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Abstract 
 

Microplastics are particles that are < 5 mm in size and come from a wide range of 

sources. The global distribution in  terrestrial and aquatic environments indicates they 

are likely to cause harm to living organisms. They are used in a variety of personal 

care products and kitchen scourers. To advance further studies, different approaches 

have been developed in recent years. In this research, a comparison of methods and 

analytical techniques were applied to characterise microplastics in two toothpastes 

and two facial scrubs. The analysis of microplastics was determined using light 

microscopy, laser diffraction, Fourier-transform infrared spectroscopy.This research 

reports for the first time, the application of Imaging flow cytometry to characterise 

microplastics, and was explored to characterise smaller sized particles in each 

product. The methods developed where validated by characterising particles abraded 

from kitchen scourers. Two market leading and three chain store brands of kitchen 

scourers were utilised for the characterisation of microplastics. The application of the 

different techniques indicated differences in the size, number and morphological 

characteristics of the particles analysed. The different approaches developed for 

particle extraction, and the analytical techniques had an apparent influence on the 

results produced. Currently, there are no universally accepted laboratory protocol and 

analytical techniques to characterise microplastics. However, this research can serve 

as a reference point to promote more studies on laboratory methods and analytical 

techniques to characterise microplastics, with the hope of understanding better these 

complex particles.   
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CHAPTER 1. INTRODUCTION. 

 

The word plastic is derived from the Greek word “plastikos”, meaning mouldable 

and capable of being shaped (Kamboj 2016). Plastics are the general name for 

synthetic organic materials made from polymers that form chains of molecules that are 

linked together to form plastics. As such, it is not a coincidence that many plastic 

materials commonly used start with the suffix “poly”. Plastics are made from polymers 

of polyester, aliphatic polyamides such as nylons, polyethylene (PE), polypropylene 

(PP), polyethylene-terephthalate (PET) and polyvinyl chloride (PVC) (Andrady 2017; 

Andrady 2015). Therefore, because plastics are made from polymers, both terms 

“plastic” and “polymers” are used interchangeably. When plastics are manufactured, 

organic polymers referred to as resins, are commonly used as a base (Geyer et al. 

2017a). It is clear that when resins are made into plastics, additives such as colouring 

agents and dyes, plasticizers, ultra violet UV and thermal stabilisers and flame 

retardants are commonly added to the resin to improve the durability and aesthetics 

of the plastic (Geyer et al. 2017a; Law 2017a). Plastics are made from organic and 

inorganic materials and are characterised by their durability, versatility, weight and 

relative affordability. The malleable nature of plastics allows it to be cast and turned 

into different shapes and sizes, characteristics which have resulted in their varied 

domestic and industrial use ( Andrady 2017; Law 2017a; Geyer et al. 2017b; Kamboj 

2016a). ).  

Plastics are used in a myriad of applications including food packaging, as fabric in 

clothing, carrier bags, shower curtains, refrigerator liners, compact discs, plumbing 

pipes and in some instances, personal care products (Geyer et al. 2017b; 

PlasticsEurope 2016). In addition, polymers are light weight yet have high tensile 

strength, and so they are used in fabrics and clothing material, and they can be easily 

shaped into any form, as applied in toys, bottles and car parts ( Napper & Thompson 

2016; Eriksen et al. 2014a). ). Materials such as glass and metals which were used 

more frequently in the past have been gradually replaced by plastics today (Huang et 

al. 2017). These polymers are important components of plastic materials because the 

structure of polymers confers a characteristic resistance to chemicals, they serve as 

good thermal and electrical insulators with applications in plastic coverings in home 

appliances (Andrady 2017; GESAMP 2015).  
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The wide use of plastics is reflected in the global increase in production (Law 2017b; 

GESAMP 2015).  ). Since the 1950s, the annual global production of plastics has 

increased, with manufacturers capitalising on the dependence on plastics. 

Consequently, plastic production has increased from 1.5 million tonnes per year in the 

early 1950s to 245 million tonnes per year in the 21st century (Figure 1.1). It is apparent 

that the production of plastic has experienced a 99% increase since the early 1950s 

(Figure 1). . 

                 

Figure 1.1 Global plastics production for from 1950 to 2015. Plastics production has 

more than doubled between 1989 and 2015 Figure adapted from (Law 2017b; Zhao 

et al. 2017) 

 

It is clear that the plastics industry has become a global production platform with 

different countries producing large quantities of this so called wonder material. 

Documented reports suggests China; the European Union (EU) and North America, 

produced an estimated 161 million tonnes of plastics in 2013 (Geyer et al. 2017b; 

PlasticsEurope 2016). However, there is information to suggest that China alone 

accounts for about 28% of the total global plastic production and by contrast the 

commonwealth of independent states (CIS) produces about 3% (Geyer et al. 2017b; 

PlasticsEurope 2016). There is evidence to suggest that plastic production is also 

likely to increase with population growth (Geyer et al. 2017b; Ryan 2015). Therefore, 

with the current dependence on plastic for everyday use, it is apparent that consumers 

will use more plastic products in the future to meet daily needs.  
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The plastic industry and its growth has brought some benefits to the society. For 

example, it is apparent that the industry employs about 1.5 million people in Europe 

and recorded a turnover of over 340 billion euros (PlasticsEurope 2016).  In addition, 

the income generated from plastic production has contributed about 27 billion Euros 

to welfare and public finance (PlasticsEurope 2016). As such, it is apparent that the 

plastic industry has provided jobs and benefited the society in one way or another. The 

industry is vast to the extent that it has also encouraged trade between countries, 

which has helped trading relationships and partnerships between countries. In 

addition, the larger plastic production countries supply and meet the demands of trade 

partner nations for them to meet their societal need. In particular, there is evidence to 

suggest that Germany, Italy, France, Spain, UK and Poland in that order, make up 

70% of the plastic demand in Europe and Cyprus and Malta represent the least 

demand (PlasticsEurope 2016; PlasticsEurope 2015). What is apparent is that 

countries today depend on plastic for applications in industrial and domestic uses. In 

particular, there is evidence to suggest that in Europe, plastic is used mainly in the 

packaging industry and in 2015 accounted for almost 40% of plastic use 

(PlasticsEurope 2016). By contrast however, plastics were least used in the 

agricultural sector in Europe (PlasticsEurope 2016). It is likely that the dependence 

and demand of plastic from society served as a boost for more plastics packaging 

commonly used in groceries, and home appliances. As such foreign exchange from 

the sale of plastic have more than likely boosted the economies of trading countries, 

and met the demands of the society.  

Although the benefits of plastics to the society are apparent, it is not without its 

problems to the society. This wonder material has been suggested to be the main 

culprit in a world that is continuously contaminated by plastics globally. This is largely 

because of an ever growing population that is increasingly dependent on the material 

(Geyer et al. 2017b). In addition, evidence suggests that the frequent use and disposal 

of single use plastic, especially plastic packaging is a major contributor to global 

contamination (GESAMP 2015; Law 2017a). Furthermore, evidence suggests that this 

is likely to increase with in parallel with population growth by 2050 (Geyer et al. 2017b; 

Ryan 2015). This increase in production is evidenced by the frequent use and disposal 

of plastic, the affordable price of the material as well as its flexible and improved design 

quality (Law 2017a; Geyer et al. 2017b).  
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There has been a drive by countries globally, to mitigate the plastic 

contamination(Geyer et al. 2017a). In particular, many countries have adopted 

recycling strategies which have had measureable impacts on the amount of plastics 

that are thrown away or find their way to the environment (PlasticsEurope 2016). 

Evidence suggests that over 7.5 million tonnes of plastic was recycled across Europe 

in 2014 (PlasticsEurope 2016). In the UK, plastic packaging commonly used for 

wrapping toys, food and some house hold appliances, makes up the largest source of 

plastic demand (Wrap 2016). In particular, out of the estimated 3.7 million tonnes of 

plastics per year in demand, it is apparent that rigid plastics commonly used in plastics 

bottles and trays, make up about 1.5 million tonnes. In addition, it is apparent that an 

estimated 0.77 million tonnes of the plastic in demand are used as films in plastics 

bags and labels for products (BPF 2018; Wrap 2016). In a drive to reduce the amount 

of plastics that enter the environment in the UK, it is estimated that about 59% of the 

3.7 million tonnes of plastic is recovered and used as raw material for the manufacture 

of other products and 29% is recycled (BPF 2018). In a bid to boost recycling efforts, 

the UK currently exports almost twice as much plastic packaging for recycling (largely 

to China), than it is currently recycling domestically (Wrap 2016). However it is 

apparent that UK plastic exports for recycling will reduce because of the proposed ban 

of plastic importations by China (Laville, 2018). It is apparent that if this ban goes 

ahead, the UK will be required to find workable alternatives for recycling.  

On a global scale, an estimated 14% of the plastic packaging is currently recycled 

(MacArthur 2017; Carey 2017). This is largely because of government policies that do 

not go a long way to ensure recycling is carried out as a matter of urgency (Carey 

2017; PlasticsEurope 2016). It is apparent that limitations for the recycling of plastic 

material will result in the contamination of the environment (Law 2017a; Andrady 

2015). It is estimated that out of the 6300 Mt plastic waste generated, 9% have been 

recycled, 12% have been incinerated and 79% accumulated in the environment or 

landfill sites (Geyer et al. 2017a). Plastics that have been recycled and used as 

material for other products, are called secondary plastics. I It has been reported that 

only a small proportion(10%) of the 9% recycled plastics have been recycled more 

than once (Geyer et al. 2017a). Therefore, it is apparent that a large proportion, about 

60% of plastics that have not been recycled or incinerated end up in landfills and the 

environment (Carey 2017; PlasticsEurope 2016).  
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1.1. Entry, fate and transport of plastics in the Environment 

 

Although there have been wide benefits to using plastics, there is a general 

consensus that the frequency of their use and inappropriate disposal are a source of 

these contaminants in the environment (Geyer et al. 2017b; Gall & Thompson 2015). 

The characteristics of plastics namely, their durability, which makes them such a useful 

material, by contrast, also ensures their resistance to degradation. Therefore, plastics 

slowly degrade and persist in the environment, depending on the type and 

morphology, however, the length of time they remain in the environment is unknown 

(Syakti et al. 2017; Lebreton et al. 2017) .  

The entry of plastics in the terrestrial environment is commonly through the disposal 

of plastic material. In some countries it is common to see plastic litter on the streets 

and sometimes they are transported by wind to other locations. However, in other 

instances, plastic waste is collected and disposed of in landfill sites where they remain 

for an unknown length of time. By contrast, it is apparent that plastics sent to landfills 

that are not properly managed end up being blown away and transported by wind to 

other locations, thus contaminating the environment.  

Plastics are also used as mulch in agriculture to conserve soil moisture and to grow 

crops in countries like China and some countries in North America, Middle East and 

Europe (Saglam et al. 2017; Liu et al. 2014). Currently, plastic mulch used globally is 

made from polyethylene that is non-biodegradable. It is common practice to remove 

and dispose of the plastic mulch usually after harvest. However, it is apparent that this 

process is costly and time consuming. It has been reported that not all farmers properly 

dispose of the mulch, rather they either burn, or illegally dispose of the plastic (Saglam 

et al. 2017; Liu et al. 2014). Furthermore, it is apparent that the removal of plastic 

mulches from soil is not always complete. When farmers remove the plastic from the 

soil, part of it is torn off and remains in the soil. Therefore this suggests that the use of 

plastic mulch in agriculture acts as an entry point for plastics to the terrestrial 

environment.  

In the terrestrial environment, it is apparent that the disposal of single use and throw 

away plastics (bags, wrappings, packaging) has gained notoriety, with some countries 

placing extra charges for their continued use (DEFRA 2018; Hodson et al. 2017). This 
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is in an attempt to reduce the incidence of plastic pollution in the environment. For 

example in England, it is apparent that the introduction of the 5p charge on plastic 

bags in major supermarkets has resulted in a reduction of the number of plastics sent 

to landfills (DEFRA 2018). In 2014, 7.6 billion plastic bags were issued to customers 

after shopping. Currently because of the introduction of the 5p charge, the use of 

plastic bags issued by supermarkets has reduced by 80% (DEFRA 2018). Over the 

next 10 years, it has been predicted that clean-up of plastic litter will save the 

government about £60million (DEFRA 2018). Although this approach has reduced the 

use and therefore entry of plastic bags used for shopping into the environment, other 

types of plastic material have not been subjected to this policy. Therefore, it is apparent 

that plastic materials that do not have charges placed on them will continue to be in 

use more frequently, and with the potential to enter the terrestrial environment.  

The entry of plastics from the terrestrial environment to the aquatic environment has 

been widely reported (Law 2017b; Avio, Gorbi, et al. 2017). However, it is apparent 

that there are more reports of the entry of plastics to the marine environment than 

freshwater environments (Lebreton et al. 2017). It is not clear why this is so, but it is 

clear that plastics from terrestrial environments are more likely to be transported to the 

marine environment through freshwater environments. The entry of plastics into 

freshwater environments is commonly as a result of improper disposal, through 

drainage, transport by wind, and in some cases, direct dumping of plastic material into 

freshwater environments (Hennig et al. 2017; Hansen 2016). A study reported on the 

occurrence of persistent buoyant litter made up of plastics, polystyrene and wood litter 

at riversides because of the influence of human activity (Rech et al. 2014). In addition, 

the study indicated that plastic litter was transported to coastal beaches, thus 

suggesting entry of plastics to freshwater environments and transport to the marine 

environment (Rech et al. 2014).  

It is widely acknowledged that an estimated 80% of plastics in the marine 

environment comes from land-based sources (Law 2017b; Galgani et al. 2017). This 

is evidenced by litter on beaches, surface waters and the sea floor (Andrady 2017; 

Cozar et al. 2014; Rech et al. 2014). Generally plastics that have not been properly 

disposed end up in the marine environment (Law 2017a; Kamboj 2016b). An estimated 

8 million tonnes of plastic per year enter the marine environment globally, with the 

north pacific ocean having the largest number of surface plastics (Figure 1.2) (Law 
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2017b; Laurent C M Lebreton et al. 2017). However, it is clear that there is also a high 

occurrence of plastics in the Indian Ocean and the Mediterranean demonstrates the 

least plastic occurrence in all the oceans (Figure 1.2). It is apparent that there is a 

higher accumulation of plastics in the North Pacific Ocean because of the North Pacific 

Gyre, which has been described as a large rotating ocean current. The North Pacific 

Gyre is characterised by vortex of ocean water that rotates and transports plastic 

particles towards still waters where they accumulate in the much discussed pacific 

garbage patch (Karl & Church 2017; Bryant et al. 2016). In addition, another study 

reported that currently, estimates of at least 5.25 trillion plastic particles are floating at 

sea, and largely comprising of water bottles and single use packaging plastics. 

However, it is apparent that the particles also included microplastics (Eriksen et al. 

2014b).       

                        

Figure 1.2. Pie chart showing the occurrence of plastics in surface waters in oceans 

globally. The oceans represented are; 1, Mediterranean Sea; 2, South Atlantic; 3, 

South Pacific; 4, North Atlantic; 5, Indian Ocean and 6, North Pacific Ocean. 

 

 

1.2 Impact of plastics in the marine environment.  

 

The occurrence of macroplastics has been a subject of concern because it affects 

the aesthetics of an environment, tourism, health and safety of beach goers, the fishing 

industry and the health status of terrestrial and aquatic organisms (Law 2017b; Romeo 

et al. 2015;  Rochman et al. 2016; GESAMP 2015). Although there is wide evidence 

of the impact of macroplastics in the marine environment, information regarding their 
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impact on freshwater and terrestrial environments is more limited (Law 2017b; 

Rochman et al. 2013; Hodson et al. 2017; Barnes et al. 2009). The consensus on the 

harmful effect of macroplastics in the aquatic environment is based on the physical 

characteristics of plastics which have resulted in their ubiquitous distribution and 

transport by water currents and wind action to remote regions such as the Pacific 

Ocean (Gall & Thompson 2015; Rocha-Santos & Duarte 2015). Currently it is 

estimated that about 600 species, including seabirds, marine mammals, turtles and 

fish have been affected by plastic material in the marine environment (Gall & 

Thompson 2015; Rochman et al. 2015; Wilcox, Van Sebille, et al. 2015).  

Investigations into the impacts of plastics on marine life have reported mortality in 

fish, turtles, whales and sea birds, due to the ingestion of plastics and/or entanglement 

with plastic materials (Gall & Thompson 2015; LI et al. 2016; Law 2017b). It is generally 

accepted that the ingestion of plastics blocks the feeding passage of the organisms 

and preventing any further ingestion and resulting in starvation (Lusher et al. 2013; 

Gall & Thompson 2015; Law 2017b). Although plastic ingestion does not always result 

in immediate mortality of the organism, there are potentially long-term consequences 

of sub-lethal effects from the ingestion of plastics (Wright et al. 2013a). 

A study on plastic ingestion by demersal and pelagic fish species revealed that out 

of 290 gastrointestinal tracts analysed, 5.5% of the fish had plastics in them (Rummel 

et al. 2016). In addition, 31 % more plastics were ingested by pelagic fish than 

demersal fish (Rummel et al. 2016). This would indicate that there are more 

bioavailable plastics in the water column than in the benthic environment. Plastics 

have also been reported in the stomachs of whales, where a total of 59 plastics were 

ingested (De Stephanis et al. 2013). The report indicated that plastic sheets which are 

frequently used as covers in greenhouses, hosepipe, dishwater plastics and plastic 

burlap were ingested by the whale (De Stephanis et al. 2013). The study reported that 

greenhouse cultivation was a common occurrence in the region close to the sampling 

location and is a possible source of plastic entry to the environment. However, floating 

debris were not observed in the region where the study was conducted, therefore, it is 

not clear where the whales ingested the plastics. Whales feed at the surface through 

to the bottom of the marine environment and as such are exposed to plastic waste that 

is distributed in the different compartments of the marine environment.  
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In addition to adult organisms, the early life stage juvenile organisms are also 

exposed to plastics in the marine environment (Kühn et al. 2015; Law 2017b). One of 

many examples are juvenile sea turtles which are vulnerable to the high number of 

plastics entering the marine environment (Pham et al. 2017). Out of the 

gastrointestinal tracts of 24 loggerheads Caretta caretta from the North Atlantic 

subtropical gyre, 20 had ingested different particles, all of which were made from 

plastic (Pham et al. 2017). This study suggests that plastics in the marine environment 

can harm juvenile stage turtles, resulting in mortality and reducing population growth 

(Pham et al. 2017). 

In order to understand the impact of plastics in the environment, indicator organisms 

have been suggested to be used in monitoring programmes (Karlsson et al. 2017; 

Provencher et al. 2015). In addition, international authorities have developed policies 

and directives to monitor and assess the impact of plastics in the environment (García-

Rivera et al. 2017; Galgani et al. 2013). For example, the marine safety framework 

directive (MSFD), has as part of its priorities, included marine litter which plastics are 

a part of, as one of the eleven descriptors that demonstrates good environmental 

status in seas in Europe (García-Rivera et al. 2017; Galgani et al. 2013). One species 

frequently used to assess the level of plastic contamination in the marine environment 

are seabirds. Due to their travelling over long distances in search of food, it is not 

unusual they ingest or bring back plastics to their nests (Provencher et al. 2015). 

Documented reports show that out of 121 birds (16 different species), 27% (12 

different species) had plastic particles in their gastrointestinal tract (Acampora et al. 

2016). In particular, plastics were identified in 93% of the Northern Fulmars analysed. 

The mean mass of plastics reportedly ingested was 0.141 g, which was over the 0.1 

g marine safety framework directive environmental quality threshold (Acampora et al. 

2016).  

 

1.3  Impact of plastics in freshwater environments 

 

By contrast to the marine environment, information on  plastic contamination and 

their impactin freshwater environments is limited  (Rochman et al. 2013; Eerkes-

Medrano et al. 2015a). To date, only a few studies have documented the 
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contamination of freshwater environments by plastics, and as a consequence it is 

difficult to assess the impact of these contaminants to these environments (Wagner et 

al. 2014). It has been suggested that freshwater environments act as a pathway for 

the entry of plastics to the marine environment. With the increasing population and 

dependence on plastics for various uses, it is likely that if not properly disposed, more 

plastics will enter freshwater environments. Currently it is estimated that between 1.2 

to 2.4 million tonnes of plastic enters the sea every year from rivers globally (Laurent 

C. M. Lebreton et al. 2017). This influx is more than likely to have an impact on the 

environment in general and living organisms in particular, but what that impact is, is 

still unknown. Furthermore, it is difficult to fully assess the impact when the 

occurrence, distribution and residency time of plastics in freshwater environments is 

poorly understood ( Rochman et al. 2013; Laurent C. M. Lebreton et al. 2017). 

However, it is likely that plastics are ingested by invertebrates, fish, and birds in 

freshwater environments. A survey of water bird species in the wetlands of central 

Spain reported that plastics were detected in the faeces of 43.8%, 60% and 45% of 

the European coot, mallard and shelduck (Gil-Delgado et al. 2017). This study 

demonstrated that plastics can be ingested and removed via excretion in this species. 

This suggests plastics can be removed from the systems of some species, but the 

degree of removal is unknown. Furthermore, the long-term impact of the ingestion is 

still unknown (Gil-Delgado et al. 2017).  

 

1.4  Impact of plastics in the terrestrial environment 

 

Similar to freshwater environments, little is known about the impact of plastic on the 

terrestrial environment and living organisms in particular. In general, plastic bags, toys 

and in some cases, plastic water sachets inappropriately disposed, clog drains and 

often result in flooding with damaging consequences (Ojolowo & Wahab 2017; Butu & 

Mshelia 2014). With regards to living organisms, a study on Turkey Vultures 

(Cathartes aura) showed that 78% and 83% from coastal and inland sites respectively, 

contained plastic material in regurgitated pellets (Torres-Mura et al. 2015). Based on 

a scavenging diet, it is likely that turkey vultures fed on disposed plastic materials such 

as bags. An investigation on reintroduced population of California Condors 

Gymnogyps californianus, revealed 60% of nestlings ingested anthropogenic 
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materials referred to as junk, resulted in mortality 2 individuals (Mee et al., 2007). 

However,  the report did not identify the composition of junk material, but from other 

studies that have detailed feeding habits of birds it is possible these included plastic 

material (Provencher et al. 2015).  

Plastics in the environment can have other impacts on living organisms as has been 

reported (Townsend & Barker 2014). A study on the effects of anthropogenic nest 

material on American Crow Corvus brachyrhynchos, reported crow nests contained a 

high percentage (85.2%) of man-made material (Townsend and Barker, 2014). In 

addition, 5.6% of nestlings were entangled in man-made material including synthetic 

string, balloon string and nets, which resulted in a significantly lower fledging success 

than untangled nestlings (Townsend and Barker, 2014). It is apparent that reduced 

fledging affects the growth and survival of the bird, with the potential to impact 

population numbers. It is clear that anthropogenic plastic litter picked up by birds from 

locations where they search for food, suggests these contaminants have a wide 

distribution in the environment (Provencher et al. 2015; Torres-Mura Juan C et al. 

2015). Historically, studies on the impact of macroplastics on wildlife in the terrestrial 

environments have been limited, the link between urbanisation and the occurrence of 

anthropogenic litter especially macroplastics is still a subject for investigation. 

However, it is clear that reports on plastic pollution in the environment have also 

focused on the chemical additives commonly added in the manufacture of the material. 

 

1.5  Chemicals and additives associated with plastics 

 

In the last decade, there have been investigations into the impact of toxic chemicals 

associated with plastic (Rochman et al. 2016). These chemicals can be classified into 

additives used in the manufacture of the plastic material, the by-products from the 

manufacturing process and other chemicals adsorbed from the environment 

(Rochman 2015). An overview of current documented reports widely suggests that the 

impact of plastics in the environment can be because of these toxic chemicals 

(Andrady 2017; Guerranti et al. 2016). Commonly referred to as priority pollutants in 

many countries globally, they are regulated by many government agencies because 
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of their level of toxicity and effect on living organisms (Rochman et al. 2013; Ivar Do 

Sul & Costa 2014).   

Chemicals commonly incorporated into plastics with the potential to leach into the 

environment include, bisphenol A (BPA), commonly found in plastic water bottles, food 

storage containers and flasks (Rochman et al. 2013; Ivar Do Sul & Costa 2014). This 

chemical is often referred to as a synthetic estrogen and is frequently associated with 

endocrine disruption in living organisms (Rochman et al. 2016; Law 2017a; 

Vandenberg et al. 2017; Rochman et al. 2014). BPA has been increasingly associated 

with endocrine disruption in human beings especially because of the large 

dependence on plastic products (Rochman et al. 2014; Vandenberg et al. 2017). 

Another common chemical associated with plastics are phthalates, which are added 

to plastics such as polyvinyl chloride, to make them more flexible for use in a wide 

variety of products. Documented reports have suggested that BPA and phthalates can 

leach from the plastic products into the body, with the potential to cause harm in the 

endocrine system (Rochman 2015).  

There have been reports that widely suggest plastics adsorb persistent organic 

pollutants (POPs) from the environment ( Bakir et al. 2014; Andrady 2017). The most 

common of these POPs include polycyclic aromatic hydrocarbons (PAH) and 

polychlorinated biphenyls (PCBs), and have been listed as persistent, bioaccumulative 

and toxic (PBTs) by some government agencies, some include the US environmental 

protection agency (EPA) and the Organisation for Economic Co-operation and 

Development (OECD) (Rochman 2015). Many of these chemicals are hydrophobic in 

nature and have been widely associated with plastic debris. Due to their 

hydrophobicity, they are readily sorbed onto organic matter and plastics (Antunes et 

al. 2013; Hodson et al. 2017). The impact of these chemicals have been reported in 

lug-worms, amphipods, fish, and seabirds upon ingestion of plastics environment 

(Hodgson et al. 2018; Koelmans et al. 2014; Rochman et al. 2013). It is not clear 

whether the impact was because of the ingestion of plastics alone, or the chemicals 

associated with the plastics. However, another report indicated that polybrominated 

diphenyl ethers (PBDE) were detected in adipose tissues of 25% of short-tailed 

shearwaters analysed. In addition, higher brominated congeners were detected in the 

stomachs of 3 birds, but were not present in pelagic fish that are their natural prey 
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(Tanaka et al. 2013). This suggests that a transfer chemical additives in plastic to 

marine organisms.  

However, it is apparent that the reports on the impact of chemical additives in 

plastics have been largely laboratory based studies. It has been argued that the 

concentration of plastics and chemical additives organisms are exposed to in the 

laboratory, are orders of magnitude higher than environmental concentration 

(Koelmans et al. 2014). Therefore, it is not clear whether the impact on living 

organisms is because of the plastic alone or the effect of a plastic/chemical additive 

combination.  

The types and size of plastics in the environment has an apparent impact on the 

absorption of chemicals from the environment (Rochman 2015). In particular, the 

physical and chemical properties; surface area, crystallinity, diffusivity, of the plastic 

allow for chemicals from the environment to accumulate on them (Rochman 2015). It 

has been reported that higher concentrations of organic chemicals are sorbed by 

polyethylene, polystyrene and polypropylene, than are sorbed by polyethylene 

terephthalate (PET) and polyvinyl chloride (PVC) (Rochman 2015).    

As the environment is increasingly contaminated with plastic debris it is plausible 

that the combination of plastic contamination and toxic chemicals leached to the 

environment can have an apparent impact on living organisms (Hodson et al. 2017; 

Avio, Cardelli, et al. 2017; Doyle et al. 2011). However, to date, no study has 

demonstrated that mortality in aquatic and terrestrial organisms was directly linked to 

chemical additives in plastics. In addition, there is no strong evidence to suggest 

plastic additives have affected marine organisms at the population level (Galgani et al. 

2017; Chris Wilcox et al. 2016). 

The occurrence of macroplastics, more so in the aquatic than the terrestrial 

environment, has been widely acknowledged to be responsible for strangulation, 

drowning and starvation of living organisms (Ryan et al. 2009; Rochman et al. 2013; 

Law 2017a). However, a growing concern on the occurrence of smaller plastic 

particles has gained global interest (Law 2017a). In recent years there has been a shift 

in research from studies on the more visible macroplastics to smaller particles referred 

to as microplastics. Microplastics are plastic particles that are < 5 mm in size (Duis & 

Coors 2016a). Larger plastic particles in the environment fragment into smaller pieces 
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which are commonly referred to as microplastics and have gained global attention 

because of their potential to cause harm (GESAMP 2015; Auta et al. 2017a). In 

addition, the inclusion of micron sized plastics used intentionally as ingredients in 

some cosmetics such as personal care products PCPs have also gained global 

attention (Duis & Coors 2016b; Chang 2015). However, it is apparent that other 

potential sources of microplastics to the environment have not been reported.  

 

1.6. Aims and objectives 

 

The aim of this present study was to characterise microplastics in consumer 

products using a number of different methods. The results from each approach are 

compared to highlight the challenges involved in quantifying and determining the size 

of microplastics. This was applied to particles originating from selected PCPs and 

kitchen scourers. A range of techniques available (microscopy, laser diffraction, 

imaging flow cytometry and FT-IR) were be used. The hypothesis was that they would 

give similar results in assessing characteristics of particles from relatively simple (in 

terms of complexity of environmental samples) matrices with a high number of 

particles per unit volume. 

The key objectives were: 

 To review extraction and separation techniques and use the PCPs to develop 

standardised approaches that would allow samples to be in a form for 

assessment by the range of techniques available. 

 To optimise the methods available for characterisation and quantification of 

particles. 

 To apply the techniques to particles extracted from PCPs and develop a flow 

stream of assessment that would give reproducible outcomes. 

 To characterise and quantify the particles present in the PCPs 

 To apply the methodology developed to particles from an alternative source, 

kitchen scourers, which have not previously been identified as a source of 

microplastics. 

 To characterise and quantify the particles released from kitchen scourers. 
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CHAPTER 2. LITERATURE REVIEW: Microplastics 

 

During the early 1970s, the findings of a research survey reported observing an 

average of 3500 pieces and 290 g/m2 of small plastic floating in the ocean (Carpenter 

& Smith 1972).  Many of these pieces were shaped like pellets and  weathering 

processes had rendered the particles brittle, therefore breaking into smaller pieces 

(Carpenter & Smith 1972). In addition, hydroids and diatoms attached to the surface 

of these particles, that were about 0.25 to 0.5 mm in diameter (Carpenter & Smith 

1972). Over time, further studies revealed the presence of plastic fragments in birds 

(Thompson 2015a; GESAMP 2015; Horton et al. 2017). Since identifying these small 

particles in the environment, there has been an on-going debate as to the most 

accurate definition of a microplastic with regards to size limits. Although there is 

uncertainty about the formal acceptance of this definition, there is evidence in reports 

to show different size classifications for the definition of microplastics (Teresa Rocha-

Santos & Duarte 2015; Sutton et al. 2016; Song et al. 2015). The different size 

definitions make data comparison of microplastics difficult and contribute to the 

challenges of trying to understand its occurrence and impact in the environment. 

However, following a workshop in 2009, participants’ categorised microplastics as 

plastic fragments ranging between 333 µm and 5,000 µm (5mm) (Browne et al. 2011; 

T Rocha-Santos & Duarte 2015; Ryan 2015). Although convenient, this size range 

description of microplastics has not been fully embraced and other scientists have 

considered a broader classification into micro, meso and macro particles (Teresa 

Rocha-Santos & Duarte 2015; Sutton et al. 2016). Currently, the consensus is that 

microplastics are particles that are < 5 mm in size (Thompson 2015a). Microplastics 

come from various sources, they have a global distribution in terrestrial and aquatic 

environments and are likely to cause harm to the environment and living organisms 

(Auta et al. 2017a; Bosker et al. 2017a). There are different types of microplastics 

which exhibit differences based on their density. For example, polyethylene is a 

polymer particle commonly reported in studies. Small particles of polyethylene are 

described as low density particles, and are usually buoyant and float at the surface of 

the aquatic environment.  
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2.1 Types of microplastics  

 

Microplastics are released from a myriad of sources, and it is apparent that these 

sources have an impact on the two categories of microplastics that have been 

reported.  

 

2.1.1 Primary microplastic  

 

These are plastics that have been manufactured intentionally to be microscopic in 

size (GESAMP 2015; Peng et al. 2017). Primary microplastics are intentionally added 

to some cosmetics such as lipsticks and personal care products PCPs which include 

some brands of toothpastes and facial scrubs ( Gregory 1996a; Duis & Coors 2016b; 

Hernandez et al. 2017; Saskia Honcoop 2018). In addition, primary microplastics 

include polymers of acrylic and polyester commonly used as scrubbers by blasting on 

the hull of ships and their engines to remove rust and worn out paint ( Gregory 

1996a;Desforges et al. 2014; Sharma & Chatterjee 2017). Plastics used in this 

technology are generally sub-angular and come in different sizes (Graco, 2017). 

According to industry sources, the abrasive properties of a particle is dependent on its 

size, shape, hardness and density (Graco 2017).  Scrubbers are used several times 

before they are disposed of. In addition, the particles breakdown into further smaller 

sizes, therefore releasing more particles (Gregory 1996a). However, it is not clear how  

many particles are released from blasting of ships and engines. 

Another common example of primary microplastics are resin pellets which are 

produced in different shapes and colours, and are the raw materials from which 

plastics moulds are made (Figure 2.1) (Acosta-Coley & Olivero-Verbel 2015;Ziccardi 

et al. 2016). Resin pellets are typically < 5 mm, but a size range of 1-5 mm is the 

general size range (Figure 2.1) (Acosta-Coley & Olivero-Verbel 2015; Eerkes-

Medrano et al. 2015a). The circular-like shapes of the particles are indicative of their 

origin (Hidalgo-Ruz & Gutow 2012; Duis & Coors 2016b; Acosta-Coley & Olivero-

Verbel 2015). In addition, the particle size demonstrates the size category associated 

with microplastics (Antunes et al. 2013; Cole et al. 2016). Resin pellets are made from 

polyethylene and polypropylene resin pellets and are introduced to the environment 
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as a result of accidental spills from shipping vessels and from industrial sources 

(Castillo et al. 2016; Sutton et al. 2016). Their light weight, buoyancy and conditions 

in the oceans ensure they are transported over wide distances (Castillo et al. 2016; 

Sutton et al. 2016;Ivar Do Sul & Costa 2014).  Accidental spills of resin pellets is a 

significant source of primary microplastics, and have the potential to enter the 

environment to cause harm (Acosta-Coley & Olivero-Verbel 2015; Yeo et al. 2017).    

                 

Figure 2.1. Resin pellets shown in the image shows differences in shape, size and 

colour Shapes include circular, elongated and irregular. Figure copied from Tanya Cox 

2017. 

   

Since the early 1980s, microplastics have been used in personal care products 

(PCPs), because of their suggested exfoliating and scrubbing properties (Thompson 

et al., 2004; Fendall and Sewell, 2009). PCPs including some brands of toothpastes, 

facial scrubs and hand cleansers, contain particles polyethylene and polystyrene as 

part of their ingredient (Chang 2015; T Rocha-Santos & Duarte 2015; L. M. Hernandez 

et al. 2017). Previously however, apricot and oatmeal were used as scrubbers in PCPs 

such as facial scrubs (Chang 2015; T Rocha-Santos & Duarte 2015; Hernandez et al. 

2017). The particles in many of these PCPs are advertised as microbeads which are 

produced in different colours, sizes and polymer composition, depending on the 

manufacturer and possibly target consumer (Cole et al. 2011; Hintersteiner 2015; Duis 

& Coors 2016a). However, it has been reported that the frequent use of these PCPs 

contribute to the microplastics load in the environment (Duis & Coors 2016b; Mason 

et al. 2016). It is apparent that primary microplastics used in PCPs are a significant 
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source of particles to the environment (Fendall & Sewell 2009; Chang 2015; Duis & 

Coors 2016a).  

2.1.2 Secondary Microplastics  

 

Secondary microplastics are formed from the fragmentation of larger plastics 

(macroplastics), which occurs by a combination of physical, chemical and biological 

processes that reduce the structural integrity of the particles (Andrady 2017; Auta et 

al. 2017a). In addition, exposure to sunlight, temperature and the density and size of 

the particles has an apparent impact on the fragmentation of macroplastics. On 

exposure to ultraviolet radiation, the oxidation of the plastics matrix, results in bond 

cleavage and breakage (Figure 2.2) (Andrady 2011a; Andrady 2015; Sharma & 

Chatterjee 2017). In the aquatic environment only particles that exhibit a lower density 

to the water will float and therefore will be exposed to ultraviolet light. Therefore, 

particles exhibiting low density are susceptible to fragmentation. In addition, the size 

of the particle suggests the likelihood of fragmentation into smaller sizes, because of 

the large surface area that is exposed to ultraviolet light. In the coastal marine 

environment and in beaches in particular, secondary microplastics are readily formed. 

This is because of exposure to ultraviolet light and the crashing of waves on the shore, 

turbulence and the availability of oxygen (Andrady 2017; Barnes et al. 2009; Matthew 

Cole et al. 2011). Over time the particles become brittle and break into smaller pieces 

due to physical abrasion of the waves and change colour on exposure to sunlight. 

Particles are transported by tide and waves to surface waters, where they remain 

exposed and eventually fragment further. . In addition, organisms can feed on 

macroplastics, resulting in the production of secondary microplastics in the marine 

environment  (Rocha-Santos & Duarte 2015; Andrady 2017; Auta et al. 2017). It is 

possible that fragmentation of macroplastics can occur when fed upon by large marine 

organisms such as sharks and whales (Lusher 2015; Lusher et al. 2015). However, it 

is not clear if this is a significant source of secondary microplastics to the environment.  
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Figure 2.2. An illustration of the formation of secondary microplastics in the aquatic 

environment.  

 

 

2.2 Sources of Microplastics 

 

Microplastics typically originate from land-based and marine-based sources (Duis 

& Coors 2016b; Auta et al. 2017b). Land-based sources have been reported to be the 

largest source (80%), of microplastics to the environment, this is largely because of 

the global dependence on plastic based materials, such as plastic bags; the improper 

disposal of plastic based materials (Auta et al. 2017; Lebreton et al. 2017). In addition, 

it is widely acknowledged that waste water treatment plants WWTPs are a significant 

source of particle entry to the environment (Mintenig et al. 2017; Ziajahromi et al. 

2017a; Carr et al. 2016a). In particular, the frequent use of PCPs that contain 

microplastics, and the washing of garments with synthetic particles (nylon, polyester) 

are transported through WWTPs (Auta et al. 2017; Lebreton et al. 2017). WWTPs are 

equipped with different treatment technologies designed to capture particles. WWTPs 

have screens ranging from fine screens (1.5 – 6 mm), coarse screens >6 mm and 

some are equipped with a membrane bioreactor (MBR), which screens particles using 

microfiltration or ultrafiltration (Talvitie et al. 2017; Leslie et al. 2017; Karlsson et al. 

2017). However, it is clear that WWTPs cannot efficiently capture all particles in the 
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flow. Current reports on microplastics in treated waste water suggest the number of 

particles that were <500 µm, ranged from 1 × 101 m-3 – 9 × 103 m-3 particles (Mintenig 

et al. 2017). By contrast, a smaller number of particles (> 500 µm), were detected in 

the treated waste water and ranged from 0 to 5 × 101 m-3 particles (Mintenig et al. 

2017). In addition, the report suggests that there were more particles of fibre detected 

than fragment particles.  The particles of fibre were identified as polyester, and the 

fragment particles mostly comprised of polyethylene (Mintenig et al. 2017). However, 

other studies have reported different estimates for particles in WWTPs ranging from 2 

× 103, 7 × 10-3 – 35 × 10-2 and 2 × 10-3 and 1.5 × 10-2  (Ziajahromi et al. 2017a; Leslie 

et al. 2013). Particles captured by the treatment process in WWTPs are transferred to 

sludge and applied on farmlands (Nizzetto et al. 2016; Leslie et al. 2017). During run-

off, particles in sludge may eventually enter the environment suggesting WWTPs could 

be an important source of microplastics.  

The freshwater environment has been suggested as the link between land-based 

sources of microplastics  and the marine environment (Eerkes-Medrano et al. 2015b). 

Microplastics particles from land-based sources enter freshwater environments 

directly from disposal of plastic waste, transport by wind (something that is less 

studied), and by contributions from WWTPs (Eerkes-Medrano et al. 2015a; Scherer et 

al. 2017). Therefore, this suggests that freshwater environments are a significant link 

and not necessarily a source of particles to the larger marine environment (Horton et 

al. 2017; Eerkes-Medrano et al. 2015a). Marine-based sources of microplastics to the 

environment have been described in reports and include but are not limited to, marine 

based - fishing and shipping activities (Duis & Coors 2016a; Oluniyi Solomon & 

Palanisami 2016).  

 Nets and hook lines largely made from synthetic or semi-synthetic plastic materials 

are commonly used in the aquaculture and fisheries industry (Fao 2017; Magnusson 

et al. 2016; Heathcote, et al. 2015). Plastics are used as part of construction of boats, 

fishing gears which include but are not limited to trawls, traps and dredges (Fao 2017).  

Plastic material used in fisheries and aquaculture industry is made from a wide variety 

of polymers some of which include polyethylene, polyvinylchloride and polypropylene 

(Kerstin Magnusson et al. 2016; GESAMP 2015).  Plastic materials used in the 

fisheries and aquaculture  can be a source of microplastics entry to the environment, 

because equipment made from plastics is sometimes deliberately discarded, lost, or 
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abandoned at sea (Fao 2017; Wilcox, Heathcote, et al. 2015). It has been reported 

that an estimate of 9000 nets have been detected in the northern coast of Australia 

(Wilcox, Van Sebille, et al. 2015).  Abandoned fishing equipment exposed to physical, 

chemical and biological conditions in the environment will fragment to form secondary 

microplastics. .    

The marine environment is also characterised by shipping activities, including 

transport of goods and services, which often results in the contamination of the marine 

environment with microplastics (GESAMP 2015; Oluniyi Solomon & Palanisami 2016; 

Auta et al. 2017a). Plastic pellets which are ≤ 5 mm are accidentally spilled by ships 

have been detected in the marine environment (PlasticsEurope 2017; Acosta-Coley & 

Olivero-Verbel 2015; Kerstin Magnusson et al. 2016). In addition, it has been 

suggested that spilled pellets from shipping activity accounts for about 10% of the 

plastic pellets on beaches (Patil & Raghvendra 2017). In addition, it was reported that 

165 tonnes of plastic pellets were accidentally spilled across the shores of Lamma 

Island, Hong Kong, in 2012. The pellets were released from shipping containers that 

were knocked off because of a typhoon (Reuters 2012). Currently, there are reports 

on the accidental spill of pellets in beaches in the UK and in the marine environment 

in South Africa, from shipping activity (Guy 2017; Willimans 2015). I Improved safety 

during the transport of pellets at sea will reduce plastic spills in the environment. 

However, shipping activity remainsan important source of microplastics (Antunes et 

al. 2013; Acosta-Coley & Olivero-Verbel 2015).  

A less researched aspect of marine-based pollution is from dumping of garbage by 

luxury cruises, merchant vessels and military vessels. There are reports which indicate 

that plastic materials have been dumped at sea by shipping activities. There are 

international conventions such as the International maritime organisation (IMO), 

established to protect the marine environment from human activities and especially 

pollution. However, it is clear that not all shipping activity can be monitored, and the 

incidences of illegal dumping of plastic materials still occurs (IMO  2018). The IMO has 

recognised that shipping activities are a major source of pollution to the environment. 

In particular, it aims to reduce the amount of garbage that is thrown overboard from 

shipping activity (Jim Walker 2017; IMO International Maritime Organisation 2018b). 

Although throwing away garbage at sea is not common, not all shipping activities can 

be monitored and so it is possible that garbage from ships will still continue. In the last 
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three years, there have been reports  of dumping of garbage overboard ships (WVEC 

2017; Jim Walker 2017).  

  

2.3. Occurrence and abundance of microplastics in the environment.  

 

Microplastics are distributed into different parts of the environment. They have been 

detected in the marine, freshwater and terrestrial environment. However, more studies 

have been conducted in the marine environment and less in freshwater and terrestrial 

environment (Wagner et al. 2014; Eerkes-Medrano et al. 2015a).  

 

2.3.1. Marine environment  

 

An overview of the many anthropogenic pressures on the marine environment 

indicates a growing concern for the accumulation of microplastics which is reflected in 

the increase in studies on microplastics in the marine environment over the last 

decade (Peng et al. 2017; Van Cauwenberghe, Devriese, et al. 2015a). The 

distribution of these particles on sea surfaces, water column and in sediment  is 

determined in part by the different densities of polymers which tend to sink or float 

(Andrady 2011b; Woodall et al. 2014; Thompson et al. 2004). The densities of 

commonly identified microplastics range from 0.89 g/cm3 for low-density polyethylene 

PE, to 1.58 g/cm3 for polyvinylchloride PVC (Table 2.1) (Hidalgo-Ruz & Gutow 2012; 

Stolte et al. 2015; Law 2017a).  

In the marine environment particles with a density lower than sea water will readily 

float on the surface of the water. For example HDPE and LDPE with low densities 

(Table 2.1) will readily float on the surface of sea water which has a density of 1.20 

g/cm3 (Crichton et al. 2017; Karlsson et al. 2017).  
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Table 2.1. Densities of polymers commonly identified in the environment as 

microplastics, units are in g/cm3 

 

 

 

Currently the distribution of particles in the marine environment has been well 

documented and widely acknowledged (Thompson 2015b; Auta et al. 2017b). There 

is evidence to show the presence of these particles in the marine and coastal 

environment (Auta et al. 2017a; Kanhai et al. 2017). Surface waters of the marine 

environment, the water column and benthic environments have been contaminated 

with microplastics from different sources (Auta et al. 2017b; Yeo et al. 2017; K 

Magnusson et al. 2016). Different studies have reported the distribution of particles on 

the surface waters in the marine environment range from 0.022 – 8,654 particles m3, 

1.15 particles m3, 8654 m3 and 9180 particles m3 (Kanhai et al. 2017; Nuelle et al. 

2014; Desforges et al. 2014; Eriksen et al. 2014a). However, particles are transported 

to lower depths of the marine environment where they persist (Auta et al. 2017b; Nor 

& Obbard 2014).  

It has been reported that processes like biofouling which is the accumulation of 

microorganisms, algae, plants or animals on microplastics has the potential to alter 

the density of the particles (Kowalski et al. 2016). Therefore the aggregation of living 

organisms on the particle, may cause the particles to sink to the bottom of the marine 

environment (Courtene-Jones et al. 2017; Avio, Cardelli, et al. 2017). The process of 

biofouling could have an impact on the transport of smaller particles at a faster rate, 
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because of the larger surface area to volume ratio. Therefore, the smaller the particle, 

the more likely it will sink to the bottom of the marine environment because of 

biofouling (Kowalski et al. 2016). A laboratory based study reported sinking rates were 

increased with increased aggregation of phytoplankton on 2 μm polystyrene 

microbeads (Long et al. 2015). Another study reported the relationship between size 

and rate of sinking due to biofouling. The report suggested that smaller particles sank 

faster than larger particles (GESAMP 2015). Therefore it is apparent that biofouling 

has an impact on the transport of particles from water surfaces to lower compartments 

of the marine environment. . Therefore, particles no longer bioavailable to pelagic 

organisms will become bioavailable to organisms in the water column and the benthic 

environment (Woodall et al. 2015; Van Cauwenberghe, Claessens, et al. 2015). 

Generally, particles denser than water  tend to sink to the bottom as marine snow, 

likewise microorganisms acting upon the surface of the particles will increase the 

density, allowing them to sink to the bottom of the water body (Zhao et al. 2017; Avio, 

Gorbi, et al. 2017).   

Currently there is limited information on the occurrence of microplastics in terrestrial 

and freshwater environment.  It is conceivable that the close proximity of freshwater 

and terrestrial environments to the source(s) of plastic pollution, will add to the 

secondary microplastics load in these environments (Eerkes-Medrano et al. 2015a). 

Secondary microplastics are widely associated with areas of high human population 

because of the frequent use of and inappropriate disposal of products made from 

plastics (Eerkes-Medrano et al. 2015a). One area of emerging concern in recent years, 

has been the production of secondary microplastics arising from washing of garments 

(Eerkes-Medrano et al. 2015a; Napper & Thompson 2016). Clothing materials which 

previously made mainly from natural materials such as cotton, linen and wool, have 

now been substituted with synthetic polymers including polyester, nylon and acrylic 

(Browne et al. 2011; Napper & Thompson 2016). Notably, garments such as fleeces 

commonly made from polyester and nylon undergo abrasion during the laundry 

process, resulting in the shedding microfibers.    
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2.3.2. Freshwater Environments. 

  

Although acknowledged by scientists, international bodies and government 

institutions that microplastics are an emerging environmental threat, it is  widely known 

that most studies have focused more in the marine environment than freshwater 

environments (Qiu et al. 2016; Wagner et al. 2014; Matthew Cole et al. 2011). It has 

been argued that freshwater environments serve as a pathway for the transport of 

microplastics from land based sources to the marine environment (Auta, Emenike, & 

Fauziah, 2017; Magnusson et al., 2016; Cauwenberghe et al., 2015). For example, 

PCPs and other products which contain polymers of polyethylene particles are 

transported through the sewer system to WWTPs (Figure 2.3) (Horton et al. 2017; 

Chang 2015).  

Secondary sources of particle entry to freshwater environments include wear and 

tear from car tyres (Kole et al. 2017), polymers used in clothing and textiles such as 

including nylon and acrylic may be washed through to city mains from homes and 

offices during laundry with washing machines (Figure 2.3) (Napper & Thompson 

2016). Currently, there is no information to determine if the brand of the washing 

machine, the age of the clothing material and/or the detergent used has any effect on 

the shedding of these particles. What is certain however is that these particles are 

transported to through WWTPs and eventually enter freshwater environments 

(Eerkes-Medrano et al. 2015b; Wagner et al. 2014). Furthermore, in the event of heavy 

rainfall, there is increased certainty that these particles would be washed back onto 

land surfaces via floods, resulting in repeated contamination of the terrestrial 

environment. This suggests a feedback-contamination loop between the freshwater 

and terrestrial habitats. 
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Figure 2.3. Conceptual diagram of the entry of microplastics from primary and 

secondary sources to freshwater environments. 

 

The basis for the entry of particles to the freshwater environment has been ascribed 

to the screening processes in WWTPs, especially the screens that would normally trap 

small particles (Figure 2.4). . It is likely that partitioning of particles in WWTPs based 

on particle density will occur (Figure 2.4). As such, particles with a high density like 

polyester and acrylic will likely sink in sludge and settle; by contrast, low density 

particles like polyethylene will float in sewage effluents (Kowalski et al. 2016). In 

addition, it is likely that the rates of settling and buoyancy will be affected by clumping 

of these particles with other microplastics  and/or clump with organic matter in the 

WWTPs to form highly dense aggregates that will aid sinking in sludge. Likewise, in 

the presence of organic matter, the surface of these particles can become colonised 

by microorganisms (biofilm), increasing the particle density, thereby increasing the 

likelihood of sinking in sludge (Kowalski et al. 2016). The consequence of the entry of 

primary and secondary particles to WWTPs and the effects of particle partitioning 

results in both the entry of particles to freshwater environments via effluent discharge 

and/or the addition of other highly dense or agglomerated particles to sludge, which is 

applied to agricultural land (Fendall & Sewell 2009; Chang 2015; Kowalski et al. 2016). 

Particles in sludge and applied to agricultural land eventually enter freshwater 
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environments via run-off, thereby adding to the micropalstic content in these 

environments (Eerkes-Medrano et al. 2015a; Horton et al. 2017). 

 

 

Figure 2.4. Schematic diagram of a wastewater treatment plant, showing different 

stages of the wastewater treatment process. The image shows the different screens 

and separation of particles in the WWTP and final discharge to the environment. 

 

A report on the occurrence of particles in three freshwater bodies which receive 

treated wastewater effluents in Texas indicated reported two particle size classes of 

between 53–105 μm and 106–179 μm. The mean mass of particles counted ranged 

from 0.79 ± 0.88 mg/L to 1.56 ± 1.64 mg/L for the 53–105 μm class size, and 

0.31 ± 0.72 mg/L to 1.25 ± 1.98 mg/ for the 106–179 μm class size. In addition, the 

analysis of water samples in the surrounding wetlands revealed the occurrence of 

particles with similar size classes mentioned above. Consequently, the mean particles 

for the 53–105 μm size class ranged from 0.64 ± 0.92 mg/L to 5.51 ± 9.09 mg/L, and 

from non-detects to 1.79 ± 3.04 mg/L for the 106–179 μm size class (Lasee et al. 

2017).This report suggests that effluents from WWTPs contribute directly to particle 

load in freshwater environments and indirectly via urban run-off.   

Other documented reports on fresh water environments reveal an average 

abundance of approximately 43,000 microplastics particles km-2 in surface waters of 

the Laurentian Great Lakes. These particles consisted of multi-coloured spherical 

particles similar to micro-beads found in personal care products (Eriksen et al. 2013). 

Furthermore, 466,000 particles km-2 particles on surface water were counted 
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downstream from the point of sampling. Although the size, texture and composition of 

the microplastics reported appear similar to microbeads found in personal care 

products, the results were inconclusive (Eriksen et al. 2013). The study reported 

similarities in the polymeric elemental characteristics of microplastics collected with 

microbeads separated from PCPs. However, this is not enough evidence of the 

polymer identity. The appropriate technique was not used to determine the polymer 

identity of the microplastics.  

By comparison with the marine environment, freshwater environments have less 

areas of convergent currents, it is likely that the particle count and distribution will be 

low (Gordon  2017). Although information is limited for freshwater environments and 

fragmented for backwaters (part of a water body not reached by current, relatively 

stagnant), there is evidence to support the occurrence of a high number of particles. 

A study on the backwaters of the Xiangxi River which is a tributary for the Three 

Gorges Reservoir, number of particles ranged from 0.55×105 to 342×105 microplastics 

km-2 and 80 to 864 microplastics m-2 in surface water and sediment samples 

respectively. Furthermore, in surface waters, microplastics were identified as 

polyethylene, polystyrene and polypropylene while polyethylene terephthalate, 

polypropylene and polyethylene were identified in sediment samples (Zhang et al. 

2017).  

The transfer of microplastics to the bottom of freshwater bodies has been 

documented (Lebreton et al. 2017).  A report that documented the distribution of these 

particles in sediment samples in freshwater environments, reveal that 34 – 64 

microplastics kg-1 dry weight were identified (Wagner et al. 2014). In addition, based 

on the survey of four rivers, River Rhine accounted for the highest number of particles 

(Wagner et al. 2014). A breakdown of the particles showed that 60% of the particles 

identified  were fragments and 40 % were fibre (Wagner et al. 2014). Fragments could 

have been from primary and/or microplastics that have undergone further 

fragmentation and introduced directly via effluent discharge or urban run-off. In 

addition, the particles of fibre would have been more likely to be secondary 

microplastics, notably fibre from clothing material. 
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2.3.3. Terrestrial Environment 

 

There is limited information and less documented reports on the distribution of 

particles in the terrestrial environment, compared to the aquatic environment (Duis & 

Coors 2016a; Eerkes-Medrano et al. 2015a). However it is likely that particles from 

primary and secondary microplastics enter the terrestrial environment due to 

inappropriate disposal of litter which is likely to fragment over time and the application 

of sewage sludge to agricultural  land (Horton et al. 2017; Duis & Coors 2016c). As 

such terrestrial environments act as a sink for the deposition of particles from different 

sources.  

The application of sewage sludge which contains dense particles, typically fibres, 

adds to the microplastic load on agricultural lands and other areas of the terrestrial 

environment (Nizzetto et al. 2016; Auta et al. 2017a). Fibres have been used in 

monitoring studies as an environmental indicator to determine the level of 

contamination resulting from sewage sludge applications (Duis & Coors 2016a). 

However, what is uncertain is differentiating between fibre deposits from sludge, 

atmospheric deposits, wind driven sources and from freshwater environments via 

flooding. What is certain however is that particles in the terrestrial environment will be 

deposited and distributed on soil surfaces, with the potential to sink over time to 

different depths (Rillig 2012; Duis & Coors 2016b). In addition, the rate of particle 

degradation on the soil surface is likely to be higher compared to the aquatic 

environment, notably because of the higher availability of oxygen in the soil and the 

potential for direct exposure to ultra-violet light (Andrady 2011a; Peng et al. 2017).  

A common source of particles to land is the application of plastic mulches frequently 

used in agricultural practices to control weed growth, moisture and temperature 

(Steinmetz et al. 2016). Plastic mulches improve crop yields, improve the efficient use 

of water, earlier harvests are recorded and the quality of crops are improved, giving 

significant benefits  (Steinmetz et al. 2016). However, it is apparent that the incomplete 

removal of mulches from soil as described in section 1.1, will likely contribute to the 

plastic load in the soil (Steinmetz et al. 2016). The problem is that frequent exposure 

to sunlight, will degrade the physical integrity of the plastic over time, forming 

fragments that will further breakdown into smaller sized particles (Duis & Coors 

2016d). In addition, toxic additives commonly associated with some polymers will 
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eventually leach out into the soil, causing further contamination (Steinmetz et al. 2016) 

It is hypothesised that organisms in soil will use these particles as substrates for 

feeding and transport, thus causing a migration pattern for the particles on land (Rillig 

et al. 2017; Huerta Lwanga et al. 2017).  

In the terrestrial environment, it is possible that particles can be transported over 

distances by wind currents (Laurent C M Lebreton et al. 2017). The movement of winds 

over soil surfaces has the potential to transport particles over long distances, 

depositing these particles in land masses far from the particle origin (Provencher et al. 

2015; Laurent C M Lebreton et al. 2017). However, little is known about the role wind 

plays in the distribution of microplastics because it is a less studied aspect of 

microplastics research.  

 

2.4. Impact of microplastics on the environment 

 

It has been generally acknowledged that the occurrence of microplastics in the 

environment has the potential to cause harm to  living resources (Duis & Coors 2016a; 

Ivar Do Sul & Costa 2014). However in field studies, information is limited on the known 

effects of these particles alone on living organisms with uncertainty about any direct 

effects of the particle exposure to living organisms. At best and by contrast, laboratory 

controlled experiments however, have been able to detect microplastics in tissues of 

organisms (Taylor et al. 2016;  Phuong et al. 2016). Furthermore it has been 

suggested that the concentration of microplastics used in laboratory experiments far 

exceed concentrations of particles observed in field surveys ( Burton 2017; Phuong et 

al. 2016). There is increasing awareness that the aquatic and terrestrial environments 

are frequently contaminated by microplastics  and is likely to increase because of the 

dependence on plastic based products (Duis & Coors 2016b; Desforges et al. 2014).  

 

2.4.1. The effects of microplastics in the marine environment 

 

In the marine environment, the potential effect of these particles can be attributed 

to a number of factors; the different densities of particles allow for distribution in 
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different compartments of the marine environment. Documented reports suggest that 

ingestion of microplastics can result in lower energy levels and reduced feeding in 

living organisms (Courtene-Jones et al. 2017; Ivar Do Sul & Costa 2014). The size of 

the particle also has an effect on the feeding and ingestion processes of marine 

organisms (Eerkes-Medrano et al. 2015a; Courtene-Jones et al. 2017). For example, 

particles that are in the larger size category (1–5 mm), are more likely to be ingested 

by organisms that have the digestive capacity to, such as sea turtles, sea birds and 

fish (Ivar Do Sul & Costa 2014; Lusher et al. 2013; Hammer & VanBrocklin 2016). 

Conversely, particles in the smaller size class (< 20 µm) are more likely to be ingested 

by small invertebrates and zooplankton (Cole et al. 2013; Lusher 2015; Cole et al. 

2016).  

After the Costa Concordia wreck, environmental sampling was conducted to assess 

the particle number, size and type in surrounding waters of Giglio Island (Cardelli, et 

al. 2017). The report showed that 85% of the fish sampled contained microplastics, 

notably, all the bentho-pelagic fish analysed contained particles (, Cardelli, et al. 2017). 

In addition, the common particle size classes identified were; 0.5 – 1 mm, 37%; 0.1 – 

0.5 mm, 35%, 1 – 5 mm, 20% and 0.1 mm, 8%. Furthermore for all the particles 

analysed, polyethylene was the most common polymer (35 – 40%), however, higher 

density particles such as PVC, PA, and Nylon were identified (, Cardelli, et al. 2017).  

Documented reports on the ingestion of microplastics in the western English 

channel by fish larvae show that particle sizes recorded were 100 ×50 µm for the 

European eel and 270 µm for the Thickback sole respectively (Steer et al. 2017a). 

Particles analysed were identified as polyamide-polypropylene and rayon respectively 

for the species mentioned above. The report went on to add that only one blue 

fragment and one red fibre were observed in the larvae of the European eel and the 

Thickback sole respectively (Steer et al. 2017a). 

A study which compared particles in surface water, sediment samples and mussels 

in the marine environment, detected an average of 27 microplastics L-1 in surface 

water and a mean of 48 particles kg d.w.-1 microplastics in the sediment samples 

(Karlsson et al. 2017). However, the concentration of particles in mussels analysed 

revealed a significantly higher number of particles than in surface waters and sediment 

samples combined (Karlsson et al. 2017). They recorded a mean of 37,000 
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microplastics kg d.w.-1, and an analysis of a subsample of mussel tissue revealed 5 to 

19 particles were found, ranging from 30 to 2000 µm (Karlsson et al. 2017). It is 

apparent that mussels can store microplastics in their bodies and therefore can be 

used in monitoring studies to assess their impact (Karlsson et al. 2017).   

It has been reported that in some instances, organisms  cannot tell the difference 

between prey and man-made particles such as microplastics.  This is most likely 

because the particles have colours that attract the organism, and the organisms 

feeding mechanism cannot discriminate between the particles and its prey (Cole et al. 

2016; GESAMP 2015). Furthermore, in an area with a high particle count, plankton 

which act as prey for many organisms will become mixed with these particles, making 

differentiation difficult and ingestion possible (Moore 2008; Ivar Do Sul & Costa 2014) 

In the manufacturing process of some polymers, additives such as phthalates and 

alkylphenols, are incorporated to improve their physical, chemical and mechanical 

properties, with the aim of keeping the integrity of the plastic intact and reducing 

degradation on exposure to the environment (Andrady 2011b; Syakti et al. 2017; 

Steinmetz et al. 2016). There are suggestions that under the right conditions these 

additives can be released to the environment with the potential to cause harm to living 

organisms (Law 2017a; Avio et al. 2016; Andrady 2015). In particular, phthalates have 

been considered as endocrine disrupting chemicals because of their ability to alter the 

hormonal system in a living organism (Wagner et al. 2014).  There is evidence to show 

the occurrence of phthalates associated with in the marine environment. Out of 23 

surface plankton and neuston samples collected, 13 ingested contained microplastics 

(Fossi et al. 2012). Furthermore, mono-(2-ethylhexyl)-phthalate MEHP was detected 

in the blubber of fin whales, as a result of bio-concentration of particles from ingestion 

of plankton and water filtration (Fossi et al. 2012). This suggests that phthalates can 

be transferred from the particles to the fin whale, because of their feeding habit and 

by ingestion of microplastics, thus making an argument for the transfer of toxic 

chemicals to living organisms. By contrast, another study reported detectable 

concentrations of the plastic softener and its metabolite Di(2-ethylhexyl)phthalate 

(DEHP) and mono-(2-ethylhexyl)-phthalate (MEHP), in Tuna which did not have any 

microplastics (Guerranti et al. 2016). However, it is apparent that phthalates occur in 

the environment there is currently no established link between the detection of 

particles/chemicals and an effect on living organisms.  
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As a response, a laboratory controlled experiment was conducted to test the 

pathway of entry for chemical additives by leaching and not ingestion (Nobre et al. 

2015). The sea urchin Lytechinus variegatus was exposed to raw virgin pellets and 

pellets collected from the beach in two assays. The comparison of both assays 

showed that virgin pellets had a more significant effect on embryo development than 

the beached pellets (Nobre et al. 2015). This suggests microplastic pellets can act as 

a vector of chemical additives and highlights different pathways (in this instance, 

leaching) through which living organisms can be affected by particles in the 

environment (Nobre et al. 2015).  

In addition to containing chemicals from manufacture, plastics may also attract 

hydrophobic contaminants. There is still the argument that particles readily adsorb and 

transport persistent bio-accumulative toxic chemicals (PBT) including polycyclic 

aromatic hydrocarbons (PAH), organochlorine pesticides and polychlorinated 

biphenyls (PCBs) at different concentrations ranging from ng/g to µg/g (Claessens & 

Meester, 2011; GESAMP, 2015). The ingestion of these particles by aquatic 

organisms may increase the chance of toxic exposure through leaching of these toxic 

substances in the digestive system (Cole et al., 2013; Wright et al., 2013). Currently, 

there is still limited information on the release of toxic chemicals from particles to the 

environment and their bio-magnification in the food chain (Andrady, 2011; Ziccardi et 

al., 2016). There is currently no established relationship between the occurrence of 

chemicals associated with particles and an effect on living organisms (Burton 2017). 

 

2.4.2 Impact of microplastics in freshwater environments 

 

 A wide range of organisms in freshwater environments are exposed to 

microplastics, however, the impacts remain unknown (Horton et al. 2017; Eerkes-

Medrano et al. 2015a). One report showed that from 11 streams sampled in France, 

12 % of the fish Gobio gobio had microplastics in their digestive tract (Sanchez et 

al.2014). A similar study under laboratory conditions demonstrated uptake of particles 

by annelids Lumbriculus variegatus, gastropods Potamopyrgus antipoderum, 

crustaceans Daphnia magna and Gammarus pulex and ostracods Notodromas 

monacha (Hannes et al. 2013)  In a more recent study, an analysis of the stomach 
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content of the bluegill Lepomis macrochirus, longear Lepomis megalotis and sunfish 

Centrarchidae, showed that out of a total of 436 fish samples collected, 45 % had 

microplastics in their stomach content. In addition, 96 % of the total debris in the 

stomach content was made up of microplastics. This study not only highlighted the 

scale at which these particles were ingested but also the importance of some fish 

species as indicator organisms in the environment (Peters & Bratton 2016). In 

laboratory conditions, one study showed that the water flea Daphnia magna ingested  

particles with size of 0.02 and 1 mm particles rapidly (Rosenkranz et al. 2009). The 

report suggested particles accumulated in the lipid storage droplets of the organism 

by crossing the epithelium of the gut and were likely therefore to cause more harm 

(Rosenkranz et al. 2009).  

  

2.4.3. The Impact of Microplastics in Terrestrial Environments 

 

It is widely acknowledged that particles enter the terrestrial environment via 

fragmentation of larger plastics that have been inappropriately discarded and by 

application of sewage sludge. In addition, it is likely that soils in terrestrial 

environments can act as a sink for wide range of microplastics, suggesting that 

successive generations of organisms will be exposed to microplastics with the 

potential to cause harm (Zubris & Richards 2005; Duis & Coors 2016a). However, little 

is known about the impact of particles on terrestrial organisms (Rillig 2012;Duis & 

Coors 2016b; Rillig et al. 2017). Although there is currently no available information 

on the impact of particles on living organisms in field studies, laboratory controlled 

experiments have suggested Lumbricus terrestris some organisms act as a means of 

transport for the distribution of particles (Huerta Lwanga et al. 2017). Notably, a greater 

number of particles were transported in the formation of burrows at higher 

concentrations of microplastic exposure ( Lwanga et al. 2017). There is the potential 

for additives in the particles to leach into the soil and to also sorb toxic chemicals 

(Huerta Lwanga et al. 2017). In addition, the effect of particles (250 -1000 μm) on 

earthworms Eisenia andrei Bouche was conducted, and demonstrated no significant 

effects on the number and survival of juveniles and the growth of adults. However, 

further tests revealed evidence of damage to the gut and molecular changes in the 
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body of Eisenia Andrei Bouche suggestive of an induced immune system response 

(Rodriguez-Seijo et al. 2017).  

 

2.5. Challenges associated with the characterisation of microplastics 

 

The significance of microplastics and the potential impact to the environment and 

living organisms has been widely acknowledged (Wright et al. 2013a; Oluniyi Solomon 

& Palanisami 2016). However, the challenge in evaluating these effects has been 

largely because of a lack of a uniform and standardised studies (Hidalgo-Ruz & Gutow 

2012; Van Cauwenberghe, Devriese, et al. 2015b). Likewise has been suggested that 

a lack of a universally accepted sampling and laboratory protocol, to effectively 

characterise; determining particle size, number, shape, identity and morphology, 

microplastics in the environment and laboratory controlled studies (Van 

Cauwenberghe, Devriese, et al. 2015b; Hidalgo-Ruz & Gutow 2012). There is currently 

no universally accepted standard protocol for the extraction of microplastics from 

environmental or laboratory controlled samples (Hidalgo-Ruz & Gutow 2012). 

However, there are general steps that have been widely adopted to characterise 

microplastics (Qiu et al. 2016; Besley et al. 2017; Shim et al. 2017). These include all 

of but not limited to the following steps; density separation, filtration and particle 

characterisation using different techniques. The characterisation of particles generally 

covers particle size, number, morphology and the particle identity. 

 Sample preparation forms the basis for an accurate particle characterisation. 

Sample preparation forms the basis of this process and is based on the extraction of 

microplastics from a matrix by combinations of density separation using a range of 

concentrated solutions that are dependent on the polymer identity. Once extracted, 

microplastics size can be characterised by applying techniques suited to determine 

particle size distribution; quantifying microplastics by determining the number of 

microplastics based on the units of measure for the study; and resolving the polymer 

identity of the microplastic (Hidalgo-Ruz & Gutow 2012; Van Cauwenberghe, 

Devriese, et al. 2015b). 

 The characterisation of microplastics in personal care products, even of a similar 

nature and function, undertaken by a number of researchers has given a wide range 
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of values (Napper et al. 2015; Chang 2015; Fendall & Sewell 2009). This range may 

be real or may be a function of methods used, from laboratory protocol for sample 

preparation to the characterisation of microplastics with analytical techniques. The lack 

of any reference materials gives no baseline from which to assess the method 

performed.  

Personal care products have been identified as containing microplastics, commonly 

containing polyethylene (L. M. Hernandez et al. 2017; Rochman et al. 2015; Napper 

et al. 2015). Concern about their possible effects of such use have led to restrictions 

on their use (Rochman et al. 2015; Kramm & Völker 2018), debate in  parliaments 

(Bennet 2016; Girard et al. 2106; Morden 2016) and voluntary withdrawals (Kramm & 

Völker 2018; Vaughan 2016). However, the uses of microplastics are not under review 

and the degradation of macroplastics will still continue to produce microplastic 

fragments.  

Another important secondary microplastic that has not been widely looked into are 

particles from hard scourers (HS); and kitchen scourers (KS). Kitchen scourers are 

commonly used in domestic and industrial applications to clean surfaces and 

kitchenware (Academic Mintel 2014). These KS are usually made from polyester, 

acrylic resin and according to some manufacturers, recycled plastics. Kitchen scourers 

are characterised by different shapes, sizes and colours, and the frequent use causes 

shedding of fibres and particles off its surface, due to abrasion from the process of 

washing. Information on synthetic fibres from shed from KS is scarce, however, we 

suspect that like microbeads from PCPs, these contaminants have the potential to 

pass through kitchen drains to city mains and out to the environment, with an effect on 

the biota likely but uncertain. What is certain however is the frequency of use 

supported by a marketing survey. The survey showed that hard scourers HS and KS 

were the most popular cleaning equipment from an online survey and accounted for 

99 and 91% of UK household usage in 2014. This means at least nine out of ten homes 

make use of these products and a 70 % increase in use has been forecast for 2019 

(Academic Mintel 2014). It is plausible that based on frequency of use, almost every 

home in the UK could be contributing secondary microplastics to the environment 

through use of KS.  
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There is therefore a continuing need for monitoring of microplastics in the 

environment. There is already a significant amount of data on microplastics with focus 

on the marine and environment (Auta et al. 2017a; Lusher 2015; Hidalgo-Ruz & Gutow 

2012).  

  

2.5.1. Laboratory Analysis: Density Separation 

 

The density separation of particles in matrices is based on the fact that particles 

have different densities. In general, particles with a higher density than the matrices 

will sink, but lighter density particles tend to float in matrices. Therefore, the differences 

in particle density is utilised to separate particles from matrices which could be water 

or sediment samples. Depending on the density of the particles, a density separation 

solution with a higher or lower density to the particles is commonly used. For example, 

a particle with a low density will readily float in a density solution that has a higher 

density to the particle. Conversely, a particle with a higher density than the density 

separation solution will not float but will sink to the bottom of the solution. Typically, in 

the marine environment, low density polymers such as polyethylene will readily float 

in sea water which has a higher density than the particle. However, if the microplastic 

is acted upon by fouling with living organisms or by microbial colonisation, the particle 

becomes heavier than it originally is, and will increase in density. Consequently, the 

particle will sink and remain in the water column, the residency time is widely unknown, 

and eventually sinks to the bottom of the sea (Duis & Coors 2016c; Huang et al. 2017).    

The importance of the right density separation solution cannot be overemphasised; 

it is a process that will determine in part, the success of particle extraction of particles 

from matrices. In general, microplastics have a wide range of densities (Table 2.1) and 

a knowledge of which, is important in identifying the right density separation solution 

to use for the extraction of the particles (Hidalgo-Ruz & Gutow 2012; Stolte et al. 2015; 

Duis & Coors 2016c). For example polyethylene with a density of 0.92 – 0.97 g cm-3 

will readily float in a solution with a density that is equal to or greater than the density 

of the particle (Syakti et al. 2017; Zhang et al. 2017). Conversely, polyester with a 

density of 1.24 – 2.3 g/cm3 will require a solution with a higher density than the particle 

for it to be separated from the matrices (Hidalgo-Ruz & Gutow 2012) (Thompson et al. 
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2004). Density separation has been widely applied in the extraction of microplastics 

from matrices, with a wide range of solutions used over time, the choice of solutions 

for this process has evolved over time (Weinstein et al. 2016; Eerkes-Medrano et al. 

2015a).  

Generally, a range of solutions with densities ranging from 0.9 – 2.3 g/cm3 have 

been useful for the separation of particles from matrices (Table 3.1) (Hidalgo-Ruz & 

Gutow 2012; Eerkes-Medrano et al. 2015; Karlsson et al. 2017). However, one 

solution commonly used and reported by authors in micropalstics studies is NaCl 

solution, with a density of 1.2 g/cm3  (Table 2.2) (Hidalgo-Ruz & Gutow 2012; Stolte et 

al. 2015; Duis & Coors 2016c). However NaCl solution is only useful in separating 

plastic polymers with lower specific densities such as polyethylene, and cannot be 

applied to particles like polyester, polyvinylchloride which have a higher specific 

density (Claessens 2013; Weinstein et al. 2016; Crichton et al. 2017). Furthermore, 

particles in sediment samples are difficult to separate from the matrix using NaCl, 

because they are covered with organic matter which has a higher density of 1.7 g/cm3  

(Hidalgo-Ruz & Gutow 2012; Tenzer & Gladkikh 2014; Van Cauwenberghe et al. 

2015). To overcome the limitations of density separation solutions in extracting high 

density particles from matrices, a range of solutions and approaches have been 

explored to recover particles of interest (Table 2.2) (Eerkes-Medrano et al. 2015a; 

Karlsson et al. 2017; Hidalgo-Ruz & Gutow 2012).  

For example, one study applied a two-step approach, employing an elutriation 

technique where lighter particles are separated from heavier ones by passing an 

upward stream of liquid through the system (Claessens 2013). Consequently, a 

fluidised sand bath was used and liquid was passed through, after which lighter 

particles floated to the top of the system, flowed over and collected on 35 µm sieve 

(Claessens 2013). After this first cleaning step, the particles collected were further 

extracted by adding sodium iodide (NaI) and the solution was centrifuged. In addition, 

the NaI step was repeated three times to ensure all the particles of interest where 

effectively extracted (Claessens 2013). Consequently, the density separation process 

adopted had a 100 % efficiency in recovering all polyvinylchloride particles (Claessens 

2013). Although the application of NaI in the density separation process, suggests it 

is useful in the extraction of high density particles, it is relatively expensive as 1 kg 

costs about $366 while 1 kg of NaCl costs about $55 (Fisherscientific 2017a; 
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Fisherscientific 2017b). Consequently, further steps have been explored to reduce 

costs when using density separation solutions and to improve the separation of 

particles from matrices. One is volume reduction, with the aim of reducing the volume 

of a sample to cut the amount of density solution to be used. In one study, air-induced 

(AIO) process based on fluidisation in NaCl solution was used as a first step to pre-

extract particles from sediment samples. This achieved a volume reduction of up to 80 

%, allowing for a reduced volume of NaI solution to be used for further density 

separation. The recovery for particles including polyethylene and polyvinyl chloride 

was between 91 and 99 % (Nuelle et al. 2014).  

Further exploration of novel techniques and solutions for the density separation of 

particles from matrices has led to the use of canola oil which was cost-effective and 

had a 96 % recovery for microplastics, and a recovery rate of 92 % and 99 % for fibre 

and fragment particles respectively (Crichton et al. 2017). A review of other reports 

shows that zinc chloride (ZnCl2), Zinc bromide (ZnBr2), calcium chloride (CaCl2) and 

sodium polytungstate have been used in density separation processes (Maes et al. 

2017; Stolte et al. 2015). However, in addition to the limitations of NaCl solution, the 

applications of other solutions also have their limitations. Notably, higher density 

solutions such as sodium polytungstate, suggested to have a high efficiency in 

separating particles from matrices; despite its high density and cost, was not entirely 

useful in successfully separating particles of polyvinyl chloride from matrix (Ivleva et 

al. 2017). Likewise ZnCl2 with a higher specific density than NaCl, and has been used 

in a number of studies, and although cheaper than sodium polytungstate, is more 

environmentally hazardous than other density separation solutions used in the 

extraction of microplastics from matrices (Ivleva et al. 2017; Imhof et al. 2016). 

Table 2.2. Density separation solutions and corresponding densities. 

 

Density separation solutions Density 

Sodium chloride NaCl 1.2 

Sodium Iodide 1.8 

Sodium Polytungstate 3.1 

Zinc Chloride 2.91 

Sea Water 1.0 
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2.5.2. Filtration of particles separated from matrix 

 

There is variability in the methods applied for the filtration of microplastics samples 

(Hidalgo-Ruz & Gutow 2012). Filtration of samples can be conducted either under 

normal pressure determined by gravity, or with the assistance of a vacuum pump 

(Rocha-Santos & Duarte 2015; Hidalgo-Ruz & Gutow 2012). Reports on filtration of 

particles indicate that approaches range from using a microsyringe filter holder that 

contains an 8 filter paper (Fendall & Sewell 2009), coffee filter papers (Chang 2015) 

and vacuum filtration (Karlsson et al. 2017; Kanhai et al. 2017; Hidalgo-Ruz & Gutow 

2012). Research on the filtration of microplastics suggests that the different 

approaches used have their advantages and limitations. Vacuum filtration allows for a 

faster and more efficient filtration of samples (Zhang et al. 2016; Zhilin & Kjonaas 

2013). In addition, the pressure from the pump can be adjusted to prevent the filter 

paper from ripping. However filter paper can get blocked largely because of the 

viscous characteristics of the matrix. It is hypothesised that particles separated from 

PCPs will block filter paper because of the viscous nature of the matrix. Toothpastes 

and facial scrubs are characterised by a viscous solution that will not flow through the 

filter paper. Therefore, an approach to remove the viscosity of the sample will be 

required, to allow for vacuum filtration of the particles. By contrast the conventional 

filtration method is rarely used in microplastics studies. This is because this approach 

is slower than vacuum filtration. This filtration method depends on the force of gravity 

to filter out samples, but filter papers can get blocked, because of the nature of the 

sample matrix. It is hypothesised that the viscous particles separated from PCPs will 

block filter paper.  

Filter paper of different pore sizes (0.2 to 5 µm) and diameters (25 to 125 mm) have 

been explored for the filtration of microplastics (Maes et al. 2017; Crichton et al. 

2017;Claessens et al., 2013; Hidalgo-Ruz & Gutow 2012; Frias et al., 2010).  

Further sample preparation is required for particles that are difficult to filter. 

Centrifugation and digestion (acid, alkaline and enzymatic), have been used in 

microplastics studies (Karlsson et al. 2017; Cole et al. 2014). Centrifugation allows for 

the separation of particles from matrix, after which the top layer of the solution 

containing the particles can then filtered under vacuum (Rocha-Santos & Duarte 

2015). Enzymatic digestion is carried out commonly on environment samples that 
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have a matrix characterised by organic matter. However, it is apparent that the 

application of this method is inconsistent and the application of some acids (H2SO4) 

can damage the structural integrity of the particle (Cole et al. 2014).  

The different approaches for sample preparation of microplastics are important and 

are the basis for further particle analysis. The analysis of particles is important to 

assess the characteristics of the particle and implication for risk assessment. However, 

it is apparent that the limitations and the challenges encountered with their application 

have not been discussed. In addition, it is hypothesised that the application of different 

techniques to characterise microplastics will produce the same results. 

 

2.5.3. Characterisation of Microplastics 

 

A fundamental concept which is generally misunderstood when it comes to 

measurements in particle size analysis and how it influences data from different 

particle size analysis techniques is that of what a particle is. Particles are characterised 

by differences in shapes, size and mode of dispersal in a matrix. This makes particle 

size analysis a complex science, but is made simple by understanding data derived 

and the interpretation of such data. What is the size of a particle? What single and 

unique number can describe a particle? The measurements that can be determined 

on a particle are endless (Figure 2.5) and are only restricted by the technique used.  

The analysis of particles allows for the determination of size, number, morphology 

and polymer identity. It is reported that different techniques have been used for the 

characterisation of microplastics (Courtene-Jones et al. 2017; Shim et al. 2017; 

Hidalgo-Ruz & Gutow 2012). The analytical techniques commonly used for particle 

analysis are described in this section.  With developments in technology, other 

techniques that are not currently in use can be applied for the analysis of microplastics. 

Therefore, some of the novel techniques will be described in this section.    
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Figure 2.5. The different possible measurements that can determine size of a particle. 

 

2.5.4. Characterisation of particles using microscopy technique 

 

The size, colour and physical identification of microplastics has been carried out by 

visual sorting with the aid of a microscope (Beaton-Green et al. 2016; Chang 2015; 

Hidalgo-Ruz & Gutow 2012; Fendall & Sewell 2009).  With the microscopy technique, 

it is possible to view each particle and is relatively easy to detect particle aggregation 

(Rawle et al. 2003). The microscopy technique enables a 2D image of the particle to 

be viewed. Therefore for the analysis of particles,  different physical properties of the 

particle can be measured (Malvern 2015). For example the Feret’s diameter (F) which 

is the distance between two tangents on opposite sides a particle and parallel to a 

fixed dimension.  In addition, the Martin diameter (M), is a size feature based on a line 

that cuts through the image of a particle (Sympatec GmbH 2017;  Rawle et al. 2003). 

Drawn in any direction, lines drawn must be constant for all the measurements of the 

image (Figure 2.6). Furthermore, the longest dimension is a measured diameter 

equivalent to the maximum value of the Feret’s diameter (Figure 2.6). The number of 

measurements that can be carried out with microscopy to determine particle size 
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highlights the difficulty in ascribing one unique number to describe particle size and 

distribution. Reports suggest different approaches to determine the size of 

microplastics using microscopy. In one report, the length of particles were measured 

(Fendall & Sewell 2009) and in another the diameter of the particles were determined 

(Chang 2015). It is not clear from the methods which of the physical properties of the 

particle were measured and why. In addition, different magnifications were used to 

determine particle size. Therefore, this suggests that particle size measurements will 

be different based on the physical properties of the particles measured and the 

magnifications used (Chang 2015; Fendall & Sewell 2009).       

 

Figure 2.6 Measurement features used to determine particle size using the microscopy 

technique. (Source: (Sympatec GmbH 2017) 

 

Direct imaging with microscopy is useful for the analysis of particles in a sample. 

The microscopy technique determines a number-weighted distribution based on equal 

weightings that are independent of the particle size (Rawle et al. 2003). Although 

microscopy is a simple technique to characterise microplastics, it is not possible to 

analyse a large number of samples because of the time it would take. Furthermore the 

question of “which dimension to measure?” arises because of the different 

measurement dimensions that are possible with a particle.  



58 
 

 

 

2.5.5. Determining the size of particles using laser diffraction technique 

 

Laser diffraction as an operational technology commonly used to determine 

particle size has been used widely in industry and has become the standard for quality 

control for where particle size is important (Baosupee et al. 2014). Laser diffraction is 

based on the premise that the angle of diffraction of a particle is inversely proportional 

to the size of the particle. Therefore as the angle of the laser beam increases, there is 

a decrease in particle size. The basis for laser diffraction technique is the interaction 

between light and particles. When a particle is struck by light, the light is either 

absorbed, reflected, refracted or diffracted (Malvern 2015). Diffracted and refracted 

light is useful for determining the size of a particle based on the intensity and angle of 

light that is scattered. The diffraction pattern can be measured and mapped to the 

distribution of particle size based on the Fraunhofer theory (Slotwinski et al. 2014). 

The theory assumes that particles are larger than the wavelength of light used; 

opaque, and do not transmit light, and, the different sizes of particles scatter light with 

the same efficiency (Malvern 2015). The advantage of the Fraunhofer theory is that 

knowledge of the optical property of the particle to be measured is not required (Rawle 

et al. 2003). Therefore the theory can be applied to samples that exhibit differences in 

particle type and shape. This suggests that microplastics that demonstrate different 

shapes and optical properties can be analysed by laser diffraction. Typically using the 

laser diffraction technique, the size of the particle is determined based on a volume of 

equivalent spherical diameter. Therefore, the particles analysed are assumed to have 

the same size as a sphere. This suggest that particles with different shapes and sizes 

can be measured using the laser diffraction technique.  

Depending on the manufacturer, particles are circulated through the instrument 

by a carrier liquid, usually water. It is not clear whether microplastics that exhibit 

different densities will float or sink in the sample collection chamber. Particles such as 

polyethylene that exhibit a lower density to water will float at the surface of the sample 

collection chamber. Therefore, it would be difficult to determine the particle size of 

polyethylene. Measurements with laser diffraction require that particles are dispersed 
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in the instrument. However, it is possible that particles can form aggregates and 

therefore the results produced may be an artefact of particle agglomeration. This 

suggests that the results could be skewed towards larger sized particles.  

In practice, laser diffraction technique has a wide measurement range, some of 

which cover 0.03 – 2500 µm (CILAS 1180), it offers the ability to measure samples in 

both dry and liquid mode, and is a highly repeatable technique which ensures a high 

level of reliability. It is also a non-destructive and non-intrusive technique which 

maintains the integrity of the sample and allows for sample recovery. Particle size 

analysis is useful in determining size distributions of particles and can be explored in 

microplastics studies. Currently its application in microplastics studies is limited 

(Napper et al., 2015) and detailed information on the method used is unavailable 

(Napper et al., 2015). Particle size analysis offers an avenue to determine size 

distributions of microplastics in the environment and assess changes in size patterns 

over time, especially as more microplastics are introduced to the environment.  

 

2.5.6. Particle analysis by imaging flow cytometry 

 

In many biological and clinical science related research, flow cytometry has been 

explored to characterise cells (Lannigan & Erdbruegger 2017; Headland et al. 2014a). 

Flow cytometry provides a high magnitude quantitative measurement of scattered light 

including the emission properties assessed by fluorescence of a huge number at a 

rate of thousands of cells in a sample. The application of flow cytometry has been 

explored in science to examine differences in cell function, structure and abnormality, 

which aids diagnosis of human diseases (Grimwade et al. 2016; Pugsley & Kong 

2013). Currently improvement in technology have resulted in the developments of 

advanced flow cytometry applications. One of such is the Amnis Imaging flow 

cytometer. The ImageStream is an advanced second generation imaging system, 

based on the same operating principles of a flow cytometer (Probst et al. 2017; 

Headland et al. 2014b). The ImageStream can produce up to 12 high resolution 

images of each particle in a sample, at the rate of about 1000 cells in a second, thus 

providing data in the shortest possible time (Basiji 2016; Headland et al. 2014a). 

Therefore the ImageStream is capable of differentiating particles in heterogeneous 
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samples which would be difficult using a conventional flow cytometer. This suggests 

that microplastics which exhibit differences in shape, size and number can be 

characterised using imaging flow cytometry.  

The ImageStream boasts of an image gallery display area, where images of 

samples running through the instrument can be visualised (Lannigan & Erdbruegger 

2017; Basiji 2016). This helps to monitor the flow of the samples through the 

instrument and to adjust parameters to suit the purpose of a study. Therefore, 

microplastics can be detected and differences in size and shape can be observed in 

the image gallery display area. The smallest particle that can be detected by the 

ImageStream is basically a function of side scatter profile of the particle. The limit of 

detection of particles is below 300 nm diameter through side scatter and 50 nm 

resolution for mixed populations (Amnis EMD Millipore 2018). The standard of the 

ImageStream is maintained by SpeedBeads in suspension, which is run constantly 

through the machine and is essential for the calibration of the instrument. The detailed 

calibration process that uses images of the SpeedBeads to safeguard accurate 

functioning of the system, based on factory settings (Amnis Cooperation, 2016). The 

ability of the ImageStream to quantitate morphology, its high sensitivity the high 

information content produced for each cell, are some of the characteristics that makes 

it novel (Headland et al., 2014; Amnis Cooperation, 2016;Basiji, 2016).  

In the light of microplastics research, the advancement of basic flow cytometry can 

be explored for characterisation. The high speed of the ImageStream allows for the 

imaging and analysis of large heterogeneous populations of particles for a statistically 

valid data. However, the Amnis ImageStream has a cut-off restriction at 70 µm. It is 

apparent that the Imagestream exhibits the narrowest pathway of 250 µm, therefore 

to prevent the syringe pumps in the instrument from clogging, samples are filtered 

through a 70 µm filter (Amnis 2018). This suggests that microplastics <250 µm can be 

characterised using the Imagestream. It is apparent that particles which have potential 

environmental impacts due to the large surface area to volume ratio, can be studied 

in detail. Currently there is no report on the application of imaging flow cytometry 

technique for the analysis of microplastics. Therefore this is the first report on the 

analysis of microplastics with the imaging flow cytometry technique. 
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2.6. Comparing Techniques for Microplastics Characterisation 

 

Characterisation of microplastics with different techniques raises questions about 

the differences and similarities of data produced. It is apparent that each technique 

will produce a different result because of the different measurement principles of the 

techniques. For example, direct imaging with the conventional light microscopy 

technique, the size of the particle is based on the physical property of the particle that 

is measured. In addition, the microscopy allows for the analysis of the particles at 

different magnifications. This allows for the analysis of smaller sized particles that 

cannot be detected at a lower magnification. However, at a higher magnification it is 

apparent that larger particles may not be detected. This suggests that the size, number 

and morphology of microplastics can be determined by microscopy. Furthermore, 

depending on the field of view of the magnification, smaller sized microplastics can be 

analysed. By comparison, the laser diffraction technique determines particle size 

based on the assumption that all particles have an equivalent volume to a sphere. This 

technique uses the volume of the particles to determine the size distribution. 

Depending on the instrument, the laser diffraction technique can detect particles 

between 0.04 – 2500 µm (CILAS  2016). Therefore the laser diffraction technique 

measures a wider particle size range than the microscopy technique. This suggests 

that microplastics at the lower and upper micron size class that cannot be analysed 

with microscopy can be analysed by the laser diffraction technique. However, it is 

apparent that the imaging flow cytometry technique analyses particles based on a <70 

µm cut-off. Therefore compared with the other analytical techniques, it is clear that 

imaging flow cytometry can determine the smallest particle size range. In addition, the 

technique is equipped with an automated software that allows for the analysis of 

particles in the sample.  

 

2.7. Identification of Particles using Spectroscopy.  

 

The application of techniques for the identification of microplastics should further 

improve our understanding of microplastics in the environment. One of such methods 

is the application of infrared spectroscopy (IR). This method has been applied in the 

identification of different types of organic and inorganic matter; determining the 
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functional groups in compounds and has been applied in the identification of polymers 

and plastics (Crichton et al. 2017; Tagg et al. 2015). In infrared spectroscopy, the 

identification of compounds is based on the principle of absorption of infrared radiation 

by the molecules of the compound. This absorption causes vibrations of the molecules 

and is expressed as an infrared spectrum, unique to the compound (Ng and Obbard, 

2006; Harrison et al. 2012; Lusher et al., 2013; Tagg et al. 2015).  

Most organic molecules absorb infrared light at particular frequencies as a result of 

their covalent bonds. This unique property confers the characteristic of that molecule. 

When more molecules of a sample form a bond and absorb infrared light, it gives an 

indication of the structure and thus identity of the sample. This is made evident by the 

functional groups present in the molecule (Figure 2.7) (Tagg et al. 2015; Harrison et 

al. 2012). When infrared light is passed through a sample, covalent bonds absorb the 

light and are indicated as peaks on the infrared spectrum. The polyethylene reference 

shows the stretching, bending and rocking of the CH2 functional group at 2914, 2846, 

1474 and 720 cm-1 (Figure 9).  

                                                                              

Figure 2.7. FT-IR spectrum of Polyethylene showing the absorbance peaks indicative 

of the polymer 

.  
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The Fourier transform infrared spectroscopy (FT-IR) technique has been used in 

studies on polymer identification and characterisation (Tagg et al. 2015), and in the 

field of medicine as a mapping tool in cancer research (Minnes et al. 2017; Thumanu 

et al. 2014) and bone structure studies (Koletsi et al. 2016; Sroka-Bartnicka et al. 

2015). FT-IR has been used in laboratory analysis for the detection of microplastics in 

water and sediment samples (Ziajahromi et al. 2017b; Karlsson et al. 2017; Tagg et 

al. 2015).  

 

CHAPTER 3: METHODS AND MATERIALS USED FOR THE CHARACTERISATION 

OF MICROPLASTIC PARTICLES. 

 

3.1. Particles selected as the focus of study 

 

Particles of polyethylene were selected as the focus for this thesis because they 

are used as ingredients in toothpastes and facial scrubs commonly sold in stores 

nationwide. In addition, particles abraded from kitchen scourers were also selected for 

this study. This is because the abrasion of kitchen scourers during use may be a 

source of secondary microplastics. The packaging on the kitchen scourers did not 

make reference to the composition of the product as was the case with the personal 

care products. 

 

3.2. Personal care products selected for the characterisation of particles 

 

Two types of PCPs were chosen for this study, toothpastes and facial scrubs. 

According to the labelling all products contained polyethylene. The toothpastes 

selected were Colgate “Max White One Luminous” (TP1) and “Advanced White Go 

Pure” (TP2). The two facial scrubs were Palmolive, “Clean and Clear Morning Energy 

Skin Energising Daily” (FS1) and “Blackhead Clearing Oil Free Daily” (FS2). The size 

distribution of the polyethylene microplastics in personal care products was 

characterised using the two pathways outlined in Figure 3.1. In pathway 1, particle 

size distribution was determined by laser diffraction using a CILAS 1180 particle size 
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analyser; direct imaging, particle size and quantification was determined by 

microscopy with each sample analysed in triplicate, at each stage. In the independent 

second pathway, imaging flow cytometry with an Amnis ImageStream Mark II (Merck 

Millipore) was used, which generated a size distribution and number of particles, but 

incorporated a 70 µm filter, eliminating larger particles from the analysis. For this 

pathway, each sample was analysed in duplicate. 

 

  

Figure 3.1. Schematic diagram of the approach used to characterise microplastics in 

personal care products. The diagram shows the two pathways used for particle 

characterisation.  

 

3.3. Separation of particles from personal care products 

 

The approach to density separation described here was based on previous studies, 

with minor modifications. For all samples, 0.5 g wet weight of each product was 

accurately weighed on an analytical balance (Sartorius 1702), and was subsequently 

dispersed in 1 ml of water at 50-60°C. To achieve density separation, 50 ml of sodium 

chloride solution (140g/ L-1) at 50-60°C was then added to the dispersion in a 200 mL 
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glass beaker. The resulting solution was mixed for 7 min with a glass rod, and left to 

settle for 5 min. The microplastic (polyethylene) particles (now floating on the surface) 

were collected by decanting 15 ml into a clean glass beaker. Not all particles floated 

to the surface, possibly due to the matrix characterised by a viscous solution. 

Therefore, the density separation process was repeated by adding another 50 ml of 

salt solution to the residual ~35 ml to ensure complete extraction of the microplastics. 

Another 15 mL was decanted from the second solution. This density separation 

resulted in an approximate volume of 30 ml sodium chloride solution with the 

suspended microplastics on the surface. The volume of this solution was then reduced 

by pipetting 15 ml of sodium chloride solution from the bottom of the beaker (Harrison 

et al. 2012). At this stage, the extract was cloudy, due to the viscous nature of the 

sample solution. To facilitate removal of plastics from the remaining matrix 

components, a centrifugation step was introduced. 

The residual 15 ml volume was completely transferred to a 50 ml centrifuge tube, 

and the  after which 30 ml of the hot sodium chloride solution and 5 ml of sodium 

pyrophosphate solution (10%, room temperature) were added. The sodium 

pyrophosphate was used as a dispersant to prevent the microplastics from clumping 

together. Centrifugation was carried out at 1700 × g, after which the top layer of the 

solution (around 10 ml) containing microplastics was decanted into a clean 50 ml 

beaker.  

 

3.4. Characterisation of microplastic particles 

 

3.4.1 Characterisation by direct imaging using light microscopy.  

 

Samples were first analysed with the laser diffraction technique using the 

CILAS 1180, to have a general idea of the particle size distribution. Following this, the 

particles were flushed out of the instrument and samples were collected in four 1 L 

beakers. The four 1 L samples collected from the CILAS 1180 were transferred onto 

a 1.2 µm GF/C filter (Whatman, UK) under vacuum and then washed off with 30 mL 

of ultrapure water into a 50 mL beaker. Pipetting from the bottom, the water containing 

microplastics was then reduced to a volume of 10 mL on the line of the beaker. The 
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suspension was then agitated, and a 1 ml aliquot was transferred to a Sedgewick 

Rafter cell (SRC) etched with a 50 column by 20 row grid. Size and particle count 

measurements were determined at 100X and 200X magnifications with an Olympus 

BX 51 calibrated eyepiece binocular microscope with QCapture Pro 5.1 imaging 

software. For each product, three replicates of 0.5 g wet weight were used and the 

longest length of the first 100 particles in 6 randomly selected transects were 

measured. To determine particle size distribution, 300 particles from each sample 

were measured.  The lengths were manually determined with an ocular calibrated 

micrometer and then the values were converted to microns. Statistical analysis was 

conducted using R programming language. An analysis of variance (two-sample 

assuming unequal variance) and a post-hoc t-Test was used to establish whether 

statistical differences in size occurred between the PCPs. An estimate of the mean 

number of particles in each product was determined by counting all particles in 6 

randomly selected transects of the SRC, using a mechanical counter (VWR 

Mechanical counter, four figures, 0 - 9999). A rough estimate of 900 particles were 

counted in 6 transects of the SRC. 

  

3.4.2 Particle size analysis by laser diffraction.  

 

Following centrifugation, particle size analysis was undertaken using a CILAS 1180 

(Quantachrome, UK), with an operational range of 0.04 to 2,500 µm. This involved 

running background scans to ensure a consistent low count level was reached 

between sample runs. The extracted microplastics were transferred from the 50 ml 

beaker and washed into the sample holding tank of the CILAS 1180 with high purity, 

18MΩ, water (MilliQ, Millipore,UK). Subsequently, a further 30 ml of 10% sodium 

pyrophosphate solution was added to further aid particle dispersion after which 

measurements for size distribution of the microplastics in each product were 

conducted. Results were collated by the Size Expert software and the retrieved data 

were subsequently analysed using Microsoft Excel.  

Initial work with particle size analysis showed that particles were retained in the 

feeder tank, resulting in a smaller particle size range than anticipated from parallel 

microscopy work. In order to investigate this issue, methanol was added to the tank 
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(10% in high purity water) to lower the density of the carrier liquid. Dispersants are 

widely used in geology and particle-size science for separation of particles.   Agents 

such as anionic dyes, sodium dodecyl sulphate and sodium pyrophosphate act to 

overcome attractive forces by strengthening the repulsive forces to achieve particle 

separation and dispersal (Silva et al. 2015; Fedotova et al. 2015; Tinke et al. 2009). It 

has been suggested that sodium pyrophosphate inhibits bond formations between 

particles and does not damage the integrity of the particle (Silva et al. 2015; Sehly et 

al. 2015).Therefore sodium pyrophosphate was added before centrifugation and to the 

tank of the CILAS particle size analyser to aid dispersal of particles. This allowed for 

the analysis of a larger particle size range which was not previously possible. 

   

3.4.3 Imaging flow cytometry. 

 

 For the second pathway, following density separation and centrifugation, 10 mL of 

the microplastic extract was transferred to a 50 ml beaker and agitated. Using a 

micropipette 1 mL of the agitated sample was transferred to a 1.5 mL microcentrifuge 

tube and data was acquired with the Amnis ImageStream®x Mark II (Merck Millipore) 

using Inspire™ software. For all samples, particles were filtered with a 70 µm sterile 

cell strainer (FisherbrandTM). For each sample, microplastics were determined with a 

70 µm cut-off filter and image capture was conducted with a 20x objective with a 120 

µm field of view using brightfield and 488nm laser set at 100 mW. To ensure only 

particles in the sample were captured, the calibration speedbeads were turned off 

(based on manufacturers’ advice). Image acquisition was defined using the brightfield 

channel with data collection parameters of either 10,000 particles in focus or a 10 

minute maximum acquisition time, whichever occurred first.  

IDEAS® version 6.2.65.0 software was used to analyse the microplastics data. The 

initial step gated for single particles which defined via brightfield area versus aspect 

ratio (minor axis divided by major axis). In addition, particles that were in focus were 

analysed using the gradient root mean square (RMS) function. Using the gated single 

event in the “in focus” population, a histogram of aspect ratio vs normalised frequency 

was plotted to identify elongated and circular particles. Finally, the diameter feature; 
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which provides the diameter of the circle that has the same area of the object, was 

used to determine the size distribution for all particles. 

  

 3.4.4 Polymer identification.  

 

Following microscopy, microplastics were washed from the Sedgewick rafter cell with 

Milli-Q water into 50 mL glass beakers and again vacuum filtered (1.2 µm GF/C). 

Polymer identification was conducted using molecular mapping through reflectance µ-

FTIR with a Perkin Elmer Spotlight Imaging FTIR microscope Model (Perkin-Elmer, 

UK) analyses at the mid-IR range of between 700 and 4,000 cm-1. Utilising the focal 

plane array (FPA) method, the spectral results were based on reflectance in imaging 

mode with 2 co-added scans per pixel, an aperture size of 25 μm2 and at a spectral 

resolution of 16 cm-1. This method of spectra acquisition provided information about 

the identification of a polymer within minutes (Ojeda et al. 2015; Claessens 2013). 

Spectra of polyethylene was confirmed using a spectrum search in a customised 

polymer library that contained the spectra of polymers commonly associated with 

microplastics. In addition, the functional groups detected in the regions of absorbance 

were cross referenced with a table showing the FT-IR peaks characteristic for the 

polymer type.  

 

3.5. Choice of kitchen scourers to be used for the analysis of particles 

 

For this thesis, five kitchen scourers were selected for the study. These included 

“two market leading” and three chain store brands. The brands were “Spontex heavy 

duty” (KS1), “Tesco Everyday Value” (KS2), “Tesco non scratch sponge scourer” 

(KS3), “Spontex strong and long lasting” (KS4) and “Tesco sponge scourer” (KS5). 

The same analysis pathways used for the characterisation of particles from personal 

care products was adopted for the analysis of particles abraded from kitchen scourers. 

Particles abraded from the kitchen scourers were characterised in triplicates at each 

stage and were based on size distribution, number of particles produced, particle 

morphology and identity. In summary the number and morphology of particles were 

determined by direct imaging using a light microscope; particle size distribution was 
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determined by laser diffraction using a CILAS 1180 particle size analyser. Particles in 

the sub-70µm fraction were characterised and their size, number and morphology by 

imaging flow cytometry; and particle polymer identity was determined using micro-

Fourier Transform infrared spectroscopy µ-FTIR. 

3.6. Abrasion of particles from kitchen scourers 

 

An 800 mL glass tank was washed thoroughly and rinsed with Milli-Q water before 

being filled with 500 mL of Milli-Q. A 300 mL ceramic bowl was wet by dipping in the 

800 mL tank. Particles were abraded from each kitchen scourer by wetting with water 

provided in the 800 mL glass tank. Water from the scourers was squeezed into the 

ceramic bowl. The ceramic bowl was washed for 20 seconds, and the scourer was 

squeezed again and placed on foil paper provided. The “wet, squeeze, wash and 

squeeze” process was equivalent to one wash cycle. The entire ceramic bowl was 

rinsed with 200 mL of Milli-Q water and collected in a 1 L glass tank. The ceramic bowl 

was placed on aluminium foil. This was procedure was repeated with all types of 

kitchen scourers. The 200 mL of Milli-Q water used to rinse the ceramic bowl was 

vacuum filtered through a glass microfiber filter (Whatman GFC 1.2 µm). The filter was 

then flushed with Milli-Q water into a 50 mL glass beaker. After allowing settling for 5 

minutes, the solution was volume reduced to 40 mL using a pipette. Particles in some 

scourers floated to the surface and particles in other products sank to the bottom of 

the 50 mL glass beaker. Therefore, the solution with floating particles was volume 

reduced by pipetting from the bottom of the 50 mL beaker. By contrast, the sample 

with particles at the bottom of the 50 mL beaker was volume reduced by pipetting from 

the surface of the solution. This final solution was mixed with a 5 mL pipette, from 

which 5 mL was used for microscopy. However, because of the concentration of 

particles, 1 mL from the 5 mL microscopy solution was diluted with 9 mL of Milli-Q 

water. For the laser diffraction analysis, 10 mL of the sample was used, 5 mL for 

imaging flow cytometry and the final 10 mL was vacuum filtered again for µ-FTIR 

analysis.  
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3.7. Characterisation of particles abraded from kitchen scourers 

 

The techniques that were used for the characterisation of particles separated from 

personal care products were applied for the analysis of particles abraded from kitchen 

scourers with some modifications. Therefore, characterisation of all particles was 

determined using microscopy, laser diffraction, imaging flow cytometry and Fourier 

transform infrared spectroscopy. 

3.7.1 Analysis of particles abraded from kitchen scourers by light microscopy. 

  

The suspension of particles was agitated, and an aliquot (1 mL) was transferred to 

a Sedgewick Rafter cell (SRC) etched with a 50 column by 20 row grid. Size and 

particle count measurements were determined at magnifications of 100X and 200X, 

with an Olympus BX 51 calibrated eyepiece binocular microscope with QCapture Pro 

5.1 imaging software. For each product, the longest length of the first 100 particles in 

6 randomly selected transects were measured and conducted in three replicates. The 

lengths were determined in ocular units and then converted to microns. A statistical 

analysis of the results was conducted using the programming language R, and the 

statistical component of Microsoft excel. The descriptive statistics for particle 

measurements was determined for all products using Microsoft excel. An analysis of 

variance (two-sample assuming unequal variance) and a post-hoc t-Test was 

determined using the R programming language, to establish statistical differences in 

size and number existed between the kitchen scourers.  

To determine the estimate for the number of particles abraded from kitchen 

scourers, a mechanical counter (VWR Mechanical counter, four figures, 0 - 9999) was 

used to count all particles in 6 randomly selected transects of the SRC were counted 

and the value was multiplied by the total number of transects to attain the microplastics 

count in 1 mL of the kitchen scourer solution. Furthermore this value was multiplied by 

the dilution factor to get the original number of particles and scaled up to determine 

the number of particles in one wash cycle. 
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3.7.2 Analysis of particle size distribution using laser diffraction. 

  

The analysis of particles did not require a centrifugation step because unlike the 

personal care products, these products did not exhibit any viscous components. 

Therefore, particle size analysis was conducted using a CILAS 1180 (Quantachrome, 

UK), characterised with a measurement range of 0.04 to 2,500 µm.     

After background scans for the particle size analyser (CILAS 1180) were taken, 

particles abraded from kitchen scourers were transferred from the 50 mL beaker into 

the CILAS 1180 sample collection tank containing high purity 18MΩ water (MilliQ, 

Millipore, UK). Following this 30 ml of sodium pyrophosphate (10%) solution was 

added to the CILAS 1180 sample collection tank, to aid dispersion. Methanol (10% in 

high purity water) was added to the tank to lower the density of the carrier liquid. 

Particles with a lower or similar density to water floated to the surface of the sample 

holding tank, and therefore methanol was added to the carrier liquid. But by contrast, 

methanol was not added to the carrier liquid for particles that exhibited a higher density 

to the carrier liquid. Subsequently, measurements for size distribution of particles 

abraded from the kitchen scourers were conducted. The results for the analysis of 

particles were collated by the Size Expert software and subsequently analysed using 

the statistical component of the Microsoft excel software. A cumulative frequency 

distribution for the size of particles abraded from kitchen scourers was determined 

using Microsoft excel software.  After each analysis, samples were flushed out and 

collected as described in section 4.4. 

  

3.7.3 Particle analysis by imaging flow cytometry. 

  

The second pathway for the characterisation of particles abraded from kitchen 

scourers was determined using the imaging flow cytometry technique. 1 mL from the 

5 mL solution was agitated and transferred to a 1.5 mL micro centrifuge tube and 

analysed with the Amnis FlowSight Imaging Flow Cytometer. The instrument settings 

used for the analysis of particles separated from personal care products were adopted 

for the characterisation of particles abraded from kitchen scourers. In addition the 
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results were analysed as described in section 4.4, using the IDEAS software version 

6.2.65.0. 

  

3.7.4 Polymer identification of particles abraded from kitchen scourers.  

The analysis of all particles abraded was determined using the methods developed 

for the polymer identification of particles separated from personal care products.  

 

3.8 Quality control to avoid contamination and loss of samples. 

  

Steps were taken during the sample preparation process and during the analysis of 

particles separated and abraded from the selected products. 

  

3.8.1 Sample preparation 

  

 For all experiments, cotton lab coats and laboratory gloves were worn at all 

times. 

 For the abrasion of particles from kitchen scourers, a timer was used to monitor 

wash times.  

 A control run was set up by extracting 1.5 L of Milli-Q water onto a filter paper 

to ensure non contamination in the study. 

 During sample preparation and analysis, two blank 25 mm GFC filter papers 

with a 1.2 µm pore were placed close to the set-up. The filter papers were 

viewed under the microscope and checked for particles of Debris. 

 During vacuum filtration, a laboratory bottle with Milli-Q water was be used to 

wash the walls of all glass reservoirs onto the filter paper, to remove remnant 

particles. All containers were rinsed this way.  

 To prevent cross contamination between each wash, the vacuum funnel and 

filter membrane was washed with 500 ml of Milli-Q water and reassembled for 

the next wash. In addition, the ceramic roaster and soup bowl was thoroughly 
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washed with 500 ml of Milli-Q water and placed on clean aluminium foil that will 

be provided. 

  

3.8.2. Analysis of particles 

   

 For the techniques used for the analysis of particles, different approaches were 

taken for quality control. Therefore for the microscopy technique blank water 

samples (laboratory grade water run alongside samples) were analysed to 

detect particles of debris.  

 Using the laser diffraction technique, after each analysis, the sample was 

discharged from the particle size analyser and collected into four 1 L glass 

beakers during the washing cycle. To ensure complete recovery of 

microplastics from the instrument, three background scans were run (after four 

repeated flushes of the instrument) and were compared to the initial 

background scans, based on manufacturer’s recommendations.  

 For the imaging flow cytometry, filter sterilised water was run on the system 

between samples to prevent cross-contamination.   

 Using the micro-FT-IR, to avoid contamination, filter papers were placed in 

glass Petri dishes with a pair of forceps and stored in a desiccator at room 

temperature until fully dry (Harrison et al. 2012).  
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CHAPTER 4. RESULTS: Challenges encountered in method development and final 
approaches for the characterisation of particles.  
 

In this section the challenges encountered in sample preparation and analysis of 

particles in all products is presented. In addition, the analysis of the particles is 

categorised according to the size, number, morphology and polymer identity. 

Furthermore the difficulties encountered in the application of the different 

characterisation techniques are also presented in this section.  

  

4.1.  Density separation of particles from personal care products. 

 

An initial approach to extract microplastics from the facial scrubs and toothpastes, 

three replicates of 0.5g of each product was added to 25 ml of hot water (70oC) in the 

barrel of a 30 ml glass syringe with Luer lock fitting. The syringe was attached to a 

polycarbonate 25 mm microsyringe filter holder containing a 25 mm nitrocellulose 

membrane filter with a pore size of 1.2 µm. Thereafter, to achieve a homogenous 

solution, the syringe was shaken for about 2 mins. However, it was difficult to separate 

particles from the products using the glass syringe attached to the membrane filter. 

This is because  the solution flooded the microsyringe filter holder chamber. 

Furthermore,  there was a back flow of the solution, likely due to the clogging of the 

nitrocellulose membrane filter because of the formation of particle aggregates. 

Therefore further characterisation of the particles in all the products could not be 

conducted. Consequently, an alternative method to separate particles from the 

products was  explored. 

Using another approach to separate particles from the products, 1 mL of laboratory 

grade water (MilliQ) was added to the o.5g of each product to get the particles into 

solution. Following this, density separation using a saline solution was explored to 

separate particles from all products. This was achieved by adding 50 mL of sodium 

chloride solution (140g L-1) at 50 - 60 °C, to each weighed product. The solution was 

mixed for 7 min, left to settle for 5 min and the resulting microplastic particles floating 

on the surface were poured into a 50 mL beaker. The density separation process was 

repeated one more time to ensure the separation of all particles from the products. 

Although the density separation of particles was achieved, it was difficult to collect the 
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particles during the filtration process. In this study, a vacuum filtration process was 

explored to filter out the solution and collect the particles separated. However, filtration 

of the particles was difficult to achieve, because  the particles clogged the surface of 

the 47 mm glass microfiber filter paper with a pore size of 1.2 μm (GFC). It is likely 

that the products contained other additives which made the solution sticky and 

viscous, therefore reducing the flow and increasing the likelihood of clogging. To 

increase the flow of the solution, small volumes of the solution were introduced slowly 

and at intervals, to the filter cup. Consequently, between 1 – 5 mL of the solution were 

introduced to the filter cup at intervals of between 10 – 20 seconds. However,  this 

procedure was still not efficient because the glass microfiber filter paper became 

clogged and the filtration of the particles was not successful. It is likely that the sticky 

and viscous additives in the solution did not allow for the successful filtration of the 

particles in all products.  

To overcome the clogging of the glass microfiber,  the sticky viscous additives had 

to be removed. Therefore a further separation procedure was introduced after the 

density separation step. As such, after the separation of the particles from all products, 

the solutions were left to stand for 5 minutes after which the particles floating on the 

surface were carefully poured into a 50 mL beaker. The density separation process 

was repeated one more time to ensure all particles of interest were separated from the 

solution. Subsequently, a sterile cell strainer (Fisherbrand 40 µm pore size) was 

introduced as an additional step for the filtration of particles. To filter the particles and 

reduce the sticky and viscous additives, a pair of forceps was used to hold the sterile 

cell strainer and placed it under the running ultra-pure Milli-Q water for 1 minute. There 

were differences in the viscosity across all the products analysed. In particular, the 

toothpastes were more viscous than the facial scrubs. Although this filtration 

procedure allowed for the reduction of the viscous additive in the solution, it was not 

completely removed. This was apparent because when the sample was viewed under 

a microscope, a cloudy image was observed, and this was likely because of the 

viscous additives. Furthermore, it was observed that when the particles in the sterile 

cell strainer where washed with running ultra-pure Milli-Q water for longer than 1 

minute, the particles formed aggregates, therefore making particle characterisation 

difficult. 
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Therefore the filtration approach was abandoned and centrifugation was attempted 

to separate the particles from the viscous solution. The centrifugation process was 

carried out at 4000 rpm/4 min, after which the top layer of the solution containing 

microplastics was decanted into a clean 50 ml beaker. The centrifugation process 

ensured complete separation of the target particles from the viscous solution, and 

reduced the agglomeration of the particles.  

 

4.2. Assessment of the size of particles using different techniques. 

 

Challenges were encountered in the preliminary work undertaken to determine 

particle size distribution. This was true for all the particle sizing methods however,  the 

challenges encountered were unique to each technique. As such the preliminary 

results indicated that although size measurements were determined,  the application 

of the different techniques could be improved. Therefore technique specific solutions 

were applied to resolve the challenges encountered.    

 

4.2.1 Analysis of particle size distribution by laser diffraction.  

 

In this section the challenges encountered during the analysis of particles using 

laser diffraction are presented. It was clear that two challenges encountered limited 

the measurements of the size of particles in all four products. .  

The first challenge was the agglomeration of particles, as observed in the sample 

collection chamber. Particles in TP1, TP2 and FS1 formed aggregates more readily 

than the particles in FS2. As such, these aggregates observed in the sample collection 

chamber were not evenly dispersed and  reliable particle size measurements could 

not be determined. The cumulative distribution graph shows that there were 

differences in the particle size range across all products analysed. The particle size 

distribution  in TP1, TP2 and FS1, was relatively narrow,  whereas FS2 had a wider 

distribution (Figure 4.1). In particular, TP1 indicated particle size distribution ranged 

from 1 – 120 µm, and TP2 and FS1 exhibited a particle size distribution from 1 – 100 

µm. By contrast, particles in FS2 exhibited a distribution of 1 – 600 µm (Figure 4.1). 
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Observations of all the particles indicated that FS2 exhibited particles that were 

different from particles in other products. In particular, the particles in FS2 appeared 

more spherical and were  more than the particles in the other products (something 

proved by the microscopy and imaging flow cytometry techniques). Therefore the 

wider particle size distribution exhibited by particles in FS2 is likely because of the 

higher number of particles, which were readily detected by the instrument’s lasers.  

 Although the smallest particle size distribution for all products was not obvious from 

the cumulative size distribution graph, data from the instrument indicated that the 

smallest particles were exhibited in TP2 with a size of 0.04 µm. In addition, the smallest 

particles in the other products were 0.4, 0.1 and 0.4 µm, as demonstrated in TP1, FS1 

and FS2 (Table 4.1). Furthermore, the distribution exhibited cut-offs that were different 

in all products, but  the first cut-offs were between 10 and 40 µm in TP1 and TP2, and 

between 10 and 70 µm in FS1 and FS2 respectively (Figure 10).  

 

Figure 4.1. Particle size distribution of microplastic particles extracted from personal 

care products analysed using a CILAS 1180 particle size analyser. Cumulative graph 

showing microplastics size distribution in each brand of personal care product. 

 

Generally D10, D50 and D90 are commonly used to describe the 10, 50 and 90% 

intercepts of the cumulative mass. Typically, D10 and D90 describe the range of the 
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particle size distribution whilst D50 describes the value where half of the particle 

population exists above and below this value. The analysis of diameter ‘D’ values 

indicated differences in the sizes across all four products analysed. For easier 

understanding of the texture of the particles based on the different sizes, a soil 

classification system which categorises particles and predicts their likely behaviour in 

the environment has been used as a reference. The texture of the particles ranged 

from silt like to medium particles (Table 4.1). However,  there were  differences in the 

texture of particles measured at the same D value. For example, TP1, TP2 and FS2 

exhibited silt-like particles but by contrast the D10 value in FS1 indicated a larger size 

and exhibited very fine-like particles (Table 3). The analysis of D50 values also 

indicated differences in the size of particles across all the products analysed. For 

example, the D50 measurements indicated that particles in TP1 and FS1 exhibited 

very fine like particles. However,  the D50 measurements values in TP2 indicated the 

smallest values for all the products, and exhibited very fine-like particles. By contrast  

the D50 values in FS2 exhibited the largest particles and indicated the occurrence of 

fine-like particles (Table 4.1). Measurements to determine D90 values also showed 

differences for all the products analysed and demonstrated differences in the particle 

texture. For example TP1 and TP2 showed that the D90 values were characterised by 

very fine-like particles. By contrast however,  the particles in FS1 and FS2 exhibited 

larger D90 values that indicated fine and medium-like particle textures respectively 

(Table 4.1). The differences in the size of particles were not only observed in the D 

value measurements. The mean size of particles was different across all the products 

analysed. For example, TP1 and TP2 exhibited mean particle sizes characterised by 

very fine and silt-like particles. By contrast however, the mean particle size for the 

facial scrubs exhibited similar particle texture and were characterised by fine-like 

particles (Table 4.1). 
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Table 4.1. Diameter values of particles in personal care products. 

Product D10 % (µm) D50% (µm) D90% (µm) Mean (µm) 

TP1 17.5 55.6 85.8 55.7 

TP2 6.4 45.5 70.5 42.7 

FS1 71.0 99.2 143.4 102.7 

FS2 26.4 171.5 391.0 195.4 

 

D values at intercepts at 10, 50 and 90 % of the cumulative mass of particles in personal care 
products.  

 

Although particle size distribution was determined,  the results were not as accurate 

as they could have been. This is likely because of the agglomeration of particles which 

were invariably not detected by the instrument’s lasers. Therefore  a dispersing agent 

was required to reduce the surface tension between particles and to ensure particle 

dispersal. Because this was a first experiment to determine particle sizes of 

microplastics from personal care products by laser diffraction, the manufacturer was 

consulted on likely dispersing agents to use in the experiment. , Based on the 

manufacturers advice Tetrasodium pyrophosphate was used to disperse the particles 

in the instrument. After applying the dispersant,  there was a wider particle size 

distribution in all products, as compared to the first laser diffraction experiment (Figure 

4.2). As such the results showed a wider size distribution to the initial results, but this 

distribution was still relatively narrow.  

Although particle dispersal had been achieved,  the lasers were still not detecting 

all the particles. This is because of a second challenge encountered in the analysis of 

particle size by laser diffraction. Particles were clearly observed floating at the surface 

of the sample collection chamber and were not drawn into the laser detection range of 

the instrument. This was likely because of the differences in the density of particles 

from all four products and the carrier liquid (water from the mains supply) for the 

instrument. Polyethylene with a density of between 0.90 – 0.92 g/cm3 will float on 

water, which has a density of 1g/cm3. After consultations with the manufacturer,  the 

density of the carrier liquid for the instrument had to be reduced, to aid the sinking of 

particles so that they could be detected by the lasers. Ethanol and methanol with 

densities of 0.789 and 0.792 g/cm3 respectively were explored to assess the better 
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solution to alter the density of the carrier liquid. However, due to time constraints, a 

solution of methanol as described in the methods was used for the experiment 

because it was cheaper and available for use. Consequently, size analysis of particles 

in all products was determined, but with the addition of Tetrasodium pyrophosphate 

as a dispersing agent and methanol as a carrier liquid.  

The particle size distribution was characterised by multiple peak populations for all 

the products analysed. In particular,  the particles in TP2 exhibited two distinct peak 

populations, which were unique to this product (Figure 4.2). Differences in the particle 

size range across all products analysed was observed. Generally the particle size 

ranged from 1 – 600 µm. Although the smallest particle size distribution measured in 

the four products was not obvious from the graph,  the data from the instrument 

indicated data that the smallest particles were exhibited in TP1 with a size of 0.07 µm 

(Table 4.2 Appendix).  

In addition, the smallest particles in the other products were 0.3, 0.07 and 0.5 µm, 

as demonstrated in TP2, FS1 and FS2. Furthermore,  the distribution exhibited cut-

offs that were different in all products. For example the first cut-offs were between 10 

and 200 µm in TP1, FS1 and FS2, but in TP2 the first cut-off was  between 50 and 

100 µm (Figure 4.2).  
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Figure 4.2. Size distribution of particles in four products analysed by laser diffraction 

and the addition of methanol as the carrier liquid for the instrument. All products 

analysed show multimodal peaks, indicating multiple peak populations for particles in 

the personal care products. 

  

The texture of the particles ranged from silt like to medium particles (Table 4.2). 

However, there were also differences in the texture of particles measured at the same 

D value. For example for the D10 values, TP2 and FS2 exhibited silt-like particles, but 

TP1 and FS1 exhibited larger particles that were very fine-like particles (Table 4.2). 

The analysis of D50 values also indicated differences in the size of particles across all 

the products analysed. For example, the D50 measurements indicated that particles 

in TP2 were very fine, but the particles in TP1, FS1 and FS2 exhibited fine like particles 

(Table 4.2). Measurements to determine particle size at D90 also showed differences 

in size for all the products analysed. The particle size at D90 ranged from 342.1 to 

452.9 µm and indicated that the products were characterised by medium-like particles 

(Table 4.2).  

The differences in the size of particles were not only observed in the D value 

measurements. The mean size of particles was different across all the products 

analysed. For example, TP1, TP2 and FS2 exhibited mean particle sizes characterised 

by fine particles. By contrast the mean particle size for FS1 was characterised by 

medium-like particles (Table 4). 
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Table 4.2. Diameter values of particles in personal care products. 

Product D10 % (µm) D50% (µm) D90% (µm) Mean (µm) 

TP1 69.2 204.3 426.0 225.8 

TP2 14.5 48.9 342.2 119 

FS1 76.9 290.5 452.9 274.8 

FS2 44.2 182.9 391.6 206.0 

D values at intercepts at 10, 50 and 90 % of the cumulative mass of particles in personal care 
products.  

 

The analysis of particle size by laser diffraction revealed differences in the 

distribution of particles in all four products analysed. However,  there were limitations  

in determination of particle size which were overcome by the addition of solutions of 

Tetrasodium pyrophosphate and methanol used for particle dispersion and as a carrier 

liquid. A comparison of cumulative distribution graphs, indicated differences in the 

particle size distributions. In particular,  the results determined from experiments 

where Tetrasodium pyrophosphate and methanol were used was characterised by a 

wider particle size distribution in most of the products, than when none of these 

solutions was used. Furthermore,  there was improved particle dispersion, indicated 

by multiple peak populations in the particle size distribution graph. 

  

 4.2.2 Analysis of particle size and the limitations of the microscopy technique. 

  
Although the microscopy technique allowed for the analysis of particle size,  there 

were challenges in determining particle size. Firstly, measurements conducted at the 

magnification of 100X indicated that particles below 80 µm could not be measured 

because they were not visible at this magnification. This was different from the laser 

diffraction results which detected particles in the smaller sized micron range were 

detected. Secondly measurements based on the number of transects in the 

Sedgewick-rafter cell SRC, indicated differences in particle size distribution. Lower 

number of transects revealed a different particle size distribution than when a larger 

number of transects was selected for size measurements Thirdly,  the approach 

adopted for the transfer of samples from the 50 mL beaker to the Sedgewick Rafter 

cell (SRC) limited the number of particles introduced to the SRC. This was because 
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the 40 mL volume of the sample in the 50 mL beaker was diluted and so it was difficult 

to measure out the 1 mL volume required for transfer to the SRC. Therefore, in this 

section, the results for particle size and highlighting the challenges are presented.  

 

4.2.2.1. Determining particle size measurements at the magnification of 100X.  

    

Size measurements were conducted by measuring particles in 14 out of 20 transects 

of the SRC. The particles in all four products exhibited differences in size, as measured 

at the magnification of 100X. In particular, the particles in FS1 exhibited the widest 

particle size range, and TP1 had the smallest size range. In addition, the results 

indicated that out of the four products analysed, the facial scrubs demonstrated the 

occurrence of the smallest particles with particles sizes of 80 µm (Table 4.3). The 

results further showed that the mean size of particles in all products analysed ranged 

from 165.3 – 298.3 µm, as demonstrated by TP2 and TP1 respectively.  

Table 4.3. Size of the particles measured in personal care products. 

                     

The table shows the size range of the particles in all products, measured at the magnification 
of 100X.  

 

A comparison of the mean size of the particles indicated clear differences as 
determined in all four products. In particular, this difference was statistically 
significantly different (p<0.01) in size between microplastics for the four personal care 
products [F(3, 1596) = 494.93, p = 2.5736E-227]. A post-hoc Tukeys multiple 
comparison of means test at the 95% family-wise confidence level indicated a 
significant between-group difference for the size of particles in all the products 
analysed. (Figure 4.3).  
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Figure 4.3. Tukeys multiple comparisons of means at the 95 % family-wise confidence 

level. The confidence intervals that do not cut through the zero mark show a difference 

in the size of particles in the products. Confidence intervals that cut through the zero 

mark indicate similarities in the size of particles 

 

The results indicated that applying the microscopy technique for the analysis of 

particle size allowed for the measurement of particles ≥ 80 µm in size. Therefore 

measurements conducted at the magnification of 100X had apparent effect on the 

minimum size of particles that could be determined. Consequently the measurements 

of particles in all products was analysed at a higher magnification. 

 

4.2.2.2. Analysis of the size of particles in personal care products determined at the 
magnification of 200X. 
 

At a higher magnification of 200X, smaller particles were identified than at the 

magnification of 100X (Table 4.4). Consequently, the results indicated that the 

smallest particles measured in all products ranged from 5 to 35 µm (Table 4.4). In 

addition, the smallest particle measured at the magnification of 100X was larger than 
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the smallest particle determined at the magnification of 200X by a factor of 16. The 

results indicated that there were similarities and differences in the size of the largest 

particles for all products. In particular,  particles in TP1 and TP2 exhibited a similar 

maximum size. However, the results indicated that the particles in FS1 and FS2 

demonstrated differences in the maximum particle size. 

 

Table 4.4. Size of the particles measured in personal care products. 

                       

The table shows the descriptive statistics and size range for particles measured in all four 
personal care products, determined at the magnification of 200X.  

 

A comparison of the mean size of the particles indicated clear differences as 
determined in all four products. In particular, this difference was statistically 
significantly different (p<0.01) in size between microplastics for the four personal care 
products [F(3, 361) = 57.18814, p = 2.87074E-30]. A post-hoc Tukeys multiple 
comparison of means test at the 95% family-wise confidence level indicated a 
significant between-group difference for the size of particles in all the products 
analysed (Figure 4.4).  
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Figure 4.4.The confidence intervals do not cut through the zero mark, indicating a 

significant difference in the size of particles for all paired products. 

 

The measurement of particles at the magnification of 200X had an apparent effect 

on the size analysis of smaller particles. As such measurements conducted at the 

magnification of 200X revealed smaller particles than what was determined at the 

magnification of 100X. It was therefore apparent that size measurements at different 

magnifications demonstrated differences in particle size. Although the lower limit for 

particle size measurement was improved by using the higher magnification, it was 

uncertain whether differences in particle size would be observed based on the number 

of transects selected for size measurements.  

 

4.2.2.3. Evaluation of particle size analysis based on the number of transects used in 
a Sedgewick-rafter cell (SRC).  
 

One toothpaste and facial scrub were selected to determine differences in particle 

size based on different transect measurements. At the magnification of 100X, the 

results indicated that particles in TP1 exhibited differences in particle size distribution, 

based on the number of transects selected. As such particle size based on 6 transects 
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demonstrated a wider particle size distribution by comparison with 2 transect 

measurements (Figure 4.5). The particle size ranged from 75 to 400 µm in 2 transects 

measurements and 80 to 500 µm for measurements in 6 transects (Figure 4.5).  The 

results showed that when more transects were selected, more particles were observed 

and available for particle size measurements. For example, between 150 and 400 µm, 

the 6 transect measurements exhibited a higher number of particles by comparison 

with the 2 transect measurements. Consequently, it was possible to measure more 

particles based on the 6 transect measurements, which allowed for a more robust 

analysis of particle size. However,  measurements conducted at the magnification of 

100X indicated particle size distributions that varied with measurements determined 

at the magnification of 200X.  

There were differences in particle size distribution between the transect 

measurements.  For 2 transect measurements, the particle size distribution 

determined at the magnification of 200X ranged from 5 to 350 µm. By comparison, the 

6 transect measurements demonstrated a wider particle size distribution and ranged 

from 5 to 500 µm (Figure 4.5). As such size measurements conducted at the 

magnification of 200X proved useful for observing smaller particles that could not be 

detected at the magnification of 100X. However size distributions were characterised 

by multiple peaks, based on the different transect measurements. In particular, below 

the 100 µm size, particle size analysis determined in 6 transects was characterised by 

a higher numberof particles than measurements determined in 6 transects (Figure 

4.5).  

A comparison of the results for particle size measurements determined at the 

magnification of 200X demonstrated a wider size distribution than measurements 

conducted at the magnification of 100X. For example, a comparison of the smallest 

particles indicated that for 2 transect measurements, particles in TP1 analysed at the 

magnification of 100X were 15 times larger than those measured at the magnification 

of 200X (Figure 4.5). A similar trend was observed for the smallest particles in TP1 

determined in 6 transects. As such  the smallest particles determined at the 

magnification of 100X was 16 times larger than those determined at the magnification 

of 200X (Figure 4.5). However there was a marginal difference for the largest particles 

between magnifications, but this was not true in all cases. For example, the 

measurements determined using 2 transects indicated a larger particle size as 
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determined at the magnification of 100X. However,  the measurements determined in 

6 transects exhibited particles with the same maximum size (Figure 4.5). Therefore, 

the number of transects selected for size analysis had an influence on the size 

distribution of particles in TP1.    

 

  

Figure 4.5. Particle size distribution for TP1, determined by a selection of 2 and 6 

transects in a Sedgewick-rafter cell.The measurements determined at 100X indicated 

differences in size distribution with measurements conducted at the magnification of 

200X. In an SRC, one transect contains 50 individual counting chambers.  

 

In an equivalent experiment using a facial scrub,  the particle size distribution for 

FS1 indicated differences in the size distribution between transect measurements and 

magnifications. The measurements conducted in 2 transects exhibited a smaller 

particle size distribution by comparison with the 6 transect measurements. The particle 

size ranged from 70 to 350 µm for the 2 transect measurements and 70 to 400 µm for 

the 6 transect measurements (Figure 4.6). By comparison, the measurements 

determined at the magnification of 200X indicated size distribution ranged from 35 to 

250 µm for the 2 transect measurements and 25 to 225 µm for the 6 transect 

measurements (Figure 4.6). In addition at the magnification of 200X, smaller particles 
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that were not detected at the magnification of 100X were clearly seen and measured. 

The smallest particles determined at the magnification of 100X and in 2 transects 

measurements, was larger than the smallest particles determined at the magnification 

of 200X, by a factor of 2. The same trend was indicated for particles measured in 6 

transects and between the magnifications used (Figure 4.6). The measurements 

conducted at the magnification of 200X revealed the presence of smaller particles that 

were not detected before now. However  comparison with measurements at the lower 

magnification, showed that measurements using a higher number of transects at the 

higher magnification, demonstrated a smaller particle size range for the distribution.   

 

Figure 4.6.The size distribution for particles in FS1 based on measurements 

conducted in 2 and 6 transects in a Sedgewick-rafter cell. The differences in size 

distribution are demonstrated by the different selected transects and measurements 

determined at 100X and 200X.   

 

 The analysis of microplastics using this method showed that particle size 

measurements based on 14 selected transects (Section 4.2.2.1) was labour intensive 

and time consuming. 

200X 
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4.2.2.4. The volume reduction of particle samples to evaluate the effect on size 
measurements.  
 

The reduction of the sample volume had an effect on the size of particles measured 

in the selected products. The results demonstrated a wider size range of particles than 

the size range determined in Section 4.2.1.3, for TP1 but not in FS1. The largest size 

of particles exhibited in FS1 was smaller than what was previously determined by 80 

µm. As such, at the magnification of 100X, the size of the particles ranged from 50 to 

500 µm and 50 to 320 µm, in TP1 and FS1, respectively (Table 7). By comparison with 

the analysis at the 100X magnification, measurements determined at the magnification 

of 200X indicated a wider size range, with particles ranged from 5 to 500 µm and 35 

to 450 µm, respectively (Table 4.5).  

Results indicated differences in the size of particles in comparison to  the particle 

sizes described in section 4.2.2.1. For example, the smallest particles exhibited in TP1 

and measured at the magnification of 100X was 50 µm. This was 35 µm smaller than 

the minimum particle size exhibited by TP1 and measured at the magnification of 100X 

in section 4.2.2.1. It was clear from the results that the sample volume reduction had 

an effect on the smallest and largest particles because of the increased concertation 

of particles and, therefore the transfer and analysis of more particles  than in section 

4.2.2.1. Consequently the reduction of the volume for the particle samples was 

adopted in all further experiments. 
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Table 4.5. Size analysis of particles in TP1 and FS1 based on sample volume 

reduction 

        

The descriptive statistics and size range of particles determined in TP1 and FS1, 
measured at the magnifications of 100X and 200X.The particle sizes are based on the 
reduction of sample volume which allowed for the analysis of more particles.                     

  

After resolving the challenges encountered for the analysis of particle size using the 

laser diffraction and microscopy techniques, it was clear there were also challenges 

associated with estimating the number of particles in the products analysed. This was 

particularly true for the estimation of the number of particles using the imaging flow 

cytometry technique.  

 

4.3 Evaluation of the number of particles determined using different counting protocols 

by microscopy.  

  

To estimate the number of particles in the products selected, isolated particles were 

introduced onto a Petri dish. It was observed that the particles introduced on the petri 

dish were not stable and were  displaced every time the dish was moved during the 

counting process. Therefore at the magnification of 100X, the results indicated that the 

number of particles ranged from 107,800 (TP1) to 166,400 (FS1), accounting for 39% 

and 61% of microplastics in the products (Figure 4.7). It is likely that the displacement 

of the particles during counting would have resulted in a biased count and not given a 

true estimate for the number of particles. Therefore it was not possible to give an 

accurate estimate of the number of particles in all products analysed.  
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Figure 4.7. Pie chart showing the estimated number of particles per 100 g counted in 

selected personal care products at the magnification of 100X. 

 

A more standardised method for the quantification of particles was adopted using 

the Sedgewick-rafter cell. The Sedgewick-rafter cell proved useful for estimating the 

number of particles based on a pre-determined number of counting cells within 

transects. It was possible to estimate the number of particles in all transects of the 

SRC, but this would have been time consuming, labour intensive and would have 

resulted in errors. However, counting a smaller or larger number of transects 

demonstrated differences in the total number of particles, based on the number of 

transects used. For example, the number of particles determined in 6 transects of the 

SRC indicated the number of particles ranged from 8,240,000 to 8,430,000 particles, 

in FS1 and TP1 respectively (Figure 4.8). However, an estimation of the number of 

particles based on two transect counts revealed the number of particles ranged from 

2,746,667 to 5,920,000 in FS1 and TP1 respectively (Figure 4.8). Therefore the 

application of different estimation methods revealed differences in the estimated 

number of particles.  

The difference in the number of particles was also indicated when particle estimates 

where determined at different magnifications. As such at the  number of particles 

determined at the magnification of 200X indicated there were more particles than the 

estimates determined at the magnification of 100X. Therefore, the number of particles 

estimated in two transects at the magnification of 200X, ranged from 5,493,333 to 
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6,480,000 particles, as demonstrated by FS1 and TP1 respectively. By contrast the 

number of particles estimated in six transects ranged from 12,000,000 to 14,860,000 

particles, as demonstrated by FS1 and TP1 respectively (Figure 4.8).  

 

               

Figure 4.8. Histogram for the estimated number of particles per 100 g counted in all 

four personal care products at the magnification of 100X. 

 

The results indicated that the Petri dish method revealed the smallest number of 

particles, and was prone to error because particles were not stationary. However, by 

applying the SRC, provided more stability for the particles, and  there were differences 

in the number of particles based on the different transect counts. Although the general 

rule with a Sedgewick-rafter cell is to count at least 10% of the particles to get a 

statistically reliable number,  the 6 transect counts indicated the largest number of 

particles in the products selected. In addition, the number of particles determined at 

the magnification of 200X revealed more particles than the smaller magnification of 

100X. Therefore, all further particle estimation experiments were conducted by 

counting all the particles in 6 transects and at the magnification of 200X.   
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4.4. Challenges encountered for the analysis of particle size using the imaging flow 
cytometry technique.  

  
For the first time the imaging flow cytometry technique was used to characterise 

particles in personal care products. In particular, it is the first time this novel technique 

has been applied for the analysis in any microplastic study. Generally this technique 

is widely used to study biological cell processes, but has not been applied in any study 

of polymer particles. In addition, the capabilities of this technique as described in 

Chapter one, indicated its usefulness and application for the characterisation of 

particles separated from PCPs.  

However,  it was difficult to determine particle size and estimates for the number of 

particles in all the products. This was because of the occurrence of the calibration 

speedbeads which exhibited similar sizes to the particles separated from all four 

products. Therefore, it was a challenge applying the right template to differentiate 

speedbeads from particles separated from PCPs. Therefore, the challenges 

encountered and the results for the number of particles are presented in this section. 

 

4.4.1. Evaluation of template applied to differentiate calibration speed beads from 
particles in all products.  
 

The IDEAS software is equipped with a range of features that allowed for the 

development of templates to characterise particles in a sample. As a first step, the 

analysis of the size and shape of particles separated from PCPs was to be conducted. 

This was determined by area vs the aspect ratio scatter plots. The area feature which 

is the number of square microns in a particle which is equal to the area of that particle, 

was determined (Figure 4.9). Therefore, a particle exhibiting a smaller area suggests 

single particles, while particles with a larger area suggest doubling of particles 

otherwise called doublets. Furthermore, determining how long, short or round a 

particle is, was determined by the aspect ratio, which is the width divided by the height 

of the particle.  
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Aspect ratio:  AR= 
𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑗
      Area:  

Figure 4.9. Image of a particle indicating the aspect ratio and the area of the particle. 

 

 the calibration speedbeads (which monitors and adjusts the flow of samples) that 

continuously run through the instrument were not distinct from particles separated from 

PCPs. Consequently, an estimate of the number of particles could not be determined 

(Figure 4.9.1). 

 

Figure 4.9.1. Scatter plot for the estimated number of particles per mL determined in 

all four personal care products at the magnification of 100X. 

 

The next step was to develop a template that would distinguish speed beads from 

the particles. It is apparent that the calibration speeds exhibit a well-defined side 

scatter profile that can be used to tell them from other particles. Particles that pass 

through a beam of laser light scatter light. In addition, side scatter is proportional to 

the granularity of a particle. Therefore this characteristic exhibited by the calibration 

speedbeads was explored and applied to the development of a template (Figure 

4.9.2).  
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The results indicated that there were still overlaps between the particles and the 

calibration speedbeads. This was apparent from interrogating the template and 

observing the size and shape of particles in the image display gallery. The 

interrogation revealed that the speedbeads and some of the particles exhibited 

similarities in shape and size. In addition, the similarities were apparent after plotting 

a scatter plot of area vs intensity (Figure 4.9.2). 

 

 

Figure 4.9.2. Template developed to distinguish calibration speed beads from particles 

in the selected products, based on the SSC profile.Template consists of five sub-

templates to identify particles in focus (A); identify speed beads based on side scatter 

profile SSC (B).  

 

 Although observations of the scatter plot indicated that there were more particles 

than Speedbeads, a histogram plot to determine the number of particles showed 

differences. There were more speedbeads than the number of particles separated 

from the selected products. In particular, the speed beads were two times the number 

of particles in TP1 (Figure 4.9.3). It is not clear why this was so, but it could be because 

there were particles from the products that also exhibited a similar SSC profile to the 

calibration speed beads, and exhibited similarities in number.   
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Figure 4.9.3. Histogram for the number of speed beads and the number of particles 

separated from the selected products 

 

The number of particles from the selected products was not estimated using the 

templates developed. Therefore the calibration speed beads which continuously run 

through the instrument were turned off. Following this, another template was 

developed and applied to estimate for the number of particles in all products. 

 

4.4.2. The development of a template to estimate the number of particles recovered 
from PCPs after disabling the calibration speed beads.  
 

The analysis of particles separated from PCPs, was based on modifications of the 

template described in section 4.4.1. Therefore, single particles that were in focus were 

analysed using the template. There were less particles running through the instrument 

when the speed beads were turned off. This was indicated by analysis template for 

single particles and observed in the scatter plot of area vs aspect ratio (Figure 4.9.4).   
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Figure 4.9.4. Templates developed to identify single particles in the sample (left) and 

particles that were in focus (right). 

 

In addition, a template to distinguish between particles based on shape features 

was developed. This allowed for the analysis of two distinct populations of particles 

according to their shape. Therefore elongated and circular-like particles were 

determined by a plot of the aspect ratio vs normalised frequency (Figure 4.9.5). The 

separation of elongated from circular particles was based on values of the aspect ratio 

which follows that particles with aspect ratios of 1 represents a circle while values of 

1 represent a thin and elongated particle. Consequently, particles with aspect ratio 

values ranging from 0 – 0.55 were gated as elongated particles, while aspect ratio 

values ranging 0.56 – 1.0 were gated as circular particles (Figure 4.9.5).  
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Figure 4.9.5. Template developed showing distinctions between elongated and 

circular-like particles. 

 

 The elongatedness feature is the width divided by the height of the particle was 

used to identify particles that were long or short. The circularity feature is the degree 

of similarity of a particle to a circle, and measures the average distance from a particles 

centre to its boundary, and is divided by the variation of the distance. Therefore, larger 

the variation, the further away the particle is from a perfect circle and vice versa (Figure 

4.9.6).  

 

                                      

  

Figure 4.9.6. Descriptive image of the elongatedness and circularity shape features 

used to determine particle size. 

 

 To verify that the particles where either elongated or circular, random bins in the 

histogram were checked and images were successfully confirmed for both populations 
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(Figure 4.9.6.1 and 4.9.6.2. . A histogram plot was generated for particle size 

distribution to show elongated and circular particles.  

The results indicated that there more particles estimated in TP1 than in FS1 (Figure 

4.9.7). However,  there were differences in the number of particles based on the 

analysis features applied. Therefore, using the size features (length and diameter) the 

results indicated that the number of particles estimated were the same. For example, 

using the length and diameter features 159,980,700 particles were estimated in TP1 

(Figure 4.9.7). The results showed that the number of particles was the same for 

elongated and circular particles determined with the length and diameter features 

(Figure 4.9.7). It is apparent that the analysis for particle estimates was determined 

for the same population. Therefore, the number of particles determined would be the 

same.  

However,  the number of particles were different based on the shape features used. 

For example using the length feature,  there were more circular-like particles (CIR) 

than elongated particles (ELG) in TP1 (Figure 4.9.7).  

                   

Figure 4.9.7. Histogram showing estimates for the number of particles separated from 

TP1 and FS1.The length and diameter size features demonstrated the same number 

of particles for the products analysed. 

 

Sample preparation for the analysis of particles via imaging flow cytometry was 

carried out with filtered laboratory grade water. As such, the laboratory grade water 
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was run as blanks and as a part of quality control. However the analysis of the blank 

samples indicated high number of particles. Therefore  debris was present in the 

blanks, and was different from the particles separated from the selected products. 

Therefore, the analysis to estimate the number of particles was blank corrected for all 

samples, and the results are presented in  section  4.6.2. 

 

4.5. Characterisation of microplastics separated from Personal care products 

 

The results in this chapter are based on the outputs of the methods developed and 

techniques applied for the characterisation of particles in personal care products. In 

addition, the results for the characterisation of particles have been categorised based 

on the size, number, morphology and polymer identity of the particles in all personal 

care products analysed. Furthermore, a comparison of the characterisation results 

based on the different techniques used is presented in this chapter.  

The analysed data for particle size, number, morphology and polymer identity, have 

been presented as tables, graphs and figures, to describe the results and indicate 

significant differences where applicable.  

 

4.5.1 Assessing the size of particles in personal care products by Microscopy 

 

The size of particles measured at magnifications of 100X and 200X in all PCPs 

showed significant differences (Table 4.6). In addition, the differences exhibited 

between the measurements conducted at magnifications of 100X and 200X are 

highlighted in this section. The results showed that there was a wide size range of 

particles in all PCPs measured at magnifications of 100X and 200X. As such at 100X 

magnification, particles in FS2 and TP2 were recorded as having the smallest and 

largest particles in PCPs. By contrast, measurements conducted at magnifications of 

200X, indicated that TP1 and TP2 exhibited the smallest particles, while TP1 had the 

largest particles.  An analysis of particle size at the magnification of 200X was useful 

in observing smaller particles that were not observed at 100X magnification. Typically, 

the smallest particle size observed at 200X magnification was 10 times smaller than 
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the smallest particle viewed at 100X magnification (Table 4.6). In addition, there was 

a difference in the largest particle size viewed at 100X and 200X magnifications by 

margin of 50 µm.  

The results showed that the average size of particles exhibited differences between 

both magnifications. The mean size of particles at 100X magnification was recorded 

between 114 – 190 µm, and at 200X magnification the mean size of particles was 

between 72 – 146 µm (Table 4.6). Therefore, example, measurements conducted at 

the magnification of 100X indicated a larger mean size than what was measured at 

the magnification of 200X (Table 4.6). 

  

Table 4.6. Size of the particles measured in personal care products. 

 

Product Minimum  Maximum  Mean  Median 

 

TP1 

100X 200X 100X 200X 100X 200X 100X 200X 

50 5 433 483 157 72 155 38 

TP2 70 5 420 403 190 97 180 50 

FS1 50 40 317 407 120 143 105 125 

FS2 47 20 320 423 114 146 100 115 

 

The table shows the differences in minimum, maximum and mean values of microplastics per 
100 g of personal care products. The differences in size are based on measurements of 300 
particles per brand.  

 

There was a statistically significant difference between the size of particles in all the 

products measured at 100X, [F(3, 396) =24.72, p = 1.11E-14] (p < 0.001). Likewise, 

at 200X magnification, there was a statistically significant difference between the sizes 

of particles in the personal care products analysed, [F(3, 396) =15.75, p = 1.08E-09] 

(p < 0.001). Furthermore, there was a statistically significant difference between 

measurements conducted at the different magnifications [F(7, 792) =20.5519, p = 

1.8E-25] (p < 0.001).  A post-hoc Tukeys multiple comparisons of means test at the 

95% family-wise confidence level was determined between magnifications of 100X 

and 200X. The results indicated that half of the products contained particles with 

similar sizes. In addition a post-hoc Tukeys multiple comparisons of means test at the 
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95% family-wise confidence level was determined at 100X and 200X magnification. 

The results showed that at 100X magnification, the sizes of particles in all products 

were different except particles in FS2 and FS1 (Figure 4.9.8). By contrast however, at 

200X magnification, the post-hoc Tukeys multiple comparisons of means at the 95 % 

family-wise confidence level, showed that there was no difference in the size of 

particles in FS2 and FS1 and between TP2 and TP1 (Figure 4.9.9). Furthermore the 

post-hoc test for measurements at both magnifications revealed similarities and 

differences in the size of particles determined in all products analysed (Figure 4.9.9).    

        

Figure 4.9.8.Tukeys multiple comparisons of means at the 95 % family-wise 
confidence level. The confidence intervals that do not cut through the zero mark show 
a difference in the size of particles in the products. Confidence intervals that cut 
through the zero mark indicate similarities in the size of particles.  
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Figure 4.9.9. Tukeys multiple comparisons of means at the 95 % family-wise 

confidence level. Confidence intervals that do not cut through the zero mark show 

differences in the size of particles in the products. Confidence intervals that cut through 

the zero mark indicate no difference in the size of particles. Particle size denoted by * 

indicate measurements determined at the magnification of 200X.  

 

The results indicated that the different magnifications produced different results; 

particularly, there were also differences between particles in the products, measured 

at the same magnifications. Microscopy as a technique allows for the observation of 

particles, providing images which aid size measurements and observation of 

differences in size, as is the case of the particles in PCPs.  
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4.5.2. Assessing particle size distribution by Laser Diffraction 

 

This section describes the particle size distribution by the laser diffraction technique. 

The results are displayed as a cumulative frequency distribution graph, showing the 

different peak populations of particles in all four products analysed. The results have 

also been presented as Diameter (D) values which describe the percentage of 

particles that are less or equal to the percentage cut-off. Particle size distribution 

allows for the estimation of D, which describe the diameter of a sphere which groups 

particles of a sample into a defined ascending order by mass. Laser diffraction analysis 

showed that all four products contained particles with sizes from the low micron range 

up to hundreds of microns, (Figure 4.9.9.1). Generally, particle size ranged from 10 – 

900 µm, however, the distribution showed a cut-off at the larger size range, which was 

steep in all cases, and occurred between 300 and 900 µm (Figure 4.9.9.1). In addition, 

the results showed that there were specific differences in particle sizes across the 

personal care products analysed. Typically at the lower end of the measurement scale, 

the particle size distributions were more extended, which was more pronounced in the 

toothpastes. Although the number of small particles was low and was not visible in the 

cumulative frequency distribution graph, the raw data demonstrated their occurrence 

in the personal care products at 0.2 to 0.5 µm. However what was clear was that TP1 

exhibited the narrowest particle size distribution that ranged from 10 - 400 µm (Figure 

4.9.9.1). Likewise, the particle size distribution in TP2 demonstrated the occurrence of 

particles in the lower end, and although the peak was low, the raw data showed the 

occurrence of particles that ranged in size from 0.2 to 0.4 µm. Furthermore, TP2 

showed a particle size distribution that ranged from 10 - 600 µm (Figure 4.9.9.1). In 

comparison, the facial scrub FS2, demonstrated the broadest particle size distribution 

for all the products analysed (Figure 4.9.9.1).  

It was further observed that the tail of the particle size distribution demonstrated a 

left-skewed distribution showing that particle size distribution in all products was 

negatively skewed. To put it into context, the results based on laser diffractions 

showed that there were more particles ≥200 µm.  
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Figure 4.9.9.1. Particle size distribution of microplastic particles extracted from 

personal care products analysed using a CILAS 1180 particle size analyser. 

Cumulative graph showing microplastics size distribution in each brand of personal 

care product. All products analysed show multimodal peaks, indicating multiple peak 

populations for particles in the personal care products.  

 

The particles in all personal care products, exhibited a wide size range for measured 

D values, therefore this indicated that the texture of particles ranged from very fine to 

coarse (Table 4.7). For example, D10 values indicated that 10% of particles in TP1 

exhibited fine particles, but by comparison, FS1 with ~ 2 times the D10 value of TP1, 

exhibited fine particles (Table 4.7). The median size value described by the D50, 

showed different results for particles in the personal care products. As such the 

particles in all products analysed exhibited a medium texture, on the basis of the D50 

values. In particular, TP1 exhibited the largest size, which was larger than the smallest 

particle in FS2, by a factor of 1. The medium to coarse particles in the personal care 

products, described by the D90 value, showed 90% of the particles in FS1  and by 

contrast, 90% of the particles in FS2 exhibited medium to coarse particles (Table 4.7).  

The mean values for the particle size distribution was determined in all personal 

care products analysed. For example, the general mean size of particles in the 
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personal care products ranged from 276.7 µm - 351.1 µm (human hair is 40 – 300 

µm). These values describe the central point of the particle size distribution and is less 

used in reporting particle size analysis results, but is useful for comparison with the 

output other techniques. Based on the mean values, the particles in the four products 

exhibited a medium texture. 

  

Table 4.7. Diameter values of particles in personal care products. 

Product D10 % (µm) D50% (µm) D90% (µm) Mean (µm) 

TP1 220.7 340.5 502.8 351.1 

TP2 102.2 307.8 513.5 310.8 

FS1 91.9 276.4 443.9 276.7 

FS2 113.8 271.1 461.1 279.3 

 

D values at intercepts at 10, 50 and 90 % of the cumulative mass of particles in 
personal care products.  

 

 

4.5.3. Size analysis of particles in personal care products by Imaging flow cytometry 

  

In this section for the first time, analysis of microplastics (≤70 µm), using imaging 

flow cytometry is reported. In addition, for the first time, the area of microplastics is 

also reported. The template that was developed for the analysis of particles in the four 

PCPs was applied for particle size measurements. The analysis of particles in the four 

products indicated differences in the size of particles in the four PCPs. In particular, it 

was observed that the size measurements determined using the area feature revealed 

the widest particle size distribution by comparison to size measurements determined 

by the length and diameter features. 
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4.5.3.1 Development of a Gating strategy to identify single particle population 

 

 

                                

Figure 4.9.9.2. Step 1 of the development of the particle analysis template. Scatter 

plot of the area vs the aspect ratio to identify single particles.  

  

Following the identification of single particles, a texture feature, the gradient RMS, 

which measured the overall contrast of a particle, was used to identify particles that 

were in focus. Consequently, a histogram of gradient RMS versus normalised 

frequency was plotted (Figure 4.9.9.3). Subsequently, the particles in focus were 

divided into elongated and circular populations, by plotting a histogram of aspect ratio 

versus normalised frequency. Having established particles in focus, shape features; 

elongatedness and circularity were used to identify elongated and circular particles. 

The elongatedness feature is the proportion of the height over the width of the 

particle and was used to identify particles that were long or short. The circularity 

feature is the degree of similarity of a particle to a circle, and measures the average 

distance from a particles centre to its boundary, and is divided by the variation of the 

distance. Therefore, larger the variation, the further away the particle is from a perfect 

circle (Figure 4.9.9.3) 
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Figure 4.9.9.3. Template developed to identify particles that were in focus by plotting 

the histogram of gradient RMS. The images on the right show a description of the 

elongatedness and circularity of a particle. 

 

The separation of elongated from circular particles was based on values of the 

aspect ratio which follows that particles with aspect ratios of close to 1 represents a 

circle while values of close to 0 represent a thin and elongated particle. As such, the 

interrogation of the aspect ratio histogram revealed that circular and elongated 

particles were easy to differentiate at the mid cut-off point. Consequently, particles 

with aspect ratio values ranging from 0 – 0.55 were gated as elongated particles, while 

aspect ratio values ranging 0.56 – 1.0 were gated as circular particles (Figure 4.9.5).  

 

4.5.3.2. Application of the developed template for the analysis of particle size 

Having established a template for the analysis, the area, length and diameter size 

features were used to assess the size of particles in all four personal care products 

(Figure 4.9.9.5). The templates indicated that the area feature demonstrated the 

widest size distribution for the particles separated from all four products. In addition, 

the diameter feature exhibited the smallest particle size distribution (Figure 4.9.9.5).  
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Figure 4.9.9.5. Area, length and diameter size features used to analyse particle size 

 

 

4.5.3.3. Analysis of particles separated from PCPs using the area size feature 

 

In this section the template developed was used for the analysis of particles in the 

four products. In particular applying the area size feature demonstrated for the first 

time its application in microplastics research. To determine the area of particles based 

on the shape features, the elongated and circular shape features available in the 

template were applied determine particle area. In addition, the area for the elongated 

particles was generally larger than the circular particles, and this was true for the 

elongated particles analysed using the length and diameter features (Table 4.8). 
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The results of the area for ‘all’ particles indicated particle size ranged from 1 – 977.5 

µm2, exhibited by particles in FS2 and FS1 (Tables 4.8). In addition, the mean particle 

size ranged from 37 to 63.1 µm2. However there were clear differences between the 

area of elongated and circular particles. For example, a comparison of the mean 

particle size indicated that the elongated particles exhibited the largest particle (Table 

4.8). Furthermore, the results indicated that the elongated particles had the largest 

median particle size, by comparison to the circular and all particles (Table 4.8).  

Following the evaluation of the particle size analysis by area, the analysis of particle 

size based on the length feature was also reported. 

 

Table 4.8. Area of particles in personal care products measured using Amnis 

ImageStream Mark II imaging flow cytometry. The area of particles is based on the 

‘all’ particles, ‘elongated’ and ‘circular’ particles. The values for the area are in microns 

squared; all other values are in microns.  

 

 

4.5.3.4. Determination of the size of particles using the length size feature 

  

The length for all particles generally ranged from 1 – 103 µm demonstrating that 

FS2 and FS1 had the smallest and largest particles respectively (Tables 4.9). In 

particular, the size range was different for the elongated and circular particles. The 

elongated particles were generally larger than the circular particles (Table 4.9). By 
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comparison with the area size feature, the results indicated that the elongated particles 

determined using the length feature was larger by a factor of 3 (Table 4.9).  

The results showed that the median particle size ranged from 7.5 – 17.5 µm (Table 

4.9). However the results indicated that the elongated particles exhibited larger median 

particle sizes by comparison to the circular particles (Table 4.9). In particular, the 

median size for elongated particles was larger than the circular and all particles (Table 

4.9). However, the area feature indicated that the size of particles were generally 

larger than the particle size determined using the length feature (Table 4.9). 

 

Table 4.9.Size of all particles in personal care products measured using Amnis 

ImageStream Mark II imaging flow cytometryPopulations of particles were analysed 

based on the length feature using the template created. The size for all, elongated and 

circular particles are presented as minimum, maximum, mean and median, which are 

in microns.  

 

 

4.5.3.5. Assessment of particle size using the diameter size feature 

  

Generally, the diameter feature for the analysis of particles showed that particle size 

ranged from 1.1 – 33.7 µm (Table 4.9.1). In addition the results indicated that there 

were larger elongated particles by comparison to the circular particles (Table 4.9.1). 

As such the diameter feature showed that elongated particle size ranged from 1.9 – 

31.3 µm, exhibited by particles in FS1 and FS2 respectively. Furthermore, particle size 
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determined by the diameter feature showed that particles were also smaller than 

particles determined by the area feature by a factor of 29 (Table 4.9.1).   

The results indicated that there were differences in the mean particle size for the 

different shape features. For example, the range for the mean size for elongated 

particles ranged from 6.1 to 9.6 µm, however, the circular particles exhibited a smaller 

mean size distribution that ranged from 6.6 to 7.8 µm (Table 4.9.1). Therefore based 

on the mean particle sizes, the elongated particles were larger than the circular 

particles (Table 4.9.1).   

However, a comparison of the largest mean particle sizes indicated differences for 

all the shape feature categories (all, elongated and circular), used for the analysis. 

Therefore, the mean particle size measured using the diameter feature was 7 times 

smaller than the area and approximately 2 times smaller than the length feature (Table 

4.9.1).  

The median particle size for the elongated particles indicated particle size ranged 

from 5.9 – 8.5 µm, exhibited by particles in FS2 and FS1 respectively (Table 4.9.1). In 

addition, the results showed that the elongated particles exhibited larger particles by 

comparison to the circular particles (Table 4.9.1). However, the median sizes indicated 

that the diameter of the particles were 6 times smaller than the area and approximately 

2 times smaller than the length feature measurements (Table 4.9.1). 
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Table 4.9.1. Particle size determined using the Amnis ImageStream Mark II imaging 

flow cytometry. The diameter feature was used to analyse particle size and was 

categorised into all particles, elongated particles and circular particles. The values for 

the minimum, maximum, mean and median, and are in microns.  

 

 

4.5.3.6. Analysis of the particle size for artefacts of debris in blank samples 

 

As part of quality control, blank samples (filtered laboratory grade water processed 

alongside samples) were run and exhibited high particle counts. There were artefacts 

present in the samples that were different from the particles of interest. These artefacts 

had similar sizes to the particles in all products analysed. As such it was a challenge 

analysing particles in all products alone, because of the presence of the artefacts. 

Therefore the results for the analysis of the size of artefacts are presented in this 

section.  

The size of the artefact particles detected in the blank water samples was 

determined using the area, length and diameter features. However, the size for ‘all’ 

artefact particles was determined for the analysis. Because a general assessment of 

the artefact sizes was required, the size for the elongated and circular artefacts was 

not determined. Typically, the largest size range was observed for the area of the 

particles and ranged from 6 – 614 µm. In addition, the length of the particles ranged 

from 3 – 75 µm, and the diameter of the particles ranged from 2.9 – 102 µm (Table 

4.9.2).  
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Table 4.9.2. The average size for all artefacts analysed using the different size 

features for the imaging flow cytometry technique. 

 

Feature min max mean median 

Area 6 614 40 33 

Length 3 75 13.1 11 

Diameter 2.9 102 8.7 7.2 

 

4.5.3.7. Comparison of the size of artefacts and particles in personal care products 

   

The area, length and diameter size features were applied to determine the size of 

artefacts and particles separated from four personal care products. From the results 

that the average size of artefacts in the blank water samples exhibited similarities and 

differences with the size of particles separated from all personal care products. For 

example, the average area for artefacts was smaller than the size of particles in TP1, 

TP2 and FS1. However, although the average area of artefacts was larger than the 

average area of particles in FS2, the values were similar (Table 4.9.3).  

The similarities in the size of artefacts and particles in all products, made it 

increasingly difficult to separate the two distinct particle populations. The results 

indicated that the area and length of the particles in all products was generally wider 

than the artefacts seen in the blanks and samples. However, the diameter of the 

particles was smaller than the diameter of the artefacts (Table 4.9.3). An analysis of 

the average area, length and diameter of the artefacts and particles in all products 

indicated that there was no statistically significant difference [F(1,4) =0.180417, p = 

0.692866] (p < 0.05).  

Therefore, it is likely that the similarities in size would have made it difficult to 

successfully separate artefacts seen in the blanks and samples from the particles 

separated from the products.     
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Table 4.9.3. Comparison of the average size of artefacts and particles in personal care 

products. 

           

 

The imaging flow cytometry demonstrated the ability to determine the size of 

particles in all four products. The results highlighted the differences in particle size 

based on the different size features used.  

However, the ImageStream with its speed and sensitivity was able to detect 

artefacts that were seen in the blanks and sample of particles separated from the 

products. By comparison artefacts were not detected during the interrogation of blanks 

and particle samples by the microscopy and laser diffraction techniques. It is not clear 

why, but it is likely it is because the two techniques are not as sensitive as the imaging 

flow cytometry technique. In addition, because the application of the imaging flow 

cytometry technique is a novel application for the characterisation of particles in PCPs, 

it has provided baseline data upon which further studies can be conducted.  

  

4.6. Analysis of the number of particles in personal care products using microscopy 
and imaging flow cytometry 
 

In this section the results for the estimation of the number of particles per 100 g in 

all the personal care products analysed are reported. The differences between each 

product and at the magnifications of 100X and 200X are presented here. In addition, 

the differences in the number of particles based on the shape features used for the 

flow cytometry technique are also reported. Furthermore, the differences between the 

estimates for the number of particles between the microscopy and imaging flow 

cytometry techniques are compared and reported in this section.   

4.6.1. Evaluation of the number of particles in personal care products by microscopy 
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This section shows the microscopy results to determine the number of particles in 

personal care products per 100 g. The quantification of the particles in the personal 

care products revealed differences in number, between all products analysed. In 

addition, there were marked differences in the number of particles counted between 

the 100X and 200X magnifications.  

There were differences in the number of microplastic particles in the PCPs counted 

at the magnification of 100X. In addition, the difference between the smallest and 

largest number of particles in the products varied by a factor of 2. Therefore, the 

number of particles ranged from 6,234,000 to 13,190,667 particles per 100 g 

respectively, exhibited by particles in TP1 and FS1 respectively. In addition, TP2 and 

FS1 indicated a similar number of particles (Figure 4.9.9.6). Although there was an 

observed difference in the number of particles in all products, this difference was not 

statistically significant [F(2,9) =0.001721, p = 0.99828] (p < 0.05).  

By comparison, the analysis of the number of particles determined at the 

magnification of 200X indicated differences with estimates determined at the 

magnification of 100X. The number of particles estimated at 200X magnification 

ranged from 12,642,667 (TP1) to 24,934,667 (FS2) particles, and varied by a factor of 

2. In addition, TP2 and FS1 exhibited a similar number of particles and had 10,389,333 

and 10,606,667 particles per 100 g respectively (Figure 4.9.9.6). However the 

difference in the number of particles determined at the magnification of 200X was not 

statistically [F(2,9)=0.006008, p = 0.994014] (p < 0.05)   

There was a clear difference for the number of particles counted at magnifications 

of 100X and 200X. For example, the number of particles in FS2 counted at 

magnifications of 100 X and 200X, varied by a factor of 2 (Figure 4.9.9.6). However, 

there was no statistically significant difference between the numbers of particles 

counted between both magnifications, [F(1,6)=3.193781, p = 0.124148] (p < 0.05)   
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Figure 4.9.9.6. Box plot showing the number of particles per 100 g counted in personal 

care products at 100X (white box) and 200X (grey box). The box plot shows 

differences in number of particles between all products.  

 

This study identified that particle count at different magnifications will indicate 

number of particles that would be largely different, thus supporting the hypothesis. 

Generally, the results showed the same trend with measurements to determine the 

size of particles in all four products. As such just as size measurements at 100X and 

200X indicated differences in particle size within and between magnifications, the 

numbers of particles were also different within and between the magnifications used. 

Microscopy as a technique allows for the observation of particles, providing images 

which aid size measurements and observation of differences in size, as is the case of 

the particles in PCPs. 

 

4.6.2. Evaluation of the number of particles in personal care products by Imaging flow 

cytometry 

 

This section shows the results for the number of particles ≤70 µm, in personal care 

products per 100 g. The number of particles in personal care products was not 

successfully determined in all products, by imaging flow cytometry. It was observed 

that the analysis of ultra-pure water samples revealed the occurrence of artefacts, 

which contained a high number of particles as background levels. Consequently only 

the number of particles in FS2 was determined. In addition, the results in this section 
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indicated a general decrease in the number of particles with time during analysis. 

Furthermore, there was no difference in the number of particles in each product 

counted, based on the size features (length and diameter). Likewise for the size 

features further categorised into all, elongated and circular particles, there was no 

difference in number for all products analysed.  

As part of quality control, blank samples (filtered laboratory grade water processed 

alongside samples) were run and exhibited high particle counts. Consequently, the 

analysis of blank water samples revealed that 165,804 particles per unit mass were 

detected. Therefore the number of particles in each personal care product based on 

length and diameter features are blank corrected (Table 4.9.4). One sample, (FS2) 

exhibited particle numbers well above background count, with 3,766 × 106 particles 

per 100 g. Furthermore, a comparison of the blanks with FS2 showed that the blanks 

accounted for 4 % (standardised to 100 g) of the total number of particles analysed by 

imaging flow cytometry (Figure 4.9.9.7).  However the number of particles in other 

products could not be determined as they exhibited lower numbers to the blanks.  

It was observed during the operation of the ImageStream that two factors could 

account for this, firstly in all samples except FS2, the recovered plastics rapidly 

separated (settled and/or floated in the tube) which, was compounded by a delay in 

data acquisition by the instrument. During this delay, although the instrument was not 

acquiring, images of larger plastic particles were visible on the real time image display, 

and the acquired data indicate a decline in both the size and number of particles with 

time, consistent, with uptake of a non-homogenous sample. 

 

 

 

 

  

. 
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Table 4.9.4. Number of particles estimated in personal care products based on the 

length feature. 

 

Number of particles in personal care products using Amnis ImageStream Mark II imaging flow 
cytometry. Populations of particles were analysed based on all (A), elongated (B), and circular-
like particles. 

 

 

                     

Figure 4.9.9.7. Pie chart indicating the proportion of artefacts in the blank samples to 

the particles in FS2. 

 

There were observed changes in the number of particles estimated in all products 

over time. However, there were differences in time taken for the detection of larger 

particles across all the products. For example, based on the time series graph, there 

were larger particles indicated in TP1 and FS2 within 80 seconds of the analysis. 

However, by contrast, larger particles were still detected in TP2 and FS1, after 80 

seconds of analysis (Figure 4.9.9.8). Furthermore, this time-particle size trend 

100 g

Blank FS2
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indicating larger particles detected early in the analysis, was indicated more in FS2 

than the other products (Figure 4.9.9.8). 

  

 

Figure 4.9.9.8. Time size analysis for the number of particles estimated in all products.   

   

By comparison with microscopy, imaging flow cytometry indicated a higher number 

of particles by a factor of 151. Consequently, the application of the different techniques 

had an influence on the estimate of the number of particles. 

  

4.7. An assessment of particle morphology using light microscopy 

  

In this section the results show that the morphology of particles was largely different 

across all the products analysed. In addition, this difference was obvious between 

particle assessments at magnifications of 100X and 200X. Particles observed at the 
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magnification of 200X were more detailed than those observed at a magnification of 

100X.  

Generally the particles observed in all four of the personal care products showed a 

variety of shapes within and between each product. These ranged from irregular, 

grain-like, elliptical, rods to threadlike shapes (Figure 4.9.9.9). However, there were 

only a few particles that appeared to be circular in shape, and it was observed that 

there were differences in the texture of the particles observed. In particular, the 

particles in FS2 appeared more grain-like, by comparison to the particles in TP2 that 

appeared threadlike and elongated (Figure 4.9.9.9).  

.At 200X magnification, particles in all personal care products exhibited traces of 

smaller particles at some of the edges,  especially in TP2 (Figure 4.9.9.9). It is likely 

that with a manual technique like microscopy, many of these particles will be missed 

or will take a long time to count.    

The results also showed the different colours of the particles in the personal care 

products. The colours of particles in each product ranged from dark brown, grey, blue 

and black. In particular, TP1 exhibited particles that had a distinct blue colour, which 

was quite specific to this product.  

For this study, the smallest particle that could be analysed was ≥5 µm; as such the 

morphology and colour of smaller particles could not be accurately determined (Figure 

4.9.9.9). The different magnifications had an influence on the resolution of the particles 

in all products analysed. In particular, there were observed differences between 

particles from products at the same magnifications. In addition, seeing the particles 

can be used to decide if a good dispersion of the particles has been achieved.  
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Figure 4.9.9.9. The different shapes and colours of particles analysed under a 

microscope at 100X (A) and 200X magnification (B). 

 

4.8. Evaluation of particle morphology as determined by Imaging flow cytometry 

  

 In this section, the morphology of particles in all products analysed show that 

particle shape in the ≤ 70 µm fraction, ranged from elongated, irregular to circular-like 

shapes. The results also show the morphology of artefacts observed in the blank water 

sample. Therefore, the results of an assessment for the differences between particle 

shape and artefacts observed are reported.  

During the analysis of particles, each individual object shown in the histogram or 

dot plots can be interrogated and viewed in the image display gallery. Therefore, this 

ensured accurate identification of the particles of interest. The morphology of particles 

in the personal care products was determined using shape features to show the 

distinct sub-populations of particles. Imaging flow cytometry recorded an image of 

each particle which facilitated post analysis observation of the shapes of the 

microplastics in each product analysed.  

The particles observed ranged from elongated, irregular to circular-like shapes 

which were present in all samples including the blanks (Figure 4.9.9.9.1). However, 

particles in one product had a distinct morphology to particles in other 

products.Specifically, the particles in FS2 showed unique characteristics, notably a 

large number of perfectly circular objects. The fact that similar particles were not 

B 
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observed in other samples maybe due to their true absence and/or an artefact of 

separation during introduction to the imaging flow cytometer.  

An automated technique like the imaging flow cytometry did not fit with how a 

manual method like microscopy evaluates particles. Therefore the application of a 

different technique like imaging flow cytometry had an influence on the detail of the 

particle morphology. The ImageStream which combines the power of microscopy and 

flow cytometry is useful for the multi-spectral imaging of particles in flow. Furthermore, 

it creates a record of files and stores images automatically, that can be viewed later. 

This is unlike the microscopy technique where each image has to be acquired 

manually at the time of observation.   

   

Figure 4.9.9.9.1. Analysis of microplastics in personal care products using the Amnis 

ImageStream®X MkII at 20x magnification. Particles observed in blank samples (left 

image) and microplastics seen in FS2. Scale bar for all images is 20 µm. 

  

The results indicated that in all PCPs, some particles exhibited side scatter 

properties, as indicated by their detection in channel 06 (Ch06), which is the 

designated channel that detects this property (Figure 4.9.9.9.2).The imaging flow 

cytometer allows for the detection of particles that demonstrate these properties, and 

can be used to detect microplastic particles. However, it could not be applied in this 

study, because some particles in the blanks also exhibited side-scatter properties.  
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Figure 4.9.9.9.2. Image shows particles in PCPs and blank water samples that 

exhibited side-scatter properties. 

 

4.9. Assessing particle morphology in products using micro-FT-IR. 

 

The morphology of particles separated from personal care products was 

determined using the micro-FT-IR technique. The particles exhibited differences in 

their colour and morphology for all the products analysed (Figure 4.9.9.9.3). It was 

also again observed that particles in TP1 had a blue colour that was unique to this 

product alone. Similar to the imaging flow cytometry technique, an automated 

technique like the micro-FT-IR did not fit with the evaluation of particle shape, like the 

manual microscopy technique. By comparison with the imaging flow cytometry, both 

techniques exhibited differences in particle shape and in the detail of the shapes. The 

micro-FT-IR technique only allowed for the direct observation of the particle 

morphology, but the imaging flow cytometry used templates for the analysis of particle 

morphology. Therefore the application of a different technique like imaging flow 

cytometry had an influence on the detail of the particle morphology.   
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Although the FT-IR technique is widely used for the identification of particles, it can 

also be applied to the assessment of particle morphology. In addition, because it is a 

relatively automated technique, it allows for the investigation of particles of interest 

and as such, can be used to analyse the shapes and colours of the particles. Similar 

to the microscopy and imaging flow cytometry techniques, the FT-IR demonstrates the 

ability to detect agglomeration of particles and assess the degree of dispersion of the 

particles of interest.  

                    

Figure 4.9.9.9.3. Analysis of particles in personal care products using the micro-FT-IR 

technique. 

 

4.1.0. Application of infrared spectroscopy for the identification of polymer particles in 

personal care products 

  

This section shows the results for works conducted for the identification of particles 

separated from the personal care products. Using the functional group region of the 

IR spectrum, all particles were successfully identified with the absorbance peaks 

corresponding to the wavenumber regions unique to the polymer. Therefore, the 

application of micro-FT-IR and ATR-FT-IR technique confirmed the polymer identity of 

the particles separated from personal care products. Furthermore, the chemical 

imaging of particles separated from personal care products is also presented in this 

section. The micro-FT-IR technique was useful for the chemical imaging of the 

particles, and was presented as false colour images. All particles in the personal care 
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products were successfully identified using the regions of absorbance to confirm 

polymer identity.  

 

4.1.1. Determining the Polymer identity of particles in PCPs using micro-FT-IR 

  

The results presented as absorbance spectra showed that generally, the analysis 

of the particles demonstrated infrared absorption over the entire region of absorption, 

from 4000 -750 cm-1 (Figure 4.1.0). There were clear differences in the intensity of the 

absorbance peaks observed across the IR spectrum. In particular, there were 

noticeable high absorbance peaks, at the short wavelength (high wavenumber) end of 

the absorption spectra (Figure 4.1.0). The polymer identity of the particles was 

determined by assessing the absorbance peaks mainly in the functional group region 

of the IR spectrum (4000 – 1500 cm-1) and in the finger print region (1500 – 500 cm-

1). Consequently, the results of the scans demonstrated the presence of absorbance 

peaks in each polymer at 1500-1450 cm-1 and 3000-2770 cm-1, indicated by the 

bending and stretching of C-H bonds respectively. Therefore it was confirmed that the 

peaks identified in the absorbance spectra of the particles were unique to 

polyethylene. Consequently, all particles separated from the personal care products 

were polyethylene.  

Generally, the particles showed weak to strong absorbance peaks across the IR 

spectrum. Typically, there were strong peaks of C-H bonds between 3000-2770 cm-1, 

compared to the relatively medium absorbance peaks between 1500-1450 cm-1 and 

750 cm-1. There were observed differences in the absorbance peaks in each product 

and across all the products analysed (Figure 4.1.0). For example, there was a 

relatively low absorbance in TP1, by comparison to particles in other products 

analysed. Typically in TP1, the absorbance peaks for the C-H bonds between 3000 

– 2770 cm-1 demonstrated an absorbance of ~ 0.26 and 0.27 Au (Figure 4.1.0). By 

contrast, particles in FS1 exhibited the highest absorbance peaks at 0.45 and 0.47 

Au, corresponding to the C-H bonds between 3000 – 2770 cm-1 (Figure 4.1.0). To 

confirm the polymer identity of the particles a table indicating the FT-IR peaks and 

functional groups indicative of the plastic polymers was consulted (Table 4.1.0). In 

addition, particles were also identified using a spectrum search in a customised 
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polymer library that contained the spectra of polymers commonly associated with 

microplastics.  

     

 

Figure 4.1.0. Reflectance micro-FT-IR spectra of polyethylene scanned in absorbance 

mode using the micro-FT-IR. The absorption peaks were based on reflectance in 

imaging mode with 2 co-added scans per pixel, an aperture size of 25 μm2 and at a 

spectral resolution of 16 cm-1. 
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Table 4.1.0. IR absorptions of the functional groups for the identification of polymers 

of polyethylene and polyester. 

 

IR Frequency (cm-1)                               Functional Group 

Polyethylene 

2914, 2846 CH2 stretch 

1474 CH2 bend 

720 CH2  rock 

Polyester 

2969, 2907  C-H stretching 

1711 C=O stretching 

1504 Aromatic ring C=C stretching 

1472, 1405, 1340 C-H bending 

1241  Ester’s C-O stretching  

1093  C-O stretching  

871 Aromatic ring C-H bending  

718  C-H bending  

 

 

The micro- FT-IR technique combines the imaging capabilities of microscopy and 

FT-IR spectroscopy and requires relatively little simple preparation. In addition, the 

micro-FT-IR demonstrates the enhancement of spatial resolution, and allows for the 

identification of infrared bands and comparison with progressively smaller samples. 

Another advantage is that particles can be directly examined on membrane filters. This 

technique offers the user both reflectance and transmission mode options for the 

analysis of samples, both of which have their advantages and limitations. For this 

study, the reflectance mode was used which allowed for the analysis of opaque 

samples similar to the particles from the personal care products.  A major advantage 

with micro-FT-IR is the application of focal plane array detectors (FPA), which allows 

for the simultaneous and rapid collection of large amounts of infrared spectra for 
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particles in a sample; without the need to select particles by eye before analysis, and 

also provides an independent infrared spectrum. However, depending on the settings 

of the instrument, for example, the number of co-added scans, the analysis can take 

between minutes to hours to conduct. 

 

4.1.2. Determining the particle identity using ATR-FT-IR 

  

To assess whether reflectance micro-FT-IR had an effect on the spectra of particles, 

especially with regards to the shape of the particles, the analysis was compared to 

spectra produced by the ATR-FT-IR analysis. Consequently, the ATR-FT-IR was 

explored as an alternative technique for the polymer identification of particles in all 

products. The polymer identity of the particles in all four products was determined by 

identifying peaks in the functional group region of the IR spectrum (4000 – 1500 cm-1) 

and finger print region (1500 – 500 cm-1) (Figure 4.1.1). Therefore, peaks were 

identified at 3000-2770 cm-1 and 1500-1450 cm-1, which indicated stretching and 

bending of C-H bonds respectively, were unique to polyethylene (Figure 4.1.1). 

Consequently, all particles separated from all products and analysed by ATR-FT-IR 

were polyethylene. 
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Figure 4.1.1. ATR-FT-IR spectra of polyethylene particles identified in all personal care 

products. The peaks were based on reflectance in imaging mode with 2 co-added 

scans per pixel, an aperture size of 25 μm2 and at a spectral resolution of 16 cm-1. 

 

The ATR-FT-IR technique proved useful in the polymer identification of particles in 

all four products analysed. By comparison, the micro-FT-IR technique did not have an 

effect on the spectra of the particles. In addition, the shapes of particles in all four 

products had no effect on the spectra. The ATR-FT-IR technique allowed for the direct 

analysis of particles without the need to scan the surface of a filter paper. Therefore 

this technique is a rapid approach for the polymer identification of particles and can be 

used as a complementary technique with micro-FT-IR.  

 

4.2. Multi-technique comparison to characterise particles in personal care products 

 

The following section describes the characterisation of particles separated from 

personal care products using different techniques. In particular it highlights the 

comparison for the results of the different techniques used in the study. Furthermore 

the section is classified based on the analysis of particle size, number and 
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morphology. In addition each of the techniques used demonstrated different uses and 

applications  

 

4.2.1. Comparison of applied techniques used to determine particle size 

  

There were observed differences in the size, number and morphology of the 

particles analysed based on the different techniques used. In particular, the imaging 

flow cytometry results indicated the widest particle size distribution, based on the 

application of the area measurement size feature. This was followed by the laser 

diffraction measurements that revealed a wide size distribution, but was smaller in 

comparison to the imaging flow cytometry analysis. However of all the techniques 

used; microscopy demonstrated the smallest particle size distribution. Likewise, it was 

clear from the results that there were differences in the number of particles determined 

by using the different techniques. Therefore, the analysis of the number of particles 

showed that imaging flow cytometry exhibited the largest number of particles 

compared to the microscopy analysis. In addition, the morphology of the particles 

demonstrated the presence of similar shapes and colours for microscopy, imaging flow 

cytometry and FT-IR. 

Using the average size of particles, the laser diffraction technique indicated the 

largest particles in the four products analysed. This was followed by particles analysed 

by the microscopy technique and finally by the particles measured using the imaging 

flow cytometry technique which revealed the smallest particles because it measured 

particles in the ≤70 µm fraction (Figure 4.2).  
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Figure 4.2. Bar chart showing the mean size of particles as determined by the different 

techniques used. The chart shows the size of particles determined by microscopy at 

different magnifications (A), laser diffraction (B) and imaging flow cytometry (C) 

techniques. 

  

Apart from the differences in particle size, there were differences in the mode of 

analysis. For example, the laser diffraction technique, allowed the classification of 

particles size analysis based on the ‘D’ values, which indicated the differences based 

on particle texture. In addition, the classification of the size of particles was also based 

on the volume of the particles in the sample, otherwise called the volume distribution. 

Therefore it was possible to determine the size of particles at a particular percentage 

volume in the given sample.  

By comparison, the imaging flow cytometry technique allowed for the automated 

analysis of particles and classification according to size features. In addition, it gives 

great detail of the ≤70 µm fraction, showing wide size distribution within it. Therefore, 

apart from the area, the length and diameter of the particles were determined. 

Furthermore, it allowed for the classification of the particles based on the shape 

features. Therefore, particles were categorised into elongated, circular and ‘all’ 

particles. This was the only technique that demonstrated the ability to apply templates 

that automatically characterised particles based on set criteria.   
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This automated classification of particles was not possible with the microscopy 

technique. However, the microscopy technique allowed for the analysis of particle size 

at two different magnifications which revealed differences in particle size. This was 

useful in determining the observed differences in the size of particles between the 

magnifications. Although the option of different magnifications is possible with the 

imaging flow cytometry, the use of different magnifications is only limited by the field 

of view. For example at the magnification of 20X used for this study, the field of view 

was 120 µm width, however, a larger magnification of 60X has a smaller field of view 

of 40 µm width (Amnis EMD Millipore 2012). 

Likewise, the laser diffraction technique did not allow for the analysis of particles at 

different magnifications, as such it was not possible to compare particle size on that 

basis. Although the microscopy technique was manual and labour intensive, it allowed 

for direct observations of particles in all products analysed. That way, it was clear to 

see single and aggregate particles and determine particle size. However, the 

classification of particle size was not automated as it was with the imaging flow 

cytometry and the laser diffraction techniques.     

The techniques used for the measurements of particles demonstrated different 

modes of operation. It is likely that manual techniques are prone to bias, which is less 

likely in the automated techniques. A comparison of the sizing techniques showed that 

that the differences exhibited in the size of particles is likely because of the different 

measurement operating principles of the individual techniques. The application of the 

different techniques showed that different results will be produced for the same 

particles in a given sample. This is important especially in the evaluation of particle 

size in microplastics research. Furthermore, it is apparent that results produced by 

applying different techniques should be described based on the respective techniques 

used.    

It was hypothesised that measurements of particles size will produce results that 

would be similar, however, this has been disproved. Consequently, the application of 

the different techniques apparently had an influence on the size of particles in all four 

products analysed.  
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4.2.2. Evaluation of the particle number as determined by the application of different 

techniques 

  

Given that different techniques were used, there were clear differences in the 

number of particles in all products analysed (Figure 4.3). Although this study did not 

quantify particles by laser diffraction, the application of the imaging flow cytometry 

exhibited higher number of particles in FS2, than the number particles determined by 

microscopy (Figure 4.3). The highest number of particles determined by imaging flow 

cytometry was more than highest number of particles as determined by the microscopy 

technique, by a factor of 151. However, although the number of particles was not 

successfully determined in all products using imaging flow cytometry, both techniques 

indicated FS2 exhibited the largest number of particles. It is likely that the difference 

in the number of particles was because of the different modes of operation for both 

techniques. Typically, the imaging flow cytometry technique demonstrated the ability 

to automatically quantify particles, including debris. By contrast, using microscopy 

which is a manual technique, it was easier to observe particles that were different from 

those separated from the personal care products and accounted for debris. Therefore 

with microscopy, it was easier to identify debris by direct observation on the SRC, and 

so avoided counting them. 
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Figure 4.3. Bar chart showing the number of particles determined by the different 

techniques used. The larger number of particles as determined in FS2, by the imaging 

flow cytometry technique and the smaller number of particles as determined in FS2 by 

microscopy is also highlighted in the chart.  

  

4.2.3. Comparison of particle morphology applying different techniques 

 

There was a wide range of particle shapes in all four products analysed. In addition, 

the different techniques demonstrated differences in the general shapes for the 

particles analysed. The shapes of the particles ranged from irregular, rods to grain-

like shapes. The microscopy technique exhibited a more detailed shape description in 

comparison to the other techniques. Microscopy showed that there were irregular, 

grain-like, elliptical, rods to threadlike shapes (Figure 4.4). Similarly, the analysis of 

particle shape by the FT-IR technique revealed that particle shape ranged from 

elongated, irregular to circular-like particles and particles appeared more detailed. 

Using the microscopy and micro-FT-IR techniques, contours and particle shape 

characteristics were observed in more detail (Figure 4.4). By contrast, the imaging flow 

cytometry revealed less clearly defined shape descriptions, but it allowed for the 

classification of particles into elongated, irregular to circular-like shapes (Figure 4.4).  

Some particles had a shape that was unique to one of the products analysed. As 

such a comparison of the shapes across the techniques demonstrated that the 

particles in FS2 appeared generally circular and this was true for all techniques except 

FT-IR, which showed artefacts around the edges of the particle. These artefacts were 
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also visible in the microscopy images but not obvious in the imaging flow cytometry 

images (Figure 4.4). The techniques also demonstrated differences in the colour of 

the particles in all products analysed.  

The microscopy results showed a more realistic true colour description of the 

particles, followed by the FT-IR and the imaging flow cytometry. For example the 

unique blue colour of TP1 was observed using microscopy and the FT-IR, but was in 

grey colour with the application of the imaging flow cytometry (Figure 4.4). The 

difference in the colour output is likely due to the different modes of image capture 

unique to each technique. It is possible that manual and automated techniques will 

produce differences in the shape and colour of the particles observed. Generally, the 

different techniques demonstrated the ability to determine particle shape. The different 

techniques apparently had an influence on the shape and colour of the particles in all 

four products analysed.  

 

Figure 4.4. The images of particles in the personal care products are shown in the 

image above. The microscopy (A), indicate different shapes and colours of particles. 

The imaging flow cytometry (B) highlights different classifications for shape and 

shapes for artefacts. The micro-FT-IR (C) indicates the details and contours of 

particles in all products.  
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Similar to the analysis of microplastics separated from PCPs, challenges were 

encountered for the characterisation of particles abraded from KS. These challenges 

are detailed in the following section.  

   

4.3. Challenges encountered in method development for the characterisation of 

particles from kitchen scourers. 

 
The methodology developed for the characterisation of particles separated from 

personal care products was applied to particles abraded from kitchen scourers. 

However, the type of material from which the particles in the kitchen scourers were 

made from, influenced the application of already developed methods and therefore the 

characterisation of the particles. In particular, the size and number of particles abraded 

from the kitchen scourers was difficult to estimate, particularly because of the high 

number of fibre particles present in the samples. The high number of fibre particles 

was more obvious for all kitchen scourers, except KS2 and KS4 that did not abrade 

fibre particles. Furthermore, these observations were apparent when the abraded 

particles were analysed under the microscope at the magnifications of 100X (Figure 

4.5). 
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Figure 4.5. Photomicrograph of particles abraded from all kitchen scourers and 

determined at the magnification of 100X.The image shows a high number of fibre 

particles in KS1, KS3 and KS5. 

 

Because of the high number of fibre particles, it was difficult to clearly distinguish 

between the different particles of fibre and to determine particle size. Consequently, 

to reduce the high number of particles and to ensure measurements for particle size 

were determined, the samples of abraded particles were diluted. After the dilution step, 

it was possible to determine the size of all particles and in particular, fibre particles 

abraded from all kitchen scourers. However fibres were not observed in KS2 and KS4 

(Figure 4.6).  
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Figure 4.6. Photomicrograph of diluted sample of particles abraded from all kitchen 

scourers and determined at the magnification of 100X. 

 

All samples to determine the size and number of particles abraded from kitchen 

scourers were diluted because this sample preparation step reduced the concentration 

of particles and allowed for the particle analysis to be conducted. Therefore this step 

was adopted in the final experiments, and the results are presented in the next section.    

4.4. Final results for the characterisation of particles abraded from kitchen scourers 

 

In this section the results for the characterisation of particles abraded from kitchen 

scourers are presented. In addition, the results are based on the application of the 

methods and different techniques developed for the characterisation of particles in 
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personal care products. The techniques were useful for the characterisation of 

particles abraded from kitchen scourers. In this chapter, the results are sectioned 

according to the size, number morphology and polymer identity of the particles in all 

five kitchen scourers. Likewise, the results for the characterisation of particles, based 

on the shape and size features are also presented in this chapter. A comparison of the 

results for the characterisation of particles using different techniques is also reported. 

Consequently, particle size measurements by microscopy was reported based on the 

100X and 200X magnifications, size distribution of particles was determined by laser 

diffraction, and the analysis of smaller size particles ≤ 70 µm using the imaging flow 

cytometry was also reported. Furthermore, the polymer identity of particles abraded 

from kitchen scourers were confirmed using the micro-FT-IR, ATR-FT-IR. False colour 

images were also used to determine the intensity of absorbance as measured on the 

scale of absorbance. 

  

4.4.1. Assessing the size of particles from kitchen scourers using Microscopy 

  

The microscopy study allowed for the observation of differences in the size of 

particles abraded from the kitchen scourers. In particular, to demonstrate differences 

in size, the particles were classified according to two observed and distinct shapes 

(fragments and fibre), and was applied in all the five kitchen scourers analysed. It was 

observed that these differences were also noticeable when particles were measured 

at magnifications of 100X and 200X (Table 4.1.1). Therefore, the overall average 

particle size range was from 5 – 390 µm, measured at magnification of 100X. As such 

the smallest and largest particles were observed in KS4 and KS1 respectively (Table 

4.1.1).  

By contrast size measurements conducted at 200X magnification demonstrated an 

overall average particle size range from 2.5 – 1566.5 µm. The largest particle 

measured at magnification of 200X was ~ 4 times the largest particle determined at a 

magnification of 100X (Table 4.1.2). By comparison, measurements conducted at the 

magnification of 200X allowed for the observation of smaller particles. For example, at 

the magnification of 100X, the smallest particle observed was larger than its equivalent 

determined at the magnification of 200X, by a factor of 2.  
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In this study, shape features were used to determine the different categories and 

sizes of particles abraded from kitchen scourers. For example, the particles were 

classified into fragments (circular like) and fibres (elongated particles). Using these 

shape features to classify the size of particles, revealed differences in particle size and 

type for all the kitchen scourers analysed. Consequently, the measurements 

conducted at 100X magnification revealed that the largest fragment particle was larger 

than the largest particle of fibre. However, particles of fibre were not observed in all 

the kitchen scourers, as demonstrated by KS2 and KS4. Likewise, conducting the 

measurements at the magnification of 200X did not reveal any particles of fibre in KS2 

and KS4. Furthermore, measurements conducted at the higher magnification revealed 

larger particles.  

The mean size of particles observed indicated differences in all the five kitchen 

scourers analysed. The measurements conducted at 200X magnification showed that 

for ‘overall’, the largest mean particle size was 3 times the mean particle size 

determined at the magnification of 100X. There were differences in the size proportion 

of particles based on the size categories within and between magnifications.  

Table 4.1.1. Size of particles from kitchen scourers based on the size categories, 

measured at the magnification of 100X. The results are based on the particle size for 

overall average particle size, fragment, and particles of fibre. N.S represents not seen 

 

     

 

 

 

 

 

 

 

Product Minimum  Maximum  Mean      Median 

KS1   5.0      433  41.0            30.0 

KS2   5.0      220  36.0            23.0 

KS3 10.0      331  55.0            40.0 

KS4   5.0      566  67.0            40.0 

KS5 15.0      281  57.0            40.0 

Product Minimum  Maximum Mean         Median 

KS1 10.0   433  41.0            30.0 
KS2 10.0         220  36.0            23.0 
KS3 10.0   306  57.0            40.0 
KS4 10.0   566  67.0            40.0 
KS5 16.0   226  53.0            40.0 
Product Minimum  Maximum Mean           Median 

KS1 10.0    346 59.1                40.0 
KS2  N.S     N.S   N.S               N.S 
KS3 10.0     356 54.0                40.0 
KS4 N.S     N.S  N.S                N.S      
KS5 13.0    336 60.0                41.0 

Overall 

Fragment 

Fibre 
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Table 4.1.2. Size of particles from kitchen scourers based on the size categories and 

determined at the magnification of 200X. The results in the table describe the particle 

size for overall average particle size, fragments, and fibre particles. N.S represents 

not seen 

 

 

 

 

Product Minimum             Maximum           Mean          Median 

KS1 10.0      1600 146.4             80.0 
KS2 10.0        753.3 134.4           106.7 
KS3 10.0      1000 195.7           146.7 
KS4   5.0        580   30.0             10.0 
KS5 10.0        700 184.2            160 

 

 

 

 

 

 

There was a statistically significant difference between the overall mean size of 

particles abraded from kitchen scourers, measured at 100X, [F(4, 495) =4.66, p = 

0.00105] (p < 0.05). However, there was no statistically significant difference between 

the fragments and particles of fibre [F(1, 8) =2.03, p = 0.191846] (p < 0.05). Likewise, 

at 200X magnification, there was a statistically significant difference between the sizes 

of particles in the kitchen scourers analysed, [F(4, 495) =21.6767, p = 1.69452E-16] 

(p < 0.05). However, there was no statistically significant difference between 

fragments and particles of fibre measured at the magnification of 200X, [F(1, 8) 

=7.49707E-06,p=0.997882] (p < 0.05). Further analysis showed that there was a 

statistically significant difference in the overall particle size measurements conducted 

between magnifications of 100X and 200X.  

Product Minimum  Maximum  Mean       Median 

KS1 10.0    1566  194            120 
KS2   5.0      753  134            106 
KS3 10.0    1166  199            146 
KS4   2.5      580   29.9            10.0 
KS5 10.0    1016  213             155 

Product Minimum  Maximum    Mean           Median 

KS1 10.0     1533 242               160 
KS2 N.S       N.S  N.S               N.S 
KS3 10.0     1333 203               146.7 
KS4 N.S       N.S  N.S               N.S      
KS5 10.0     1333 243               150 

Overall 

Fragment 

Fibre 
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A post-hoc test was conducted to determine where the differences in the particle 

size were. As such, for the measurements conducted at the magnification of 100X, the 

confidence levels indicate the only between-group significant difference was for KS4 - 

KS1, and KS4 - KS2 (Figure 4.7).   

            

Figure 4.7. Tukeys multiple comparisons of means at the 95 % family-wise confidence 

level for particles measured at the magnification of 100X.The confidence intervals that 

do not cut through the zero mark show a difference in the size of particles in the 

products. Confidence intervals that cut through the zero mark indicate no difference in 

the size of particles.  

 

By comparison, the post-hoc test for particle size conducted at the magnification of 

200X was different from tests determined at the magnification of 100X. Therefore, at 

the magnification of 200X, the post-hoc test indicated significant differences, as 

indicated by particles in KS4 – KS1, KS3 – KS2, KS4 – KS2, KS5 – KS2, KS4 – KS3, 

and KS5 – KS4. All other between-group pairings did not indicate any significant 

difference (Figure 4.7.1).  
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Figure 4.7.1. Tukeys multiple comparisons of means at the 95 % family-wise 

confidence level for particles measured at the magnification of 200X.The confidence 

intervals that do not cut through the zero mark show a difference in the size of particles 

in the products. Confidence intervals that cut through the zero mark indicate no 

difference in the size of particles.  

  

The post-hoc test for particle size between the magnifications of 100X and 200X, 

indicated differences and similarities between particles. Therefore, out of the 45 

between-group comparisons, 27 product pairs did not contain 0 in the confidence 

intervals; therefore, these pairings demonstrated significant differences in particle size 

(Figure 4.7.2).   
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Figure 4.7.2. Tukeys multiple comparisons of means at the 95 % family-wise 

confidence level for particles measured at the magnification of 100X and 200X. The 

confidence intervals that do not cut through the zero mark show a difference in the 

size of particles in the products. Confidence intervals that cut through the zero mark 

indicate no difference in the size of particles. Particle size denoted by * indicate 

measurements determined at the magnification of 200X.  
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4.5 Assessment of the size distribution of particles abraded from kitchen scourers by 

Laser Diffraction 

 

In this section particle size distribution results are described using a cumulative 

frequency distribution graph. The graph indicates the different peak populations for 

particles abraded from the five kitchen scourers and the D values describe the 

percentiles (10, 50 and 90). Particle size distribution allows for the estimation of 

diameter (D value), which describe the diameter of a sphere which groups particles of 

a sample into a defined ascending order by mass.  

The laser diffraction analysis demonstrated that all five kitchen scourers contained 

particles with sizes from the low micron range up to hundreds of microns, (Figure 6.6). 

Although the lower and upper particle size limits detected by the instrument were not 

visible in the cumulative frequency distribution graph, the raw data indicated that there 

were particles as small as 0.04 to 0.4 µm. Therefore, based on the raw data, the 

particle size ranged from 0.04 – 2400 µm, with the distribution showing a rapid cut-off 

at the larger size range, which was steep in all cases, and occurred between 300 and 

700 µm (Figure 6.6).  KS4 exhibited the narrowest particle size distribution and ranged 

from 30 - 600 µm, and KS5 had the widest particle size distribution that ranged from 

40 – 2000 µm and was the only product with particles > 1000 µm (Figure 4.7.3).  

The results also showed that the particle size distribution was negatively skewed, 

indicated by the long left tail of the cumulative curve. Therefore there were larger 

particles in all the five kitchen scourers as indicated by the particle size distribution 

results. The results indicated specific differences in particle size across all five kitchen 

scourers analysed. This was apparent at the lower end of the measurement scale, 

where particle size distributions were more extended, and pronounced in KS4 and 

KS5 (Figure 4.7.3).  
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Figure 4.7.3. Particle size distribution of particles abraded from five kitchen 

scourers.The graph shows multimodal peaks indicating multiple peak populations for 

particles in the kitchen scourers. 

  

It was clear from the results that laser diffraction demonstrated a wider particle size 

distribution when compared to the particles size as determined by microscopy. For 

example, the largest mean size of particles determined by the microscopy technique 

at the magnifications of 100X and 200X were 67.6 and 199 µm respectively. By 

comparison, the largest mean particle size as determined by the laser diffraction 

technique, exhibited a particle size of 632 µm. As such the laser diffraction result was 

9 times larger than the size determined at the magnification of 100X and larger than 

particle size at the magnification of 200X, by a factor of 3.    

The D10 values indicated that particles from KS4 exhibited the finest texture 

measured at 49.4 µm however KS5 exhibited more medium texture particles (Table 

4.1.3). The results also showed that the median size described by D50, was different 
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for all the particles from the kitchen scourers. For example, the largest median particle 

size indicated in KS5 was larger than the smallest median size in KS3. Furthermore, 

according to the classification for particles, the median size for all particles abraded 

from kitchen scourers ranged between fine and medium. By contrast the particles 

abraded from KS5 were coarse. The results further showed that based on the D90 

values, which indicated medium to coarse particles, particles abraded from KS5 were 

the most coarse and were larger than the smallest  D90 values in KS2, by a factor of 

3.4 (Table 4.1.3).  

 Measurements of the mean particle size indicated that particles abraded from the 

kitchen scourers were generally coarse, and demonstrated that KS5 abraded the most 

coarse particles. . 

 

Table 4.1.3. Table shows size of microplastics based on D-Values (D10, D50 and 

D90), which describe the microplastics size distribution that are intercepts on a 

cumulative graph for 10 %, 50 % and 90 %. Mean particle diameter derived from a 

volume weighted distribution 

. 

Product D10 % (µm) D50% (µm) D90% (µm) Mean (µm) 

KS1 58.7 275 446 265 

KS2 64.1 251 434 254 

KS3 61.4 239 510 271 

KS4 49.4 296 455 274 

KS5 119 448 1484 632 

 

 

4.6. Application of the imaging flow cytometry technique to determine the size of 
particles abraded from kitchen scourers 
 

In this section of the results,the size analysis for particles abraded from kitchen 

scourers is reported. The template developed for the analysis of the particles from 

personal care products was applied to the particles abraded from kitchen scourers. 

Therefore, the particle area, length and diameter are reported in this section. 

Generally, the analysis indicated differences in particle size for the five kitchen 
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scourers. In particular, it was observed that the particle size determined using the area 

feature exhibited the widest distribution, by comparison to particle size determined by 

the length and diameter features. In addition, the results presented in this section show 

the differences in the size of particles based on the elongated and circular shape 

features. Using the shape features, microplastics were categorised according to ‘all’, 

circular-like particles referred to as fragments and elongated microplastics called fibre 

particles. 

 

4.6.1. Determination of the size of particles using the area feature 

   

The area of particles abraded from kitchen scourers was different for all five 

products analysed. In particular, there was a difference in the area of particles based 

on the different shape features used. Therefore, the area based on all the total number 

of particles ranged from 1 – 1401.5 µm2. In particular, KS1 all, KS2 all and KS5 all 

exhibited particles with the smallest area, and KS1 all had the largest particle area 

(Table 4.1.4). Furthermore, the difference between the largest and smallest area of 

particles was a factor of 5. By comparison, there were differences in the area of 

particles based on the shape classifications. As such, the largest area for elongated 

particle had the same size with the largest particle area for the ‘all’ shape feature 

(Table 4.1.4). However the largest area for the circular particles was less than the 

largest particle area for ‘all’ and ‘elongated’ particles by a factor of 2 (Table 4.1.4). The 

results also indicated that the smallest particle area was exhibited by the ‘all’ particles 

category, and was smaller by a factor of 3, in comparison to the ‘circular’ particles 

category (Table 4.1.4).  

Although the area of the particles between the shape feature categories looked 

different, the analysis of the mean values demonstrated that these differences were 

not statistically significant [F(2, 12) =0.498743, p = 0.619343] (p < 0.05). 
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Table 4.1.4. Area of particles abraded from kitchen scourers measured using Amnis 

ImageStream Mark II imaging flow cytometry. Area of particles is based on shape 

features for all particles, elongated and circular particles. The values for minimum, 

maximum, mean and median are in microns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.2. Analysis of particle size based on the length feature.  

 

The measurements of particle length showed a general particle size range from 1 

– 181 µm (Table 4.1.5). However, there were differences between the lengths of 

particles, based on the different shape features used. For example a comparison of 

the largest mean sizes indicated that particles in the ‘all’ category were smaller than 

the elongated particles. By contrast however, using the largest mean size, the circular 

particles were smaller than particles in ‘all’ (Table 4.1.5). The results also showed that 

the smallest particles were observed in ‘all’ and ‘elongated’ shape categories. In 

addition, multiple products exhibited the smallest particle across the different 

categories. Therefore, KS1all, KS2all and KS5all had indicated the smallest particles 

and KS5elongated exhibited the smallest particles in ‘elongated’ particles (Table 4.1.5). 

Product Minimum  Maximum  Mean      Median 

KS1  1.0    1401  67.0           48.5 

KS2  1.0      577  55.4           47.0 

KS3  1.5      728  70.1           57.0 

KS4  9.0    1264  79.9           56.0 

KS5  1.0      261  43.8           39.5 

Product Minimum  Maximum  Mean      Median 

KS1 4.0     1401  73.3          53.0 

KS2 4.0       553  52.5          45.0 

KS3 7.5       728  72.8          58.0 

KS4 10.0      1264  122           64.0 

KS5 3.0        228  39.2          36.5 

Product Minimum  Maximum  Mean      Median 

KS1 6.0       593  64.8          47.0 

KS2 6.0       417  56.6          48.0 

KS3 6.5       569  69.0          56.0 

KS4 13.5       402  61.6          54.0 

KS5   3.0       261  45.0          40.0 

All 

 

Elongated 

Circular 
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There was a statistically significant difference in the length of particles between all, 

elongated and circular particles measured using imaging flow cytometry [F(2, 12) 

=15.22423, p = 0.00051] (p < 0.05). 

 

Table 4.1.5. Table showing the length of particles abraded from kitchen scourers 

measured using Amnis ImageStream Mark II imaging flow cytometry. Area of particles 

is based on shape features for all particles, elongated and circular particles. The 

values for minimum, maximum, mean and median are in microns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.3. Assessment of particle size based on the diameter feature. 

  

Size analysis using the diameter feature for the analysis of particles abraded from 

kitchen scourers indicated that particle size ranged from 1.1 – 70 µm (Table 4.1.6). 

However, particle diameter was different based on the shape feature categories used. 

In particular, the results showed differences in the particle diameter, as determined by 

the different shape feature categories. Therefore, the elongated particles showed the 

Product Minimum  Maximum  Mean      Median 

KS1 1.0    140  12.7           11.0 

KS2 1.0    181  11.9           10.0 

KS3 1.5      73.  13.0           11.0 

KS4 4.0    110  14.1            11.0 

KS5 1.0       55.5  10.7              9.0 

Product Minimum  Maximum  Mean      Median 

KS1 1.5     140   17.1           15.0 

KS2 2.0     165   15.6           15.0 

KS3 3.5       70.5   17.2           16.0 

KS4 4.5     110   21.3           17.0 

KS5 1.0       44.5   13.7           13.5 

Product Minimum  Maximum  Mean      Median 

KS1 3   66.0  11.2            9.5 

KS2 2.5   69.0  10.8            9.0 

KS3 2.5   59.0  11.6          10.0 

KS4 4.0   65.0  10.9             9.5 

KS5 2.0   55.5    9.9             8.0 

All 

Elongated 

Circular 
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widest particle size distribution, (Table 4.1.6) and exhibited larger diameters than the 

circular particles by a factor of 2 (Table 4.1.6). 

  

Table 4.1.6. Table showing the diameter of particles abraded from kitchen scourers 

measured using Amnis ImageStream Mark II imaging flow cytometry. Area of particles 

is based on shape features for all particles, and circular particles. The values for 

minimum, maximum, mean and median are in microns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There were differences in the mean particle diameter for all the five products 

analysed. Although the mean particle diameter ranged from 6.8 – 17.2 µm, there were 

differences in the mean size between the shape feature categories. As such, the 

elongated particles had a larger mean diameter than the circular particles, by a factor 

of 2 (Table 4.1.6). However, the difference in particle diameter between the three 

shape feature categories was not statistically significantly different [F(2, 12) =0.93031, 

p = 0.421106] (p < 0.05).  

Product Minimum  Maximum  Mean      Median 

KS1  1.1   42.0 8.6             7.8 

KS2  1.1   26.5 7.9             7.7 

KS3  1.3   30.3  9.0            8.5 

KS4  3.1   38.7  9.2            8.4 

KS5  1.1   18.2  7.2            7.0 

Product Minimum  Maximum  Mean      Median 

KS1 2.2     42.0     8.0          8.2 

KS2 2.2     25.8     7.7          7.5 

KS3 3.0     70.0   17.2        16.0 

KS4 3.4     38.7   10.4          8.7 

KS5 1.9     17.0     6.8          6.8 

Product Minimum  Maximum  Mean      Median 

KS1 2.7    27.2   8.5            7.7 

KS2 2.7    22.9   8.0            7.8 

KS3 2.8    26.6   8.9            8.4 

KS4 3.8    21.2   8.5            8.2 

KS5 1.9    18.2   7.3            7.1 

All 

Elongated 

Circular 
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Imaging flow cytometry was useful to determine the diameter of particles abraded 

from kitchen scourers. However, the results were not compared with microscopy 

because measurements of particle diameter was not determined using the technique. 

Differences in the size of particles when the different size features measurements 

were applied. As such the results showed that the particle area was larger than the 

length of the particles, and this was true in all particle shape categories. For example, 

for all particles, the largest particle area was larger than the particle with the longest 

length by a factor of 7 (Table 4.1.7). 

 

Table 4.1.7. Evaluation of the differences between particle size measurements using 

the area and length features by the imaging flow cytometry. 

 

Product Area (µm2) Length (µm) 

KS1    1401 140 

KS2      577 181 

KS3      728 73.0 

KS4    1264 110 

KS5      261 55.5 

 

 

By comparison to length measurements determined with microscopy, the particles 

determined by imaging flow cytometry were generally smaller. This is because of the 

differences in maximum particle size each technique can determine. For example, 

using the mean particle length for ‘all’ particles, conducted at magnifications of 100X 

and 200X indicated larger particles than particles measured using imaging flow 

cytometry. As such the using the largest mean lengths, particles measured using 

microscopy at the magnification of 100X, were larger than imaging flow cytometry 

measurements by a factor of 4 (Table 4.1.8). However, measurements conducted at 

200X were 15 times larger than the lengths for all particles as determined by imaging 

flow cytometry (Table 4.1.8). 
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Table 4.1.8. Determining the differences between the mean lengths for ‘all’ particles 

measured using the microscopy and imaging flow cytometry techniques. The units for 

the measurements are in microns. 

 

 Microscopy Imaging flow cytometry 

Product 100X 200X 20X 

KS1 41.0 194 12.7 

KS2 36.0 134 11.9 

KS3 55.0 199 13 

KS4 67.0 29.9 14.1 

KS5 57.0 213 10.7 

    

 

The imaging flow cytometry demonstrated the ability to determine the size of 

particles abraded from the five kitchen scourers. The results highlighted the 

differences in particle size based on the different particle shape features applied. 

These differences were based on the maximum and mean particle sizes. Therefore 

measurements of area, length and diameter had an apparent influence on the size of 

particles in the products analysed. The ImageStream with its speed and sensitivity 

was used to determine the size distribution of particles in personal care products. This 

is the first time particles abraded from kitchen scourers is reported. In addition, no 

other study has reported particle size measurements of particles from kitchen scourers 

using imaging flow cytometry. Furthermore this technology is novel and represents 

advancement in particle size analysis of microplastics. However, it was not apparent 

which technique was better, in terms of consistency. The microscopy technique 

demonstrated measurements for larger particles and exhibited a larger size range 

however the imaging flow cytometry technique exhibited the lower size range.  

    

4.7. Estimation of the number of particles abraded from kitchen scourers 

  

The results for the number of particles abraded from all five kitchen scourers per 

wash are reported. In addition, the results indicate the differences between each 

product, estimated at the magnifications of 100X and 200X. Furthermore, the 
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differences in the number of particles based on the shape categories. The results for 

the flow cytometry technique indicate the differences in the number of particles 

abraded form all kitchen scourers, based on the shape features applied. In this section, 

a comparison of the differences between the numbers of particles estimated using the 

microscopy and imaging flow cytometry techniques are presented in this section. 

   

4.7.1. Evaluation of the number of particles abraded from kitchen scourers by 

microscopy 

 

In this section, the number of particles abraded from kitchen scourers in one wash 

cycle, as determined by microscopy is presented. The results showed differences in 

the number of particles for all five kitchen scourers analysed. In addition, the difference 

in the number of particles was demonstrated by the shape feature classifications. 

Furthermore, there were clear differences in the number of particles determined at 

magnifications of 100X and 200X (Figure 4.7.4). However these differences were not 

statistically significantly different.  

The total number of all particles (fragments and fibre) abraded from kitchen 

scourers determined at 100X magnification ranged from 246,222 ± 6711 to 1,234,222 

± 30,101 particles per wash (Figure 4.7.4).Therefore KS1 and KS5 exhibited the 

smallest and largest number of particles for the all particles. By contrast, the number 

of all particles determined at the magnification of 200X exhibited a wider range for the 

number of particles. Particle count conducted at the magnification of 200X indicated 

higher particle count than the number determined at the magnification of 100X, by a 

factor of ~ 1.3 (Figure 4.7.4). This was consistent with the estimation of the number of 

particles in personal care products using the microscopy technique.  

The results showed differences in the number of particles of fibre and fragments as 

determined within and between magnifications of 100X and 200X (Figure 4.7.4). In 

particular, the difference between the number of particles of fibre and fragments was 

product specific. For example, at the magnification of 100X KS1 indicated the highest 

number of fibre particles which accounted for 80% of the total number of particles 

abraded from KS1.  
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However, not all products exhibited particles of fibre as demonstrated by the 

particles in KS2 and KS4. Therefore, there were more particles of fragment in KS2 

and KS4, which accounted for 100% of the total number of particles in those specific 

products (Figure 4.7.4).  Some products indicated higher number of fibre particles than 

fragments, including KS1 and KS5 where fibres accounted for 80% and 69%, 

respectively of the total particle count at the magnification of 200X (Figure 4.7.4). A 

similar trend in the proportion of fibre particles to fragments was exhibited with counts 

conducted at both magnifications (Figure 4.7.4).  

 

Figure 4.7.4. Bar chart showing the number of particles released from kitchen scourers 

per wash. Values based on counts in six transects of a Sedgewick-Rafter cell at 200X. 

Particles categorised into all, fragments and fibre. 

  

The analysis of the proportion of fibre to fragment particles indicated overall 

differences in the five products analysed. At the magnification of 100X, the particles of 

fragments and fibre accounted for 48% and 52% of the total number of particles in the 

kitchen scourers (Figure 4.7.5). By contrast, the particles of fragments and fibre 

accounted for an average of 55% and 45% of the total number of particles, counted at 

the magnification of 200X (Figure 4.7.5). Although differences were indicated in the 

results, there was no statistically significant difference between the number of 

fragments and fibre particles. This was true for counts conducted at the magnification 

of 100X, [F(1, 8) =0.024059, p = 0.880577] (p < 0.05). Likewise there was no 

statistically significant difference between the number of fibre and fragments at the 

magnification of 200X [F(1, 8) =0.180329, p = 0.682281] (p < 0.05).  
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Figure 4.7.5. Pie chart indicating the proportion of particle fragments to fibre particles 

abraded from kitchen scourers, as determined at the magnification of 100X and 200X. 

 

The microscopy technique demonstrated the ability to estimate the number of 

particles abraded from all five kitchen scourers. In addition, it was possible to 

determine particle number estimates at two different magnifications. This was 

consistent with the estimation of the number of particles from personal care products. 

Therefore, for the kitchen scourers and personal care products, the estimation for the 

number of particles at the higher magnification indicated a greater number of particles 

were counted. However, the estimation of the number of particles based on the shape 

feature classifications was demonstrated by the kitchen scourer particles but not the 

particles from the personal care products. This is apparently because particles 

abraded from the kitchen scourers exhibited more defined shapes than the personal 

care products particles that were largely varied.  The microscopy technique has shown 

that the number of particles abraded from kitchen scourers at different magnifications 

had an apparent influence on the number of particles and so disproves the hypothesis. 

 

4.7.2. Evaluating the number of particles abraded from kitchen scourers using Imaging 

flow cytometry 

 

The number of particles (≤ 70 µm) abraded from kitchen scourers and determined 

by imaging flow cytometry is presented in this section. In addition, the results indicate 

the difference in the number of particles abraded from all five scourers. Furthermore, 

48%
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the difference in the number of particles based on the different shape features is 

reported in this section. The results for the blank water sample which revealed the 

presence of artefacts is presented in this section.  

The analysis followed the same pattern with the particles from the personal care 

products. As such, all (total) particles were counted and then were divided into 

elongated and circular particles. To put these features into context, the fibre like 

particles are described as elongated particles, and the particles of fragments are 

described as circular particles. After applying the template created for the analysis, the 

number of particles was computed and standardised to particles per wash. 

The total number of particles abraded from kitchen scourers ranged from 1,743,797 

particles to 23,873,686 particles (KS4 and KS5 respectively) (Figure 4.7.6). The 

number of elongated particles ranged from 567,186 to 4,783,961 particles (KS4 and 

KS5 respectively). By contrast, the circular particles demonstrated a wider particle 

number distribution to elongated particles. As such, the number of circular particles 

ranged from 1,155,044 – 18,948,949 particles (KS4 and KS5 respectively) (Figure 

4.7.6). There were therefore many more circular particles than elongated particles by 

a factor of 3 (Figure 4.7.6).  
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Figure 4.7.6. Bar chart showing the number of particles abraded from kitchen 

scourers using the Amnis ImageStream Mark II imaging flow cytometer. Three 

populations of particles were analysed based on the shape features from the 

template created. 

 

There were differences in the number of elongated and circular particles abraded 

from the different scourers. As such the circular and elongated particles accounted for 

an average of 74% and 26% respectively, of the total number of particles abraded 

from the kitchen scourers (Figure 4.7.7). Although there was a clear difference 

between the number of circular and elongated particles, it was not statistically 

significant, [F(1, 8) =4. 837131, p = 0.059054] (p < 0.05).  

 

 

              

Figure 4.7.7. Pie chart indicating the proportion of elongated and circular particles 

abraded from five kitchen scourers, and determined by imaging flow cytometry.  

 

The blank water samples (filtered laboratory grade water processed alongside 

samples) run as part of quality control exhibited a particle count of 15249. The number 

of particles in the blank water sample was subtracted from the number of particles 

from the kitchen scourers. The particles in the blank samples accounted for different 

proportions of particles for all samples analysed. For example, the blanks accounted 

for < 1% of the total number of particles in KS4 (Figure 4.7.8). 
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Figure 4.7.8. Pie chart for the proportion of particles in the blank water samples to the 

particles abraded from all five kitchen scourers. 

  

In comparison to microscopy, imaging flow cytometry which analysed ≤ 70 µm 

fractions, demonstrated a higher number of particles (Figure 4.7.9) up to 14 times 

higher than the numbers indicated by microscopy. Furthermore, the differences in the 

number of particles determined by using both techniques was a statistically 

significantly. In particular, there was a statistically significant difference between the 

number of particles determined by microscopy at the magnification of 100X and 

imaging flow cytometry [F(1, 8) =10.55474, p = 0.011722] (p < 0.05); and at 200X 

magnification [F(1, 8) =9.921847, p = 0.013601] (p < 0.05). 
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Figure 4.7.9. Histograms for the number of particles estimated using the imaging flow 

cytometry technique (Imagestream); and the microscopy technique determined at the 

magnifications of 100X and 200X. 

 

The application of imaging flow cytometry demonstrated the ability to estimate the 

number of particles abraded from kitchen scourers. In addition, the analysis followed 

the same pattern for particles in FS2 for the personal care products. More particles 

were abraded from the kitchen scourers but less was separated from personal care 

products. Furthermore, this was also true for the application of developed templates 

and for the detection of artefacts of debris which was not possible with microscopy. 

The results showed that the choice of technique had an influence on the number of 

particles abraded from the kitchen scourers.    

 

4.8.0. Assessment of the morphology of particles abraded from kitchen scourers as 

determined by different techniques 

 
In this section, the results for the morphology of the particles abraded from kitchen 

scourers using different techniques are reported. In particular, the differences in the 

particle shape between each product and across the techniques used are also 

presented in this section. Furthermore, the colour of particles is frequently used as an 

added description of the particle morphology. As such in this section the colour of the 

particles are reported.  
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4.8.1. Morphology of particles by Microscopy 

  

In this section, the morphology of particles abraded from kitchen scourers is 

presented. The differences in morphology within and between the magnifications used 

are highlighted and indicated the different colours of the particles. The particles 

abraded from all five kitchen scourers exhibited a range of shapes and colours. 

Generally, the shape of the particles ranged from irregular, grain-like and threadlike 

shapes (Figure 4.8.0). However, for easy shape classification, the particles appeared 

either as a fragment or particle of fibre (Figure 4.8.0). However, not all products 

analysed indicated the presence of particles of fibre, as demonstrated by KS2 and 

KS4 (Figure 4.8.0).  

The particles observed at both magnifications demonstrated the occurrence of 

sharp edges noticeably around some of the particle fragments (Figure 4.8.0). All 

fragment particles observed exhibited these artefacts and was not unique to any 

specific product (Figure 4.8.0). The particles abraded from the kitchen scourers were 

characterised by unique array of shapes. For example at the magnification of 100X, 

particles in KS1 exhibited shapes ranging from oblong to multi-edged particles. The 

same was true for particles analysed at the magnification of 200X, where for example 

particles in KS5, particles were characterised by horse shoe-like shapes (Figure 

4.8.0).  
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Figure 4.8.0 Images of particles abraded from five kitchen scourers and analysed at 

magnifications of 100X (left image) and 200X (right image). The different products 

showed differences in shape and colour for particles analysed in all five products. 

    

The results showed the different colours of the particles abraded from kitchen 

scourers. Therefore, the assessment of colour of particles abraded from kitchen 

scourers revealed differences between each product. As such, the colours of the 

particles ranged from black (KS1, KS2, KS5), light brown (KS3) to green (KS4) as was 

observed. 

Microscopy allows for the observation of particles, providing images which aid 

measurements and observation of differences as demonstrated by the particles 

abraded from the kitchen scourers. The application of different magnifications had an 

influence on the resolution of the particles with clear differences between particles 

from the same product at different magnifications.  

 

4.8.2. Evaluation of particle morphology as determined by Imaging flow cytometry 

  

The morphology of particles abraded from the kitchen scourers was determined 

using shape features to show the distinct populations of particles. In addition, the 
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imaging flow cytometry recorded an image of each particle which facilitated the post 

analysis of the particle shapes in all the products analysed. The detection of particles 

was achieved by interrogating the histogram plots in the analysis template, and 

matching them with corresponding objects in the image display area of the analysis. 

For example, elongated particles abraded from the kitchen scourers were identified 

based on interrogations of the histogram and confirmed in the image display area 

(Figure 4.8.1). Therefore, elongated and circular particles were successfully detected 

and easily differentiated.  

 The shape of the particles ranged from elongated, irregular to circular-like shapes. 

However it was easier to classify the particles into elongated and circular particles, 

based on the aspect ratio template (Figure 4.8.1).  
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Figure 4.8.1. Types of particles abraded from the five kitchen scourers analysed. 

 

The results indicated that the particles abraded from kitchen scourers were clearly 

observed in Channel 1, which is the default channel for the display of particles. 

However only particles abraded from KS1 were visible in all the channels (Figure 

4.8.2). As such, based on the channels were particles were detected, the particles in 

KS1 emitted low light energy absorbed from the light source and were largely granular. 

Therefore, the abraded particles from KS1 exhibited both fluorescent and side scatter 

properties.  
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 KS2 and KS5 detected in channel 6, exhibited particles that did not indicate 

fluorescent properties, but demonstrated side scatter properties (Figure 4.8.2). By 

contrast however, products KS3 and KS4 had particles that were observed only in 

channel 1, suggesting that the particles did exhibit only fluorescent properties but not 

side scatter properties (Figure 4.8.2). The detection of fluorescent and side scatter 

properties of particles; as is possible with the imaging flow cytometry technique can 

be applied for the detection of particles that exhibit these characteristics.  

  

Figure 4.8.2. The elongated and circular particles abraded from five kitchen scourers 

determined by the imaging flow cytometer. The particles exhibited differences in 

fluorescence and side scatter properties. KS1 indicated particles demonstrated 

fluorescence and side scatter properties. Scale bar for all images is 20 µm. 

  

The results indicated that particles abraded from kitchen scourers exhibited a range 

of colours but were not a true reflection of the actual colours. In particular, the colours 
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observed were dependent on the channel where the particles were detected. 

Therefore, in channel 1, the particles were black and white, but in channels 2 to 5, the 

colours ranged from dark green, light green, light brown, bright red and bright pink. 

Particles from KS1 exhibited all possible colours because they were detected in all the 

channels. In addition, KS2 and KS5 were characterised by black and white, and bright 

pink colours, indicative of their detection in channels 1 and 6 (Figure 4.8.2).   

An automated technique like the imaging flow cytometry did not fit with how a 

manual method like microscopy evaluates particles. Consequently, the application of 

imaging flow cytometry, a different technique to microscopy, gave a different outcome 

to microscopy. In particular it was relatively easier to automatically separate particles 

into distinct populations based on their shape, which was manually determined with 

microscopy. The ImageStream which combines the power of microscopy and flow 

cytometry is useful for the multi-spectral imaging of particles in flow.  

  

4.8.3. Assessing particle morphology in products using micro-FT-IR 

 

The particles abraded from the five kitchen scourers exhibited clear differences in 

their morphology and colour. For example, particles abraded from KS1 and KS2 

exhibited particles that were irregular and circular-like (Figure 4.8.3). As such, the 

particle shapes ranged from elongated, irregular to circular-like particles. The analysis 

by micro-FT-IR indicated that KS5 demonstrated a black colour which was true and 

unique to the product (Figure 4.8.4).  
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Figure 4.8.3. Morphology of particles abraded from KS1 and KS2 using the micro-FT-

IR technique. The products were characterised by irregular and circular-like particles 

and a green colour. 

 

                             

Figure 4.8.4. Morphology and colour of particles abraded from KS5 using the micro-

FT-IR technique. The particles from KS5 exhibited a black colour that was unique to 

this product. Particles appeared more irregular than elongated or circular-like. 
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By contrast, it was a bit of a challenge observing some particles as it was with 

particles in KS3 which appeared white, the same colour with the surface of the filter 

paper (Figure 4.8.5). However, this was directly confirmed by interrogation of the 

samples, as the true colour of the kitchen scourer. 

  

                         

Figure 4.8.5. Colour of particles abraded from KS3 using the micro-FT-IR technique. 

The particles abraded from KS3 exhibited a white colour that was the same with the 

surface of the filter paper. 

  

It was not clear how the automated micro-FT-IR technique fit with the imaging flow 

cytometry technique. The images produced by the micro-FT-IR technique appeared 

larger and demonstrated a more detailed particle morphology than the imaging flow 

cytometry technique. This was apparent because of the differences in the spatial 

resolution for both techniques.  

Another comparison with imaging flow cytometry was that particles that make up 

debris were not present or were not detected. However with the imaging flow 

cytometry, there was debris in the blank water samples. It is possible that there was 

debris in the blanks, they did not absorb IR light and so were not detected. By 

comparison the blanks absorbed light energy that was detected by the imaging flow 
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cytometry. As such, the imaging flow cytometry technique appeared to be more 

sensitive and could detect debris more readily than the micro-FT-IR technique and 

microscopy. In addition, it was possible to analyse the shapes of some of the particles 

by side scatter and fluorescence profile, something that was not possible with the 

micro-FT-IR technique or the microscopy technique. In addition, it was not possible to 

apply template to classify particles according to shape features of elongated and 

circular particles in micro-FT-IR as was possible with the imaging flow cytometry.  

 

4.8.4. Polymer identification of particles abraded from kitchen scourers using micro 
Fourier transform infrared spectroscopy micro-FT-IR 

  
In this section the results for the polymer identity of the particles are presented. 

Unless stated otherwise, polymer identification was conducted. The polymer identity 

of the particles as determined by micro-FT-IR in reflectance mode and ATR-FT-IR in 

transmission mode is presented. The analysis of the polymer particle identity was not 

determined based on the shape or colour of the particles abraded.  

  

4.8.4.1. Determining polymer identity using reflectance micro-FT-IR technique 

  

 The polymer identity of all the particles abraded from the kitchen scourers was 

identified using the absorbance peaks in functional group region of the IR spectrum 

(Figure 4.8.6). In addition, the absorbance peaks corresponded to the wavenumber 

regions unique to the different polymers (Figure 4.8.6). To confirm the polymer identity 

of the particles, the functional groups detected in the regions of absorbance cross 

referenced with a table showing the FT-IR peaks characteristic for the polymer type, 

as was done with the PCPs (Table 4.1.9).  

The results of the scans showed that the polymer identity of the particles abraded 

from KS1 and KS4 was polyethylene PE. This was indicated by the more obvious 

absorbance peaks and illustrated by the bending and stretching of C-H bonds at 1500-

1450 and 3000-2770 cm-1, respectively (Figure 4.8.6). By comparison with the peaks 

produced by particles from personal care products, the polyethylene peaks from 

kitchen scourer particles were distorted and characterised by low absorbance. The 
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FT-IR peaks produced from particles in the personal care products were smooth and 

indicated a high absorbance. It is possible that particles abraded from the kitchen 

scourers contained additives from the manufacturing process, (something that was not 

the focus of this study), that influenced the output of the peaks and absorbance. The 

polymer identity of the particles abraded from kitchen scourers were confirmed with a 

table showing the FT-IR peaks and corresponding functional groups that are 

characteristic of the plastic polymers (Table 4.1.9). In addition, the peaks were 

matched with FT-IR peaks in the polymer library available at the Experimental 

techniques centre (ETC), Brunel University.  

The polymer identity of particles abraded from KS2, KS3 and KS5 were identified 

as polyester PET, indicated by high peaks from 1700 cm-1 to 600 cm-1. The 

absorbance peaks which slightly overlapped the fingerprint region (region between 

1500 cm-1 to 500 cm-1) characterised the spectra of the stretching vibrational band of 

C=O between 1670 cm-1 - 1820 cm-1 (Figure 4.8.6). In addition, there was a stretching 

vibrational band of C-O-C between 1000 cm-1 - 1300 cm-1 (Figure 4.8.6) As such these 

bands confirm the presence of an ester linkage in the polymer. Furthermore, in the 

functional group region (between 3000 cm-1 and 1500 cm-1) there were absorbance 

peaks illustrated by the stretching of C-H bonds at 2850 cm-1 and 3000 cm-1 (Figure 

4.8.6). The differences between the spectra of polymers identified in this study allowed 

for the discrimination between the different particles by visual interrogation. This was 

useful in determining the difference between spectra of polyethylene and polyester. 

For example, the stretching of C-H bonds around between 3000-2770 cm-1, indicated 

differences between the differences in ratio of CH2 and CH3 groups for polyethylene 

and polyester (Figure 4.8.6).  
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Table 4.1.9. IR absorptions of the functional groups for the identification of polymers 

of polyethylene and polyester. 

 

IR Frequency (cm-1)                               Functional Group 

Polyethylene 

2914, 2846 CH2 stretch 

1474 CH2 bend 

720 CH2  rock 

Polyester 

2969, 2907  C-H stretching 

1711 C=O stretching 

1504 Aromatic ring C=C stretching 

1472, 1405, 1340 C-H bending 

1241  Ester’s C-O stretching  

1093  C-O stretching  

871 Aromatic ring C-H bending  

718  C-H bending  
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Figure 4.8.6. micro-FT-IR spectra of polyethylene as determined in KS1 and KS4, and 

the IR spectra for polyester determined in KS2, KS3 and KS5. The red arrows point to 

the functional groups in the IR spectrum, indicative of polyethylene.  
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4.8.4.2. Polymer identification of particles abraded from kitchen scourers using 
attenuated total reflectance infrared spectroscopy ATR-FT-IR 
 

ATR-FT-IR was applied as an alternative method for the polymer identification of 

particles abraded from kitchen scourers. This technique allows for the direct analysis 

of particles without the need to scan the surface of a filter paper, allowing a more rapid 

approach for the polymer identification of particles. The polymer identity of particles 

was determined as percentage transmittance.  

The polymer identity of all the particles abraded from the kitchen scourers were 

successfully identified using the absorbance peaks in functional group region of the IR 

spectrum. Consequently, the results of the scans showed that the identity of particles 

abraded from KS1 and KS4 was polyethylene PE. Although less pronounced, the 

absorbance peaks were indicated by the bending and stretching of C-H bonds at 1500-

1450 and 3000-2770 cm-1, respectively (Figure 4.8.7). The qualitative analysis for the 

identification of particles abraded from kitchen scourers were carried out by using 

functional groups characteristic of the polymer (Table 4.2.0). In addition, confirmation 

of the polymer identity of the particles was determined by comparing spectra of the 

polymer with known reference materials in the data base of the ETC and an IR 

reference table. These two sources provided reliable results for identifying the 

microplastics abraded from the kitchen scourers.  

By comparison, the absorbance spectra of polyethylene particles identified in 

personal care products exhibited strong bands that were more pronounced than what 

was exhibited by particles from the kitchen scourers. The particles abraded from KS2, 

KS3 and KS5 were identified as polyester PET. In the functional group region; between 

3000 cm-1 and 1500 cm-1, there were absorbance peaks illustrated by the stretching 

of C-H bonds at 2850-3000 cm-1  

However, in the finger print region, the infrared spectra was characterised by the 

stretching vibrational band of C=O between 1670 - 1820 cm-1 (Figure 4.8.8). In 

addition, there was a stretching vibrational band of C-O-C between 1000 cm-1 and 

1300 cm-1, confirming the presence of an ester linkage in the polymer (Figure 4.8.8). 
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Figure 4.8.7. ATR-FT-IR spectra of polyethylene as determined in KS1 and KS4. The 

red arrows point to the functional groups in the IR spectrum, indicative of polyethylene. 

The spectra are presented as a function of 16 co-added scans carried out for each 

product at a spectral resolution of 4cm-1 and a wavenumber ranging from 4000cm-1 to 

500 cm-1. 
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Figure 4.8.8. ATR-FT-IR spectra of polyester as determined in KS2, KS3 and KS5. 

The functional groups in the IR spectrum that are indicative of polyester are shown 

with red arrows. The spectra are presented as a function of 16 co-added scans carried 

out for each product at a spectral resolution of 4cm-1 and a wavenumber ranging from 

4000cm-1 to 500 cm-1. 

 

4.9. Multi-technique comparison to characterise particles abraded from kitchen 

scourers 

  

In the following section a comparison of the results for the characterisation of 

particles abraded from kitchen scourers is presented. Therefore this section is 

categorised into a comparison of the results based on analysis conducted on particle 

size, number and morphology. This section indicates that the application of each 

technique exhibited differences in the results produced.  

.  
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4.9.1. Comparison of applied techniques used to determine particle size 

  

There were differences in the size, number and morphology of the particles 

analysed. A comparison of the different techniques used revealed differences in 

results for the characterisation of particles. For example, based on particle size, 

measurements by laser diffraction, microscopy and imaging flow cytometry 

demonstrated the largest to the smallest particle size distribution. This is because the 

laser diffraction measured the widest particle size range (0.04 – 2500m), and imaging 

flow cytometry determined size of particles ≤70 µm. However, the different modes of 

analysis produced different results even for the same technique. For example, with the 

microscopy technique, it was possible to measure particles at magnifications of 100X 

and 200X. Consequently, the results exhibited differences in size based on the 

magnifications used. Furthermore, the results differed from results of the other 

techniques used (Figure 4.8.9). The size of particles measured by the laser diffraction 

technique was larger than measurements conducted with microscopy, at 

magnifications of 100X and 200X by factors 6 and 1 respectively (Figure 4.8.9). In 

addition, using the average particle size, the laser diffraction technique demonstrated 

that particles measured were 13 times larger than the length feature of particles 

measured by the imaging flow cytometry technique, and 139 times larger than the 

diameter feature of the particles (Figure 4.8.9).  

The different techniques exhibited differences in the way the analysis of particle 

data was analysed. For example, with the imaging flow cytometry, it was possible to 

divide particle size into categories, on size measurement features. Typically this 

technique allowed for the size classifications based on the area, length and diameter 

features. Furthermore the imaging flow cytometry demonstrated the ability to apply 

shape features developed in the template, to analyse particle size based on the 

elongated and circular-like shape features. 

  

The differences exhibited in the size of particles are likely because of the different 

measurement operating principles of the individual techniques. Particle size results 

based on the application of the different techniques should be described based on the 

respective techniques used.  
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Figure 4.8.9. Bar chart showing the mean size range for particles abraded from kitchen 

scourers. Mean particle size determined by microscopy at magnifications of 100X and 

200X (A), imaging flow cytometry using area, length and diameter (B), and laser 

diffraction technique (C). 

 

By contrast, the analysis for the number of particles indicated that imaging flow 

cytometry exhibited the largest number of particles compared to the microscopy 

analysis. The number of particles was not determined by the laser diffraction technique 

as the equipment was not able to do so. In addition, the morphology of the particles 

demonstrated the presence of similar shapes and colours for the techniques applied 

however there were distinct profiles for the particle shape unique to each technique.  
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4.9.2. Evaluation of the number of particles using microscopy and imaging flow 

cytometry techniques 

  

There was no obvious trend for the number of particles abraded from kitchen 

scourers.  From the microscopy study, counts conducted at both magnifications 

revealed the smallest to the largest number of particles was indicated as KS4, KS2, 

KS1, KS3, and KS5 (Figure 4.9.0). By comparison, the imaging flow cytometry 

technique revealed a difference in the trend of smallest to largest number of particles, 

indicated by KS1, KS3, KS2, KS4 and KS5. The only similarity of both techniques was 

that the highest number of particles was indicated by particles in KS5 (Figure 4.9.0).    

There were clear differences in the number of particles abraded from kitchen 

scourers in all five products analysed. The application of the imaging flow cytometry 

exhibited the highest number of particles by comparison with other techniques applied. 

The number of particles determined by imaging flow cytometry was larger than counts 

determined at magnifications of 100X and 200X, by factors of 19 and 14 respectively. 

Therefore the results demonstrated that the particle number based on a 70 cut-off filter 

was larger than particle number determined by microscopy. 

A comparison of the different shape profiles, used to determine particle number also 

indicated differences based on the different techniques. Fragment particles, described 

as circular with the imaging flow cytometry, indicated that microscopy counts at 

magnifications of 100X and 200X, were less than imaging flow cytometry counts by 

factors of 36 and 23 respectively. Likewise, the number of fibre particles determined 

by imaging flow cytometry, was more than results for the microscopy study. Therefore 

fibre particles determined by imaging flow cytometry was more than that for 

microscopy at magnifications of 100X and 200X by factors of 5 and 4 respectively.  

Generally similar to the assessment of particle size, it is likely that the differences 

observed for the number of particles was likely because of the different modes of 

operation of the techniques. Typically, the imaging flow cytometry technique 

demonstrated the ability to count particles automatically by applying user specific 

templates, something that is not possible with microscopy technique that is operated 

manually. In addition, the high sensitivity of the imaging flow cytometry technique 

indicates that the particles that are not blank corrected will be counted. By comparison, 



181 
 

using the microscopy, it is possible to observe particles in blanks, especially those that 

are visible to the eye. However, because microscopy is a manual technique, it is prone 

to bias, time consuming and prone to error. Consequently, the number of particles in 

the products analysed was largely influenced by the different techniques applied. 

                

Figure 4.9.0. Bar chart showing the number of all particles abraded from kitchen 

scourers and analysed by the different techniques used. The larger number of particles 

as determined by imaging flow cytometry (bars in grey colour), and the smaller particle 

number as determined by microscopy (bars in white) are indicated in the chart. 

 

4.9.3. Comparison of particle morphology applying different techniques 

 

A comparison of the techniques used to determine the morphology and colour of 

the particles abraded from kitchen scourers revealed a wide range and detail of 

particle shapes. Therefore the shapes of the particles ranged from irregular, rods to 

grain-like shapes. Based on observations, the microscopy technique exhibited the 

most detailed shape description of particles in comparison to the other techniques. As 

such, the microscopy technique showed that there were irregular, grain-like, elliptical, 

rods to threadlike shapes (Figure 4.9.1). Similarly, the analysis of particle shape by 

the FT-IR technique revealed that particle shape ranged from elongated, irregular to 

circular-like particles and particles appeared more 3-dimensional similar to the 

particles analysed by the imaging flow cytometry technique. However, the particles 

analysed by the microscopy technique appeared flat and 2-dimensional (Figure 4.9.2). 

In addition the application of microscopy and micro-FT-IR techniques highlighted 
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contours and more sharp edges and more detailed images, compared to the particles 

analysed by imaging flow cytometry (Figure 4.9.1 and 4.9.2). Although the imaging 

flow cytometry revealed less detailed particle shape descriptions, it allowed for 

observations of particles shape based on side scatter and fluorescence properties of 

the particles. Furthermore, it was possible to classify particle shape automatically into 

elongated, irregular to circular-like shapes with imaging flow cytometry, something that 

was not possible with microscopy and micro-FT-IR techniques (Figure 4.9.2).  

The techniques also demonstrated differences in the colour of the particles in all 

products analysed. The micro-FT-IR revealed a true reflection of the colours of the 

particles abraded from the five kitchen scourers. By comparison, the microscopy and 

imaging flow cytometry techniques however did not reveal true colours of the particles 

(Figures 4.9.1 and 4.9.2). Therefore, it is apparent that the difference in the colours of 

the particles analysed, is based on the different modes of image capture unique to 

each technique. It is possible that manual and automated techniques will produce 

differences in the shape and colour of the particles observed. Generally, the different 

techniques demonstrated the ability to determine particle shape.  
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Microscopy 

100X 200X 

                

Figure 4.9.1. Morphology of particles abraded from kitchen scourers and analysed by 

microscopy. The analysis of particle shape and colour was determined at 

magnifications of 100X and 200X. 
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Imaging flow cytometry 

 

 

FT-IR 

 

Figure 4.9.2. The images of particles abraded from kitchen scourers using Imaging 

flow cytometry and FT-IR techniques. 
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   CHAPTER 5: DISCUSSION 

 

Research on plastic pollution has focused on macroplastics in the aquatic and 

terrestrial environment, largely because they have clearly impacted living organisms 

(Imhof et al. 2016; Kanhai et al. 2017). However, there has been a shift in the focus of 

study to smaller microplastics. This is partly because of the introduction of these 

particles to the environment from a myriad of sources (Wessel et al. 2016; Bosker et 

al. 2017b). In particular,  the frequent use of personal care products which have 

microplastic particles as part of their ingredients make up a relatively recent source of 

contamination to the environment (Bennet 2016; Duis & Coors 2016b; Fendall & 

Sewell 2009). However, that particle abrasion from kitchen scourers has not been 

documented as a source of microplastics to the environment.  

The characterisation of microplastics is important to understand their likely source, 

fate and transport in the environment and their impact to living organisms (Andrady 

2017; Napper et al. 2015). However  there are no universally accepted laboratory 

protocol and analysis techniques to characterise microplastics (Hidalgo-Ruz & Gutow 

2012; Shim et al. 2017). In addition, the current reports on the analysis of particles do 

not often report on the challenges encountered in sample preparation and the 

limitations of the techniques used. Furthermore, therehas not been a comparison of a 

multi-technique approach for the characterisation of particles. Therefore this thesis 

reports on the differences in sample preparation, the application of the different 

techniques and the different results produced. 

  

5.1 Density separation of particles from matrix 

   

In this study it was hypothesised that the application of different sample preparation 

protocols for the characterisation of particles from PCPs and kitchen scourers would 

produce similar results. However, the difference in sample preparation indicated 

substantial differences in the results for the analysis. The sample preparation for 

microplastic analysis follows a general process of weighing of the sample, density 

separation and filtration. Particles separated from PCPs were based on the difference 

in density of the particles and density separation solution. The initial steps taken to 
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separate particles from PCPs was not successful. During the development of the 

density separation procedure, particles flooded the membrane filter attached to the 

syringe and resulted in the loss of samples. The sample preparation of microplastics 

have been well documented (Maes et al. 2017; Hintersteiner 2015; Hidalgo-Ruz & 

Gutow 2012). In addition, information on the separation of particles from PCPs have 

also been reported (Chang 2015; Napper et al. 2015; Fendall & Sewell 2009). 

However, none of these studies reported using NaCl for the separation of particles 

from PCPs. These studies report that density separation was conducted using boiling 

water and distilled water (Chang 2015; Napper et al. 2015). Although the particles 

were separated, it is not clear whether the differences in density separation methods 

had an impact on the results produced. The reports did not indicate whether the 

density separation methods adopted allowed for a complete separation of particles 

from the products. This is true especially for particles that were characterised by 

viscosity. It is possible that the boiling water dissolved the viscous solution and allowed 

for the separation of particles. However, it is not clear whether boiling water had an 

apparent effect on the integrity of the particles separated. Furthermore, there was no 

information on the effectiveness of diluted water for density separation of particles from 

PCPs. Furthermore, the limitations and the advantages of the density separation steps 

taken were not reported (Chang 2015; Napper et al. 2015).  

There are reports on the application of other density separation solutions used for the 

extraction of particles from complex matrix (sediment samples). These solutions are 

useful for separating high density particles such as polyethylene terephthalate and 

polyvinyl chloride from matrix (Mintenig et al. 2017; Brian Quinn, Fionn Murphy 2016). 

There are reports on the application of zinc chloride and sodium iodide used as density 

separation solutions, and have been used successfully to separate particles from 

matrix (Zhao et al. 2017; Nuelle et al. 2014; Liebezeit & Dubaish 2012). 

 

5.2 Filtration of particles separated from matrix 

 

During vacuum filtration of particles from the solution, the filter membranes clogged 

after 10 seconds, a limitation of the method used to separate particles from PCPs. 

This was more obvious for the particles separated from the toothpastes than facial 
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scrub particles. The viscous solution that is a part of the products prevented the flow 

of filtration. Therefore it was necessary to introduce a centrifugation step to aid the 

separation of particles from the viscous solution. This proved useful and it allowed for 

particle separation and improved vacuum filtration. After the density separation 

procedure, the vacuum filtration step allowed for the collection of particles on the 

surface of the filter paper. This step has been widely documented and has allowed for 

the collection of particles (Hidalgo-Ruz & Gutow 2012; Karlsson et al. 2017). This 

thesis reports that particles were filtered using different filters that exhibited differences 

in pore size. This was because of the differences in the size of particles that could be 

measured by the different techniques. For example, filter paper (GFC) with a pore size 

of 1.2 µm was used to filter samples for the FT-IR study, and by contrast, a 70 µm filter 

was applied to samples for the imaging flow cytometry analysis.  (Maes et al. 2017; 

Hidalgo-Ruz & Gutow 2012). However some studies have reported using non 

standardised filtration steps while others have not indicated the limitations of the 

filtration step used (Fendall & Sewell 2009; Chang 2015). It is apparent that the 

application of different filtration methods will have an impact on the results produced. 

For example, based on two different density approaches, the size of particles reported 

ranged from 4.1 to 1240 µm reported in one study, and 60 to 800 µm in another (Chang 

2015; Fendall & Sewell 2009).     

This difference in the sample preparation indicated that the different approaches 

produced different outcomes. By contrast, particle separation from kitchen scourers 

was achieved by abrasion. For this process, it was much easier separating particles 

from kitchen scourers than it was for particles from PCPs. The process of particle 

abrasion did not require a density separation solution for the separation of particles. 

In addition, a centrifugation step was not followed for particles abraded from kitchen 

scourers because the sample did not demonstrate any viscosity. Furthermore, for the 

sample preparation of particles from kitchen scourers, washing liquids were not used 

for this study; this was done to collect only pure particle samples and to prevent 

contamination of sample from the detergent. Currently, it is not clear if there would be 

a difference if washing liquid is used for the abrasion of particles from kitchen scourers. 

A comparison of particle abrasion with and without washing liquid will be useful to 

determine the differences if any, in the volume of particles separated from kitchen 

scourers.  
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This study reports that there were differences in the final volume of samples that 

were prepared for particle analysis. In particular, this was because of the differences 

in the final volume of sample prepared for particle analysis and size cut-off for the 

particles prepared. For example, for the analysis of particles using microscopy, 1 mL 

of the sample was transferred to the Sedgewick-rafter cell SRC, for the 

characterisation of particles. Similarly, particle characterisation by the IFC was carried 

out by transferring 1 mL of the sample to a 1.5 mL microcentrifuge tube for analysis. 

By comparison, 10 mL of the sample was introduced to the sample holding tank for 

particle size distribution analysis, using the laser diffraction technique (Table 4.2.1). 

Therefore more particles were introduced to the CILAS 1180 used for the laser 

diffraction analysis. Measurements of a larger sample size gives more confidence with 

the data and reduces the margin of error and therefore is more accurate and increases 

reliability (Sham & Purcell 2014). This means that the microscopy and IFC techniques 

used in this research could analyse 10% of what the laser diffraction technique could 

measure.    

 Table 4.2.1. The different final volumes of samples prepared correspond to the 

different techniques used for the characterisation of particles. 

 

Technique Volume of sample Particle size cut-off 

Microscopy 1 mL No cut-off 

Laser diffraction 10 mL No cut-off 

Imaging flow cytometry 1.5 µL 70 µm 

Micro-FT-IR 10 mL 1.2 µm 

ATR-FT-IR - 1.2 µm 

  

 

5.3. Characterisation of all particles using different techniques 

 

Following sample preparation, characterisation of particles was determined using 

multiple techniques. It was hypothesised that the application of different techniques 

for the characterisation of particles separated from PCPs and abraded from kitchen 

scourers would produce similar results. This was demonstrated by using different 
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approaches for the analysis of particle size, number and morphology with different 

techniques. The results for the microscopy, laser diffraction and imaging flow 

cytometry techniques exhibited differences in particle size for all PCPs and kitchen 

scourers. As such the results showed that the size of all the particles analysed were < 

5 mm. 

 

5.3.1. Particle analysis using the microscopy technique 

 

The microscopy technique indicated differences at both magnifications. Higher 

magnification allowed for smaller particles to be analysed. In addition, more particles 

could be observed at the higher magnification. Furthermore, the size measurements 

and particle count determined in different transects produced different results. 

Characterisation of particles in more transects of a SRC suggests more particles would 

be analysed, thus increasing sample size and making data more reliable. However, it 

is apparent that there is standard protocol for using the SRC to analyse particles and 

methods currently used are adapted for individual studies (Vassalli et al. 2018; Jauzein 

et al. 2016; Gollasch et al. 2015). It is can be argued that counting more cells of a SRC 

increases the sample size and provide more raw data for analysis. It is apparent that 

differences were demonstrated when more cells of the SRC was counted, as reported 

in this thesis. Therefore it is apparent that the analysis of more particles provides 

confidence in the results and allows for improved risk assessment for microplastics in 

the environment. The analysis of particles by microscopy requires long hours of 

analysis and is labour intensive. For one sample it took about 1.5 hours to measure 

particles on the SRC. Using microscopy, the size of particles was similar and in some 

cases at variance with what was reported in other studies (Fendall & Sewell 2009; 

Desforges et al. 2014; Chang 2015). For example the smallest particle measured 

using microscopy at the magnification of 200X was 5 microns. However a study 

reported the smallest particle size determined at the magnification of 40X was 60 

microns (Chang 2015). In addition another study reported a minimum particle size of 

4.1 microns, determined at the magnifications of 40X or 100X (as reported in the 

article) (Fendall & Sewell 2009). The largest particle measured in this current study 

was different from what others have reported. The studies indicated the largest 
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particles were 800, 1240 and 5810 microns (Fendall & Sewell 2009; Desforges et al. 

2014; Chang 2015).  

By comparison, the particles abraded from the kitchen scourers exhibited a wider 

size distribution than particles separated from personal care products. Some of the 

kitchen scourers were characterised by particles of fibre that were longer than particles 

separated from personal care products. This implies that larger particles are produced 

from kitchen scourers than from using personal care products that contain particles of 

microplastics. The same procedure used for the analysis of particles from PCPs was 

adopted for the analysis of particles abraded from kitchen scourers. .  

Currently, there is no documented evidence reporting on the particles abraded from 

kitchen scourers. However, there are reports on the release of particles of fibre from 

laundered garments (Napper & Thompson 2016). Using a Leica light microscope, the 

study reported that the mean diameter of fibre particles ranged from 11.9 to 17.7 µm, 

and length ranged from 5.0 to 7.88 mm (Napper & Thompson 2016). This study 

reported results that were different to that reported in this thesis. In particular, the 

diameter of particles was not reported in this thesis; however, the length of fibre 

particles was larger by several orders of magnitude than the length of particles 

reported in this thesis. The results were different because of the differences in size 

between the kitchen scourers reported in this thesis and the garments used in the 

study. Therefore garments would shed relatively larger particles of fibre compared to 

kitchen scourers. It was not clear what magnification was used for the analysis of 

particles released from the garments, however image j software was used to 

determine particle size. Automated software like image j allows for user defined 

templates for the analysis of particle size and therefore offers a less tedious option for 

particle analysis. By contrast, this thesis reports that the sizes of particles were 

determined by direct measurements of observed particles. Particle analysis using an 

automated software provides more confidence in the output than measurements 

conducted manually, provided the right templates are developed are applied.    

The numbers of particles separated from PCPs have been documented in different 

studies (Napper et al. 2015; Chang 2015). There is evidence to suggest differences in 

the number of particles, based on the different approaches adopted for the analysis of 

particles (Napper et al. 2015; Chang 2015). However it was difficult to make a direct 
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comparison because results were presented in different formats. In one study, 4594 

and 94500 particles were counted, whilst the other study reported particle 

concentration ranging from 0.08 – 0.1 g/mL. This implies that the different techniques 

used to quantify particles produced different results.  

Currently, there are no reports on the estimation for the number of particles abraded 

from KS. Reports indicate characterisation of particles of fibre have focused largely on 

the release of particles of fibre from washed garments (Hernandez et al. 2017; Napper 

& Thompson 2016). One study indicated that from an average 1 kg wash, about 

120,000 particles of acrylic fibre could be released per wash load (Napper & 

Thompson 2016). Another study reported 0.025 and 0.1 mg/g of fibre particles were 

released from garments washed with and without detergents respectively ( Hernandez 

et al. 2017). These values are different to the estimates for the number of particles 

abraded from kitchen scourers. However, a direct comparison between results 

reported in this thesis and those indicated in both studies was not possible, because 

the results were reported differently. This is an indication of some of the difficulties 

encountered in interpreting results produced from different studies that have adopted 

different methods and produced different results. It can be argued that evaluation of 

risk assessment for the number of fibre particles will be a challenge because of the 

differences mentioned.  

The particle morphology indicated differences based on the technique that was 

used. This study shows that using the microscopy technique, the higher magnification 

demonstrated a more detailed image of the particles. The higher magnification 

increases the resolution and details of the particle shape. In addition, the higher 

magnification allowed the observation of particles in the lower size. This implies that 

using the microscopy technique at a higher magnification demonstrates the ability to 

detect smaller particles. The study by Chang et al,  reported similar morphology of 

particles, to what was observed in this research, and  at a higher magnification (Chang 

2015). Although no other study has reported on the morphology of particles abraded 

from KS, it is clear that there were similarities in the shape of fragments and irregular 

shaped particles separated from PCPs. In addition the shape of fibre particles show 

similarities with the morphology of fibre particles reported (Leslie et al. 2017). 
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5.3.2. Laser diffraction analysis of microplastics  

 

 The CILAS 1180 laser diffraction instrument used in this study is equipped to 

measure particle size range from 0.04 – 2500 microns (Latifi et al. 2015; Elliott et al. 

2017). The size of particles reported in this thesis indicates a wider size range to that 

reported in another study that measured particles separated from PCPs (Napper et al. 

2015). The study indicated that particle size measurements were conducted by laser 

diffraction equipment that had a measurement range of 0.015 – 2000 µm (Napper et 

al. 2015). In addition, the report shows that the mean particle diameter ranged from 

164 to 327 µm. The mean particle size reported in this thesis was larger than that 

documented in another study (Napper et al. 2015). The differences in particle size 

could be because of the differences in sample preparation and analysis, and the size 

range that can be measured by both instruments.  

 The length of particles reported by (Napper & Thompson 2016) indicate particles 

released from garments were larger than that abraded from kitchen scourers (Table 

4.2.2).  Thus suggesting that fibre particles from different sources have different sizes. 

This implies that the larger particles will likely undergo further degradation to produce 

smaller microplastics in the longterm (Duis & Coors 2016b). On entering the 

environment, fibre particles are likely to be ingested by organisms and resulting in 

blocked digestive tracts, injury and mortality (Taylor et al. 2016). By contrast, the 

smaller fibre particles will readily adsorb toxic chemicals from the environment, due to 

their large surface area to volume ratio (Taylor et al. 2016).  This difference in particle 

size could be because of the different methods adopted for sample preparation and 

the differences in the measurement size range of the instruments. .  
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Table 4.2.2. Comparison of the different results for the size of fibre particles 

determined using laser diffraction and light microscopy. The results for the thesis are 

indicated as diameter measurements, and the light microscopy results are based on 

length measurements. The results from the Napper and Thompson report are based 

on both length and diameter measurements.  
 

Dimension Thesis measurements Napper and Thompson 

(2016) 

  Laser diffraction  Light microscopy 

Diameter  254 – 632 µm  11.9 – 17.7 µm 

  Light microscopy  Light microscopy 

Length  100X 200X  Magnification not stated 

  36 – 67 µm 29.9–213 µm  5 – 7.8 mm 

 

 

The laser diffraction technique did not allow for the particle differentiation into fibre 

and fragments as was possible with the microscopy technique. This implies that the 

microscopy technique will allow for the interrogation of particles to differentiate 

between fibre particles and fragments, something that is not possible with all laser 

diffraction techniques. The interrogation of particles is important to determine and 

understand the differences in size and particle type (fibre or fragment) and the 

implications for the environment. However, the microscopy technique was not 

equipped to measure such a wide particle size range, because of the limitations of the 

magnifications used. A smaller magnification does not allow particles below a certain 

size to be detected. By contrast the use of higher magnifications limits our ability to 

observe large particles as was the case in this study. However using the microscopy 

technique, particles were clearly observed under the Sedgewick-rafter cell SRC, 

something that was not possible with the laser diffraction technique. This implies that 

the laser diffraction technique will produce different results to microscopy because 

they use different fundamental approaches to determine particle size (Rawle et al. 

2003; Malvern 2015).  

 

 



194 
 

5.3.3. Particle analysis using imaging flow cytometry  

 

The imaging flow cytometry technique which is novel in microplastics studies 

determines the size of particles < 70 microns. Currently, there is no documented 

evidence for the application of imaging flow cytometry technique in microplastics 

studies and in particular, for the characterisation of particles separated from PCPs and 

kitchen scourers. However, this thesis shows proof that using the Imagestream 

imaging flow cytometer, the size of microplastics separated from PCPs can be 

determined. Imaging flow cytometry has been used in range of flow cytometry studies 

to analyse changes to cell structure and the interaction of cells (Beaton-Green et al. 

2016; Headland et al. 2014a). The Imagestream characterised by its sensitivity, speed, 

allows for the analysis of a large population of particles within a very small volume, 

and ensures a statistically robust results. 

The Imagestream is equipped with the IDEAS software which allows templates to 

be developed for the analysis of particle size. In particular the size features associated 

with the IDEAS software template allowed for the analysis of particles according to the 

area, length and diameter. In addition, particles from all PCPs and KS were measured 

using the shape features of elongated and circular particles. The application of the 

templates indicated differences based on the size and shape features applied. The 

application of set templates for the analysis of microplastics is not possible with a 

manual technique like microscopy or the automated laser diffraction techniques. The 

manual microscopy technique used in this study did not allow for an automated 

analysis of particles separated from PCPs and abraded from kitchen scourers. 

Instead, particles observed were measured directly and categorised based on a 

general definition of the particle shape. This implies that the imaging flow cytometry 

technique can allow for a more detailed size analysis of particles based on the 

differences in shape, because of the templates available in the IDEAS software. 

Furthermore, because of its sensitivity, this study has shown that the technique is 

capable of detecting particles as small as 1 µm as indicated in the PCPs and KS. By 

comparison the laser diffraction technique was able to detect particles as small as 0.2 

µm, and the microscopy measured particles as small as 5 µm. 

Using the IDEAS software of the imaging flow cytometry technique, particles can 

be characterised by applying user defined templates as reported in this thesis. 
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However, it can be challenging separating particles that have similar size and number 

as reported in this study. This was demonstrated with the difficulty in separating 

calibration speedbeads from particles separated from PCPs. This study showed that 

turning off the speed beads allowed for the analysis of the particles alone. However, 

the particles were detected in the blank water samples analysed by imaging flow 

cytometry. By contrast, the analysis of blank water samples using the microscopy and 

laser diffraction techniques did not reveal particles in the blanks. This implies that the 

imaging flow cytometer characterised by its high sensitivity, was able to detect foreign 

particles. This implies that it is important to check laboratory grade water commonly 

used to prepare microplastics samples for analysis, for debris and contaminants.    

The proper functioning of the ImageStream®x Mark II instrument is assessed using 

the calibration Speedbeads that constantly run through the machine. It is apparent that 

Speedbeads do not fluoresce, and exhibit high side scatter and have are characterised 

by a small area. However during analysis of the particles, it was difficult to distinguish 

between the calibration Speedbeads and the particles separated from PCPs. This was 

because of the high number of Speedbeads (1.6 × 107 /mL) and the similarity in size 

(1 µm) to the smallest particles in the samples analysed. This study has shown that 

some of the particles separated from PCPs and KS exhibited side-scatter and 

fluorescent properties. However, these properties were not applied to determine the 

size of particles in all the products analysed. Some of the particle detected in the 

blanks exhibited similar side-scatter properties to particles from PCPs and KS. This 

implies that particles demonstrating side-scatter and/or fluorescent properties can be 

readily detected by the instrument. However, the analysis of particle size based on 

fluorescent and side-scatter properties was not possible with the microscopy and laser 

diffraction techniques used for this study.  

Because long particles are oriented vertically by flow in the imaging flow cytometer, 

measurements of maximum particle size is limited by the particle width (Amnis EMD 

Millipore 2012). Therefore, the largest particle that can be measured is dependent on 

the objective lens used and its corresponding field of view. This thesis reports that the 

objective used was 20x and a 120 µm field of view (Probst et al. 2017; Amnis EMD 

Millipore 2012). Therefore particles are filtered through a 70 micron filter, to remove 

particles that have a width greater than 70 microns and to prevent clogging the 

instrument (Amnis EMD Millipore 2018). However, because this technique determines 
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the size of particles in the <70 µm sub-fraction, it is not possible to measure larger 

particles. By contrast, this implies that this technique can detect particles in the lower 

size range that have been widely suggested to have environmental implications 

(Headland et al. 2014a; Lannigan & Erdbruegger 2017; Amnis EMD Millipore 2018). 

By comparison with the other techniques, the imaging flow cytometer demonstrated 

the smallest size distribution. Using the imaging flow cytometry technique, the general 

mean size range of particles abraded from kitchen scourers and separated from 

personal care products was similar. This implies that for the sub 70 µm fraction, there 

were similarities in general particle size. However, elongated particles (fibre particles) 

exhibited larger mean sizes.  

The imaging flow cytometry technique estimated the largest number of particles in 

FS2. This report shows that there were fewer particles abraded from KS. It was difficult 

successfully applying the templates developed to estimate the number of particles 

from the other products. The speedbeads demonstrated similarities with particles from 

all products. Therefore the templates developed could not accurately separate 

speedbeads from the separated particles. The speedbeads were consequently turned 

off to allow the quantification of particles separated from the PCPs alone. Therefore, 

this protocol could be adopted for the estimation of particles abraded from KS. This 

implies that the sensitivity of the Imagestream and the large numbers it can detect was 

demonstrated by the detection of debris in the blank water samples.  

By comparison, particles of debris were not detected using the microscopy 

technique. However, with the imaging flow cytometer, the occurrence of debris in the 

blank water samples increased the particle count well above background levels. 

Therefore FS2 exhibited the largest number of particles for all the PCPs. However the 

number of particles in other products could not be determined as they exhibited lower 

numbers to the blanks. It was observed during operation of the ImageStream that two 

factors could account for this, firstly in all samples except FS2, the recovered plastics 

rapidly separated (settled and/or floated in the tube) which, was compounded by a 

delay in data acquisition by the instrument. Although the instrument was not acquiring, 

images of larger plastic particles were visible on the real time image display, and the 

acquired data indicate a decline in both the size and number of particles with time, 

consistent, with uptake of a non-homogenous sample. The number of particles 

exceeded the number of particles in the blank water samples. The evidence from FS2 
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of a high number of small particles in the low micron range is supported by 

observations reported in facial scrubs of 300 billion particles per gram in the sub-

micron size range (Hernandez et al. 2017). Analysis of PCPs using imaging flow 

cytometry showed 150 times more microplastics than microscopy in one sample.  

The occurrence and detection of debris in the blanks indicates the sensitivity of the 

technique and the possibility of reporting overestimates for the number of particles. 

There is currently no report on the occurrence of debris in laboratory grade water used 

as blank water samples. This is because the analysis of blank water samples has not 

been a focus of Imagestream studies. In addition, the Imagestream analysis is 

commonly focused on cells which have a defined structure, unlike particles from PCPs 

that do not. The microscopy technique did not have the sensitivity of the technique to 

detect the number and size of debris in the blank water samples.  

By comparison, this study reports that the morphology of particles determined with 

the imaging flow cytometer used features available in the developed template. There 

was a narrow classification of particles using the imaging flow cytometer. Particles 

were either elongated or circular. However, the morphology of particles determined by 

microscopy indicated a wider shape classification. The difference produced different 

outcomes for particle morphology. The IDEAS software of the imaging flow cytometer 

is automated and can analyse particles in a more defined way. The IDEAS software 

was useful for the interrogation of bins in the histogram to detect particles in the image 

display area. It is apparent that this was useful because it allowed for the confirmation 

of the particle being observed. The imaging flow cytometry technique is useful for the 

analysis of particles in the lower size range. However, the manual microscopy 

technique is not equipped with automated software which allows for the rapid and 

standardised analysis of particle morphology. In addition, this study reports that 

particles that cannot be detected by the microscopy technique can be analysed by the 

imaging flow cytometer. However, the microscopy technique revealed a more detailed 

morphology that the imaging flow cytometer. 
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5.4. Particle polymer identification using FT-IR 

 

It is has been suggested that the visual inspection of unknown particles does not 

provide strong evidence for the identification of particles (Hidalgo-Ruz & Gutow 2012). 

Particle polymer identification was determined by micro-FT-IR, and has recently been 

used largely in microplastics identification. It is an important technique used for 

polymer identification because the IR spectra of unknown particles can be cross 

checked with the known IR spectra available in a library (Tagg et al. 2015; Crichton et 

al. 2017). To determine whether micro-FT-IR had an apparent impact on the IR spectra 

of particles, because of the different particle shapes, the results were compared with 

the ATR-FT-IR. These modes of analysis are largely susceptible to scattering of IR 

beam because of the morphology of irregularly shaped particles. This report has 

shown that both modes of analysis had no apparent impact on the IR spectra for 

particles analysed. However. The particles separated from PCPs exhibited IR spectra 

with no distortions. But by contrast, although regions of absorbance for the stretching 

and bending of bonds unique to polyethylene and polyester where present, both 

modes of analysis demonstrated distorted IR spectra for particles abraded from KS. 

The presence of additives such as dyes and colourings used for the manufacture of 

KS interfered with IR beam, resulting in distorted IR spectra. It has been reported that 

irregularly shaped particles exhibit distorted IR spectra, for micro-FT-IR and ATR-FT-

IR (Harrison et al. 2012).  

The results in this report implies that particle polymer identification can only be 

reliably conducted by detecting regions of absorbance that correspond to the 

stretching and bending of C-H bonds as indicated with reference to the IR spectra 

(Tagg et al. 2015; Crichton et al. 2017). The combination of the analytical strength of 

the FT-IR and the optical resolution of a microscope allows for the polymer 

identification of particles (Hidalgo-Ruz & Gutow 2012; Shim et al. 2017). In addition,  

the coupling of an FPA detector allows for the analysis of randomly selected parts of 

a filter paper (Tagg et al. 2015). This is in contrast to the single point analysis of 

particles on filter paper which limits the sections on the filter paper to be scanned (Nor 

& Obbard 2014). There is evidence to suggest that particles collected from the 

environment were thought to be microplastics, until the analysis with the FT-IR 

confirmed otherwise (Ziajahromi et al. 2017a). Several other methods have been used 
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to determine particle polymer identity; some include Raman spectroscopy and the 

pyrolysis-gas chromatography with mass spectrometry (Pyr-GC/MS) (Hidalgo-Ruz & 

Gutow 2012; T Rocha-Santos & Duarte 2015). The FT-IR technique is useful for the 

identification of irregularly shaped particle, something that is demonstrated in this 

study (T Rocha-Santos & Duarte 2015). Therefore, it is a useful technique that 

demonstrates the ability to distinguish actual microplastics from suspected 

microplastics.  

Although this study reports that the morphology of particles separated from PCPs 

exhibited some similarities with the shape of particles abraded from KS, there were 

differences in the output for the morphology of PCPs and KS, using the different 

techniques. This is because the techniques have different modes for analysing 

particles. The IDEAS software for the imaging flow cytometry technique allows for the 

analysis of particle morphology by developing user defined templates. This automated 

mode of analysis is not available with the microscopy and the micro-FT-IR techniques. 

However the microscopy and micro-FT-IR techniques provided more detailed images 

for particle morphology.  

It is not clear whether the source of microplastics can be determined based on their 

morphology. The exposure of these particles in the environment suggests chemical, 

physical and biological factors will have an impact on the integrity of the particle. 

Therefore, it is not clear how accurate the predictions of particle origin will be for such 

particles (Duis & Coors 2016b). This is true for particles collected from the environment 

that are characterised by fouling with organic matter, than for virgin particles. However,  

particles exhibiting a distinct morphology and size like resin pellets, can be traced 

largely to pre-production plastic spills (Duis & Coors 2016b). However, as this report 

shows, the non-distinct particle shape and morphology exhibited by most particles will 

make the identification of particle source difficult. However, particles of fibre can be 

described as originating from a secondary source of microplastics. This is  because 

particles of fibre are suggested to be largely produced shedding from garments, and 

abrasion from kitchen scourers as reported in this study (Napper & Thompson 2016). 

It was hypothesised that different techniques will indicate differences in the 

morphology of the particles. 
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5.5. Assessment of the fate and transport of particles characterised by different 

techniques  

 

It is acknowledged that the frequent use of PCPs that contain microplastics as part 

of their ingredients will be routinely washed down drains and will be transported to 

WWTPs (GESAMP  2015; Chang 2015). The particles abraded from kitchen scourers 

will also be transported to WWTPs. Microplastics in the environment can originate from 

aquatic and land-based sources (Duis & Coors 2016d; Nizzetto et al. 2016). Particles 

from aquatic based sources include fragmented particles produced by physical, 

chemical and biological action on macroplastics. In addition, land-based sources of 

microplastics originate largely from urban run-off and discharged effluent from WWTPs 

(Ziajahromi et al. 2017b; Nizzetto et al. 2016).  

Currently, it is not clear how many people use PCPs that contain microplastics, 

however, there is evidence indicating 99% of households in the UK use kitchen 

scourers (Mintel 2014). Therefore, kitchen scourers are likely to be more widely used 

than personal care products that have microplastics as ingredients. This thesis reports 

larger particles were abraded from kitchen scourers, than particles separated from 

PCPs. In addition, there were more particles of microplastics separated from PCPs 

than that abraded from kitchen scourers. This implies that from one use, lager 

microplastic particles abraded from kitchen scourers during washing of kitchen utensils 

will be transported down drains to WWTPs and smaller will be released from PCPs. 

By contrast, more particles will apparently be transported through drains to WWTPs, 

from a single use of PCPs, than a single use of kitchen scourers.  A study reported 

that microplastics are transported through WWTPs and therefore act as a source of 

particle entry to the environment (Leslie et al. 2017; Ziajahromi et al. 2017a). Particles 

> 300 µm, made up of fragments and particles of fibre, have been detected in waters 

that receive WWTPs effluent. However, the fate of particles < 20 µm is relatively 

unknown (Kerstin Magnusson et al. 2016).  

It is widely acknowledged that the entry of particles to WWTPs is likely to escape 

capture and enter the environment either directly as effluents or indirectly via run-off 

from sludge that contains microplastics (Ziajahromi et al. 2017b; Nizzetto et al. 2016). 

However, it is apparent that identifying and concluding that WWTPs are a source of 

particle entry to the environment is still challenging (Ziajahromi et al. 2017b; Carr et al. 
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2016a). The difficulty in understanding the contribution of WWTPs to the microplastics 

load in the environment is because of a number of reasons.  

Firstly, different WWTPs will capture different sizes of particles, based on the 

technology available at the treatment plant. It is apparent that WWTPs are equipped 

with different screening methods to capture particles at different stages of the 

treatment process (Talvitie et al. 2017; Leslie et al. 2017). Some WWTPs have coarse 

> 6 mm, and others have fine 1.5 – 6 mm screens to separate particles, and others 

are equipped with membrane bioreactor used for primary effluents (Ziajahromi et al. 

2017a; Mason et al. 2016a; Carr et al. 2016). Secondly, the different approaches 

adopted for particle sampling in WWTPs and the differences in how the outputs are 

reported does not allow for comparison of data (Talvitie et al. 2017; Leslie et al. 2017; 

Carr et al. 2016b).  

In one report the average size of particles measured in 7 WWTPs with different 

hydraulic capacities, ranged from 10 – 5000 µm. In addition, influent and effluent 

concentrations of microplastics in 7 WWTPs ranged from 68 – 910 L-1 and 51 – 81 L-

1 respectively (Leslie et al. 2017). However, an average of 510 – 760 kg-1 particles, 

equivalent to 71%, was retained in sewage sludge (Leslie et al. 2017). This suggests 

that although the WWTPs were relatively efficient in reducing particles in the effluents, 

at least 29% of particles would be introduced to the environment. Furthermore, 

between 1400 and 4900 particles Kg-1dw were detected in surrounding waters that 

received treated and untreated waste water (Leslie et al. 2017). However,  sediment 

analysis in waters close to urban areas revealed the number of particles ranged from 

68 to 10,500 particles Kg−1 dw (Leslie et al. 2017).  This indicates the distribution of 

particles from WWTPs into different compartments of the environment. By contrast 

another study reported a mean of 1.54, 0.48 and 0.28 microplastics L-1 detected in the 

primary, secondary and tertiary final effluent of a WWTP (Ziajahromi et al. 2017a). The 

methods adopted for sample collection, processing and analysis was different for both 

studies. The study by Leslie et al. 2017  used a 0.7 µm filter to collect particles, while 

in another report, Ziajahromi et al. 2107b  used a combination of filters with size 

ranging from 25 to 500 µm (Leslie et al. 2017; Ziajahromi et al. 2017b). Furthermore, 

the particles identified consisted of spheres, coloured fibre particles, fibre particles of 

polyester and irregularly shaped polyethylene particles (Leslie et al. 2017; Ziajahromi 

et al. 2017b). Particles not discharged in effluents are frequently  applied to farmlands 
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as sludge, resulting in contamination and entry to water bodies via run-off (Zubris & 

Richards 2005; Nizzetto et al. 2016; Ziajahromi et al. 2017a). The reports suggest the 

number of particles removed from effluents and transferred to sludge vary between 

reports (Talvitie et al. 2017; Mintenig et al. 2017).  

It is reported in this thesis that the microscopy, laser diffraction and imaging flow 

cytometry results indicated that the size of particles separated from the PCPs will be 

readily transported through the mains to WWTPs  (Ziajahromi et al. 2017; Carr et al. 

2016a; IOC 2010).   

The mean fibre particle size reported in this thesis was  many times smaller than 

mean sizes reported in another study that determined particle size by scanning 

electron microscopy (Napper & Thompson 2016). The mean fibre particle size was in 

the micron range compared to the mm size range reported in another study (Napper 

& Thompson 2016). On the basis of particle size determined from the analysis of 

kitchen scourers, particles in the lower micron range will either escape capture or be 

transferred to sludge. The occurrence of particles of fibre in sewage sludge has been 

reported in studies that measured size of particles of fibre shed from washed garments 

(Napper & Thompson 2016). Fibres not captured by WWTPs might be  added to 

sewage sludge and used as applications on farmlands (Napper & Thompson 2016; 

Gallagher et al. 2016). It is possible  that during run-off particles of fibre are washed 

into freshwater environments and eventually into the sea (Ziajahromi et al. 2017a; Carr 

et al. 2016a). The reports suggested that the particles of fibre were because of 

abrasion of particles from garments during wash. Therefore, in a similar manner, 

particles of fibre abraded from kitchen scourers will be transported through sewers into 

the environment.  

The contributions of WWTPs as a significant source of microplastics load to the 

environment has been widely discussed and in instances not clear. However, it is a 

potential source of particle entry to the environment with the potential to cause harm 

to living organisms.  (Carr et al. 2016a; Gallagher et al. 2016). 
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5.6. Impact of microplastics on living organisms in the environment 

  

In this thesis it is reported that the particles analysed in toothpastes, facial scrubs, 

and kitchen scourers will likely be an important primary and secondary source of 

microplastics to the environment (Duis & Coors 2016b; Chang 2015). At present about 

10% of marine debris ingested by living organisms, is made up of microplastics 

(Napper et al. 2015). In addition, microplastics have been reported in different 

components in the environment (Van Cauwenberghe, Devriese, et al. 2015b; Kanhai 

et al. 2017). . The potential for microplastics to cause harm to living organisms has 

been well documented (Besseling et al. 2017; Rodriguez-Seijo et al. 2017). This 

implies that frequent use of products like FS2 will contribute to the microplastics load 

in the environment with potential ecological consequences.  

The occurrence of these contaminants in the environment is of special concern 

because they have the potential to breakdown into smaller sizes and be distributed 

into different parts of the environment where they become bioavailable to living 

organisms (Jemec et al. 2016; Ziccardi et al. 2016b). Therefore, particles may be 

ingested by various living organisms from plankton, to fish, aquatic birds and mammals 

(Putnam et al. 2017; Oluniyi Solomon & Palanisami 2016). The ingestion of 

microplastics has been demonstrated in the gastrointestinal tracts of fish on Giglio 

Island Italy (Avio, Cardelli, et al. 2017). The study reported size of particles ranging 

from 100 to 1000 µm were found in 77 to 86% of benthic fish species and in all the 

bentho-pelagic fish analysed (Avio, Cardelli, et al. 2017). Microplastics comprised 

mainly of fragments of polyethylene, nylon and polystyrene. In another study, mortality 

in different fish species in the western English Channel was reported after ingesting 

fragment particles ranging from 50 to 100 µm and longer particles of fibre that ranged 

from 100 to 1100 µm. Although the source of the particles was not determined, it was 

suggested that they were likely due to but not restricted to run-off and sewage input 

(Steer et al. 2017a). With a wide particle size range that organisms exhibiting different 

feeding methods including filter feeders, detritivores and zooplankton, are constantly 

exposed to microplastics (Scherer et al. 2017; Van Cauwenberghe et al. 2015). Under 

laboratory controlled conditions, one study reported on the mortality of freshwater 

crustaceans Daphnia magna, on exposure to different concentrations of polyethylene 

terephthalate fibre particles (Jemec et al. 2016). Furthermore, other studies have 
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reported on the uptake of particles of fibre by living organisms in the environment 

(McGoran et al. 2017; Taylor et al. 2016). This suggests that there is the potential for 

the accumulation of particles abraded from kitchen scourers to enter and accumulate 

in the environment, with the potential to cause harm to living organisms (McGoran et 

al. 2017; Taylor et al. 2016).  

This argument of the impact of microplastics is based on the small size and number 

of particles detected, which enables the ingestion of microplastics by living organisms 

(Steer et al. 2017b; Oluniyi Solomon & Palanisami 2016). In addition, it is widely 

discussed that the sorption and transfer of toxic chemicals by particles to living 

organisms has been the focus for potential harm (Andrady 2017; Batel et al. 2016). 

However,  the extent of the impact is still uncertain, especially at the population level 

(Ziccardi et al. 2016b; Lusher et al. 2013). The uncertainty is because of the low 

concentrations of microplastics detected in living organisms from the environment. 

One study revealed that between 0.2 to 1.2 particles g-1 were detected in two species 

of marine invertebrates, with no significant impact (Van Cauwenberghe et al. 2015). 

However, other studies have reported high concentrations of particles in laboratory 

controlled conditions with no apparent significant impact (McGoran et al. 2017;Karami 

et al. 2017). It has been argued that the unrealistic and high concentrations of 

microplastic exposure to living organisms in controlled laboratory conditions do not 

capture true concentrations in the environment (Burton 2017). In addition, the sorption 

and transfer of toxic chemicals by ingestion of prey, and smaller nanoparticles may be 

potential sources of harm to living organisms (Koelmans & Bakir 2016; Burton 2017). 

Therefore,  it is premature to conclude that the occurrence of microplastics alone in 

the environment is the cause of impact to living organism (Burton 2017). What is 

certain however is that the characterisations of particles in the environment and 

laboratory controlled conditions can allow for a better understanding of the impact to 

living organisms (Sharma & Chatterjee 2017; Auta et al. 2017b).  

From the data reported in this work that different techniques for the characterisation 

of microplastics do provide different results. But it is clear that each technique has its 

limitations and advantages. Given that the techniques used have fundamentally 

different principles of measurement, sample introduction and automation this is 

possibly not an unexpected outcome. Microscopy and laser diffraction gave results 

that were comparable. However, the novel application of the imaging flow cytometry, 
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which was more sensitive in detecting lower sized particles, gave results that indicated 

the presence of significantly higher number of particles in one of the PCP samples. 

The use of this technique also highlighted the importance of quality control (blanks) 

and challenges relating to sample handling and introduction to the instrument still 

remain. This study has focused on off the shelf consumer products with a relatively 

simple matrix and high numbers of particles per unit mass and different techniques 

give different results. It is therefore likely that such differences will be seen and 

possibly magnified if these comparisons were made on environmental samples. 
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CHAPTER 6: CONCLUSION 

 

This thesis has shown that different sample preparation protocols and the application 

of different analytical techniques used for the characterisation of microplastics will 

produce different results. This study has described the development of laboratory 

sample preparation protocols and the application of the analytical techniques for the 

characterisation of particles separated from PCPs. In addition, this report has shown 

for the first time, evidence of microplastics abraded from KS. There were differences 

in the size, number, and morphology and polymer identity of particles based on the 

different techniques used. Furthermore, this study has shown for the first time that sub 

70 µm sub fractions of particles can be analysed using the imaging flow cytometry. 

This is important, because of the significance of microplastics in the low micron size 

region in the environment.  

Although the application of the different methods and analytical techniques allowed 

for particle characterisation, the imaging flow cytometry did not successfully determine 

estimates for the number of particles, as demonstrated with the PCPs. This study has 

highlighted the importance of the analysis of blank water samples to detect particles 

in debris only when using certain techniques, to prevent over and/or under estimating 

number of particles. The size of particles reported in this thesis suggests the finer 

particles will enter the environment through WWTPs that cannot capture them. In 

addition, the literature states that particles not captured can be incorporated into 

sludge where they have the potential to enter the environment through run-off.  

This study reported that one product FS2 demonstrated the largest estimated 

number of particles using the microscopy and imaging flow cytometry techniques. In 

addition, polyethylene is commonly used in the selected products analysed.  

With the ban on microplastics in PCPs to take effect from this year, it will be 

important to look at KS as a source of microplastics entry to the environment. The 

particles characterised in the KS could act like particles from PCPs with the potential 

to cause harm to living organisms.        
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A number of techniques for characterising and quantifying microplastics arising from 

PCPs and kitchen scourers were developed and outcomes compared. These 

techniques gave different outcomes in terms of both the characteristics, in terms of 

size and shape of particles, and in the numbers of particles present. 

 Microscopy is a direct imaging technique, a widely used approach, was time 

consuming although there is evidence that size measurements and counting 

particles in 6 transects (300 cells) of the Sedgewick-rafter cell can give 

reproducible results between samples and at fixed magnifications. However, at 

different magnifications, different results are likely to be obtained. Furthermore, 

at the higher magnification, smaller particles can be detected.  

 Particle size analysis by laser diffraction required the addition of methanol and 

surfactant to give reproducible results and allow samples to be taken in by the 

instrument. This technique is not commonly used in studies on microplastics. 

The widest particle size range was determined by laser diffraction however, 

with the instrument used in this study; the number and morphology of particles 

were not determined.  

 Flow cytometry was used to analyse particles in the sub 70 µm fraction. The 

technique is equipped with the IDEAS software that allowed for the 

development of templates and analysis of particle size, number and 

morphology. The high sensitivity of the technique was demonstrated by the 

detection of particles of debris in the blank water samples. This was possible 

only with this technique. Out of the techniques used in this study, the highest 

number of particles was determined by the imaging flow cytometry.  

 The FT-IR technique is widely used for the confirmation of polymer identity of 

microplastics. The application of the micro-FT-IR and ATR-FT-IR confirmed the 

polymer identity of all particles analysed. Particles separated from PCPs were 

identified as polyethylene, however particles abraded from kitchen scourers 

were either polyethylene or polyester. 

Similarities and differences were observed between techniques used for the 

characterisation of microplastics. The size of particles indicated that there was no 

similarity in the results based on the different techniques used. The imaging flow 
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cytometry technique measured the smallest size range, and by contrast, the laser 

diffraction technique measured the widest particle size range.  

The number of particles was different across the different techniques used. The 

imaging flow cytometry technique estimated the largest number of particles compared 

with the microscopy technique. Particle estimates were not determined by the laser 

diffraction and FT-IR techniques.  

However, the microscopy and FT-IR technique indicated similarities in the 

morphology of particles analysed. The imaging flow cytometry technique analysed 

particle morphology with a developed template that was unique to this technique. 

Particle morphology was not determined by the laser diffraction technique.  

The facial scrubs where characterised by more circular-like particles than in the 

toothpastes. s. The kitchen scourers used in this study were supermarket and top 

market brands. The particles abraded were characterised by particles of fragments 

and fibre particles. In addition, the supermarket owned brand abraded more particles 

than the top market brand kitchen scourer.    
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FUTURE WORK 

 

Further work will need to explore and understand the differences between the 

techniques used for the characterisation of microplastics. In addition, there needs to 

be an evaluation of the different techniques used, to determine which one gives the 

most accurate measurements. Furthermore, there will be a need to assess the 

importance and implication of the differences observed using the different techniques.  
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Glossary of terms 

 
AIO 
AR          
ATR-FTIR 

 
Air induced overflow 
Aspect ratio 
Attenuated total reflectance –Fourier transform infrared spectroscopy 

BPA 
BPF  

Bisphenol A  
BRITISH PLASTICS FEDERATION 

CILAS Compagnie Industrielle des LASers 
CIS 
CIR 

Commonwealth of independent states 
Circular 

DEFRA 
DEHP 
ELG 
EMD 
EPA 

The Department for Environment, Food and Rural Affairs 
Di(2-ethylhexyl)phthalate 
Elongated 
Emmanuel Merck Darmstadt 
Environmental Protection Agency 

EU European Union  
FPA 
FS 

Focal plane array 
Facial scrub 

FT-IR Fourier transform infrared spectroscopy 
GESAMP 
GFC 
HS 

Joint Group of Experts on the Scientific Aspects of Marine Pollution 
Glass fibre grade C 
HARD SCOURER 

HDPE High-density polyethylene 
IDEAS Image Data Exploration and Analysis Software 
IMO 
IOC 

International monetary organisation 
The Intergovernmental Oceanographic Commission 

IR Infrared radiation 
KS Kitchen scourer 

LDPE Low-density polyethylene 
MBR Membrane bioreactor 

MSFD 
MEHP 
MSFD 
OECD 

Marine safety framework directive  
Mono-(2-ethylhexyl)-phthalate 
Marine Safety framework directive 
The Organisation for Economic Co-operation and Development 

PBDE Polybrominated diphenyl ethers 
PCP Personal care products 
PE Polyethylene 
PET polyethylene-terephthalate 
PP Polypropylene 
PVC polyvinyl chloride 
SRC Sedgewick-Rafter cell 
UV 
PAH 
PBT 
RMS 
SSC 
TP 
UK 
US 

ultra violet  
Polycyclic aromatic hydrocarbon 
Persistent bio-accumulative and toxic 
Root mean square 
Side scatter 
Toothpaste 
United Kingdom 
United States 

WWTP Waste water treatment plant 
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APPENDIX 

 

 

Figure 4.9.6.1. Interrogation of image display gallery to identify circular-like 

particles separated from PCPs 

Figure 4.9.6.2. Interrogation of image display gallery to identify elongated particles separated from 
PCPs 
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Soil classification table applied to particle size categories. 

Table 7.1. Diameter of soil particles in microns and mm    

 

 

 

 

 

 

Feature Microns Millimetre 

Very coarse sand 2000 - 1000 2.0-1.0 mm 

Coarse sand 1000 -  500 1.0-0.5 mm 

Medium sand 500 -  250 0.5-0.25 mm 

Fine sand 250 - 100 0.25-0.10 mm 

Very fine sand 100 - 50 0.10-0.05 mm 

Silt 50 - 2 0.05-0.002 mm 

Clay < 2 <0.002 mm 
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Figure 8.81. FT-IR spectra of particles abraded from KS1 and 4 identified as polyethylene. KS2 and 3 confirmed as polyester with a reference library.
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Figure 8.8.2. FT-IR spectra of particles abraded from KS5. Particles were identified using a 
reference library, and confirmed as polyester. 
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