Lead Network 

Revolution 

Northern 

Powergrid 

North of 
England 

2010-
2015 

ToU 

Assess the impact of 

low carbon 

technologies 

including PVs, HPs 

and EVs and ToU for 

residential, industrial 

and commercial 

customers 

 

11,000 

homes 

(2000 

others) 

ToU, 

 

Smart meters 

Home display £31 million 

Reduce residential peak 

demand by 6.39% 

between 4pm-8pm 

Ireland 

Electricity 

Smart 

Metering 

Behaviour 

Trials 

Commission 

for Energy 

Regulation 

within the 

Republic of 

Ireland 

Ireland 
2009-

2010 
ToU 

Investigate the 

potential of smart 

meters, ToU tariffs 

and DSM stimuli on 

load 

reduction/shifting 

 

5,028 homes 

5 ToU rates, 

bi-monthly billing 
with a 

demand reduction 

incentive 

bi-monthly 

billing, 

monthly billing, 
bi-monthly 

billing with an 

electronic energy 
monitor 

- 
Households on average 

saved 2.5% on bills 
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Trial Organisation Location 
Time 

Period 
Category 

 Innovation 
Scale 

Solutions and 

Technologies 

Communication 

Strategies 
Investment Key Lessons Learned 

Energy Demand 

Research Project 

EDF, E.ON, 

Scottish Power 

and SSE 

London and 

the southeast 

of England 

2007-2010 ToU 

 Trials by four energy 

suppliers 

 Investigate the effect 

of supplying 

information on long 

term consumption 

 

60,000 

homes 

 

Financial incentives for 

consumption below 

target Smart meters, 

Real time display, 

letters, website 
£9.75 million 

Results showed that overall 

there was no significant 

reduction in consumption 

Northern Ireland 

Powershift 

Northern Ireland 

Electricity. 

Northern 

Ireland 

Oct. 2003-

Sept. 2004 
ToU 

Evaluating the 

potential of shifting 

peak demand through 

ToU tariff 

200 homes 

3 ToU rates 

Keypad meter with an 

IHD 

 - 
Annual bills decreased by 

5.5% 

Low Carbon 

London 

EDF Energy, UK 

Power Network 
London 2010-2014 dToU 

Investigating the 

impact of dToU on 

demand-supply 

balancing and network 

constraint management 

5,533 

dToU, 

 

Smart meters 

Text messaging £28 million 8% reduction in demand 

Shetland Trial 

Scottish and 

Southern 

Electricity (SSE) 

Shetland 

islands 
2013-2017 ADNM 

Evaluating the 

effectiveness of DSM 

on active network 

management 

234 homes 

Battery and DSM 

enabled appliances, 

ADNM 

Website, phone, 

home visit, local 

meeting 

£21 million 

 DSM with ADNM platform 

can be an alternative for 

future DN 

 Learning and improving the 

relationship with customers 

in order to change their 

consumption behaviour 

Customer Load 

Active System 

Services 

Electricity North 

West 

Clusters 

across GB 
2014-2016 ADNM 

Evaluating the 

application of 

innovative voltage 

management 

technologies to provide 

DR services 

 

60 primary 

substations 

serving 

approximately 

485,000 

domestic and 

industrial and 

commercial 

customers 

Cash incentives 

 

Smart voltage control, 

advanced active 

network management 

system 

Leaflet, website £8,098k 

 

ADNM with DR can 

successfully provide voltage 

and frequency support 

without affecting power 

quality of network devices 

Accelerating 

Renewable 

Connections 

(ARC) 

SP Energy 

Network 

Scottish 

borders and 

East Lothian 

area 

2012-2016 ADNM 

Combination of  

ADNM scheme and 

community 

engagement to manage 

the generation-supply 

by generators and 

locally-produced 

energy 

Covers 

geographical 

area of 

2700km2 

PV, wind turbines, 

modification of 

network equipment 

Incentive on 

connections 

engagements 

Workshop with local 

community, online 

tools, 

£8.46 million 

Reduced 

infrastructure; 

Lower cost over traditional 

solution 

Save energy cost for local 

communities 
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2.6.1 Global Demand Response  

The trials based on global DR aim to introduce different DR pricing schemes to financially 

incentivise customers to lower/shift their peak electricity usage. So far in GB, ToU and dToU 

have been implemented and their effectiveness assessed through various pilots [156]. 

Time-of-Use Tariffs: Key findings of the trials show that ToU tariffs can produce a shift of 

domestic demand from peak to non-peak times. However, results are highly varied among 

trials. The outcomes indicated a greater effect on peak demand than on overall energy 

consumption. Table 2-2 shows the variation in peak reductions across ToU trials from five 

main projects implemented in UK and Ireland. In some projects different ToU tariffs were 

introduced for better comparison. The Energy Demand Research Project [157] introduced 

two ToU tariffs by EdF and SSE. EdF trialled a daily ToU tariff whereas SSE’s one was 

seasonal as well. The results show an approximate 4% and 8% peak demand reduction in 

weekday and weekends respectively for 1936 participants [158]. Five different ToU tariffs, 

based on the time of day and weekdays/weekend, in the Ireland Electricity Smart Metering 

Trials [159] showed 2.5-9% demand reduction from 5,000 households [158]. Although not 

geographically in GB, the data from the Irish pilot is considered relevant to this study due to 

the characteristically comparable climate. The dataset from this particular pilot will form the 

basis of the analytical investigation for in this thesis. This is explained in more detail in 

chapter 4. In another pilot, Customer Lead Network Revolution [160], a 6% peak 

consumption reduction was shown from 600 households [161]. The Energy Control for 

Household Optimisation [162] trial for controlling shiftable appliances showed that the peak 

load can be reduced by 75W per household. In Sunshine Tariff [163] a 13% daily demand 

reduction was achieved for customers with automated control technology. However, those 

without such technologies could only rely on behaviour change to shift their loads resulting in 

significantly less demand reduction. In addition, the outcome of these trials emphasises that 

price incentive alone is not sufficient and that education needs to accompany the introduction 

of ToU. The current focus of ToU tariffs are primarily on energy engagement and awareness. 

Dynamic Time-of-Use Tariffs: The UK’s first dToU pricing initiative was implemented 

under the Low Carbon London (LCL) [164] project in the London area in 2013. The tariff 

aimed to investigate the potential of DR in different trial events set by suppliers or DNOs. 

Suppliers defined a Supply-Following (SF) event aiming to quantify the potential of dToU 

DR to aid in energy balancing. A Constraint Management (CM) event was designed by the 
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DNO to relieve the network constraints. 1,119 households received dToU tariffs which 

subjected them to CM and SF price events. The average consumption during high price 

periods was reduced by up to 9%, but increased during low price periods by 14%. Moreover, 

bill saving was possible for 85% of households on the dToU tariff with 4.9% mean reduction 

in the bill. 

2.6.2 Community Engagement 

The aim of these schemes is to explore how local communities can positively engage in DR 

programmes from both the DNO’s and the consumers’ point of view. DNOs collaborate with 

customers to reduce demand locally, maximise the local usage of available capacity and thus 

defer the network reinforcement investment. Various trials [165] have been implemented by 

DNOs in order to alter the customers’ behaviour, reduce demand and avoid peaks by shifting 

energy usage to non-peak time. The recent innovation trials in local communities investigated 

in this section have been classified according to their focus and explained.  

Integrating Low-Carbon Technologies: The aim of this category is to assess the 

effectiveness of integrating new low-carbon technologies into the DN.  For instance, in the 

Sola Bristol project [166] , households within the trial were equipped with PV panels, 

electricity storage units and internal DC circuits and operated under ToU tariffs. The result 

demonstrated the benefits of storage and ToU tariffs. However, higher density of DG is 

needed to make the project cost-effective. In the mentioned trial, PV should be installed for 

around 60% of customers to observe significant effect on demand side response. Moreover, 

beside monetary incentive, consumers’ awareness of energy schemes is key to maximising 

engagement. Another trial, My Electric Avenue [167] explored the impact of charging clusters 

of EVs on local electricity networks during peak hours. This is the first trial that directly 

controls charging of domestic EVs to keep the demand within acceptable limit. The outcomes 

from analysing various kinds of LV networks across Britain showed that with penetration of 

40%-70% of EVs, 32% of LV feeders will require intervention. That was estimated based on 

3.5 kW charging of EVs taking into account that the capacity of a typical susceptible network 

is less than 1.5 kW per customer. 

Education: The education and awareness of consumers in low-reduction schemes are the 

main remit of the trials in this category. Consumers are updated with the progress of the trial 

and their benefits in order to motivate them and keep their interests. As an example, 

Energywise [168] project was designed with the focus on fuel poor customers to enable them 
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to participate in energy efficiency and DSR opportunities. A face-to-face communication and 

support was applied to selected customers where 82% of sign-ups achieved. The main 

reasons for taking part to this project were energy cost reduction, better visibility of energy 

use and offer of free energy devices. Another such project, the Solent Achieving Value from 

Efficiency [169], sought to assess the cost effectiveness of energy efficiency measures and 

engagement in order to reduce constraints in the network. In this trial energy coaches work 

with local communities to increase awareness of sustainability and responsible energy usage 

with a view to encourage people towards more successful and sustained behaviour change. 

This is achieved by working with local drivers including community engagement events such 

as refurbishing local community facilities 

Incentives: Providing more attraction for consumers in order to improve their active 

engagement through incentives is the aim of these trails. In this attempt, the Activating 

Community Engagement [170]  trial designed and implemented an online game where 

participants merited credits for reducing their demand during specific time periods. The 

winning community group and individual participants were awarded cash prize based on their 

earned points. In another community engagement programme, the Power Savers Challenge 

[171], incentives were offered to consumers who lessened their consumption compared to the 

baseload of the previous year. A total of 201MW in demand reduction, from 251 households 

who took part in the challenge, was achieved. 7 of the 10 participating areas met their 

reduction targets leading to an average reduction of 4% as compared to 2013. The 

Community Energy Action [172] pilot deployed a rewarding scheme for 10 communities to 

keep their demand under the transformer overloading rate. The incentives were allocated 

according to the deferment of reinforcement costs at the substation for reducing peak demand 

as well as overall consumption. The qualitative analysis indicated that financial community 

incentives alone, cannot guarantee a high level of response due to the variability and 

difficulty in predicting community demands. 

2.6.3 Active Network Management 

There are a few pilots that implemented the ADNM with DR services from residential loads. 

This section summarises two major trials aimed at demonstrating the effectiveness of DR in 

ADNM platforms to manage the network constraints and increase the DG penetration. The 

Customer Load Active System Services [173] project was successfully implemented and 

delivered important and valuable understanding of the voltage/demand relationship for all 
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stakeholders. The trial demonstrated the application of innovative voltage management 

technologies to provide DR. This was done with smart voltage controllers in major 

substations linked to the central control system and ADNM. Customers were not affected by 

the voltage fluctuations from the application of the ADNM as these changes are a normal 

daily occurrence. Up to 3.3GW of DR potential to provide voltage/frequency support was 

achieved which is equivalent to a combined total reactive power of 2GVAr and two gas 

turbine power plants. In another project, the Shetland Trial [174], old inefficient storage and 

water heaters was replaced with modern smart storage heaters to provide DR services for 234 

households.  These appliances were selected as they can provide the greatest potential of 

demand shifting. The ADNM receives the daily energy requirements from all devices for the 

next day and determines the schedule before sending instructions to each device. The heating 

appliances in each household (e.g., set points of the space heaters and water tanks) follow the 

instructions of the ADNM schedule. The ADNM platform demonstrated the potential for 

providing a successful flexible framework for future changes to the network. Another trial, 

the Accelerating Renewable Connections [175] combined both ADNM scheme and local 

community engagement to manage the generation-supply by generators and locally-produced 

energy sources respectively. This project enabled connection of 49.5MW and 2.2MW from 

wind farm and PV panels respectively onto local homes. This could save households around 

£1.9 million in energy costs over the lifetime of the systems. 

 

2.7 Attributes of demand responsiveness 

The level of consumers’ responses to incentive-based DR programmes depends on the level 

of maximum participation. In priced-based DR, this relates to price elasticity of demands 

which indicate the load responsiveness in price variations. Therefore, this section aims to 

discuss the required tools and considerations that enable SOs to assess and improve the 

outputs of DR strategies during the planning phase. Additionally, the barriers, limits and 

challenges in terms on implementing residential DR schemes are discussed. 

2.7.1 Price Elasticity of Demand (PED) 

Recently, price-based DR programmes have become the focus of interest due to greater 

flexibility and potential of delivering responsiveness demand. Customers can benefit from 

lower prices at non-peak time or pay the actual fluctuation market rate. However, the 

financials gains are dependent on customer distinctive characteristics. Directing to significant 



 

 

 

 

52 

DR participation, energy providers need to characterise and assess the elasticity of customer 

response to changes in the electricity prices in order to define more effective tariffs. 

Many studies have investigated the effects of RTP tariffs [176, 177, 178, 179] and TOU 

tariffs [180, 181, 182] on residential demand curves and their profitability. The principal aim 

was centred on addressing the fundamental structures for designing more effective tariffs 

towards DR schemes implementation. Results show that among the different time-based 

tariffs, dynamic pricing, e.g., RTP, has the potential to provide the most benefits to all DR 

stakeholders. On the other hand, some researchers evaluated the effects of switching from 

static to dynamic tariffs [183, 184, 185, 186, 187]. For instance, the impact of ToU tariffs 

compared to flat rates studied in [187] for a group of 500 Swedish households showed 

reductions of 11.1% and 14.2% in the first two years of the trial with higher value being in 

winter. Moreover, shiftable demand from peak to non-peak periods was assessed to be 0.8% 

and 1.2% with higher level in summer months. 

The introduction of a matrix of price elasticity becomes imperative for the modelling of the 

effects of price variations on customers’ responses. This matrix analyses and reflects the 

consumer characteristics in term of their attitudes towards DR participation and potential of 

flexible loads. In fact, this can also be employed in electricity price adjustment procedure 

[188]. Many studies have demonstrated the applications and benefits of applying price 

elasticity including market power of generation company  [189], electricity market structure 

[190] and modelling RTP [191, 192]. Using price elasticity of demand was shown to be 

helpful in determining the optimal sharing of the DR remuneration to the aggregated 

consumers [193].  

The correlation between price and demand of households has been examined according to 

historical and survey data by several approaches [123][128-129]. Unlike businesses and light 

industries, energy usage followed less heterogeneous patterns in residential sectors. Hence, 

these analyses are implemented across different population groups due to the intermittent 

nature of residential demands. A meta-analysis [194] of empirical studies in the literature 

calculated the price elasticity of demand of energy which showed an average of 0.126, and of 

-0.365 in short term and long-term respectively. Similarly, [195] averaged the self-elasticities 

for ToU tariffs to −0.003 to −2.57 for off-peak hours and −0.002 to −1.41 for peak hours. 

Cross elasticities also varied from 0.003 to 1.57 across different studies. Spees and Lave 
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[196] reported those elasticities under a RTP regime to be higher than those under ToU or 

CPP regimes. 

2.7.2 Potential Flexibility of Demand 

The electricity consumption per households has been raised by 2.1% in 2016 compared to 

previous year [197]. Moreover, the number of total average number of appliances in each 

household has increased from 2 in 1970 to 13 appliances in 2016.  According to a report from 

the DECC, 18% of UK’s domestic electricity consumption was in wet appliances in 2012 

[198] which is forecasted to increase by 25% by 2030 [199]. However, the granularity of 

flexible loads differs between load categories. Consumer-independent appliances, e.g. fridges 

and washing machines, can be more flexible without loss of utility to the consumer [200]. 

The annual electricity consumption by wet appliances was 15,073 GWh, including 4582 

GWh Washing Machine (WM), 2431 GWh Washer Dryer (WD), 3338 GWh DW and 4722 

GWh Tumble Dryer (TD). Moreover, an increment from 15,073 GWh in 2012 to 22,938 GW 

h in 2030, is estimated in wet appliances consumption as shown in Figure 2.11.  

 

Figure 2-10: Annual domestic electricity demand by wet appliances 1970–2030 [199]  

The demand of wet appliance electricity is subject to both weather condition and time of the 

day. For instance, considering seasonal variation, winter peak and summer low consumption 

is approximately 1.35 and 0.85 of the annual average respectively [201]. In terms of day-

variation, Figure 2.11 reflects links between wet appliance load profiles in a typical day. The 
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lowest usage is between 00:00 and 07:30 which is indicative of the sleep patterns and 

distinctive characteristics of household occupants. 

The above statistics demonstrate the relatively high potential of deferrable loads that can be 

considered as responsive to DR programmes. Generally, the probability of residential 

consumption profile under DR schemes depends on the appliance usage and prosumers’ 

attitude. Therefore, estimating the customers load profiles as well as their local engagement 

in DR schemes is essential for its success. 

2.7.3 Estimating and Modelling Electricity Demand Profile 

Determining the domestic DR potential from pilot data have been investigated widely in the 

literature. In implementing DR in macro scale, a complexity would arise due to the high level 

of uncertainty about consumption behaviours of distinctive households in offering the 

flexibility.  Customer consumption patterns from the appliance level can be grouped using 

clustering techniques. Clusters can be considered as a representation of the whole population. 

In this way, each participant is attributed to one or more clusters. The time-based flexibility 

of customers within their cluster is then calculated and the results extrapolated to represent 

the region or nation. The aims of the models presented in the literature are to provide 

guidelines for the available DR potential [202, 203, 199] or to present a generative model of 

customer flexibility behaviour [204, 205]. The latter can potentially eliminate the need for 

time-consuming surveys as it can generate synthetic data from the available dataset, thus 

providing a more comprehensive and realistic analysis.  

 

 

 

 

 

 

 

 

Figure 2-11: Wet appliances–seasonality effect (a) [201] and Wet appliance daily load profile in winter and 

summer 2030 (b) [199] 

 

 
(a) (b) 
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The potential of active demand reduction of wet appliances has been estimated in [202] 

through clustering 1693 Flemish households’ electricity demand. Expectation maximisation 

clustering technique was applied to segment the customers according to their magnitude of 

appliances usage over time. The estimation also incorporated the willingness of customers to 

participate in DR programmes from a home-survey. Moreover, in order to overcome the 

insufficient available data, the clustering algorithm was updated to allow data upscaling. The 

potential for active demand reduction was estimated to be 4% of the total residential power 

demand, assuming that 29% of the households took part. However, because of lack of 

sufficient information about delay durations from the pilot, only DR in terms of load 

reduction rather than the rebound from shifting appliances was considered. 

Using similar pilot data from and resulting clusters [202], the probability density of both 

smart start configuration of five deferrable appliance, including washing machine, tumble 

dryer, dish washer, hot water buffer and EV, and the length of the flexibility window in a 

typical day were calculated [204] for each cluster. In fact, this can determine the flexibility 

potential of shiftable appliances by estimating their maximum duration, time window of 

postponing/shifting while maintaining the comfort requirements of the user. The analysis 

shows that, using smart wet appliances, an average maximum increase of 430W and 

maximum decrease of 65W per household can be realised at midnight and evening 

respectively. Moreover, the flexibility potential of wet appliances was found to depend 

significantly on the time and type of the day. The highest potential occurred during evening 

and night-time hours, especially for weekends. The flexibility potential specifically was done 

on an aggregated level rather than individual household. A more realistic analysis of 

residential flexibility potential needs to take into account both the appliance load patterns and 

customers’ unpredictability of habits. Two systematic methodologies were introduced [205] 

to model the individual customer behaviour. In the first one, the clustering inputs were the 

flexibility features of appliances including deadline, the latest allowed start time of the 

appliance. Then, probability distributions were employed to model the corresponding 

configuration times for each deadline cluster. In the second model, both steps from the first 

proposed model, were estimated in a single step. The parametric representation of customers 

can be utilised for synthetic data generation. 

2.7.4 Challenges and Barriers 
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Implementing DR in residential areas can encounter some difficulties and restrictions. As a 

result, DR programs have not been implemented widely for domestic sectors. This might be 

due to these challenges that can be categorised as financial, social and technical.  

Initial Infrastructures: As discussed previously, activating DR for domestic consumers 

requires installing advanced technologies such as smart meters, in-home displays and HEMS. 

Apart from the costly investment of these devices, the important issue of whether it should be 

the consumer’s, the retailer’s, the aggregator’s, or the DSO’s responsibility for these initial 

installations, arises [206]. Authors in [207] has called this concern as an incentive-problem 

and concluded that costs should be split between customers and the enabling actor/s due to 

the common benefits from flexible demand. Also managing the big data from the increasing 

amount, speed and types of information produced by the network devices adds another level 

of complexity to this challenge. 

Engagement of Customers: Encouraging more customers to get involved in demand 

reduction schemes is vital. One of the main challenges is the lack of sufficient knowledge 

about DR benefits and using advanced home control technologies. Even with a high 

willingness to participate in DR, customers still face some challenges. It is not always 

possible for residential prosumers to manage their electricity all day. Users can decide about 

changing their consumption behaviour based on the information, energy price and energy 

consumption, obtained from their home display systems. However, providing smart DR 

control via HEMS can solve this problem by rendering the DR completely automated while 

still considering a base level of comfort and convenience. Also, Incentives for domestic 

households to participate in DR programs are quite minor due to small loads existing in each 

household.  

Technical Issues:  Due to the intermittent and less-predictable nature of residential demand, 

the exact knowledge of the DR becomes more complicated. The uncertainty in occupant 

behaviour is also related to factors such as social events and weather conditions [208]. 

Therefore a means of load-weather forecasting tools needs be developed and this could also 

serve as a tool for aggregators to provide a more effective planning of their actions [209]. 

Another obstacle relates to the DR strategy in how to coordinate the aggregated demand to 

mitigate peak rebounds. This can risk the reliability of the network especially in situations 

where more customers are willing to shift their demand in response to the higher electricity 

price [52]. 
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2.8 Summary  

This chapter provides a comprehensive literature on DR activation tools, techniques and 

strategies with the focus on residential level. Background concepts are described on price-

based and incentive-based DR programmes together with the key players within the active 

distribution network.  DR control schemes are classified in terms of consumer and network 

level. These are further split into another two categories based on the control strategy. At 

consumer level, discrete and aggregated options are considered where the concentration of 

DR design is on single or multiple households respectively. The DR control mechanism can 

be implemented in LV, local area, and MV feeder, wide area. A summary of classification of 

research papers investigating residential DR at network level is shown in Table 2-3. The 

considered constraints rely on the fact that voltage violation occurrence is most likely at LV 

feeders whereas the grid congestion is more common at MV level. 

 
Table 2-3: Classification of litreature in wide area network DR contrlloers based on constrints in different level 

 

Relevant recent DR pilots in the innovative transformation of DNOs to DSOs in GB are 

reviewed. A significantly increasing trend towards actively involving local communities in 

the demand-supply balance schemes has indicated significant energy reductions.  Finally, the 

challenges and obstacles in DR implementation are explored from financial, social and 

technical perspectives. According to the results achieved by both literature and pilots, it can 

be concluded that DR can provide the most cost-effective and reliable alternative solution for 

flattening the demand curve under system stress conditions. 

            Constraint 

Network  Level 

Voltage 
Transformer 

Overloading 
Congestion Unified 

LV 

[127]  [126] 

[128] [129] 

[130]  [133] 

[138]  

[103] [104] 

[105] [132] 

[131] 

- 
[97] [126] 

[134] 

MV 

[135] [136] 

[137]  [139] 

[140]  

- 
[106] [107] 

[108] [96]   
- 
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Chapter 3 Proposed MAS Framework 

3.1 Introduction 

Recently, MAS has been applied in power systems in order to provide a decentralised and 

dynamic framework to undertake control and coordination of the network. A MAS consist of 

multiple autonomous and distributed intelligent nodes called agents. The system environment 

can be grouped into domains called regions that usually model a physical local area [210].  A 

dynamic set of heterogeneous agents resides in each region in the physical network and are 

distributed over the system. The agents, e.g., physical devices, players and decision makers, 

interact with each other cooperatively to achieve the overall system target. MAS usually deal 

with complex and conflicting objectives which cannot be solved by sole agents. To obtain the 

system objective, the tasks are split into several subtasks and shared among all agents. These 

tasks can be executed either synchronously or asynchronously. However, each agent can also 

work as an individual entity to meet its own goals while communicating, negotiating and 

collaborating with other agents in the system environment.  

The overview of the structure and methodology of this thesis is shown in Figure 3-1 and 

Figure 3-2 respectively. The methodology is detailed in this chapter and the implantation is 

presented in the next two charters for all three objectives. The development of proposed MAS 

framework, if adopted by DNOs, can be an important tool to support the transition to the 

DSO model. Hence, the platform considered the future of DNOs where the term DSO is used 

in the proposed model as a replacement of DNOs. Furthermore, it can be used by aggregators 

or energy suppliers in order to investigate and model the behaviour of the system and 

consumers. This chapter details the proposed MAS framework implemented in this thesis 

with the focus on the cyber layer which is mentioned in chapter 1. This includes the creation 

of individual agents, communication procedures and data flows among agents. Different 

MAS structures for each objective and various case studies are provided. In addition, for each 

agent, the aim, tasks, methodologies and the overall system goal are explained in details.  
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 Developing and implementing a network framework as a tool to support the transition of DNOs to DSOs and 
providing active distribution network management using residential demand response   

Theoretical 
approach 

Aim

Distributed decentralised platform
Multi-Agent-System (MAS)

DR algorithms for each 
participants in the network

Manage MV/LV transformer 
overloading and voltage at LV 

feeder through available flexible 
loads from households connected 

to that LV feeder

Objectives

Manage voltage and current 
constraints at MV feeder and 

improve power quality through 
available flexible loads from each 

LV feeder 

Manage MV/LV network and 
improve the network reliability 
through available flexible loads 

and generation at local 
communities or LV feeders

1) LV Network 2) MV Network 3) MV/LV Network

Methodology

Price-based DR Price-based DR Incentive-based DR

- Households
- Mv/LV (Local) transformer 
- Data service provider
- Energy supplier

DR type

Main DR 
participants

- Households
- Distribution system operator
- Data service provider
- Energy supplier

- Households
- MV/LV transformer
- Data service provider

Load shifting (wet appliances) Load shifting (wet appliances)
Load shedding and local 

generation
DR response

- One LV feeder 
- 19 nodes each connected to 2 
households
- 38 households

- Modified IEEE 69-bus test system
- 8 MV feeders and 48 LV feeders
- 3824 households

Synthetic load profiles created 
from real dataset (without PV)

Test system

Dataset

Case studies

- 10 LV feeder each representing one 
community with 38 households for 
local community DR
- 1 LV feeder connecting to 38 
households for emergency DR

Synthetic load profiles created from 
real dataset (without PV)

Synthetic load profiles created from 
real dataset with PV 

- Fixed tariff 
- RTP tariff

- Local community DR
- emergency DR

Implementation

- DA-RTP tariff
- RTP tariff

- Fixed tariff 
- ToU tariff

 

Figure 3-1: Overview of the research structure 
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- Historical load profile
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- Historical load profile
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- Current
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MV/LV Network status

Determine amount of 
load curtailment/local 
generation purchase

Determine DR 
event signal 

Household Information

Merit-order

Incentive-based DR 
Implementation at households

- Voltage
- Current
-Transformer capacity

LV Network status

Power flow 
study

Objective 1: LV network Objective 2: MV network

Objective 3: MV/LV 
network

 

Figure 3-2: Overview of the research methodology 

3.2 Model Description 

 

3.2.1 Framework 

The general proposed MAS Framework for implementing an ADNM through residential DR 

is shown in Figure 3-3. The platform comprises two different layers: physical and cyber. 

Physical layer is the DN in which each entity is connected to its corresponding agents in 

cyber layer. The conceptual communication flows and interactions among different agents are 

provided. Four main agents defined in the framework are DR Provider Agent (DRPA), 

Supplier Agent (SA), Local Transformer Agent (LTA) and Home Agent (HA). 
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DR Provider 

Agent (DRPA)
Local Transformer 

Agent (LTA)

LTA

LTA

Supplier 

Agent (SA)

Home 

Agents (HAs)

HA

HA

 

Figure 3-3: Proposed MAS framework and conceptual communication flows. The solid line 

represents physical layer/power line and the dashed line refers to cyber line/agents 

Supplier Agent (SA ): The electricity retailer is modelled as SA which is responsible for 

setting the tariffs and incentives aiming towards DR fulfilment. The pricing schemes are 

designed by the feedback received from LTA or DRPA regarding network status. Prices are 

then delivered to other agents for planning their future DR strategies in various time bases 

according to the DR type, e.g., day/months ahead or real-time.  

Home Agent (HA): This agent resides at each household which is modelled as a smart home 

that incorporates smart meter, HEMS and controllable appliances. HAs can take an active 

role to participate in DR schemes. This can be done by changing its power consumption 

behaviour through collaboration with its related HEMS to meet the network goal. The actions 

and interactions of HAs are triggered after receiving prices from the SA (price-based DR) or 

receiving a DR event signal from their associated LTA (incentive-based DR).  

Local Transformer Agent (LTA):  

Each LV feeder is controlled by a local distribution transformer which is modelled as a LTA. 

This agent connects to a number of HAs as: 

𝐻𝐴𝑙𝑣 = {𝐻𝐴𝑙𝑣,1, 𝐻𝐴𝑙𝑣,2, … , 𝐻𝐴𝑙𝑣,𝐻},   𝑙𝑣 ∈                               (3.1) 
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where, H denotes the number of corresponding HAs connected to lvth LTA. The main task of 

LTAs is to monitor and assess the operating state of distribution transformers. LTAs are 

connected to a DRPA and SA in order to exchange information. In price-based DR, the LTA 

relays their information to a SA or DRPA for activating DR services if needed. On the other 

hand, in incentive-based DR, in case of emergency conditions, e.g., transformer overloading 

or receiving DR signal from DRPA, LTAs work with their associated HAs to mitigate the 

network constraints.   

Demand Response Provider Agent (DRPA): DSO which comprises of several lateral LV 

feeders is modelled as DRPA. Hence, DRPA is connected to several LTAs as: 

                                            LTA = {LTA1, LTA2, … , LTALV}                                           ( 3.2)                                      

Where, LV indicates the number of LV feeders within the network. The main role of DRPA is 

to monitor the overall network status and constraints (power balance, network operating 

limit) in order to provide the required information for SAs and LTAs to implement DR. In 

other terms, DRPA does not take any direct action in controlling the DN. 

3.2.2 Architecture 

The overall architecture of the MAS along with data exchange and flows among agents 

within the network is depicted in Figure 3-5. The DSPA is an additional agent in the 

proposed framework which gives a better representation of GB power system. In the latter, 

smart meters are interconnected to DSOs, suppliers and authorised service entities of the 

network through DCC [211]. This network interface entity is responsible for data 

communication establishment and management. In this respect, DCC is modelled as a DSPA 

in order to enable data exchange between the HAs and the LTAs, SA and DRPA. The 

functionality of DSPA is solely that of an interface between HAs and other agents. In this 

respect, DSPA is not studied in this chapter. However, it is considered in the description of 

data flow and overall DR algorithm.  
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Figure 3-4: MAS architecture and overall scope of data communications among agents (a) and DR 

sources in home agents (b) 
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Connecting a new agent with specific attributes to the proposed system is feasible due to the 

configurability feature of the proposed platform. In addition, the agent’s goals, tasks and 

accessibility to other agent’s information can be modified during system operation.  

The architecture presented in this section provides a general view of the decision-making and 

tasks for each agent according to the received information as well as its database. This has 

been constructed with a view to implementing price-based DR. The assumptions that have 

been considered for all three case studies in the proposed model are: 

 All consumers are equipped with smart meters and HEMS in order to enable them to 

activate and perform DR schemes. 

 The model of all shiftable appliances for all households is the same. 

  Consumers’ participation in price-based DR is based on load shifting, through wet 

appliances, whereas in incentive-based DR, the consumers’ responsiveness demand is 

considered as load shedding.  

 Home agents only communicate with local transformer agents or supplier agent through 

data service provider agent.  

 The network utilises the same DSO and electricity supplier having different tariffs. 

Nevertheless, as discussed previously, the proposed framework and control algorithm can 

be extended in order to include various DRPAs and SAs in the network. 

 The time T of updating data is discretised into a set of timeslots in sequence 𝑡 =

{1,… , 𝑇}, with a finite time horizon. Agents can only take actions within 𝑡 ≥ 1 which 

shows the time horizon of the environment for the simulation. In this thesis, T = 48 due to 

half-hour meter reading resolution. 

As discussed in chapter one, three main objectives are defined for this thesis. The 

methodologies proposed for each objective are discussed separately in the next sections. The 

general MAS framework is the same for all objectives but the structures are modified as 

appropriate.  

3.3 Distribution Transformer Management (Objective 1) 

The focus of DR mechanism in this objective is on LV feeder aiming to manage the 

distribution transformer overloading. Four price-based DR namely fixed, ToU, DA-RTP and 

RTP were considered. The fixed tariff is considered as a benchmark. The nature of ToU and 

day-ahead RTP are similar since they both are pre-known prices. Therefore, only DA-RTP is 
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discussed in the methodology description. The overall MAS structure is presented in Figure 

3-5 where the red dash line shows the area of the network where DR is implemented. The 

multi-layer structure has been modelled for the MAS platform which consists of four layers: 

market, MV feeder, LV feeder and end-user layer. Allocated agents to these layers are SA, 

DRPA, LTAs and HAs respectively. In other words, each agent or set of homogeneous agents 

is located in one particular layer which exchanges their data with upper and/or lower layer. 

SA is modelled differently as it is an independent entity in the DN and communicates with all 

other agents. It is assumed that the MV network is run under normal condition and hence no 

DR event is occurs from DRPA. This scenario is studied for the other two objectives in 3.3.2 

and 3.3.3. Hence, although DRPA can access the data from SA or LTAs, it is not studied in 

this section. DR algorithms and agents’ tasks have been designed at the distribution 

transformer feeder and the home level. 
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Figure 3-5: MAS structure for managing LV networks through price-based DR 

3.3.1  Home Agent 

HA represents a smart house where the home appliances operation are controlled and 

coordinated automatically. This is done by HEMS based on the price signal received via the 

smart meter.  
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- Home Appliances  

Each household has a set of controllable and non-controllable appliances where the flexible 

demands provided by the former is expressed as.  

                                       𝐴𝑃𝑙𝑣,ℎ = {𝑎𝑝𝑙𝑣,ℎ,1, 𝑎𝑝𝑙𝑣,ℎ,2, … , 𝑎𝑝𝑙𝑣,ℎ,𝑗}                                    ( 3.3) 

where j is the total number of controllable appliances for hth HA connected to lvth LTA in the 

network. For simplicity, lv is not assigned in the mathematical derivations for the rest of this 

thesis.  

The total loads (𝑙ℎ,𝑡) in each household, defined as a set of aggregated individual loads from 

all appliances over specific time period, is expressed as: 

𝑙ℎ,𝑡 =  ∑ 𝑙ℎ,𝑡
𝑎𝑝
= ∑ 𝑙ℎ,𝑡

𝑠ℎ
𝑡 + ∑ 𝑙ℎ,𝑡

𝑓
𝑡     ∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, {𝑎𝑝, 𝑠ℎ, 𝑓} ∈ 𝐴𝑃               𝑡 (3.4) 

Where 𝑙ℎ,𝑡
𝑠ℎ  and 𝑙ℎ,𝑡

𝑓
 are the load consumption from shiftable and other loads, considered as 

background demand of household h at timeslot t. Three major wet appliances that can be 

shifted during a typical day are considered in this research and these are WM, DW and TD. 

Therefore, total load, 𝑙ℎ,𝑡 in each household is: 

                             𝑙ℎ,𝑡
𝑠ℎ = 𝑙𝑡

𝑊𝑀 + 𝑙𝑡
𝐷𝑊 + 𝑙𝑡

𝑇𝐷                                                     (3.5) 

𝑙ℎ,𝑡
𝑊𝑀, 𝑙ℎ,𝑡

𝐷𝑊 and 𝑙ℎ,𝑡
𝑇𝐷  are load consumption of WM, DW and TD respectively for hth household 

at timeslot t. The appliances characteristics and modelling are explained in details in the next 

chapter.  

- Home Energy Management System 

The main aim of each HEMS is to provide an intelligent management system for scheduling 

the operation of shiftable appliances for a day period.  

Objective function: The objective of HEMS is to minimise the energy expenses and maintain 

the life satisfaction level. Accordingly, the objective function of the optimisation problem of 

HEMS is expressed as: 

𝑓 = (∑ (𝑙ℎ,𝑡
𝑎𝑝 ∗ 𝑝ℎ,𝑡)

ℎ,𝑡 

− (𝑙ℎ,𝑡
𝑠ℎ ∗ 𝛿ℎ,𝑡)), 



 

 

67 

 

∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, {𝑎𝑝, 𝑠ℎ} ∈ 𝐴𝑃                                             (3.6) 

The objective function is divided to two-sub objectives: the electricity payment of household 

h (∑ (𝑙ℎ,𝑡
𝑎𝑝 ∗ 𝑝ℎ,𝑡ℎ,𝑡 )) and maximising the satisfaction factor (𝑙ℎ,𝑡

𝑠ℎ ∗ 𝛿ℎ,𝑡).  

The electricity price 𝑝ℎ,𝑡 is determined by SA and is described further in this section. 

Satisfaction factor is a linear function of load regarding satisfaction level of household h to 

scheduling shiftable appliances. This term ensures that the scheduling levels find a suitable 

trade-off between the minimum electricity payment and the comfort level of the household. 

𝛿ℎ
𝑡  is determined as a set of individual characteristics of each household that can highly affect 

usage pattern and probability of shifting appliances using the following equation: 

𝛿ℎ,𝑡  =  𝜀ℎ,𝑡 . 𝐴ℎ,𝑡 ,    ∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇                                    (3.7) 

𝐴ℎ,𝑡 is the willingness of household h to participate in DR programs and 𝜀ℎ,𝑡 is the elasticity 

of demand to changes in the electricity price in each time interval t. The methodology and 

procedure of calculating these parameters are explained in detail in the next chapter. 

Constraints: The objective function is limited to a set of energy and timing constraints (3.8)-

(3.13). 

The start-up of appliances can be selected at any time due to voluntary-participation of DR 

employment in this objective. Neither LTA nor DRPA sends the band limit to HAs. 

However, in order to consider load safety at household and avoiding peak rebound, it is 

assumed that only one controllable appliance can be run at any given time. Therefore, (3.8) is 

defined as: 

∑lh,t
ap

t

≤  lh
max , ∀  h ∈ H, t ∈ T, ap ∈ AP                                            (3.8) 

lh
max is determined by adding the maximum power consumption of WM, as the most power 

consuming appliance, to the background loads (lh,t
f ), shown in Figure 3-6 and formulated as: 

lh
max = lh,t

f + (
𝐸𝑊𝑀

∆𝑡𝑊𝑀) , ∀  h ∈ H, , k ∈ K, {f,WM} ∈ AP                             (3.9) 
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where, ∆𝑡𝑊𝑀 is the duty cycle of the WM. Constraint (3.9) guarantees that aggregated loads 

of each home will not exceed the maximum pre-determined band limit (lh
max) at any given 

time. 𝐸𝑊𝑀 is the total energy consumption for completing operating cycle of a WM. 

 

 Figure 3-6: Calcuation of the maximum boundary limit (𝐥𝐡
𝐦𝐚𝐱) for each household 

Constraint (3.10) is to ensure that the required energy for completing operating cycle of all 

controllable appliances (𝐸𝑠ℎ) is provided. 

∑𝑙ℎ,𝑡
𝑠ℎ

𝑡

= 𝐸𝑠ℎ   , ∀  ℎ ∈ 𝐻, 𝑡 ∈ {𝑡𝑠 ℎ
  𝑠ℎ, 𝑡𝑠 ℎ

  𝑠ℎ + ∆𝑡𝑠ℎ}, sh ∈ AP                    (3.10)  

Where, 𝑡𝑠 ℎ
  𝑠ℎ is the start of operation time and ∆𝑡𝑠ℎ is the length of operating the 

corresponding appliance sh.  

A set of constraint (3.11) is defined in order to consider the power rating of all controllable 

appliances. The operating status of any appliance sh is denoted by a binary variable 𝑥ℎ,𝑡
𝑎𝑝

. 

Therefore, its corresponding required power is equal to its nominal power rating if it is 

operating and is 0 otherwise.  

{

𝑙ℎ,𝑡
𝑠ℎ = 𝑙ℎ,𝑡

𝑠ℎ  . 𝑥ℎ,𝑡
𝑠ℎ  ,                      ∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃 

𝑥ℎ,𝑡
𝑠ℎ = 1       , ∀  ℎ ∈ 𝐻, 𝑡 ∈ ∆𝑡ℎ,𝑡

𝑎𝑝,𝑝𝑟𝑒𝑓
, 𝑠ℎ ∈ 𝐴𝑃

𝑥ℎ,𝑡
𝑠ℎ = 0, ∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇 − ∆𝑡ℎ,𝑡

𝑎𝑝,𝑝𝑟𝑒𝑓
, 𝑠ℎ ∈ 𝐴𝑃 

                          (3.11) 

Where, ∆𝑡ℎ,𝑡
𝑎𝑝,𝑝𝑟𝑒𝑓

 specifies the user time preference that constraint the running status of 

appliances to be only within the allowable window. In other words, 𝑥ℎ,𝑡
𝑎𝑝

 is set to 1 when the t 
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is within the ∆𝑡ℎ,𝑡
𝑠ℎ,𝑝𝑟𝑒𝑓

and set to 0 in other times. The appliances should be run for those 

households that own them during the simulation day within the home user’s preferable time 

window.  This is modelled by the following constraint: 

1 ≤    𝑡𝑠 ℎ
  𝑠ℎ + ∆𝑡𝑠ℎ ≤ 48 , ∀  ℎ ∈ 𝐻, 𝑠ℎ ∈ 𝐴𝑃                                     (3.12) 

It is assumed that the frequency of use per appliance is once per day. Moreover, although an 

appliance may operate multiple but interruptible cycles, this thesis considers that all wet 

appliances should be operating continuously until the end of their operating time. These are 

modelled by constraint (3.13) as a single start-up and un-interruptible operation constraint.  

∑𝑧ℎ,𝑡
𝑠ℎ

𝑡

= 1, ∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                   (3.13) 

𝑧ℎ,𝑡
𝑠ℎ  is a binary decision variable which indicates the start-up of appliance sh.  

- Real Time Price Prediction Model: 

In the optimisation of the appliances scheduling, the electricity price of all households 

connected to lvth LTA (𝑝𝑙𝑣,ℎ,𝑡) needs to be considered as a vector of the scheduling time 

period 𝑇′.  

[p  ĺv,h,t]1∗𝑇= [ṕh,𝑡𝑠𝑡𝑎𝑟𝑡 , … . , ṕh,𝑡𝑒𝑛𝑑]1∗𝑇′
 , 

 ∀ 𝑙𝑣 ∈ 𝐿𝑉, ℎ ∈ 𝐻,  𝑇′ ∈ 𝑇, 𝑇′ = (𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡) + 1                         (3.14)  

where, 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 are the start and end time of the optimisation period for HEMS. For 

instance, in a DA-RTP, the 𝑝́𝑙𝑣,ℎ,𝑡 has 48 values (𝑝́𝑙𝑣,ℎ,𝑡𝑠𝑡𝑎𝑟𝑡 = 1 , 𝑝́𝑙𝑣,ℎ,𝑡𝑒𝑛𝑑 = 48) which 

indicates the prices for whole day. However, in RTP, the energy scheduler needs to predict 

the upcoming prices in real time which comprises two steps as illustrated in Figure 3-7.  
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Figure 3-7: HEMS model with price prediction capability  

 

Firstly, the electricity prices for the next day are predicted based on the total required DR that 

has been anticipated by LTA for all connected HAs. The data received from LTA, is 

discussed in detail in the next section. An IBT is used where the electricity payment linearly 

increases with the required amount of energy to be shifted. The overall price prediction 

methodology is based on the fact that the higher the need for DR, the more engagement of 

customers is required. A four-level piecewise linear price function is modelled to present the 

predicted price of electricity in each time interval and is expressed as: 

ṕh,t =

{
 
 

 
 
∝1 PŔ𝑙𝑣,𝑡

𝐷𝑅 + β1 ,            ∀     0% < PŔ𝑙𝑣,𝑡
𝐷𝑅 ≤ 40%

∝2 PŔ𝑙𝑣,𝑡
𝐷𝑅 + β2 ,            ∀   40% < PŔ𝑙𝑣,𝑡

𝐷𝑅 ≤ 60%

∝3 PŔ𝑙𝑣,𝑡
𝐷𝑅 + β3 ,            ∀   60% < PŔ𝑙𝑣,𝑡

𝐷𝑅 ≤ 80%

∝4 PŔ𝑙𝑣,𝑡
𝐷𝑅 + β4 ,            ∀   80% < PŔ𝑙𝑣,𝑡

𝐷𝑅 ≤ 100%

 

∀ ∝1<∝2<∝3<∝4, h ∈ H, lv ∈ LV, t ∈ T                                  (3.15) 

 where,                 

PŔlv,t
DR = (

ĺlv,t
DR,req,total

ĺ
lv,t
DR,pot,total ) ∗ 100                                       (3.16)       

PŔ𝑙𝑣,𝑡
𝐷𝑅  is the predicated Participation Rate (PR) which is defined as the ratio of the predicted 

total required DR (ĺlv,t
DR,req,total

) to the potential of DR (ĺlv,t
DR,pot,total

) for the next day in 

percentage form. These parameters are sent by LTA in each day for decision-making.  𝛽1, 𝛽2, 

𝛽3 and 𝛽4 are constants reflecting the fixed prices. ∝1, ∝2, ∝3 and ∝4 are the slopes of the 
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segmentation in each step. An illustration of the proposed 4-level linear piecewise price 

function is given in Figure 3-8 for ease of understanding.  

 

Figure 3-8: Four-level piecewise linear price prediction function for HEMS 

In the second step, the predicted price is updated with the upcoming price in real time. It is 

clear than the  𝑝ℎ,𝑡 takes less values over the course of the day. For instance, if the real price 

received at timeslot 10, the 𝑇′ is 39.  

- DR Availability in Real Time:  

In real time, each HA calculates the available DR size at each time interval 𝑡 and sends it to 

LTA. For this purpose, HA specifies the available appliances that have not been run or are 

not running by setting a binary variable as: 

{

  
𝑘ℎ,𝑡
𝑠ℎ = 1 , ∀  𝑧ℎ,𝑡

𝑠ℎ + 𝑥ℎ,𝑡
𝑠ℎ = 0

𝑘ℎ,𝑡
𝑠ℎ = 0  , ∀  𝑧ℎ,𝑡

𝑠ℎ + 𝑥ℎ,𝑡
𝑠ℎ ≠ 0

    

, ∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                                  (3.17) 

where, 𝑘ℎ,𝑡
𝑠ℎ  is the availability of appliance sh at timeslot t which is set to 1 if both start-up and 

operation status of that appliance at t are 0. The sum of power consumption from all available 

appliances is approximated as the maximum available DR (𝑙ℎ
𝐷𝑅,𝑎𝑣𝑎). 

 𝑙ℎ,𝑡
𝐷𝑅,𝑎𝑣𝑎 =∑𝑘ℎ,𝑡

𝑠ℎ  . 𝑙ℎ,𝑡
𝑠ℎ

𝑠ℎ

ℎ,𝑡

 ,    

∀ ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃,                                             (3.18) 
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(3.18) shows the maximum demand that can be shifted in timeslot t, if a rescheduling is 

performed by HEMS.  

- Problem Formulation 

The nature of objective function f defined in (3.6) and its constraints is linear. Hence, the 

problem is solved by mixed integer linear programming technique. It is worth to clarify that 

since the load flexibility is provided by shiftable appliances, the decision variables in the 

objective functions are 𝑙ℎ,𝑡
𝑊𝑀, 𝑙ℎ,𝑡

𝐷𝑊 and 𝑙ℎ,𝑡
𝑇𝐷 . Hence, ∑ 𝑙ℎ,𝑡

𝑎𝑝
𝑡  are not decision variables. However, 

they are required to calculate the overall electricity payment of the household. Moreover, 

regarding the (3.11), the decision variables can be defined as a set of binary variables (𝑥ℎ,𝑡
𝑠ℎ ) 

for all values {𝑠ℎ, 𝑡}, of which appliance sh is known and t is unknown. The value of 𝑥ℎ,𝑡
𝑠ℎ  can 

be 1 at a particular timeslot t and 0 for all the remaining slots. This formulation provides an 

optimal decision-making for appliances scheduling with their respective start and end 

timeslot. In this regard, the optimisation problem formulation is described as: 

min
𝑠ℎ,𝑡

𝑓(𝑥ℎ,𝑡
𝑠ℎ) 

Subject to: (3.8)-(3.13) 

∀ ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                               (3.19) 

The timescale is divided into 48 timeslots in which the 𝑥ℎ,𝑡
𝑠ℎ  is defined as a vector of 48 

values.  Since maximum three shiftable appliances for each household is considered, the total 

binary variables for the optimisation problem is 196.  

It should be noted that if the load scheduling cannot find a feasible solution, for instance 

when 𝛿ℎ,𝑡  is too low, the households demand remains unchanged. However, it does not affect 

the goal of overall DR mechanism since the most evenly distributed total load profiles from 

all HAs are considered for controlling the transformer overloading. 

3.3.2 Local Transformer Agent 

The objective of LTA is limited to provide the SA with the required information within its 

feeder. This information is the required DR size as well as potential or available DR along the 

feeder. Determination of DR potential or availability in LTAs is a valuable source for guiding 
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SA and DRPA to potential opportunities. The exchanged data is through DSPA and the 

period depends on the type of DR, which is daily-basis for DA-RTP and half an hour-basis in 

RTP. Moreover this information is sent in a day-ahead to HAs for load scheduling. Since 

only the aggregated data regarding household’s demand is sent, the data privacy of 

homeowners is maintained. 

DR Availability: In RTP, the LTA receives the available DR from its associated HAs. Then, 

it calculates the total DR availability by aggregating the available DR size from all its 

associated HAs as: 

llv,t
DR,ava,total =∑𝑙ℎ,𝑡

𝐷𝑅,𝑎𝑣𝑎

ℎ,𝑡

    

 ∀ 𝑐 ∈ 𝐶 , ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑙𝑣 ∈ 𝐿𝑉                                         (3.20) 

DR Potential: An estimation of the potential responsiveness in HAs demand is calculated for 

DA-RTP. This is updated in RTP to eliminate the uncertainty in prediction. In terms of DR 

potential (DA-RTP), the overall methodology is based on probabilistic method for shiftable 

appliances during a day for different clusters of customers. This includes three steps: load 

estimation, load shifting probability and DR potential probability. The household 

segmentation is done by a classification-based clustering evaluation. The clustering 

procedure is explained in detail in the next chapter.  

- Load estimation: For each household h within cluster c, the minimum load 

(ĺ 𝑐,ℎ,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛) and maximum load (ĺ 𝑐,ℎ,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑎𝑥
) are obtained from historical data. A comprehensive 

study of the dataset used to generate the load profiles for this analysis is provided in chapter 

4. The potential of loads that can be obtained from aggregation of all shiftable appliances 

(ĺ𝑐,ℎ,𝑡
ℎ𝑖𝑠𝑡,𝑠ℎ) are considered as: 

ĺ𝑐,ℎ,𝑡
ℎ𝑖𝑠𝑡,𝑠ℎ = ĺ 𝑐,ℎ,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑎𝑥 − ĺ 𝑐,ℎ,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛    

, ∀ 𝑐 ∈ 𝐶 , ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                            (3.21) 

ĺ 𝑐,ℎ,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛

 is considered as background loads which must be run at all time. On the other hand, 

in each cluster, the mean of peak demands from all households (𝑙′
𝑐,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑎𝑥
) is calculated using 

the following equation:  
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𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑎𝑥

=
∑ 𝑙′ℎ,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑎𝑥
ℎ

𝐻
,   

𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇                                                  (3.22) 

- Load shifting probability: Each wet appliance operates under a set of sequential and 

uninterruptible load phases. Therefore, their potential of load shifting during a typical day 

depends on two parameters: the probability of on/off state of that appliance and the phase of 

the operation. The probability of the start of appliance sh for households within cth cluster in 

timeslot t, P(𝑍𝑐,𝑡
𝑠ℎ), is estimated using weighting factor. The profile for one complete 

operating cycle of each appliance is fitted to the potential of maximum shiftable demand, 

ĺ𝑐,ℎ,𝑡
ℎ𝑖𝑠𝑡,𝑠ℎ, of that household. A weight is allocated to each timeslot t during a typical day (𝑊𝑐,ℎ,𝑡

𝑠ℎ ) 

as:  

𝑊𝑐,ℎ,𝑡
𝑠ℎ =∑(∑∑(ĺ𝑐,ℎ,𝑡

ℎ𝑖𝑠𝑡,𝑠ℎ − 𝑙𝑝ℎ
𝑠ℎ

𝑝ℎ

)

𝑡

)

𝑘

 ,  

∀ 𝑐 ∈ 𝐶 , ℎ ∈ 𝐻, 𝑠ℎ ∈ 𝐴𝑃, 𝑝ℎ = ∆𝑡𝑠ℎ                   

, 𝑘 ∈ {1, (𝑇 − ∆𝑡𝑠ℎ)}, 𝑡 = {𝑘, 𝑘 + (∆𝑡𝑠ℎ − 1)}                           (3.23) 

where, 𝑊𝑐,ℎ,𝑡
𝑠ℎ  is the weighting factor for each appliance, 𝑙𝑝ℎ,𝑡

𝑠ℎ  is the power usage of wet 

appliance sh at load phase ph. 𝑘 is an index which reflects the total timeslots during a day.  

Hence, P(𝑍𝑐,𝑡
𝑠ℎ) for each appliance sh is calculated as: 

P(𝑍𝑐,𝑡
𝑠ℎ) =

𝑊𝑐,ℎ,𝑡
𝑠ℎ

∑ 𝑊𝑐,ℎ,𝑡
𝑠ℎ

𝑡

  

, ∀ 𝑐 ∈ 𝐶 , ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                            (3.24) 

The probability of the shiftable power usage from each shiftable appliance at each timeslot t 

for household h, is expressed as: 

P(𝑙′𝑐,ℎ,𝑡
𝑠ℎ

) =  (P(𝑍𝑐,ℎ,𝑡
𝑠ℎ ) . 𝑌𝑐,ℎ,𝑘

𝑠ℎ  ), ∀ 𝑐 ∈ 𝐶 , ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃      

, 0 ≤ P(𝑙′𝑐,ℎ,𝑡
𝑠ℎ

) ≤ 1  , 𝑌𝑐,ℎ,𝑘
𝑠ℎ ∈ {0, 1}                                                (3.25) 



 

 

75 

 

𝑌𝑐,ℎ,𝑘
𝑠ℎ  is introduced to indicate the ownership of different wet appliances within household h. 

Consequently, the maximum load that can be shifted by aggregating all shiftable appliances 

in all household within cluster c (𝑙′𝑐,𝑡
𝑠ℎ,𝑚𝑎𝑥

) is determined by the following equation: 

𝑙′𝑐,𝑡
𝑠ℎ,𝑚𝑎𝑥

= ∑∑(𝑙′𝑐,ℎ,𝑡
𝑠ℎ

 .  P(𝑙′𝑐,ℎ,𝑡
𝑠ℎ

))               

𝑠ℎℎ

 

, ∀ 𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑠ℎ ∈ 𝐴𝑃, 𝑡 ∈ 𝑇                                                     (3.26) 

- DR probability: Based on equation  (3.26), for each cluster, the total DR size from 

all aggregated households (ĺc,t
DR,pot,total

) is expressed as: 

ĺc,t
DR,pot,total

= 𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑎𝑥

− 𝑙′𝑐,𝑡
𝑠ℎ,𝑚𝑎𝑥

        

, ∀ 𝑐 ∈ 𝐶, 𝑠ℎ ∈ 𝐴𝑃, 𝑡 ∈ 𝑇                                                    (3.27) 

This equation can be described as the difference of shiftable demand from actual load curve 

over time. Accordingly, the potential of total DR size Lvth LTA, from all groups of customers 

connected to its related LV feeder, is determined the following: 

ĺlv,t
DR,pot,total

=∑ĺc,t
DR,pot,total

  , ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇                                 (3.28) 

𝑐

 

- Required Demand Reduction 

LTA monitors and assesses the transformer operating state by running the power flow in its 

feeder at each timeslot during a typical day. The Backward-Forward Sweep method is used 

for all power flow analysis in this thesis. The required DR in each time interval is determined 

by the difference of total demand and the maximum transformer capacity (𝑇𝐶lv,t
max) as: 

ĺlv,t
DR,req,total

= 𝑇𝐶lv,t
max − 𝑙′𝑙𝑣,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑎𝑥
   , ∀ 𝑙𝑣 ∈ 𝐿𝑉, 𝑡 ∈ 𝑇                  (3.29) 

(3.29) also reflects the transformer operating states which can be normal or emergency. If the 

aggregated demands from all associated HAs are below the 𝑇𝐶lv,t
max, the status is normal. 

Otherwise, the status is emergency which needs immediate action to reduce power demands 

and this is discussed in the section 3.5.  
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3.3.3 Supplier Agent 

The SA is responsible for designing electricity tariffs and biding for HAs. Similar to 

approach in predicting price for HEMS (section 2.4.1.2), SA designs a DA-RTP in each time 

interval individually for each LTA. However, in RTP, the price is set for each LTA in each 

timeslot for the next timeslot according to its provided real data. The pricing scheme 

considers four different operating states of LTA. This can be expressed as: 

𝑝lv,t =

{
 
 

 
 
∝1 PRlv,t

DR + β1 ,            ∀     0% ≤ PRlv,t
DR ≤ 40%

∝2 PRlv,t
DR + β2 ,            ∀   40% ≤ PRlv,t

DR ≤ 60%

∝3 PRlv,t
DR + β3 ,            ∀   60% ≤ PRlv,t

DR ≤ 80%

∝4 PRlv,t
DR + β4 ,            ∀   80% < PRlv,t

DR ≤ 100%

 

∀ ∝1<∝2<∝3<∝4, lv ∈ LV, t ∈ T                                             (3.30) 

 where,                 

         𝑃𝑅𝑙𝑣,𝑡
𝐷𝑅 = (

llv
DR,req,total

llv
DR,ava,total ) ∗ 100                                          (3.31)       

𝑃𝑅𝑙𝑣,𝑡
𝐷𝑅  is the Participation Rate (PR) which is defined as the ratio of the total required 

DR(llv
DR,req,total

) to the available DR (llv
DR,ava,total) in lvth LTA for the next timeslot.  

3.3.4 Overall DR control 

The overall algorithm for controlling the LV feeder through residential responsiveness loads 

for RTP is presented in Figure 3-9. The processing flow is specified for each agent with a 

distinctive colour. The initial step starts with agents updating their related information about 

the system. In addition, HAs calculate the required demand for the next timeslot (𝑡 = 𝑡 + 1) 

based on a day-ahead price prediction (2.30)-(2.31). In the first timeslot (𝑡 = 1), LTA 

receives the power consumption of all associated HAs for the next timeslot. It then computes 

its status as well as the required DR for the next timeslot and forwards this information to SA. 

The price signal is defined and sent to HAs for load scheduling. Therefore, in RTP, decision-

making is done in each timeslot t for the next timeslot (𝑡 + 1). The procedure terminates at 

timeslot t=T. 
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Start

Input network data (e.g., topology, 

line data, bus data) and load profiles 

and estimated potential of DR for 

the current day 

Update load profile based on 

day-ahead price prediction

Calculate the price for the 

next timeslot 
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DR from aggregated HAs 

and transformer status  

Determine power flow 

 t>48 ?

Yes

No

End

t=0

t=t+1

 Update load profile 

based on updated price

DSPA

HA

LTA

SA

t=0

 

Figure 3-9: Overall RTP-based DR algorithm of the proposed active LV network management for one typical 

day 

For each LV feeder, the actual DR achieved at each timeslot t (𝐷𝑅𝑙𝑣,𝑡) can be defined as: 

DRlv,t = llv,t
DR − llv,t

WDR,   

∀  lv ∈ LV, t ∈ T                                                              (3.32) 

 

where, 𝑙𝑙𝑣,𝑡
𝐷𝑅  and 𝑙𝑙𝑣,𝑡

𝑊𝐷𝑅 are the DR size obtained before and after employing DR in each LV 

feeder respectively. Similarly, these are determined from aggregation of all household load 

profiles as: 

llv,t
DR = ∑ llv,h,t

DR
ℎ                                                           (3.33) 

llv,t
WDR = ∑ llv,h,t

WDR
ℎ                                                       (3.34) 

∀  lv ∈ LV, h ∈ H, t ∈ T 

𝑙𝑙𝑣,ℎ,𝑡
𝐷𝑅  and 𝑙𝑙𝑣,ℎ,𝑡

𝑊𝐷𝑅  are the demand for hth household at timeslot t with and without DR 

implementation correspondingly. 
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3.4 MV Network Constraint Management (Objective 2) 

The DR control scheme in this objective aims to mitigate the constraints at MV feeder based 

on RTP. The overall MAS structure is presented in Figure 3-10. It is assumed that the 

overloading of each MV/LV transformer at LV feeder is controlled locally by the LTA, as 

discussed previously. Hence, each LTA only sends the total available DR size to DRPA using 

the same methodology as discussed in the first objective.  

3.4.1 Home Agent 

The goal of HA is to make an optimal decision on when to start any available shiftable 

appliance in real time. The two objectives targeted are minimising the energy expenses and 

maintaining the life satisfaction level. The methodology applied for this objective is 

computationally less demanding and therefore is an advantage compared to the ones 

previously discussed.  

The power consumption at each timeslot t for hth household is the aggregation of background 

loads and the power usage of selected shiftable appliances sh. This can be defined as: 
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Figure 3-10: MAS structure for managing MV networks through RTP 
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𝑙ℎ,𝑡 = 𝑙ℎ,𝑡
𝑎𝑝 = 𝑙ℎ,𝑡

𝑓
 +∑(𝑙ℎ,𝑡

𝑠ℎ ∗ 𝐷ℎ,𝑡
𝑠ℎ) 

𝑠ℎ

  ,   

∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, {𝑎𝑝, 𝑓, 𝑠ℎ} ∈ 𝐴𝑃 , 𝐷ℎ,𝑡
𝑠ℎ ∈ [0, 1]                            (3.35) 

where, 𝐷ℎ,𝑡
𝑠ℎ  is a binary decision-making variable for starting the appliance sh at timeslot t. 

𝐷ℎ,𝑡
𝑠ℎ  is 1 for any appliance that is selected and is 0 otherwise and is expressed as: 

 

𝐷ℎ,𝑡
𝑠ℎ = {

1, ∀ 𝑑ℎ,𝑡
𝑠ℎ > 1 

0, ∀ 𝑑ℎ,𝑡
𝑠ℎ < 1

      ,      ∀  ℎ ∈ 𝐻, 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃 

where, 

 𝑑ℎ,𝑡
𝑠ℎ = ( 𝜇ℎ,𝑡

𝑠ℎ  .  𝛿ℎ,𝑡
𝑠ℎ  ) +  𝜆ℎ,𝑡

𝑠ℎ                                          (3.36) 

𝑑ℎ,𝑡
𝑠ℎ  is an ancillary binary variable which represents users constraints.  𝜇ℎ,𝑡

𝑠ℎ  reflects the first 

objective of HA in which the price signal, defined by the SA, should be low enough to 

encourage it to start the available shiftable appliance. If the price is attractive for HA, 𝜇ℎ,𝑡 is 

set to 1.  𝛿ℎ,𝑡
𝑠ℎ   reveals the comfort level of household which is set to 1 if the appliance can be 

selected at that time interval. The binary variable λh,t is introduced to reflect the appliances 

ownership. 

- 𝜇ℎ,𝑡
𝑠ℎ  is expressed as: 

                    𝜇ℎ,𝑡
𝑠ℎ =  𝐴ℎ,𝑡

𝑠ℎ .  𝐸ℎ,𝑡
𝑠ℎ                                               (3.37) 

 𝐴ℎ,𝑡
𝑠ℎ  is the attitude of each HA towards participating in DR.  𝐸ℎ,𝑡

𝑠ℎ  states the elasticity of HA to 

the price signal at timeslot t as: 

      𝐸𝑡,ℎ = {
1, ∀ 𝐸́ℎ,𝑡

𝑠ℎ ≥ 𝑙ℎ,𝑡 

0, ∀ 𝐸́ℎ,𝑡
𝑠ℎ < 𝑙ℎ,𝑡 

 , ∀ 𝑡 ∈ 𝑇 , ℎ ∈  𝐻                           (3.38) 

where, 𝐸́ℎ,𝑡
𝑠ℎ  is a linear function of elasticity 𝜀ℎ and is defined as: 

Et,h́ = ∆Ch,tεc,h + bc,h                                             (3.39) 
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∆𝐶ℎ,𝑡 is the changes of the price at timeslot t with respect to the based price. 𝜀𝑐,ℎ and 𝑏𝑐,ℎ are 

demand elasticity to changes in price and constant factor respectively. 𝑙ℎ,𝑡 is the total demand 

at timeslot t if the available selected appliance is started. The estimation of the value of 

parameters in (3.39) is described in the next chapter. 

- 𝛿ℎ,𝑡
𝑠ℎ  is stated as: 

𝛿ℎ,𝑡
𝑠ℎ = {

1, ∀ (𝑤ℎ,𝑡
𝑠ℎ  . 𝑘ℎ,𝑡

𝑠ℎ ) = 1

0, ∀(𝑤ℎ,𝑡
𝑠ℎ . 𝑘ℎ,𝑡

𝑠ℎ) = 0
, 

∀  ℎ ∈  𝐻 , 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                           (3.40) 

𝛿ℎ,𝑡
𝑠ℎ  represents a set of constraints regarding the availability of appliances and user 

preference. 𝑤ℎ,𝑡
𝑠ℎ  is the user time preference and 𝑘ℎ,𝑡

𝑠ℎ  states the availability of sh at timeslot t. 

The first parameter 𝑤ℎ,𝑡
𝑠ℎ , implies that appliances can only be run in allowable window of time 

∆𝑡ℎ,𝑡
𝑠ℎ,𝑝𝑟𝑒𝑓

 which is set by consumers as follows: 

𝑤ℎ,𝑡
𝑠ℎ = {

1, ∀ 𝑡 ∈  ∆𝑡ℎ,𝑡
𝑠ℎ,𝑝𝑟𝑒𝑓

0, ∀ 𝑡 ∉  ∆𝑡ℎ,𝑡
𝑠ℎ,𝑝𝑟𝑒𝑓

 
  , 

                              ∀  ℎ ∈  𝐻 , 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                         (3.41) 

∆𝑡ℎ,𝑡
𝑠ℎ,𝑝𝑟𝑒𝑓

for operating an sh which is similar to (3.11) and is discussed in details in the 

following chapter. The availability of appliance at timeslot t, 𝐾𝑡,ℎ
𝑎𝑝

, can be expressed as: 

𝑘ℎ,𝑡
𝑠ℎ = {

1, ∀ (𝑥ℎ,𝑡
𝑠ℎ  . 𝑧ℎ,𝑡

𝑠ℎ) = 1

0, ∀((𝑥ℎ,𝑡
𝑠ℎ  . 𝑧ℎ,𝑡

𝑠ℎ) = 0
   

, ∀  ℎ ∈  𝐻 , 𝑡 ∈ 𝑇, 𝑠ℎ ∈ 𝐴𝑃                                            (3.42) 

Binary variable 𝑥𝑡,ℎ
𝑎𝑝

 reflects the constraint regarding the assumption of un-interruptible 

feature for all shiftable appliances. Binary variable 𝑧𝑡,ℎ
𝑎𝑝

 indicates both the unique frequency 

of usage as well as a maximum of one appliance operating at one time.  

- 𝜆ℎ,𝑡
𝑠ℎ  :  λt,h is defined to ensure that the sh is selected for those households that own them. 



 

 

81 

 

3.4.2 Demand Response Provider Agent 

The goal of DRPA is to determine the required demand curtailment from each LV feeder in 

order to manage the MV-LV network constraints. It assesses the network status to ensure the 

network operates within specific limits for the overall load on the system. Therefore, the 

objective of DRPA is to devise a multi-objective function aiming to manage the voltage and 

thermal constraints and improve the quality of the DN. This is achieved through available 

flexible demands over time. 

Objective function: 

f =   𝑤1∑
∆𝑃𝑙𝑣,𝑡

𝐷𝑅

𝑆𝐼𝑚𝑎𝑥,𝑙𝑣
𝑙𝑣,𝑡

+ 𝑤2𝑉𝐷𝐼𝑡 + 𝑤3𝑅𝑃𝐿𝐼𝑡    

, ∀  𝑙𝑣 ∈  𝐿𝑉 , 𝑡 ∈ 𝑇                                                   (3.43)       

where 𝑤1, 𝑤2 and 𝑤3 are weighting factors for each objective term contributing to the multi-

objective function value. This is based on the following limitations: 

∑ = 1 ,    ∀ 0 ≤ 𝑤𝑖 ≤ 13
𝑖=1                                                    (3.44) 

The term (𝑤1∑
∆𝑃𝑙𝑣,𝑡

𝐷𝑅

𝑆𝐼𝑚𝑎𝑥,𝑙𝑣
𝑙𝑣,𝑡 ) aims to minimise the total curtailed load requirements 

(∑ ∆𝑃𝑙𝑣,𝑡
𝐷𝑅

𝑙𝑣,𝑡 ) in each LV feeder while maximising the ratio of the required DR allocated to the 

most influential LV buses. In order to share and apply the required DR in the optimal 

locations of the network, a sensitivity analysis is applied which is detailed in the next chapter. 

In this regard, the buses that are most sensitive, when each lv bus is subject to a change in 

active power (𝑆𝐼𝑚𝑎𝑥,𝑙𝑣), are respectively chosen. The other two terms are considered to 

minimise two technical factors in the DN, Voltage Deviation Index (VDI) and Real Power 

Loss Index (RPLI).  

VDI is the sum of the voltage deviation at all buses (except at the substation where voltage is 

specified) from the reference point. Here, VDI is computed from the squares of the deviation 

of the magnitude of the maximum voltage (𝑉𝑚𝑎𝑥) and minimum voltage (𝑉𝑚𝑖𝑛) from the 

nominal voltage (𝑉𝑛𝑜𝑚).  This can be mathematically defined as: 
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VDI =
∑ (Vnom − Vmin,n,t

DR )
2
+ (Vnom − Vmax,n,t

DR )
2

n,t  

∑ (Vnom − Vmin)2 + (Vnom − Vmax)2n,t
 , 

                                      ∀n ∈ NB, n ≠ 1, t ∈ T                                                          (3.45) 

where 𝑉𝑚𝑖𝑛,𝑛,𝑡
𝐷𝑅  and 𝑉𝑚𝑎𝑥,𝑛,𝑡

𝐷𝑅  are the minimum and maximum voltage magnitude of nth node 

with DR control at timeslot t respectively. Based on UK standards, 𝑉𝑛𝑜𝑚, 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥  are 

considered as 1, 0.94 and 1.1 respectively.  

The objective of RPLI is to minimise the total real power loss of the DN and is defined as: 

𝑅𝑃LI =
Ploss,t
DR

Ploss,t
 ,   ∀t ∈ T                                                        (3.46) 

Where, 𝑃𝑙𝑜𝑠𝑠,𝑡, 𝑃𝑙𝑜𝑠𝑠,𝑡
𝐷𝑅  are the total real power loss without and with DR control at timeslot t. 

Generally, power loss between two adjacent branches n and n+1 can be calculated as: 

𝑃𝑡
𝐿(𝑛, 𝑛 + 1) = ∑ 𝑅𝑛,𝑛+1 [

|𝑉𝑛,𝑡+𝑉𝑛+1,𝑡|

𝑌𝑛+1,𝑡
]
2

𝑛,𝑡  , 

∀𝑛 ∈ 𝑁𝐵, 𝑛 ≠ 1, 𝑡 ∈ 𝑇                                                (3.47) 

Where 𝑅𝑛,𝑛+1 is the resistance and 𝑉𝑛,𝑡  and  𝑉𝑛+1,𝑡 are the voltages between two adjacent 

buses n and n+1 at timeslot t. 

Constraints: 

The following constraints are defined for the objective function: 

Pn,t
D = Pn,t

G + Pn,t
L                                                        (3.48) 

Qn,t
D = Qn,t

G + Qn,t
L                                                      (3.49) 

Vmin ≤ Vn,t ≤  Vmax                                                   (3.50) 

Sbr,t ≤  Smax                                                        (3.51) 

∆𝑃𝑚𝑖𝑛,𝑙𝑣,𝑡  ≤ ∆𝑃𝑙𝑣,𝑡
𝐷𝑅  ≤  ∆𝑃𝑚𝑎𝑥,𝑙𝑣,𝑡                                         (3.52) 
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Equations (3.48)-(3.49) denote the typical AC power flow equations. 𝑃𝑛,𝑡
𝐷  and 𝑄𝑛,𝑡

𝐷  are active 

and reactive power demand, 𝑃𝑛,𝑡
𝐺  and 𝑄𝑛,𝑡

𝐺  are active and reactive power generation and 𝑃𝑛,𝑡
𝐿  

and  𝑄𝑛,𝑡
𝐿  are active and reactive power loss at node n at timeslot t respectively. (3.50) denotes 

the voltage statutory limit in the DN (±6% in this study); Equation (3.51) is the thermal rate 

constraint of each branch br ∈ 𝐵𝑅 , and 𝑆𝑏𝑟,𝑡 can be calculated through (3.53)-(3.55).  

 𝑆𝑏𝑟,𝑡 = √𝑃𝑏𝑟,𝑡
2 + 𝑄𝑏𝑟,𝑡

2
                                             (3.53) 

 Pbr,t = ∑ Pn,t
G + ∑ Pn,t

LBR(br,2),T
n  BR(br,1),T

n,t                                 (3.54) 

Qbr,t = ∑ Qn,t
G + ∑ Qn,t

L    BR(br,2),T
n,t

BR(br,1),T
n,t                           (3.55) 

,∀ br ∈ {BR, br′}, 𝑡 ∈ T, n ∈ NB 

where 𝑆𝑏𝑟,𝑡, 𝑃𝑏𝑟,𝑡 and 𝑄𝑏𝑟,𝑡 are apparent, active and reactive power flow in branch br at 

timeslot t respectively. 𝑃𝑛,𝑡
𝐺 , 𝑄𝑛,𝑡

𝐺 , 𝑃𝑛,𝑡
𝐿  and 𝑄𝑛,𝑡

𝐿  are the active power, reactive power, active 

power loss and reactive power loss fed by branch br. br′ is the total number of nodes fed by 

branch br. It should be noted that the active and reactive power of a dispersed generation as 

well as the reactive power generated by the parallel capacitance in the branch br are not 

considered. 

Equation (3.52) denotes the limits of available flexible demands that are provided by the LTA 

at different LV feeders. Thus, ∆𝑃𝑙𝑣,𝑡
𝐷𝑅, should be constrained within the ∆𝑃𝑚𝑖𝑛,𝑙𝑣,𝑡 and 

∆𝑃𝑚𝑎𝑥,𝑙𝑣,𝑡 as the minimum and maximum DR availability from each LV feeder at timeslot t.   

- Problem Formulation 

The optimisation problem for the objective function (3.43) is described as: 

min
𝑙𝑣,𝑡

𝑓(∆𝑃𝑙𝑣,𝑡
𝐷𝑅)   , ∀ 𝑙𝑣 ∈ 𝐿𝑉, 𝑡 ∈ 𝑇,                                         (3.56) 

Subject to: (3.44)-(3.55) 

The problem is solved using Genetic Algorithm (GA). Among the evolutionary optimisation 

techniques, the GA is a well-known method that is widely used in power system, specifically 

for solving a multi-objective function. If suitable operation techniques are applied, GA can be 
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faster and can perform better compared to Differential Evolution (DE) and Partial Swarm 

Optimisation (PSO) techniques [212, 213].  

Figure 3-11 illustrates the flow diagram for obtaining the optimum DR size for each LV 

feeder using GA. Each individual is defined as a vector of: 

[∆P1,t
𝐷𝑅 , … , ∆PLV,t

𝐷𝑅 ]1×𝐿𝑣 , ∀ lv ∈ LV, 𝑡 ∈ T                                        (3.57) 

In order to apply the constraints at the objective function, the fitness function is created using 

penalty strategies. In this context, the fitness function is composed of penalty terms for large 

number of violations (3.50)-(3.52).   

Start

Yes

No

Initialise the randomised  

population of chromosomes of size 

LV 

Evaluate the fitness function for 

each member of the population 

and store the best solution 

Gen = Gen + 1

Select the individual from 
population

Calculate the parameters of the 

objective function 

(∆P, VDI, RPLI)

Apply Stochastic uniform selection 

of individual from the population 

(parents)

Gaussian mutation operator:

select one individual and 

mutate the genes in it  

Generate new population

Check the constraints 

Create the fitness function using 
penalty strategy

Set Gen =1

Compute the penalty function

End

Scattered crossover operator:

select two individuals and swap a 

section of gene between them

(produce children )

Create the fitness function 

using penalty strategy 

Determine of the power 
flow

Create the fitness function 
using penalty strategy

Return

A

A

 iteration >100 or  

the best fitness value  

<=0.001

Input network data

 

Figure 3-11: Flowchart of the Genetic Algorithm implemented to solve the multi- objective function (3.56) to 

determine the minimum required DR from each LV feeder considering voltage and thermal limits 

3.4.3 Supplier Agent 

The goal and the methodology introduced for SA is similar to the SA in the previous 

objective (section 3.3.3). However, instead of four, a two-level piecewise linear pricing 

function as shown in Figure 3-12 is modelled to present the price of electricity in each time 

interval (𝑝𝑙𝑣,𝑡) and is expressed as: 
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Plv,t = {
∝1 𝑃𝑅𝑙𝑣,𝑡

𝐷𝑅 + β1 ,            ∀   𝑃𝑅𝑙𝑣,𝑡
𝐷𝑅 ≤ 70%

∝2 𝑃𝑅𝑙𝑣,𝑡
𝐷𝑅 + β2 ,            ∀   𝑃𝑅𝑙𝑣,𝑡

𝐷𝑅 > 70%
 

∀ ∝1<∝2, lv ∈ LV, t ∈ T                                               (3.58) 

where, 

         𝑃𝑅𝑙𝑣,𝑡
𝐷𝑅 =

∆Plv,t
DR

∆Plv,t
∗ 100                                             (3.59) 

𝑃𝑅𝑙𝑣,𝑡
𝐷𝑅  is the participation rate, the ratio of the percentage of required DR at each LV feeder 

lv, which is calculated by DRPA (∆𝑃𝑙𝑣,𝑡
𝐷𝑅), and the available DR at each LTA (∆𝑃𝑙𝑣,𝑡). 𝛽1 and 

𝛽2 are constant and ∝1and ∝2 are the slopes of the two segments.  

 

Figure 3-12 Two-level piecewise linear pricing function 

3.4.4 Overall DR control 

The proposed DR algorithm is presented in the flowchart in Figure 3-13 in which each colour 

represents one specific agent. The decision-making is applied in timeslot t-1 for the next 

timeslot t. The DR control mechanism starts by updating data of each agent. Then, the DRPA 

runs a power flow in order to determine the network parameters such as voltage and power at 

each bus and current in each branch. Based on the power flow results, the status of the 

network is assessed to identify if voltage magnitude in any bus or current at any branch 

exceeds their limits. Since the aim of this paper is to alleviate the MV network constraints by 

DR provided from LV feeders, the only controllable variable is active power from HAs 
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connected to LV feeders. In case of any network constraint violations, the optimal amount of 

load curtailment at each LV feeder (∆Plv,t
DR) is determined as explained previously. 

Yes

No

Determine power flow 

Calculate the price for the 

next timeslot 

Calculate the required demand 

curtailment by optimising the 

fitness function 

 Update load profile

Is 

there any 

constraint 

violation?

Calculate total available 

DR for the next timeslot 

t=0

Start

Input  network data (e.g., topology, 

line data, bus data) and load profiles 

and available flexible demand for the 

next timeslot

t=t+1

 t>T ?

Yes

No

End

DSPA

HA

LTA

DRPA

SA

 

Figure 3-13: Overall algorithm of the proposed active MV/LV network management through price-based DR 

Receiving the ∆𝑃𝑙𝑣,𝑡
𝐷𝑅 , the price for the next timeslot t is specified by SA through (3.58)-(3.59) 

Based on the price, HAs decide about their load scheduling for the next timeslot and update 

their load profiles. Accordingly, each LTA updates its information about its associated HAs.  

The actual demand curtailment (DRt) from aggregation of all LV feeders in the network, at 

timeslot t can then be expressed as: 

DRt =∑(llv,t
DR − llv,t)

𝑙𝑣

,   

∀  lv ∈ LV, t ∈ T                                                          (3.60) 

(3.60) defines the difference between the load profile before (llv,t) and the new load profile 

after applying DR mechanism (llv,t
DR) at timeslot t of lvth feeder. 
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3.5 MV/LV Network Management (Objective 3) 

Unlike the first two DR mechanisms which are price-based, the DR controller in this section 

aims to activate DR services through incentive-based schemes. The implementation of DR is 

in real time at LV feeders where two different methodologies are investigated: EDR and 

Local Community DR (LCDR). In both schemes, load shedding is used in order to curtail 

households’ loads during emergency conditions. DR event can occur due to either LV or MV 

network demand-supply balancing issues. In this condition, a Demand Curtailment Level 

(DCL) signal is sent to HAs by LTA. The DCL signal consists of required amount of load 

curtailment and duration of DR event. In EDR, consumers are in pre-contract agreement for 

reducing their demands during emergency condition. DRPA has the same functionality as the 

one discussed in section 3.4.2 with the difference that the required DR curtailment is sent to 

LTA, instead of SA, for further action. Hence, its methodology is not studied in this section. 

The structures of DR implementation in EDR and LCDR are presented in Figure 3-14 and 

Figure 3-15 respectively. 
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Figure 3-14: MAS structure for managing MV/LV networks through Emergency DR 
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Figure 3-15: MAS structure for managing MV/LV networks through Local Community DR 

3.5.1 Home Agent 

The goal of HA is to maximise its economic benefits through incentives resulting from DR 

participation. Therefore, two parameters are essential in determining the available load 

reduction: motivation and DR potential.  

- Emergency Demand Response 

Consumers receive fixed incentives in the form of cash payment for their participation. If a 

DCL is received from LTA, HA calculates the available demand reduction during DR event 

as: 

l 𝑐,ℎ,𝑡
𝐿𝑅,𝑚𝑎𝑥 = l 𝑐,ℎ,𝑡 − ĺ 𝑐,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑖𝑛 , ∀   𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇                     (3.61) 
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where, 𝑙 𝑐,ℎ,𝑡
𝐿𝑅,𝑚𝑎𝑥 

is the maximum load that can be reduced at each time interval t for each 

household h within cth cluster. 𝑙 𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛 

 is the mean aggregated of minimum load for cth 

cluster which is obtained from the historical load profiles.  

HA obtains two types of DR signals. Firstly, a DCL 
𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

 which is an initial DR request 

containing the DCL for specific time interval 𝑇′ is received. HA calculates 

𝐷𝑅𝑐,ℎ,𝑇′
𝑚𝑎𝑥 , the maximum available DR with respect to DCL 

𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

  as: 

𝐷𝑅𝑐,ℎ,𝑇′
𝑚𝑎𝑥 =

{
 

        0                           , ∀ DCL 
𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

≥ l 𝑐,ℎ,𝑇′                                        

l 𝑐,ℎ,𝑇′ − l 𝑐,ℎ,𝑇′
𝐿𝑅,𝑚𝑎𝑥             , ∀ DCL 

𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

 < l 𝑐,ℎ,𝑇′  , DCL 𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

 < l 
𝑐,ℎ,𝑇′
𝐿𝑅,𝑚𝑎𝑥   

l 𝑐,ℎ,𝑇′ −  DCL 𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

          , ∀  DCL 
𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

< l 𝑐,ℎ,𝑇′ , DCL 𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

> l 
𝑐,ℎ,𝑇′
𝐿𝑅,𝑚𝑎𝑥     

 

, ∀   𝑐 ∈ 𝐶, ℎ ∈ 𝐻 

𝑇′ ∈ {t 𝑠𝑡𝑎𝑟𝑡 , t 𝑠𝑡𝑎𝑟𝑡}, {t 𝑠𝑡𝑎𝑟𝑡 , t 𝑠𝑡𝑎𝑟𝑡} ∈ 𝑇                                  (3.62) 

𝑙 𝑐,ℎ,𝑇′  is the load at household h before any reduction and 𝑙 
𝑐,ℎ,𝑇′
𝐿𝑅,𝑚𝑎𝑥 

is the maximum load that 

can be reduced during period 𝑇′. It should be noted that HA may accept the DCL 
𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

 only at 

particular time intervals in 𝑇′. However, even if the HA cannot meet the requested DCL 
𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

, 

it calculates and sends the maximum load curtailment that is available. HA then replies to 

LTA with a proposal of a new load profile after DR curtailment that is expressed as: 

𝐷𝑅𝑐,ℎ,𝑇′  = l 𝑐,ℎ,𝑇′ − 𝐷𝑅𝑐,ℎ,𝑇′
𝑚𝑎𝑥  , ∀    ℎ ∈ 𝐻, 𝑡 ∈ 𝑇                              (3.63) 

𝐷𝑅𝑐,ℎ,𝑇′ is the proposal of updated load profile after demand reduction for household h 

during 𝑇′. 

The second type of DR signal is DCL 
𝑐,ℎ,𝑇′
𝐶𝑜𝑛𝑓 

 in which HA receives a confirmation of DR 

proposal containing the final DCL for time interval 𝑇′. Accordingly, it updates its load 

consumption as: 

l 𝑐,ℎ,𝑇′
𝐷𝑅 = l 𝑐,ℎ,𝑇′ − DCL 𝑐,ℎ,𝑇′

𝐶𝑜𝑛𝑓 
                                         (3.64) 

𝑙 𝑐,ℎ,𝑇′
𝐷𝑅  is the new load profile after DR implementation for household h at 𝑇′. It is assumed 

that when consumers accept a DR request, they will not change their decision.  
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- Local Community Demand Response 

In this scheme, HAs connect to a particular LTA and communicate with each other to create a 

local community. HA receives a DCL signal in each time interval t when it can decide about 

its participation for the next timeslot (t+1).  It is assumed that some households are equipped 

with roof-top PV panels which enable them to generate local power. The model of PV and 

related information is provided in the next chapter. The HA has two DR opportunities: 

maximising its dependency level to power grid and reducing power usage. In the former, HA 

benefits from energy expenses reduction by maximising its utilisation of its local generation, 

if it has any. This is expressed as: 

∆ℎ,𝑡
𝑙,𝐺= 𝐺ℎ,𝑡

𝑚𝑎𝑥 − l 𝑐,ℎ,𝑡 , ∀  𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇                           (3.65) 

∆ℎ,𝑡
𝑙,𝐺

 is the difference between the total initial load (𝑙 𝑐,ℎ,𝑡) and maximum PV generation 

(𝐺ℎ,𝑡). A negative value of ∆ℎ,𝑡
𝑙,𝐺

 represents the total required demand (𝐷ℎ,𝑡
𝑊𝑅) as: 

𝐷ℎ,𝑡
𝑊𝑅  = |∆ℎ,𝑡

𝑙,𝐺 | 

, ∀  ∆ℎ,𝑡
𝑙,𝐺< 0,   ℎ ∈ 𝐻, 𝑡 ∈ 𝑇                                           (3.66) 

It is clear that if the household h does not have any PV generation, 𝐷ℎ,𝑡
𝑊𝑅 = 𝑙ℎ,𝑡. Apart from 

bill saving, HA can benefit from feed-in-tariff which further increases its economic gain. 

Feed-in-tariff refers to the payment made to households for local generation and selling 

electricity to the grid. A positive value of ∆ℎ,𝑡
𝑙,𝐺

 shows the local available generation that can 

be provided to the grid from household h (𝐺ℎ,𝑡
𝑇𝐺) as: 

𝐺ℎ,𝑡
𝑇𝐺  = ∆ℎ,𝑡

𝑙,𝐺
 

 , ∀ 𝐷ℎ,𝑡
𝑊𝑅 ≥ 0,   ℎ ∈ 𝐻, 𝑡 ∈ 𝑇     (3.67) 

(3.67) indicates that the maximum independency to the grid occurs when ∆ℎ,𝑡
𝑙,𝐺

 is positive.  

In the second opportunity, HA gets rewarded based on its participation in community demand 

reduction. Further load reduction, is only available for negative value of ∆ℎ,𝑡
𝑙,𝐺

. The total DR 

from load curtailment (𝐷ℎ,𝑡
𝑅 ) is calculated as: 
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𝐷𝑅ℎ,𝑡
𝑚𝑎𝑥 = {

𝐷𝐶𝐿𝑡 −  𝐷ℎ,𝑡
𝑊𝑅         , ∀ 𝐷𝐶𝐿𝑡 ≥ 𝐷ℎ,𝑡

𝑊𝑅 ,   ∆ℎ,𝑡
𝑙,𝐺< 0

 𝐷ℎ,𝑡
𝑊𝑅 − l 𝑐,ℎ,𝑡

𝐿𝐷,𝑚𝑎𝑥       , ∀ 𝐷𝐶𝐿𝑡 < 𝐷ℎ,𝑡
𝑊𝑅 ,   ∆ℎ,𝑡

𝑙,𝐺< 0

0                            , ∀     ∆ℎ,𝑡
𝑙,𝐺≥ 0

 

, ∀   𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇     (3.68) 

The total load reduction depends on the motivation and attitudes of HA in DR participation. 

Therefore, the total required demand from the grid after applying load reduction (𝐷ℎ,𝑡
𝑅 ) is 

calculated as: 

𝐷ℎ,𝑡
𝑅 =  𝐷ℎ,𝑡

𝑊𝑅 − (𝛿ℎ ∗ 𝐷𝑅ℎ,𝑡
𝑚𝑎𝑥) , ∀    ℎ ∈ 𝐻, 𝑡 ∈ 𝑇   (3.69) 

𝛿ℎ indicates the satisfaction of household h to DR participation and is calculated as: 

𝛿ℎ = 𝐴ℎ ∗ 𝐹𝑀ℎ     (3.70) 

where 𝐴ℎ and 𝐹𝑀ℎ are the attitudes and financial motivation of each household h to demand 

reduction schemes. The calculation of these parameters is described in the next chapter. Each 

HA sends the 𝐷ℎ,𝑡
𝑅  and 𝐺ℎ,𝑡

𝑇𝐺 at each timeslot t to the LTA. 

3.5.2 Local Transformer Agent 

LTA aims to mitigate network constraints by implementing DR during critical conditions. 

The amount of total load curtailment  𝐷𝐶𝐿𝑙𝑣,𝑡
𝑡𝑜𝑡𝑎𝑙 is determined by LTA or DRPA according to 

previously discussed methodologies. Alleviating network constraints and activating DR is 

based on the type of DR.  

- Emergency Demand Response 

In this scheme, The DR notification is sent to HAs in advance, e.g., day or hours ahead based 

on estimation of the network status. Therefore, when a DR event is detected, LTA needs to 

allocate an initial DCL to its associated HAs. In this regard, LTA estimates the potential of 

demand curtailment from all aggregated loads within a cluster of households (l′c,t
DR

), as shown 

in Figure 3-16 and using the following equation: 

𝑙′𝑐,𝑇′
𝐷𝑅

= ∫ (𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑎𝑥

− 𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛

)𝑑𝑡
𝑡𝑒𝑛𝑑
𝑡𝑠𝑡𝑎𝑟𝑡
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, ∀ 𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑇′ ∈ {t 𝑠𝑡𝑎𝑟𝑡 , t 𝑠𝑡𝑎𝑟𝑡}}, {t, t 𝑠𝑡𝑎𝑟𝑡  , t 𝑠𝑡𝑎𝑟𝑡} ∈ 𝑇 

                                                       , ∀ 𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑎𝑥

− 𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛

≥ 0                                       (3.71) 

   where, 

𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑎𝑥

=
∑ 𝑙′ℎ,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑎𝑥
ℎ

𝐻
, 𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇      (3.72) 

𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛

=
∑ 𝑙′ℎ,𝑡

ℎ𝑖𝑠𝑡,𝑚𝑖𝑛
ℎ

𝐻
, 𝑐 ∈ 𝐶, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇   (3.73) 

𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑎𝑥

 and 𝑙′𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛

 are the mean of peak and minimum demands from all households in 

cluster cth.  
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Figure 3-16: Illustration of potential of demand reduction for each cluster of customers 

The initial DCL is then determined for each cluster of HA based on a merit order. LTA starts 

with the group of HAs with the highest probability of DR potential and allocates appropriate 

DCL 
𝑐,ℎ,𝑇′
𝑅𝑒𝑞 

 to them. The allocation procedure continues to the next cluster until it meets the 

overall objectives and maintains constraints of the power network. LTA then sends an initial 

DR request containing DCL and DR duration to HAs. Receiving the response (proposal) from 
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all HAs, LTA updates its data and sends a final DCL signal to selected HAs taking in to 

account the HAs DR potential. 

- Local Community Demand Response 

The main aim of LTA in LCDR is to work with HAs at community level in order to 

maximise their independency from the power grid in a DR event. This scheme is activated in 

real time where LTA sends the 𝐷𝐶𝐿𝑡 signal to all its associated HAs based on the network 

status. The same methodology introduced in section (3.3.2) is used to calculate the required 

DR in each time interval (DRlv,t
req
). The DR event occurs if the total aggregated load at 

transformer level is greater than its maximum capacity or if a DR signal is received from the 

DRPA. Each LTA updates its status when it receives the Gh,t
R  and Dh,t

R  from all its associated 

HAs as: 

𝐷𝑙𝑣,𝑡
𝑟𝑒𝑞  = ∑𝐷ℎ,𝑡

𝑅

ℎ

 

𝐺𝑙𝑣,𝑡
𝑎𝑣𝑎  = ∑𝐺ℎ,𝑡

𝑇𝐺

ℎ

 

, ∀  𝑙𝑣 ∈ 𝐿𝑉, ℎ ∈ 𝐻, 𝑡 ∈ 𝑇    (3.74) 

𝐷𝑙𝑣,𝑡
𝑟𝑒𝑞

 and 𝐺𝑙𝑣,𝑡
𝑎𝑣𝑎 are the total demand and available generation from all HAs in timeslot t. 

Therefore, DRlv,t
req

 is calculated as: 

DRlv,t
req

= 𝑇𝐶lv,t
max − 𝐷𝑙𝑣,𝑡

𝑟𝑒𝑞   , ∀ 𝑙𝑣 ∈ 𝐿𝑉, 𝑡 ∈ 𝑇    (3.75) 

If Dlv,t
req

> 0, LTA needs to maximise local usage of renewable generation. The amount of 

required generation to meet the demand at timeslot t (∆lv,t
l,G ) is calculated as: 

∆lv,t
l,G = Gh,t

TG − Dlv,t
req

     (3.76) 

where the amount of energy that is needed to be purchased from all HAs (𝐺𝑙𝑣,𝑡
𝑏𝑢𝑦

) is: 

 𝐺𝑙𝑣,𝑡
𝑏𝑢𝑦

= {
∆𝑙𝑣,𝑡
𝑙,𝐺 ,   ∆𝑙𝑣,𝑡

𝑙,𝐺 > 0

𝐺ℎ,𝑡       ,
𝑇𝐺 ∆𝑙𝑣,𝑡

𝑙,𝐺 ≤ 0
     (3.77) 
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LTA uses a merit order to identify the selected HAs and the amount of energy to be acquired 

from each HA (𝐺ℎ,𝑡
𝑏𝑢𝑦

). Since the purchase procedure is done in local community and also 

consumers are under the same feed-in-tariff, the order of selecting HAs is based on the 

highest availability of generation.  

3.5.3 Overall DR control 

- Emergency Demand Response 

The overall DR algorithm for the EDR scheme is shown in Figure 3-17. At the first step, each 

agent updates its knowledge about other related agents. In case of any DR event, LTA groups 

its associated HAs into distinctive clusters. For each cluster, the load profile as well as the 

potential of DR is predicted by LTA. Then, LTA allocates DCL to selected groups of HAs in 

a merit order and sends an initial DR request to them. The allocation is updated upon 

receiving responses from HAs and accordingly the new DCL is sent to selected HAs. The 

latter reduce their consumption in order to ensure that the total household power usage does 

not exceed a given DCL.  

Input  network data (e.g., 

topology, line data, bus 

data) and load profiles 

Start

Determine power flow 

Calculate the required 

demand curtailment 

Is 

there any 

constraint 

violation?

Determine power flow 

Is 

Transformer 

overloaded?

 Calculate the initial  

allocated DCL to selected 

DAs based on potential 

DR of each cluster

Calculate DR proposal

 Calculate the final  DCL 
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 Update load profileEnd
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LTA

DRPA

Yes

Yes

No

No

 

Figure 3-17: Overall flowchart of the proposed active MV/LV network management through EDR. 
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- Local Community Demand Response 

In case of critical conditions, the total amount of demand and generation are provided to the 

households in that community from the LTA. Each household makes a decision to alter its 

demand dependency on the power grid by changing electricity usage. Then the household 

submits the updated load profile of its consumption and generation (if they have any) for the 

next time interval to the LTA. Moreover, LTA provides the required supply by maximising 

its local usage of renewable generation. A community incentive is allocated to each LTA 

which they then share to participants according to their reduction. In addition, a pre-

determined reward is awarded to the best community with highest total power reduction. The 

overall DR algorithm for the LCDR scheme is shown in Figure 3-18. 
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Figure 3-18: Overall flowchart of the proposed active MV/LV network management through LCDR 

3.6 Summary 

This chapter provides a detailed description of the proposed MAS framework and 

architecture. Five kinds of agents are introduced to model a DR-based active distribution 

network in a virtual agent-based environment. According to the agent’s location in the 

network, four layers are defined; market, MV feeder, LV feeder and end-user layer. For 
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configurability and flexibility, the same MAS platform is used for all three objectives of the 

thesis and the structures of the DR mechanisms are modelled individually.  

The focus of DR in the first and third objectives is on LV network and the second one on MV 

network. The first two aims are implemented according to price-based DR where the DR 

activation occurs at SA. In contrast, the last one is incentive-based where DR gets activated at 

LTAs.  

The aim of the DR control algorithm of each HA in the two first objectives is to optimise the 

load scheduling of shiftable appliances based on different pricing signals set by SA. In 

contrast, the third objective considers the load curtailment through load shedding. LTAs 

calculate and estimate the available or required DR size at each time interval. DRPA is 

responsible for monitoring and assessing the network status. The dynamic pricing tariffs are 

determined by SA using data received from LTA or DRPA. The overall tasks and 

methodologies for all agents, except for DSPA, are summarised in Table 3-1. 

 

Table 3-1: Summary of the overall methodology for each objective of this thesis 

Obj. DR type 
Agents Tasks 

HA LTA DRPA SA 

1 

DA-

RTP/ 

ToU 

Optimise shiftable 

appliances scheduling 

based on day ahead price 

signals 

Calculate the potential 

of DR based on 

probability assessment 

 

Monitor the 

network status 

Set tariffs 

according to 

predicted 

participation rate 

in day-ahead 

RTP 

- Optimise shiftable 

appliances scheduling 

based on a price 

prediction capability 

- Calculate available DR 

at each timeslot in real 

time basis 

Calculate the total DR 

availability by 

aggregating the 

available DR size from 

all HAs 

 

Monitor the 

network status 

Set tariffs using a  

four  piece-wise 

linear function 

based on 

participation rate 

in real time 

2 RTP 

Computationally less 

demanding decision-

making on start-up of 

shiftable appliances at 

each timeslot 

Calculate the total DR 

availability by 

aggregating the 

available DR size from 

all HAs 

Calculate the total 

DR requirement 

from each LV 

feeder based on 

the most sensitive 

buses and 

potential of DR of 

each LV feeder 

Set tariffs using a 

two piece-wise 

linear function 

based on 

participation rate 

in real time 

3 

EDR 

Reduce demand 

according to maximum 

DR availability and DCL 

Determine the required 

DCL for each HA based 

on an initial probabilistic  

analysis and negotiation 

with HAs 

Determine the 

required DCL for 

each LTA in 

emergency 

condition 

Set pre-determined 

incentives for each 

participating HA in 

EDR 

LCDR 

Reduce demand by 

maximising local 

generation usage, and 

reducing usage according 

to the maximum DR 

availability and DCL 

Determine DCL and 

maximise utilisation of 

local generation at LV 

feeder 

Determine the 

required DCL for 

each LTA in 

emergency 

condition 

Set pre-determined 

incentives and 

rewards for each 

local community 
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Chapter 4 Parameters for Multi Agent System Modelling  

4.1 Introduction 

In the models proposed in the previous chapter, for each of the three objectives of the thesis, 

the parameters needed to be determined prior to the implementation. This chapter provides 

information regarding the selection of these parameters. The network simulation environment 

together with the dataset used is also introduced. The households load profiles as well as their 

characteristics are described as well. Three objectives are considered in this thesis as 

described in section 1.3 and in this chapter these are referred to as objective 1 (LV network), 

objective 2 (MV network) and objective 3 (MV/LV network) as described in chapter 1. For 

each objective, the simulation modelling along with the simulation set-up is presented.  

4.2 Power Distribution Network Modelling 

The aim of the ADNM developed in this thesis is to control the constraints in the DN through 

flexible residential loads. Therefore, when designing the physical layer of the MAS 

framework, the size of the network should be big enough to accommodate large scale DR 

aggregation. In this regard, a modified IEEE 69-bus 12.66 kV radial distribution network is 

used as the testing layout of the MAS framework. The one line diagram of the test system is 

shown in Figure 4-1. The network comprises 8 MV feeders as well as 48 lateral LV feeders. 

Each LV feeder is fed from a 12.66/0.415kV, 45kVA MV/LV transformer which consists of 

19 nodes, each representing two households. Hence, each LV feeder is connected to 38 

households and this represents a total of 1824 households in the network. System data 

including line and transformer parameters are provided in Appendix A. 

The same network topology is used for all three objectives. However, depending on the focus 

of DR mechanism in each objective, the relevant methodology is implemented and tested in 

the respective area (LV or MV feeders). In addition, the households’ features are described 

individually for each case. The representation of each component in the physical layer and 

the agents in the cyber layer are modelled and simulated using MATLAB respectively.  
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Figure 4-1: One line diagram of modified IEEE 69-bus test system with 8MV feeders and 48 LV feeders
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4.3 Creating Households Load Profile from Dataset 

The dataset related to a real trial, IEMST project [214], is used in order to provide appropriate 

information to determine the load profile as well as characteristics for each household. The 

programme targeted the electricity consumption (without PV and EV), of 5028 Irish 

residential customers with half-hourly meter reading resolution. The duration of the trial was 

split into two timeframes: a six month benchmark period (July- Dec 2009) and a one year test 

period (Jan-Dec 2010). In the former, all participants were equipped with smart meters and 

their energy consumptions were measured as normal under fixed price tariffs. In the second 

period, customers were allocated randomly to different tariff scenarios including five ToU 

tariffs (labelled A-D) and one controlled group (labelled C). However, the profile of the set of 

consumers in each trial group was almost the same in terms of behavioural, demographic and 

attitudinal perspectives. The tariffs and the population allocated in each group are depicted in 

Table 4-1. The four first price rates are designed according to the time of the day where three 

pricing bands, day, peak and night time, were defined. In contrast, in the last ToU tariff, the 

price variation was on the type of the day, weekends/weekday, in order to assess its effect on 

consumption behaviour. An in-home survey was also taken which provides valuable 

information regarding characteristics of the residential electricity consumption patterns and 

behaviours.  

Table 4-1: Groups and ToU tariffs structure of IESMT [42] 

Price band 

Price by tariff group (c/kWh) 

A B C D W Control 

Night (23:00 to 08:00) 12 11 10 9 10 
 

Day (All other times) 14 13.5 13 12.5 14 18 

Peak (17:00 to 19:00, Mon 

to Fri) 

20 26 32 38 38 
 

weekend (All Weekend) 
    

16 
 

N (households) 1368 511 1370 509 100 1170 

 

The choice of the dataset used was the availability of meter-reading, in-home surveys and 

various ToU tariffs for large numbers of residential DR participants. 
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In order to model the customer flexibility behaviour, synthetic load profiles for households 

are created and applied in the network analysis. To achieve more accurate results, the data 

related to only weekdays for a summer month, July, is considered in the analysis. That is due 

to the fact that the type of the day and month can highly affect the consumption patterns, 

consumers’ behaviour and the price elasticity of energy demand [215, 216]. The meter 

readings for the benchmark period, where all households are in the same tariff, are utilised. 

The data used in the simulation was for a total of 23 days, resulting from July having 8 non-

weekdays. The first timeslot (t=1) represents 00:00:00-00:29:59 hrs. The Knowledge 

Discovery in Databases (KDD) process is employed for generating the load profiles of 

households.  

4.3.1 Pre-processing 

The aim of this step is to minimise the percentage of error in data reading due to anomalous 

readings, meter faults, loss of supply or other interruptions. This is done in two phases: 

clearing and cleaning data, and replacing the missing data with appropriate values. Applying 

the former process improves the accuracy and quality of the result. 

Phase1-Clearing and cleaning data: Any meter reading value which meets the following 

conditions is removed from the original dataset. All missing values were considered as 0 

which were replaced with the appropriate values in the next phase. 

- Negative or zero values or higher than 10kW 

- Any repeated data with the same time stamp 

- Value higher than the sum of the mean and three time the Standard Deviation (SD) of the 

energy values for that specific day (value > mean(value) + 3δ) 

For each customer, all readings for a complete day which belong to any of the following 

categories are removed.  

- Days with less than ten different values in the meter readings  

- Days with less than 43 time interval in the meter readings (1/8 of total reading per day)  

- Day with three continuous missing timeslots (1.5 hour or about 0.06% of total reading) 

- Day with two pairs of two continuous missing timeslots (two different of 1hour missing 

values)  
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Replace missing data with appropriate values: The missing energy values at specific 

timeslots were replaced with available data obtained from their mean of readings at previous 

and next timeslots. If the first time interval (t=1) or last time interval (t=48) were missed, 

their replacement were done by averaging the readings of timeslot (t=2) and (t=3) and (t=46) 

and (t=47) respectively.  

A comprehensive study on missing meter data impact on clustering and characterisation of 

their load profiles was investigated [217] but since this was not the focus of this thesis, it will 

not be discussed in depth. The results showed that although replacing larger percentage of 

missing values provides a larger sample size, it will also affect the quality and accuracy of 

clustering results. In this regard, customers with more than one missing day in their meter 

readings were removed. The missing days were replaced with the data available for similar 

day in that month. It should be noted that, only consumers who’s meter readings were 

available in both control and trial periods are considered. After cleaning and clearing data, 

3990 customers remained in this study. This filtering ensures the quality of the dataset.  

4.3.2 Normalisation 

The purpose of clustering consumer load profiles is to investigate a similarity in their 

consumption patterns. Hence, prior to clustering, firstly, the average monthly usage of each 

household is calculated as: 

𝑙ℎ̅ =
∑ 𝑙ℎ,𝑁𝑑𝑁𝑑

𝑁𝑑
, ∀ ℎ ∈ 𝐻,𝑁𝑑 = [1, 23]                                          (4.1) 

where,  

         𝑙ℎ,𝑁𝑑 = ∑ 𝑙ℎ,𝑡 , ∀ ℎ ∈ 𝐻, 𝑡 ∈ 𝑇𝑡                                               (4.2) 

where, 𝑙ℎ̅ is the average load consumption of household h during all weekdays of July (𝑁𝑑) 

and 𝑙ℎ,𝑁𝑑 is the average usage in 𝑁𝑑
th day. Then, a linear normalisation process is used to 

normalise and transform each of the averaged value of the load profile using the following 

equation:  

𝑙ℎ
𝑛𝑜𝑟𝑚 =

𝑙ℎ̅ −min (𝑙ℎ,𝑁𝑑)

max(𝑙ℎ,𝑁𝑑) − min (𝑙ℎ,𝑁𝑑)
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, ∀ ℎ ∈ 𝐻,𝑁𝑑 = [1, 23], 𝑡 ∈ 𝑇                                              (4.3) 

𝑙ℎ,𝑡
𝑛𝑜𝑟𝑚 and 𝑙ℎ,𝑁𝑑 are the normalised load and meter reading data for hth household, at day 𝑁𝑑. 

The maximum value of the load curve (𝑚𝑎𝑥(𝑙ℎ,𝑁𝑑)) can be assumed as a reference value for 

the normalisation. 

4.3.3 Clustering 

The quality of clustering results significantly relies on the applied algorithm. In this regard, 

three clustering techniques are used and implemented for the electricity meter data for 

comparison purposes. 

K-means algorithm: This is one of the most common clustering algorithms which has been 

extensively implemented [218]. Each observation allocates to one specific cluster with the 

nearest mean. The segmentation method, based on Euclidean distance within all clusters, 

depends on the number of clusters. The disadvantage of this algorithm is the need of pre-

determination of the number of clusters by users. 

Fuzzy K-means: This is similar to the K-means technique with the difference that each 

sample can belong to more than one cluster. For each observation, a weighted centroid 

method is applied to determine the grade of membership to other clusters [219]. The inputs of 

the algorithm are the number of clusters and membership criteria. Stable partitions are 

obtained by repeating the procedure.  

Dirichlet Process Mixture Model (DPMM): The DPMM is a Bayesian non-parametric 

statistical model that hierarchically combines Dirichlet and Multinomial distributions [220]. 

In fact, electricity load profiles are represented as draws from Multinomial distributions. The 

advantage of the model is that, unlike the K-means and Fuzzy K-means algorithms, the 

number of clusters does not need to be pre-determined.  

Evaluation: For the studied dataset, scanning the unique model parameter (concentration 

parameter of a Dirichlet distribution), the DPMM algorithm converges in a partition with six 

clusters. For the first two clustering algorithms, the clustering was repeated for 2-14 numbers 

of clusters in order to investigate the impact of the number of pre-determined clusters. In 

addition, the performance of the results for all clustering techniques regarding the quality and 

composition of clusters were assessed. The evaluation was verified by Davies-Bouldin index 

https://en.wikipedia.org/wiki/Mean


 

 

103 

 

(DBI) which is based on a ratio of within-cluster and between-cluster distances [221] and the 

results are illustrated in Figure 4-2. The smallest DBI value represents the optimal clustering 

number. As can be seen, the distribution of all algorithms follows a similar trend although the 

DBI values for DPMM are slightly higher. However, comparing the results, the optimal 

number of cluster by DBI evaluation is similar to DPMM. A comprehensive comparison 

between DPMM and various clustering techniques presented in [220] demonstrate the high 

accuracy of this technique. The optimal number of clusters was determined as six with 

DPMM, to represents variability distribution of demand profiles. The centroid of each created 

clusters is shown in Figure 4-3 and the average power consumption as well as population 

within each cluster is illustrated in Table 4-2.  

 

Figure 4-2: DBI for different clustering methods 

 

Figure 4-3: Centroid of the 6 clusters resulting from DPMM 
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Table 4-2: Population and average power consumption in each cluster 

Cluster 

No. 

No. of 

Customers 

Population 

(%) 

Mean 

Consumption 

(kWh) 

Mean 

Consumption   

(%) 

1 799 20 394.10 25.08961 

2 625 16 362.80 23.09695 

3 757 19 55.75 3.549215 

4 533 13 200.32 12.75298 

5 931 23 197.45 12.57027 

6 345 9 360.35 22.94098 

4.3.4 Synthetic Data 

1824 synthetic load profiles were created based on the clustering results. Firstly, for each 

cluster, the mean aggregated minimum and maximum loads values were calculated. Then, the 

load profiles were randomly created with a normal distribution around the centroid of that 

cluster. The percentage of synthetic load profiles created in each cluster is kept constant for 

all clusters in the dataset. The synthetic data extracted from clustering results is shown in 

Figure 4-4. The generated load profiles are distributed randomly in the network. 

4.4 Classification of Dataset  

Data classification is an effective tool for dealing with the residential loads challenges 

regarding their intermittency and uncertainty nature. A characterisation-based clustering 

technique is used to study the various aspects of customer characteristics in each cluster.   

Using a multinomial regression model, the correlations between dependent variables 

(customer’s characterisation) and independent variable (mean usage) within each cluster is 

studied. Table 4-3 summarises the main features which can have an effect on the power 

usage. The household features include the size of household and the number of bedrooms. 
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Figure 4-4: Load profiles of HAs created based on 6 cluster results (1824 profiles) 

 

Table 4-3: Customers characterisation within each cluster 

Cluster 

No. 

Household 

feature 

Occupancy 

level 
Educational level Economic level 

1 6.842898 3.834268 6.512359 4.584632 

2 4.573384 1.992343 4.635458 3.401898 

3 4.822042 2.147352 5.115433 2.812393 

4 1.839991 3.472032 6.397739 4.031594 

5 1.839991 1.216999 1.904661 1.425251 

6 -1.57424 -0.15855 -1.71991 -1.46396 

The characteristics of clusters 1 and 2 have the highest effect on their usage. On the other 

hand, cluster 6 which have relatively high mean usage although all its characteristics have 

low values. This indicates the possibility of this cluster consisting of wealthier customers. It 

can be observed that household features and educational level are the characteristics having 

the most effect on DR potential. The analysis of Table 4-3 is provided along the rest of the 

chapter as appropriate.  
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4.4.1.1  Willingness to Participate in DR Schemes 

Consumers are grouped according to their attitudes towards DR participating. The clustering 

is performed using K-means algorithm as explained previously. Hence, each individual 

household is assigned to a cluster of households with similar willingness to engage in DR. 

The clustering results are evaluated by DBI and Calinski-Harabasz Index (CHI), which is 

based on a variance ratio of within and between clusters, as shown in Figure 4-5. Unlike DBI, 

the best clustering result in CHI is obtained for maximum values. Three optimal number of 

clusters are obtained with different attitudes, highly motivated, less motivated and doubter, 

and these are summarised in Table 4-4.  

 

 

Figure 4-5: DBI and VRC for evaluating clustering of households 

Table 4-4: Social segmentation of the customers 

     

Cluster 

No 

Attitude [%] 

Highly 

motivated 

Less 

motivated 
Doubter 

1 58.2 37.7 4.1 

2 31.8 61.8 6.4 

3 31.7 65.8 2.5 

4 19.8 77.4 2.8 

5 46.4 46.3 7.3 

6 41.9 48.6 9.5 

 

The value of 𝐴ℎ
𝑡  in all objectives is assumed to be 1 and 0 for the highly motivated and 

doubter groups respectively and a random number between 0 and 1 is allocated to the less 

motivated group. 𝐴ℎ
𝑡  remains unchanged during the whole simulation period for each HA. 

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

Number of cluster

D
B

I

 

 

1 2 3 4 5 6 7 8
0

5

10

15

20

C
H

I



 

 

107 

 

4.4.1.2 Price Elasticity of Demand  

The data related to trial period is investigated together with the benchmark period in order to 

determine the coefficients of the price elasticity. Appendix B presents the Ratio of Cost (RC) 

values which is the ratio of each trial tariff in respect to the fixed tariff (control group). The 

percentage of demand reduction is also shown for different cluster of customers based on the 

time the day. Figure 4-6 shows the total energy usage before and after applying DR. These 

plots depict the PED which is dependent on the time of day. It can be deduced that reduction 

in power consumption in each cluster does not necessarily have a linear relationship with 

price. Moreover, the granularity of PED is different for various ToU tariffs in each group. 

Considering Table 4-3, although the RC value for tariff A is higher, not all customers are 

likely to be elastic to this tariff. It can also be observed that the potential of DR does not 

necessarily depend on population within a cluster. For instance cluster 3 has the lowest mean 

power usage Figure 4-6 and cluster 1 has the highest but the elasticity in cluster 3 is higher 

than cluster 1. This is because of the different characteristics of consumers in regards to 

economic aspects, convenience, comfort level and awareness amongst others. It is evident 

from the results in table SD where the DR potential results from a combination of on power 

consumption as well as individual household characteristics.  

Linear regression model was used to model the correlation between different pricing bands 

and demand reduction for each cluster as illustrated in Figure 4-7. The effects that various 

ToU bands have on household clusters is presented. Using the regression results in Figure 

4-7, the elasticity coefficients from equations (3.7) and (3.39) are obtained and summarised in 

Table 4.5.  

Table 4-5: Setting coefficients of parameters 𝛆𝐜and 𝒃𝒄 (6) in the simulation for each cluster 

Cluster  No. 𝜺𝒄 𝒃𝒄 

1 0.5485 - 0.4009 

2 0.807 -0.2799 

3 0.556 -0.1926 

4 0.6759 -0.2342 

5 0.4294 -0.1488 

6 0.39 -0.1072 
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Figure 4-6: Mean power usage/price elasticity of each cluster to different tariffs 

 

 

Figure 4-7: Regression coefficients for different tariffs allocation and different groups of customers 
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4.5 Load Modelling 

4.5.1 Wet Appliances model 

The shiftable loads have flexible time delays, fixed cycle lengths and power consumption in 

each phase of their operation. The length of operating cycle of each appliance depends on the 

operating parameters and temperature. The appliances from Figure 3-4 (b) are described in 

the following with regard to their characteristics. 

Dishwasher (DW): A typical dishwasher has an operating length of 75 minutes [222, 223] 

and consists of three cycles: wash, rinse and dry. The power consumption for each cycle is 

between 0.2kW and 2.8kW and averaging around 1.19kWh. A typical demand profile for 

such an appliance is shown Figure 4-8.  

 

Figure 4-8: Typical consumption of a dishwasher [222] 

 

Washing Machine (WM): The operation of a WM comprises mainly of washing and drying 

cycles, lasting approximately 75 minutes [222, 223]. It has similar power consumption as 

DW with an average of 1.5kWh per cycle. A typical consumption profile for such WM is 

shown Figure 4-9 

 

Figure 4-9: Energy consumption of a washing machine [222] 
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Tumble Dryer (TD): This has operating cycles of approximately 52 minutes [222, 223]. 

Typical values for power usage are around 0.2kWh to 2.6kWh with an average of 1.2kWh as 

depicted in Figure 4-10.  

 

Figure 4-10: Energy usage of a typical tumble dryer [222] 

One assumption made is that all these appliances have integrated timers or electronic control 

mechanisms which enable planned shifting of the start time based on timeslots. 

4.5.2 PV Model 

The output of a typical PV was required for considering the local generation at household 

level to model the LCDR scheme (objective 3). The typical characteristics of the PV model 

used are shown in Table 4-6.  

 

Table 4-6: PV panel properties 

PV Model Suntech STP250S 

 

Electrical Characteristics 

Number of panel 8 

Standard Test Condition  power rating 250 W 

Optimum Operating Voltage 30.7 V 

Optimum Operation Current 8.15A 

Peak Efficiency 15.4% 

Mechanical 

Characteristics 

Solar Cell Monocrystaline Silicon  

No. of Cells 60 (6x10) 

Dimensions 1640x992x50mm 

Weight 19.1 kgs 
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A typical summer day, 19th July, was arbitrarily chosen for the PV data. The weather 

condition for that specific day is given below.  

 

Table 4-7: Weather condition used for PV model 

Date 19th July 2017 

Temperature 
Low 15.8o C 

High 20.7o C 

Wind 

Average 6.0 mph 

High 23 mph 

Direction SW 

Rain 4.10 mm 

 

The distribution of the solar output with respect to timeslots is depicted in Figure 4-11 

 
Figure 4-11: Solar output power 

4.6 LV Network Modelling 

4.6.1 Simulation Model 

The first objective of this thesis is the LV network management (without) considering any 

DR event in the MV network. The proposed methodology is implemented and the simulation 

results are evaluated for one LV feeder as shown in Figure 4-1. A total number of 38 

households are considered for the simulation over a one-day period for all case studies in this 

thesis. In order to examine the performance of the proposed methodology, the synthetic load 

profiles are distributed in the network, keeping the same proportion of household clustering. 

This is depicted in Figure 4-12, where each household is presented with an arrow having 
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different colour representing the cluster of that household. Each bus is connected to two 

households in a different cluster.   

 

Figure 4-12: One-line diagram of the test system for LV network modelling with the distribution of cluster of 

households. 

4.6.2 Simulation Set up 

Home Agent: 

Detailed parameters of the shiftable loads are summarised in Table 4-8.  

It is assumed that each appliance uses equal proportion of the total required energy for 

completion of its operation (𝑙ℎ,𝑡
𝑠ℎ =

𝐸𝑠ℎ

∆𝑡𝑠ℎ
). The background load for each household is 

determined as the difference between the load profile and the power consumption of each 

operating appliance.  

Table 4-8: Parameters characteristics of the shiftable loads 

 Ownership rate 𝐥𝐡,𝐭
𝐬𝐡  ∆𝐭𝐬𝐡 𝐄𝐬𝐡 

Washing machine 98% 1.2
3⁄  kW 3 1.2 kW 

Dish washer 95% 1.19
3⁄  kW 3 1.19 kW 

Tumble dryer 89% 0.9
2⁄  kW 2 0.9 kW 

 

The user’s allowable window (∆th,t
sh,pref

) is determined for each cluster of households, from 

equation (3.24), in which the operating status of each appliance (𝑥𝐶,ℎ,𝑡
𝑠ℎ ) is set to 1 

if (𝑃(𝑍𝐶,𝑡
𝑠ℎ)) ≥ 0.5. Then, the start time of each wet appliance (𝑡ℎ,𝑡

𝑠ℎ) for each household is 

deduced based on a random selection from their (∆𝑡ℎ,𝑡
𝑠ℎ,𝑝𝑟𝑒𝑓

). This is illustrated in Figure 
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4-13. The values of ∆𝑡ℎ,𝑡
𝑠ℎ,𝑝𝑟𝑒𝑓

 are provided in the LTA parameter setting. The coefficients for 

the price prediction model in equation (3.15) are set the same as the RTP of SA as depicted in 

Table 4.5.  

 

Figure 4-13: The random-base selection of start-up time of shiftable appliances before DR implementation 

 

Local Transformer Agent: 

The results from the methodology proposed in section 3.3.2, to estimate the potential of 

shifting wet appliances, are provided. The simulation is performed for one-day period using 

historical load profiles from the dataset.  

𝒀𝒄,𝒉,𝒕
𝒔𝒉 : The ownership rate of different controllable appliances along with their daily frequency 

usage for each cluster of consumers is shown in Figure 4-14. While most households own 

washing machines, the highest ownership rate for dish washer and tumble dryer are from 

clusters 1, 2 and 3.  

 

Figure 4-14: Appliances ownership rate (%) for each group 
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The probability of starting time of appliance in each cluster during a typical weekday is 

determined using equation (3.25).  This is shown in Figure 4-15 for washing machine and for 

all appliances in Table 4-9. It should be noted that in order to determine the maximum DR 

availability, the wet appliances are considered to be run once during one day simulation for 

those households that own them. As can be observed, the probability of start-up of the 

appliances in each cluster is direct correlation with its peak demand.  

 

Figure 4-15: Probability of operating of washing machine for all clusters of consumers 

Table 4-9: The preferable time windows for shiftable appliances in each cluster of consumers 

 

 

 

 

 

 

𝒍́𝒄,𝒕
𝑫𝑹,𝒑𝒐𝒕,𝒕𝒐𝒕𝒂𝒍

 : The potential of demand shifting from all aggregated households within each 

cluster during a typical day is plotted in Figure 4-16.  
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∆𝐭𝐡,𝐭
𝐖𝐌,𝐩𝐫𝐞𝐟

 1-48 13-47 14-48 13-48 1-3, 16-48 1-2, 34-48 

∆𝐭𝐡,𝐭
𝐃𝐖,𝐩𝐫𝐞𝐟

 1-48 1-47 14-48 1, 13-48 1-3, 16-48 1-2, 34-38 

∆𝐭𝐡,𝐭
𝐓𝐃,𝐩𝐫𝐞𝐟

 1-2, 15-48 14-47 14-48 14-20, 33-48 1-2,17-48 1-2, 36-48 
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Figure 4-16: The potential of DR arising from shiftable appliances in all clusters 

As can be seen, the potential of responsiveness demand over time varies in each cluster which 

is dependent on the load profile of that cluster. 

Supplier Agent:  

At the time of writing this thesis, to the author’s knowledge no RTP tariff were implemented 

in UK. Hence, the coefficients in equation (3.58) were obtained by using the price data of the 

first dynamic ToU tariffs in GB (Low carbon London trial), as explained previously in 

section 2.6.1. Three price bands were determined by EDF Energy supplier [39]: as High: 67.2 

pence/kWh, Default: 11.76 pence/kWh and Low: 3.99 pence/kWh. Accordingly, the price 

coefficients that are used to design either DA-RTP or RTP, are presented in Table 4-10. The 

three pricing bands are also used for ToU tariff as presented in Table 4-11. The fixed price in 

all cases is considered to be 14.22 pence/kWh. 

Table 4-10: Parameters determined for four-level piecewise linear pricing function in (3.30) 

Parameter Value Parameter Value 

∝𝟏 0.0253 𝛃𝟒 -118.8 

𝛃𝟏 3.99 Min. price 
3.99 p/kWh 

∝𝟐 0.338 Max. price 67.2 p/kWh 

𝛃𝟐 -8.52 Threshold 1 5 p/kWh 

∝𝟑 0.912 Threshold 2 11.76 p/kWh 

𝛃𝟑 -42.96 Threshold 3 40 p/kWh 

∝𝟒 1.86   
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Table 4-11: ToU tariff designed by SAs for HAs in objective one 

ToU tariff Day Peak Night 

Price 11.76 67.2 3.99 

Timeslot 
17-34 

39-46 
35-38 

1-16 

47-48 

Hour of day 
8.00-17.00 

19.00-23.00 
17.00-19.00 23.00-8.00 

4.7 MV Network Modelling 

4.7.1 Simulation Model 

This objective deals with objective 2 as explained in section 3.4, which aims to manage the 

voltage and thermal constraints at MV network level while considering normal operating 

status at LV feeder. The network shown Figure 4-1 is utilised for the implementation and 

evaluation of the proposed framework. The numbering of LV feeders, where the households 

loads are connected, and their position at the network is summarised in Table 4-12.  

Table 4-12: LV feeders numbering 

LV 

feeder 

No. 

Bus 

No. 

MV 

feeder 

No. 

LV 

feeder 

No. 

Bus 

No. 

MV 

feeder 

No. 

LV 

feeder 

No. 

Bus 

No. 

MV 

feeder 

No. 

1 6 3 17 26 3 33 49 6 

2 7 3 18 27 3 34 50 6 

3 8 3 19 28 8 35 51 2 

4 9 3 20 29 8 36 52 2 

5 10 3 21 33 8 37 53 7 

6 11 3 22 34 8 38 54 7 

7 12 3 23 35 8 39 55 7 

8 13 3 24 36 1 40 59 7 

9 14 3 25 37 1 41 61 7 

10 16 3 26 39 1 42 62 7 

11 17 3 27 40 1 43 64 7 

12 18 3 28 41 1 44 65 7 

13 20 3 29 43 1 45 66 5 

14 21 3 30 45 1 46 67 5 

15 22 3 31 46 1 47 68 4 

16 24 3 32 48 6 48 69 4 



 

 

117 

 

 

The results are obtained from the aggregation of 1824 households’ demand profiles. Figure 

4-17 illustrates the distribution of different cluster of customers in each LV network. The 

distribution of households along LV feeders and their willingness to participate in DR 

schemes is presented in Figure 4-18. 

 

Figure 4-17: Distribution of clusters of customers in each LV feeder 

 

Figure 4-18: Number of households in each LV fodder regarding their attitudes towards participating in DR 

programmes 

4.7.2 Simulation Set up 

Home Agent: The parameters regarding appliances performance for each household is set 

according to its cluster, and using a similar approach to the previous section. The initial start-
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up time of wet appliances (𝐭 𝐬 𝐡
 𝐬𝐡) and the appliances ownership rate are normally distributed 

along LV feeders. 

Supplier Agent: 

The minimum and maximum price bands are similar to LV network (equation 3.30), for 

comparison purposes. However, the number of threshold is 1 instead of 3, Figure 3-12, as 

shown together with the other parameters in Table 4-13. 

Table 4-13: Parameters determined for two-level piecewise linear pricing function in (3.58) 

Parameter ∝𝟏 𝛃𝟏 ∝𝟐 𝛃𝟐 Min. 

price 

Threshold Max. 

price 

Value 7.77 
-

3.78 
55.44 -43.68 

3.99 

p/kWh 

11.76 

p/kWh 

67.2 

p/kWh 

 

DR Provider Agent: The required input parameters for calculating the fitness function for the 

objective function introduced in equation 3.56, are either static or dynamic. The former refers 

to pre-determined parameters including weighting factors, setting parameters in GA 

algorithm and voltage sensitivity of buses. On the other hand, the dynamic parameters 

including VDI and RPLI are obtained by running the power flow at the network in real time. 

- Weighting Factors: These are considered to be equal as expressed below: 

𝑤1 = 𝑤2 = 𝑤3 =
1

3
                                                  (4.4) 

- Voltage Sensitivity: This is usually obtained from the inverse of Jacobian matrix in 

the load flow study (𝐽−1) as expressed in: 

[
∆𝜃
∆𝑉
] = 𝐽−1 [

∆𝑃
∆𝑄
]                                                                (4.5) 

where, ∆𝜃 and ∆𝑉 are vectors of voltage angle and nodal voltage variations respectively. Due 

to the variability of the coefficients in (4.5) to the network operating point [224], they need to 

be recalculated and updated constantly, hence a time consuming process. Since the objective 

function of DRPA is to keep the voltage magnitude within allowable limits in a radial 

MV/LV network, the voltage angle of buses is not studied. In order to tackle the complexity 

and computational burden of the classical method, a direct approach [225] was applied. This 
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method is dependent on the topology of the network instead of the network operating points 

and the sensitivity coefficients are defined as: 

𝜕𝑉𝑚

𝜕𝑄𝑛
= −𝑅𝑚−1,𝑛−1                                                           (4.6) 

where, the voltage sensitivity is a matrix of (𝑚 × 𝑛) presenting the voltage sensitivity of bus 

m in respect to the active power variation at bus n. Since the voltage at bus slack is always 

constant: 

𝜕𝑉1

𝜕𝑄𝑛
= 0                                                                               (4.7) 

The result is shown in Figure 4-19. 

 
Figure 4-19: Voltage sensitivity coefficients of all buses to the active power variation in other buses at the 

network 

After determining the voltage sensitivity matrix, the maximum sensitivity of each bus to the 

changes of the power in other buses is considered in the objective function.  

Setting Parameters in GA: The GA problem in equation (3.56) is solved using the Global 

Optimisation toolbox of MATLAB. The GA parameters for solving the objective function are 

presented in Table 4-14. 
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Table 4-14: GA parameters 

Population size Selection method Crossover Mutation Termination condition 

100 Stochastic 

uniform  

Scattered  Gaussian  

 

- Maximum number of 

generation>100 

- Best fitness value <=0.001 

 

The penalty function parameters are considered as 3000, 5000 and 5000 for voltage, thermal 

and maximum DR availability constraints respectively. 

4.8 MV/LV Network Modelling 

4.8.1 Simulation Model 

The focus of this objective is on managing the MV/LV network where all DR events from 

DRPA or LTA are sent to HAs by LTA. DR is activated in LTA and the implementation is 

done by consumers. Therefore, the simulation is performed on one LV feeder. 

4.8.2 Simulation Set up 

Home Agent: In both schemes, 𝑙𝑐,ℎ,𝑡
𝐿𝑅,𝑚𝑎𝑥

 is extracted from the dataset for each cluster. It is 

assumed that the participants will always meet the available demand reduction in LCDR. In 

EDR the demand reduction is based on requested load curtailment from LTA. In LCDR, 

various financial motivations, participation rates and PV penetration rates for HAs are 

considered. For EDR it is assumed that only highly motivated groups of households 

participate and this amounts to 81.58% or 31 HAs in the LV feeder. 

Local Transformer Agent: 

The obtained results of predicted and actual DR during a typical day are shown in Figure 

4-20. The former is defined according to the equation (3.26). Furthermore, 𝑙𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑎𝑥

 and 

𝑙𝑐,𝑡
ℎ𝑖𝑠𝑡,𝑚𝑖𝑛

, the average minimum and maximum power consumption from all households 

within each cluster, are also presented. It should be noted that the DR is calculated according 

to the total load reduction from all households without considering their trial tariff 

allocations. However this is considered reasonable since a normal distribution is applied to 

allocate the population in different ToU tariffs. The results show a high accuracy in the 

prediction.  
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Figure 4-20: Demand response within each cluster 
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4.9 Summary 

This chapter deals with the simulation parameters required for implementing the proposed 

MAS framework. The physical layer and the distribution network are first introduced. The 

dataset used in the analysis for all case studies is then presented. The procedures to generate 

the synthetic load profile for households from the data set are explained together with the 

simulation results. A characterisation-based clustering technique is used and each household 

is allocated to one of the 6 resulted clusters. Consumer’s characteristics including price 

elasticity of demand as well their attitudes towards DR participation were extracted from the 

dataset. The technical model of the controllable appliances used in this thesis is also 

described.  

Three case studies are considered: LV, MV and MV/LV network management in accordance 

with the objectives of this thesis. The simulation environment and the distribution of each 

cluster of household within the network are explained. In each scenario, as discussed in the 

previous chapter, the set-up parameters for modelling agents are provided.  

The price coefficients for designing price-based tariffs are also defined. For each cluster of 

HAs at LV and MV level, the ownership of appliances, their start-up and time preference are 

provided. Similarly, the potential of shifting demand from wet appliances for the two first 

scenarios as well as the potential of load shedding from HAs at MV/LV level are presented.  
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Chapter 5 Simulation Results and Discussions 

5.1 Introduction 

In this chapter, the proposed DR-MAS-based ADNM frameworks which are discussed in 

chapter 3, are implemented to assess their feasibility and applicability. For each objective of 

the thesis, one case study is investigated with different scenarios. These include Fixed, ToU, 

DA-RTP and RTP for the first objective, fixed and RTP for the second objective and EDR 

and LCDR for the third one. An analytical discussion of the simulation results is provided. 

Considerations affecting the results, such as household characteristics, financial motivation 

and participation rate amongst others, are also explored. The advantages of the proposed 

framework are discussed. It should be noted that the simulation environment and the setting 

parameters are described in the previous chapter. It is also assumed that no communication 

failure occurs during the simulation period and that the distribution constraints are met. 

5.2 LV Network  

In order to show the impacts of the proposed decentralised local DR as well as the application 

of the DR-MAS-based ADNM framework, four different scenarios are simulated and 

compared. The first scenario is considered as a reference case point. The others are the 

models for diverse pricing tariffs discussed previously. The initial load profiles of households 

are the same as scenario 1. However, households make the decision about their appliances 

performance individually at different time basis.  

Scenario 1- Case with Fixed Tariff: This case is a comparison benchmark in order to 

illustrate the advantages of implementing DR in the other cases. The same fixed electricity 

rate is assigned to all HAs. Therefore, this case simulates a situation where the potential of 

DR is not taken into account and HAs do not schedule their loads. The simulation is 

performed with HAs having initial load profiles.  

Scenario 2- Case with ToU Tariff: In this scenario a three-band ToU tariff is allocated to all 

HAs. They work independently to schedule their appliances at the start of the day. Since the 

price is fixed during each time-interval, the optimisation problem has one solution for each 

day. Therefore, it cannot reveal the actual potential of DR in managing the network and is 

suitable for peak load reduction. 
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Scenario 3- Case with DA-RTP Tariff: This case is similar to scenario 2, but HAs are 

informed about the price one day ahead and are charged with the announced prices. HAs 

make decision about their scheduling once at the start of the day and this is updated each day 

according to the price. This case simulates a condition in which DR potentials are enabled 

through time-varying sale prices. The variation in prices during different time intervals 

provides a better insight about network operation.  

Scenario 4- Case with RTP Tariff: In this case HAs receive prices on a half an hour-basis in 

a typical day. Unlike other scenarios, the prices dynamically change to reflect the network 

status and the required DR from households aggregated demands. HAs have the capability to 

forecast the RTP prices. According to the price prediction, they make decision about their 

load scheduling at the start of the day and update their load scheduling on receiving new 

prices during the day.  

5.2.1 Simulation Results 

This section describes the results of simulation for each case study. A detailed analysis and 

discussion is provided in section 5.2.2. 

5.2.1.1 Scenario 1: Fixed Pricing 

Figure 5-1 shows the simulation results in scenario 1, reference, where the SA sets a fixed 

price and HAs do not control any of their flexible loads. The power consumption from all 

background and controllable appliances during simulation period is plotted. The red dashed-

lines show the electricity price. The total energy consumption is 1740.66 kW which is similar 

for all case studies. That is explained as the DR is performed only through shifting/delaying 

the shiftable appliances. Hence, the households loads can be only temporarily reduced but in 

practice no load shedding occurs. The PAPR and the standard deviation of the load profile are 

1.26 and 2.6kW respectively. It is clear that the peak demand is relatively high during 

afternoon peak time period (timeslot 35-37). In addition, the transformer voltage magnitudes, 

presented in Figure 5-2, illustrates that the voltage at those timeslots exceeds the lower 

boundary limit.  

The total electricity payment of all HAs is 24766.12 pence/kW and the average payment of 

each HA is 592.74 pence/kWh. The maximum and minimum electricity bill is 1213.58 

pence/kWh and 286.95 pence/kWh respectively.  
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Figure 5-1: Distribution transformer load from aggregation of 38 HAs and electricity prices in scenario 1 

 

Figure 5-2: Voltage profile at distribution transformer in scenario 1 (fixed tariff) 

5.2.1.2 Scenario 2: ToU Pricing 

The electricity price in this scenario has pre-defined fixed tariff bounds. Hence, the 

optimisation results of HAs for different days are similar. The transformer loading for the one 

day simulation is depicted in Figure 5-3, showing the aggregation of different types of loads 

from all connected HAs in the LV network. ToU prices are shown with red dashed-lines. 

Compared to the previous scenario, the demand is shifted mostly from peak times to non-

peak hours. The most reduction is 34.54kW between timeslot 35-39 and the most demand 

increment is 52.04kW during timeslot 7-13. Therefore, the PAPR does not change 

significantly. However, the standard deviation of the load profiles is reduced by 0.6kW, thus 
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showing an improved load profile. Figure 5-4 shows the transformer voltage magnitudes 

before and after DR. The voltage at morning peaks exceeds the allowable lower limit but is 

improved in other times. 

 

Figure 5-3: Distribution transformer loading from aggregation of 38 HAs and electricity prices in scenario 2. 

 

Figure 5-4: Voltage profile at distribution transformer in scenarios 1(fixed tariff) and 2(ToU tariff) 

It should be noted that only 2 HAs have not contributed in DR and the total electricity 

payment of all HAs is 22388.6 pence/kW. The average, maximum and minimum individual 
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respectively. These analyses indicate that overall financial gain of HAs from this tariff 

comparing to the fixed one by 2377.53 pence/kW (9.6%). However, a more coordinated load 

scheduling is needed to improve the network status. Here, HAs do not consider PAPR and the 

only way to manage the constraint and increase the quality of the network is to set dynamic 

tariffs as discussed in scenarios 3 and 4.  
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5.2.1.3 Scenario 3: DA-RTP  

In this scenario the electricity payment calculation is based on the prices announced a day 

ahead regardless of actual price in the next day. Accordingly, HAs solve the optimisation of 

controllable appliances scheduling problem. Figure 5-5 presents the instantaneous active 

power at transformer after simulation. The red dash-dotted line shows the electricity price of 

the day-ahead which is calculated using predicted available DR during the next day.  The 

green dashed-line is the updated price in real time reflecting the network status. It is worth to 

clarify that the total power consumption, the blue line, does not show the types of loads for a 

better illustration. The voltage profile is depicted in Figure 5-6 showing the comparison to the 

reference scenario. 

 

Figure 5-5: Distribution transformer loading from aggregation of 38 HAs, DA-RTP and real time price signals 

in scenario 3 

 
Figure 5-6: Voltage profile at distribution transformer in scenarios 1 and 3 
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Compared to scenario 2, the duration of morning peaks decreases and the amount of 

maximum load also reduces by 0.87kW. PAPR is 1.20 which is 3.64% and 2.24% less than 

scenario 1 and 2 respectively. The standard deviation is 1.95kW which is less than the first 

two scenarios. 

All HAs have participated in DR but with various scheduled limited number of controllable 

appliances. The real time pricing is set according to transformer and network status and is 

calculated similar to RTP. The total electricity payment of all HAs is 20106.79 pence/kWh. 

The average, maximum and minimum individual bill payment of each HA is 510.67 

pence/kW, 1014.26 pence/kWh and 249.27 pence/kWh, respectively. This shows profits of 

18.81% compared to scenario 1 and 10.19% compared to scenario 2. If HAs were charged 

according to real time price signals, the difference in total payment of all HAs would increase 

by 26%. Therefore, this tariff cannot reveal the real pricing of the network and even if SA 

does not consider its own benefit, it is still not budget balanced.   

5.2.1.4 Scenario 4: RTP  

HAs in this scenario have the capability to predict the prices for the upcoming day and also 

update them with the prices in real time. Hence, their load scheduling is dynamically changed 

according to the price, to minimise their electricity payment. SA sets the prices according to 

available and required DR at each timeslot to keep the transformer status and voltage within 

their limits. The simulation result of transformer loading is shown in Figure 5-7. The blue 

line, and the red and pink dashed-lines present the load aggregation of HAs, RTP and 

predicted price by HAs. It should be noted that the results of price estimation is similar for all 

HAs and all of them have participated in this scenario. The voltage profile of distribution 

transformer compared to the reference scenario is presented in Figure 5-8.  

Similar to scenario 3, the voltage is maintained within statutory limits during simulation 

period. The price is set higher where the voltage decreased to motivate the consumers to shift 

more demands. As a result, the voltage improves relatively. PAPR is reduced by 5.79%, 7.9% 

and 9.22% in comparison to scenarios 1, 2 and 3 respectively. This implies that although the 

load flattening is not considered directly in the load scheduling optimisation problem of HAs, 

it is achieved in the RTP. The maximum peak demand is 38.60kW which is 4.59%, 3.72% 

and 1.6% less than scenarios 1, 2 and 3 respectively. The standard deviation is 1.03kW which 

is also reduced in comparison with other scenarios. 
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Figure 5-7: Distribution transformer loading from aggregation of 38 HAs, RTP and predicted price signals in 

scenario 4 

 

Figure 5-8: Voltage profile at distribution transformer in scenario 1 and scenario 4 
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price for all HAs reduces by 12.08% compare to reference scenario. The average electricity 

payment of the HAs is 525.10 pence/kWh, a reduction of 11.41%. The maximum payment of 

HAs is reduced by 13.39% and the minimum payment by 8.35%.  
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better view of the real DN in order to evaluate the effectiveness of the proposed framework. 
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The performance of all scenarios is analysed from a technical and financial perspective.  A 

summary of the percentage reduction in terms of technical characteristics, including PAPR, 

the standard deviation and peak demand is presented in Table 5-1 for all scenarios. The 

voltage profile for all case scenarios are illustrated in Figure 5-9 using boxplots. All values 

were obtained considering scenario 1 as the benchmark.  

 
Table 5-1:  Comparison of the technical features for all case scenarios  

Scenario 1 2 3 4 

PAPR Reduction (%) - 1.42 3.64 9.27 

Peak Usage Reduction (%) - 0.90 3.05 4.59 

Standard Deviation Reduction (%) - 23.27 25.01 60.19 

 

Figure 5-9: Comparison of the distribution of voltage magnitudes in all scenarios 

It can be observed that RTP presents a greater reduction compared to other scenarios 

especially for standard deviations of the load profiles. This shows that the aggregated 

demands scatter over time providing almost flattened load. The standard deviation in 

scenarios 2 and 3 are close to each other but DA-RTP acts better in reducing PAPR and peak 

demand value. The voltage magnitudes at both scenarios 3 and 4 are kept within allowable 

boundary limits at all timeslot with higher values in the latter. The technical aspects are the 

targets of the network operators, LTAs or DRPA. 

On the other hand, financial profits of SA and HAs are other important considerations in the 
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Table 5-2: Summary of the percentage bill saving of HAs in all scenarios  

Scenario 1 2 3 4 

Total payment (%) - 9.56 18.81 12.08 

Average payment (%) - 10.37 13.84 11.41 

Maximum payment (%) - 12.37 16.42 13.38 

Minimum payment (%) - 7.28 13.13 8.35 

In contrast with fixed tariff, the greatest reduction in energy expenses is achieved in scenario 

3. This illustrated that HAs were successful in finding the optimal scheduling time of their 

controllable loads with the price variations. However, although individual electricity payment 

of all HAs can be reduced, this scheme does not necessarily provide the best financial gains 

for SA. Referring to section 5.2.3, SA has to pay the balancing difference between DA-RTP 

and actual price rates of the network, which states that in practice this scheme is not an 

economically viable plan. It is also the same for scenario 2 where HAs’ profits increased by 

9.96% whereas the real price of SA is higher.  

Comparing the improvement of the network quality and the bill saving of HAs, it can be 

concluded that among all scenarios, RTP results in better demand reduction and in 

maximising the social welfare of all agents at the network. The bill saving of HAs is not the 

same due to the differences in their financial and technical constraints discussed previously. 

However, all HAs benefit from price changes defined in each scenario, regardless of their 

controllable or background power usage. This demonstrates that even if some HAs are 

equipped with higher demanding appliances such as EV, the fairness of using the proposed 

DR mechanism is still valid for all users.   

One of the advantages of the proposed framework is that coordination among HAs is not 

required since they all work individually and in parallel to achieve the network goal. This 

decreases the data communication complexity as well as processing time. Moreover, the 

optimisation strategy of HAs does not require revealing their consumption data to other HAs 

thus keeping the privacy concern of households.  

5.2.3 Long Term Benefits of RTP 

In all previous scenarios, the simulation is performed and analysed for one LV feeder. This 

section describes and analyses the performance of RTP-DR in a larger scale, at MV network. 

The aim is to assess the long term benefits of RTP where a new satisfaction factor is 

introduced for HAs in loads shifting. This is referred as Bill Saving Satisfaction (BSS) in the 
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thesis and is based on the total bill saving as presented in Table 5-3. For each of the 6 clusters 

of households, a specific BSS factor is considered. 

Table 5-3: BSS factor for all cluster of households 

Cluster No. 1 2 3 4 5 6 

BSS 40% 100% 60% 80% 20% 0% 

The simulation is performed for one-month period (30 days). Each HA firstly runs the 

optimisation of their controllable appliances similar to scenario 4. Then they calculate their 

total bill saving from the first day. They confirm the load scheduling if the bill saving is 

attractive and take no action otherwise. For instance, if the simulation day is 4, the total 

saving of the specific HA is calculated from the sum of the savings from day 1 to 3. If the 

calculated value is higher than its BSS factor, it starts taking part in DR programme. It should 

be noted that RTP allocated to each HA within the network is considered the same.  

The total bill saving of all HAs in the network is depicted in Figure 5-10 and is based on the 

cluster and is shown for one month simulation period. It can be clearly seen that HAs with 

lower BSS take part in DR from the start of this scheme. Hence, their total saving is higher 

than others. However, the contribution of HAs is improved over time as all consumers can 

benefit from implementing DR services.  The voltage profile of each MV feeder on the first 

and last day of the simulation period is illustrated in Figure 5-11. The overall improvement at 

all MV feeders shows the effect of long-term advantages of RTP on the quality and 

management of the DN. However despite the improvement in the MV feeder 3, the voltage 

magnitude is still below the allowable limit at timeslot 22 after the simulation.  

 

Figure 5-10: Total bill saving of HAs based on different bill saving satisfaction factor 
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In this scenario the significance of the contribution of each LTA in improving the network 

status is not considered in the design of RTP. Moreover, the price is set without taking into 

account the potential of responsiveness demand from each LTA. The demand reduction at 

specific LV feeders does not always affect the voltage at some other feeders. Designing 

tariffs requires the consideration of both the potential of DR provision at each LV feeder as 

well as its effectiveness on the overall network operation.  

 

Figure 5-11: Voltage profiles along MV feeders on day 1 and day 30 
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5.3 MV Network 

This section presents the simulation results for two scenarios. The first, without load control, 

is considered as a reference case point. The second scenario, with RTP, is the proposed 

model. Simulations are performed separately for both scenarios and the results are compared 

and discussed to evaluate the effectiveness of the proposed model.  

 

Scenario 1: Without DR  

This case study assumes that no DR mechanism is applied in the network. The synthetic data 

is distributed in the test system. Since no DR action is considered, the results are achieved by 

running the load flow and obtaining the network status during simulation period. All 

households are in the same fixed daily time electricity price.  

 

Scenario 2: With DR 

This case is based on the proposed method where HAs receive prices in real time. The pricing 

scheme is similar to scenario 4 in LV network but applied to MV network. However, the 

prices are allocated differently to each LV feeder while they remain the same for all 

customers within that feeder. The initial load profiles of households are the same as scenario 

1. Households make the decision about their appliances performance individually at each 

timeslot.  

5.3.1 Simulation Results 

The simulation results for defining the dynamic pricing in the proposed method along with 

the aggregation load profiles of all HAs in both scenarios are shown in Figure 5-12. In Figure 

5-12(a) the scattering of the RTP in each timeslot for all LV feeders is presented. In parallel, 

the total system demand in reference scenario, blue line, and scenario 2 (with RTP), red-

dashed line, are depicted in Figure 5-12(b). In each timeslot, the price for each LV feeder is 

individually updated based on the system status, DR potential and voltage sensitivity of that 

bus.  
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Figure 5-12: Electricity price for the proposed model in scenario 2 with RTP (a), Load profiles of the 

aggregation of all HAs in the test network in both scenarios (b) 

For each LV feeder, the overall percentage of power changes after applying DR, is depicted in 

Figure 5-13. It can be observed that the demand mostly shifted from evening peak-times to 

morning off-peak times. Minimising the PAPR, with the aim to flatten the total loads of the 

system is not considered as an objective of this work. This is because the aim of the proposed 

model is to deploy the DR for relieving constraint in the DN. Thus, the PAPR did not 

changed significantly. However, the standard deviation in scenario 2 (with RTP) is reduced by 

25%. 
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Figure 5-13: Power reduction along each LV feeder 

The voltage profile at MV connection points in both scenarios are presented in Figure 5-14 

using boxplots. This includes the voltage magnitude of all buses over the 48 timeslot 

simulation periods within each MV feeder.  

 

Figure 5-14: Voltage levels at the MV connection points in reference scenario (a) and scenario 2 with RTP (b) 
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It can be seen that in scenario 2 (with RTP), not only was the voltage in the network kept 

within the statutory limit (here Vmin = 0.94), but the overall network voltage also has 

improved. This is also well illustrated in Figure 5-15, where the minimum voltage of all 

buses in the test system is drawn for both scenarios. However, although the voltage was 

decreased at some timeslots, e.g., 17-21, the voltage level was still within acceptable bands. 

The VDI for both scenarios are compared in Figure 5-16 which shows the overall reduction of 

voltage deviation from the nominal voltage for all LV buses in the network. This demonstrates 

the effectiveness of the optimisation of the objective function of DRPA in minimising the 

VDI. 

 

Figure 5-15: Minimum voltage profile of the test system before and after DR during one day simulation period 

  

Figure 5-16: VDI for both scenarios for each LV bus 
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after deploying DR, shown in Figure 5-18, is decreased between timeslot 25-48 where the total 

demand is reduced. For other time periods where the total demand rose, the RPLI did not 

increase significantly.   

 

Figure 5-17: Total system power loss before and after DR 

 

Figure 5-18: RPLI after applying the proposed DR control over simulation time 
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implementation of RTP pricing in the proposed method. For this purpose, MV feeder 7, the 
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most critical feeder in terms of voltage levels in the test network as depicted in Figure 5-14 

(a), is chosen. The voltage profile along the feeder during the simulation period is plotted in 

Figure 5-19 and it illustrates that the voltage is improved and maintained in the allowable 

limit. The minimum voltage before implementing DR was at timeslot 37 (6:00 pm) and 

therefore this timeslot is selected for this study. The voltage level at each LV bus along the 

feeder at timeslot 37 is shown in Figure 5-20. The buses at the end of the feeder experienced 

lower voltages. The voltage levels at the last 9 buses are below the allowable limits before 

implementing the DR. Therefore, a DR control mechanism is needed to improve the voltage 

in order to be within statutory band. The optimal locations for implementing DR are in the 

buses with the most voltage sensitivity. However, since some technical factors together with 

some constraints are considered in the objective function, the maximum magnitude of 

required DR is not necessarily allocated to those buses. For instance, in this case study, the 

highest kW reduction is computed for LV feeder 59 where the voltage sensitivity is lower 

than buses 61-65. Accordingly, the highest price is determined for bus 62 which has the 

maximum ratio of DR requirement to available DR. 

 

Figure 5-19: Voltage profile along MV feeder 7 over simulation time 
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Figure 5-20: Voltage profile of each bus along MV feeder 7 at timeslot 37 

Table 5-4 illustrates the computed values for parameters required to implement the proposed 

DR. Since the DR is only available through LV buses, only the buses connected to LV feeders 

are presented (12 buses). The overall available DR is 21.312 kW and the DR requirement, 

calculated from equation (3.56), is 14.80 kW. The price for each LV feeder is calculated based 

on the participation rate as in equation (3.59). The total power reduction after implementing 

DR is 14.77 kW, thus demonstrating the accuracy and applicability of the proposed method.  

 

Table 5-4: Computed values for implementing DR at MV feeder 7 at timeslot 37 

LV 

feeder 

No. 

Voltage 

Sensitivity 

Available 

DR 

(kW) 

Required 

DR 

(kW) 

(∆𝐏𝐥𝐯,𝐭
𝐃𝐑́ ) 

(%) 

Actual 

DR 

(kW) 

Price 

(Pence/kWh) 

6 0.0018 0.03 0 8.11 0.019 4.89 

7 0.0020 0.19 0.09 46.27 0.05 9.13 

8 0.0021 2.38 0.748 31.38 1.03 7.47 

9 0.0031 1.96 0.871 44.33 1.16 8.91 

53 0.0024 3.48 2.765 79.43 2.043 29.19 

54 0.0025 4.36 3.596 82.46 3.26 34.78 

55 0.0027 0.97 0.717 74.06 0.953 12.21 

59 0.0041 0.51 0.379 74.96 0.198 20.92 

61 0.0043 2.02 0.634 31.33 0.688 15.24 

62 0.0043 1.86 1.63 87.70 1.79 44.47 

64 0.0045 1.14 0.94 82.10 1.07 34.12 

65 0.0056 2.68 2.291 85.38 2.539 40.18 
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It should be noted that it is assumed that all loads in the test system have constant power 

factors and hence a proportional amount of reactive power is also reduced along with the real 

power. 

5.3.3 Scalability of the proposed MAS framework 

Implementing the proposed framework shows how different players at the network can 

communicate, negotiate and collaborate with others in the system to meet the overall system 

goal. Therefore, the computational burden for the proposed DR strategy is distributed among 

all participants in DR and is consequently minimised overall. The DSO only needs to optimise 

the required amount of DR from each LV feeder while assessing and visualising the network 

status. Predicting the price elasticity or responsiveness demands is not the obligation of the 

DSO. The aggregators, here referred as LTAs, are responsible for estimating the potential of 

available DR from their corresponding HAs in each feeder. In addition, considering the price 

sensitivities and determining appropriate prices for different consumers with distinctive 

attributes, are undertaken by the SA. Consequently, the proposed MAS simplifies the 

communication as well as mathematical analysis among agents. In other words, despite the 

fact that some agents need to negotiate and convey the information to one or more agents, the 

least computation time is required.  

Increasing the number of households or integrating new loads or generations, e.g., EVs and 

DGs, does not significantly affect the simplicity or time process of the DR mechanism. That 

can be explained by the following reasons: 

1) At the DSO level, the input data for calculations e.g., required demands, available level of 

flexible loads or generation, are considered as aggregations from each LV feeder. 

Therefore, the number of loads does not have a consequential influence.  

2) With the LTA, the prediction of available DR is based on statistical or probabilistic 

methods. Since no optimisation is involved, the processing time does not increase. 

3) The load scheduling proposed in this research is based on decision-making at each time-

interval individually. Hence, no optimisation is required. However, even if an optimisation 

method is applied in order to schedule the household appliances taking into account a set of 

prices for a specific period, e.g., next few hours and next day, the time processing is 

minimal. That is because the optimisation is done in parallel for each household. 
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4) In the optimisation algorithm of DSO, the iteration number is dependent mostly on the 

constraints and status of the DN rather than the size of the network or the number of 

variables. 

The above discussions demonstrate the flexibility of the agents in the framework to undertake 

additional tasks, for instance adopting new types of loads. Therefore, it can be deduced 

that the presented MAS framework can be readily extended.  

5.4 MV-LV Network 

The simulation results for implementing the two incentive-based DR in the MAS platform are 

presented and discussed in this section. Unlike the above two case studies, the aim is to 

provide load reduction through load shedding instead of shifting. In addition, these case 

studies consider both MV and LV network status. According to the participation motivation, 

there are two main differences in LCDR and EDR. Firstly, in EDR scheme, consumers are in 

a contract for reducing the required load shedding, received by LTA, whereas in LCDR all 

DR engagement is voluntary and can be decided upon request. Secondly, EDR participants 

get equal incentives for their reduction and hence each HA makes load reduction decision 

based on its own profit. On the other hand, in the LCDR scheme, HAs within a community 

are rewarded based on their individual as well as the overall community load reduction.  

It should be noted that for both case studies two scenarios are considered: without DR control 

and with DR. The former one is the reference scenario which, similar to the previous case 

study, is implemented by applying initial load profiles. In the latter, the proposed 

methodology and algorithm is implemented. It is assumed that in all scenarios, HAs are 

charged by the same electricity tariff as the interest of consumers are prompted from the 

incentives offered by SA. Moreover, as explained in chapter 4, in the LCDR scenario, 

consumers are equipped with PV in order to investigate the effect of local generation on 

community load reduction.  

5.4.1 Simulation Results – Local community Demand Response 

The proposed methodology is first implemented for one community in order to assess the 

feasibility and effectiveness of the proposed framework and algorithm. Then, it is expanded 

to involve more communities, each having different characteristics, for comparison purposes.  

In chapter 3, it was discussed that DR can be achieved in LCDR through three ways. These 
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are dealt with in this chapter as scenarios with DR. An overall of four scenarios are thus 

studied for the LCDR case study as this also includes one without DR. 

Scenario 1: HAs take part in DR reduction scheme through maximising their local PV 

generation. It is assumed that all HAs are equipped with the PV panel and have the same 

generation profile. Hence, this scenario results in the highest possibility of load reduction. It 

is worth to clarify that HAs with PV will always participate in LCDR. 

Scenario 2: In this scenario, apart from providing DR from scenario 1, HAs provide further 

reduction by lowering their demand. Those HAs that have no PV or have higher demands 

than their generation can take part in this scheme. It is assumed that all HAs are involved and 

reduce their power consumption up to their required minimum power.  

Scenario 3: The trade in of extra available generation from HAs to the community is 

modelled in this scenario. This scenario considers the required demand after employing 

scenario 1 and 2.  

In the two first scenarios, the contributors are rewarded per kW reduction whereas in the third 

one they are paid feed-in-tariff rate for each kW generation. The incentive rates are equal for 

all HAs. It is assumed that DR participation rate as well as the available DR from each HA is 

maximum. It is worth to clarify that in scenario 2, the Demand Curtailment Limit (DCL) 

requested from each HA is their maximum available load reduction. The principal aim of this 

objective is to demonstrate the advantages of the MAS in implementing DR mechanism. The 

load profiles of the simulation results for all scenarios in the community are presented in 

Figure 5-21.  

 

Figure 5-21: Load profile of aggregation of all HAs in one community in LCDR for all scenarios 
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It can be observed that the load profile for all scenarios follows a similar pattern. During no 

generation period, the power reduction is the same for all DR scenarios as the DR is only 

available from load shedding. The dependency of the community to the power grid decreases. 

Moreover, the minimum aggregated load profile during the day occurs with implementing all 

possible DR scenarios. The maximum percentage of load reduction provided from each 

scenario is depicted in Figure 5-22. The overall load reduction is 25.68%, 67.8%, and 26.3% 

in scenarios 1, 2 and 3 respectively. It is clear that scenarios 1 and 3 are dependent on the PV 

generation and is possible only during day time.  As a result, the highest DR is achieved at 

the peak generation profile of PV at timeslot 26. In contrast, scenario 2 can be considered as 

an alternative for all-day DR provision. However, the level of DR size over time depends on 

the load profile of each HA.  

 

Figure 5-22: Overall load reduction of each community in LCDR for all considered scenarios with DR 

The effect of LCDR in the voltage profile of the network is shown in Figure 5-23. It can be 

deduced that the voltage profile significantly improves during day time when the PV can 

generate power. However, in all timeslots, the DR resulted from scenario 2 increases the 

voltage magnitude.  

 

Figure 5-23: Voltage Profile before DR and after implementing each scenario with DR Discussion 
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5.4.2 Analysis of Results 

This section assesses the effect of the key attributes of consumers in the overall demand 

reduction. In this regard, several communities are considered having different setting 

parameters and characteristics. First, the impact of PV penetration as well as participation 

rate on the total power reduction in each community is investigated. The effect of 

participation rate on the overall community demand reduction was investigated for various 

PV penetration percentages. The simulation outcomes are shown in Figure 5-24. The results 

followed a similar trend and the increase in reduction is relative to the depth of PV 

penetrations. The maximum reduction is 69% occurs for a PV penetration of 100%. As 

expected, the higher the penetration, the more reduction is yielded. It should be observed that 

even with no participation rate, there is still a small amount of DR.  For instance for 20% PV 

penetration without any participation rate, there is a reduction of 6.5%. This is attributed to 

the fact that scenario 2 comprises both PV generation and available load reduction. 

Participation rate is considered for HAs involved in the latter.  

 

Figure 5-24: Impacts of participation rate and PV Penetration on the overall power reduction of community 

Secondly, the effect of increasing financial motivation (FM) on participation rate was 

investigated. This study involved 11 communities and the incentive values were obtained 

from a UK pilot [226] studying the reduction in peak electricity demand in households. The 

financial motivation defined between 0% to 100% was allocated to each community with an 

increasing step of 10%. The incentive was then varied from 6 pence/kWh for community 1 to 

15 pence/kWh for community 10. The result is shown in Figure 5-25 where it is clearly 

evident that increasing the financial motivation results in a surge in the participation rate. As 

expected, the maximum participation rate resulted from community 10 which had the highest 

incentive, coupled with the 100% financial motivation.   
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In case of a community reward scheme, the community with the highest reduction, based on 

its consumption is chosen and get incentive. This reward is then shared among the 

contributors within the community. This competitve commnunity energy reduction game  can 

provide a better motivation for DR participation. Agents in one community will work 

together to achieve the community’s goal, which is an advantage of MAS implementation. 

Referring to Figure 5-25, the successful communities are less sensitive to the incentive rates. 

This means that HAs should have the maximum participation rate. However this is not only 

the case since the available DR from each HAs and accordingly the total community is not 

always comparable to the other communities.  

 

Figure 5-25: Effect of financial motivation on DR participation 

5.4.3 Emergency Demand Response 

In this case study, the DR is activated by LTA during emergency condition when system is 

under stress condition , e.g., transformer overloading or upon receiving any DR event signal 

from DRPA. In order to simulate such state of the network and test the proposed EDR 

mechanism, DR signal from DRPA is studied in this section. It is assumed that a 30kW 

demand boundary limit is sent to LTA from DRPA. The simulation result with and without 

DR scenarios is depicted in Figure 5-26. The latter is considered as the reference point in 

order to evaluate the performance of the DR algorithm.  
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Figure 5-26: Instantaneous Power at the LTA with and without DR 

It can be seen that with the proposed DR algorithm, the instantaneous power at LTA is 

decreased and is below the DCL at all timeslots. The simulation procedure is discussed in 

detail below: 

- LTA checks its status continuously to ensure that the transformer load is kept below the 

boundary limit at any given time. Up to timeslot 33 (16:00hrs), the transformer status is 

normal and no DR action is needed. 

- At time 16:30hrs (timeslot 34), the aggregation loads at the transformer exceeds the 

maximum limit and continues up to 17:00hrs (timeslot 39). The transformer operating 

status changes to emergency and a DR event for duration of 2.5 hours is detected.  

- LTA calculates and sends the allocated loads to selected HAs based on the methodology 

explained in chapter 3. 

A comparison of the transformer voltages, with and without DR, is depicted in Figure 5-27 

An improvement in voltage at peak times can be observed and this is attributed to load 

reduction. The contribution of each cluster of customers in EDR during DR event is 

illustrated in Figure 5-28. It can be concluded that to meet the need for higher curtailment, 

more customers’ participation is required. A better degree of DR flexibility can be achieved 

with an aggregation of more customers, with a view to improving the reliability and 

efficiency of the power network. The proposed methodology ensures that the DR request is 

sent to customers according to their potential when necessary. This implies that to meet the 

requirement of the network, not all clusters have to take part and fewer customers are 

involved, thus maintaining their comfort level. This can be observed for timeslot 37, 38 and 

39 where the demand curtailment is met without the participation of all clusters. 
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Figure 5-27: Voltage (p.u.) of the DT in each bus during DR event 

 

Figure 5-28: Percentage of demand curtailment for each cluster in each time-interval during DR event 
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5.5 Summary 

This chapter implements the MAS framework and demonstrates its advantages. Similar to 

chapter 4, each objective was studied as an individual case study and these were LV, MV and 

MV/LV network. Different price-based DR mechanisms were considered for assessing the 

feasibility and effectiveness of case study 1 and 2. In the third case study, two incentive-

based DR schemes were employed. 

For each scenario in the LV network, the overall performance of load scheduling at 

household level and their economic benefits are explained. In addition, the effect of shifting 

loads under different tariffs on the improvement of the technical characteristics of the 

network including the voltage, PAPR, standard deviation is shown. An in-depth analytical 

comparative study of these schemes concluded that RTP is the optimal option for social 

welfare maximisation of all agents in the system. The work was then expanded to MV 

network level, with the introduction of a new satisfaction factor, BSS, in order to investigate 

the long-term benefits of RTP from both households and network perspectives. 

The simulation of the MV case study is performed without DR as a reference benchmark and 

with RTP. The first one was selected as the reference scenario. A significant improvement in 

the voltage magnitude of the network and VDI is observed at all simulation period. The 

process of price calculation for each LV feeder is also described. A comprehensive discussion 

demonstrating the ease of scalability of the proposed scheme is also provided.  

Finally, at MV/LV network, the simulation results are presented for the two scenarios, LCDR 

and EDR. In the former, various factors such as participation rate, PV penetration and 

financial motivations are considered for each community. The results are then compared and 

discussed.  
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Chapter 6 Conclusion and Future Research 

6.1 Conclusions 

A novel MAS-based framework for DR-based active management for the DN has been 

investigated and implemented. The proposed platform employs demand responsiveness from 

both load shifting and shedding in order to mitigate possible overloading issues in MV/LV 

distribution networks. Two advantages of this system are the capability of merging centralised 

and decentralised DR control mechanisms and integrating both price-based and incentive-

based DR. Unlike many previous attempts [123-130], the consideration of both temporary and 

long-term benefits of applying DR in the DN is performed. A summary of this research 

together with the main achievements and contributions are presented in the following. 

Suggestions for future work are provided in section 6.2. 

The future GB distribution network is facing many challenges caused by the increase in 

penetration of DGs and new responsive loads. The DNOs are transforming to DSOs in order 

to take an active role in managing the power-demand balancing issues in the DN. Optimising 

the modern DN, the significance of DR schemes on power balancing across the DN is getting 

more emphasised. These programmes can be considered as alternative solutions to costly and 

time-consuming investments in upgrading the network infrastructure.   

Therefore, this requires a thorough examination of the potential of DR in relieving the 

constraints in the DN. However, the quantification of available flexible and dynamic loads has 

not been addressed in depth in the literature. Having an understanding of available DR sources 

can significantly improve the outputs of DR strategies during the planning phase. Moreover, 

due to small responsiveness loads at household level, a large aggregation of peak demands is 

required to achieve sufficient DR if required. The arising complexity from wide-area DR 

implementation necessitates the introduction and employment of a control framework that 

integrates different entities with distinctive attitudes and objectives. In this way, flexible 

demand from residential consumers can ensure network security and reliability while 

satisfying all DR players’ goals. 

A comprehensive review of the relevant background and researches on the residential DR 

strategies and mechanisms to manage the DN is provided in chapter 2. These studies have 

proven the effectiveness of residential DR utilisation from both technical and economic 
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aspects. DR mechanisms are divided into consumer and network levels where the key players 

consist of energy users, network operators, electricity retailers and aggregators. In designing 

DR algorithms, the focus has been on solo entity, single house or local feeder, or on 

aggregated level, multiple houses or MV network. At household level, HEMS are classified 

into three categories including smart, conventional and advanced. The two first systems have 

similar functionalities with the difference of embedding a price prediction capability in 

advanced HEMS. Among the proposed models for DR participants’ interaction, MAS is one 

of the most prevalent control methods that provides a distributed and intelligent framework. A 

number of trials have been reviewed and the outcomes demonstrated that providing DR to 

DN could be considered as an alternative to defer network reinforcement. Several attributes, 

opportunities and challenges in consumer participation in DR were investigated.  

The proposed MAS framework, consisting of the physical and cyber layer, is introduced in 

chapter 3. This model comprises four main kinds of agents. These are HA, LTA, DRPA and 

SA representing households, MV/LV transformers, DSO and energy supplier. An additional 

agent, DSPA, is used to model the DCC in the GB distribution network. Accordingly, the 

architecture of MAS-DR-based ADNM presents four different layers as market, MV feeder, 

LV feeder and end-user, based on the location of defined agents in the network. 

One of the advantages of this model is the configurability feature which enables connecting 

new agents with different goals, tasks and access level to other agents’ information. Even after 

implementation, the overall layout can still be adjusted and the attributes, tasks and access 

level of each agent can be modified. This framework characteristic allows the employment of 

one unique platform for all three objectives of this thesis. Only the DR algorithms for each 

agent and MAS structure are adapted appropriately to model these objectives, which are on 

LV, MV and MV/LV networks.  

For the LV network, an optimisation problem is formulated for solving the load scheduling of 

households. The innovative aspect of the proposed algorithm is the methodology which 

considers both minimisation of consumers’ energy expenses and maximisation of their 

satisfaction level. The satisfaction factor is obtained for end users according to their attitudes 

towards DR engagement as well as the elasticity of their demand to changes in electricity 

prices. The algorithm is then developed to include the price prediction for RTP scheme. This 

novel price predictor uses the information regarding the required as well as available DR 

predicted one day-ahead by LTA. The prices are updated upon receiving new price signals in 
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real time. In the aim of presenting a less computationally demanding technique, a novel 

decision-making algorithm is proposed and implemented for MV network. This is based on 

selecting the start-up of the controllable appliances in real time, taking into account the 

available appliances and the attractiveness of the RTP. The proposed methodology does not 

involve any optimisation process and is suitable for RTP-based DR. Unlike the first two 

objectives, HA decides about load shedding instead of shifting in MV-LV network. The size 

of available DR is dependent on the available local generation at each household and the 

minimum critical loads that must be run. The financial motivation of consumers is also 

considered in their decision-making. 

The LTA is responsible for calculating the potential and available DR at the LV and MV 

networks respectively. Although it does not perform any action, its information is crucial for 

DRPA to calculate the total required DR at each feeder. Additionally, SA utilises this data to 

set the tariffs in DA-RTP or RTP. This also needs to be provided for HAs to enable them to 

decide about their next day load scheduling in RTP. The LTAs create a more distributed DR 

as the information are gathered at each local feeder for further decision making in upper 

feeder. In the MV-LV feeder, LTA takes a more active role in calculating and sending the 

DCL or amount of purchased local generation to and from HAs. This is due to the incentive-

based DR where the DR action are implemented by local feeders even if DR occurs at MV 

feeders. 

The role of DRPA is limited to monitor and assess the network status taking into account 

voltage and current constraints. All actions are implemented by designing appropriate prices 

at the price-based DR and by sending a DR event to LTAs at the incentive-based DR. The 

novelty of assessing the DR requirement at each LV feeder is the consideration of not only 

the total required DR, but also the available DR and the voltage sensitivity at each LV feeder. 

The amount of required DR is not distributed equally among feeders but the utilisation of 

flexible demand sources in the network are maximised.  

The role of SA is more prominent in price-based DR where the activation of DR by HAs 

depends on the set tariffs. A four and a two piece-wise linear functions are proposed for SAs 

to set the RTP or DA-RTP signals. In both schemes, the price coefficients are determined by 

the participation rate. This novel parameter is calculated, from the information received by 

LTA or DRPA, as the ratio of the percentage of required DR to available DR.  
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The physical layer was modelled based on a modified IEEE 69 test system with 8 MV and 48 

LV feeders, to demonstrate the advantages of the proposed framework. The chosen network 

was selected by considering the adequacy of the size of network to accommodate massive 

demand aggregations and to be the closest possible to the GB standard. The overall network 

objectives are achieved by solving a power flow that is based on consumer load profile 

characteristics, taking into account different personal (social, technical, educational and 

financial incentives) as well as external (time, day and seasonal) factors.  

The load profiles of households and the extracted information from the dataset are created by 

a characterisation-based clustering technique. The data related to only weekdays and for one 

summer month is investigated. Consumers having missing values for more than one day were 

removed from the analysis to ensure the quality and accuracy of clustering results. 6 clusters 

are obtained from the clustering simulation and for each of them the price elasticity of 

demand as well as their attitudes towards DR participation is determined. Based on these 

clusters, 1824 synthetic load profiles are created, keeping the consistency of the population in 

each cluster. The created load profiles are distributed in the test network randomly.   

Three case studies are introduced for each objective at LV, MV and MV/LV load 

management. The probability of start-time of wet appliances is estimated and the results are 

shown for each cluster of customers. Accordingly, the preferable window of each cluster of 

households to shift/delay each controllable appliance is determined. The default start time of 

each appliance in each household is considered based on a random selection among preferable 

window times. The initial simulation results for the potential of load shifting and load 

shedding from HAs are presented for the first two and the last case studies respectively.  

The simulation results of the DR-MAS-based ADNM are provided and discussed in chapter 

5. A summary of all scenarios considered for each case study is shown in table 5-5. The first 

two case studies applied price-based DR whereas the last one used incentive-based DR. 

Table 5-5: Summary of case studies and scenarios investigated  

  
Scenarios 

  
Price-based Incentive-based 

Case Study Network Level Fixed ToU DA-RTP RTP EDR LCDR 

1 LV * * * * 
  

2 MV * 
  

* 
  

3 MV/LV 
    

* * 
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Four scenarios are presented for the first case study and these are fixed, ToU, DA-RTP and 

RTP. In all case studies, the fixed tariff is considered as the reference benchmark. Each 

scenario implements a different tariff type to enable the comparison among different price-

based DR. An analytical evaluation of the simulation results shows that overall, RTP provide 

greater DR compared to other scenarios. The PAPR, peak demand and standard deviation 

were reduced by 9.27%, 4.59% and 60.19% as compare to the fixed tariff. An interesting 

observation is the achievement of more flattened load profiles in dynamic tariffs particularly 

in RTP. The possibility of a new peak demand is a disadvantage of the ToU and DA-RTP. 

Alternatively, this can affect the voltage profile magnitudes and results in exceeding the 

allowable boundary, especially in ToU.  

From an economic perspective, HAs achieved maximum savings of 18.81% on total payment 

and 13.13% on minimum payment in DA-RTP scenario. The second most significant cost 

saving, up to 12.08%, is achieved under RTP. Since a difference of 26% is observed between 

the actual and pre-defined tariffs in DA-RTP, the satisfaction of all agents at the network is 

only possible by RTP.   

In a further investigation, the impact of RTP in long-term is studied by introducing a new 

satisfaction factor for consumers based on the total bill saving. The simulation is performed 

for one-month and for the whole network (48 LV feeders). The outcome showed an overall 

improvement on the voltage profile of the network. For better performance of RTP, the 

available DR at each LV feeder as well as its effectiveness on the operation of MV network 

should be taken in to account. This is then addressed in designing RTP in SA for case study 

2. 

Two scenarios are considered in case study 2: before and after implementing RTP. The 

simulation results showed the capability and effectiveness of the proposed DR framework in 

controlling the power flow equations in MV feeders. The active power of the network was 

maintained within the acceptable limits by reducing available flexible demands considering 

the most influential LV buses. As an example, for feeder 7 at timeslot 37, the required DR 

was calculated to be 69.44% of the total available flexible demands. The DR implementation 

resulted in load reduction of 69.30% which indicates the feasibility of this framework.  One 

advantage of the proposed framework is its scalability where the integration of new loads, 

generations and agents will not affect the simplicity and computational process of the DR 
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algorithms. This allows integrating both centralised and decentralised DR control mechanism 

as demonstrated in case study 3.  

Two different DR schemes are introduced and implemented in case study 3: LCDR and EDR. 

In the former, agents work in one specific community in order to achieve the community’s 

goal. HAs are motivated by receiving incentives per kW power reduction or by participating 

in community-reward schemes where the winner shares the reward among DR participants. 

Based on the type of responsiveness load, 3 scenarios are considered together with the 

reference one. In the first two scenarios, HAs take action by maximising their local 

generation and by load shedding. In the third one, the LTA maximises the utilisation of extra 

available local generation. The performance results for one local community indicated a 

significant rise in the independency to the power grid. The results show 25.68%, 67.8% and 

26.3% load reduction for scenario 1, 2 and 3 respectively. As expected, scenario 2 which 

integrated PV provided the maximum DR. The simulations are also performed for various 

factors including participation rate, PV penetration as well as financial motivation. The 

results show that these factors have an incremental linear relation with percentage load 

reduction.  

The EDR scheme is based on load shedding where the DR participation is on a contract. One 

advantage of the proposed methodology is that the DCL is allocated to consumers according 

to their DR potential. Hence, fewer participants may need to be involved during DR events. 

Consumers in both LCDR and EDR can chose their participation and the quantity of DR 

provision in real time. This maximises the satisfaction level of households while maintaining 

the network constraints within acceptable limits.  

The results demonstrate that the proposed DR-MAS ADNM framework has the capability to 

integrate and implement various DR mechanisms for MV/LV network. The advantages of 

this platform including scalability and configurability are validated through various case 

studies. It can provide an environment where all DR stakeholders can interact with each other 

and collaborate in order to manage the power flow across the network while also considering 

their own interests. 
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6.2  Future Work 

The research aim and objectives defined for this thesis are satisfied through the presented 

works. Yet, this work can be extended and improved in various areas to include future 

investigations and developments. The probable future research directions are presented in the 

following. 

 Scaling-up the Framework: The proposed framework in this research assumed a unique 

DRPA and SA for all HAs within the network. In practice, each household can chose a 

different electricity supplier and based on the physical location, might be allocated to a 

different DSO. The proposed framework and DR control algorithms can be extended in order 

to assess various DRPAs and SAs in the network. In this respect, the design of price for each 

HA will be set with its specific SAs. As a result, the HAs within a LV feeder, may have 

distinctive tariffs.  

 Accommodation of New Loads: The impact of considering additional loads such as EVs 

and HPs is another future work. The high power consumption of these new load sources can 

provide a great potential of demand flexibility. The DR control mechanism at HAs needs to 

be modified for adopting with the new demands. The charging time of EVs can be interrupted 

and distributed over several periods. Hence, a numbers of optimal charging slots can be 

incorporated in the HAs daily load scheduling. Similarly, since the HP’s operating status is 

dependent to the weather condition, the adjustment of the thermostat can be updated by 

weather forecasting techniques. 

 Developing Agents’ Methodologies: The DR algorithm at HAs can be developed in 

order to include the local generation in the optimisation of load scheduling. In this way, the 

shiftable loads can be delayed to the time of maximum generation. The maximum usage will 

be then matched by the maximum local generation. Moreover, the feedback of reaction of the 

HAs on changing the price in the dynamic pricing tariffs can also be considered. This benefits 

both energy suppliers and network operators to mitigate the network constraints. 
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Appendix A 
 

Table A.1. Active and Reactive Power of the Modified IEEE-69 Bus Network 

Bus No. P (kW) Q (kW) Bus No. P (kW) Q (kW) Bus No. P (kW) Q (kW) 

1 0 0 24 28 20 47 0 0 

2 0 0 25 0 0 48 79 56.4 

3 0 0 26 14 10 49 384.7 274.5 

4 0 0 27 14 10 50 384.7 274.5 

5 0 0 28 26 18.6 51 40.5 28.3 

6 2.6 2.2 29 26 18.6 52 3.6 2.7 

7 40.4 30 30 0 0 53 4.35 3.5 

8 75 54 31 0 0 54 26.4 19 

9 30 22 32 0 0 55 24 17.2 

10 28 19 33 14 10 56 0 0 

11 145 104 34 19.5 14 57 0 0 

12 145 104 35 6 4 58 0 0 

13 8 5.5 36 26 18.55 59 100 72 

14 8 5.5 37 26 18.55 60 0 0 

15 0 0 38 0 0 61 1244 888 

16 45.5 30 39 24 17 62 32 23 

17 60 35 40 24 17 63 0 0 

18 60 35 41 1.2 1 64 227 162 

19 0 0 42 0 0 65 59 42 

20 1 0.6 43 6 4.3 66 18 13 

21 114 81 44 0 0 67 18 13 

22 5.3 3.5 45 39.22 26.3 68 28 20 

23 0 0 46 39.22 26.3 69 28 20 

 

Table A.2. Line Parameters of the LV feeder in the modified IEEE 69-bus test network 

LINE 

R (Ω) X (Ω) 

LINE 

R (Ω) X (Ω) From 

bus 
To bus 

From 

bus 
To bus 

1 2 0.0415 0.0145 6 11 0.2607 0.026 

2 3 0.0424 0.0189 6 10 1.3605 0.1357 

3 4 0.0444 0.0198 4 13 0.14 0.014 

4 5 0.0369 0.0165 3 19 0.7763 0.0744 

5 6 0.052 0.0232 2 14 0.5977 0.0596 

6 7 0.0524 0.0234 1 16 0.1423 0.0496 

7 9 0.0005 0.0002 16 17 0.0837 0.0292 

7 8 0.2002 0.0199 17 18 0.3123 0.0311 

7 11 1.734 0.1729 1 15 0.0163 0.0062 



 

 

158 

 

Table A.3. Line Parameters of the MV feeders in the modified IEEE-69 Bus Network 

LINE 
R (Ω) X (Ω) 

LINE 
R (Ω) X (Ω) 

LINE 
R (Ω) X (Ω) 

From bus To bus From bus To bus From bus To bus 

1 2 0.0005 0.0012 24 25 0.7488 0.2475 47 48 0.0851 0.2083 

2 3 0.0005 0.0012 25 26 0.3089 0.1021 48 49 0.2898 0.7091 

3 4 0.0015 0.0036 26 27 0.1732 0.0572 49 50 0.0822 0.2011 

4 5 0.0251 0.0294 3 28 0.0044 0.0108 8 51 0.0928 0.0473 

5 6 0.366 0.1864 28 29 0.064 0.1565 51 52 0.3319 0.1114 

6 7 0.3811 0.1941 29 30 0.3978 0.1315 9 53 0.174 0.0886 

7 8 0.0922 0.0470 30 31 0.0702 0.0232 53 54 0.203 0.1034 

8 9 0.0493 0.0251 31 32 0.351 0.1160 54 55 0.2842 0.1447 

9 10 0.819 0.2707 32 33 0.839 0.2816 55 56 0.2813 0.1433 

10 11 0.1872 0.0619 33 34 1.708 0.5646 56 57 1.59 0.5337 

11 12 0.7114 0.2351 34 35 1.474 0.4873 57 58 0.7837 0.263 

12 13 1.03 0.3400 3 36 0.0044 0.0108 58 59 0.3042 0.1006 

13 14 1.044 0.3450 36 37 0.064 0.1565 59 60 0.3861 0.1172 

14 15 1.058 0.3496 37 38 0.1053 0.1230 60 61 0.5075 0.2585 

15 16 0.1966 0.0650 38 39 0.0304 0.0355 61 62 0.0974 0.0496 

16 17 0.3744 0.1238 39 40 0.0018 0.0021 62 63 0.145 0.0738 

17 18 0.0047 0.0016 40 41 0.7283 0.8509 63 64 0.7105 0.3619 

18 19 0.3276 0.1083 41 42 0.31 0.3623 64 65 1.041 0.5302 

19 20 0.2106 0.0696 42 43 0.041 0.0478 11 66 0.2012 0.0611 

20 21 0.3416 0.1129 43 44 0.0092 0.0116 66 67 0.0047 0.0014 

21 22 0.014 0.0046 44 45 0.1089 0.1373 12 68 0.7394 0.2444 

22 23 0.1591 0.0526 45 46 0.0009 0.0012 68 69 0.0047 0.0016 

23 24 0.3463 0.1145 4 47 0.0034 0.0084         
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Appendix B 
 

Table B.1. RC Values for different trials implemented in the dataset 

  TOU tariff day peak Night 

Tariff A 1.29 0.90 1.50 

Tariff B 1.33 0.69 1.64 

Tariff C 1.38 0.56 1.80 

Tariff D 1.44 0.47 2.00 

Tariff W 1.80 1.29 0.47 
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