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Buried pipelines are vulnerable to the threat of corrosion. Hence these pipelines are 

coated with a protective layer (coating) to isolate the metal substrate from the 

surrounding environment. With time, the coating will deteriorate which could lead to 

corrosion. The condition of the coating can be investigated by the external corrosion 

direct assessment (ECDA) procedure to investigate and monitor corrosion activity on 

unpiggable pipelines and provides a guideline in maintaining its structural integrity. 

This paper highlights the results obtained from the ECDA process which was 

conducted on 250 km of buried pipelines. The results from the indirect and direct 

assessment part of the ECDA were modeled using the classical quantile regression 

(QR) and the Bayesian quantile regression (BQR) method to investigate the effect of 

factors toward the IR drop (%IR) and the coating defect size (TCDA). It was found 

that the classical method and the Bayesian approach produces similar predictions on 

the regression coefficients. However, the Bayesian method has the added advantage 

of the posterior distribution which considers parameter uncertainties and can be 

incorporated in future ECDAs. 
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40 1 | INTRODUCTION 
41 

42 The safest form of transportation of oil and gas products is by 

43 the use of pipelines.[1] Failure of pipelines is rare but causes 

44 from third party interference such as excavation of pipeline 

45 locations, corrosion of the metal substrate, and operational 

46 issues can jeopardize a pipeline from operating normally.[2] A 

47 pipeline failure which results in the loss of containment has the 

48 potential to impact the society, environment and the company's 

49 economy.[3] Due to this, the structural integrity of pipelines is 

50 at the top of every operator's list in keeping the pipelines from 

51 failing and working in a safe and normal manner. 

52 For buried pipelines, corrosion threats are a major 

53 concern.[4] The threat is minimized by the application of 

external coating on the outer surface of the pipeline.[5] In 40  
theory, the reaction of microscopic corrosion cells which is 41 
present on the metal surface is prevented by the application of   42 
a non-conductive material which separates the metal surface 43 
from the environment.[6]

 44 

The failure of pipeline coatings can occur in various ways. 45 

Normally, coatings are made from organic materials which 46 

makes them susceptible to deteriorate over time. The failure 47 

can also be due to the incorrect application of the coating, soil 48 

stresses experienced by the pipeline or the coating's adhesive 49 

properties  has  lost  its  functionality.  Generally,  failure  of 50 

coatings can be summarized as the changes in any of the 51 

chemical,  physical,  or  electrochemical  properties  of  the 52 

coating.[7] The result of these failures is the  discontinuity of 53 
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1 the coating (defect) which leaves the metal substrate exposed 

2 to the environment. In the event of coating discontinuity, 

3 corrosion is likely to occur which could undermine the whole 

4 structural integrity of the pipeline. 

5 Buried pipelines are normally protected with a cathodic 

6 protection (CP) system. This system acts as backup to the 

7 coating system and comes into play when defects are present on 

8 the pipeline's coating.[8] The monitoring of the CP system, the 

9 coating and the overall integrity of the pipeline is normally 

10 addressed by conducting an external corrosion direct assessment 

11 (ECDA).[9] As part of the ECDA process, an indirect assessment 

12 which is commonly used is the Direct Current Voltage Gradient 

13 (DCVG).  This  technique  is used  to identify  the  location  of 

14 coating defects and to classify its severity. Based on a defect 

15 severity, a decision can be made on whether to proceed with 

16 further direct assessment which requires excavation of the defect 

17 location. The DCVG technique is considerably accurate in 

18 locating a defect location but lacks the accuracy in predicting its 

19 size (area).[10] The prediction of coating defect area has not yet 

20 been a popular research theme within the academic sphere and 

21 the  pipeline  industry.  The  authors  found  only  a  handful of 

22 literature relating to this topic. The most noticeable of which was 

23 done by Ref. [11]. In this paper, a quantile regression was used to 

24 model the relationship between  the coating defect area and  its 

25 possible contributors. The paper also sheds light on the 

26 challenges faced by pipeline operators when interpreting 

27 DCVG indications. McKinney,[12] has produced a model which 

28 estimates the coating defect area based on simulated data. The 

29 approach taken is deterministic where a finite element method 

30 (FEA) was used. Moghissi et al.[13] have identified that there is 

31 no simple solution toward prioritizing coating defects for further 

32 assessment. Data were collected from the Closed Interval 

33 Pipeline Survey, DCVG and current attenuation assessments 

34 and were used to derive basic formulations to model the 

35 relationship between coating defect area and its possible 

36 contributing factors. The approach taken in Ref. [13] uses 

37 similar methods as those found in the work by Ref. [12]. 

38 The motivation for the work reported in this paper is to 

39 supplement the body of knowledge highlighted above. 

40 Statistical models are proposed to better explain the inner 

41 workings of a DCVG indication for the prioritization of 

42 coating defects for subsequent direct examination of the 

43 affected pipeline. 

44 Quantile regression is used to fully characterize the 

45 dependent variable without relying on assumptions of the 

46 response distribution e.g., normally distributed. As compared 

47 to the mean regression, quantile regression is much more 

48 robust to outliers since it employs absolute values of the error 

49 terms.[14] Judging by the distribution of the response variable 

50 from the MEOC data (which will be described in detail in the 

51 following section) which is represented by Figures 1 and 2, 

52 the total coating defect area (TCDA) and the %IR (IR drop) 

53 variable demonstrate a distribution which is not normal nor 

symmetric and have some degree of skewness. Distributions 1 

such as the ones above, are asymmetrical and hence need 2 

more  complex  solution  in  describing  the  entirety   of  the 3 

response variable's distribution.[15] 4 

The Bayesian  approach toward  quantile regression was 5 

elaborated   by   Ref.   [16].   Bayesian   inferences  is  more 6 

advantageous  than  the  classical  approach  in   mainly  two 7 

instances: 1) Bayesian statistics does not rely  on asymptotic 8 

variances of  the  estimators and 2)  the estimated parameter 9 

includes the parameter uncertainty in the form of a posterior 10 

distribution. Since the mechanism of cathodic protection are 11 

complex, uncertainty of parameter values becomes an inherent 12 

trait.   The  Bayesian  approach   helps  us  to   quantify  this 13 

uncertainty. The findings from this paper can then be used 14 

as prior information for the next iteration of the ECDA process. 15 

This  paper  is  divided  into  several  sections. Section 2 16 

describes the data that was obtained from a recent ECDA 17 

project  conducted  by  TWI  Ltd.  Section  3  outlines  the 18 

methodology used followed by Section 4 which presents the 19 

results from the models. Section 5 is discussion and Section 6 20 

is the conclusion and future work. 21 

22 

2   | MEOC DATA
 23

 
24 

The Middle Eastern Oil Company (MEOC) has appointed TWI
 25

 

Ltd. to conduct an ECDA on its network of pipelines. There are
 26

 

a total of nine (9) pipelines, all of which are non-piggable. The
 27

 

ECDA  conducted  by  TWI  Ltd.  complied  with the ANSI/
 28

 

NACE  SP0502-2010:  Standard  Practice Pipeline External
 29

 

Corrosion Direct Assessment Methodology. The ECDA is
 30

 

divided into four parts. Data from these parts were gathered and
 31

 

annotated by the authors to be used in the modeling process. 
32

 
33 

34 

2.1 | Pre-assessment 35 

The data in this section includes the design data of the pipe which
 36

 

included its design philosophy, material selection, and the pipe
 37

 
38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

FIGURE  1     Probability density plot for TCDA. Reproduced with 52 

permission from TWI Ltd. 53 
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1 data.  As can be seen  here,  the  decision relies on subjective 1 

2 judgment of the engineers. At excavation sites, data collected 2 

3 are the soil resistivity (SR) which is based on the four pin 3 

4 method,[17] the depth  of buried pipe (DOC), the  material of 4 

5 cover, the pH of the soil, the pH of water underneath the 5 

6 coatings and where there is corrosion activity the depth of the 6 

7 corrosion pits (POPD) using ultrasonic measurements and pit 7 

8 gauges. The size of the coating defects was also measured and 8 

9 were summed up (at one excavation site) to become the total 9 

10 coating defect area (TCDA). Deposits underneath coatings 10 

11 (DUC)  were also annotated where  present. The   amount of 11 

12 deposit underneath the coating in terms of area is divided with 12 

13 the TCDA to gain a percentage value. All the data collected in 13 

14 FIGURE 2 Probability density plot for %IR. Reproduced with 

15 permission from TWI Ltd. 

16 
17 

physical characteristics. Historical operation data is also present 
18 

in this section. It was found that the total length of the nine 
19 

pipelines covers over 250 km. The age (time in service – TIS) for 
20 

these pipes ranges from 19 to 39 years. The pipe sizes (PS) are 
21 

from 26 to 42 inches. Operating pressure is from 8 to 17 Bar. The 
22 

material   grade  for  these   pipes  are  API5L-X52   and   X60. 
23 

Working pressure of the pipes ranges from 40 to 60 °C with  a 
24 

400 to 1520 m3 h−1 of fluid flow rate. Coatings types used for the 
25 

nine pipelines ranges from cold wrap, coal tar, and polyethylene. 
26 

27 
2.2 | Indirect assessment 

29 This section of the ECDA process specifies the indirect tests 

30 that was used to investigate the CP condition and the coating 
31 condition  of  the  pipeline.  Techniques  such  as  the  close 

32 interval   potential   survey   (CIPS),   direct   current voltage 

33 gradient    (DCVG),    alternate    current    voltage   gradient 

34 (ACVG), and pipeline current mapper (PCM) were conducted 
35 to obtain information on the state of the pipeline. 

36 The DCVG technique was identified as the most suitable 

37 technique  to specify  the coating  defect area as it provided  an 
38 established  method of calculating  the size of coating disconti- 

39 nuities. Once a defect is located, the total voltage (total mV) is 

40 calculated  and divided by the pipeline's potential at that defect 
41 location. The pipe's potential is an interpolation of the relative 

42 distance of the defect to two bracketing test posts. This value is 

43 later multiplied by a hundred to get a percentage value which is 
44 called the percentage IR or IR drop (%IR). The values of the %IR 

45 are taken as the data needed for the construction of the model. 
46 
47 2.3 | Direct assessment 
48 

49 Direct assessment of defects provided us with a lot of useful 

50 data. After the identification of coating defects and calculation 

51 of its severity (based on %IR), decisions can be made on where 

52 to excavate to further analyze the defect. The decisions were 

53 based on the magnitude of the %IR and the pre-assessment 

this phase were considered as factors toward the prediction of     14 

the coating defect area. A complete list of the variables used for 15 

modeling based on the data gathered from the indirect and 16  

direct phase of the ECDA is listed in Table 1. 17 

18 

3   |  METHODOLOGY 19 

20 

The objective for this paper can be divided into two. The first 21 

one is the construction of a model which summarizes  all the 22 

contributing factors toward  the %IR.  A  further refinement 23 

(lesser contributing variables) of the model is also constructed 24 

based on the industry's understanding on the system. This was 25 

done by consulting experts from the field. The second objective 26 

is  to present  a  model which  predicts  the  TCDA based on 27 

environmental data. Additionally, there are two versions of the 28 

dataset. The first version is the data set that included every 29 

measurement from the ECDA process. We shall name this the 30 

“Oriset” data.  This  is  the  original  dataset  received by the 31 

authors. The second version of the data set is called the “Filtset” 32 

and was scrutinized by the authors on what to expect from a 33 

DCVG indication relating to its size of coating defect. A total of 34 

four data points which were considered as outliers were taken 35 

out the data set. The data points removed was in the form of the 36 

outliers present  in the  distribution  of TCDA   where larger 37 

TCDA gives us lower values of %IR. For ease of referencing 38 

the models are named as follows in Table 2. 39 

Two techniques were applied to the two datasets. The first 40 

approach is by the usage of the Bayesian quantile regression 41 

(BQR) to obtain model estimates. The second is the classical 42 

approach which employs quantile regression (QR). 43 

44 

3.1 | BQR 45
 

46 

In   classical   statistics,   assumptions   were   made  on  the 47 

estimated parameters where the value is considered fixed, 48 

but the quantity is unknown. Unlike the classical approach, 49 

Bayesian inference is a new way of thinking about statistics.  50 

The parameter of interest is not fixed but a random variable.  51 

Based  on  the  paper  by  Yu  and  Moyeed,[16] the  pth 52 

regression quantile (0 < p < 1) can take on any solution, β̂ðpÞ;  53 
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TypesQ2 of variables considered for the regression assessment 

 

 
1 

2   2 

3   3 

4   4 

5   5 

6   6 

7   7 

8   8 

9   9 

10   10 

11   11 

12   12 

13   13 

14   14 

15   15 

16   16 

17   17 

18   18 

19   19 

20   20 

21   21 

22   22 

23   23 

24   24 

25   25 

26   26 

27   27 

28   28 

29   29 

30   30 

31   31 

32   32 

33   33 

34   34 

35   35 

36   36 

37   37 

38   38 

39   39 

40   40 

41   41 

42   42 

43   43 

44   44 

45   45 

46   46 

47   47 

48   48 

49   49 

50   50 

51   51 

52  (Continues) 52 

53 53 
 

Symbol Variables considered    Type of variable/summary statistics 

α IR drop (%IR)    Quantitative 

Min. value 0 

     1st quantile 17.87% 

     Median 37.8% 

     Mean 38.48% 

     3rd quantile 56.7% 

     Max. value 98.9% 

β Soil resistivity (SR)    Quantitative  

     Min. value 75.36 Ω-cm 

     1st quantile 560.25 Ω-cm 

     Median 1282 Ω-cm 

     Mean 2722.11 Ω-cm 

     3rd quantile 2508.14 Ω-cm 

     Max. value 43 332 Ω-cm 

γ Percentage of pit depth to wall thickness (POPD) Quantitative  

     Min. value 0% 

     1st quantile 0% 

     Median 2.537% 

     Mean 10.451% 

     3rd quantile 17.471% 

     Max. value 100% 

δ Deposits under coatings (DUC)   Quantitative  

     Min. value 0% 

     1st quantile 3% 

     Median 30% 

     Mean 35.4% 

     3rd quantile 60% 

     Max. value 100% 

ε Depth of cover (DOC)    Quantitative  

     Min. value 0 cm 

     1st quantile 100 cm 

     Median 110 cm 

     Mean 109.5 cm 

     3rd quantile 130 cm 

     Max. value 210 cm 

ζ Time in service (TIS)    Quantitative  

     Min. value 19 years 

     1st quantile 20 years 

     Median 36 years 

     Mean 32.5 years 

     3rd quantile 39 years 

     Max. value 39 years 

η Pipe size (PS)    Quantitative  

     Min. value 26 inches 
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25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 Reproduced with permission from TWI Ltd. 

40 

41 

42 and is associated to the aforementioned quantile regression 

43 minimization problem (minimization β)Q3 

44 

45 min∑ρp yt - x0
tβ  ; ð1Þ 

46 

47 
the loss function being 

48 
49 

50 
ρpðuÞ ¼ uðp - Iðu < 0ÞÞ ð2Þ 

51 

52 Yu and Moyeed[16] also showed that the minimization 

53 of the loss function above is exactly the same as 

 
25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 
maxi-mizing the likelihood function which is formed  by  42 
joining independently distributed Asymmetric Laplace  43 
Densities (ALD). 44 

The probability density function of the ALD is given as 45 

follows[18]
 46 

47 

f  y;  μ, σ, p 
pð1 - pÞ 

exp ρ 
 y - u 

3
 48

 
o σ 49 

50 
And  based  on  the  y  observations   y = (y1,.. .,yn),  the 51 

distribution of the posterior of β, π(β|y) is in the form of the 52 

Bayes theorem 53 

Backfill geometry 

pH of water in soil 

pH of water underneath coating 

Symbol Variables considered Type of variable/summary statistics 

1st quantile 36 inches 

Median 36 inches 

Mean 35.3 inches 

3rd quantile 36 inches 

Max. value 42 inches 

TCDA Total coating defect area Quantitative 

Min. value 0 cm2 

1st quantile 1200 cm2 

Median 9985 cm2 

Mean 44 893 cm2 

3rd quantile 77 865 cm2 

Max. value 269 894 cm2 

 

ρ Angular Qualitative 

σ Round + angular Qualitative 

R Rounded Qualitative 

 

φ Acidic Qualitative 

χ Alkaline Qualitative 

ψ Neutral Qualitative 

 

ω Acidic Qualitative 

¨υ Alkaline Qualitative 

ï Neutral Qualitative 

 

1 TABLE 1 (Continued) 1 

2   2 
    

3   3 
    

4   4 
    

    

6   6 
    

7   7 

8   8 

9   9 

10   10 

11   11 

12   12 
    

13   13 
    

14   14 
15   15 

16 
  

16 

17 Backfill type 17 
     

18 θ Rock Qualitative 18 

19 κ Sand + clay Qualitative 19 

20 λ Stones + clay Qualitative 20 

21 Coating type 21 

22 μ Coal tar Qualitative 22 

23 ξ Polyethylene Qualitative 23 
     

24 CW Cold wrap Qualitative 24 
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Names of the various models corresponding to each dataset 

 

 
1 

2   2 

3   3 

4   4 

5   5 

6   6 

7   7 

8   8 

9   9 
10 

Reproduced with permission from TWI Ltd.
 10

 
11 11 

12 
13 

14 
πðβjyÞ ¼ LikelihoodðyjβÞx gðβÞ ð4Þ 

15 
The g(β) is considered as the prior distribution of β and 

16 
Likelihood (y|β) is the likelihood function. Since minimizing 

17 
the loss function highlighted above is exactly the same as 

18 
maximizing the ALD, the likelihood can be written like this 

19 

21 LikelihoodðyjβÞ ¼ pnð1 - pÞ
n  

exp

(

- ∑ ρ 
(
y  - x0β

 
s

 

0.0000687% of %IR. If we increase the percentage values to 
12 

100% (maximum reading of the DCVG indication), the max 
13 

coating  defect  size  the  DCVG  technique  can  detect  is     
14     

1 455 604 cm2. The lowest estimated value for the TCDA 
15 

occurs at the 0.05 quantile. The estimated coefficient reveals a  
16 

1 cm2 increase in TCDA will increase the %IR value by 
17 

0.0000022%. This shows that medium-sized coating defects 
18 

give the largest signal on the DCVG indication where small        
19

 
defects  contribute  the  least.  Also,  at  the  0.5  quantile,  the     

20
 21 p i 

22 i 

23 
24 

i 

ð5Þ 

credible interval is much narrower compared to the ones at the 
22

 
two opposite ends indicating lower uncertainty. Equations of 

23 
various quantiles are presented in the following:

 24
 

25 As for the specification of priors, one can use any prior. 

26 But in the absence of a prior (as with the research presented in 

27 this paper – due to the lack of expert opinion and the limited amount of data), Yu and Moyeed[16] have proven that a non- 

25 
%IR0:05   14:2 0:0000022TCDA  0:0000235β 

0:00611γ 0:0079δ 0:0549ε 
-0:336ζ -

1
0:0818η þ 5:2θ 

28 -1:03κ þ   :72λ - 3:26μ  28 

29 informative improper prior yields a proper posterior 

30 distribution. In this method, there are no known conjugate 

31 priors but with the relative ease of using Markov chain Monte 

32 Carlo (MCMC) with the Metropolis Hastings algorithm, one 

33 is able to easily produce the posterior distribution of the 

34 parameters. 
35 

-6:28ξ þ 0:754ρ - 2:64σ  29 
þ1:17φ þ 8:41χ þ 7:24ψ

 30
 

-0:943ω - 2ϋ þ 2:56 ı̈ ð6Þ
  31

 

%IR0:5 ¼ 86:1 þ 0:0000687TCDA - 0:000567β 32 
þ0:0439γ - 0:0372δ þ 0:0933ε - 0:374ζ 33 
-1:31η þ 50:8θ þ 16:3κ þ 0:562λ  34 
-0:215μ þ 0:368ξ - 19:9ρ - 0:835σ

  35
 

36 4 | MODEL ESTIMATION AND 
-8:1φ þ 0:753χ þ 7:03ψ 
-3:24ω - 7:78 ϋ - 0:125 ı̈ ð7Þ 36 

37 RESULT ANALYSES 
38 

39 Both the Oriset and the Filtset data were applied to the two 

40 regression techniques. Variables considered were the varia- 41 bles highlighted in Table 1. All the analyses were done in the 

37 

%IR0:95 ¼ 23:6 þ 0:0000532TCDA - 0:000346β 38 
þ0:108γ - 0:0704δ þ 0:0364ε 39 
þ1:19ζ þ 0:285η þ 10:7θ - 11:6κ

 40
 

þ0:411λ þ 11μ þ 2:44ξ -
χ 

8:69ρ
  41

 
-0:446σ - 4:8φ - 0:804   - 14ψ 

42 statistical software R. 

43 
44 4.1 | Contributing factors to %IR (Model 1) 
45 

46 The estimates from Table 3 showed interesting results 

47 particularly on the TCDA variable. Iterations of up to 1 

48 million of the MCMC was conducted to achieve convergence. 

49 This can be seen in Figure 3 where the trace plot and posterior 

50 histogram of various quantiles is presented. A quantile plot of 

51 the variable TCDA is shown in Figure 4. The maximum 

52 estimated coefficient value occurs at the 0.5 quantile where a 

53 1 cm2 increase in coating defect size reflects in an increase of 

-11ω þ 0:991ϋ - 1:99 ı̈ ð8Þ 42 

43 

Soil resistivity also plays a role in the contribution to the 44 

%IR. The maximum (lowest) estimated value for soil  45  
resistivity occur at the 0.5 quantile with a value of 46 

−0.000567. This can be interpreted as a 1 unit increase of    47    
soil resistivity will lead to a decrease of 0.000567% with 48  
respect to %IR. However, the variable backfill type – rock 49 
which is related to the resistant nature of the soil, showed an 50 
inverse effect. Across the quantiles, the estimated coefficients 51 
point to meaningful contribution toward the %IR readings 52 
especially within the range of 0.25 to the 0.75 quantile. 53 

Description of model Dataset Model name 

Contribution to %IR model – full variables Oriset Model 1 

Contribution to %IR model – refined variables Oriset Model 1a 

Contribution to %IR model – full variables Filtset Model 2 

Contribution to %IR model – refined variables Filtset Model 2a 

TCDA model – full variables Oriset Model 3 

TCDA model – refined variables Filtset Model 4 

 



UNCORRECTED 

PROOF
S 

 

 

 

 

 

 
TABLE 3 Bayesian quantile regression (BQR) estimates with 95% credible intervals for quantiles 0.05, 0.5, and 0.95 for Model 1 

 

 

 

 
 

Variables 

Quantiles 

0.05 

Credible intervals 

Posterior mean 

 

 

 

 
 

0.025 

 

 

 

 
 

0.975 

 
 

0.5 

Credible intervals 

Posterior mean 

 

 

 

 
 

0.025 

 

 

 

 
 

0.975 

 
 

0.95 

Credible intervals 

Posterior mean 

 

 

 

 
 

0.025 

 

 

 

 
 

0.975 

(Intercept) 14.2 −2.95 38.4 86.1 77 95.5 23.6 −28 73.5 

IR drop (%IR) 0.0000022 −0.000012 0.0000384 0.0000687 0.0000517 0.0000837 0.0000532 0.00000513 0.0000788 

Soil resistivity (SR) −0.0000235 −0.00045 0.000325 −0.000567 −0.000881 −0.000293 −0.000346 −0.00064 0.0000823 

Percentage of pit depth to wall thickness (POPD) 0.00611 −0.102 0.118 0.0439 −0.0321 0.12 0.108 −0.0198 0.264 

Deposits under coatings (DUC) 0.0079 −0.0358 0.0511 −0.0372 −0.0764 0.00186 −0.0704 −0.139 −0.00845 

Depth of cover (DOC) 0.0549 0.0111 0.108 0.0933 0.0675 0.122 0.0364 −0.0251 0.109 

Time in service (TIS) −0.336 −0.779 0.207 −0.374 −0.561 −0.189 1.19 0.137 2.65 

Pipe size (PS) −0.0818 −0.329 0.104 −1.31 −1.53 −1.11 0.285 −0.159 0.739 

Backfill type (Rock) 5.2 −9.36 47.8 50.8 42.7 57.6 10.7 −2.52 47.9 

Backfill type (sand + clay) −1.03 −12.7 3.38 16.3 5.88 30.6 −11.6 −27.8 1.94 

Backfill type (stones + clay) 1.72 −1.43 6.36 0.562 −1.46 3.69 0.411 −3.95 6.33 

Coating type (coal tar) −3.26 −8.38 8.85 −0.215 −2.8 1.82 11 −5.26 35 

Coating type (polyethylene) −6.28 −20.7 5.22 0.368 −2.97 4.66 2.44 −25.9 21.6 

Backfill geometry (angular) 0.754 −3.01 5.65 −19.9 −23.2 −16.4 −8.69 −36.8 2.98 

Backfill geometry (round + angular) −2.64 −7.12 0.369 −0.835 −4.32 1.22 −0.446 −6.5 5.37 

pH of water in soil (acidic) 1.17 −10.3 16.5 −8.1 −14.8 0.286 −4.8 −44 9.5 

pH of water in soil (alkaline) 8.41 −0.222 15.3 0.753 −1.25 4.34 −0.804 −7.01 4.32 

pH of water in soil (neutral) 7.24 −0.67 15.8 7.03 1.03 11.1 −14 −20.3 −0.277 

pH of water underneath coating (acidic) −0.943 −10.3 3.26 −3.24 −20.6 1.32 −11 −42.4 4.92 

pH of water underneath coating (alkaline) −2 −5.33 0.492 −7.78 −10.1 −5.28 0.991 −1.36 5.77 

pH of water underneath coating (neutral) 2.56 −4.74 13 −0.125 −3.71 3.08 −1.99 −11.9 4.81 

Reproduced with permission from TWI Ltd. 
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1   1 

2   2 

3   3 

4   4 

5   5 

6   6 

7   7 

8   8 

9   9 

10   10 

11   11 

12   12 

13   13 

14   14 

15 FIGURE 3 Example of a trace plot and posterior histogram of the 0.5 quantile for the estimated coefficient, TCDA for Model 1. Reproduced 15 

16 with permission from TWI Ltd. 16 

17 17 

18 

19 4.2 | Refined %IR (Model 1a) 

20 The results of the estimated coefficients by BQR for Model 1a 

21 is presented in Table 4 below. In achieving convergence for 

22 all the variables, iterations of up to 300 000 were determined 

23 with the initial 5000 steps regarded as burn-in. For the 

24 variable of interest, the TCDA, the maximum estimated value 

25 occurs at the 0.5 quantile. This prediction is similar to the one 

26 predicted by Model 1. As for the overall estimated trend, it 

27 follows the same pattern as Model 1 with Model 1a being 

28 more pronounced. The value of the coefficient at the 

29 maximum is 0.0000828. This means that a 1 cm2 of TCDA 

30 will have an effect on the %IR by 0.0000828%. At the 0.05 

31 quantile, the coefficient value is at its lowest with a value of 

32 −0.0000353. The negative value signifies that with a 1 cm2 
33 increase in TCDA will yield a 0.0000353% decrease in %IR. 

18 

The trend of the estimated coefficients for the variable soil 19 

resistivity is also similar to Model 1. From 0.25 quantile 20 

upwards, the trend is negative with its most negative at the 0.5 21 

quantile. The reason for this can be considered consistent with 22 

the assessment for Model 1 when one looks at the rock variable 23 

with most of the estimates showing high positive values. The 24 

peak is also found at the 0.5 quantile suggesting that the effect 25 

of having coarse grained soil affects %IR values at its median 26 

quantile. There is also the factor of heterogeneity of the soil 27 

itself which also contributed to the non-linearity effect toward 28 

certain quantiles of the %IR distribution. Equations of various 29 

quantiles are presented in equations below. 30 

31 

%IR0:05 ¼ 4:74 - 0:0000353TCDA þ 0:000000565β 32 
þ0:0508ε -

2  
0:158η þ 5:23θ - 0:939κ  33 

34 
þ1:56λ þ  μ - 0:113ξ þ 0:434ρ

 34
 

35 

36 

37 
38 TCDA 

-3:65σ þ 1:2φ þ 8:11χ þ 5:06ψ ð9Þ 
35

 

%IR0:5 ¼ 87:5 þ 0:0000828TCDA - 0:000668β 36 
þ0:0722ε - 1:77η þ 53:4θ þ 25:4κ 37 
þ0:619λ þ 5:54μ þ 6:77ξ - 18:2ρ 38 

39    QR BQR After 1 Mil Iterations OLS C.I. Lower C.I. Upper 

þ0:251σ - 6:07φ þ 1:76χ þ 1:14ψ ð10Þ 
39

 

40 0.0001 

41 
0.00008 

42 

43 0.00006 

44 0.00004 

45 
0.00002 

46 

47 0
 

48 -0.00002 

-0.00004 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
QUANTILE 

40 
%IR0:95   64:9 0:000073TCDA 0:000296β 

0:0228ε 0:432η 6:45θ 8:21κ 
-1:46λ - 6:78μ - 15:3ξ - 6:73ρ  42 

-1:24σ - 4:67φ - 0:575χ - 12:6ψ   ð11Þ  43 

44 

45 

46 

4.3  | Contributing factors to %IR (Model 2) 47
 

48 

The estimated coefficients for Model 2 are given in Table 5. 49 

However, the reference variable is substituted to  be backfill 50 

51 FIGURE 4 Example of a quantile plot of the TCDA variable for 

52 Model 1. Reproduced with permission from TWI Ltd. [Color figure 

53 can be viewed at wileyonlinelibrary.com] 

type – rock, coating type – polyethylene  and  backfill  51 

geometry – angular. This is due to investigate on the factors 52 

regarding soft soils which included clay with rounded grain 53 

%
IR

 

49 
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TABLE 4 Bayesian quantile regression (BQR) estimates with 95% credible intervals for quantiles 0.05, 0.5, and 0.95 for Model 1a 

            

           

           

           

(Intercept) 4.74 −1.53 14.4  87.5 78.2 97  64.9 56 84.8 

            

Soil resistivity (SR) 0.000000565 −0.000344 0.000364  −0.000668 −0.000863 −0.000416  −0.000296 −0.000641 0.0000428 

            

Pipe size (PS) −0.158 −0.388 0.0759  −1.77 −2.01 −1.53  0.432 −0.199 0.64 

            

Backfill type (sand + clay) −0.939 −7.93 3.08  25.4 16.1 36.8  −8.21 −22.3 2.47 

            

Coating type (coal tar) 2 −0.739 6.36  5.54 3 8.17  −6.78 −11.9 0.445 

            

Backfill geometry (angular) 0.434 −3.6 4.73  −18.2 −22.7 −14.4 
 −6.73 −30.5 2.56 

            

pH of water in soil (acidic) 1.2 −10.2 16.7  −6.07 −12.7 0.598  −4.67 −42.2 9.47 

            

pH of water in soil (neutral) 5.06 −1.05 12.4  1.14 −1.34 4.89  −12.6 −19.3 0.294 

Reproduced with permission from TWI Ltd. 
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1 structure. A total of 400 000 iterations were made to get to 

2 the point of convergence with the initial 5000 readings as 

3 burn-in. Table 5  shows  the TCDA variable coefficients has 

4 an upward trend with a slight dip at the 0.25 quantile. The 

5 highest value is reached at the 0.95 quantile with a value of 

6 0.000229%.  For  a  1 cm2  increase  in  the  size  of  coating 

7 defect  area,  a  0.000229%  increase  in  percentage  IR  is 

8 expected.  This  is  higher  than  the  maximum  obtained by 

9 Model  1.  Additionally,  this  happens  at  the  0.95 quantile 

10 which goes well with established understanding of the 

11 technique as compared to Model 1 where the maximum 

12 occurred at the 0.5 quantile. This is mainly due to the 

13 contribution of the careful judgement of the authors which 

14 obliterated four points from the original set. 

15 Estimated coefficients for the soil resistivity variable 

16 showed increasing trends starting from the 0.25 quantile up to 

17 the maximum which is at the 0.95 quantile. The maximum 

18 Bayes estimate is 0.000373. Therefore a 1 unit increase in soil 

19 resistivity, an increase of 0.000373% of %IR is expected. 

20 Moreover, large uncertainties were observed in the upper and 

21 lower ends of the quantiles as compared to the median region. 

22 The variable clay showed increasing trends across the % 

23 IR distribution with a dip at the 0.95 quantile. The maximum 

24 estimated coefficient was noticed to be at the 0.75 quantile 

25 with a value of 60.8. This can be translated as the effect of the 

26 presence of clay to the %IR will be the most at the 0.75 

27 quantile of the %IR distribution. 

28 The following are selected models (Model 2) for the 

29 contribution of %IR based on various quantiles. 

30 

iterations were made to achieve convergence with the initial 1 

5000 recordings regarded as burn-ins. At the 0.05 quantile, 2 

the predicted TCDA coefficient showed similar results to the 3 

one obtained for Model 2. The coefficient value drops at the 4 

0.25 quantile and rising steadily after this all the way up to the 5 

0.95  quantile  where  it  reaches  its  maximum.  Maximum 6 

predicted  value  stands  at  0.000221  which  means  a 1 cm2 7 

increase in TCDA will give an increase of 0.000221% in %IR. 8 

Previously for Model 2, similar characteristics were observed 9 

with only slight differences in the  predicted values. 10 

Soil  resistivity  plays  a  role  in  Model  2a  where  an 11 

increasing trend is observed starting from the 0.25 quantile all 12 

the way up to the 0.95 quantile. The highest predicted value is 13 

at the 0.95 quantile with a Bayes estimate of 0.000482. At the 14 

0.95 quantile, a 1 unit increase in the value of soil resistivity 15 

will mean a 0.000482% increase in %IR. 16 

The presence of clay as the backfill material will affect the 17 

%IR differently across the quantile of the %IR distribution 18 

when compared to the soil resistivity variable. Clay affect the 19 

0.75 quantile the most with the 0.05 the least affected. The 20 

value of the maximum estimate coefficient is 57. This is not 21 

far off than the estimated value at the same quantile for Model 22 

2. The upward trend up to the 0.75 quantile reflects that clay 23 

has a positive effect in the contribution of the %IR reading. 24 

Models of various quantiles are presented in the following 25 

equations. 26 

27 

%IR0:05 ¼ 30:3 þ 0:0000956TCDA - 0:000132β 28 
þ0:0561ε - 0:301η - 18:9C 29 
-19:1κ - 6:25λ - 6:48CW

  30
 

31 %IR 

32 
33 

0:05 ¼ 14:7 þ 0:0000741TCDA þ 0:0000293β 
þ0:0334γ - 0:0209δ þ 0:0668ε - 0:116ζ 
-0:126η - 2:26C - 1:69κ þ 11:4λ 

þ8:51ξ þ 1:22R - 0:0602σ 
þ4:13φ - 1:26χ - 11:3ψ ð 

%IR0 5 ¼ 86:2 þ 0:0000768TCDA - 0:000178β 

15 31 

32 
33 

9:26CW 7:57ξ 1:73R 0:246σ 
þ3:98φ - 1:84χ - 11:4ψ þ 2:8ω 

35 -1:62 ϋ - 4:96 ı̈ ð12Þ 

36 

37 %IR0:05 ¼ 79:4 þ 0:0000618TCDA þ 0:000206β 

38 þ0:161γ - 0:0373δ þ 0:00696ε - 0:234ζ 

: 

-0:0665ε - 0:452η þ 0:785C  34 
-20:3κ - 3:21λ - 32:1CW  35 
-0:72ξ - 0:279R - 0:243σ

  36
 

þ6:63φ - 18:9χ - 11:6ψ ð16Þ
 37

 

%IR0 95 ¼ 31:3 þ 0:000221TCDA þ 0:000482β 38 

39 
-0:3η - 3:35C - 16:7κ þ 3:29λ 
-31:4CW þ 1:45ξ þ 1:02R 

40 -0:156σ þ 7:4φ - 21:2χ 

41 -11:2ψ þ 1:02ω - 8:36 ϋ - 6:67 ı̈ ð13Þ 

42 

43 %IR0:95 ¼ 22 þ 0:000229TCDA þ 0:000373β 

44 
þ0:0558γ - 0:05δ þ 0:0982ε þ 0:179ζ 

: 

þ0:0639ε - 0:00579η þ 18:6C þ 10:9κ 39 
þ25:9λ - 8:59CW þ 29:7ξ 40 
-0:829R þ 1:22σ þ 11:9φ þ 4χ - 16:8ψ

  41
 

ð17Þ 42 

43 
44 

45 
þ0:186η þ 16:3C

ξ
þ 4:9κ þ

R 
25:4λ  

σ  45
 

-5:69CW þ 29:7   - 1:58   þ 1:58 

46 þ9:2φ - 2:62χ - 16:8ψ - 4:98ω 

47 
-3:43ϋ - 13:1 ı̈ ð14Þ 

48 

49 

50 4.4 | Refined %IR (Model 2a) 

51 Table 6 shows the estimated coefficients predicted by the 
52 BQR method with the Filtset data for Model 2a. 400 000   
53 

4.5 | Total coating defect area (TCDA) models 
46 

With  the  establishment  of  the  %IR  models utilizing both 47 

the Oriset and the Filtset data (Models 1, 1a, 2, and 2a), the 48 

construction of the TCDA model will further increase the 49 

capability of operators and decision makers in prioritizing 50 

coating  defects  based  on  their  severity.  To  add  to  this 51 

enhancement, we propose TCDA models (Models 3 and 4) 52 

which predict the coating defect area based on variables from 53 
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TABLE 5 Bayesian quantile regression (BQR) estimates with 95% credible intervals for quantiles 0.05, 0.5 and 0.95 for Model 2 

            

           

           

           

(Intercept) 14.7 −1.76 40.681215  79.4 43.7 92.1  22 −415 69.1 

            

Soil resistivity (SR) 0.0000293 −0.000316 0.000383  0.000206 0.0000175 0.000329  0.000373 −0.0000612 0.000848 

            

Deposits under coatings (DUC) −0.0209 −0.0789 0.029226  −0.0373 −0.0655 −0.0111  −0.05 −0.115 0.00565 

            

Time in service (TIS) −0.116 −0.328 0.085368  −0.234 −0.338 −0.128  0.179 −0.22 0.788 

            

Backfill type (clay) −2.23 −13.6 3.720633  3.35 −2.41 23.9  16.3 −7.2 260 

            

Backfill type (stones + clay) 11.4 −0.0934 18.838816  −3.29 −9.69 18.8  25.4 0.026 262 

            

Coating type (Coal tar) 7.57 −11 20.359542  −1.45 −8.49 7.7  29.7 16.4 38.7 

            

Backfill geometry (round + angular) −0.246 −4.13 3.671415  −0.156 −2.4 2.01  1.58 −2.14 10.4 

            

pH of water in soil (alkaline) −1.84 −7.75 0.907865  −21.2 −24.3 −17.7  2.62 −1.7 12.2 

            

pH of water underneath coating (acidic) 2.8 −6.1 18.678275  1.02 −2.44 9.92  −4.98 −27.4 5.78 

            

pH of water underneath coating (neutral) −4.96 −16.5 0.619875  −6.67 −14.2 0.543  −13.1 −33.1 2.77 

Reproduced with permission from TWI Ltd. 
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TABLE 6 Bayesian quantile regression (BQR) estimates with 95% credible intervals for quantiles 0.05, 0.5, and 0.95 for Model 2a 

 

 

 

 
 

Variables 

Quantiles 

0.05 

Credible intervals 

Posterior mean 

 

 

 

 
 

0.025 

 

 

 

 
 

0.975 

 
 

0.5 

Credible intervals 

Posterior mean 

 

 

 

 
 

0.025 

 

 

 

 
 

0.975 

 
 

0.95 

Credible intervals 

Posterior mean 

 

 

 

 
 

0.025 

 

 

 

 
 

0.975 

(Intercept) 30.3 −2.29 501 86.2 77.7 94.1 31.3 −308 79.5 

Total coating defect area (TCDA) 0.0000956 0.0000936 0.000138 0.0000768 0.0000547 0.0000989 0.000221 0.000186 0.000222 

Soil resistivity (SR) −0.000132 −0.000408 0.000202 −0.000178 −0.000395 0.0000902 0.000482 0.0000361 0.00108 

Depth of cover (DOC) 0.0561 0.0195 0.0981 −0.0665 −0.0907 −0.0337 0.0639 0.0178 0.0949 

Pipe size (PS) −0.301 −0.333 0.00686 −0.452 −0.622 −0.309 −0.00579 −0.571 0.214 

Backfill type (clay) −18.9 −393 4 0.785 −2.71 5.56 18.6 −6.5 323 

Backfill type (sand + clay) −19.1 −392 3.51 −20.3 −26.2 −13.6 10.9 −24.2 300 

Backfill type (stones + clay) −6.25 −381 17.7 −3.21 −7.47 0.767 25.9 −0.151 324 

Coating type (PVC cold wrap) −6.48 −51 2.72 −32.1 −36.8 −28.5 −8.59 −29.3 0.1 

Coating type (Coal tar) 8.51 −37.8 18.5 −0.72 −5.65 2.67 29.7 9.06 38.9 

Backfill geometry (round) 1.22 −5.87 5.43 −0.279 −2.77 1.51 −0.829 −6.18 2.5 

Backfill geometry (round + angular) −0.0602 −5.43 3.04 −0.243 −3.27 2.1 1.22 −1.56 7.78 

pH of water in soil (acidic) 4.13 −9.69 39.6 6.63 −0.543 14 11.9 0.0936 31.7 

pH of water in soil (alkaline) −1.26 −6.84 1.42 −18.9 −21.5 −15.8 4 −1.39 12.3 

pH of water in soil (neutral) −11.3 −18.2 −0.912 −11.6 −15.9 −6.64 −16.8 −24.1 −0.0591 

Reproduced with permission from TWI Ltd. 
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TCDA  cm  Þ ¼ 78687:177 þ 84:428α - 

0:524β0 5 
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its  environment.  The  variables  chosen  in  this  model  are 1 

limited to only quantitative values due to the large amounts of 2 

subjective    interpretations    on    the qualitative   variables. 3 

Another  reason  for  this  is  to  avoid higher computational 4 

cost  as  Bayesian  inference  with  the  Metropolis-Hastings 5 

algorithm (MCMC – MH) is known to take large amounts of 6 

computational memory when dealing with large quantities of 7 

data. As from the previous section, the variable %IR is of 8 

prime interest as this is one of the first measurements obtained 9 

when   conducting   a   DCVG   assessment.   By   correctly 10 

interpreting  what  the  signal  mean,  one  can  make  sound 11 

judgment on the state of the coating  under inspection. 12 

13 

4.6 | TCDA Model 3 14 
15 

The coefficients estimated by the BQR for Model 3  data are 16 

presented in Table 7. Convergence took 11 million iterations. 17 
The initial 5000 iterations were treated as burn-ins and are 18 

disregarded.  Primary  interest  for  the  model  is  the  %IR 19 

variable, which shows a close to zero estimates for the 0.05 20 

and 0.25 quantiles. Beginning at the 0.5 quantile, we can see 21 

the trend increasing up to the 0.75 quantile and back down 22 

again   at   the   0.95   quantile.   The   maximum   estimated 23 

coefficient is at the 0.75 quantile with a value of 849. This 24 

represents a 1 unit increase in %IR and represents an increase 25 

of 849 cm2 in terms of TCDA. Therefore a 100% reading of 26 

the %IR will translate into 84 900 cm2 of  TCDA. Although 27 

this estimation is promising in determining the size of coating 28 

defects, the 0.95 quantile illustrates a different picture. The 29 

estimated coefficient for this quantile is −93.1. The negative 30 

values  signify  that  a  1  unit  increase  in  %IR  equals to a 31 

decrease of 93.1 cm2 in TCDA. Equations below are selected 32 

models for the 0.05, 0.5, and 0.95 quantile for Model 3. 33 
34 

TCDA
(
cm2Þ0 05 ¼ -465 - 0:0178α - 0:0034β  35 

þ6:04γ - 0:901δ - 0:00321ε 36 
þ4:92ζ þ 10:4η ð18Þ 37 

38 
2 

: 39 
þ232:204γ þ 19:543δ - 69:776ε

 40
 

-2351:485ζ þ 707:098η ð19Þ
  41

 

TCDA
(
cm2Þ0 95 ¼ 189000 - 93:1α þ 0:151β

  42
 

 

þ2740γ - 257δ - 111ε 43 

-8030ζ þ 6040η ð20Þ  44 

The variable POPD (pit depth) showed useful insights into 46 

the correlation between TCDA and corrosion. Based on the 47 

trend shown, as the quantile increases, so does the estimated 48 

coefficient values. However, there appears to be a sudden dip   49 

at quantile 0.75 and picks up again at quantile 0.95. The 50 

maximum value estimated by the BQR is 2740 which equates     51 

to a 1 unit increase in depth of the corrosion pit corresponding 52 

to a 2740 cm2 in TCDA. This occurs at the 0.95 quantile. 53 
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1 Also, the width of the credible intervals across  the quantiles 1 

2 are narrow as compared to previous  predicted models. 2 

3 3 
4 

4.7  | TCDA Model 4
 4

 
5 5 

6 As was previously mentioned,  the  data  considered  for this 6 

7 assessment is the Filtset. Results of the analyses is highlighted 7 

8 in  Table  8.  As was  expected,  the  %IR variable showed a 8 

9 positive  consistent  increasing  manner  across the quantile. 9 

10 Starting at the 0.05 and 0.25 quantile, the increase of the 10 

11 estimated coefficients  is subtle  but  for  the 0.5 quantile the 11 

12 changes are much more abrupt with the values tapering back at 12 

13 the 0.75 and 0.95 quantile. The maximum value occurs at the 13 

14 0.95 quantile with an estimated coefficient of 1481.9. In other 14 

15 words, an increase in 1 unit of %IR will reflect an increase in the 15 

16 TCDA  of  1481.9 cm2.  Therefore,  for  larger defects (0.95 16 

17 quantile) a reading of 100% in the %IR value corresponds to a 17 

18 148 190 cm2 in TCDA which is the maximum size the model 18 

19 can predict. For the lowest quantile, the maximum predicted 19 

20 size is 2.21 cm2. The maximum predicted defect sizes for all 20 

21 the quantiles are shown in Figure 5. 21 

22 The POPD variable represents the amount of corrosion 22 

23 activity present on pipelines under consideration. Referring to 23 

24 Table 8, the estimated coefficients showed  increasing trend. 24 

25 From quantile 0.25 up to 0.75 the predicted values do not 25 

26 show  significant  differences.  Abrupt  changes  can only be 26 

27 seen at the tails of the TCDA distribution i.e., the 0.05 and the 27 

28 0.95 quantile. 28 

29 The following equations are the models for predicting 29 

30 TCDA based on various quantiles. 30 

31 31 
32 2 32 

: 

33 þ6:06γ - 0:916δ - 0:00871ε 33 

34 þ4:95ζ þ 10:3η ð21Þ 34 

35 35 

36 36 

37 MAXIMUM  PREDICTED TCDA SIZE 37 

38    Maximum Predicted TCDA Size 38 
39 160000 39 

40 140000 40 

41 120000 41 
42 100000 42 
43 

80000 
43 

44 
60000 

44 

40000 
 

20000 

47 47 
0 

48 0 48 
-20000 

49 QUANTILE
 49 

50 FIGURE  5     The maximum predicted TCDA size based on BQR 50 
51 for different quantiles of the TCDA Model.  Reproduced with 51 
52 permission from TWI Ltd. [Color figure can be viewed at 52 

53 wileyonlinelibrary.com] 53 
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2 

: 

2 þ219:149γ þ 34:219δ - 20:033ε 

3 -1681:945ζ þ 963:069η ð22Þ 

4 
2 

5 : 

6 
þ406γ - 218:8δ - 97:8ε 

7 
-5066:9ζ þ 4610:6η ð23Þ 

8 

9 

10 
5 | DISCUSSION 

12 
5.1 | Contributing factors to %IR – (Models 1, 

13 
1a, 2, and 2a) 

15 
5.1.1 | TCDA variable 

17 The low coefficient values estimated for the TCDA variable 

18 (Models 1, 1a, 2, and 2a) was unexpected since the concept of 

19 a DCVG technique relied  primarily upon coating  defects to 

20 generate voltage drops. The results show coating defects in 

21 general have a mild effect on the %IR reading. Other known 

22 and unknown factors might also be a contributor toward %IR. 

23 One of these factors could be SR and the nature of the backfill 

24 geometry.  Other  factors  could  include  the  presence  of 

25 interference  in  the  form  of stray  currents especially  if the 

26 pipeline is situated adjacent to other pipelines or is located 

27 near  overhanging  power  cables.  Although  an interruption 

28 technique was used to eliminate foreign currents contributing 

29 to %IR indication, large structures such as buried pipelines 

30 need longer periods for it to depolarize and considered IR 

31 free.[19] To picture this more clearly, the following figures 

32 show the relationship between TCDA and %IR while keeping 

33 other variables constant. As was previously mentioned, other 

34 factors which gave rise to the %IR readings such as the POPD, 

35 DUC, DOC, TIS, PS,  and SR  were used  to generate the  

36 

37 

38 TCDA VS %IR (MODEL 1) 

models. These variables take on 10.5%, 35.2%, 109.5 cm, 1 

32.5 years, 35.3 inch,  and 2722.1 Ω-cm, respectively which 2 

represents the mean value of each variable. 3 

Figure 6 shows the predictions made by Model 1 of the 4 

%IR with increasing TCDA. Generally, the models highlight 5 

an  upward  trend  which  is  in  parallel  with  the  current 6 

understanding  of  the  system.  However,  the  slope  of  the 7 

models indicates a small effect of TCDA toward %IR. This 8 

can clearly be seen at the lower quantiles (0.05 and 0.25) 9 

where the line is almost flat. Also, the median quantile has the 10 

highest   prediction   value   and   the   steepest slope  which 11 

corresponds to the estimated coefficient values in Figure 4. 12 

A refined version of Model 1 is given by Model 1a  which is 13 

presented in Figure 7. Similarly, the models take on the mean 14 

values of each contributing variable. 15 

The prediction of the resulting %IR in Figure 7 shows an 16 

improvement in terms of the effect of TCDA on %IR with 17 

steeper slopes being observed. Similar to Model 1, the median 18 

of the %IR received the largest effect from the TCDA. The 19 

estimated %IR values based on the median is also higher with 20 

Model 1a as  compared to  Model 1. The removal  of certain 21 

variables which do not contribute to the %IR has improved the 22 

%IR  estimation  for  the  top  three  quantiles.  For the 0.25 23 

quantile, small effects of the TCDA toward %IR are seen 24 

which  is  similar  to  the  previous  Model  1. However, the 25 

estimated values here are higher. The 0.05 quantile show 26 

decreasing   trend   where   increasing   TCDA   relates to  a 27 

decreasing of %IR. 28 

The inconsistency (higher TCDA does not reflect a higher 29 

%IR values)  for  Models 1 and  1a  with  respect to the 0.05 30 

quantile could possibly be attributed to the outliers present at 31 

higher and lower quantiles of the TCDA distribution – large 32 

defect areas are paired to low reading of the %IR and vice 33 

versa. Additionally, credible intervals at higher and lower 34 

quantiles for Models 1 and 1a are much wider indicating 35 

36 

37 

38 

39 0.05 0.25 0.5 0.75 0.95 
TCDA  VS  %IR (MODEL 1A) 39 
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51 FIGURE 6 TCDA versus %IR for Model 1. Each color represent 

52 a different quantile. Reproduced with permission from TWI Ltd. 

53 [Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE  7     TCDA versus %IR for Model 1a. Each color 51 

represent a different quantile. Reproduced with permission  from TWI 52 

Ltd. [Color figure can be viewed  at wileyonlinelibrary.com] 53 
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1 higher uncertainty as compared to the median quantile where 

2 the maximum  estimated  values have  occurred. Inconsistent 

3 results can also be summarized in the following bullet points. 

4 

5 Interference in the form of stray or telluric currents which 

6 will interfere with the %IR signal. Currents from adjacent 

7 ICCP  system,  electrified  railway  tracks  (DC  traction 

8 system),  overhead power  cables,  etc. have  the potential 

9 of compromising the %IR signal. This can be seen at certain 

10 locations of the pipeline. 

11 Adjacent transmitting power cables could compromise the 

12 DCVG signal in the form of AC currents. AC currents can 

13 also lead to accelerated corrosion to the pipelines running 

14 below.[20] In the case of the MEOC pipelines, power cables 

15 can be seen running closely along and perpendicular to the 

16 direction of the buried lines. 

17 The heterogeneous nature of soils compromises or alters 

18 the measured voltage signal. The calculation of the %IR 

19 value requires input in the form of the pipeline-to- 

20 electrolyte interface resistance. The resistant value is 

21 related to the SR value which is measured at test posts. 

22 However, DCVG readings are conducted away from test 

23 posts where the magnitude of SR changes. The changes 

24 will contribute to the inconsistencies of the %IR measure- 

25 ments where the heterogeneity of soil is not considered in 

26 the %IR formula. Although SR measurements were taken 

27 for every excavated area, this was not included into the %IR 

28 calculation. 

29 Defects occurring at the 6 o’clock position will tend to 

30 attenuate the voltage signal and will not correspond to the 

31 true size of a defect.[11] 

32 Based on the report provided by TWI Ltd., there is a 

33 possibility that some of the coating defects were caused by 

34 the excavator during excavation of bell holes for the direct 

35 

36 

37 

38 

39 TCDA VS %IR (MODEL 2) 

40 0.05 0.25 0.5 0.75 0.95 

41 100 

42 80 

43 70 
60 

44 50 

45 40 
30 

46 20 

47 10 
0 

48 -10   0 50000 100000 150000 200000 250000 300000 

examination  process.   These  defects   were  not  present 1 

during the indirect assessment (DCVG measurements). 2 

Deposits of scales due to the cathodic protection current on 3 

the metal substrate will mask the true size of a coating 4 

defect. Measurements are perceived to be small based on 5 

the %IR reading. This is an erroneous representation of the 6 

true size of the defect. 7 

8 

The assessment on Models 2 and 2a utilizes the Filtset 9 

data. The estimated %IR readings based on Model 2 (Figure 8) 10 

and 2a (Figure 9) are given as follows. Similar to the previous 11 

Models 1 and 1a assessments, the mean of POPD, DUC, 12 

DOC, TIS, PS, and SR was used to generate these models. 13 

Immediately, it can be seen that in Figure 8 the estimated 14 

values of the %IR are much improved than Models 1 and 1a. 15 

The effect of TCDA on %IR is also greater which reflects the 16 

underlying  intention  of  a  DCVG  assessment. The highest 17 

predicted value of the %IR is at the 0.95 quantile which 18 

indicates TCDA has the highest effect on higher readings of 19 

the  %IR.  Additionally,  narrower  credible  intervals  were 20 

obtained  highlighting in  lesser  uncertainty of the estimated 21 

coefficients. Therefore, the removal of four excavation points 22 

improves the overall estimation of the role of TCDA on %IR. 23 

However,  looking  at  quantiles  0.05  and  0.25  shows  an 24 

apparent  effect  of  TCDA  toward  %IR.  However,  these 25 

estimates are below the zero line. For the 0.25 quantile, all the 26 

predicted readings of %IR are negative and it sits lower than 27 

the  0.05  quantile.  Although  the  apparent  outliers  were 28 

removed  for  this  assessment,  there  are  other factors that 29 

might give an overall effect on the %IR predictions. Model 2a 30 

tries to find this answer by further refining the model through 31 

the omission of variables which in theory does not contribute 32 

to the generation of %IR. Model 2a's prediction of %IR is 33 

given as follows in Figure 9. 34 

35 

36 

37 

38 

TCDA  VS  %IR (MODEL 2A) 39 
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51 FIGURE 8 TCDA versus %IR for Model 2. Each color represent 

52 a different quantile. Reproduced with permission from TWI Ltd. 

53 [Color figure can be viewed at wileyonlinelibrary.com] 

FIGURE  9     TCDA versus %IR for Model 2a. Each color 51 

represent a different quantile. Reproduced with permission  from TWI 52 

Ltd. [Color figure can be viewed  at wileyonlinelibrary.com] 53 
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1 From Figure 9 the omission of certain variables has 

2 improved the overall prediction of the %IR based on TCDA. 

3 Significant effects of the TCDA toward the %IR is seen across 

4 all the quantiles. The effect of higher TCDA on higher 

5 readings of %IR is seen with the highest predicted values of % 

6 IR occurring at the 0.95 quantile. This can also be said with 

7 other quantiles where lower values of TCDA effects the 

8 lowest part of the %IR readings. However, for the predicted 

9 values with regard to the 0.05 quantile, shows prediction 

10 values of %IR of less than zero. This small inconvenience can 

11 be stipulated as the cause of the linear approach taken by the 

12 authors when modeling the relationship. Overall, Model 2a is 

13 an acceptable model in the prediction of %IR (based on 

14 established literature on the DCVG technique) with the added 

15 bonus of simplicity and brevity due to its utilization of fewer 

16 variables. 

17 
18 

5.1.2 | SR and backfill type variable 
19 

20 The SR estimated coefficients for Models 1 and 1a show a 

21 decreasing trend with its lowest value occurring at the 0.5 

22 quantile region. However, the estimated effect of the rock 

23 variable on the contribution of %IR indicated an inverse trend 

24 with the maximum estimated coefficients occurring also 

25 within the region of 0.25–0.5 quantile. Since these two 

26 variables are somewhat related, the opposite predictions seem 

27 to complement each other and highlights the heterogenous 

28 nature  of  soil.  Highly  resistive  electrolyte  which  contain 

29 materials such as rocks will produce large amounts of voltage 

30 drop as current passes through it. These voltage drops are 

31 likely to be detected by the DCVG instrument which indicates 

32 a defect more severe than it actually is. This is confirmed by 

33 the works of Mckinney[12] in his thesis which states that 

34 prioritization of DCVG indication will be more accurate if SR 

35 is taken into account. The higher quantiles highlight a 

36 relatively weak effect of the rock variable to %IR. However, 

37 this can be understood by also observing the value estimated 

38 for the general SR variable which highlights a stronger effect. 

39 With respect to Models 2 and 2a, the reference variable for 

40 the models were changed and the variable backfill type – clay, 

41 shows increasing trend until it reduces at the 0.95 quantile. 

42 Clay is considered to have high degree of compactness thus 

43 possessing low resistance toward current flow. The low 

44 resistance would not produce large voltage drops and hence 

45 one would not expect the raising trend of the estimated 

46 coefficients. However, if we were to look at the backfill 

47 geometry  –  round  variable,  the  estimates  are  much more 

48 streamlined with common understanding. The presence of 

49 rounded soil grains creates an environment which is less 

50 resistant  to  electrical currents  (similar to  clay).  Across the 

51 quantile, the estimated coefficient values show a downward 

52 trend with a slight increase at the highest quantile. This is the 

53 inverse of the clay variable's trend. Similar to Models 1 and 

1a, the two variables seem to complement each other and is 1 

only understood when both of them are looked at together. 2 

The decrease in the estimated value at the 0.95 quantile for the 3 

clay variable and the increase of  the predicted  value  at the 4 

0.95 quantile for the backfill geometry – round variable is the 5 

cause of a possible mixture of fine to coarse grain soils in the 6 

backfill. Moreover, there are also the possibility of foreign 7 

currents   interfering   with   the   measured   signal  as   was 8 

mentioned  above.  Coupled  this  with  the  heterogeneous 9 

nature of soils, unexpected outcomes like this are not unusual 10 

to find. 11 

12 

5.2 | TCDA model (Models 3 and 4)
 13

 
14 

5.2.1 | %IR variable
 15

 
16 

The estimated coefficients for Model 3 has shown that the 17 

trend does not sit well with current  industrial understanding 18 

on DCVG. A better way of visualizing this is by plotting the 19 

predicted TCDA based on increasing %IR using model. Other 20 

variables in the model were kept constant where the mean of 21 

the POPD, DUC, DOC, TIS, PS, and SR similar to previous 22 

assessments  in  this  paper  were  used  as   the  contributing 23 

factors. 24 

Figure  10  shows  the  linear  effect  of  %IR toward the 25 

resulting TCDA estimation. At the lowest quantiles (0.05 and 26 

0.25) the effect is almost zero which is represented by the flat 27 

line. The trend in Figure 10 is not surprising if one is to look at 28 

the  Oriset  data  where  small  indications  of  %IR has been 29 

paired to very large coating defects and vice versa. The same 30 

scenario is encountered during the construction of  Models 1 31 

and 1a. The irregularities we see here can also be explained by 32 

the bullet points given in Section 5.1.1. 33 

The  most  probable  cause  for  this  trend  is  due to the 34 

disturbance coming from stray and telluric currents. Most of 35 

36 

37 

38 
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FIGURE  10     %IR versus TCDA for Model 3. Each color 51 

represent a different quantile. Reproduced with permission  from TWI 52 

Ltd. [Color figure can be viewed  at wileyonlinelibrary.com] 53 
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1 the pipes under assessment were situated within a network of 

2 pipelines which runs in parallel and perpendicular with the 

3 one that is under investigation. Currents from adjacent CP 

4 systems which is protecting other pipelines has the potential 

5 of leaving its intended path and is being picked up by the 

6 DCVG  instrument.  Kutz[19] has  explained  this  problem in 

7 greater detail. 

8 Another interesting finding was that the pipes were 

9 originally protected by a sacrificial anode system. The anodes 

10 were attached to the pipe via cad welds. Based on the pre- 

11 assessments photographs, cad welds were still visible and not 

12 insulated.  Since these cad  welds and its  connecting rod are 

13 exposed to the environment, they provide an exit point for the 

14 currents to leave the surface of the pipeline. The exiting 

15 currents can also meddle with the voltage gradient generated by 

16 the coating defects which in turn produces misleading 

17 information toward the interpretation of %IR. Apart from 

18 disturbing the potential gradient signal, the exposed cad welds 

19 and its associating rod could also lead to accelerated corrosion. 

20 However, corrosion was not observed at these points. 

21 The relationship of %IR and TCDA based on Model 4 is 

22 illustrated in Figure 11. The trend in Figure 11 illustrates the 

23 general industrial understanding of the relationship between 

24 %IR and TCDA. As the quantiles increase, so does the effect 

25 of %IR on TCDA which leads to the conclusion of higher %IR 

26 affecting larger coating defect areas in a positive way. It can 

27 also be said that the sensitivity of the DCVG technique relies 

28 on the size of the coating defect. Medium to large defects give 

29 a reasonable approximation of the defect size. However, the 

30 interpretation based on the %IR on smaller defects should be 

31 treated with caution due to large amounts of zero readings 

32 present at lower quantiles. As was mentioned earlier, outliers 

33 were omitted based on careful judgment. Due to this, Model 4 

34 does not suffer from the problems faced by Model 3, Model 1, 

35 and Model 1a where outliers play a role in the estimation of 

36 

37 

38 

39 %IR VS TCDA (BQR MODEL 4) 

40 0.05 0.25 0.5 0.75 0.95 

300000 

280000 

260000 

240000 

43 220000 
200000 

44 180000 
160000 

45 140000 
120000 

100000 

80000 

60000 

40000 

20000 

49 0 10 20 30 40 50 60 70 80 90 100 

50 %IR 

51 FIGURE 11 %IR versus TCDA for Model 4. Each color 

52 represent a different quantile. Reproduced with permission from TWI 

53 Ltd. [Color figure can be viewed at wileyonlinelibrary.com] 

coefficients. As such, the models are more general and are 1 

sufficient for the case of subsequent inspection of the MEOC 2 

pipelines. 3 

4 

5.2.2 | POPD variable
 5

 
6 

Findings from Model 3 indicated that at large coating defect 7 

area the possibility of finding deeper corrosion pits are more 8 

likely. With larger TCDA, the amount of current provided by 9 

the cathodic protection system also should be large. When the 10 

level of protection current is inadequate or obstruction of the 11 

current's path in the form of a shielding electrolyte is present, 12 

one  is  to  expect  corrosion  activity  to  be  highly  likely. 13 

However, a dip at quantile 0.75 tells us that at pipelines with 14 

medium to large TCDA corresponds to corrosion pits with 15 

shallower depths which goes against the  normal assumption 16 

that a pit's depth is directly proportional to the size of TCDA. 17 

At first glance, Model 4 does not exhibit such issues. At the 18 

same  quantile,  the  coefficient  predicted  shows  a  smooth 19 

increase from the median quantile to the largest quantile. 20 

Moreover, for Model 4, a consistent upward motion can be 21 

seen across  the TCDA  quantiles. Between the 0.25 and the 22 

0.75 quantile, shows a plateau of estimates suggesting that for 23 

these  defect  sizes,  the  effect  of  an  increasing  POPD  is 24 

minimal. The increase in values from the 0.05 quantile to the 25 

0.25 quantile can be judged as an initial step toward the 26 

corrosion process. At this stage, corrosion is initiated and 27 

coating defects grow in tandem. The plateau is an indication 28 

that the pit growth rate is faster than the growth of TCDA. 29 

This  will  produce  deeper  pits  at  smaller  TCDA  which 30 

solidifies the notion that pit depth is not proportional to the 31 

size of coating defect – at least not linearly. This finding was 32 

also observed  in  Ref.  [11].  Deeper pits  at smaller coating 33 

defect  should  be  treated  with  caution  as  defects of such 34 

characteristics will normally go unnoticed with the conse- 35 

quence  of  failure  being  very  severe.  The  effect of direct 36 

proportionality between pit depths and coating defect size can 37 

be  seen  between  the  0.75  and  0.95  quantile.  However, 38 

between  these  quantiles  the  credible  interval increases in 39 

wideness  indicating  a  less  certain  prediction.  The  OLS 40 

prediction is also located in the negative region which means 41 

that  all  the  above  observation  would  be  missed with the 42 

average approach. 43 

44 

5.2.3 | SR variable
 45

 
46 

Model   4's   predicted   coefficient   quantile   trend  can  be 47 

interpreted as highly resistive soil having a large effect on 48 

the size of coating defects. Coarse grained soil is known to be 49 

highly resistant to electrical current flow hence soils such as 50 

sand, silt or even rocks poses high units of SR. These types of 51 

soil with its angular particle geometry have the possibility of 52 

damaging the pipe coatings through the process of abrasion. 53 
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1 Pipe  or  soil  movement  have  the  possibility  of  creating 

2 abrasion between the coating interface and the electrolyte. 

3 Another factor to consider is the stresses created by the self- 

4 weight  of  the  backfill.[21,22] The  backfill  weight  applies 

5 stresses on to the pipe's coating creating a wrinkling affect 

6 normally found at 8 and 4 o’clock position of the pipe. The 

7 wrinkling of the coating combined with the abrasion effects of 

8 the angular particle size (high SR) will sometime result in the 

9 coating tearing apart. 

10 
11 

5.3 | Why use Bayesian quantile regression? 
12 

13 The coefficient estimates illustrated by both the Bayesian 

14 and classical method in this paper are somewhat similar. 

15 Both approaches consider parameter uncertainty with the 

16 Bayesian approach being more reliable as it does not rely on 

17 asymptotic approximation of the variances. Classical 

18 approach such as bootstrapping in the construction of 

19 confidence intervals uses estimation of the asymptotic 

20 variances and depend on the model error density which is 

21 difficult to reliably estimate. Hence, the coverage probabil- 

22 ities of the true parameter of these methods is sufficient at 

23 best but not necessarily 100% reliable. This is supported by 

24 a paper from by Ref. [23] which shows the classical 

25 approach estimated a lower probability of containing the 

26 parameter value from the confidence interval as compared 

27 to the Bayesian approach. This seems to suggest that a 

28 Bayesian method is better in terms of coverage and thus 

29 includes all parameter uncertainty. Other advantages of the 

30 Bayesian method are that it provides a simple explanation 

31 based on the credible interval. For this paper, the credible 

32 intervals are set to be 95% and thus the true value of the 

33 coefficients can be explained as “having a probability of 

34 0.95 of falling within the credible intervals.” For the 

35 classical method, the interpretation is not as direct. 

36 Additionally, the BQR method uses the ALD as the 

37 likelihood function. Since the likelihood function (ALD) 

38 disregard the original distribution of the data, specifying a 

39 specific distribution is not needed. The paper[16] goes on to 

40 say that the use of the ALD is a “very natural and effective 

41 way for modelling Bayesian quantile regression.” After the 

42 Bayesian process, the resulting posterior statistics such as the 

43 mean estimates of the quantiles and the calculated credible 

44 intervals can be used as new information for future ECDA. 

45 This process is often referred to as Bayesian updating. 

46 In the process of conducting this research, the authors 

47 found some drawbacks in employing the Bayesian method. 

48 One of them being the problem of convergence. As was seen 

49 in the results of Model 4, up to 11 million iterations were 

50 needed to achieve convergence. This is due to the nature of the 

51 sampling algorithm (Metropolis-Hastings) which uses the 

52 accept and reject approach in the goal of achieving 

53 convergence at the stationary distribution. Also, there are 

no known methods to check the convergence of MCMC at 1 

this  moment.[24] The  authors  had  to  rely  on the graphical 2 

representation of the trace plots which lacks mathematical 3 

justification. 4 

5 

6 

6    |  CONCLUSION AND  FUTURE 7 

WORK 8 

9 

This paper has showed that Bayesian techniques on quantile 10 

regression  is  an  essential  tool  for  engineers  in  assessing 11 

uncertain  data.  ECDA  pipeline  data  particularly  for  the 12 

DCVG technique incorporates large amounts  of uncertainty 13 

due to the unknown factors such as the factors highlighted in 14 

Section 5.1.1, the heterogeneity of soils, the levels of CP 15 

current,  and  human  factors.  As  was  mentioned  earlier, 16 

Bayesian techniques allow an assessor to quantify the full 17 

spectrum of uncertainty in the prediction  of parameters. 18 

In certain countries, the law dictates that an ECDA should 19 

be  performed  on  a  periodic  schedule  to  ensure  the  safe 20 

continual operation  of the pipeline.[25] The NACE SP0502- 21 

2010[9]  highlights  the  importance  of periodic assessments 22 

where “through successive applications of the ECDA method, 23 

an operator will be able to identify and address locations of 24 

corrosion activity  which  has  occurred, is  occurring and at 25 

locations where there is a potential to occur.” This makes the 26 

ECDA a continuous updating process. The Bayesian principle 27 

fits this philosophy nicely since updating the findings from 28 

this paper is made possible with future ECDA. It is expected 29 

that future findings will produce better estimates  with every 30 

iteration of the ECDA process. 31 

The MEOC data was divided into two for the purpose of 32 

investigating the influence of outliers occurring at the upper 33 

quantiles  of  the  TCDA  distribution.  These  outliers  are 34 

thought to be produced from one of the factors highlighted 35 

in Section 5.1.1. One of the dataset had a total of four points 36 

removed based and the results of the removal can be seen in 37 

three of the six models produced namely Models 2, 2a, and 38 

4. Although  it  is widely  known that median regression are 39 

robust to outliers, this was not the case for the other three 40 

models (Model 1s, 1a, and 3). A dip in the largest quantile 41 

for Model 3 with regard to the TCDA variable suggest that 42 

it was influenced by outliers. This was not seen in Model 4 43 

(after removal of outliers). Clearly, the quantile regression 44 

applied  here  does  not  eliminate  the  problem   of  outliers 45 

entirely. An alternative way to solve this is to construct the 46 

model  with  a  non-linear  approach.  However,  with  the 47 

already  established  Bayesian  approach  here,   this   is  not 48 

necessary. All that is required is new data and the Bayesian 49 

method will update  the  findings here. 50 

For the estimation of the effect of soil resistivity (SR) on 51 

%IR, it is concluded that one must look at both the soil 52 

resistivity measurements and the effect of soil grain geometry 53 
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1 together. The two variables seem to have some relation and 

2 provide a much more holistic picture on the effect its having 

3 on the contribution toward %IR. Tests such as the variance 

4 inflation factors[26] for multicollinearity effects could be used 

5 for future work to see whether the variables are statistically 

6 correlated. 

7 As for the case of pit depths (POPD), the rate of growth 

8 between the depth of pits and the size of coating defects is not 

9 proportional. At some point in time the rate of corrosion is 

10 faster which resulted in very deep pits occurring in smaller 

11 coating defect area.  This  is  illustrated in  Model 4.  In  this 

12 situation, the chances of locating small coating defects is low 

13 and hence elevating the risk of failure of the pipeline. It can be 

14 said that small coating defects should not be taken lightly 

15 especially if the environment for corrosion is highly likely. 

16 Overall, each model represents a unique trait which or 

17 which does not agree with established theories. The differ- 

18 ences are largely due to the influence of external factors which 

19 disrupts the obtained DCVG indications and thus influences 

20 the outcome of the analyses. Fortunately, these uncertainties 

21 were considered and by continually updating the results 

22 through successive iterations of the ECDA, one can only 

23 improve the understanding of the state of the pipeline 

24 translating into the reduction of operating costs, enhancement 

25 of safety and keeping failure risks at bay. 
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