

Optimisation of a Hadoop Cluster Based on SDN in Cloud

Computing for Big Data Applications

By

Ali Khaleel

A Thesis Submitted in Partial Fulfilment of the

Requirements for the Degree of Doctor of Philosophy

Department of Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

Brunel University London, United Kingdom

July 2018

i

Abstract

Big data has received a great deal attention from many sectors, including academia,

industry and government. The Hadoop framework has emerged for supporting its

storage and analysis using the MapReduce programming module. However, this

framework is a complex system that has more than 150 parameters and some of them

can exert a considerable effect on the performance of a Hadoop job. The optimum

tuning of the Hadoop parameters is a difficult task as well as being time consuming. In

this thesis, an optimisation approach is presented to improve the performance of a

Hadoop framework by setting the values of the Hadoop parameters automatically.

Specifically, genetic programming is used to construct a fitness function that represents

the interrelations among the Hadoop parameters. Then, a genetic algorithm is employed

to search for the optimum or near the optimum values of the Hadoop parameters. A

Hadoop cluster is configured on two severe at Brunel University London to evaluate the

performance of the proposed optimisation approach. The experimental results show that

the performance of a Hadoop MapReduce job for 20 GB on Word Count Application is

improved by 69.63% and 30.31% when compared to the default settings and state of the

art, respectively. Whilst on Tera sort application, it is improved by 73.39% and 55.93%.

For better optimisation, SDN is also employed to improve the performance of a Hadoop

job. The experimental results show that the performance of a Hadoop job in SDN

network for 50 GB is improved by 32.8% when compared to traditional network.

Whilst on Tera sort application, the improvement for 50 GB is on average 38.7%. An

effective computing platform is also presented in this thesis to support solar irradiation

data analytics. It is built based on RHIPE to provide fast analysis and calculation for

solar irradiation datasets. The performance of RHIPE is compared with the R language

in terms of accuracy, scalability and speedup. The speed up of RHIPE is evaluated by

Gustafson's Law, which is revised to enhance the performance of the parallel

computation on intensive irradiation data sets in a cluster computing environment like

Hadoop. The performance of the proposed work is evaluated using a Hadoop cluster

based on the Microsoft azure cloud and the experimental results show that RHIPE

provides considerable improvements over the R language. Finally, an effective routing

algorithm based on SDN to improve the performance of a Hadoop job in a large scale

cluster in a data centre network is presented. The proposed algorithm is used to improve

the performance of a Hadoop job during the shuffle phase by allocating efficient paths

for each shuffling flow, according to the network resources demand of each flow as

well as their size and number. Furthermore, it is also employed to allocate alternative

paths for each shuffling flow in the case of any link crashing or failure. This algorithm

is evaluated by two network topologies, namely, fat tree and leaf-spine, built by EstiNet

emulator software. The experimental results show that the proposed approach improves

the performance of a Hadoop job in a data centre network.

ii

Acknowledgments

Firstly, I would like to express my gratefulness and appreciation to the Ministry of

Higher Education and Scientific Research (MOHESR), Iraqi Cultural Attaché and

University of Diyala in Iraq for funding and supporting this study.

I also would like to express my sincere thankfulness to Professor Hamed Al-Raweshidy

for his useful advices, guidance, and encouragement through the years. His unstopping

belief, enthusiastic support and beneficial discussions with him are very precious and

helpful. Most appreciated thing is his understanding and patience while allowing me

enough room to choose the study topics on my own.

Also, I would like to thank my family for their moral support, love, inspiration and

encouragement during the years of my study. They helped me to pass through the most

difficult time of my life.

iii

List of Publications

Accepted papers

[1] Ali Khaleel, Hamed Al-Raweshidy ’’ Solar Radiation Time Series Analytics Based

on Hadoop Integrated Programming Language Environment (RHIPE)’’ in IEEE SAI

Intelligent Systems Conference, London, UK, 2018.

Published papers

[2] Ali Khaleel, Hamed Al-Raweshidy ” Optimisation of Hadoop MapReduce

Configuration Parameter Settings using Genetic Algorithms’’ in IEEE SAI Computing

Conference, London, UK, 2018, DOI: 10.1007/978-3-030-01177-2_4}.

[3] Ali Khaleel, Hamed Saffa Al-Raweshidy ’’ Effective Routing algorithm based on

Software defined networking for big data applications in Data centre network’’ in the

16th IEEE International Conference on Pervasive Intelligence and Computing, Athens,

Greece, 2018, DOI: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00-20.

[4] Ali Khaleel, Hamed Al-Raweshidy ’’Optimisation of computing and networking

resources of a Hadoop cluster based on software defined network’’ in IEEE access

journal, DOI: 10.1109/ACCESS.2018.2876385.

http://dx.doi.org/10.1007/978-3-030-01177-2_4
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00-20

iv

Table of Contents

Abstract .. i

Acknowledgments .. ii

List of Publications ... iii

List of Figures ... vii

List of Tables ... ix

Abbreviations ... x

Introduction .. 1

1.1 Aims and Objectives ... 3

1.2 Motivations ... 4

1.3 Research Methodology .. 5

1.4 Main Contributions ... 6

1.5 Thesis Organisation ... 7

Background .. 9

2.1 Hadoop Framework ... 9

2.1.1 The Architecture of Hadoop Framework ... 10

2.2 MapReduce ... 11

2.3 Hadoop Distributed File System ... 15

2.4 Optimisation Techniques of Hadoop MapReduce Computing Resources 17

2.4.1 The Optimisation Techniques of Hadoop MapReduce Parameters 17

2.5 Commercial Hadoop Distributions ... 19

2.5.1 Apache Hadoop Ecosystem .. 19

2.5.2 Hadoop 2 .. 24

2.5.3 Hadoop 3 .. 25

2.6 Machine Learning Applications in Hadoop Environment 26

2.7 Data Centre Network Architecture .. 28

2.7.1 Fat Tree Topology .. 29

2.7.2 Leaf-Spine Topology .. 31

2.7.3 Routing Algorithms in Data Centre Network ... 32

2.8 Cloud Computing Technology .. 32

v

2.9 Software Defined Networking .. 35

2.9.1 OpenFlow ... 37

2.9.2 Floodlight Controller .. 38

2.9.3 Hadoop Networking Performance Improvements Techniques 38

2.10 Summary ... 39

Optimisation of MapReduce Configuration Parameter Settings Using Genetic

Algorithms for Hadoop Cluster Based on Software Defined Networking 40

3.1 Introduction ... 40

3.2 Related Work .. 41

3.3 Hadoop MapReduce Parameters Settings ... 42

3.4 Evolving Hadoop MapReduce Parameters with Genetic Programming 45

3.5 Hadoop MapReduce Parameter Settings Tuning Using a Genetic Algorithm 49

3.6 Performance Evaluation Environment .. 52

3.6.1 Experimental Results .. 53

3.7 Hadoop Cluster Based on Software Defined Network ... 60

3.8 Summary ... 64

Solar Radiation Time Series Analytics Based on R and Hadoop Integrated

Programming Environment .. 65

4.1 Introduction ... 65

4.2 Overview of Big Data Analytics Based on Cloud Computing and High

Performance Computing .. 66

4.3 MapReduce Programming Model ... 70

4.3.1 The Implementation of MapReduce with Hadoop ... 71

4.4 Hadoop Framework ... 71

4.5 R Language ... 72

4.5.1 R and Hadoop Integrated Programming Environment 73

4.6 The Implementation of Solar Radiation Time Series Analysis Using R and

Hadoop Integrated Programming Environment .. 74

4.7 Work Evaluation ... 76

4.7.1 Cluster Setup .. 76

4.8 Experimental Results .. 77

4.8.1 The Analysis of R and Hadoop Integrated Programming Environment

Speedup ... 80

vi

4.9 Summary ... 82

Routing and Scheduling Algorithm Based On Software Defined Networking for

Big Data Applications in Data Centre Network .. 83

5. 1 Introduction .. 83

5.2 Related Work .. 84

5.3 Software Defined Networking .. 86

5.4 Routing Techniques and Network Topologies .. 87

5.5 The Implementation of the Proposed Work .. 91

5.5.1 Performance Evaluation ... 96

5.5.2 The First Experimental Results and Discussion ... 97

5.5.3 The Second Experimental Results and Discussion 101

5.6 Summary ... 108

Conclusion and Future Work ... 109

6.1 Conclusion... 109

6.2 Future Work .. 111

References ... 113

vii

List of Figures

Figure 2. 1: Hadoop MapReduce Architecture ... 10

Figure 2. 2: The diagram of data process with MapReduce ... 12

Figure 2. 3: MapReduce execution job ... 14

Figure 2. 4: The architecture of HDFS system ... 16

Figure 2. 5: Hadoop ecosystem in Cloudera distribution ... 20

Figure 2. 6: fat tree topology architecture ... 30

Figure 2. 7: leaf-spine topology architecture .. 31

Figure 2. 8: Cloud Computing Model ... 35

Figure 2. 9: SDN layers architecture .. 37

Figure 3. 1: an example of Genetic programming .. 46

Figure 3. 2 The flowchart of genetic programming .. 47

Figure 3. 3 the tree of the objective function .. 49

Figure 3. 4 The flowchart of the genetic algorithm .. 50

Figure 3. 5 The error against the iterations in GA .. 51

Figure 3. 6: The effect of the io.sort.mb parameter (K1) .. 55

Figure 3. 7: The effect of io.sort.factor (K2) ... 55

Figure 3. 8: Reduce tasks influence .. 56

Figure 3. 9: Map and Reduce slots influence on MapReduce job 56

Figure 3. 10: compression parameter influence .. 57

Figure 3. 11: Comparison of Word Count Application .. 59

Figure 3. 12: comparison of Tera sort application .. 60

Figure 3. 13: Small scale Hadoop cluster in SDN environment 62

Figure 3. 14: Word Count Performance in SDN Environment 63

Figure 3. 15: Tera sort Performance in SDN Environment .. 63

Figure 4. 1: MapReduce execution ... 70

Figure 4. 2: Hadoop Architecture ... 72

Figure 4. 3: Components of RHIPE .. 74

Figure 4. 4: Solar data analytics based on HadoopR .. 75

Figure 4. 5: Comparison between RHIPE and R using single virtual node 78

Figure 4. 6: RHIPE Scalability ... 79

Figure 4. 7: RHIPE Speedup ... 79

viii

Figure 4. 8: Computational overhead of RHIPE ... 81

Figure 4. 9: Speedup of RHIPE against data block size ... 81

Figure 5. 1: SDN architecture ... 87

Figure 5. 2: Path allocation challenging in fat tree topology .. 90

Figure 5. 3: Path allocation using ECMP in leaf-spine topology 91

Figure 5. 4: shuffling execution time of Tera Sort using different number of reducers for

leaf-spine and fat tree topology .. 99

Figure 5. 5: shuffling execution time of Tera Sort ... 100

Figure 5. 6: shuffling execution time of Tera Sort using different number of reducers

 .. 100

Figure 5. 7: Fat tree topology with 20 switches based on SDN 104

Figure 5. 8: Leaf-spine topology with 12 switches based on SDN 105

Figure 5. 9: fat tree topology with 10 switches based on SDN 105

Figure 5. 10: Leaf-spine topology with 6 switches based on SDN 106

Figure 5. 11: Routing convergence time using different topology sizes 106

Figure 5. 12: Hadoop execution time within leaf-spine using 12 switches 107

Figure 5. 13: Hadoop execution time within leaf-spine using 6 switches 107

ix

List of Tables

Table 3. 1: The main parameter settings of Hadoop framework 43

Table 3. 2: Hadoop MapReduce parameters settings in genetic algorithm 52

Table 3. 3: Hadoop cluster setup .. 53

Table 3. 4: Hadoop MapReduce parameter settings recommended from genetic

algorithm on eight virtual machines ... 57

Table 4. 1: Cluster setup ... 77

x

Abbreviations

APIs Application program interfaces

BGP Border gateway protocol

CapEx Capital expenditure

CPU Central processing unit

DCN Data centre network

EC2 Elastic cloud computing

ECMP Equal cost multipath algorithm

EMR Elastic MapReduce

GA Genetic Algorithm

GFS Google File System

GP Genetic Programming

HA High availability

HBase Hadoop database

HDFS Hadoop distributed file system

HPC High performance computing

IoT Internet of things

IT Information technology

LLDP link layer discovery protocol

MPI Message passing interface programming

OPEX Operational expenditure

OSPF Open shortest path first

Open vSwitch Open virtual switch

PVM Parallel virtual machine

xi

PC Personal computer

RAM Random-access memory

RDBMS Relational database management systems

RHIPE R and Hadoop Integrated Programming Environment

RISC Reduced instruction set computer

SDN Software defined networking

SPB Shortest Path Bridging

SPOF Single-Point-of-Failure

SMP Symmetric multi-processing

TCP Transmission Control Protocol

TRILL Transparent Interconnection of Lots of Links

VM Virtual machine

VRRP Virtual router redundancy protocol

VLAN Virtual Local Area Network

1

Chapter 1

Introduction

The emergence of smartphones, internet of things and social media has a significant

impact on the data generation. Different types of data sets are generating from various

sources including the wide use of YouTube, google and social networking websites like

Facebook and twitter. Numerous data sets are also generated from other sources, such

as online mobile banking, online retail sector services, healthcare system, education

systems, sensors and other online services. Many companies and organisations also

generate huge amounts of data every day. Around 2.3 Zettabytes of data sets are

generated every day around the world. This number of generated data will increase in

2020 to be 40 zettabytes. 100 terabytes are stored by many companies only in the

United States [1]. These massive amounts of various data sets are classified as a big

data. The term of big data refers to the large scale of data sets that are difficult to be

stored, analysed and processed by the conventional tools due to their diversity and

complexity. Big data can be included into the form of structured model where the data

is organised and fit into the conventional databases and can be easily analysed and

processed using the traditional tools. Another form of the big data is the unstructured

model, which represents the most challenging part, because the large data in this case is

produced from different sources with different types of data including images, texts,

videos, audio files and web pages. This type of data is not organised in pre-defined

format and thus, it cannot be fit into the conventional databases or be processed by the

traditional tools [2].

Big data can be characterised by 5vs [3], which are volume, variety, velocity, value and

veracity. The volume refers to the massive data sets, which are generated by many

users, companies and organisations around the world consisting of zettabytes. On the

other hand, the variety is another complex characteristic where massive data sets are

generated with different formats including both of structured and unstructured data,

such as videos, images, texts, audios and data logs. The third characteristic of big data

is the velocity where the data moves at fast pace form point to another. The velocity

also refers to the frequently of the generated data every seconds, minute, month and

year. The generated data can be processed in real time or in batch mode when only

2

required. The veracity in big data refers to the large number of uncertain and imprecise

data that should be sorted to achieve clean and authentic data. One of the significant

aspects is to obtain meaningful value of big data. Many companies have started to

analyse their own data to improve their own products. In the healthcare system,

analysing the data might lead to figure out some diseases and even find appropriate

remedies for them.

As we mentioned, big data can be generated from various sources due to the rapid

advance in the computer and communication networks. Today many people around the

world use smart phones and generate large data by browsing many websites and social

groups using the internet. The number of connected devices to the internet will reach to

50 billion devices in 2020. Machine to machine communication (M2M) [4] also

contributes in producing large number of data sets without any human intervention

where sensor devices are communicated with each other to exchange information.

Many sensors are used by many people and companies to achieve intelligent decisions

using internet of things (IoT) technology [5]. According to Gartner [6], around 6.4

billion things and devices were connected to the internet in 2016 and about 8.4 billion

in 2017. This number is expected to increase to more than 20 billion in 2020. Many

companies and governments need to analyse the huge data sets that come into different

types and formats to extract useful information in order to improve their own

businesses. However, processing and storing such massive data has become a

challenging task for the existing traditional tools like relational database management

systems (RDBMS), because it lacks the scalability of large data sets and it supports

only the structured data that has pre-defined format. However, a solution has been

reached to store and analyse these large data sets in effective way [7]. The solution can

be used to provide distributed computing for parallel processing and storage by

applying Hadoop MapReduce framework.

The framework of Hadoop and its programming technique MapReduce can be

implemented across a cluster of computing nodes. The cluster can be run in cloud

computing environment such as Amazon Elastic Compute Cloud (Amazon EC2) and

Microsoft Azure. Cloud computing is the technology that enables customers to access

and share the computing resources using the internet. The computing resources in the

cloud computing consists of networks, servers, storage, applications, services and

software that can be accessed by users when they require them. Companies and users

3

can access information anytime and anywhere from any geographical point in the world

whenever the internet is available. The computing resources can be utilised by multiple

customers using remote access. Furthermore, Cloud computing provides the

opportunity for individuals and businesses to use the software and hardware that are

managed by third parties remotely [8] [9]. They provide the access to share and

dynamically allocate/de-allocate the computing resources depends on user demand.

Amazon Elastic Compute Cloud (Amazon EC2) provides virtual computing resources

to be accessed by users based on pay as you go to run their own applications on

allocated resources. Virtual computing resources can be provided as instances [10] [11].

More details about cloud computing are provided in chapter 2. MapReduce

programming model can be used to support big data intensive applications in cloud

computing environment. MapReduce is a programming technique model that supports

parallel processing and analysis for massive unstructured datasets [12]. Amazon

provides elastic MapReduce (EMR) for big data processing using elastic cloud

computing (EC2) machines. MapReduce can also be implemented using indoor-cluster

consisting of several machines by installing Apache Hadoop on each node. Hadoop

framework [13] is a distributed computing platform that is built in java and released by

the Apache foundation to enable the implementation of MapReduce programming

technique on huge data sets. Apache Hadoop has been widely used by researchers and

companies to analyse, process and store massive amounts of unstructured data in

distributed environment. Hadoop is characterised by some salient features such as

scalability, resiliently, fault tolerance and the parallelisation nature [14]. Both the

MapReduce model and Hadoop framework are explained in details in chapter 2. The

Next section presents the aim and objectives of the thesis.

1.1 Aims and Objectives

The major aims and objectives of this thesis were as follows:

- Aims:

Reduce the execution time of a Hadoop job and accelerate the processing time of large

datasets in Hadoop framework.

4

- Objectives:

1- Improve the performance of a Hadoop framework by applying genetic algorithms to

better utilising the computing resources in terms of CPU, Memory and hard disk I/O.

2- Integrate R language with Hadoop framework to enable R expressions to be executed

across multiple computing nodes in a cluster computing environment, and evaluate the

performance of both R and Hadoop from different aspects including scalability,

accuracy and speedup.

3- Improve the networking part of a Hadoop framework in large scale clusters to speed

up the processing time of a Hadoop job during the shuffle phase.

1.2 Motivations

This thesis has number of motivations

- Hadoop MapReduce framework is the main computing platform used by many

businesses to support the analysis and the processing of big data. However, the

parameters of Hadoop framework can influence the processing time of a Hadoop

MapReduce job and hence, affect the overall performance. According to recent studies,

the tuning of Hadoop parameters with the right values can have a considerable effect on

the Hadoop MapReduce performance. Hadoop has more than 150 parameters that

manage the computing resources specified for the Hadoop MapReduce job. The

execution of Hadoop MapReduce jobs are performed using the default values of

Hadoop configuration parameters. However, the performance of Hadoop MapReduce

job can be affected negatively, as a result of the ineffective utilisation of the computing

resources using the default values of the parameters. Therefore, tuning the

configurations of the Hadoop parameters with optimal or near optimal values can have

a positive influence on the overall performance of the Hadoop MapReduce job.

However, because of the large number and the complexity of the Hadoop parameters,

manual tuning has become a challenging task. As a consequence, dynamic and

influential technique is necessarily required to tune these parameters.

- Solar energy has become one of the main sustainable and renewable energy sources. It

provides many features to the world, such as bill cost reduction, emission reduction,

5

green energy and low maintenance. However, one of the main issues of the solar energy

is the unpredictability of the solar irradiation that mainly depends on the weather

conditions. It is very important to predict and calculate the output power of the solar

arrays based on the solar irradiation. Calculation of the large number of solar irradiation

data is a challenging task using the traditional tools of time series analysis like R

language. As a result, a novel method based on a Hadoop framework is highly needed

to utilise the computing resources to achieve fast calculation and timely analysis of the

solar irradiation.

- MapReduce programming model has been widely deployed for big data analytic. It

can be implemented based on Apache Hadoop using several computing nodes in a

cluster computing environment. The computing resources in a Hadoop framework, such

as memory RAM and hard disk I/O can be scaled by using several servers to store and

process massive amounts of data sets. However, increase number of servers would

result in increasing the network traffic of the entire network. The communication and

network aspect of the Hadoop MapReduce framework can affect the overall processing

time of a MapReduce job especially when the communication patterns of MapReduce

are heavy. The reason is that the networking aspect for job scheduling is not considered

by the default Hadoop resource manager. During the parallel and distributed processing

of large data sets in Hadoop cluster using MapReduce, many flows are exchanged

between hosts especially during the shuffling phase. Each flow should be allocated a

particular amount of network bandwidth for rapid and effective processing. However,

the traditional legacy network is not able to dynamically allocate efficient bandwidth

for each flow. Hence, dynamic scheduling and routing algorithm for big data

applications using Hadoop MapReduce based on software defined networking (SDN)

has become a necessity.

1.3 Research Methodology

In this research, the performance of a Hadoop MapReduce job was evaluated by

applying both genetic programming and genetic algorithm to optimise Hadoop

MapReduce parameters by tuning them automatically. Software defined networking is

6

also employed on Hadoop cluster to evaluate the performance of a Hadoop MapReduce

job with the optimised values of Hadoop parameters compared to the performance in

conventional networks. Another work was performed on the networking side of a

Hadoop cluster to improve the performance of the Hadoop MapReduce job using

software defined network in small and large scale clusters.

The proposed work was evaluated using a Hadoop cluster with two servers (Intel Xeon

X5550 server 1 and uxisvm04 server 2). Different sizes of virtual machines ranging

from 8-14 VMs have been created using the oracle virtual box. Hadoop Cloudera

(Hadoop 2.6.0-cdh5.9.0) has been installed on each virtual machine (VM). All virtual

machines were placed on Microsoft azure cloud. We assigned for each VM 8 GB of

RAM and 4 CPU cores. Total storage of 320 GB was allocated for the cluster. The

Ubuntu 14.04 TLS operating system was installed on each VM and X2G client was

used as a graphical user interface to access Hadoop cluster remotely. EstiNet emulator

software was employed to build both the fat tree and leaf-spine topology of the data

Centre network. SDN Floodlight controller was installed on one PC. SDN application

and Open vSwitches were also used in the data centre network. More details about the

cluster specifications of each experiment are available in chapters 3, 4&5.

1.4 Main Contributions

The main contributions of this thesis are summarised below:

1- An Optimisation technique is proposed in chapter 3 to optimise the parameter

settings of Hadoop by automatically tuning them using both the genetic programming

and genetic algorithm. Genetic programming is used to construct a fitness function

based on the input samples datasets. The interrelations and reliance of the Hadoop

parameters are represented by the fitness function. The optimisation technique of the

Hadoop parameters uses the fitness function as an objective function. Genetic algorithm

is used to search for the optimal values of the Hadoop parameters. Software defined

networking is employed in a Hadoop cluster to evaluate the performance of a Hadoop

MapReduce job using the optimised values that identified by the genetic algorithm

compared to conventional network.

7

2- Chapter 4 presents a distributed, scalable, fault tolerant and effective computing

platform to store and analyse large solar irradiation data sets. The proposed platform

uses R and Hadoop Integrated Programming Environment (RHIPE) for fast analysis

and statistical calculations on massive irradiation data sets. RHIPE is evaluated in terms

of scalability, accuracy and speedup compared with R language. Gustafson's Law is

used to analyse the speed up of parallel RHIPE in a Hadoop cluster. An amendment on

Gustafson's Law is made to improve the performance of the parallel computation on

intensive data sets in a Hadoop cluster based on cloud computing environment.

3- In chapter 5, software defined networking is proposed to improve the performance of

a Hadoop MapReduce job in a data centre network by providing network aware

application. An Effective routing algorithm is implemented based on software defined

networking to speed up the execution time of a Hadoop MapReduce job by dynamically

improving the networking aspect during the shuffling phase. Both the fat tree topology

and leaf-spine topology are used for the data centre network, so as to evaluate the

performance of a Hadoop MapReduce job using the proposed work. The generated

traffic from the shuffling phase of a MapReduce job in a Hadoop cluster in a data centre

network is allocated with sufficient amount of network bandwidth using the proposed

routing algorithm based on a software defined network.

4- The performance of the proposed work has been evaluated using a Hadoop cluster

placed on internal cloud managed by Microsoft azure in Brunel University London.

SDN Floodlight controller, SDN applications and Open vSwitch packages have been

installed separately on physical nodes for further evaluations and investigations.

1.5 Thesis Organisation

The rest of this thesis is organised as follows:

In chapter 2, general background on the MapReduce programming technique and the

Hadoop framework including the Hadoop distributed file system (HDFS) is provided. It

also provides general overview on cloud computing, software defined network (SDN),

OpenFlow and data centre network (DCN). The optimisation techniques of Hadoop

MapReduce parameters are also introduced in this chapter. It provides the applications

8

of machine learning algorithm in Hadoop environment. Finally, this chapter provides

some of the routing algorithms and network topologies used in the data centre network.

Chapter 3 presents an optimisation technique using both the genetic programming and

Genetic algorithm to optimise Hadoop parameters. It first applies the genetic

programming to construct a fitness function based on sample data sets. The genetic

algorithm is applied to the constructed fitness function to find the optimum or near

optimum values of the Hadoop parameters. A comparison is conducted between the

performance of the proposed technique and the performance of Gunther and default

settings. SDN is also employed to improve the performance of a Hadoop job further.

Chapter 4 presents a scalable and distributed framework for solar irradiation data

storage and analysis. It uses R and Hadoop Integrated Programming Environment

(RHIPE) for fast statistical calculation and analysis. The speedup of RHIPE is analysed

using Gustafson's Law. The performance of RHIPE in terms of scalability, accuracy and

speedup is compared with R language.

In chapter 5, an effective routing algorithm based on SDN for Hadoop MapReduce

applications in a data centre network is presented. Both the fat tree topology and leaf-

spine topology are used for the data centre network to evaluate the performance work.

The proposed algorithm is compared with ECMP and TRILL to evaluate the

performance of a Hadoop job in SDN network. The SDN network is also compared

with the conventional one to evaluate the routing convergence time in both

environments.

Chapter 6 concludes the thesis and discusses some research challenges. Some findings

of the research are also discussed. Some considerations and proposals in future are also

presented in this chapter.

9

Chapter2

Background

Hadoop is an open source framework that supports the parallel processing and

distributed storage for massive data sets using the MapReduce programming model and

the Hadoop distributed file system (HDFS). It has become the most popular framework

for big data applications because of its remarkable characteristics such as scalability,

flexibility, cost effectivity, and fault tolerance. It can be scaled up from a single server

to thousands of servers in large clusters and data centre networks based on cloud

computing environment. However, with the scaling of servers and machines for Hadoop

in large scale clusters and data centre network, high volume of traffic will be generated.

The emergence of software defined network brings the benefit of intelligent network

management that can alleviate the traffic of big data applications in a Hadoop cluster.

This chapter provides the architecture of Hadoop and its programing model

MapReduce. It also provides an overview of software defined network and open flow

protocol. Furthermore, it provides an overview of cloud computing and data centre

network and presents some routing algorithms and network topologies used in the data

centre network.

2.1 Hadoop Framework

Hadoop [15] is a distributed framework that is written in java, developed by Doug

Cutting and Mike Cafarella, and was released as an open source by yahoo in 2008. The

idea of Hadoop is inspired from the google file system (GFS) and google MapReduce.

It enables the distributed processing for both structured and unstructured data by

running MapReduce programming model using a cluster of servers and machines. With

the drastic increase of data, many organisations are using Hadoop such as Facebook,

twitter, yahoo, google and YouTube [16] due to its distributed nature and its ability to

process and analyse enormous data sets. The most significant characteristics of a

Hadoop framework are the scalability and fault tolerance. Hadoop can be implemented

on large scale clusters with thousands of machines to bring the computation power and

provide the distributed storage for massive data sets. The size of a Hadoop cluster

10

depends on the size of data sets and it can be scaled up with the increasing of data

workload. The fault tolerance feature of the Hadoop framework provides the solution

for any hardware or software failure in the cluster.

2.1.1 The Architecture of Hadoop Framework

The core components of the Hadoop framework consists of MapReduce and Hadoop

distributed file system (HDFS). Figure 2.1 shows the architecture of Hadoop

framework.

Figure 2. 1: Hadoop MapReduce Architecture

Hadoop has master/slave architecture, which includes one master node and several

slave nodes. The master node contains one job tracker that monitors and manages the

progress of MapReduce tasks, and assigning them to the task trackers. It also handles

the failure and error cases of Hadoop nodes. The slave nodes contain the task trackers

that interact with the job tracker in the master node. The task trackers are responsible to

11

execute all map and reduce tasks that run on the slave nodes (Data Nodes) by receiving

instructions from the job tracker and they also process the data movement between the

map phase and reduce phase. The job tracker receives heartbeat messages from each

task tracker to monitor and update the progress of all running tasks in the cluster.

However, if the job tracker does not receive any heartbeat messages from a certain task

tracker, it reports that there is a failure occurred in the cluster node and coordinates the

processing of this failure to any other working node in the cluster. Hence, Hadoop is the

main powerful and popular platform for MapReduce programming model. The next

section gives details of the MapReduce model.

2.2 MapReduce

MapReduce is a programming technique that is used to process and analyse massive

amount of data sets on parallel in a distributed environment across a cluster of

computing nodes [17]. It is the core component of Apache Hadoop that proposed by

Jeffery Dean and Sanjay Ghemawat at Google in 2004. It performs the processing and

computation of large data using map and reduce functions. The map and the reduce

functions are executed in two different phases. The map function is executed at the map

phase, whilst the reduce function is executed at the reduce phase. In the map function,

the input data is divided into form of (key/value pairs) and produces the intermediate

results of map phase in a list of (key/value pairs). All intermediate values are sorted and

collected with the same associated key by the MapReduce library to pass them to the

reducer in the reduce phase. Once the reducer receives the values associated with same

key, it combines them together to produce the final output file.

Map function <k1, v1> list (<K2, v2>)

Reduce function <K2, list (v2)> list (<k3, v3>)

Figure 2.2 shows the process of input data sets using the MapReduce programming

model. Different letters are presented as input data sets. We execute MapReduce

algorithm to determine number of occurrences for each letter.

12

Figure 2. 2: The diagram of data process with MapReduce

MapReduce model can be applied in different fields such as health care applications,

social networks, artificial intelligence, machine learning and web data processing. The

13

first use of MapReduce was in 2004 by google to construct its web index and it is also

used by yahoo and Facebook. The processing of massive amounts of data sets is a

challenging task and time consuming. As a result, MapReduce can be used due to its

parallel and distributed nature that can distribute large data sets to be processed using a

large number of commodity nodes. The other remarkable characteristics, such as fault

tolerance, simplicity and high scalability can bring the effectiveness for processing and

storing large heterogeneous data sets. MapReduce is highly scalable as it can easily

scale the processing of massive data over multiple computing nodes. It partitions the

input data into several blocks and schedules them to be executed by multiple cluster

nodes and manage the communication between nodes in the cluster. It also can

automatically handle any crashing or failure in the cluster without any effect on the

computation process and the execution time. It supports parallelism in the cluster for

processing intensive tasks and provides efficient implementation for different

applications using map and reduce functions [18].

MapReduce is the main programming model of Apache Hadoop project [15]. Other

projects are also implemented based on it. It is considered as the processing model of a

Hadoop framework. The execution of a MapReduce job is performed in two stages. The

first one is the map stage, where map job processes the input data sets that stored in the

Hadoop distributed file system (HDFS). The mappers take the input data from the

HDFS and divide it into several blocks. The size of data blocks can be configured with

different size like 64MB or 128MB. All data blocks are distributed over different

computing nodes in the cluster. Worker node reads the contents of each data block by

assigning a map task for each block and apply user defined function. The intermediate

results of map function are stored in a buffer memory. The results stored in the buffer

memory are periodically written as partitions into local disk, which belongs to the

cluster node that runs the map task. The locations of buffered results written on the

local disk are moved back to the master node, which forwards them to the cluster node

that runs the reduce task. In the second stage (also called the reduce stage), the reducers

reads the results remotely from the local disks of mappers. The intermediate results are

sorted by the reducers as groups of the same keys with their corresponding values.

Furthermore, external sort is applied if the memory does not accommodate the

intermediate output results. The reducers iterate over the sorted intermediate output

results and move each unique key with its corresponding intermediate values to the

14

reduce function. The output results of reduce function in the reduce stage are written as

N output files according to the number of reduce tasks. The final output files are stored

into Hadoop distributed file system. Figure 2.3 shows the execution of MapReduce job.

Figure 2. 3: MapReduce execution job

Map and reduce tasks are automatically distributed and executed in parallel by the

MapReduce programming model across multiple cluster nodes or multiple processers in

a single cluster node. The MapReduce model executes the map and reduce task

simultaneously on a computing node in the cluster by specifying a number of map and

reduce slots. Number of map and reduce slots depends on the amount of hardware

15

resources and the workload of Hadoop MapReduce framework. Map and reduce slots

number should fit the characteristics and resources of the hardware in the cluster. Map

and reduce slots are configured on the task tracker nodes through the configuration file.

We suppose that there is 16 task tracker nodes (data nodes) and one map and reduce slot

is assigned for each map and reduce task in the task tracker node, the total number of

map and reduce slots is 16 slots. This number can be increased depends on the hardware

resources and Hadoop workload to be 2 map and 2 reduce slots for each task in the task

tracker node. However, the use of less map and reduce slots number than the map and

reduce tasks leads to prolong the execution time.

2.3 Hadoop Distributed File System

With the continuous increase of datasets that are generated from different sources, it

became a challenging task for the traditional tools to store and processes such massive

data in a single device [19]. As a consequence, the partition and distribution of these

massive datasets through a cluster of computer devices or several servers has become a

vital solution. The datasets stored in different nodes of the cluster network are managed

by a distributed file system. In Hadoop framework, the distributed file system is called

HDFS (Hadoop distributed file system).

 HDFS is responsible to store large scale datasets over several computers in the cluster

network [20] [21]. The idea of HDFS is inspired from the Google File System (GFS)

[22] [23] to run the applications of Hadoop MapReduce. It is a file system built in java

and can provide reliable services for different users with different requirements and

scalable storage for large datasets based on a considerable number of cluster nodes and

commodity servers [24]. The key features of the HDFS, such as fault tolerance,

scalability, reliability and availability have provided high streaming access to data

applications. It is designed to execute a series of jobs in a batching processing mode.

The data stored in the HDFS is divided into blocks and create multiple copies across

different data nodes in the cluster. The size of each data block and the replication factor

can be set in the configuration settings of a Hadoop cluster by a Hadoop user. Each data

block is assigned with the same size and by default it is set to be 64MB and the

replication number is 3. The replication of each data block is stored in different data

nodes to support the fault tolerance feature and data availability in case of any failure or

16

crashing in one of the data nodes in the Hadoop cluster. HDFS is designed to support

client/server architecture, where there is one server and several clients.

The architecture of HDFS system consists of two main components. The first one is the

name node, which is responsible to control the file system namespace and manage the

creation of files and directories. It also manages and regulates the client access to files

and performs some file operations such as opening, closing and renaming files. The

name node is a GNU/Linux operating system and software that run on the master node

of Hadoop cluster and work as a server. Secondary name node is employed as a

checkpoint node to assist the name node to achieve better performance. The secondary

name node is not an alternative node or backup of the name node. The second

component includes several data nodes that run on the slave nodes in the Hadoop

cluster and work as clients that receive the instructions from the server (Name Node).

One data node can be run on each slave or worker node. All data files stored in the

slave nodes are managed by the data nodes. The data nodes also manage and control the

creation, deletion and replication of data blocks in the cluster by receiving the

instruction from the name node. Furthermore, they manage read/write operations on the

file systems. The architecture of HDFS system is shown in Figure 2.4.

Figure 2. 4: The architecture of HDFS system

17

As can be seen in Figure 2.4, the metadata files that include the file system namespace,

block ID, replication factor, replicas number for each file, the mapping process of

blocks to data nodes, block replicas location on the data nodes are stored and

maintained in the name node. On the other hand, the data nodes in the cluster manage

the storage attached to them and store the multiple replicas of data blocks. These

replicas are stored on different data nodes in the same rack or can be stored in different

nodes in a different rack to obtain better performance of the cluster and increase the

availability of data blocks.

2.4 Optimisation Techniques of Hadoop MapReduce Computing

Resources

Massive data sets are generating every day from various sources and different fields

including social media, financial sector, healthcare system, education and many more.

As a result, this large number of generated data should be processed, analysed and

stored on large number of connected devices in cluster computing environment like

Hadoop framework. The huge amount of data sets is stressing the computing resources

of the Hadoop cluster in terms of memory, CPU and hard disk I/O. Many optimisation

techniques have been proposed to improve the performance of the Hadoop MapReduce

framework. Some approaches have focused on the data locality improvement. Some

other techniques have been developed to enhance the Job/Task scheduling of Hadoop

MapReduce. Moreover, many techniques and algorithms have been proposed and

implemented to optimise the parameter settings of the Hadoop framework to achieve

better performance of a Hadoop MapReduce job. Some optimisation techniques of

Hadoop parameters are presented in the following section.

2.4.1 The Optimisation Techniques of Hadoop MapReduce Parameters

Hadoop has become the most popular framework due to its salient features that enable

the scalability, flexibility and the parallel processing in a distributed environment.

However, it is a complex system, which contains a large number of complicated parts

that communicate together through a number of cluster nodes. The processing time of

jobs in a Hadoop framework can be affected by these parts as well as the hardware

18

resources, networking resources and the parameter settings of the Hadoop framework.

Hadoop framework contains around 200 parameters and some of them can play a vital

role in the processing time of Hadoop MapReduce jobs if they are configured properly

with the optimum values. However, because of the complicated and the large number of

these parameters, the optimal settings are becoming a challenging process as well as

being time consuming. Therefore, considerable approaches and algorithms have been

developed to adjust the parameter setting of the Hadoop system automatically. The

proposed work in [25] have tuned the parameter settings of a Hadoop framework by

applying Derivative-free optimization (DFO) technique to achieve optimised

performance for applications. DFO uses DevOps tools to obtain the effective

configurations of the cluster by applying the adjusted parameters according to the DFO

decisions. In [26], an offline method was used to optimise the parameter configurations

of the Hadoop framework. Multi- objective steady-state Non-dominated Sorting

Genetic Algorithm II (ssNSGA-II) was employed to optimise two objectives, which are

the resources utilisation of the instance and improve the execution time of Hadoop jobs.

The optimum configuration settings are selected based on the two objectives. The

proposed system has considered the dynamic machine instance type, but it ignored the

dynamic cluster size.

Another work to optimise Hadoop parameters was conducted by [27] based on an

adaptive recommendation system called mrEtalon that selects the near optimum

parameter settings for the incoming job. The recommendation system uses a warehouse

of configuration parameters to obtain the optimal one rapidly based on filtering method.

Chapter three in this thesis also presents an optimisation approach using both the

genetic algorithm and genetic programming to select the optimal parameters of a

Hadoop cluster to enhance the performance of Hadoop jobs. The presented work uses

both algorithms to obtain the optimal settings of the Hadoop parameters in conventional

network and then, apply same parameters for the Hadoop cluster with different size in

SDN environment to explore the impacts of the optimised parameters on the networking

side of the cluster that can affect the performance of the execution time of Hadoop jobs.

The complicated correlation between Hadoop parameters are taken into account through

the optimisation process. Furthermore, some other ways have been also implemented on

the resource provisioning to improve the performance of a Hadoop cluster [28] [29]

[30]. The work in [31] optimised the performance of the Hadoop cluster by improving

19

the execution time of Hadoop MapReduce jobs. However, this model only supports

specific type of jobs that based on the query and analysis for the short jobs. Piranha is

another system that proposed in [32] to improve the performance of short jobs in

Hadoop. The proposed work improved the response time of short queries by reducing

the execution time of the running jobs. Similarly, SHadoop [33] is also proposed to

optimise the performance of short jobs by improving their own execution mechanism.

The setup and clean up tasks of Hadoop MapReduce jobs have been optimised in this

work to reduce the cost time during the initialisation and termination phases. In the

proposed work, instant messaging communication mechanism is also introduced to

speed up the performance of task execution and scheduling.

2.5 Commercial Hadoop Distributions

The demand for big data technologies is increased due to the increasing number of

connected devices that generate huge amount of data every day. Apache Hadoop

became the core technology of big data applications because of its scalability and cost

effectivity. It can be downloaded and installed for free from http://hadoop.apache.org

.Since the open source of Apache Hadoop has some limitations, a number of

commercial distributions vendors, such as Cloudera, Hortonworks, Amazon elastic

MapReduce, MapR and IBM open platform are implemented to tackle them by

providing additional features and functionalities for Hadoop platform users. Different

functionalities and characteristics, such as reliability, completeness and support have

been added to enable users to perform different tasks and applications using a Hadoop

cluster [34]. In the following section, we provide an introduction of Apache Hadoop

ecosystem.

2.5.1 Apache Hadoop Ecosystem

Hadoop is an open source framework that provides storage, processing and analysis for

huge datasets. However, it is not a comprehensive system that can perform various

applications of massive datasets. It is an efficient platform to process and analyse

unstructured datasets stored in HDFS only. The storage and processing of other types of

http://hadoop.apache.org/

20

datasets, such as semi structured and structured data is infeasible. Hence, Hadoop

ecosystem has been developed to support Hadoop framework to perform many big data

applications. The ecosystem of Hadoop contains several components as shown in

Figure 2.5. A discussion for a list of Hadoop ecosystem components for Cloudera open

source distribution including Apache Hadoop (CDH) is given below.

Figure 2. 5: Hadoop ecosystem in Cloudera distribution

Hue: hue is an open source web interface licensed under Apache 2.0 written in python

and used by Apache Hadoop to support and manage its ecosystem. It can be installed on

any PC as a web interface platform for big data analysis using Apache Hadoop. Hue

supports many applications that provide web-based access to CDH components. Hue

applications are managed by Hue server which interfaces and communicates with CDH

components and other servers. Hue server acts as an intermediate container of web

applications between CDH that are installed in PC and the web browser [35]. It is

employed as editor for some applications of Hadoop ecosystem in CDH such as Hive,

MapReduce, Impala, Pig, Spark and many more. It also can be used as a dashboard to

visualise and explore data easily by Apache Solr and without any need for SQL

programming. It automatically schedules the workflows and jobs as well as performs

some operations, such as stopping or pausing jobs, job resubmission and job progress

21

monitoring. Furthermore, we present the browsers of Hue that is used to search and

accomplish some operations on jobs and data in a cloud or a cluster network [36].

1- It browses yarn and Oozie jobs.

2- It browses tables such as (Hive, Impala, HBase).

3- Browsing for HDFS S3 and ADLS.

4- Browsing solr indexes.

5- The browsing of Sqoop and sentry policies.

Hive: hive is an open source software project written in java licensed under apache 2.0.

It is built on top of Hadoop as a data warehousing for querying, summarising and

analysing vast amounts of datasets that are stored in HDFS. It was initially developed

by Facebook and it is also developed and used by different organisations like Netflix

and the Financial Industry Regulatory Authority (FINRA) [37]. Hive uses query

language called HiveQL, which is similar to SQL to enable SQL-like queries and

convert them into MapReduce jobs to be executed in a Hadoop environment [38] . It

consists of several parts that enable some operations on data in Hadoop ecosystem. A

brief introduction about the main parts of Hive is given below.

 1- Metastore: it stores the metadata for each table in Hive and support the driver to

monitor the progress of different datasets that stored and distributed over different

nodes in the cluster.

2- Driver: it controls and manages the lifecycle and progress of HiveQL statement

execution.

3- Compiler: it performs the compilation process of HiveQL to convert the query from

an abstract syntax tree (AST) to a directed acyclic graph (DAG).

4. Optimiser: it is responsible to conduct the transformation process on the execution

plan to achieve high performance.

5- Executor: it executes and schedules the tasks through the interaction with the job

tracker in the master node of a Hadoop cluster.

22

6- Hive server: Hive or thrift server provides a thrift user interface for external users to

communicate with Hive through DBC/ODBC protocols.

Pig: pig is a high level language tool that is designed to query, analyse and process

massive amount of datasets in parallel and distributed environment using a scripting

language called pig Latin, which is similar to SQL in terms of data grouping, ordering

and filtering. It uses the data flow process to represent and manipulate the huge datasets

in a Hadoop cluster [39]. It is first developed by yahoo for analysing and processing

large datasets by executing MapReduce jobs internally across several machines in the

Hadoop cluster and store the output files in HDFS. It is now being used and developed

by Apache software project to support many applications of huge datasets in the

Hadoop environment. Pig provides an easy programming environment for programmers

to execute MapReduce jobs using pig Latin. It also provides optimisations to support

the automatic execution of tasks and provide high extensible to create special function

for special purpose processing. However, it is only designed to support the batch

processing mode of large datasets.

Oozie: Apache Oozie is an open source reliable and scalable tool, which built in java

and designed to control and manages the workflow scheduling of MapReduce and pig

jobs in distributed environments like Hadoop. It can process multiple jobs by

combining them in a sequential order and run them concurrently using workflow

definitions, which are written in hPDL (XML process definition language) [40] [41].

The workflow system is a collection of control flow and actions like MapReduce and

big jobs that arranged in Directed Acyclic Graph (DAGS) that specify a sequence of

actions to be executed. The control flow in Oozie performs some workflow operation,

such as start, end, node failure and control the execution path of workflow.

HBase: HBase is an opens source scalable distributed database that written in java and

developed by Apache software foundation to be run on top of HDFS. It is widely used

by various enterprises, such as Facebook, Yahoo, Adobe, Netflix, Airbnb, Spotify and

many more. It is developed based on the idea of Google Big table [42]. It was designed

23

to provide random and rapid real time access for Hadoop applications to read or write

large data in HDFS with high throughput and low latency. HBase can store huge

amount of structured data that includes billion of column and row pages in tables across

different cluster nodes. It leverages the scalability and fault tolerant features to execute

MapReduce jobs on these tables to extract useful information [43] [44]. Unlike

relational database management system (RDBMS), HBase is not designed to support

SQL queries and transactional applications. However, it is linearly scalable and able to

store and distribute large number of tables through several cluster computing nodes

unlike RDBSM, which is not scalable system and designed to store small number of

tables. The manipulation process of large tables is managed by several components of

HBase. For instance, the region server in HBase handles all tables that divided into

several regions and processes read/write request for each region. It also configures and

specifies the threshold size of each region. The region server can be run on each data

node in the Hadoop cluster. The load balancing of all regions is managed by the HBase

Master Server that assigns them to the region servers. The HBase master is also

responsible to monitor and maintain the status of the Hadoop cluster. HBase can be

scaled to be run on several servers; however, these servers are only managed by

ZooKeeper that provides reliable distributed synchronisation and centralised

management. A discussion about ZooKeeper is given below.

ZooKeeper: ZooKeeper is open source software project that written in java and

licensed under Apache 2.0. It was originally developed by yahoo and now used by

Apache software foundation in the Hadoop ecosystem to provide centralised and

distributed configuration services for distributed applications. Many enterprises such as

Yahoo, Reddit, Rackspace and eBay use ZooKeeper because of its reliability,

scalability, high availability and simplicity. It can provide different services including

configuration information management, distributed synchronisation, coordination

services and naming services [43] [45] [46] .

Flume: Flume is a reliable, resilient and distributed service that built in java and

licensed under Apache 2.0. It is also scalable and fault tolerant tool, which designed to

collect and aggregate large streaming datasets from various sources such as log and

24

event files and move them into HDFS at higher speed [47]. Flume can efficiently

import large event data that generated by various social websites like Facebook and

twitter into HDFS or HBase. The data generated from Facebook and twitter or any other

various sources is collected by several flume agents, which are number of JVM daemon

process. Additional agents are also applied as a data collector, which is responsible to

collect the data from the flume agents and move it into centralised storage like HDFS or

HBase. Each flume agent mainly consists of three interactive components which play a

significant role to collect, import and ingest the streaming event data into the Hadoop

system. The first component of a flume agent is the sink, which receives the event data

produced by the generators and transfers them to a channel which is next component of

the flume agent. The channel is used as buffer storage of the event data received from

the sink. Different channels can be used such as JDBC, file system and memory

channel. The event data is consumed from the channels by a sink which transfers the

consumed data to the following destination [48] [49].

Sqoop: Apache Sqoop is an open source tool built in java and designed to transfer

massive datasets between Apache Hadoop and relational database systems. The name of

Sqoop is derived from SQL and Hadoop. The structured datasets that stored in

relational databases, such as MySQL, Postgres, Teradata and oracle are moved to

Apache Hadoop to be processed and stored into HDFS and HBase using Sqoop

command-line interface. Sqoop can be employed to perform some operations like ETL

processing and data extraction from Hadoop. It can increase the system utilisation and

improve the performance of parallel data transfer. It also improves the efficiency of data

processing and analysis in Hadoop cluster by combining both structured and

unstructured data [50] [51].

2.5.2 Hadoop 2

With the wide development of big data applications, Apache Hadoop launched another

version, which is the Hadoop 2 to support different applications that cannot be achieved

using Hadoop 1. Since Hadoop 1, supports only the batch processing of big data and

lacks the support of non-MapReduce tools, Hadoop 2 was developed to support non-

25

batch processing and different applications of big data such as Machine learning

applications in a distributed processing environment. It also provides the support of

other distributed tools, such as spark and HBase to be implemented in Hadoop

MapReduce environment. Hadoop 2 provides (YARN), which is the resource manager

that manages the cluster resources, while data processing is performed using different

processing tools. On the other hand, in Hadoop 1, the processing and the management

of the cluster resources are both performed by the MR itself. One of the significant

characteristics of the Hadoop system is the scalability. Despite both Hadoop 1 and

Hadoop 2 are scalable systems; however, the limited number of computing nodes in

cluster network of Hadoop 1 is the key limitation to process and analyse very large

datasets in the cluster network. Therefore, developers have designed Hadoop 2 to

support large number of machines to be run per cluster. In Hadoop 2, the number of

cluster machines can be scaled up to 10000 nodes per cluster while in Hadoop 1; the

cluster network can run up to 4000 nodes [52] [53]. Hadoop 1 has several data nodes

and one Name Node that manages the namespaces of the entire cluster network.

Hadoop 2 provides HDFS federation to address the drawbacks of previous HDFS

architecture that supports only single Name Node to manage the entire cluster. Multiple

Name Nodes can be used with HDFS federation to improve the scalability of the name

services and support the management of the whole cluster namespace [54]. It provides a

remarkable feature for HDFS architecture by configuring two name nodes in an

active/passive mode instead of one name node to avoid the Single-Point-of-Failure

(SPOF) and provides high availability (HA) of HDFS. This feature has been added to

overcome the limitation in Hadoop 1 where a failure happens in the single name node,

operator intervention is required to overcome such issue. On the other hand, standby

name node is added in Hadoop 2 to automatically overcome any crashing hardware or

software in the active name node.

2.5.3 Hadoop 3

Hadoop 3 has included some important improvements over the previous editions of

Hadoop 1 and Hadoop 2 [55]. The minimum support of Java has been increased from

Java 7 to Java 8 in Hadoop 3. The fault tolerant feature and the storage scheme in the

Hadoop 3 has been improved by enabling erasure coding in HDFS to reduce the storage

26

overhead instead of using replication method in both Hadoop 1 and Hadoop 2. Hadoop

3 has improved the scalability and availability of the Hadoop system by adding multiple

standby name nodes. The timeline service of Hadoop 2 has been updated to be more

scalable and reliable in Hadoop 3. It can improve the performance of machine learning

and data science applications by enabling GPUs support that play a significant role to

enhance the computations needed for these applications. It performs better in data

balancing than Hadoop 1 and Hadoop 2, because it supports intra-data node disk

balancing. The HDFS balancing scheme used in Hadoop 1 and Hadoop 2 is not

effective balancer, because it leads to unequally disk space in each server in case of

adding new storage to an existing server with old drives. Therefore, applying intra-node

disk balancer can overcome this issue and make the disk space in each sever is

distributed equally [56] [57].

2.6 Machine Learning Applications in Hadoop Environment

Nowadays, massive datasets are generated from different sources and applications.

Extracting and predicting useful information based on input data and without any

explicit programming has become possible with machine learning algorithms. However,

the prediction and extraction of such information from huge datasets is a challenging

task and time consuming, because it requires high computation resources, which are not

provided by single machines. As a result, some software and tools have been designed

to support the integration between machine learning algorithms and a Hadoop

framework that supports the implementation of several machine learning applications

and techniques using multiple cluster machines. An introduction of some machine

learning tools in Hadoop environment is given below.

Apache Mahout: Mahout is an open source distributed framework that was developed

to support machine learning applications running on top of a Hadoop cluster. It can run

scalable machine learning algorithms based on Hadoop platform using MapReduce

paradigm to implement different machine learning techniques such as clustering,

filtering, classification and recommendation [58]. It is also used to perform different

machine learning applications like forecasting, data mining, pattern recognition and

27

many more. It provides some math and statistic operations by applying java libraries.

Furthermore, Mahout supports applications that require evolutionary programming by

providing distributed fitness function capabilities. It uses the library of Apache Hadoop

to scale the machine learning algorithms to be run in the cloud computing environment.

Moreover, it can speed up the execution time of analysing large datasets for different

machine learning applications. Some clustering algorithms, such as k-means, fuzzy k-

means and mean-shift can be implemented using Apache mahout based on the

MapReduce programming. Many companies and organisation such as Facebook,

Twitter, LinkedIn, Adobe and yahoo use Mahout for different needs.

R language: R is a programming language and free software tool that is written in C,

Fortran and R. It was first developed by Ross Ihaka and Robert Gentleman at the

University of Auckland in New Zealand and it is currently developed by the R

development core team. R is mainly designed to perform calculations and statistical

computing on data. It is also widely used for time series analysis, data mining, machine

learning applications (linear and nonlinear modelling, classification and clustering)

[59]. R Language provides reliable and flexible services for data manipulation,

calculation and analysis such as data cleaning, data extraction and predictive modelling.

It can effectively store data as it can connect with different data stores such MySQL,

MongoDB and HDFS in Hadoop cluster. It also can handle data and provides effective

support for relational database systems. Efficient tools for data analysis and

visualisation are also provided by R language. It is not a statistical tool but provides the

efficient environment to implement different statistical techniques to extract meaningful

information from datasets. However, it is not scalable and distributed system that can

handle large scale datasets, it is designed to handle and process limited amount of

dataset. As a consequence, it became imperative step to integrate R language with

Apache Hadoop, which is the main platform for big data processing and analysis. The

operations of data analytics with R language can be scaled up using several computing

machines running on a Hadoop cluster. The following section explains the integration

between R and Hadoop.

28

RHadoop: RHadoop is an open source framework developed by revolution analytics to

support big data analytics with R based on a Hadoop cluster [60]. It has three different

collections of R packages including rhdfs, rhbase and rmr. All three packages have been

implemented and tested on recent versions of Cloudera and Hortonworks commercial

Hadoop distribution as well as the recent R version [61]. The connection between

HDFS and R is provided by rhdfs, which allows R users to read, write and amend any

files that managed by R functions and stored in the HDFS. On the other hand, the files

stored in HBase distributed system can be read, write and modified by R programmers

using rhbase. Map and Reduce functions can be applied on different statistical analysis

in R using rmr software package.

RHIPE: RHIPE is an open source software package that used for big data analytics

using R expressions and MapReduce programming in a Hadoop environment [62]. It

was developed by Mozilla’s Suptarshi Guha at Purdue University in 2012 to enable R

programmers to run Map and reduce jobs in R environment based on Hadoop and

HDFS. It uses D&R mechanism (divide and recombine) to perform the analysis on

large datasets in a distributed environment. It takes the large input datasets and divides

them into several subsets and then applies R operations within the map phase to process

them in parallel to obtain intermediate results. All the intermediate results that

generated from the map phase are recombined during the reduce phase into a set to

obtain the final output. Since RHIPE is an integrated system of R and Hadoop, several

software packages and libraries need to be installed on several machines in the cluster

network. The installation process of RHIPE is explained in chapter 4.

2.7 Data Centre Network Architecture

Data centre network (DCN) is a collection of large number of interconnected devices

that provide computational, storage and network services for different users and

enterprises. It includes a large number of servers and switches, which are connected

through communication links. It has been widely deployed for a wide variety of

internet and cloud-based applications like Google, Yahoo, YouTube and many social

networking including Facebook and twitter. It is also used for data processing and

29

management by various projects, such as Google file system (GFS), Big Table, Dryad,

Hadoop distributed file system (HDFS) and MapReduce programming model. One of

the largest data centres in the world is Chicago-based data centre that provides different

Microsoft services. With the increasing demand of data centre network in different

cloud-based services, large number of hosted servers has been increased to provide

efficient computing and storage services. However, high traffic is generated due to the

information exchanged between the large numbers of servers that stresses the

bandwidth in traditional data centre network. As a result, some architectures have been

proposed to tackle the traffic issues and improve scalability, resiliency, flexibility, fault

tolerance, cost effectiveness and energy efficiency [63] [64]. One of the proposed

network topologies of a data centre network is fat tree topology that was proposed by

Al-Fares [65]. A description of fat tree topology is given below. Furthermore, leaf-spine

topology is another architecture, which is explained in section 2.7.2.

2.7.1 Fat Tree Topology

The traditional design of a data centre network involves three different layers of

interconnected switches or routers. Fat tree topology consists of three layers of

switches. The first one is the core layer that provides packet forwarding services for all

flows between the lower layers within the data centre network as well as flows going

outside the data centre. This layer provides resilient route to avoid single point of

failure and provides connections between different aggregation layer switches. The

second one is the aggregation layer, which is located in the middle between the core and

edge layer. It has some integrated modules that provide various services, such as

firewall, network analysis, intrusion detection, SSL offload and server load balancing.

The edge layer, which is located on the top of rack, is the third layer that provides the

connection between different hosted servers within the same rack. The hosted servers in

the data centre network can directly connect to the edge layer switches. The switches in

the core layer provide the connection between the data centre and the internet [66] [67].

Fat tree topology has some salient features that can be invested to obtain efficient

performance for big data applications like MapReduce in the data centre network. Fat

tree topology has a number of pods depending on the topology size of the data centre

network. Each pod contains a number of edge and aggregation switches that connect to

30

each other without the need to pass through the switches in the core layer. However, if

the switches in the aggregation and edge layers are located in different pods, the traffic

between them should pass through the switches of core layer. According to [68] the

relationships between the switches in the same pod or in different pods should be

exploited to achieve effective routing and better path allocations for the flows in the

data centre network. Moreover, another significant feature, which is the connection

between the hosted servers, can be also employed to obtain an efficient path allocation.

Three different connections are exist among the servers in the fat tree topology, the

connection between any two servers in the same rack called rack-local connection,

because the traffic between them remains inside the rack. On the other side, the

connection between two servers, which are located within the same pod called pod-

local connection as the traffic between the two connected servers should traverse at

least one switch in the aggregation layer. The last type of connection between two

servers is the remote connection where both two servers are located in different pods. In

this connection, the traffic between the two servers should traverse the switches in the

core layer. The architecture of fat tree topology is shown in Figure 2.6.

Figure 2. 6: fat tree topology architecture

31

2.7.2 Leaf-Spine Topology

Due to the wide use of cloud networks and data centre network, efficient and resilient

design is highly required to improve the performance of east-west traffic. As a

consequence, a flat design like leaf-spine is proposed to meet the requirements of

current network applications, such as cloud applications and big data applications. Leaf-

spine topology is a list of leaf switches at the access layer, which are connected to a list

of spine switches at the top layer in a mesh full topology. Each leaf switch is connected

to spine switch; however, the switches in the same layer are not interconnected to each

other as shown in Figure 2.7. One of the main advantages of leaf-spine topology is the

minimization of latency and some other bottlenecks between the leaf switches by

making only one hop away from each other. Both layer 2 and layer 3 can be used to

switch and route the links between the leaf and spine switches. In the layer 3, each link

between the spine and leaf layers is routed using open shortest path (OSPF) or border

gateway protocol (BGP) based on equal cost multiple path (ECMP). On the other hand,

Transparent Interconnection of Lots of Links (TRILL) or Shortest Path Bridging (SPB)

can be applied by layer 2 for switching the links in the leaf-spine topology [69].

Figure 2. 7: leaf-spine topology architecture

32

2.7.3 Routing Algorithms in Data Centre Network

Several algorithms are exist for general routing in computer and communication

networks. These algorithms can also be applied to rout the traffic of shuffling flows

between different hosts in a data centre network based on fat tree topology to improve

the performance of big data applications. For instance, the traffic of shuffling flow

between any two hosts can be routed by selecting the shortest path between them based

on the shortest path algorithm. However, the shortest path might trigger congested links

in the fat tree topology. Single best path for the traffic can be selected using Open

Shortest Path First algorithm (OSPF) [70]. However, this algorithm lacks the efficient

scalability. Since the fat tree topology provides redundant links, Equal Cost Multipath

Algorithm (ECMP) [71] can now be used to route the traffic using these links to utilise

multiple paths between any two hosts to route the traffic of shuffling flows. However,

use multiple paths will result in a low performance especially for large data centres,

because the amount of entries in the routing table increases exponentially and

consequently increase the latency of the routing algorithm. In addition, the nature of

conventional data centre network can also affect the performance of routing algorithms

for flow scheduling due to its static network configurations. The flow scheduling can

only be implemented by the switches in the aggregation and core layers because of the

hardware constraints. As a result, a central controller is required to achieve better flow

scheduling. The solution is provided by software defined network that can provide a

dynamic network configuration to adopt different requirements for different

applications.

2.8 Cloud Computing Technology

Cloud computing is a term that refers to use wide variety of computing services, storage

and other IT resources over the internet. In recent years, cloud computing has become

very common technology that used by many companies and organisations. Many

companies are choosing to depend on the cloud computing technology for crucial

business duties. Some companies, such as Google and IBM use cloud computing to

store their information and manage their resources. Furthermore, cloud computing is

used in different fields including marketing, data centres and libraries [72]. It is also

33

scalable and reliable technique for distributed processing and massive data sets storage.

Amazon uses cloud computing in the form of virtual servers to provide elastic

computing services and storage management for big data applications, such as

MapReduce and other distributed tools that run on top of apache Hadoop. Due to many

facilities offered by cloud computing, a large number of companies have depended on it

and many of them have invested more money on it recently. According to Gartner

research, the expectancy of investment in cloud computing will reach $150 billion. A

survey has been conducted on six data centres showed that between 10% and 30% of

computing power was utilised by servers, while less than 5% of the computing power

was employed by Desktop PCs. About 66% of the information technology budget is

spent by companies and organizations on support and conservation activities, which are

not needful in the era of globalisations [73]. A phone survey of 54 organizations was

conducted in the summer of 2012, ranging in size between twelve and hundred

thousand of workers. According to this survey, some form of cloud service was being

used by 22% of users. The average size of cloud services users was 1,378 workers, in

comparison with the average size of 322 workers who were not utilising the cloud

services. Today, the larger companies and enterprises are exploring methods to include

expenses and manage the enormous increasing of data sets [74].

Cloud computing has salient characteristics that attract many enterprises and

organisations, such as scalability, resiliency, on-demand utilisation, ubiquitous access

and cost effectivity. It provides many benefits for many companies and users. It has

become easily for users to use and access servers, storage and databases over the

internet using cloud web services platform. For instance, as we mentioned before

amazon can offer reliable computing resources for users and organisations to process,

store and analyse large scale data sets through virtual computing and distributed

environment called instances. The companies and users can choose their own instances,

according to their processing and storage requirements. There are several types of cloud

services are provided like public cloud, where the services of this cloud are open to the

public and can be accessed by users through the internet; such services are provided by

Google and Microsoft. Some companies prefer to choose their cloud services to be

private where they can store and manage their own data that cannot be accessed or

shared with other companies or organisations. This type of cloud services can be

managed by the company itself or third party. Some other companies use the hybrid

34

type of cloud services where both public and private cloud services are combined

together. These companies choose to store their own critical information on the private

cloud, whilst the non-critical information is stored on the public cloud [75]. Cloud

computing has three main models [76] [77] ,which are explained below.

Infrastructure as a service (IaaS): IaaS provides the hardware infrastructures of cloud

computing including virtual serves, computing facilities, storage system and database

management, network devices and data centre place. Users can configure and install

any software and write some programs over the services provided by Iaas. Some

companies that provide such services are Amazon web services, GoGrid and 3 Tera.

Platform as a service (PaaS): PaaS is a software layer that runs on infrastructures

provided by Iaas. It allows customers to manage and develop their own applications

without the need to build and maintain the infrastructures by providing operating

system and application servers through platform providers like Google App engine,

force.com, Azure service platform and LAMP platform (Linux, Apache, MySql and

PHP).

Software as a service (SaaS): SaaS is software provided to the users over the internet

as a service on demand. It can be accessed by the users through a web browser. Using

SaaS, the users are not required to maintain storage space, handling data loss and

manage installations for software as all of these services are provides by SaaS. It is

provided by many companies like Google Docs, Salesforce, Microsoft and many more.

Figure 2.8 shows the three models of cloud computing.

35

Figure 2. 8: Cloud Computing Model

2.9 Software Defined Networking

With the advent of internet of things (IoT) and virtualisation technology of IT and

networking resources as well as the increasing demand of cloud computing services, it

has become very crucial for networking industry to explore efficient network

architectures that can cope up with the increasing size of networks due to the large

number of connected devices. Software defined networking (SDN) is a novel

technology that can provide the solution for many network applications that cannot be

managed by the conventional IP networks. It is the technology that separates the control

plane from the data plane to tackle the limitations of current network infrastructures by

providing agile centralised management and intelligent programming for network

configurations. In conventional networks, both the forwarding and routing process are

performed by network device itself. However, in SDN environment, the control plane is

separated from the data plane to be implemented as a software layer that runs on

commodity server called the SDN controller. The control plane is responsible to

36

manage and control the routing process of packets in the SDN network. It acts as the

brain of the SDN network that provides an intelligent and centralised management. On

the other hand, the forwarding process of packets in the SDN network is performed by

the data plane (network device). Software defined network brings many benefits that

can have a significant impact on many network applications. It provides the support for

the accurate and automatic configuration management of the entire network. It also

supports automated load balancing and the scalability of network resources by

providing data flow optimisation technique that enables multiple paths for each flow

from the source to the destination. This technique, which is provided by the SDN

controller, can split the traffic of each flow across multiple nodes in the network. SDN

can also optimise the networking and computing resources, in addition to the storage

resources in the network. It is able to provide efficient network administrations and

improves the performance of server virtualisations that leads to reduce the operation

cost [78] [79]. The architecture of SDN consists of three layers [80] [81], which are

explained below.

1- Application layer: Application layer is the layer of SDN applications, which provides

programming interfaces where programs directly communicate and exchange

information with the SDN controller via northbound APIs. This layer is responsible to

provide abstract network view of network applications by collecting status information

like network devices and links from the SDN controller. Information collected can help

the control layer to obtain efficient guidance for the network configurations.

2- Control layer (SDN): Control layer represents the core of the SDN network that

includes the control plane, which is responsible to manage and program the data plane

to provide the routing operations of the network. The flow control between the software

controllers in this layer can communicate with the forwarding (data plane) via

southbound APIs and with the SDN applications of application layer via northbound

APIs to provide intelligent networking operations.

3- Infrastructure layer: Network infrastructure layer is also called the data plane layer,

because it manages and controls the forwarding process of data path. It includes the

SDN forwarding devices that perform the forwarding and routing decisions based on

the flow tables provided by the SDN controller in the control layer via the southbound

APIs. The layers of the SDN network are shown in Figure 2.9.

37

Figure 2. 9: SDN layers architecture

2.9.1 OpenFlow

OpenFlow is a standard network protocol provided by the Open Networking

Foundation (ONF) for software defined networking. It acts as an interface between the

control layer (control plane) and the infrastructure layer (data plane). OpenFlow enables

the interaction between the SDN controller in the control plane and the forwarding

devices (OpenFlow switches) in the data plane. All switches in the SDN network are

OpenFlow switches that forward traffics according to the flow table entries installed by

the SDN controller. OpenFlow supports both physical and virtual switches that work in

hypervisor mode. The traffic in the SDN network is identified using flows, which are

sequence of packets transferred from the source to the destination that have the same

38

value in particular fields over the OpenFlow switches. Each packet is matched based on

the match rules specified in the flow table that provided by the SDN controller [82].

2.9.2 Floodlight Controller

Floodlight controller is a SDN controller that licenced under Apache and written in

java. It is provided by big switch networks to support OpenFlow switches in software

defined network. The OpenFlow switches, which are connected to the floodlight

controller, are managed by the floodlight module. The floodlight controller can be

easily used and configured. It can also develop applications that are written in java by

providing REST APIs. It supports combination of the SDN network and the

conventional network [83] . It is widely used by researchers, because it is open source

and can support both physical and virtual switches. Since it supports the virtual

switches, researchers can test and develop their own models according to their needs in

virtual environments. Floodlight controller provides CPU efficiency and supports

multiple threads due to its java nature. It also provides efficient memory management

and can be run on several platforms [84].

2.9.3 Hadoop Networking Performance Improvements Techniques

With the emergence of big data concept, Hadoop framework has become one of the

main platforms for many big data applications. However, some issues regarding the

networking aspect of a Hadoop cluster have been identified. MapReduce programming

techniques are used to analyse and process massive data sets across several computing

machines in the Hadoop cluster. Since the MapReduce consists of two phases, which

are the Map and Reduce phase. The transfer process of the intermediate data that is

generated from the map phase to the reduce phase goes through the shuffling phase.

High traffic is generated during this phase to transfer the intermediate data of the map

phase to the reducers that communicate with other nodes in the cluster to collect the

intermediate results. Moreover, another traffic is also generated during the reduce

output phase when the final outcomes of the MapReduce job are written to the HDFS

with three replicas depends on the replication factor that configured in the Hadoop

39

cluster. The situation becomes more sophisticated in large scale clusters, especially in

the data centre network where large numbers of switch devices are included.

Consequently, several research works have been proposed to discuss and tackle such

issues to improve the performance of Hadoop jobs by reducing their execution time.

Most of the proposed systems used Software defined networking to enhance the

networking side of a Hadoop cluster with different topologies. Some works like [85]

proposed bandwidth-aware scheduling for tasks allocation on local data nodes. In the

work, heuristic bandwidth-aware task scheduler has been proposed based on SDN to

assign tasks in a global view and improve data locality. Similar work have been also

implemented such as BAlance-Reduce(BAR) to improve data locality in an optimised

global way [86]. Some other works have focused on the network-awareness instead of

bandwidth-awareness. Zhao and Medhi developed Application-Aware Network (AAN)

platform based on SDN to improve the performance of a Hadoop MapReduce job

without any modifications in the underlying design of Hadoop MapReduce framework

[87]. The proposed system in [68] developed an application-aware routing algorithm

based on SDN to speed up the execution time of the shuffling traffic for the MapReduce

job in the data centre network. This thesis also propose routing algorithm based on SDN

to improve the performance of a MapReduce job by reducing the execution time of the

shuffling phase in the data centre network. The details of the proposed work are

presented in Chapter 5.

2.10 Summary

In this chapter, the background of the Hadoop framework and MapReduce

programming technique was presented. This chapter also presented the architectures of

data centre network as well as the routing algorithms used to route the traffic inside it.

SDN was also presented in details along with the open flow protocol and the floodlight

controller. This chapter presented the cloud computing technology and the ecosystem of

Hadoop framework. A number of optimisation techniques and methods used in

optimising the computing aspect and networking of a Hadoop MapReduce job were

also reviewed.

40

Chapter 3

Optimisation of MapReduce Configuration Parameter Settings Using

Genetic Algorithms for Hadoop Cluster Based on Software Defined

Networking

Nowadays, Hadoop framework with MapReduce programming technique has been

widely used for big data analytics. Hadoop MapReduce is a complicated system that

contains large number of complex parts and parameters. Hadoop MapReduce includes a

large number of parameters which is set with default values. Some of these parameters

can affect the overall performance of Hadoop MapReduce jobs. It can be improved by

tuning theses parameters with the optimal settings. However, setting this number of

parameters manually with the optimal settings faces some challenges from the aspect of

time and accuracy.

3.1 Introduction

Big data is a term that refers to the large and complex data sets that cannot be

processed, captured, stored and analysed using traditional tools [17]. These amounts of

huge data are generated from different, sources such as social media, sensor devices, the

Internet of things, mobile banking amongst many more origins. Furthermore, many

governments and commercial organisations are producing large amounts of, data such

as financial and banking statements, healthcare providers, high education systems,

research centres, the manufacturing sector, insurance companies and the transportation

sector. Regarding which, International Data Corporation (IDC) reported that 2,800

Exabyte of data in the world were stored in 2012 and this is expected to reach up to

40,000 Exabyte over the next ten years. For instance, Facebook processes around

500,000 GB every day. The vast amount of data includes both structured, such as

relational databases as well as, semi structured and unstructured data, such as texts,

videos, images, multimedia, and web pages. These types of huge data with various

formats have led to the coining of the term big data [7].

41

However, these massive datasets are hard to be processed using traditional tools and

current database systems. Hadoop MapReduce is a powerful computing technology

tasked with supporting big data applications [18]. Hadoop is an open source framework

that enables the implementation of the MapReduce algorithm for data processing

purposes. It is scalable, fault-tolerant and able to process massive data sets in parallel.

Moreover, large datasets can be distributed across several computing nodes of a

Hadoop cluster to achieve better computation resources and power [88]. Hadoop has a

complex structure that contains a number of parts that react with each other through

several computing devices. Moreover, Hadoop it has more than 150 configuration

parameters and recent studies have shown that tuning some of these can have a

considerable effect on the performance of a Hadoop job [89] [13].

Because of the black box feature of the Hadoop framework, the tuning of parameters

values manually is a challenging task as well as being time consuming. To tackle this

issue, genetic algorithms for Hadoop have been developed to achieve optimum or near

optimum performance of the Hadoop MapReduce parameter settings. However, there

are some traffic issues for Hadoop jobs especially in the shuffling phase during the

transfer of intermediate output data from the mappers to the reducers. As a

consequence, SDN is proposed to alleviate these traffic issues in a Hadoop cluster. SDN

was employed for a small Hadoop cluster using 14 virtual machines connected to one

physical switch and two open virtual switches. SDN was also used to evaluate the

performance of Hadoop jobs in a large scale cluster in a data centre network.

3.2 Related Work

Many ways have been proposed for the automatic tuning of Hadoop MapReduce

parameter settings, one of which being PPABS [90] ((Profiling and Performance

Analysis-Based Self-tuning). In this framework, the Hadoop MapReduce parameter

settings are tuned automatically using an analyser that classifies MapReduce

applications into equal classes by modifying k- means ++ clustering and a simulated

annealing algorithm. Furthermore, recogniser is also used to classify unknown jobs into

one of these equivalent classes. However, PPABS cannot tune parameters of an

unknown job not included on these equivalent classes. Another approach, called

Gunther, has been proposed for Hadoop configuration parameters optimisation using

42

genetic algorithm. However, all MapReduce jobs have to be executed physically to

evaluate the objective functions of required parameters, because Gunther does not have

an objective function for each of them. Moreover, the execution time for running

MapReduce jobs for objective function evaluation is very long [91]. Panacea

framework has been proposed to optimise Hadoop applications based on a combination

of statistic and trace analysis using a compiler guided tool. It divides the search place

into sub places and subsequently performs a search for best values within

predetermined ranges[92]. A performance evaluation model of MapReduce is proposed

in [93]. This framework correlates performance metrics from different layers in terms of

hardware, software, and network. Industrial professionals proposed the Rule-Of-Thumb

(ROT), which is merely a common practice for Hadoop parameter settings tuning[94]

[95]. In [96] an online performance tuning system for MapReduce is proposed to

monitor the execution of a Hadoop job and it tunes associated performance-tuning

parameters based on collected statistics. [97] Optimises MapReduce parameters by

proposing profile to collect profiles online during the execution of MapReduce jobs in

the cluster. In [98] a self-tuning system for big data analytics, called starfish, is

proposed to achieve the best configurations of a Hadoop framework so as to utilise

cluster resources better in terms of CPU and memory.

3.3 Hadoop MapReduce Parameters Settings

Hadoop is a software platform written in java that enables distributed storage and

processing of massive data sets using clusters of computer nodes. It provides large

storage of any type of data (structured, semi structured and unstructured data) due to its

scalability and fault tolerance. Furthermore, it is a complex system that contains a large

number of components and parameters that interact witch each other. It has more than

150 tuneable parameters that play a vital role on the flexibility of Hadoop MapReduce

jobs and some of them have remarkable influence on performance of Hadoop jobs if

they are tuned with optimal values. In this work, we consider eight parameters that have

a significant impact on the Hadoop jobs performance as shown in Table 3.1.

43

Table 3. 1: The main parameter settings of Hadoop framework

parameter Default

MapReduce.task.io.sort.mb 100

MapReduce.task.io.sort.factor 10

Mapred.compress.map.output false

MapReduce.job.reduces 1

Mapreduce.map.sort.spill.percent 0.80

MapReduce.tasktracker.map.tasks.

maximum

2

MapReduce.tasktracker.reduce.tasks.

maximum

2

Mapred.job.shuffle.input.buffer.percent 0.70

Below further description of the main parameter settings mentioned in the Table 3.1

1) MapReduce.task.io.sort.mb: During sorting files, amount of buffer memory is

required for each merge stream. This amount is determined by this parameter and by

default it is set to be 1MB for each merge stream and the total amount is 100 MB.

2) MapReduce.task.io.sort.factor: This parameter determines the required number of

merged streams during sorting files process. The default value is set to be 10 as

explained in Table 3.1.

3) Mapred.compress.map.output: The output results generated from mappers should be

sent to the reducer through the shuffle phase. However, high traffic is generated during

the shuffling process especially when the output data of mappers is large. Therefore, the

results generated from mappers should be compressed to reduce the overhead in the

network during the shuffling process and thus accelerate the hard disk IO.

44

4) MapReduce.job.reduces: a specific number of map tasks are required to perform the

process of MapReduce job in Hadoop cluster. This number of map tasks is specified by

this parameter. Default settings of this parameter are assigned to 1. Furthermore, this

parameter has a significant effect on Hadoop job performance.

5) Mapreduce.map.sort.spill.percent: the default setting of this parameter is 0.80

 which represents the threshold of in memory buffer used in map process. The

data of in memory buffer is spilled to the hard disk once the in memory buffer reaches

to 80%.

6) MapReduce.tasktracker.reduce.tasks.maximum : each MapReduce job has several

Map and Reduce tasks running simultaneously on each data node in Hadoop cluster by

task tracker. Reduce tasks number is determined by this parameter and its default

setting is set to be 2. This parameter can have an important impact on the performance

of Hadoop cluster when better utilising the cluster resources in terms of CPU and

memory by tuning this parameter to the optimal value.

7) MapReduce.tasktracker.map.tasks.maximum: while number of reduce tasks is

determined by parameter 6, this parameter defines number of map tasks running

simultaneously on each data node. The default value of this parameter is 2. On the other

hand, any change in the default settings of this parameter can have a positive impact on

the total time of MapReduce job.

8) MapReduce.reduce.shuffle.input.buffer.percent: the output of mapper during the

shuffling process requires a specific amount of memory from the maximum heap size

for storage purposes. The percentage of this mount is determined by this parameter and

its default value is set to be 0.70.

45

 3.4 Evolving Hadoop MapReduce Parameters with Genetic

Programming

Genetic programming (GP) [99] is a technique used to solve problems automatically

with a set of genes and chromosomes. These are evolved using two essential genetic

operations: crossover and mutation. In this work, GP is employed to create an objective

function of the MapReduce parameters. The parameters of Hadoop MapReduce are

represented as (k1, k2, ……,kn,) and here, eight parameters are tuned using a genetic

algorithm (GA). An objective function should be built first using GP. Hence, a

mathematical expression or function between these parameter settings needs to be

determined. GP is used to evolve an expression between these parameters using

arithmetic operations (*, +, ¬-, /). The fitness assigned to each parameter during the

population process in GP should reflect how closely the output of the mathematical

expression (function) for this parameter is to that for the original one. The objective

function for GP is the execution time of running MapReduce jobs.

The tree in GP consists of two levels. The first one is called functions and used to hold

operations. The second is called terminals or leaves and used to hold the input data. The

arithmetic operations in GP are the functions, while the parameters (k1,…,kn) are the

leaves of the tree. The mathematical expressions between the Hadoop MapReduce

parameters are determined based on their data type. The mathematical expression

should have same input data type and same number of input parameters. After its

determination, the completion time of these functions needs to be calculated and

compared with the real one. The best mathematical expression among the parameters

(k1,…,kn) will be selected based on its approximated completion time, which should be

very near to the real one. The tree in GP is used to hold both functions and terminals.

As mentioned above, arithmetic operations (*, +, ¬-, /) are called functions and

(k1,…,kn) are called leaves or terminals. Figure 3.1 shows an example of the

representation of parameters using GP.

46

Figure 3. 1: an example of Genetic programming

The Figure shows that the function (*) has two input arguments, which are (+) and (/)

and the function (+) also has two (k1, k2). The completion time of MapReduce job of

Hadoop parameters can be represented as f (k1, k2,.., kn). The approximated completion

time of Hadoop MapReduce job represents the evolved function that will be compared

to the real completion time of Hadoop MapReduce that pertains to the target function.

According to [99], the approximated completion time of Hadoop MapReduce (evolved

function) should be very near to the real completion time of the job (target problem or

function). Figure 3.2 shows the procedure of GP.

47

Figure 3. 2 The flowchart of genetic programming

48

In this work, a list of MapReduce jobs is used as input datasets and a large number of

experiments was run for both Word count and Tera sort applications, being used to

process different sizes of these input datasets, as presented in section 3.6.1. The

implementation of GP is performed to find all possible expressions between the Hadoop

MapReduce parameters by generating hundreds of chromosomes and in this work, 600

were initially generated. All chromosomes are represented in the form of tree graph and

the fitness value of each is calculated based on the completion time of a Hadoop

MapReduce job for each training dataset. The completion time is considered as an

objective function of the genetic programming.

The completion time of a Hadoop MapReduce job f (k1, k2,.., kn) for training datasets

generated from genetic chromosomes is compared with the real completion time of the

Hadoop MapReduce job. The difference between the approximated and real completion

time of the Hadoop MapReduce job should not be more than 40s, which is referred as

TS. The chromosome with the high fitness value is selected. The measure of fitness

value is the same as the number of Hadoop MapReduce job used in this process. This

measure is supposed based on the example of soccer player to test the fitness in [100].

The evolution process will terminate once the best fitness value is obtained, i.e. when

reaches to the number of Hadoop MapReduce jobs used in the process. Moreover,

genetic selections and operators are applied, such as mutation and crossover, to produce

new chromosomes and update the current ones. The expression between the parameters

is obtained after 40,000 iterations. The probability of crossover and mutation was 0.9

was 0.05, respectively. Equation 3.1 represents the mathematical expression and the

relation between the Hadoop MapReduce parameters, which is used as an objective

function in the next algorithm (GA). The tree in Figure 3.3 illustrates the objective

function. In this tree, eight parameters are taken as inputs. In the first part, the addition

function is first applied to terminals k3 and k7. Next, the division is applied for terminals

k5 and k2. The multiplication sign is used for the above-mentioned functions to generate

intermediate result in the first part. In the second part, both the multiplication and the

addition are used for terminals k1, k6, k4 and k8, respectively to generate the intermediate

results of the second part. Finally, the addition sign is applied for both parts to generate

the final results.

 f(k1,k2,…,k8) = (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8) (3.1)

49

Figure 3. 3 the tree of the objective function

3.5 Hadoop MapReduce Parameter Settings Tuning Using a Genetic

Algorithm

A genetic algorithm (GA) is a metaheuristic one, which belongs to the group of

evolutionary algorithms (EA) and was first proposed by John Holland to provide better

solutions to complex problems. GAs are widely used to solve many optimisation

problems based on natural evolution processes. They work with a set of artificial

chromosomes that represent possible solutions to a particular problem. Each

chromosome has a fitness value that evaluates its quality as a good solution to the given

problem [101]. GAs start with generating a random population of chromosomes. A set

of essential genetic operations, such as crossover, mutation and update are applied on

the chromosome to perform recombination and selection processes on solutions for

specific problem. The selection process of chromosomes is performed based on their

fitness value. The chromosome with high fitness has the chance to be chosen and create

an offspring to generate the next population [102]. Figure 3.4 describes the procedure

for GA implementation, where Equation 3.1 generated from GP is used as an objective

function that needs to be minimised, which is expressed as:

 f (k1, k2,.., kn) = (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8)

50

Figure 3. 4 The flowchart of the genetic algorithm

51

Figure 3. 5 The error against the iterations in GA

In algorithm 2, an initial population of chromosomes is randomly generated and each

MapReduce parameter is represented as one of these. It means that chromosome (i) =

k1, k2,.., kn , where n is the number of parameters. As aforementioned, in this work,

there are eight parameters that need to be tuned. After the generation of the population,

the fitness value of each chromosome in it is evaluated based on the objective function f

(k1, k2,.., kn). The chromosome with high fitness is selected and genetic operators, which

are selection, crossover and mutation, are applied to update the current population and

generate a new one. The procedures are repeated until the best fitness values of

chromosomes, which represent the optimised MapReduce parameters, are obtained or

the number of iterations is finished. In this algorithm, the population size is 15 and the

number of iterations set to be 100. Furthermore, the probability of crossover Pc = 0.8

and the probability of mutation Pm = 0.05 are empirically determined and used as

genetic operators. Roulette wheel spinning is employed as a selection process. The

ranges and recommended values of the Hadoop MapReduce parameters in GA are

presented in Table 3.2. The search space is performed based on these ranges provided

in the Table 3.2. Figure 3.5 shows the performance of GA during the search of the

optimal values of the Hadoop parameters. The performance is evaluated based on the

error occurred during the search of the optimal values against the generation number.

As mentioned before, the objective function is constructed based on the estimated

execution time of Hadoop MapReduce job samples compared to real execution time.

0

20

40

60

80

100

120

0 25 50 75 100

E
rr

o
r

in
 %

Iterations

52

The error should not be exceeding 15 %, considering the execution time of a Hadoop

MapReduce job sample into account.

Table 3. 2: Hadoop MapReduce parameters settings in genetic algorithm

3.6 Performance Evaluation Environment

The proposed work was implemented and evaluated using eight virtual machines (VMs)

of a Hadoop cluster placed on Microsoft azure cloud. Each VM was assigned with 8 GB

memory, 4 CPU cores and 320 GB storage for the whole cluster. Hadoop Cloudera

Hadoop

MapReduce

parameters

Range Parameters name Illustrations

K1 100-

165

MapReduce.task.io.sort.mb Depends on the block

size of an input data set.

64 MB is used as a

block size

K2 10-

160

MapReduce.task.io.sort.factor Empirically

K3 True Mapred.compress.map.output

K4 1-16 MapReduce.job.reduces Depends on the total

number of reduce slots

used in the cluster

K5 0.60-

0.80

MapReduce.task.io.sort.spill.percent Empirically

K6 2-4 MapReduce.tasktracker.map.tasks.

maximum

Depends on the

specification of a data

node (slave node)

K7 2-4 MapReduce.tasktracker.reduce.tasks.

maximum

Depends on the

specification of a data

node (slave node)

K8 0.70-

0.71

MapReduce.reduce.shuffle.input.buff

er.percent

Empirically

53

(Hadoop 2.6.0-cdh5.9.0) was installed on all nodes, with one being configured as a

master and the rest as slaves. The master node could also be run as a slave. For fault-

tolerance purposes, we set the replication factor of the data block at 3 and the HDFS

block size was 128 MB. Table 3.3 presents the specifications of Hadoop cluster.

Table 3. 3: Hadoop cluster setup

Intel Xeon X5550 server 1

and

uxisvm04 server 2

CPU 4 cores for each VM

Processor 2.27 GHz

Hard disk 360 GB

Connectivity 1 GBit Ethernet LAN

interconnectivity between two

servers

memory 64 GB

Operating System Host Operating

System

Microsoft windows server 2012

R2

Guest

Operating

System

Ubuntu 14.04.4 LTS

(GNU/Linux 4.2.0-27-generic

x86_64)

3.6.1 Experimental Results

Both the Word Count and Tera sort applications have been run as real job programs for

Hadoop MapReduce framework to evaluate the performance of our proposed work on a

Hadoop cluster. It can be clearly observed that there is a difference among the tuned

configurations of the Hadoop MapReduce parameter settings using our proposed

system, the default one and Gunther’s method. For instance, Figure 3.6 shows that

when the value of io.sort.mb increases, this leads to a decrease in the execution time of

the Hadoop MapReduce job. The reason for this is that increase the value of this

54

parameter results in less operation during of spill records to the hard disk. Moreover,

the io-sort-factor parameter defines the number of data streams to merge during the

sorting of files. From Figure 3.7, it can be clearly seen that when the value of this

parameter goes up, the execution time of the job goes down. The reason is because

increase the value of this parameter leads to less overhead during IO operations.

It can also be observed from Figure 3.8 that when the number of reduce tasks is

increased from 5 to 10, the execution time of the Hadoop MapReduce job decreases.

However, increasing the number of reduce task results in longer execution time due to

the overhead of network resources as well as over utilisation of computing resources,

such as CPU and memory. Moreover, it is evident that any further increase in reduce

tasks leads to the generation of high network traffic and consequently, an increase the

overall time of the Hadoop job. Figure 3.9 shows that increase in the slots of map and

reduce can play crucial role for better utilisation of cluster resources and accordingly

minimise the overall time. One slot has been configured per CPU core, in the cluster

setup 4 cores has been allocated for each cluster node and therefore 4 slots has been

employed to maximise the utilisation of CPU. If additional slots are included in the

setup, this exhausts the CPU and results in a delay in the processing time of the

MapReduce job.

Figure 3.10 shows the completion time of MapReduce jobs for different sizes of

datasets by applying a compression parameter. It is observed that applying this

parameter can reduce the completion time of a MapReduce job by alleviating the traffic

consumption of the network and reducing the pressure on the I/O operation. However,

the compression of input data and reduce output data is not available in some

applications such as Tera sort. Moreover, the performance of this parameter is reduced

when massive datasets are used such as, 40 or 50 GB. The reason for this is that any

increase in dataset size leads to the generation of high volumes of shuffling traffic,

especially in a static IP network environment. As a result, a software defined network is

implemented on a Hadoop cluster to reduce the shuffling traffic generated from a

MapReduce job. The following section describes the implementation of a Hadoop

cluster based on SDN.

55

Figure 3. 6: The effect of the io.sort.mb parameter (K1)

Figure 3. 7: The effect of io.sort.factor (K2)

0

500

1000

1500

2000

60 80 100 120 165

E
x
e
c
u

ti
o

n
 t

im
e
(s

ec
)

io.sort.mb

0

500

1000

1500

10 50 125 160

E
x
ec

u
ti

o
n

 t
im

e(
se

c
)

io.sort.factor

56

Figure 3. 8: Reduce tasks influence (K4)

Figure 3. 9: Map and Reduce slots influence on MapReduce job (K6 & K7)

57

Figure 3. 10: compression parameter influence (K3)

Table 3. 4: Hadoop MapReduce parameter settings recommended from genetic

algorithm on eight virtual machines

0

200

400

600

800

1000

1200

1400

1600

1 5 15 20 25 40 50

E
x
ec

u
ti

o
n

 t
im

e(
se

c
)

Data size in GB

compressed uncompressed

Name Default Optimised Values using Genetic

algorithms

1GB 10GB 20GB

mapreduce.task.io.sort.mb 100

100 140 165

mapreduce.task.io.sort.

factor

10

50 125 160

mapred.compress.map.

output

false

True True True

mapreduce.job.reduces 1

16 10 10

mapreduce.map.sort.spill.percent 0.80

0.87 0.68 0.77

mapreduce.tasktracker.map

.tasks.maximum

2

4 4 4

mapreduce.tasktracker.

reduce.tasks.maximum

2

4 3 4

mapreduce.reduce.shuffle

.input.buffer.percent

0.70 0.70 0.71 0.71

58

Table 3.4 shows the optimised values of the Hadoop MapReduce parameters for each

size of dataset on eight virtual machines. It is worth mentioning that the hardware

resources in terms of CPU and memory as well as the size of an input data set are

considered by the implemented GA algorithm. The size of input datasets should be

considered before setting specific values for each parameter. For instance, setting a

large number of reduce tasks for small data sizes like 1 GB better utilises hard disk

during the parallelisation of tasks. However, high overhead is generated when setting

such large number of reduce tasks. Therefore, small number of reduce tasks that can be

finished in a single wave should be configured for small data sizes like 1 GB to reduce

the overhead during the configuration of the reduce tasks. To show the performance of

our method, different sizes of data, including 1 GB, 10 GB and 20 GB, were generated.

The tuned parameters were used for both the Word Count and Tera sort applications.

The execution time of both the word count and Tera sort applications based on the

tuned settings by our proposed method is compared with the execution time of the two

applications based on the default setting as well as the settings achieved by Gunther.

Both Word count and Tera sort were run twice and it emerged that our proposed

method can improve the performance of a MapReduce job in a Hadoop cluster, most

notably with large input data sizes.

Figure 3.11 and Figure 3.12 show the completion time of a Hadoop MapReduce job

using the proposed method in comparison with the default one and Gunther’s method.

From Figure 3.11, it can be observed that the performance of the Hadoop Word Count

Application is improved using the proposed approach by 63.15% and 51.16% for the 1

GB dataset when compared with the default and Gunther’s settings, respectively.

Furthermore, the experiments carried out on a 10 GB dataset show that our proposed

method improves the performance of the Word Count Application by 69% and 37.93%

when compared with the default and Gunther’s method, respectively. Finally, the

proposed method also achieved better performance than the default and Gunther

settings on the Word Count application by 69.62% and 30.31%, respectively, for 20

GB.

From Figure 3.12, it can be clearly seen that our proposed method improved the Tera

Sort application performance by 52.72% over the default system and 44.28% when

compared to the Gunther settings for 1GB. For 10 GB, the performance was improved

by 55.17% as compared to the default one and was 51.25% better than with Gunther’s

59

method. Finally, Tera Sort application performance for 20 GB was improved by 73.39

% and 55.93 % more than the default and Gunther settings, respectively.

Figure 3. 11: Comparison of Word Count Application

60

Figure 3. 12: comparison of Tera sort application

 3.7 Hadoop Cluster Based on Software Defined Network

 Software defined network [103] is an emerging technology that provides agile and

dynamic management for the network through central and intelligent programming. In

this novel technology, the control plane is decoupled from the data plane to provide

more flexibility and agility, which leads to network performance improvement by

obtaining better routing decisions. The controller communicates with the OpenFlow

switch through the OpenFlow protocol. In this work, SDN is implemented to improve

the performance of Hadoop networking by efficient utilisation of bandwidth for

shuffling traffic. Different sorts of traffic are generated from a Hadoop cluster, such as

shuffle phase traffic, HDFS data transfer, HDFS read and write along with Hadoop

monitoring messages. It is worth noting that the shuffling traffic represents the most

traffic produced by both Word Count and Tera Sort in a Hadoop cluster followed by

HDFS read and write. In the proposed system, SDN is employed with openVswitch to

allocate more bandwidth for the traffic generated by the shuffling phase when the

mapper transfers its output to the reducer. However, identifying the network resources

of shuffling traffic is a challenging task, because the core framework of Hadoop does

61

not include sufficient information regarding network resources demand for this traffic.

A Hadoop cluster has a single job tracker and several task trackers. The progress of

Hadoop jobs is monitored by the job tracker, whilst each task tracker sends heartbeat

messages to the job tracker about its status. However, these messages lack sufficient

information about the network resources. To address this, our proposed system installs

software engines on each Hadoop host to record the required information of network

resources for each shuffling flow. This information contains the size of map output data

(intermediate data) being transferred over each flow to the reducers.

Furthermore, software engines determine the required network bandwidth for each

shuffling flow and record sufficient information, such as the IP address of the source

and destination nodes as well as the size of each flow. Then, all the required

information is delivered to the SDN controller to assign an efficient bandwidth for

shuffling flows. The SDN controller installs flow entry in each Open vSwitch for each

shuffling flow and moves the shuffling flows to a queue with higher bandwidth. On the

other hand, flow rules are installed in Open vSwitch for other types of traffic, such as

control messages and HDFS read/write, to switch them to another queue with low

bandwidth allocation. The TCP communication between the task trackers to send the

map output data in a Hadoop cluster is performed using port 50060. Open vSwitch

matches the incoming packets to identify them by their port number.

In the proposed system, 14 virtual machines, installed on two servers, were used with

two packages of Open vSwitch installed on two PCs, with one floodlight SDN

controller being installed on one PC. SDN application was installed on another PC to

install flow entries on each open vSwitch and to manage and administrate MapReduce

jobs in a Hadoop cluster as well as the replication of Hadoop distributed file system

(HDFS) blocks through web interface. The two servers were connected to a single

physical switch with 1GB link capacity.

 Figure 3.13 shows the proposed cluster based on an SDN environment. Both Word

Count and Tera Sort applications were used to evaluate our proposed system using SDN

technology. The experimental results show that our proposed system based on an SDN

environment improves the performance of the Word Count application by reducing the

completion time up to 12.4% for 30 GB when compared to a TCP/IP environment.

Moreover, this rises to 21.9% for 40 GB, while for 50 GB, the completion time is

62

reduced by 32.8% when compared to a TCP/IP Hadoop cluster, as shown in Figure

3.14. Figure 3.15 shows the performance for the Tera Sort application using the

proposed system for different data sizes ranging from 30-50 GB. It emerges that the

proposed system reduces the completion time of Tera Sort for 30 GB on average by

53%. Furthermore, the completion time for 40 GB and 50 GB is reduced by 48.1 % and

38.7%, respectively, over a TCP/IP environment. It is worth noting that performance of

Tera Sort application decreases with larger data sizes due to the high volume of

shuffling traffic that is generated form these jobs.

Figure 3. 13: Small scale Hadoop cluster in SDN environment

63

Figure 3. 14: Word Count Performance in SDN Environment

Figure 3. 15: Tera sort Performance in SDN Environment

64

3.8 Summary

In this chapter, both of Genetic Algorithm and Genetic Programming have been used to

tune the configuration parameters of Hadoop MapReduce automatically. By optimising

the configuration parameter settings, the computing performance of a Hadoop

framework can be improved and then reduces the completion time of Hadoop

MapReduce jobs. Further optimisation has been performed using software defined

network technology. Two applications, which are Word Count and Tera Sort, have been

run to evaluate the MapReduce job performance of the Hadoop framework. This work

was evaluated using a cluster consisting of eight virtual machines placed on internal

cloud in Brunel University London. Another cluster of 14 virtual nodes was employed

based on SDN. The experimental results in traditional network using 8 VMs showed

that our proposed method improved the MapReduce job performance in a Hadoop

cluster in comparison with Gunther and default settings. Moreover, the results using 14

VMs based on SDN network showed that the performance of a Hadoop job has been

further improved when compared to traditional network.

65

Chapter 4

Solar Radiation Time Series Analytics Based on R and Hadoop

Integrated Programming Environment

Solar energy has become the most important source of renewable energy. However, it is

mainly dependent on the weather conditions and solar irradiation. The calculation of

daily solar irradiation is very important to estimate the final output power of solar

arrays. There are some computational and storage challenges for the calculation of the

solar irradiation collected by massive solar panel arrays. It is a challenging task to

process and store massive solar irradiation data by the current calculation tools like R

language or solaR. Effective technique is highly required to accelerate the calculation of

the solar irradiation data of large solar arrays. This chapter presents an effective

technique for fast statistical calculation for huge solar irradiation data by using R and

Hadoop integration programming language environment (RHIPE). It is evaluated using

data provided by the London Weather Centre for the period (1996-2005) that includes

monthly mean daily irradiation on inclined planes in terms of scalability, speedup and

accuracy. The speedup of RHIPE in computation is first analysed through Gustafson's

law. This law is revised to improve its ability to analyse the performance achievement

in computation for parallelising data in a cluster computing environment like Hadoop.

4.1 Introduction

With the emergence of Internet of things (IoTs), huge data are generated every day.

Different types of data are produced from various sources including social media,

sensors, financial sector and healthcare. Time series data is one of the main sources of

generated data. However, it has big challenges in terms of processing and analysing.

Moreover, another challenge is the deriving of knowledge from time series data that can

help to improve the productivity [104]. Time series is any data gathered sequentially in

time such as a series of data points recorded over a continuous time interval. The time

series data arises from different sources including Economics and Finance,

environmental modelling, meteorology and hydrology, demographics, medicine,

engineering and quality control [105] . One of the most important sources of time series

data is the solar data, which includes the temperature and irradiation produced by sun.

66

One of the best tools to analyse all types of time series data including solar data is R

language. R is an open source environment to perform statistical analysis and data

visualization. Many data scientists and statisticians used R language to perform

statistical analysis and discover key insights from data using techniques such as

regression, classification, clustering, recommendation and text mining [61]. However,

due to the large time series data sets produced from many sectors, it has become

difficult to store, analyse and process these big time series data sets. As a consequence,

Hadoop MapReduce Framework can be integrated with R language to perform the

analysis of time series data. Hadoop MapReduce is robust computing platform used for

big data analytics. Hadoop is an open source framework implementation of MapReduce

algorithm. It has superb features such as high scalability, fault-tolerance and data

parallelization. It is also able to distribute data and parallelizes computation through a

cluster of computing nodes. Therefore, parallel computing is an effective way to

improve the performance in terms of accuracy and timely analysis of solar time series

data. In this chapter, the design and implementation of integration of Hadoop and R

language for fast calculation and analysis on massive amounts of solar time series data

is presented.

4.2 Overview of Big Data Analytics Based on Cloud Computing and

High Performance Computing

Nowadays, many individuals and companies use IT and communication technologies to

develop their own business. Consequently, massive data sets are enormously generated

leading to some computational issues. The traditional tools face some challenges in

terms of computation and storage. For example, it has become a challenging task for the

traditional tools to store and process huge amount of data sets that generated from

different sources at a high pace. These challenges can be solved through the

implementation of the parallel computing and processing by using the technology of

high performance computing (HPC).The computational problems can be tackled using

multi-processor system ranging from 2 to 64 CPUs. The multiprocessor system consists

of number of High performance RISC (Reduced instruction set computer) processors.

Furthermore, the multiprocessor system is designed to access the same memory through

symmetric multi-processing (SMP). However, applying multi-processors to deal with a

67

single problem requires an efficient programming to achieve an effective processing.

Moreover, this system is designed to solve small applications only.

As a result, it has become necessary to provide a reliable solution to fit large

applications. The solution can be found in the use of multi- computing nodes through

using a message passing tool such as parallel virtual machine (PVM) or message-

passing interface programming (MPI) to achieve parallel computing over the large

problems and applications. Another system called NUMA can be used to solve large

problems through a number of interconnected processors that can access a distributed

shared memory using a load/store paradigm similar to SMP system [106]. Cloud

computing can be a valuable remedy for processing and storing large applications that

do not fit into memory and cannot be processed using HPC. Cloud computing can

provide some computing services for processing big data applications by using amazon

elastic MapReduce (Amazon EMR). Amazon EMR uses a cluster of computing nodes

that run on virtual servers provided by Amazon Elastic Compute Cloud (EC2). Apache

Hadoop is installed on each node in the cluster. Apache Hadoop is a framework that

currently deployed to provide distributed storage and parallel processing for data

intensive applications. It distributes the computation and parallelises the execution of

big data jobs across several machines in a cluster computing environment. Hadoop uses

MapReduce programming to implement the parallel processing by writing two

functions (map and reduce). More details on the MapReduce programming model and

the Hadoop framework are presented in section 4.3 and 4.4, respectively.

With the increasing demand of the renewable energy such as wind and solar, the

electric power is becoming more complicated from the aspect of secure storage and

computation process. For instance, solar energy has attracted many researchers to study

the characteristics and behaviour of its resources in depth. One of the most important

aspects of solar energy is its unpredictability. It is becoming very important to have a

balance between the demand of power and generation. Consequently, it has become

very necessary to estimate how much power can be produced using solar arrays. The

power produced by solar arrays mainly depends on the availability of the solar

irradiation and since the solar irradiation is unpredictable and relies on the weather

conditions. The solar radiation that comes from the sun is a number of values that can

be calculated on daily, weekly or monthly basis and these values are considered as a

time series data. Nowadays, large number of solar arrays being installed in different

68

locations around the world. This numerous number of solar arrays will produce huge

amount of time series data such as the irradiation that comes from the sun. As a result,

huge amount of data will be generated and it is very complex to analyse and store these

large datasets based on traditional methods.

High performance methods can be used to analyse and store theses datasets through

parallel processing. For instance, massage passing interface (MPI) is a parallel

programming model that used to distribute and parallelize computation across number

of processors or computing nodes. In [107] MPI system model has been employed to

parallelize computation jobs across several nodes of grid computing. High Performance

Computing environment (HPC) was used by [108] for parallel contingency analysis.

However, MPI has some weaknesses in some parts such as topology awareness, fault

tolerance and scalability [109]. Cluster computing can be used as an alternative

approach. In [110] a high performance hybrid computing approach was used for

massive contingency analysis in the power grid. A XMT multithread C/C++ compiler

on Gray XMT (multithread HPC computing platform) and conventional Cluster

computers were employed to parallelize the algorithm. Parallel computing toolbox

within MATLABs Distributed Computer Server (MDCS) was used to parallelize

contingency analysis algorithm on multiple Processors [111]. In [112] a distributed

framework for efficient analytics on ordered datasets using Hadoop is proposed. This

framework adopts an efficient group-order–merge mechanism to speed up the execution

of Re-Org tasks. In [113] runtime framework for automatic and transparent

parallelization of the popular R language used in statistical computing is proposed.

A number of research works has been done on time series data. The work described in

[114] proposes effective and distributed framework called R2Time to process data in

Hadoop environment. This work has integrated R language with a distributed time

series database (Open TSDB) using MapReduce programing technique (RHIPE) that

supports analysts to work on massive datasets within robust analysis environment.

Another research work proposed in [115] parallel genetic algorithm for the automatic

generation of test units. This work is based on Hadoop MapReduce due to its high

scalability and fault tolerance. Furthermore, this proposed work evaluated the speed-up

with respect to the sequential execution. Gowri and Rathipriya [104] used the Map

Reduce based genetic Algorithm for biclustering time Series Data. This work used the

biclustering approach for time series data. For the optimal mining of patterns, genetic

69

algorithm was employed in this work. Moreover, MapReduce is also used to overcome

the complexity of Big Data issues.

In [116] rolling win Novel framework was proposed for time series data prediction

based on MapReduce. This proposed work used R programming language and Hadoop

platform to support parallelization and fault tolerance. MapReduce algorithm was

proposed with Ant Brood Clustering with Intelligent Ants) for clustering financial time

series data in [117]. The work presented in [118] employed MapReduce framework and

extended kalman filter based echo state network for time series prediction. The work

proposed in [119] used distributed processing for time series data analysis based on pig

and Hadoop cluster. A distributed parallel approach for anomaly detection was

presented in [120]. MapReduce framework was used with this approach to detect

automatic aberrant behaviour in large time series data sets. In [121] MapReduce was

employed with dynamic time warping (DTW) for fast similarity search in time series

data mining. The work described in [122] details an adaptive time series forecasting of

energy consumption using optimized cluster analysis. Another number of research

works has been conducted on the solar irradiation analysis. The proposed system in

[123] developed a novel model to estimate solar irradiation on hourly and daily basis

for hydrological studies. In [124] simple recurrent neural networks (SRNNs) was used

to build a predictive model to predict the density of daily solar irradiation.

The work presented in [125] proposes a statistical model for solar radiation

characterisation. In the proposed work, the daily variability of solar radiation is

considered to produce synthetic time series from the measured and historical data of

solar radiation. Four statistical methods were considered by the system proposed in

[126] to estimate the global radiation data which is inaccessible for all locations. As a

result, this system was developed to estimate the daily global radiation statistically

based on the continuous series of other measurable meteorological parameters.

Statistical analysis was conducted on the solar irradiation data to determine the error

between the actinography values in relation to the pyrometer [127]. The proposed work

was evaluated based on data from the Santa Maria University in Valparaiso that

measured by the actinography and the pyrometer. SolaR is a statistical tool proposed by

[128] and designed to calculate the daily and inter-daily global horizontal irradiation by

using a set of classes and functions. This tool can also calculate the final output power

of grid-connected PV systems.

70

4.3 MapReduce Programming Model

MapReduce is a parallel programming model for processing massive datasets across a

cluster of computer devices in distributed computing environment [17]. MapReduce is a

powerful computing technology for many intensive applications because of its

characteristics such as fault-tolerance, scalability and elasticity. In MapReduce,

thousands of computing nodes can be used to support parallel and distributed

processing and analysis. With MapReduce model, computational tasks will be

partitioned into Map and Reduce phases. Map phase divides the input data into several

tasks to be performed in parallel across cluster of computers or virtual machines. Map

task processes the input datasets to generate a list of intermediate key/value pairs. While

the Reduce phase takes all intermediate values and merge them in a single key to

generate the final result. Figure 4.1 shows the execution of MapReduce.

Figure 4. 1: MapReduce execution

71

4.3.1 The Implementation of MapReduce with Hadoop

The implementation of the MapReduce programming model can be performed using a

number of systems such as Dryad [129], Mars [130], Phoenix [131] and Hadoop [132].

Hadoop is one of the most popular systems for MapReduce implementation because of

its open source nature. The following section details more information about Hadoop

framework.

4.4 Hadoop Framework

Hadoop is an open source framework written in java used for processing, analysing and

querying massive amount of data across large clusters of commodity nodes. Hadoop is

an apache project was originally developed by Yahoo and Doug Cutting [61]. Hadoop

has useful characteristics which involves scalability, simplicity and fault-tolerance. It

enables distributed processing of huge amount of data using MapReduce algorithm.

Moreover, Hadoop can deal with both structured and unstructured data and can work on

cluster computing environment and cloud computing system. Hadoop employs HDFS

(Hadoop distributed file system) for data storage. HDFS is a distributed file system

provides storage for huge amount of data across a massive number of computer clusters.

HDFS is also able to provide rapid and scalable access to data [132]. All input data are

stored on HDFS. Massive data is automatically divided into blocks that are managed by

different nodes within Hadoop cluster. HDFS support master/slave architecture. It has

single master node or Name node which acts as a server and multiple slave or data

nodes which act as clients. File system namespace and access regulation to files by

clients is managed by the master node. While the data nodes are responsible to manage

storage attached to each data node and performs the execution of Map and Reduce tasks

[7]. The name node has job tracker that divides jobs into multiple tasks and schedules

the tasks on the data nodes. It also monitors and reassigns the task in case of any

hardware or software failure. Data nodes have task tracker that is responsible to receive

all Map and Reduce tasks from the job tracker. Job tracker is periodically contacted by

the task tracker to report the completion progress of the tasks and requests for new

tasks. Hadoop architecture can be shown on Figure 4.2.

72

Figure 4. 2: Hadoop Architecture

4.5 R Language

R is an open source programming language and software package widely used by

statisticians and data scientists to perform statistical analysis of data [59].R uses several

mechanisms for data analysis such as clustering, classification, regression and text

analysis. It provides a wide variety of libraries to perform analysis and visualization.

These libraries include statistical, machine learning, graphical techniques and time

series analysis. Furthermore, R is able to perform additional functions such as data

cleaning, data extraction, data loading, data transformation and predictive modelling.

Many data scientists use R due to its remarkable features that include effective

programming language, data analytics and relational database support. R now can be

connected with several data stores like MySQL, SQLite and MongoDB as well as

Hadoop for data storage activities. It also can be integrated with Hadoop MapReduce

for data analytics [61].

73

 4.5.1 R and Hadoop Integrated Programming Environment

RHIPE is R Hadoop integrated programming environment. It is used to integrate R with

Hadoop and MapReduce programming model. It is a software package that allows R

users to create Map and reduce jobs completely within R environment using R

expressions [61]. It was developed by Saptarshi Guha as a PhD thesis in the Department

of Statistics at Purdue University in 2012. To perform data analysis using RHIPE, some

software and packages need to be installed as follows:

1. Installing Hadoop.

2. Installing R.

3. Installing protocol buffers.

4. Setting up environment variables.

5. Installing rJava.

6. Installing RHIPE.

RHIPE has some components that used for data analytics as follows:

1. RClient is an R application used to call the JobTracker to execute the job with an

indication of several MapReduce job resources such as Mapper, Reducer, input format,

output format, input file, output file, and other several parameters that can handle the

MapReduce jobs with RClient.

2. JobTracker is the master node in Hadoop MapReduce operations. It is used to

initialise and monitor the MapReduce jobs over the Hadoop cluster.

3. TaskTracker is the slave node of the Hadoop cluster. It performs the MapReduce jobs

as per the orders given by Job Tracker. It also retrieves the input data chunks and run R-

specific Mapper and Reducer over it and then the output will be written on the HDFS

directory.

4. HDFS is a distributed filesystem used for data storage over Hadoop cluster. It also

provides data services for various data operations. Figure 4.3 shows all components of

RHIPE.

74

Figure 4. 3: Components of RHIPE

4.6 The Implementation of Solar Radiation Time Series Analysis Using

R and Hadoop Integrated Programming Environment

The analysis of solar radiation time series was implemented in the Hadoop MapReduce

framework with R language. In this paper, RHIPE is employed to analyse and extract

massive volumes of solar radiation data. These datasets are taken from London weather

centre for period from (1996-2005) that include monthly mean daily irradiation on

inclined planes. We used such old data because it is available for no charge and it is

also the most accurate irradiation data since the solar irradiation is estimated. Our

proposed work can suit any solar irradiation time series data at any period. The datasets

are converted to .csv format (comma-separated values) and then moved directly to

HDFS storage for offline analysis. The analysis of solar data includes a calculation of

the irradiation of west and south west London using statistical calculations by R

language in Hadoop cluster. In this work, R Hadoop integrated programming

environment (RHIPE) was employed to perform the statistical calculations on the solar

75

irradiation. RHIPE package used divide and recombine technique to perform the

analysis and calculation on solar data. The solar datasets were automatically divided

into several chunks by HDFS. The computation is performed across Hadoop cluster on

these chunks by specific R analytics operation. The size of chunks is specified in the

cluster configuration file on Hadoop cluster (hdfs-site.xml).

Figure 4. 4: Solar data analytics based on HadoopR

Figure 4.4 shows the whole process of solar data analysis using Hadoop R framework.

When HDFS divides the solar datasets into chunks, each chunk of solar dataset is

assigned to a Map task. All Map tasks are executed in parallel to process the solar

datasets. Number of Map tasks relies on the number of Map slots. Number of Map slots

can be specified in the cluster configuration file (mapred-site.xml). In this work, one

slot was assigned on each VM. Since the cluster involves 8 VMs, 8 slots were assigned

in the cluster and consequently 8 Map tasks were executed in parallel for solar datasets

processing. Furthermore, Map slots numbers that are specified to each VM relies on

Hardware specifications and processing capacity like CPU cores number and physical

memory. Map tasks are responsible to process the data chunks. Each Map task

processes the assigned data chunk. When the Map process is finished, all intermediate

results will be sent to the Reduce tasks to be processed. Similarly, the number of reduce

tasks depends on the number of Reduce slots configured in the cluster configuration

76

file. Eight Reduce slots were configured and so eight Reduce tasks were executed to

obtain the final results. The analysis of solar data is implemented in Hadoop computing

environment using R language. Hadoop R framework is fault-tolerant and scalable and

provides replication of data chunks and can distribute them on different nodes to avoid

any delays and failures. Since Hadoop provides scalability, it can easily add more nodes

to increase the computation speedup for the proposed work. It also provides the

availability and fault-tolerance. For instance, if any failure happens on the node due to

software or hardware issues, the job tracker is responsible to find it and assign the

running tasks to another available node.

4.7 Work Evaluation

The evaluation on solar data analysis based on Hadoop R framework (RHIPE) was

conducted. A comparison between R language and the Hadoop R framework (RHIPE)

have been carried out in terms of computation efficiency and accuracy. The

performance evaluation was implemented on irradiation solar data provided by the

London Weather Centre (1996-2005). Since these datasets are not very massive,

duplication on the datasets was performed to create big data scenario. Datasets were

replicated to be tens of Gigabytes.

4.7.1 Cluster Setup

The proposed work was implemented using Hadoop cluster. This cluster involves eight

virtual machines and each machine is assigned with 8 GB of RAM and 4 CPU cores

with total 300 GB for storage. This cluster was setup on two high performance servers.

The analysis on solar data using Hadoop R framework (RHIPE) was performed on eight

virtual machines while the analysis based on R language was executed on one machine

in R environment. The specifications of Hardware and Software resources are displayed

below in Table 4.1.

77

Table 4. 1: Cluster setup

Intel Xeon X5550 server 1

and uxisvm04 server 2

CPU 32 cores

Processor 2.27 GHz

Hard disk 360 GB

Connectivity 1 GBit Ethernet LAN

interconnectivity between two

servers

memory 64 GB

Operating System

Host

Operating

System

Microsoft windows server

2012 R2

Guest

Operating

System

Ubuntu 14.04.4 LTS

(GNU/Linux 4.2.0-27-generic

x86_64)

Software R, RHIPE 0.65.2, protocol buffer 2.4.1, rjava.

4.8 Experimental Results

A number of experiments were carried out to evaluate the efficiency of the Hadoop R

framework (RHIPE). From Figure 4.5, it can be observed that the RHIPE significantly

outperforms R in terms of computation using a single virtual machine. The execution

time of solar irradiation data processing is decreased using RHIPE framework, while

the execution time is increased using R language. Figure 4.6 shows that the execution

time of R goes up when the data size is increased, while the execution time of RHIPE

using eight virtual machines keeps constant .The scalability of RHIPE is performed

based on Gustafson's law [133]. Furthermore, it was evaluated using various numbers

of data sizes and different numbers of VMs. Five different sizes of dataset and varied

number of virtual machines from 1 to 8 were employed to evaluate the proposed work.

The scalability of the RHIPE work is shown in Figure 4.6. Based on the results shown

in Figure 4.6, the calculation of the speedup of the RHIPE can be calculated using

78

Speedup (S) =
𝑇𝑠 (𝑆)

𝑇𝑝 (𝑆)
 (4.1)

Where 𝑇𝑠 represents the execution time of solar data analysis based on RHIPE using

one VM while 𝑇𝑝 represents the execution time of solar data analysis in parallel based

on RHIPE using several processing nodes.

Figure 4. 5: Comparison between RHIPE and R using single virtual node

79

Figure 4. 6: RHIPE Scalability

Figure 4. 7: RHIPE Speedup

80

4.8.1 The Analysis of R and Hadoop Integrated Programming

Environment Speedup

The speedup in computation for parallelizing sequential program can be calculated

using Gustafson's law as follows:

S = 𝑓 + 𝑝(1 − 𝑓) (4.2)

Where S is the speedup, f is the serial portion of the unscaled workload and p is the

number of processing nodes used in the computation process. Gustafson's law is known

as fixed-time speedup model. It maintains the execution time is fixed and scales the

workload with an increasing number of processing nodes. Figure 4.7 shows the speedup

analysis of RHIPE. It can be clearly noted that the speedup goes up with an increasing

number of data size. However, as displayed in the Figure, the results never obtain that

which is expected by Gustafson's Law. This means that Gustafson's Law is not

sufficient to calculate the speedup of a parallelized program which is executed in a

cluster computing environment such as Hadoop because the communication overhead

of a user job in the cluster computing is not considered by Gustafson's Law. As a result,

revision of Gustafson's Law has been done. Equation 4.3 represents the revised

Gustafson's Law:

S = 𝑓 + 𝑝(1 − 𝑓) + RC (4.3)

Where RC is the ratio of communication overhead to the computation needed for each

Hadoop job. High ratio of communication to the computation of parallel program can

affect the performance in speedup. Therefore, the ratio of the communication to the

computation should be minimized to obtain better performance in speedup in Hadoop

cluster. To perform that, the size of data chunks should be large as illustrated in Figure

4.8. In this Figure, four different sizes of data blocks ranging from 8 to 64 MB have

been used to evaluate the performance of speedup. It can be clearly observed that the

execution time of (RHIPE) goes down when the size of data block goes up. This is

because the large size of data chunk produces a small number of tasks that results in a

small overhead in communication. Furthermore, the larger data blocks leads to a high

workload in computation that leads to increase the speedup according to Gustafson's

law.

81

Figure 4. 8: Computational overhead of RHIPE

Figure 4. 9: Speedup of RHIPE against data block size

82

Figure 4.9 shows the speedup of RHIPE using varied sizes of data blocks. From this

Figure, it can be seen that the speedup of RHIPE in computation goes up with an

increasing size of data blocks. Furthermore, the speedup of RHIPE is 2.2 times faster in

computation using 64 than when using 8 MB data blocks, consequently a better

improvement in performance can be achieved with larger datasets.

4.9 Summary

This chapter presented R Hadoop integrated programming environment (RHIPE) for the

analysis and statistical calculations on solar irradiation. This work was carried out based

on an offline analysis of solar data available from the London Weather Centre for the

period (1996-2005) that includes monthly mean daily irradiation on inclined planes.

The data sets were uploaded into HDFS (Hadoop distributed file system) as a CSV file

and were divided into multiple chunks and distributed amongst a cluster of computing

nodes. This work was evaluated using eight virtual nodes of Hadoop cluster. The

experimental results showed that RHIPE outperformed R in terms of computation,

scalability and accuracy. Furthermore, Gustafson's law has been amended to calculate

the speedup of the sequential program for RHIPE using parallel computing.

83

Chapter 5

Routing and Scheduling Algorithm Based On Software Defined

Networking for Big Data Applications in Data Centre Network

We live in the era of internet of things, big data, virtualization and cloud computing

technologies. However, the current network infrastructures of these technologies lack

scalability, cost effective maintenance, centralized management and fault tolerance. As

a result, the emergence of software defined network (SDN) provides many network

facilities from the aspect of intelligent and centralized management, scalability, less

operation cost and less complex maintenance. For intensive big data applications like

MapReduce in a data centre network, SDN provides an intelligent and dynamic control

for data traffic to improve the performance of big data jobs. Heavy traffic is generated

during the shuffle phase of MapReduce jobs, when the output intermediate data of

mapper nodes is transferred to the reducer nodes leading to increase the execution time

of the shuffle phase. In this chapter, SDN is employed to reduce the shuffling time by

proposing an effective scheduling and routing algorithm to control each shuffling flow

in the data centre network. The proposed algorithm is to provide efficient network

bandwidth for shuffling flows according to their network demand as well as their size

and number. It also prevents the congestion by assigning efficient alternative routes

based on the network bandwidth utilization of each path in the data centre network as

well as the size of each routed shuffling flow.

5. 1 Introduction

Nowadays, vast amount of data is generating everywhere due to the rapid development

of cloud services and the wide use of internet of things (IoT) applications. Moreover,

large datasets are also generated from different sources such as sensors, social

networking, video streaming and online services. This leads to an explosion of data,

which is considered as a big data that cannot be captured, analysed and processed using

the traditional tools. These massive datasets require enormous parallel processing and

distributed computation. As a result, powerful platform such as Hadoop MapReduce

can be implemented based on a cloud computing environment to utilize massive parallel

84

processing and distributed computation for the large datasets. Hadoop [21] is scalable

computing platform that enables parallel processing and distributed storage across

number of servers and computing nodes. It is also fault tolerant and able to execute the

code of MapReduce directly close to the data that operates on to limit the data transfer

within the cluster. However, large data blocks are transferred between mappers and

reducers during the shuffling phase, which consumes considerable traffic that requires

appropriate network resources. Moreover, computing resources such as memory, CPU,

storage and disk I/O requirements can be scaled with number of servers; however,

scaling the system will lead to increase the network traffic in the underlying network.

Furthermore, massive collections of datasets are exchanged between servers in a data

Centre network. As a consequence, many flows among servers are generated to transfer

these massive datasets during the processing phase. Transfer such large datasets quickly

and process them efficiently needs a convenient bandwidth allocation for each flow. It

may be argued that the networking part for a Hadoop cluster still bottleneck even with

the optimal configurations of the computing part. A previous study on Facebook

showed that the communication phase consumes 33% of the running time of jobs and

some cases even reaches to more than 50% of the running time [134]. SDN can be used

to improve the performance of the networking part of Hadoop MapReduce jobs,

especially during the shuffling phase. It has some remarkable advantages such as direct

network programming, centralised management, intelligent control, agility, flexibility,

network abstraction as well as CapEx and OpEX reduction. In this work, a dynamic and

effective approach based on SDN has been proposed to improve the performance of

Hadoop MapReduce jobs by reducing their shuffle phase time.

5.2 Related Work

Hadoop is the most popular framework of distributed storage and parallel processing for

massive datasets, which generate from different sources. Many research works have

been carried out to improve the performance of Hadoop MapReduce. In [135] Narayan

proposed the integration of SDN technology and Hadoop. The main idea of the

proposed work is to identify the traffic of Hadoop intermediate data and the background

traffic by using the flow rules and then apply different quality of service (QoS) for

them. The experimental results of this work showed that the execution time of

85

MapReduce job went down due to the sufficient amount of bandwidth allocated for the

shuffle traffic. However, this work is only suitable for small scale cluster and cannot be

applied to large scale clusters in data Centre network with large number of switches and

servers. The work proposed in [68] presented an application-aware SDN routing

scheme for Hadoop to speed up the data shuffling of MapReduce over the network.

Another work was proposed in [87] to improve the job completion time. This work

proposed application-aware network in SDN (AAN-SDN) for Hadoop MapReduce to

provide both underlying networks functions and MapReduce particular forwarding

logics. Flexible Network framework (FlowComb) was proposed in [136] for big data

applications to achieve high bandwidth utilization and fast processing time by

predicting the network application transfers. Yi Lin and Yu Liao [137] used an SDN

app for Hadoop cluster to speed up the execution time of MapReduce jobs. The

proposed work implemented the SDN app in Hadoop cluster for easy deployment of

flow rules for Hadoop applications. However, the work has evaluated small cluster with

one physical switch and have not investigated the performance of Hadoop jobs in large

clusters in data Centre network.

The work presented in [85] focuses on enhancing the data locality of Hadoop in a

global way and assigning tasks efficiently by proposing bandwidth-aware scheduling

with SDN in Hadoop cluster. It exploits SDN capabilities for jobs scheduling of big

data processing. Jin et al. [86] Proposed different approach to reduce the running time

of a Hadoop job. The proposed approach is based on an initial task allocation produced

by balance reducer (BAR), and then the completion time of a Hadoop job can be

progressively decreased by the initial task allocation. SDN is employed to build big data

platform for social TV analytics in [138]. The proposed system integrated SDN with

Hadoop to enable intermediate data transfer among different processing units to achieve

fast data processing rate. SHadoop is presented in [33] to improve the performance of

Hadoop MapReduce jobs by optimizing the setup and clean-up tasks of a Hadoop job. It

also provides massaging communication mechanism to obtain rapid performance of

task scheduling and execution. In [139] Hedera is proposed based on SDN to replace

congested flow path for data transfer with less congested flow paths by using

centralized controller. However, setting new flow path instead of the existing path for

flows leads to the loss and reordering of packets. Some other work like [140] proposed

multiple paths to split and transmit large flows to obtain high throughput by splitting the

86

flows at switches. However, this process is a challenging task because the switch lacks

the ability to match the sequential number of TCP.

5.3 Software Defined Networking

SDN is an emerging network architecture approach that provides dynamic, manageable

and cost-effective platform to enable networks to be intelligently and centrally

programmed. It is adaptable platform for many network applications. It decouples the

network’s control logic (control plane) from the data plane. The separation of the

control and data planes brings direct programming and central management of networks

using the SDN controller. SDN allows network administrators to provide abstraction of

lower level functionality and enable the programming of network behaviour

dynamically via well-defined open application programming interface(APIs), which

includes both of northbound and southbound APIs that represent the communication

channels between SDN layers [141]. We used Openflow protocol to enable the SDN

controller to interact with the forwarding plane and manage the configuration state of

switches and routers [142] . Figure 5.1 shows the architecture of software defined

network. The following layers define and explain the architecture of SDN [103].

1- Application layer is the layer that includes SDN applications, which are programs

that directly communicate and exchange information with the SDN controller via

northbound APIs. Furthermore, applications can construct an abstracted view of

network infrastructure by collecting information from the SDN controller for their

decision making purposes.

2- Control layer (SDN controller) is the core of the SDN network that manages the flow

control between the SDN networking devices via southbound APIs and the SDN

applications via northbound APIs to provide intelligent networking.

3- Network infrastructure layer is the layer that includes the SDN networking devices

that control the forwarding process of data path. All forwarding and routing decisions

will be executed based on the flow tables provided by the SDN controller via the

southbound APIs.

87

Figure 5. 1: SDN architecture

5.4 Routing Techniques and Network Topologies

Before the discussion of our proposed work, it is important to explain some routing

techniques, like ECMP and some data centre network topologies. Multipath techniques

are widely used in the modern data centre network for forwarding and distributing

flows across multiple paths so as to achieve better bandwidth utilisation. ECMP [71] is

used to distribute the flows across multiple equal cost paths to exploit the full capacity

of network bandwidth. However, it has some limitations, such as the static scheduling

of flows across multiple paths. That is, it uses a hashing value policy to allocate flows

with certain paths. It also lacks a global view of the entire network, missing its current

load as well as the individual characteristics of flows and their future network demand.

As a result, we propose in this paper an effective routing algorithm based on application

level information to estimate the demand of all shuffling flows during the MapReduce

process, as explained in section 5.5. The characteristics of the most popular topologies

of three-tier architectures, like fat tree topology, have been studied. From this study, we

have identified some limitations and bottlenecks of this topology. Fat tree topology

[143] is divided into multiple pods, with each including the switches of the edge and

88

aggregation layers. The connection inside the pod is considered as a local pod

connection, because the traffic remains inside it. On the other hand, the connection

between different pods is considered as a remote connection, because the traffic of

connecting pod passes through one or more core switches. This hierarchical architecture

limits the locations of end hosts and also creates loops in the network due to the

redundant paths that connect the end hosts when multipath techniques are used, like

ECMP. As a result, a spanning tree [144] is used to prevent loops by selecting a single

path and disabling all other redundant paths. However, this routing scheme of a

spanning tree leads to poor network utilisation, because the flows in the data centre

network will employ few paths and leave others redundant, only reutilising them in the

case of any outage or failure. We illustrate some examples of flow transfer based on fat

tree topology.

There are three cases of transfer flows between two hosts in a data centre based on fat

tree topology. The first, involves sending shuffling flow from host 1 to host 2. In this

case, there is only a single path between them, because both hosts are located in the

same rack. Hence, all possible paths between the two hosts go through edge switches

only and the generated traffic remains inside the rack, with there being no need to

traverse any aggregation switches. In the second case, host 1 sends its flow to host 4,

which is located in a different rack, but within the same pod. In this case, the

connection between them is an intra-pod connection, because all the possible paths

between these two hosts will pass through edge and aggregation switches. The third

case is in relation to transferring flows between two hosts located in different pods,

such as host 2 and host 8. In this case, there are multiple paths between them to transfer

flows. However, the produced traffic between the two hosts has to traverse edge,

aggregation and core switches, because each host is located in a different pod and all

possible paths should go through different core switches. The situation becomes more

sophisticated when some hosts in different pods exchange shuffling flows at the same

time and might contend for the same links, especially in the aggregation and core

switches, thus creating congestion that makes the bandwidth utilisation of the core and

aggregation links becoming over-utilised. It is supposed that multiple hosts exchange

their flows at the same time. Specifically, host 2 sends its flow to host 6, host 10 sends

its flow to host 16 and host 5 sends its flow to hosts 15, respectively, all simultaneously.

Figure 5.2 illustrates the path between hosts 2 and 6 as well as that between hosts 10

89

and 16 in bold lines. It is observed that there are multiple paths between all the hosts.

However, it is noted that there is a challenge to assign even a single path among the

multiple paths in the data centre network for hosts 5 and 15 because of the congestion

that has occurred in the network. The main cause of this is the architecture of fat tree

topology that constrains the location of end hosts. Since host 5 is located in pod 2 and

host 15 is in pod 4, it is a challenging task to assign a path between the two hosts even

though we selected the right side of pod 2 to avoid the overlapping. It is impossible to

avoid the overlapping in pod 4, because the right side in pod 2 can only reach the left

side of pod 4 and consequently, this creates congestion between the two hosts. As a

result, it has become crucial to design an efficient type of data centre architecture, like

leaf-spine topology [145]. Unlike fat tree topology, this consists of two layers. The first

is the leaf layer that includes several switches connected to end hosts in the network. It

is connected to the spine layer that represents the second or top layer. Leaf-spine

topology is widely adopted in large data centres and cloud networks due to its

remarkable features, such as scalability, reliability and effective performance. However,

applying multipath algorithms, such as ECMP, as a forwarding technique for shuffling

flows to utilise more bandwidth in the leaf-spine topology is not an effective way,

because it is a static scheduling algorithm and it does not consider the network

utilisation or flow size.

 For instance, there are three different hosts in the same rack, which are connected to

the same switch in the leaf layer transferring their flows to other hosts in different racks.

The first case, is when host 2 sends its shuffling flow to host 8, whilst the second, is

when host 4 sends its shuffling flow to host 6 and the third case is when host 3 transfers

his shuffling flows to host 10, as shown in Figure 5.3. We observed that host 3 might

compete for the same heavy loaded link in the leaf switch, because of the allocation

technique of ECMP, whereby it might choose the same heavy loaded link for two large

shuffling flows, thus resulting in a congestion and collision. The reason for this, is

because, as aforementioned, ECMP lacks a global view of entire network. Moreover,

with ECMP algorithm, the flow is routed based on its hash value. Hence, flows might

result in using the same path and creating congestion in some links in the leaf and spine

switches. It is also seen from Figure 5.3, that all possible paths of shuffling flows for all

cases might compete for the same leaf and spine switches, which leads to overload on

some link switches. Furthermore, crashing or failure might occur on some links that

90

belong to the allocated path for shuffling flows in the leaf and spine switches. As a

consequence, we propose an effective routing algorithm based on SDN that performs

the routing process, which respects the network resources demand of each shuffling

flow as well as their size and number. The proposed algorithm is also able to reroute the

shuffling flows to another available path in the case of any failure or crashing on any

link in the network. The proposed algorithm is explained in the following section.

Figure 5. 2: Path allocation challenging in fat tree topology

91

Figure 5. 3: Path allocation using ECMP in leaf-spine topology

5.5 The Implementation of the Proposed Work

Our proposed work consists of three modules as follows.

1- Link monitor module: This module monitors network link status, such as link loading

in the network and computes the link weight. It periodically gets the statistics

information of all links loaded in the data centre network from all the connected

OpenFlow switches at specific intervals. Statistics such as per-table, per-flow and per-

port are collected and stored as snapshots. All switches in the network are connected to

the SDN control. However, the SDN controller lacks the required information of all

links between the switches and hence, a link layer discovery protocol (LLDP) [146] is

used to identify the needed information of all links and the switches layer in the

network topology. Statistic information about links loading is used by the routing

module to calculate the paths accordingly. The current load of each link in the data

centre network is computed by using N transmitted bytes from the port within recent

interval t over the bandwidth (B) of the link. The formula below calculates the current

load of the link:

92

LLk =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑦𝑡𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡

𝐵
 (5.1)

It is supposed that all links have the same bandwidth and each link has fixed weight. In

our case, we propose that the link weight (W) is 1. It is very important to check whether

the current load of each link (LLk) reaches or does not reach the peak of link depending

on the link weight (W) by comparing it with (LLk). If LLk<1, it means that is has not yet

reached the peak of the link. However, if Lk=1, it means that it has and this may cause

link overloading, because of some heavier flows and consequently, result in improper

path allocation. Hence, the weight of each link should be estimated based on the

number of flows and the throughput of each. The natural demand of shuffling flows is

estimated by the Hadoop engine module. It is worth noting that the current load reaches

the link capacity, if it exceeds threshold γ which has been set to be 90% of the link

capacity. Furthermore, we compute the path load for all flow paths in the leaf and spine

switches by using the maximum load of each link, which belongs to the path as

explained in Equation 5.2.

.

 Lp = 𝑚𝑎𝑥𝑙∈𝑝 ll (5.2)

Where, (p) is defined as the path used to route the shuffling flow from source to

destination. Each link that belongs to the path (p) is represented by (l) and (ll) pertains

to the load of each link that traverses the path at the leaf and spine switches from the

source node to the destination node. Once the path load of each link is computed, all

information is delivered to the scheduling and routing component to select the

convenient path that has the least path load (Lp). Then, it installs the flow entries into a

set of switches of the selected path.

2- Hadoop monitor engine: In a Hadoop cluster environment when the map task in the

mapper node writes its output data to the reducer node, shuffling traffic is generated

during the shuffle phase of a Hadoop job. This traffic needs sufficient network

bandwidth to accelerate the processing time of the Hadoop job. However, the main

Hadoop framework does not contain sufficient information about the required network

resources. Therefore, this module is proposed to identify the data transferred from the

mapper node to the reducer node in a Hadoop cluster during the shuffle phase of a

93

Hadoop job. The data is transferred through a number of flows during the shuffling

phase.

This module is responsible for recording all the required information of these flows

from all the connected Hadoop servers. In a Hadoop cluster, as aforementioned, there is

one job tracker and several task trackers. The job tracker is responsible for monitoring

the progress of Hadoop jobs by receiving heartbeat messages from each task tracker,

but these messages do not include information about the network resources. To obtain

such information, a software engine has been installed on each Hadoop server. This

engine detects when a map task has finished and starts to send its shuffling information

to the reducers, whilst then recording the size of the map output data, which is

transferred over the flow to the other reducers. After this process, the Hadoop engine

will obtain the required network bandwidth for each shuffling flow. It maintains a table

that contains all shuffling flows with their networking demands. Furthermore, all the

collected shuffling information includes the source IP address, destination IP address

and the size of each shuffling flow. The Hadoop monitor engine also determines the

total amount of shuffled data and the number of shuffling flows transferred over each

link. All information about shuffling flows is delivered by the Hadoop monitor to the

scheduling and routing module to assign proper paths, according to the bandwidth

needed for each shuffling flow and the current load of link utilisation.

3- Scheduling and routing module: In the forwarding module of the OpenFlow

floodlight controller, a packet-in message is generated to notify the controller that new

flows have arrived at an OpenFlow switch. The switch checks the packet and if there is

no match with its flow entries, the packet is forwarded to the controller. On the other

hand, a flow-removed message is also generated when a flow expires in an open flow

switch. In this work, a scheduling and routing module is proposed to assign efficient

paths for the exchangeable shuffling flows between different hosts in the data centre

network.

This module performs the scheduling and routing of the shuffling flows on the chosen

paths and it has two tasks. The first is the calculation of the possible paths based on the

statistics from the link monitor module that includes the loads on all links in the

network. It also uses the collected information by the Hadoop monitor engine to

compute the possible paths of different shuffling flows. The collected information by

94

the Hadoop engine module contains a list of shuffling flows including

source/destination IPs, flow size and transfer volume over each link. All this

information is recorded in a network table to be used for the calculation of the path load

in the routing process. This table also contains scheduled flows and available capacity

for each of them. Once all the information of shuffling flows has been received by the

scheduling and routing module, it will compute the possible paths with low load based

on the information collected from the link monitor module and Hadoop monitor engine.

The second task is to assign efficiently the best possible paths for all shuffling flows,

according to the bandwidth needed for each flow.

 A scheduling and routing algorithm based on SDN is proposed to obtain an effective

routing technique for shuffling flow, according to network utilisation and flow size by

computing the current load of all possible paths in the leaf and spine switches. Once the

current load is determined according to Equation 5.2, the shuffling flows are routed

onto the proper paths. Our proposed work moves the large shuffling flows from heavy

loaded links to lightly loaded ones so as to prevent congestion. What is proposed is

demonstrated in Algorithm 1 and 2.

Algorithm 1

1- For each shuffling flow (SF) do

2- Collect SF size and its network resources demand from the SDN controller

3- Compute the current load of all possible paths for each SF according to Equation 5.1

4- Compare the size of each SF with the current load of all possible paths

5- Choose the shortest available path for SF and check

6- If the link of shortest path is active and its current load does not override the pre-defined

threshold then

7- Keep SF routing on this path;

8- Else

9- If there is any failure in the link of the shortest path or its load exceeds the pre-defined

threshold then

95

10- Choose another available path with light loaded or unused links calculated by Equation 5.2;

11- Re-route the shuffling flow on new chosen path;

12- End if

13- End if

14- End for

In this algorithm, the size of the shuffling flow and the demand of the network

resources are determined using the Hadoop engine module. This module sends all the

required information to the SDN controller. After that, the current load of all possible

paths of each shuffling flow between any two hosts is computed using the information

received from both the link monitor and Hadoop engine model, as mentioned before.

Then, the shortest path with minimum load will be chosen. If the link of the shortest

path is active and there is no failure or congestion, the routing of the shuffling flow is

kept on this path. However, if there is any crash in the link or its current load exceeds

the pre-specified threshold, which is set to 90% of the link capacity of this path, as

mentioned for the link monitor module, then another unused or light loaded shortest

path should be chosen. This is also computed based on Equation 5.2 and the

information received from the Hadoop engine and the shuffling flow is rerouted

accordingly. It is worth noting that the SDN controller receives all the required

information of link loading for all the Open vSwitches in different layers from the link

monitor module, as detailed above.

Algorithm 2

1- For each shuffling flow (SF) do

2- Collect SF size and its network resources demand from the SDN controller

3- Compute the current load of all possible paths for each SF according to Equation 5.1

4- Compare the size of each SF with the current load of all possible paths

5- Choose the shortest available path for SF and check

96

6- If the shuffling flow (SF) size does not override the pre-defined threshold of link switches of

this shortest path then

7- Keep SF routing on this path;

8- Else

9- If the load of SF exceeds the pre-defined threshold then

10- Choose another available path with light loaded or unused links calculated by Equation 5.2;

11- Re-route the shuffling flow on new chosen path;

12- End if

13- End if

14- End for

In algorithm 2, the size of the shuffling flow and the demand of the network resources

are determined using the Hadoop engine module. This module sends all the required

information to the SDN controller. After that, the current load of all possible paths of

each shuffling flow between any two hosts is computed using the information received

from both the link monitor and Hadoop engine model, as mentioned before. Then, the

shortest path with minimum load will be chosen. If the shuffling flow does not exceed

the current load of this shortest path, its routing is kept on this path. However, if the

shuffling flow exceeds the pre-specified threshold, which is set to 90% of the link

capacity of this path as mentioned for the link monitor module, then another unused or

light loaded shortest path should be chosen. This is also computed based on Equation

5.2 and the information received from the Hadoop engine and the shuffling flow is

rerouted accordingly. It is worth noting that the SDN controller receives all the required

information of link loading for all the Open vSwitches in different layers from the link

monitor module, as detailed above.

5.5.1 Performance Evaluation

The proposed work is evaluated using EstiNet emulator because of its scalability and

the correctness of performance results [21]. The software emulated a leaf spine

topology consisting of 12 switches using 1Gbps links. It includes two layers, which are

spine and leaf. The leaf layer is responsible to provide the connectivity to endpoints

97

such as computing nodes, storage devices, firewalls and other endpoints devices. On the

other hand, the spine layer provides the connections between leaf switches. Each switch

in the leaf layer connects to every switch in the spine layer. However, the switches in

the spine layer are not interconnected with each other. Similarly, the switches in the leaf

layers are also not interconnected with each other. EstiNet software also emulates fat

tree topology, which includes three layer switches using 1Gbps links. The three layers

contain 20 4-ports switches. Both of edge and aggregation layers are configured with 16

switches divided into 4 pods and 4 switches is configured for core layer. Apache

Hadoop is installed on 16 hosts using two Linux servers managed by Microsoft azure.

All hosts are connecting to the emulated leaf-spine topology by Estinet software .The

traffic generated from each Hadoop host goes inside the emulated network. Word count

and Tera Sort applications have been run on top of Hadoop hosts. All switches forward

packets according to the flow rules received from the floodlight controller. These

switches are connected to the Floodlight controller using TCP connection. Another TCP

connection is established between the floodlight controller and the Hadoop engines of

Hadoop hosts to collect all required information of shuffling flows. The proposed

algorithm of our routing scheme is compared with ECMP and TRILL (Transparent

Interconnection of Lots of Links) [22]. The performance of the proposed work is

measured by using the following metrics: (1) the execution time of shuffling phase

using different sizes of datasets (2) the execution time of shuffling phase using different

numbers of reducers. The execution time of shuffling phase in leaf spine topology has

also been compared with fat tree topology under different number of reducers. The

experimental results and discussions are explained in sections 5.5.2 and 5.5.3,

respectively.

5.5.2 The First Experimental Results and Discussion

Two experiments were carried out using Word count and Tera Sort applications to

evaluate our proposed work. In the first experiment, the performance of our proposed

algorithm is evaluated using fat tree topology and leaf-spine topology. The second

experiment evaluates the performance work against ECMP and TRILL in the leaf-spine

topology. Furthermore, the two applications have been run under different scenario. In

the first scenario, different input data sizes ranging from 1-5 GB have been used. The

98

second scenario employs various numbers of mappers and reducers. Figure 5.4 shows

the execution time of a Hadoop job for the Tera Sort application using both the fat tree

and leaf-spine topology based on ECMP under different number of reducers. From this

Figure, it can be clearly observed that the execution time of shuffling flows in the leaf-

spine topology can be reduced, when compared to the fat tree topology. The reason for

this is that fat tree topology is mainly designed to process north-south traffic (i.e form

the core switches to the edge switches).

On the other hand, the traffic between hosts (west-east traffic) in the fat tree topology is

representing a challenging task, because some hosts in the network might connect to the

same port and then compete for bandwidth, which results in a delay in the response

time. Furthermore, the communication between two hosts in the fat tree topology needs

to traverse through a hierarchical path from the edge layer to the core layer, thus

resulting in latency and traffic bottlenecks. Figure 5.5 shows the execution time of Tera

Sort application for different data sizes using different algorithms based on the leaf-

spine topology. Our proposed algorithm was compared with different techniques such

as ECMP and TRILL. It is clearly seen that the execution time of shuffling flows are

reduced for different data sizes using our proposed algorithm comparing to ECMP and

TRILL. The reason is because of the inconvenient path allocation for shuffling flows by

ECMP and TRILL. TRILL is mainly designed to solve the issues of Layer 2 spanning

tree that utilizes only single path during the communication between any pair of hosts,

whilst other redundant paths are only utilized in the case of any crashing or failures.

However, TRILL is not able to support multipath routing at layer 3, where only a single

router will be active with virtual router redundancy protocol (VRRP). Moreover, it has

some limitations like VLAN scale, where the spanning of VLANS is eliminated in the

network. VLAN segments in each leaf switch are not accessible by other leaf switches

in the network and consequently, constraints the mobility of virtual machine within the

data centre. Spanning tree topology might be appropriate for conventional business

networks, where few paths are used to exchange the traffic between hosts. However, it

is not appropriate for the modern data Centre networks, where high traffic is generated,

because it is unable to utilize the full capacity of the network bandwidth and thus leads

to the throughput degradation.

Therefore, multipath forwarding techniques such as ECMP is employed to utilize the

overall capacity of the network bandwidth in the modern data Centre network. ECMP

99

can forward the shuffling flows to multi paths equally based on hashing policy. Each

packet belongs to a single flow is assigned with the same hashing value in the packet

header. However, ECMP lacks a global view of the entire network. The bandwidth

needed in the network, future traffic demand and the size of each shuffling flow is not

considered in ECMP as it uses static routing process for flow scheduling. Moreover,

ECMP follows a distributed scheme at each host that leads to utilize some overloaded

links, while leave other light loaded links are unutilized. Our proposed algorithm

schedule and route the shuffling flows dynamically, according to their bandwidth

required as well as their size and number.

Our observation showed that the shuffling execution time goes up, when number of

reducers increase in ECMP and TRILL due to the high traffic generated, as shown in

Figure 5.6. On the other hand, the shuffling execution time in our proposed algorithm

remains constant, because of the effective utilization of the network bandwidth and

efficient dynamic path allocation for shuffling flows. However, the execution time went

up, when using 16 reducers due to the over-utilized of CPU, which leads to the

resources overhead and hence, increases the execution time.

Figure 5. 4: shuffling execution time of Tera Sort using different number of reducers for

leaf-spine and fat tree topology

100

Figure 5. 5: shuffling execution time of Tera Sort

Figure 5. 6: shuffling execution time of Tera Sort using different number of reducers

101

5.5.3 The Second Experimental Results and Discussion

Two experiments were carried out on a Hadoop cluster based on SDN in the data centre

network to evaluate the performance of the proposed work. The performance of the

proposed work in these experiments is evaluated based on the following metrics (1)

Routing convergence time using different topology sizes (2) Hadoop execution time of

Word count and Tera Sort applications within leaf-spine topology under different

topology and data sizes. In the first experiment, EstiNet emulator software was used to

build two different topologies, namely, fat tree and leaf-spine. In both SDN and

conventional networks, three layers of switches were used for fat tree topology. The

first was the edge layer, which was assigned with eight switches at the top of the rack.

The middle layer or aggregation layer was also allocated eight switches and finally, four

switches were used for the core layer. The emulated leaf-spine topology consisted of

two layers, with the bandwidth of all the links in the SDN and conventional network

being set at 10 Mbps, whilst the link delay was 1ms. 16 Hadoop nodes were used, with

each being allocated four CPU cores and 8GB of RAM.

All the Hadoop hosts were connected to the emulated fat tree and leaf-spine topology

using EstiNet emulator software. The traffic produced by each Hadoop host went into

the emulated network. The previously utilised two real application programs, namely

Word Count and Tera Sort were used to evaluate the work performance. All switches in

the emulated fat tree and leaf-spine topology were connected to the SDN (Floodlight)

controller using a TCP connection. Another TCP connection was deployed to connect

the floodlight controller to the Hadoop engine. The fat tree topology of data centre

network based on SDN was compared with the conventional network to evaluate the

performance of Hadoop MapReduce jobs. The leaf-spine topology based on SDN was

also compared with the conventional network. Open shortest path first (OSPF) was used

for the conventional network. Figure 5.7 shows the fat tree topology of the proposed

work based on SDN using 20 switches. The leaf-spine topology with 12 switches is

shown in Figure 5.8.The second experiment also involved the same software emulator

in the first experiment, but with different network topology size, as shown in Figure 5.9.

In both the SDN and conventional networks, eight switches in the edge and aggregation

layers and only two in the core layer were used. On the other hand, six switches were

102

used in the leaf-spine topology for the SDN and conventional network, as shown in

Figure 5.10. The evaluation of the proposed method using both types of network was

made based on the routing convergence time in the case of link failure. The Word

Count and Tera Sort applications were also run to evaluate the performance of Hadoop

jobs under different network topology and data sizes for data centre network.

To evaluate the routing convergence time in the case of link failure, it is proposed that

the failure is occurred in any link of all possible paths specified for each shuffling flow

in both topologies. The routing change of the packets in the conventional network needs

some time, because any change or update in link status and routing computation has to

be performed by each router in the entire network. While in SDN, the controller is the

brain of the entire network management and maintains the routing process of the whole

network in a centralised manner. The floodlight controller in SDN was used to manage

and maintain the status of all links in the data centre network using the link layer

discovery protocol (LLDP), whilst the information of the network topology was

maintained by the topology service responsible for calculating the routing computation.

In the conventional network, the routing module uses the flooding method to transmit

the information of link status to other routers in the data centre network in a distributed

manner.

Two experiments were conducted to evaluate the convergence time of the routing

process. As can be seen in Figure 5.11, the convergence time of the routing process for

different sizes of topology is minimised using the SDN network for the leaf-spine

topology, which is not the case with the conventional network. The reason for this, is

because the convergence process in the SDN network is more flexible and faster than

with the conventional network. The convergence process of the latter depends on the

routers, whereby each maintains a routing table which forwards and queries each packet

in the network using a specific path. When any change or update occurs in the routing

process of packets, like link failure, router 1 will send its update to its neighbour router

2 that will check for any required changes or updates in its routing table, then sending

its update to its neighbour and so on. This is means that the changes and updates will

broadcast over the whole network and consequently, it leads to slowing of convergence

time in the conventional network, especially when the size of network topology is

increased. This is because the routers will be scaled when the size of network is

increased.

103

On the other hand, the floodlight controller in the SDN network is responsible for any

change or update, such as link down, by using the OpenFlow control that installs flow

entries into the switches. The controller can also add, delete and modify flow entries for

all connected switches in the network. The SDN controller detects whether any link

failure has occurred using PORT_STATUS. Furthermore, switches in the network

notify the controller of any link down through error messages. When the controller

receives the error messages from the connected switches, it computes new available

routes based on the flow tables. As a result of the centralised manner of the SDN

control, this makes the convergence routing time more rapid and agile. The Word

Count and Tera Sort applications were run to evaluate the performance of a Hadoop job

using the proposed system in the leaf-spine topology. The optimised values of the

Hadoop parameters in chapter 3 were used in the proposed SDN network under

different sizes of network topology. Moreover, different sizes of datasets ranging from

1GB to 5GB were used. In the first experiment, it can be clearly observed from Figure

5.12 that the execution time of the proposed work based on SDN is reduced when

compared to the conventional network for the Word Count application. The execution

time of Tera Sort application is also decreased using our proposed approach when

compared to the conventional network. In the second experiment, the execution time of

Word Count and Tera Sort applications is also shorter than with the conventional

network as shown in Figure 5.13.

 Furthermore, the execution time of both applications under 12 switches in the proposed

SDN network was relatively same as that using six switches due to the centralised

management of the SDN controller, which can deal with any issues of the routing

process, such as congestion or link crashing, irrespective of network topology size.

However, the execution time of both applications in the conventional network using 12

switches was increased when compared to utilising six. As it is mentioned above, the

routing convergence time is increased when a larger network topology size is used,

because of the distributed technique of the conventional network in case of congestion

or link down. The dynamic routing of the scheduling and routing process based on an

SDN environment has a significant impact on the performance of Hadoop jobs, which is

not present in the static environment of a conventional network.

104

Figure 5. 7: Fat tree topology with 20 switches based on SDN

105

Figure 5. 8: Leaf-spine topology with 12 switches based on SDN

Figure 5. 9: fat tree topology with 10 switches based on SDN

106

Figure 5. 10: Leaf-spine topology with 6 switches based on SDN

Figure 5. 11: Routing convergence time using different topology sizes

107

Figure 5. 12: Hadoop execution time within leaf-spine using 12 switches

Figure 5. 13: Hadoop execution time within leaf-spine using 6 switches

108

5.6 Summary

This chapter proposed scheduling and routing algorithm based on SDN to achieve

reliable bandwidth utilization in the leaf-spine topology of data Centre network. The

proposed work consists of three modules. The first module is to monitor the current

load of all links in the data centre network and obtain the statistics information from all

Open vSwitch. The second one is to obtain the network resources and all required

information of shuffling flows from Hadoop hosts. The routing process is performed by

the scheduling and routing module, where the implementation of our scheduling

algorithm. Our proposed work was evaluated by using Tera Sort and Word count

applications. The results show that our proposed work outperforms ECMP and TRILL

by reducing the execution time of shuffling flows in the leaf-spine topology. The leaf-

spine topology was also compared with the fat tree topology and the experimental

results showed that the leaf-spine has achieved better performance. Furthermore, the

routing convergence time has been reduced using the SDN network for the leaf-spine

topology in comparison with the conventional one under different topology sizes. The

execution time of a Hadoop job was also reduced using the SDN network for the leaf-

spine topology under different topology and data sizes, when compared to the

conventional network.

109

Chapter 6

Conclusion and Future Work

The major contributions of this thesis are provided in this chapter. It also includes some

considerations and proposals for future work to expand up on the work presented in this

thesis.

6.1 Conclusion

In this thesis, first, an approach to automatically setting the configuration parameters of

Hadoop framework, so as to improve its performance was presented. Secondly, the

performance of an R and Hadoop Integrated Programming Environment for the fast

calculation and analysis regarding solar irradiation datasets was evaluated. Finally, the

superior performance of a Hadoop job in a large scale cluster in a data centre network

was demonstrated by presenting an effective routing algorithm based on SDN

technology to alleviate the produced traffic in the shuffle phase.

The first part of the thesis was focused on the optimisation of Hadoop performance by

tuning the values of its parameters. The framework of Hadoop contains more than 150

parameters and some of them have a significant effect on the performance of a Hadoop

job if they are tuned with the optimum values. The optimal settings of the Hadoop

parameters are a challenging task as well as being time consuming. In this part, a novel

technique is proposed to set the Hadoop MapReduce parameters with the optimal or

near optimal settings in an automatic manner. First, Genetic programming was utilised

to construct a fitness function, used to represent the interrelations among the Hadoop

parameters. Second, a GA was employed to find the optimum values of the Hadoop

parameters by applying the constructed fitness function.

 For further improvement, SDN is employed to enhance the networking part of a

Hadoop job during the shuffle phase. Furthermore, the optimised values were applied in

the optimised SDN network to evaluate the job performance. The work performance

was first evaluated using eight virtual machines (VMs) of a Hadoop cluster placed on a

Microsoft azure cloud, whilst another cluster, consisting of fourteen VMs, was used

based on SDN. The experimental results showed that the proposed approach improves

110

the performance of a Hadoop job in the conventional network as compared to Gunther’s

work and the default settings. Moreover, the performance of a Hadoop job in the SDN

network is better than for the conventional one.

In the second part of the thesis, an effective computing platform that provides

distributed processing and storage for large amounts of solar irradiation data was

presented. This platform is built by using R language in Hadoop environment (RHIPE).

RHIPE was employed for solar irradiation data analysis in a Hadoop cluster, which was

evaluated in comparison with R language in terms of scalability, accuracy and speedup.

Experimental results showed that RHIPE can achieve a significant improvement over

the R language. Furthermore, the speedup of parallel RHIPE in the Hadoop cluster was

analysed by Gustafson's Law, which was revised to improve the performance of the

parallel computation on intensive irradiation data sets in the Hadoop cluster based on a

cloud computing environment.

For the third part of the thesis, the focus was on the performance of a Hadoop job in a

large scale cluster in a data centre network. SDN is used to improve the performance of

Hadoop jobs. The networking aspect of a Hadoop cluster is optimised using SDN by

achieving centralised control and agile management. This can improve the performance

of a Hadoop job by accelerating the shuffling phase that can be network intensive. Two

effective routing algorithms based on SDN were implemented to improve the

networking part of a Hadoop job during the shuffle phase. The first algorithm was used

to allocate efficient paths for each shuffling flow, according to its network resources

demand as well as its size and number in the data centre network. The second algorithm

was also based on SDN and used to reroute the shuffling flows to another available

paths in the case of any link crashing or failure. The proposed work was evaluated using

different network topologies and sizes. Both the fat tree and leaf-spine topology with

different sizes were employed to assess performance, being built by EstiNet emulator

software. Different sizes of network topologies were emulated consisting of 20 and 10

switches for the fat tree, whilst 12 and 6 switches were deployed for the leaf-spine. The

experimental results showed the performance of a Hadoop job in the SDN network was

improved when compared to the conventional network under different network

topologies and sizes. Furthermore, the routing convergence time was also reduced in the

case of link failure in the SDN network when compared to the conventional one.

111

6.2 Future Work

Despite the significant contributions of this thesis in optimising the computing and

networking resources of a Hadoop framework, a number of works should be considered

in the future to improve this framework’s performance. Data locality algorithms could

be applied to this end, which would move the computation close to the data location

instead of moving the data towards the computation node. Data locality is a technique

of moving the computation task near to where the actual data resides on the node. This

technique is particularly effective for massive datasets, because moving the

computation results in this way reduces the congestion occurring in the network and

hence, improves the performance of the Hadoop system. Massive amounts of data can

be transmitted across thousands of shared nodes in a cluster computing environment

and this puts load on the network, thus creating congestion. However, a scheduler for

Hadoop can be used to avert unnecessary data transmission and minimise network

congestion so as to improve the overall throughput of the system. Data locality can be

characterised into three different levels, the first being data node level locality, where

the mapper is running on the same node that holds the data. In this case, the located data

are very close to the computation task. In the second level, the data are located in a

node and the mapper is running on another node within the same rack, which is called

rack level locality. The third level, termed inter-rack level, is where the mapper is

running on a node and the data are located on another in a different rack.

Furthermore, SDN can be used in a Hadoop cluster to improve data locality by

providing bandwidth-aware scheduling since the network bandwidth is a scare resource.

Such a system can allocate tasks in a global view and assign them effectively in an

optimised way using SDN technology. This provides agile control and centralised

management through the separation of the control plane from the data plane.

In this thesis, RHIPE was utilised for analysing solar irradiation datasets with this

process being conducted offline using estimated data provided by the London Weather

Centre for the period 1996-2005. In future, an online collection method for solar

irradiation data could be used to process them in real time using a Hadoop framework.

Furthermore, SDN can be applied for RHIPE for better optimisation.

Finally, in this thesis the computing and networking performance of a Hadoop

MapReduce job in a homogenous cluster where all the computing nodes are

112

homogenous was evaluated. Future work could be aimed at determining the networking

and computing performance of Hadoop in a heterogeneous cluster, where the nodes

have different computing capacity.

113

References

[1] “Big data and cloud computing – challenges and opportunities.” [Online].

Available: http://bigdata-madesimple.com/big-data-and-cloud-computing-

challenges-and-opportunities/. [Accessed: 11-Apr-2018].

[2] “What Is Big Data? | SAS UK.” [Online]. Available:

https://www.sas.com/en_gb/insights/big-data/what-is-big-data.html. [Accessed:

11-Apr-2018].

[3] “Big Data - The 5 Vs Everyone Must Know.” [Online]. Available:

https://www.slideshare.net/BernardMarr/140228-big-data-volume-velocity-

variety-varacity-value/2-To_get_a_better_understanding. [Accessed: 11-Apr-

2018].

[4] “What is machine-to-machine (M2M)? - Definition from WhatIs.com.” [Online].

Available: https://internetofthingsagenda.techtarget.com/definition/machine-to-

machine-M2M. [Accessed: 11-Apr-2018].

[5] D. Evans, “The Internet of Things - How the Next Evolution of the Internet is

Changing Everything,” CISCO white Pap., no. April, pp. 1–11, 2011.

[6] “Gartner Says 8.4 Billion Connected "Things" Will Be in Use in

2017, Up 31 Percent From 2016.” [Online]. Available:

https://www.gartner.com/newsroom/id/3598917. [Accessed: 11-Apr-2018].

[7] A. B. Patel, M. Birla, and U. Nair, “Addressing big data problem using Hadoop

and Map Reduce,” in 3rd Nirma University International Conference on

Engineering, NUiCONE 2012, 2012.

[8] L. Wang, M. Kunze, J. Tao, and G. Von Laszewski, “Towards building a cloud

for scientific applications,” Adv. Eng. Softw., vol. 42, no. 9, pp. 714–722, 2011.

[9] B. B. P. Rao, P. Saluia, N. Sharma, a Mittal, and S. V Sharma, “Cloud

computing for Internet of Things & sensing based applications,” Sens. Technol.

(ICST), 2012 Sixth Int. Conf., pp. 374–380, 2012.

[10] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz, and M. Parashar, “Peer-to-Peer

114

Cloud Provisioning: Service Discovery and Load-Balancing,” no. i, pp. 195–217,

2010.

[11] L. Wang et al., “Cloud computing: A perspective study,” New Gener. Comput.,

vol. 28, no. 2, pp. 137–146, 2010.

[12] L. Wang et al., “MapReduce across distributed clusters for data-intensive

applications,” Proc. 2012 IEEE 26th Int. Parallel Distrib. Process. Symp. Work.

IPDPSW 2012, pp. 2004–2011, 2012.

[13] “Welcome to ApacheTM Hadoop®! ali.” [Online]. Available:

http://hadoop.apache.org/. [Accessed: 12-Apr-2018].

[14] R. C. Taylor, “An overview of the Hadoop/MapReduce/HBase framework and

its current applications in bioinformatics,” BMC Bioinformatics, vol. 11, no.

SUPPL. 12, pp. 1–6, 2010.

[15] “Welcome to ApacheTM Hadoop®!” [Online]. Available:

http://hadoop.apache.org/. [Accessed: 18-Sep-2017].

[16] “PoweredBy - Hadoop Wiki.” [Online]. Available:

https://wiki.apache.org/hadoop/PoweredBy. [Accessed: 13-Mar-2018].

[17] S. G. Manikandan, “Big Data Analysis using Apache Hadoop.”

[18] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing on Large

Clusters,” Proc. 6th Symp. Oper. Syst. Des. Implement., pp. 137–149, 2004.

[19] “Hadoop - Big Data Overview.” [Online]. Available:

https://www.tutorialspoint.com/hadoop/hadoop_big_data_overview.htm.

[Accessed: 27-Oct-2018].

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file

system,” 2010 IEEE 26th Symp. Mass Storage Syst. Technol. MSST2010, pp. 1–

10, 2010.

[21] D. Borthakur, “The hadoop distributed file system: Architecture and design,”

Hadoop Proj. Website, no. August, pp. 1–14, 2007.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” Proc.

115

Ninet. ACM Symp. Oper. Syst. Princ. - SOSP ’03, p. 29, 2003.

[23] Wikipedia, “Google File System - Wikipédia.” p. 1, 2017.

[24] Hortonworks, “Apache Hadoop HDFS - Hortonworks.” 2017.

[25] D. Desani, V. Gil-Costa, C. A. C. Marcondes, and H. Senger, “Black-Box

Optimization of Hadoop Parameters Using Derivative-Free Optimization,” Proc.

- 24th Euromicro Int. Conf. Parallel, Distrib. Network-Based Process. PDP

2016, pp. 43–50, 2016.

[26] B. Andrea and A. Bennedeto, “Nuevas alternativas para pensar el desarrollo de

los territorios rurales . Posibilidades y riesgos 1,” Cuad. Desarro. Rural, vol. 57,

no. 57, pp. 101–131, 2006.

[27] L. Cai, Y. Qi, and J. Li, “A Recommendation-Based Parameter Tuning Approach

for Hadoop,” 2017 IEEE 7th Int. Symp. Cloud Serv. Comput., pp. 223–230, 2017.

[28] B. Palanisamy, A. Singh, L. Liu, and B. Langston, “Cura: A cost-optimized

model for MapReduce in a cloud,” Proc. - IEEE 27th Int. Parallel Distrib.

Process. Symp. IPDPS 2013, pp. 1275–1286, 2013.

[29] V. Jalaparti, H. Ballani, and P. Costa, “Bazaar: Enabling Predictable

Performance in Datacenters,” Research.Microsoft.Com, 2012.

[30] S. Babu, “Towards automatic optimization of MapReduce programs,” SoCC ’10

Proc. 1st ACM Symp. Cloud Comput., pp. 137–142, 2010.

[31] J. Yan, X. Yang, R. Gu, C. Yuan, and Y. Huang, “Performance optimization for

short MapReduce job execution in Hadoop,” Proc. - 2nd Int. Conf. Cloud Green

Comput. 2nd Int. Conf. Soc. Comput. Its Appl. CGC/SCA 2012, pp. 688–694,

2012.

[32] K. Elmeleegy, “Piranha: Optimizing Short Jobs in Hadoop,” Proc. VLDB

Endow., vol. 6, no. 11, pp. 985–996, 2013.

[33] R. Gu et al., “SHadoop: Improving MapReduce performance by optimizing job

execution mechanism in Hadoop clusters,” J. Parallel Distrib. Comput., vol. 74,

no. 3, pp. 2166–2179, 2014.

116

[34] “Top 6 Hadoop Vendors providing Big Data Solutions in Open Data Platform.”

[Online]. Available: https://www.dezyre.com/article/top-6-hadoop-vendors-

providing-big-data-solutions-in-open-data-platform/93. [Accessed: 28-Mar-

2018].

[35] “hadoop - What is Hue all about? - Stack Overflow.” [Online]. Available:

https://stackoverflow.com/questions/24115828/what-is-hue-all-about. [Accessed: 02-

Nov-2018].

 [36] “Hue, the self-service open source Analytics Workbench for browsing, querying

and visualizing data interactively | Hue is an open source Query Tool for browsing,

querying and visualizing data with focus on SQL and Search.” [Online]. Available:

http://gethue.com/. [Accessed: 02-Nov-2018].

 [37] “Apache Hive TM.” [Online]. Available: https://hive.apache.org/. [Accessed:

02-Nov-2018].

 [38] “Hadoop Ecosystem and their Components - A complete Tutorial - DataFlair.” .

[39] Yah, “Apache Pig.” 2008.

[40] “APache Oozie Introduction.” [Online]. Available:

https://www.tutorialspoint.com/apache_oozie/apache_oozie_introduction.htm.

[Accessed: 26-Mar-2018].

[41] “Oozie -.” [Online]. Available:

https://oozie.apache.org/docs/4.0.0/DG_Overview.html. [Accessed: 26-Mar-

2018].

[42] F. Chang, J. Dean, and S. Ghemawat, “, ‘Bigtable: A Distributed Storage

System for Structured Data,’” ACM Trans. Comput. Syst. Vol. 26, No., vol. 2, no. 2, pp.

1–426, 2008.

[43] “Hadoop Ecosystem and Components - BMC Software.” [Online]. Available:

http://www.bmcsoftware.uk/guides/hadoop-ecosystem.html. [Accessed: 02-Nov-2018].

 [44] “HBase Tutorial.” [Online]. Available: https://www.tutorialspoint.com/hbase/.

[Accessed: 02-Nov-2018].

117

[45] “Apache ZooKeeper - Home.” [Online]. Available:

https://zookeeper.apache.org/. [Accessed: 02-Nov-2018].

 [46] “HBase Architecture phylips @ bmy.” 2011.

[47] “Apache Flume - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Apache_Flume. [Accessed: 25-Mar-2018].

[48] “Apache Flume Architecture.” [Online]. Available:

https://www.tutorialspoint.com/apache_flume/apache_flume_architecture.htm.

[Accessed: 25-Mar-2018].

[49] “Welcome to Apache Flume — Apache Flume.” [Online]. Available:

https://flume.apache.org/. [Accessed: 25-Mar-2018].

[50] “Apache Sqoop - Hortonworks.” [Online]. Available:

https://hortonworks.com/apache/sqoop/. [Accessed: 25-Mar-2018].

[51] “Sqoop Tutorial.” [Online]. Available:

https://www.tutorialspoint.com/sqoop/index.htm. [Accessed: 25-Mar-2018].

[52] “hadoop2 - Differnce between Hadoop 1 and Hadoop 2 - Stack Overflow.”

[Online]. Available: https://stackoverflow.com/questions/24993570/differnce-

between-hadoop-1-and-hadoop-2. [Accessed: 29-Mar-2018].

[53] “10 Big Differences between Hadoop1 and Hadoop2 | Acadgild Blog.” [Online].

Available: https://acadgild.com/blog/10-big-differences-between-hadoop1-and-

hadoop2/. [Accessed: 29-Mar-2018].

[54] “Apache Hadoop 2.4.1 - Hadoop Distributed File System-2.4.1 - Federation.”

[Online]. Available: https://hadoop.apache.org/docs/r2.4.1/hadoop-project-

dist/hadoop-hdfs/Federation.html. [Accessed: 29-Mar-2018].

[55] “Hadoop – Apache Hadoop 3.0.0.” [Online]. Available:

https://hadoop.apache.org/docs/r3.0.0/. [Accessed: 29-Mar-2018].

[56] “Comparison Between Hadoop 2.x vs Hadoop 3.x - DataFlair.” [Online].

Available: https://data-flair.training/blogs/hadoop-2-x-vs-hadoop-3-x-

comparison/. [Accessed: 29-Mar-2018].

118

[57] “How Apache Hadoop 3 Adds Value Over Apache Hadoop 2 - Hortonworks.”

[Online]. Available: https://hortonworks.com/blog/hadoop-3-adds-value-hadoop-

2/. [Accessed: 29-Mar-2018].

[58] “Mahout Introduction.” [Online]. Available:

https://www.tutorialspoint.com/mahout/mahout_introduction.htm. [Accessed:

26-Mar-2018].

[59] “R: What is R?” [Online]. Available: https://www.r-project.org/about.html.

[Accessed: 27-Mar-2018].

[60] “R and Hadoop Data Analysis – RHadoop | BigHadoop.” [Online]. Available:

https://bighadoop.wordpress.com/2013/02/25/r-and-hadoop-data-analysis-

rhadoop/. [Accessed: 28-Mar-2018].

[61] T. Subject et al., Big Data Analytics with R and Hadoop. Packt Publishing,

Birmingham - Mumbai, 2015.

[62] J. Rounds, “RHIPE - R and Hadoop Integrated Processing Environment project

home page.”

[63] K. Bilal, S. Khan, J. Kolodziej, and L. Zhang, “A Comparative Study Of Data

Center Network Architectures.,” Proceeding 26th Eur. Conf. Model. Simul., vol.

0, no. Cd, pp. 1–7, 2012.

[64] Y. Liu, J. K. Muppala, and M. Veeraraghavan, “A survey of data center network

architectures,” Ieee Commun. Surv. Tutorials, vol. 15, no. 2, pp. 1–22, 2014.

[65] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center

network architecture,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4,

p. 63, 2008.

[66] Cisco Systems, “Data Center Architecture Overview,” pp. 1–10, 2014.

[67] “Data center network architectures - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Data_center_network_architectures. [Accessed: 30-

Mar-2018].

[68] L. W. Cheng and S. Y. Wang, “Application-aware SDN routing for big data

networking,” 2015 IEEE Glob. Commun. Conf. GLOBECOM 2015, 2015.

119

[69] M. Brown, “Front cover Introduction to Grid,” Contract, no. November, 2017.

[70] “OSPF Design Guide - Cisco.” [Online]. Available:

https://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-

ospf/7039-1.html. [Accessed: 29-Oct-2018].

[71] C. E. H. <chopps@merit.edu>, “Analysis of an Equal-Cost Multi-Path

Algorithm.”

[72] L. Romero, “‘Cloud computing’ in library automation. Benefits and drawbacks.,”

Bottom Line Manag. Libr. Finan., vol. 25, no. 3, pp. 110–115, 2012.

[73] J. Shayan, A. Azarnik, S. Chuprat, and S. Karamizadeh, “Identifying Benefits

and risks associated with utilizing cloud computing,” Int. J. Soft Comput. Softw.

Eng., vol. 3, no. 3, pp. 416–421, 2013.

[74] S. Turner, “Benefits and risks of cloud computing,” J. Technol. Res., vol. 4, pp.

1–7, 2013.

[75] “Cloud Computing Overview.” [Online]. Available:

https://www.tutorialspoint.com/microsoft_azure/cloud_computing_overview.htm

. [Accessed: 02-Apr-2018].

[76] D. Wu et al., “CLOUD COMPUTING – An Overview An Overview,” White

Pap., vol. 462, no. 7276, pp. 1–5, 2009.

[77] M. Anandarajan and B. Arinze, “Cloud Computing,” Wiley Encycl. Manag., pp.

1–27, 2015.

[78] “Software-Defined Networking (SDN) Definition - Open Networking

Foundation.” [Online]. Available: https://www.opennetworking.org/sdn-

definition/. [Accessed: 02-Apr-2018].

[79] O.N.F., “Software-defined networking: The new norm for networks,” ONF White

Pap., vol. 2, pp. 2–6, 2012.

[80] W. Braun and M. Menth, “Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices,” Futur. Internet, vol.

6, no. 2, pp. 302–336, 2014.

120

[81] “Understanding the SDN Architecture and SDN Control Plane - Defini.”

[Online]. Available: https://www.sdxcentral.com/sdn/definitions/inside-sdn-

architecture/. [Accessed: 03-Apr-2018].

[82] C. Fernandez and J. L.Muñoz, “Software Defined Networking (SDN) with

OpenFlow 1.3, Open vSwitch and Ryu,” p. 183.

[83] “Floodlight OpenFlow Controller -Project Floodlight.” [Online]. Available:

http://www.projectfloodlight.org/floodlight/. [Accessed: 03-Apr-2018].

[84] L. V. Morales, A. F. Murillo, and S. J. Rueda, “Extending the floodlight

controller,” Proc. - 2015 IEEE 14th Int. Symp. Netw. Comput. Appl. NCA 2015,

pp. 126–133, 2016.

[85] P. Qin, B. Dai, B. Huang, and G. Xu, “Bandwidth-Aware Scheduling With SDN

in Hadoop: A New Trend for Big Data,” IEEE Syst. J., pp. 1–8, 2015.

[86] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An efficient data locality

driven task scheduling algorithm for cloud computing,” Proc. - 11th IEEE/ACM

Int. Symp. Clust. Cloud Grid Comput. CCGrid 2011, pp. 295–304, 2011.

[87] S. Zhao and D. Medhi, “Application-Aware Network Design for Hadoop

MapReduce Optimization Using Software-Defined Networking,” IEEE Trans.

Netw. Serv. Manag., vol. 4537, no. c, pp. 1–14, 2017.

[88] A. Pavlo et al., “A comparison of approaches to large-scale data analysis,”

SIGMOD-PODS’09 - Proc. Int. Conf. Manag. Data 28th Symp. Princ. Database

Syst., pp. 165–178, 2009.

[89] “7 Tips for Improving MapReduce Performance – Cloudera Engineering Blog.”

[Online]. Available: http://blog.cloudera.com/blog/2009/12/7-tips-for-improving-

mapreduce-performance/. [Accessed: 15-Aug-2017].

[90] D. Wu and A. Gokhale, “A Self-Tuning System based on Application Profiling

and Performance Analysis for Optimizing Hadoop MapReduce Cluster

Configuration.”

[91] G. Liao, K. Datta, and T. L. Willke, “Gunther: Search-based auto-tuning of

MapReduce,” in Lecture Notes in Computer Science (including subseries Lecture

121

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013.

[92] J. Liu, N. Ravi, S. Chakradhar, and M. Kandemir, “Panacea: Towards Holistic

Optimization of MapReduce Applications.”

[93] Y. Li et al., “Breaking the boundary for whole-system performance optimization

of big data,” in Proceedings of the International Symposium on Low Power

Electronics and Design, 2013.

[94] Impetus, “Hadoop Performance Tuning,” White Pap., no. October 2009, pp. 1–

13, 2009.

[95] T. White, Hadoop : the definitive guide. O’Reilly, 2010.

[96] M. Li, L. Zeng, and S. Meng, “MR O NLINE : MapReduce Online Performance

Tuning,” Hpdc, pp. 165–176, 2014.

[97] H. Herodotou and S. Babu, “Profiling, What-if Analysis, and Cost-based

Optimization of MapReduce Programs,” PVLDB Proc. VLDB Endow., vol. 4, no.

11, pp. 1111–1122, 2011.

[98] H. Herodotou, H. Lim, G. Luo, N. Borisov, and L. Dong, “Starfish : A Self-

tuning System for Big Data Analytics,” Cidr, vol. 11, pp. 261–272, 2011.

[99] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic

Programing, no. March. 2008.

[100] M. Walker, “Introduction to genetic programming,” Tech. Np Univ. Mont., pp.

1–9, 2001.

[101] J. McCall, “Genetic algorithms for modelling and optimisation,” J. Comput.

Appl. Math., vol. 184, no. 1, pp. 205–222, 2005.

[102] “Genetic Algorithms Introduction.” [Online]. Available:

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduct

ion.htm. [Accessed: 20-Apr-2018].

[103] Open Networking Foundation, “SDN Architecture Overview,” Onf, pp. 1–5,

2013.

122

[104] R. Gowri, “MR-GABiT : Map Reduce based Genetic Algorithm for Biclustering

Time Series Data,” pp. 381–387, 2016.

[105] G. Reinert, “Time Series,” Hilar. Term, USA, no. 1990, pp. 1–66, 2010.

[106] C. Severance and K. Dowd, “High Performance Computing,” Hpc, p. 294, 2012.

[107] X. Wang, Z. Yan, and L. Li, “A grid computing based approach for the power

system dynamic security assessment,” Comput. Electr. Eng., vol. 36, no. 3, pp.

553–564, 2010.

[108] G. A. Ezhilarasi and K. Swarup, “Parallel contingency analysis in a high

performance computing environment,” Int. Conf. Power Syst. 2009., pp. 1–6,

2009.

[109] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next generation

MPI implementation,” 11th Eur. PVM/MPI Users’ Gr. Meet., pp. 97–104, 2004.

[110] I. Gorton et al., “A High-performance hybrid computing approach to massive

contingency analysis in the power grid,” e-Science 2009 - 5th IEEE Int. Conf. e-

Science, pp. 277–283, 2009.

[111] W. Gao and X. Chen, “Distributed Generation Placement Design and

Contingency Analysis with Parallel Computing Technology,” Fuel, vol. 4, no. 4,

pp. 347–354, 2009.

[112] J. Yin, Y. Liao, M. Baldi, L. Gao, and A. Nucci, “GOM-Hadoop: A distributed

framework for efficient analytics on ordered datasets,” J. Parallel Distrib.

Comput., vol. 83, pp. 58–69, 2015.

[113] J. Li, X. Ma, S. Yoginath, G. Kora, and N. F. Samatova, “Transparent runtime

parallelization of the R scripting language,” J. Parallel Distrib. Comput., vol. 71,

no. 2, pp. 157–168, 2011.

[114] B. Agrawal, A. Chakravorty, C. Rong, and T. W. Wlodarczyk, “R2Time: A

framework to analyse open TSDB Time-series data in HBase,” in Proceedings of

the International Conference on Cloud Computing Technology and Science,

CloudCom, 2015.

123

[115] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, “A parallel genetic

algorithm based on hadoop MapReduce for the automatic generation of junit test

suites,” in Proceedings - IEEE 5th International Conference on Software Testing,

Verification and Validation, ICST 2012, 2012.

[116] L. Li, F. Noorian, D. J. M. Moss, and P. H. W. Leong, “Rolling Window Time

Series Prediction using MapReduce.”

[117] Y. Y. Liu, P. Thulasiraman, and R. K. Thulasiram, “Parallelizing Active Memory

Ants with MapReduce for Clustering Financial Time Series Data,” in 2016 IEEE

International Conferences on Big Data and Cloud Computing (BDCloud), Social

Computing and Networking (SocialCom), Sustainable Computing and

Communications (SustainCom) (BDCloud-SocialCom-SustainCom), 2016.

[118] C. Sheng, J. Zhao, H. Leung, and W. Wang, “Extended Kalman Filter based

Echo State Network for 7ime Series Prediction using MapReduceFramework.”

[119] F. Bach, H. K. Çakmak, H. Maass, and U. Kuehnapfel, “Power grid time series

data analysis with pig on a Hadoop cluster compared to multi core systems,”

Proc. 2013 21st Euromicro Int. Conf. Parallel, Distrib. Network-Based Process.

PDP 2013, pp. 208–212, 2013.

[120] J. D. Brutlag, “14th Systems Administration Conference Aberrant Behavior

Detection in Time Series for Network Monitoring,” Proc. 14th Syst. Adm. Conf.

(LISA 2000), no. 14, pp. 139–146, 2000.

[121] H. Yin, S. Yang, S. Ma, F. Liu, and Z. Chen, “A novel parallel scheme for fast

similarity search in large time series,” China Commun., vol. 12, no. 2, pp. 129–

140, 2015.

[122] P. Laurinec, M. Lóderer, P. Vrablecová, M. Lucká, V. Rozinajová, and A. B.

Ezzeddine, “Adaptive Time Series Forecasting of Energy Consumption using

Optimized Cluster Analysis,” 2016.

[123] K. Yang and T. Koike, “A general model to estimate hourly and daily solar

radiation for hydrological studies,” Water Resour. Res., vol. 41, no. 10, pp. 1–13,

2005.

124

[124] U. Dokdmm et al., “A Predictive Evaluation of Global Solar Radiation using

Recurrent Neural Models and Weather Data,” vol. 5, pp. 1–5.

[125] R. Langella, D. Proto, and A. Testa, “A Statistical Model of Solar Radiation

Daily Variability,” 2014 Int. Conf. Probabilistic Methods Appl. to Power Syst.,

pp. 1–6, 2014.

[126] J. A. A and L. B. B, “Analysis of Statistical Methods for Estimating Solar

Radiation,” vol. 18, no. 1, pp. 1–5, 2014.

[127] E. Yilmaz, B. Cancino, and W. R. Parra, “Statistical analysis of solar radiation

data,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 29, no. 15, pp.

1371–1383, 2007.

[128] O. Perpiñán, L. Maintainer, and O. P. Lamigueiro, “Title Radiation and

Photovoltaic Systems,” 2016.

[129] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed Data-

Parallel Programs from Sequential Building Blocks,” ACM SIGOPS Oper. Syst.

Rev., pp. 59–72, 2007.

[130] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A MapReduce

Framework on Graphics Processors,” Proc. 17th Int. Conf. Parallel Archit.

Compil. Tech. - PACT ’08, p. 260, 2008.

[131] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,

“Evaluating MapReduce for multi-core and multiprocessor systems,” Proc. - Int.

Symp. High-Performance Comput. Archit., pp. 13–24, 2007.

[132] “Welcome to ApacheTM Hadoop®!” [Online]. Available:

http://hadoop.apache.org/. [Accessed: 13-Mar-2018].

[133] X. H. Sun and Y. Chen, “Reevaluating Amdahl’s law in the multicore era,” J.

Parallel Distrib. Comput., vol. 70, no. 2, pp. 183–188, 2010.

[134] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,

“Http://Www.Cs.Berkeley.Edu/~Jtma/Papers/Orchestra-Sigcomm2011.Pdf,”

Cs.Berkeley.Edu.

125

[135] S. Narayan, S. Bailey, and A. Daga, “Hadoop acceleration in an openflow-based

cluster,” Proc. - 2012 SC Companion High Perform. Comput. Netw. Storage

Anal. SCC 2012, pp. 535–538, 2012.

[136] Anupam Das; Cristian Lumezanu; Yueping Zhang; Vishal Singh; Guofei Jiang;

Curtis Yu, “Transparent and Flexible Network Management for Big Data

Processing in the Cloud,” USENIX Work. Hot Top. Cloud Comput., 2013.

[137] C. Y. Lin and J. Y. Liao, “An SDN app for hadoop clusters,” Proc. - IEEE 7th

Int. Conf. Cloud Comput. Technol. Sci. CloudCom 2015, pp. 458–461, 2016.

[138] H. Hu, Y. Wen, Y. Gao, T. S. Chua, and X. Li, “Toward an SDN-enabled big

data platform for social TV analytics,” IEEE Netw., vol. 29, no. 5, pp. 43–49,

2015.

[139] M. Al-Fares, S. Radhakrishnan, and B. Raghavan, “Hedera: Dynamic flow

scheduling for data center networks,” Proc. 7th, 2010.

[140] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal flow routing in

datacenters via local link balancing,” Proc. ninth ACM Conf. Emerg. Netw. Exp.

Technol. - Conex. ’13, pp. 151–162, 2013.

[141] F. Ieee et al., “Software-Defined Networking : A Comprehensive Survey,” Proc.

IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[142] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,”

ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, p. 69, 2008.

[143] “Fat-Tree Design | ClusterDesign.org.” [Online]. Available:

https://clusterdesign.org/fat-trees/. [Accessed: 19-Jul-2018].

[144] “Understanding Spanning Tree Protocol Used for Eliminating Bridge Loops in

Ethernet LANs - Technical Documentation - Support - Juniper Networks.”

[Online]. Available:

https://www.juniper.net/documentation/en_US/junos/topics/concept/spanning-

tree-protocol-mx-ex-series-overview.html. [Accessed: 19-Jul-2018].

[145] “A Beginner’s Guide to Leaf-Spine Network Topology.” [Online]. Available:

https://blog.westmonroepartners.com/a-beginners-guide-to-understanding-the-

126

leaf-spine-network-topology/. [Accessed: 19-Jul-2018].

[146] “LinkLayerDiscoveryProtocol - The Wireshark Wiki.” [Online]. Available:

https://wiki.wireshark.org/LinkLayerDiscoveryProtocol. [Accessed: 23-Feb-

2018].

