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Abstract 

Big data has received a great deal attention from many sectors, including academia, 

industry and government. The Hadoop framework has emerged for supporting its 

storage and analysis using the MapReduce programming module. However, this 

framework is a complex system that has more than 150 parameters and some of them 

can exert a considerable effect on the performance of a Hadoop job. The optimum 

tuning of the Hadoop parameters is a difficult task as well as being time consuming. In 

this thesis, an optimisation approach is presented to improve the performance of a 

Hadoop framework by setting the values of the Hadoop parameters automatically. 

Specifically, genetic programming is used to construct a fitness function that represents 

the interrelations among the Hadoop parameters. Then, a genetic algorithm is employed 

to search for the optimum or near the optimum values of the Hadoop parameters. A 

Hadoop cluster is configured on two severe at Brunel University London to evaluate the 

performance of the proposed optimisation approach. The experimental results show that 

the performance of a Hadoop MapReduce job for 20 GB on Word Count Application is 

improved by 69.63% and 30.31% when compared to the default settings and state of the 

art, respectively. Whilst on Tera sort application, it is improved by 73.39% and 55.93%. 

For better optimisation, SDN is also employed to improve the performance of a Hadoop 

job. The experimental results show that the performance of a Hadoop job in SDN 

network for 50 GB is improved by 32.8% when compared to traditional network. 

Whilst on Tera sort application, the improvement for 50 GB is on average 38.7%. An 

effective computing platform is also presented in this thesis to support solar irradiation 

data analytics. It is built based on RHIPE to provide fast analysis and calculation for 

solar irradiation datasets. The performance of RHIPE is compared with the R language 

in terms of accuracy, scalability and speedup. The speed up of RHIPE is evaluated by 

Gustafson's Law, which is revised to enhance the performance of the parallel 

computation on intensive irradiation data sets in a cluster computing environment like 

Hadoop. The performance of the proposed work is evaluated using a Hadoop cluster 

based on the Microsoft azure cloud and the experimental results show that RHIPE 

provides considerable improvements over the R language. Finally, an effective routing 

algorithm based on SDN to improve the performance of a Hadoop job in a large scale 

cluster in a data centre network is presented. The proposed algorithm is used to improve 

the performance of a Hadoop job during the shuffle phase by allocating efficient paths 

for each shuffling flow, according to the network resources demand of each flow as 

well as their size and number. Furthermore, it is also employed to allocate alternative 

paths for each shuffling flow in the case of any link crashing or failure. This algorithm 

is evaluated by two network topologies, namely, fat tree and leaf-spine, built by EstiNet 

emulator software. The experimental results show that the proposed approach improves 

the performance of a Hadoop job in a data centre network. 
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Chapter 1 

Introduction  

The emergence of smartphones, internet of things and social media has a significant 

impact on the data generation. Different types of data sets are generating from various 

sources including the wide use of YouTube, google and social networking websites like 

Facebook and twitter. Numerous data sets are also generated from other sources, such 

as online mobile banking, online retail sector services, healthcare system, education 

systems, sensors and other online services. Many companies and organisations also 

generate huge amounts of data every day. Around 2.3 Zettabytes of data sets are 

generated every day around the world. This number of generated data will increase in 

2020 to be 40 zettabytes. 100 terabytes are stored by many companies only in the 

United States [1]. These massive amounts of various data sets are classified as a big 

data. The term of big data refers to the large scale of data sets that are difficult to be 

stored, analysed and processed by the conventional tools due to their diversity and 

complexity. Big data can be included into the form of structured model where the data 

is organised and fit into the conventional databases and can be easily analysed and 

processed using the traditional tools. Another form of the big data is the unstructured 

model, which represents the most challenging part, because the large data in this case is 

produced  from different sources with different types of data including images, texts, 

videos, audio files and web pages. This type of data is not organised in pre-defined 

format and thus, it cannot be fit into the conventional databases or be processed by the 

traditional tools [2].  

Big data can be characterised by 5vs [3], which are volume, variety, velocity, value and 

veracity. The volume refers to the massive data sets, which are generated by many 

users, companies and organisations around the world consisting of zettabytes. On the 

other hand, the variety is another complex characteristic where massive data sets are 

generated with different formats including both of structured and unstructured data, 

such as videos, images, texts, audios and data logs. The third characteristic of big data 

is the velocity where the data moves at fast pace form point to another. The velocity 

also refers to the frequently of the generated data every seconds, minute, month and 

year. The generated data can be processed in real time or in batch mode when only 
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required. The veracity in big data refers to the large number of uncertain and imprecise 

data that should be sorted to achieve clean and authentic data. One of the significant 

aspects is to obtain meaningful value of big data. Many companies have started to 

analyse their own data to improve their own products. In the healthcare system, 

analysing the data might lead to figure out some diseases and even find appropriate 

remedies for them. 

As we mentioned, big data can be generated from various sources due to the rapid 

advance in the computer and communication networks. Today many people around the 

world use smart phones and generate large data by browsing many websites and social 

groups using the internet. The number of connected devices to the internet will reach to 

50 billion devices in 2020. Machine to machine communication (M2M) [4] also 

contributes in producing large number of data sets without any human intervention 

where sensor devices are communicated with each other to exchange information. 

Many sensors are used by many people and companies to achieve intelligent decisions 

using internet of things (IoT) technology [5]. According to Gartner [6], around 6.4 

billion things and devices were connected to the internet in 2016 and about 8.4 billion 

in 2017. This number is expected to increase to more than 20 billion in 2020. Many 

companies and governments need to analyse the huge data sets that come into different 

types and formats to extract useful information in order to improve their own 

businesses. However, processing and storing such massive data has become a 

challenging task for the existing traditional tools like relational database management 

systems (RDBMS), because it lacks the scalability of large data sets and it supports 

only the structured data that has pre-defined format. However, a solution has been 

reached to store and analyse these large data sets in effective way [7]. The solution can 

be used to provide distributed computing for parallel processing and storage by 

applying Hadoop MapReduce framework.  

The framework of Hadoop and its programming technique MapReduce can be 

implemented across a cluster of computing nodes. The cluster can be run in cloud 

computing environment such as Amazon Elastic Compute Cloud (Amazon EC2) and 

Microsoft Azure. Cloud computing is the technology that enables customers to access 

and share the computing resources using the internet. The computing resources in the 

cloud computing consists of networks, servers, storage, applications, services and 

software that can be accessed by users when they require them. Companies and users 
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can access information anytime and anywhere from any geographical point in the world 

whenever the internet is available. The computing resources can be utilised by multiple 

customers using remote access. Furthermore, Cloud computing provides the 

opportunity for individuals and businesses to use the software and hardware that are 

managed by third parties remotely [8] [9]. They provide the access to share and 

dynamically allocate/de-allocate the computing resources depends on user demand. 

Amazon Elastic Compute Cloud (Amazon EC2) provides virtual computing resources 

to be accessed by users based on pay as you go to run their own applications on 

allocated resources. Virtual computing resources can be provided as instances [10] [11].  

More details about cloud computing are provided in chapter 2. MapReduce 

programming model can be used to support big data intensive applications in cloud 

computing environment. MapReduce is a programming technique model that supports 

parallel processing and analysis for massive unstructured datasets [12]. Amazon 

provides elastic MapReduce (EMR) for big data processing using elastic cloud 

computing (EC2) machines. MapReduce can also be implemented using indoor-cluster 

consisting of several machines by installing Apache Hadoop on each node. Hadoop 

framework [13]  is a distributed computing platform that is built in java and released by 

the Apache foundation to enable the implementation of MapReduce programming 

technique on huge data sets. Apache Hadoop has been widely used by researchers and 

companies to analyse, process and store massive amounts of unstructured data in 

distributed environment. Hadoop is characterised by some salient features such as 

scalability, resiliently, fault tolerance and the parallelisation nature [14]. Both the 

MapReduce model and Hadoop framework are explained in details in chapter 2. The 

Next section presents the aim and objectives of the thesis.  

 

1.1 Aims and Objectives 

The major aims and objectives of this thesis were as follows: 

-  Aims: 

Reduce the execution time of a Hadoop job and accelerate the processing time of large 

datasets in Hadoop framework. 
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-  Objectives: 

1- Improve the performance of a Hadoop framework by applying genetic algorithms to 

better utilising the computing resources in terms of CPU, Memory and hard disk I/O. 

2- Integrate R language with Hadoop framework to enable R expressions to be executed 

across multiple computing nodes in a cluster computing environment, and evaluate the 

performance of both R and Hadoop from different aspects including scalability, 

accuracy and speedup. 

3- Improve the networking part of a Hadoop framework in large scale clusters to speed 

up the processing time of a Hadoop job during the shuffle phase. 

 

1.2 Motivations  

This thesis has number of motivations 

- Hadoop MapReduce framework is the main computing platform used by many 

businesses to support the analysis and the processing of big data. However, the 

parameters of Hadoop framework can influence the processing time of a Hadoop 

MapReduce job and hence, affect the overall performance. According to recent studies, 

the tuning of Hadoop parameters with the right values can have a considerable effect on 

the Hadoop MapReduce performance. Hadoop has more than 150 parameters that 

manage the computing resources specified for the Hadoop MapReduce job. The 

execution of Hadoop MapReduce jobs are performed using the default values of 

Hadoop configuration parameters. However, the performance of Hadoop MapReduce 

job can be affected negatively, as a result of the ineffective utilisation of the computing 

resources using the default values of the parameters. Therefore, tuning the 

configurations of the Hadoop parameters with optimal or near optimal values can have 

a positive influence on the overall performance of the Hadoop MapReduce job. 

However, because of the large number and the complexity of the Hadoop parameters, 

manual tuning has become a challenging task. As a consequence, dynamic and 

influential technique is necessarily required to tune these parameters. 

- Solar energy has become one of the main sustainable and renewable energy sources. It 

provides many features to the world, such as bill cost reduction, emission reduction, 
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green energy and low maintenance. However, one of the main issues of the solar energy 

is the unpredictability of the solar irradiation that mainly depends on the weather 

conditions. It is very important to predict and calculate the output power of the solar 

arrays based on the solar irradiation. Calculation of the large number of solar irradiation 

data is a challenging task using the traditional tools of time series analysis like R 

language. As a result, a novel method based on a Hadoop framework is highly needed 

to utilise the computing resources to achieve fast calculation and timely analysis of the 

solar irradiation.  

 

- MapReduce programming model has been widely deployed for big data analytic. It 

can be implemented based on Apache Hadoop using several computing nodes in a 

cluster computing environment. The computing resources in a Hadoop framework, such 

as memory RAM and hard disk I/O can be scaled by using several servers to store and 

process massive amounts of data sets. However, increase number of servers would 

result in increasing the network traffic of the entire network. The communication and 

network aspect of the Hadoop MapReduce framework can affect the overall processing 

time of a MapReduce job especially when the communication patterns of MapReduce 

are heavy. The reason is that the networking aspect for job scheduling is not considered 

by the default Hadoop resource manager. During the parallel and distributed processing 

of large data sets in Hadoop cluster using MapReduce, many flows are exchanged 

between hosts especially during the shuffling phase. Each flow should be allocated a 

particular amount of network bandwidth for rapid and effective processing. However, 

the traditional legacy network is not able to dynamically allocate efficient bandwidth 

for each flow. Hence, dynamic scheduling and routing algorithm for big data 

applications using Hadoop MapReduce based on software defined networking (SDN) 

has become a necessity. 

 

1.3 Research Methodology 

In this research, the performance of a Hadoop MapReduce job was evaluated by 

applying both genetic programming and genetic algorithm to optimise Hadoop 

MapReduce parameters by tuning them automatically. Software defined networking is 
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also employed on Hadoop cluster to evaluate the performance of a Hadoop MapReduce 

job with the optimised values of Hadoop parameters compared to the performance in 

conventional networks. Another work was performed on the networking side of a 

Hadoop cluster to improve the performance of the Hadoop MapReduce job using 

software defined network in small and large scale clusters.   

The proposed work was evaluated using a Hadoop cluster with two servers (Intel Xeon 

X5550 server 1 and uxisvm04 server 2). Different sizes of virtual machines ranging 

from 8-14 VMs have been created using the oracle virtual box. Hadoop Cloudera 

(Hadoop 2.6.0-cdh5.9.0) has been installed on each virtual machine (VM). All virtual 

machines were placed on Microsoft azure cloud. We assigned for each VM 8 GB of 

RAM and 4 CPU cores. Total storage of 320 GB was allocated for the cluster. The 

Ubuntu 14.04 TLS operating system was installed on each VM and X2G client was 

used as a graphical user interface to access Hadoop cluster remotely. EstiNet emulator 

software was employed to build both the fat tree and leaf-spine topology of the data 

Centre network. SDN Floodlight controller was installed on one PC. SDN application 

and Open vSwitches were also used in the data centre network. More details about the 

cluster specifications of each experiment are available in chapters 3, 4&5. 

 

1.4 Main Contributions 

The main contributions of this thesis are summarised below: 

1- An Optimisation technique is proposed in chapter 3 to optimise the parameter 

settings of Hadoop by automatically tuning them using both the genetic programming 

and genetic algorithm. Genetic programming is used to construct a fitness function 

based on the input samples datasets. The interrelations and reliance of the Hadoop 

parameters are represented by the fitness function. The optimisation technique of the 

Hadoop parameters uses the fitness function as an objective function. Genetic algorithm 

is used to search for the optimal values of the Hadoop parameters. Software defined 

networking is employed in a Hadoop cluster to evaluate the performance of a Hadoop 

MapReduce job using the optimised values that identified by the genetic algorithm 

compared to conventional network.  
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2- Chapter 4 presents a distributed, scalable, fault tolerant and effective computing 

platform to store and analyse large solar irradiation data sets. The proposed platform 

uses R and Hadoop Integrated Programming Environment (RHIPE) for fast analysis 

and statistical calculations on massive irradiation data sets. RHIPE is evaluated in terms 

of scalability, accuracy and speedup compared with R language. Gustafson's Law is 

used to analyse the speed up of parallel RHIPE in a Hadoop cluster. An amendment on 

Gustafson's Law is made to improve the performance of the parallel computation on 

intensive data sets in a Hadoop cluster based on cloud computing environment. 

3- In chapter 5, software defined networking is proposed to improve the performance of 

a Hadoop MapReduce job in a data centre network by providing network aware 

application. An Effective routing algorithm is implemented based on software defined 

networking to speed up the execution time of a Hadoop MapReduce job by dynamically 

improving the networking aspect during the shuffling phase. Both the fat tree topology 

and leaf-spine topology are used for the data centre network, so as to evaluate the 

performance of a Hadoop MapReduce job using the proposed work. The generated 

traffic from the shuffling phase of a MapReduce job in a Hadoop cluster in a data centre 

network is allocated with sufficient amount of network bandwidth using the proposed 

routing algorithm based on a software defined network. 

4- The performance of the proposed work has been evaluated using a Hadoop cluster 

placed on internal cloud managed by Microsoft azure in Brunel University London. 

SDN Floodlight controller, SDN applications and Open vSwitch packages have been 

installed separately on physical nodes for further evaluations and investigations. 

 

1.5 Thesis Organisation  

The rest of this thesis is organised as follows: 

In chapter 2, general background on the MapReduce programming technique and the 

Hadoop framework including the Hadoop distributed file system (HDFS) is provided. It 

also provides general overview on cloud computing, software defined network (SDN), 

OpenFlow and data centre network (DCN). The optimisation techniques of Hadoop 

MapReduce parameters are also introduced in this chapter. It provides the applications 
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of machine learning algorithm in Hadoop environment. Finally, this chapter provides 

some of the routing algorithms and network topologies used in the data centre network. 

Chapter 3 presents an optimisation technique using both the genetic programming and 

Genetic algorithm to optimise Hadoop parameters. It first applies the genetic 

programming to construct a fitness function based on sample data sets. The genetic 

algorithm is applied to the constructed fitness function to find the optimum or near 

optimum values of the Hadoop parameters. A comparison is conducted between the 

performance of the proposed technique and the performance of Gunther and default 

settings. SDN is also employed to improve the performance of a Hadoop job further. 

Chapter 4 presents a scalable and distributed framework for solar irradiation data 

storage and analysis. It uses R and Hadoop Integrated Programming Environment 

(RHIPE) for fast statistical calculation and analysis. The speedup of RHIPE is analysed 

using Gustafson's Law. The performance of RHIPE in terms of scalability, accuracy and 

speedup is compared with R language. 

In chapter 5, an effective routing algorithm based on SDN for Hadoop MapReduce 

applications in a data centre network is presented. Both the fat tree topology and leaf-

spine topology are used for the data centre network to evaluate the performance work. 

The proposed algorithm is compared with ECMP and TRILL to evaluate the 

performance of a Hadoop job in SDN network. The SDN network is also compared 

with the conventional one to evaluate the routing convergence time in both 

environments.   

Chapter 6 concludes the thesis and discusses some research challenges. Some findings 

of the research are also discussed. Some considerations and proposals in future are also 

presented in this chapter. 
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Chapter2 

Background 

Hadoop is an open source framework that supports the parallel processing and 

distributed storage for massive data sets using the MapReduce programming model and 

the Hadoop distributed file system (HDFS). It has become the most popular framework 

for big data applications because of its remarkable characteristics such as scalability, 

flexibility, cost effectivity, and fault tolerance. It can be scaled up from a single server 

to thousands of servers in large clusters and data centre networks based on cloud 

computing environment. However, with the scaling of servers and machines for Hadoop 

in large scale clusters and data centre network, high volume of traffic will be generated. 

The emergence of software defined network brings the benefit of intelligent network 

management that can alleviate the traffic of big data applications in a Hadoop cluster.  

This chapter provides the architecture of Hadoop and its programing model 

MapReduce. It also provides an overview of software defined network and open flow 

protocol. Furthermore, it provides an overview of cloud computing and data centre 

network and presents some routing algorithms and network topologies used in the data 

centre network.  

 

2.1   Hadoop Framework 

Hadoop [15] is a distributed framework that is written in java, developed by Doug 

Cutting and Mike Cafarella, and was released as an open source by yahoo in 2008. The 

idea of Hadoop is inspired from the google file system (GFS) and google MapReduce.  

It enables the distributed processing for both structured and unstructured data by 

running MapReduce programming model using a cluster of servers and machines. With 

the drastic increase of data, many organisations are using Hadoop such as Facebook, 

twitter, yahoo, google and YouTube [16] due to its distributed nature and its ability to 

process and analyse enormous data sets. The most significant characteristics of a 

Hadoop framework are the scalability and fault tolerance. Hadoop can be implemented 

on large scale clusters with thousands of machines to bring the computation power and 

provide the distributed storage for massive data sets. The size of a Hadoop cluster 
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depends on the size of data sets and it can be scaled up with the increasing of data 

workload. The fault tolerance feature of the Hadoop framework provides the solution 

for any hardware or software failure in the cluster. 

 

2.1.1 The Architecture of Hadoop Framework 

The core components of the Hadoop framework consists of MapReduce and Hadoop 

distributed file system (HDFS). Figure 2.1 shows the architecture of Hadoop 

framework. 

 

 

Figure 2. 1: Hadoop MapReduce Architecture 

 

Hadoop has master/slave architecture, which includes one master node and several 

slave nodes. The master node contains one job tracker that monitors and manages the 

progress of MapReduce tasks, and assigning them to the task trackers. It also handles 

the failure and error cases of Hadoop nodes. The slave nodes contain the task trackers 

that interact with the job tracker in the master node. The task trackers are responsible to 
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execute all map and reduce tasks that run on the slave nodes (Data Nodes) by receiving 

instructions from the job tracker and they also process the data movement between the 

map phase and reduce phase. The job tracker receives heartbeat messages from each 

task tracker to monitor and update the progress of all running tasks in the cluster. 

However, if the job tracker does not receive any heartbeat messages from a certain task 

tracker, it reports that there is a failure occurred in the cluster node and coordinates the 

processing of this failure to any other working node in the cluster. Hence, Hadoop is the 

main powerful and popular platform for MapReduce programming model. The next 

section gives details of the MapReduce model. 

 

2.2 MapReduce 

MapReduce is a programming technique that is used to process and analyse massive 

amount of data sets on parallel in a distributed environment across a cluster of 

computing nodes [17]. It is the core component of Apache Hadoop that proposed by 

Jeffery Dean and Sanjay Ghemawat at Google in 2004. It performs the processing and 

computation of large data using map and reduce functions. The map and the reduce 

functions are executed in two different phases. The map function is executed at the map 

phase, whilst the reduce function is executed at the reduce phase. In the map function, 

the input data is divided into form of (key/value pairs) and produces the intermediate 

results of map phase in a list of (key/value pairs). All intermediate values are sorted and 

collected with the same associated key by the MapReduce library to pass them to the 

reducer in the reduce phase. Once the reducer receives the values associated with same 

key, it combines them together to produce the final output file. 

Map function <k1, v1>           list (<K2, v2>) 

Reduce function <K2, list (v2)>          list (<k3, v3>) 

Figure 2.2 shows the process of input data sets using the MapReduce programming 

model. Different letters are presented as input data sets. We execute MapReduce 

algorithm to determine number of occurrences for each letter. 
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Figure 2. 2: The diagram of data process with MapReduce 

 

MapReduce model can be applied in different fields such as health care applications, 

social networks, artificial intelligence, machine learning and web data processing. The 
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first use of MapReduce was in 2004 by google to construct its web index and it is also 

used by yahoo and Facebook. The processing of massive amounts of data sets is a 

challenging task and time consuming. As a result, MapReduce can be used due to its 

parallel and distributed nature that can distribute large data sets to be processed using a 

large number of commodity nodes. The other remarkable characteristics, such as fault 

tolerance, simplicity and high scalability can bring the effectiveness for processing and 

storing large heterogeneous data sets. MapReduce is highly scalable as it can easily 

scale the processing of massive data over multiple computing nodes. It partitions the 

input data into several blocks and schedules them to be executed by multiple cluster 

nodes and manage the communication between nodes in the cluster. It also can 

automatically handle any crashing or failure in the cluster without any effect on the 

computation process and the execution time. It supports parallelism in the cluster for 

processing intensive tasks and provides efficient implementation for different 

applications using map and reduce functions [18]. 

MapReduce is the main programming model of Apache Hadoop project [15]. Other 

projects are also implemented based on it. It is considered as the processing model of a 

Hadoop framework. The execution of a MapReduce job is performed in two stages. The 

first one is the map stage, where map job processes the input data sets that stored in the 

Hadoop distributed file system (HDFS). The mappers take the input data from the 

HDFS and divide it into several blocks. The size of data blocks can be configured with 

different size like 64MB or 128MB. All data blocks are distributed over different 

computing nodes in the cluster. Worker node reads the contents of each data block by 

assigning a map task for each block and apply user defined function. The intermediate 

results of map function are stored in a buffer memory. The results stored in the buffer 

memory are periodically written as partitions into local disk, which belongs to the 

cluster node that runs the map task. The locations of buffered results written on the 

local disk are moved back to the master node, which forwards them to the cluster node 

that runs the reduce task. In the second stage (also called the reduce stage), the reducers 

reads the results remotely from the local disks of mappers. The intermediate results are 

sorted by the reducers as groups of the same keys with their corresponding values. 

Furthermore, external sort is applied if the memory does not accommodate the 

intermediate output results. The reducers iterate over the sorted intermediate output 

results and move each unique key with its corresponding intermediate values to the 
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reduce function. The output results of reduce function in the reduce stage are written as 

N output files according to the number of reduce tasks. The final output files are stored 

into Hadoop distributed file system. Figure 2.3 shows the execution of MapReduce job. 

 

 

Figure 2. 3: MapReduce execution job 

 

Map and reduce tasks are automatically distributed and executed in parallel by the 

MapReduce programming model across multiple cluster nodes or multiple processers in 

a single cluster node. The MapReduce model executes the map and reduce task 

simultaneously on a computing node in the cluster by specifying a number of map and 

reduce slots.  Number of map and reduce slots depends on the amount of hardware 
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resources and the workload of Hadoop MapReduce framework. Map and reduce slots 

number should fit the characteristics and resources of the hardware in the cluster. Map 

and reduce slots are configured on the task tracker nodes through the configuration file. 

We suppose that there is 16 task tracker nodes (data nodes) and one map and reduce slot 

is assigned for each map and reduce task in the task tracker node, the total number of 

map and reduce slots is 16 slots. This number can be increased depends on the hardware 

resources and Hadoop workload to be 2 map and 2 reduce slots for each task in the task 

tracker node. However, the use of less map and reduce slots number than the map and 

reduce tasks leads to prolong the execution time. 

 

2.3 Hadoop Distributed File System 

With the continuous increase of datasets that are generated from different sources, it 

became a challenging task for the traditional tools to store and processes such massive 

data in a single device [19]. As a consequence, the partition and distribution of these 

massive datasets through a cluster of computer devices or several servers has become a 

vital solution. The datasets stored in different nodes of the cluster network are managed 

by a distributed file system. In Hadoop framework, the distributed file system is called 

HDFS (Hadoop distributed file system). 

 HDFS is responsible to store large scale datasets over several computers in the cluster 

network [20] [21]. The idea of HDFS is inspired from the Google File System (GFS) 

[22] [23] to run the applications of Hadoop MapReduce. It is a file system built in java 

and can provide reliable services for different users with different requirements and 

scalable storage for large datasets based on a considerable number of cluster nodes and 

commodity servers [24]. The key features of the HDFS, such as fault tolerance, 

scalability, reliability and availability have provided high streaming access to data 

applications. It is designed to execute a series of jobs in a batching processing mode. 

The data stored in the HDFS is divided into blocks and create multiple copies across 

different data nodes in the cluster. The size of each data block and the replication factor 

can be set in the configuration settings of a Hadoop cluster by a Hadoop user. Each data 

block is assigned with the same size and by default it is set to be 64MB and the 

replication number is 3. The replication of each data block is stored in different data 

nodes to support the fault tolerance feature and data availability in case of any failure or 
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crashing in one of the data nodes in the Hadoop cluster. HDFS is designed to support 

client/server architecture, where there is one server and several clients. 

The architecture of HDFS system consists of two main components. The first one is the 

name node, which is responsible to control the file system namespace and manage the 

creation of files and directories. It also manages and regulates the client access to files 

and performs some file operations such as opening, closing and renaming files. The 

name node is a GNU/Linux operating system and software that run on the master node 

of Hadoop cluster and work as a server. Secondary name node is employed as a 

checkpoint node to assist the name node to achieve better performance. The secondary 

name node is not an alternative node or backup of the name node. The second 

component includes several data nodes that run on the slave nodes in the Hadoop 

cluster and work as clients that receive the instructions from the server (Name Node). 

One data node can be run on each slave or worker node. All data files stored in the 

slave nodes are managed by the data nodes. The data nodes also manage and control the 

creation, deletion and replication of data blocks in the cluster by receiving the 

instruction from the name node. Furthermore, they manage read/write operations on the 

file systems. The architecture of HDFS system is shown in Figure 2.4. 

 

 

Figure 2. 4: The architecture of HDFS system 
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As can be seen in Figure 2.4, the metadata files that include the file system namespace, 

block ID, replication factor, replicas number for each file, the mapping process of 

blocks to data nodes, block replicas location on the data nodes are stored and 

maintained in the name node. On the other hand, the data nodes in the cluster manage 

the storage attached to them and store the multiple replicas of data blocks. These 

replicas are stored on different data nodes in the same rack or can be stored in different 

nodes in a different rack to obtain better performance of the cluster and increase the 

availability of data blocks. 

 

2.4 Optimisation Techniques of Hadoop MapReduce Computing 

Resources 

Massive data sets are generating every day from various sources and different fields 

including social media, financial sector, healthcare system, education and many more. 

As a result, this large number of generated data should be processed, analysed and 

stored on large number of connected devices in cluster computing environment like 

Hadoop framework. The huge amount of data sets is stressing the computing resources 

of the Hadoop cluster in terms of memory, CPU and hard disk I/O. Many optimisation 

techniques have been proposed to improve the performance of the Hadoop MapReduce 

framework. Some approaches have focused on the data locality improvement. Some 

other techniques have been developed to enhance the Job/Task scheduling of Hadoop 

MapReduce. Moreover, many techniques and algorithms have been proposed and 

implemented to optimise the parameter settings of the Hadoop framework to achieve 

better performance of a Hadoop MapReduce job. Some optimisation techniques of 

Hadoop parameters are presented in the following section. 

 

2.4.1 The Optimisation Techniques of Hadoop MapReduce Parameters 

Hadoop has become the most popular framework due to its salient features that enable 

the scalability, flexibility and the parallel processing in a distributed environment. 

However, it is a complex system, which contains a large number of complicated parts 

that communicate together through a number of cluster nodes. The processing time of 

jobs in a Hadoop framework can be affected by these parts as well as the hardware 
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resources, networking resources and the parameter settings of the Hadoop framework. 

Hadoop framework contains around 200 parameters and some of them can play a vital 

role in the processing time of Hadoop MapReduce jobs if they are configured properly 

with the optimum values. However, because of the complicated and the large number of 

these parameters, the optimal settings are becoming a challenging process as well as 

being time consuming. Therefore, considerable approaches and algorithms have been 

developed to adjust the parameter setting of the Hadoop system automatically. The 

proposed work in [25] have tuned the parameter settings of a Hadoop framework by 

applying Derivative-free optimization (DFO) technique to achieve optimised 

performance for applications. DFO uses DevOps tools to obtain the effective 

configurations of the cluster by applying the adjusted parameters according to the DFO 

decisions. In [26], an offline method was used to optimise the parameter configurations 

of the Hadoop framework. Multi- objective steady-state Non-dominated Sorting 

Genetic Algorithm II (ssNSGA-II) was employed to optimise two objectives, which are 

the resources utilisation of the instance and improve the execution time of Hadoop jobs. 

The optimum configuration settings are selected based on the two objectives. The 

proposed system has considered the dynamic machine instance type, but it ignored the 

dynamic cluster size.  

Another work to optimise Hadoop parameters was conducted by [27] based on an 

adaptive recommendation system called mrEtalon that selects the near optimum 

parameter settings for the incoming job. The recommendation system uses a warehouse 

of configuration parameters to obtain the optimal one rapidly based on filtering method. 

Chapter three in this thesis also presents an optimisation approach using both the 

genetic algorithm and genetic programming to select the optimal parameters of a 

Hadoop cluster to enhance the performance of Hadoop jobs. The presented work uses 

both algorithms to obtain the optimal settings of the Hadoop parameters in conventional 

network and then, apply same parameters for the Hadoop cluster with different size in 

SDN environment to explore the impacts of the optimised parameters on the networking 

side of the cluster that can affect the performance of the execution time of Hadoop jobs. 

The complicated correlation between Hadoop parameters are taken into account through 

the optimisation process. Furthermore, some other ways have been also implemented on 

the resource provisioning to improve the performance of a Hadoop cluster [28] [29] 

[30]. The work in [31] optimised the performance of the Hadoop cluster by improving 
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the execution time of Hadoop MapReduce jobs. However, this model only supports 

specific type of jobs that based on the query and analysis for the short jobs. Piranha is 

another system that proposed in [32] to improve the performance of short jobs in 

Hadoop. The proposed work improved the response time of short queries by reducing 

the execution time of the running jobs. Similarly, SHadoop [33] is also proposed to 

optimise the performance of short jobs by improving their own execution mechanism. 

The setup and clean up tasks of Hadoop MapReduce jobs have been optimised in this 

work to reduce the cost time during the initialisation and termination phases. In the 

proposed work, instant messaging communication mechanism is also introduced to 

speed up the performance of task execution and scheduling. 

 

2.5 Commercial Hadoop Distributions 

The demand for big data technologies is increased due to the increasing number of 

connected devices that generate huge amount of data every day. Apache Hadoop 

became the core technology of big data applications because of its scalability and cost 

effectivity. It can be downloaded and installed for free from http://hadoop.apache.org 

.Since the open source of Apache Hadoop has some limitations, a number of 

commercial distributions vendors, such as Cloudera, Hortonworks, Amazon elastic 

MapReduce, MapR and IBM open platform are implemented to tackle them by 

providing additional features and functionalities for Hadoop platform users. Different 

functionalities and characteristics, such as reliability, completeness and support have 

been added to enable users to perform different tasks and applications using a Hadoop 

cluster [34]. In the following section, we provide an introduction of Apache Hadoop 

ecosystem.  

 

2.5.1 Apache Hadoop Ecosystem 

Hadoop is an open source framework that provides storage, processing and analysis for 

huge datasets. However, it is not a comprehensive system that can perform various 

applications of massive datasets. It is an efficient platform to process and analyse 

unstructured datasets stored in HDFS only. The storage and processing of other types of 

http://hadoop.apache.org/
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datasets, such as semi structured and structured data is infeasible. Hence, Hadoop 

ecosystem has been developed to support Hadoop framework to perform many big data 

applications. The ecosystem of Hadoop contains several components as shown in 

Figure 2.5. A discussion for a list of Hadoop ecosystem components for Cloudera open 

source distribution including Apache Hadoop (CDH) is given below.  

 

 

Figure 2. 5: Hadoop ecosystem in Cloudera distribution 

 

Hue: hue is an open source web interface licensed under Apache 2.0 written in python 

and used by Apache Hadoop to support and manage its ecosystem. It can be installed on 

any PC as a web interface platform for big data analysis using Apache Hadoop. Hue 

supports many applications that provide web-based access to CDH components. Hue 

applications are managed by Hue server which interfaces and communicates with CDH 

components and other servers. Hue server acts as an intermediate container of web 

applications between CDH that are installed in PC and the web browser [35]. It is 

employed as editor for some applications of Hadoop ecosystem in CDH such as Hive, 

MapReduce, Impala, Pig, Spark and many more. It also can be used as a dashboard to 

visualise and explore data easily by Apache Solr and without any need for SQL 

programming. It automatically schedules the workflows and jobs as well as performs 

some operations, such as stopping or pausing jobs, job resubmission and job progress 
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monitoring. Furthermore, we present the browsers of Hue that is used to search and 

accomplish some operations on jobs and data in a cloud or a cluster network [36].   

1- It browses yarn and Oozie jobs.  

2- It browses tables such as (Hive, Impala, HBase). 

3- Browsing for HDFS S3 and ADLS. 

4- Browsing solr indexes. 

5- The browsing of Sqoop and sentry policies. 

 

Hive: hive is an open source software project written in java licensed under apache 2.0. 

It is built on top of Hadoop as a data warehousing for querying, summarising and 

analysing vast amounts of datasets that are stored in HDFS. It was initially developed 

by Facebook and it is also developed and used by different organisations like Netflix 

and the Financial Industry Regulatory Authority (FINRA) [37]. Hive uses query 

language called HiveQL, which is similar to SQL to enable SQL-like queries and 

convert them into MapReduce jobs to be executed in a Hadoop environment [38] . It 

consists of several parts that enable some operations on data in Hadoop ecosystem. A 

brief introduction about the main parts of Hive is given below. 

 1- Metastore: it stores the metadata for each table in Hive and support the driver to 

monitor the progress of different datasets that stored and distributed over different 

nodes in the cluster. 

2- Driver: it controls and manages the lifecycle and progress of HiveQL statement 

execution. 

3- Compiler: it performs the compilation process of HiveQL to convert the query from 

an abstract syntax tree (AST) to a directed acyclic graph (DAG). 

4. Optimiser: it is responsible to conduct the transformation process on the execution 

plan to achieve high performance. 

5- Executor: it executes and schedules the tasks through the interaction with the job 

tracker in the master node of a Hadoop cluster.  
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6- Hive server: Hive or thrift server provides a thrift user interface for external users to 

communicate with Hive through DBC/ODBC protocols. 

 

Pig: pig is a high level language tool that is designed to query, analyse and process 

massive amount of datasets in parallel and distributed environment using a scripting 

language called pig Latin, which is similar to SQL in terms of data grouping, ordering 

and filtering. It uses the data flow process to represent and manipulate the huge datasets 

in a Hadoop cluster [39]. It is first developed by yahoo for analysing and processing 

large datasets by executing MapReduce jobs internally across several machines in the 

Hadoop cluster and store the output files in HDFS. It is now being used and developed 

by Apache software project to support many applications of huge datasets in the 

Hadoop environment. Pig provides an easy programming environment for programmers 

to execute MapReduce jobs using pig Latin. It also provides optimisations to support 

the automatic execution of tasks and provide high extensible to create special function 

for special purpose processing. However, it is only designed to support the batch 

processing mode of large datasets.  

 

Oozie: Apache Oozie is an open source reliable and scalable tool, which built in java 

and designed to control and manages the workflow scheduling of MapReduce and pig 

jobs in distributed environments like Hadoop. It can process multiple jobs by 

combining them in a sequential order and run them concurrently using workflow 

definitions, which are written in hPDL (XML process definition language) [40] [41]. 

The workflow system is a collection of control flow and actions like MapReduce and 

big jobs that arranged in Directed Acyclic Graph (DAGS) that specify a sequence of 

actions to be executed. The control flow in Oozie performs some workflow operation, 

such as start, end, node failure and control the execution path of workflow. 

 

HBase: HBase is an opens source scalable distributed database that written in java and 

developed by Apache software foundation to be run on top of HDFS. It is widely used 

by various enterprises, such as Facebook, Yahoo, Adobe, Netflix, Airbnb, Spotify and 

many more. It is developed based on the idea of Google Big table [42]. It was designed 
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to provide random and rapid real time access for Hadoop applications to read or write 

large data in HDFS with high throughput and low latency. HBase can store huge 

amount of structured data that includes billion of column and row pages in tables across 

different cluster nodes. It leverages the scalability and fault tolerant features to execute 

MapReduce jobs on these tables to extract useful information [43] [44]. Unlike 

relational database management system (RDBMS), HBase is not designed to support 

SQL queries and transactional applications. However, it is linearly scalable and able to 

store and distribute large number of tables through several cluster computing nodes 

unlike RDBSM, which is not scalable system and designed to store small number of 

tables. The manipulation process of large tables is managed by several components of 

HBase. For instance, the region server in HBase handles all tables that divided into 

several regions and processes read/write request for each region. It also configures and 

specifies the threshold size of each region. The region server can be run on each data 

node in the Hadoop cluster. The load balancing of all regions is managed by the HBase 

Master Server that assigns them to the region servers. The HBase master is also 

responsible to monitor and maintain the status of the Hadoop cluster. HBase can be 

scaled to be run on several servers; however, these servers are only managed by 

ZooKeeper that provides reliable distributed synchronisation and centralised 

management. A discussion about ZooKeeper is given below. 

 

ZooKeeper: ZooKeeper is open source software project that written in java and 

licensed under Apache 2.0. It was originally developed by yahoo and now used by 

Apache software foundation in the Hadoop ecosystem to provide centralised and 

distributed configuration services for distributed applications. Many enterprises such as 

Yahoo, Reddit, Rackspace and eBay use ZooKeeper because of its reliability, 

scalability, high availability and simplicity. It can provide different services including 

configuration information management, distributed synchronisation, coordination 

services and naming services [43] [45] [46] . 

 

Flume: Flume is a reliable, resilient and distributed service that built in java and 

licensed under Apache 2.0. It is also scalable and fault tolerant tool, which designed to 

collect and aggregate large streaming datasets from various sources such as log and 
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event files and move them into HDFS at higher speed [47]. Flume can efficiently 

import large event data that generated by various social websites like Facebook and 

twitter into HDFS or HBase. The data generated from Facebook and twitter or any other 

various sources is collected by several flume agents, which are number of JVM daemon 

process. Additional agents are also applied as a data collector, which is responsible to 

collect the data from the flume agents and move it into centralised storage like HDFS or 

HBase. Each flume agent mainly consists of three interactive components which play a 

significant role to collect, import and ingest the streaming event data into the Hadoop 

system. The first component of a flume agent is the sink, which receives the event data 

produced by the generators and transfers them to a channel which is next component of 

the flume agent. The channel is used as buffer storage of the event data received from 

the sink. Different channels can be used such as JDBC, file system and memory 

channel. The event data is consumed from the channels by a sink which transfers the 

consumed data to the following destination [48] [49]. 

 

Sqoop: Apache Sqoop is an open source tool built in java and designed to transfer 

massive datasets between Apache Hadoop and relational database systems. The name of 

Sqoop is derived from SQL and Hadoop. The structured datasets that stored in 

relational databases, such as MySQL, Postgres, Teradata and oracle are moved to 

Apache Hadoop to be processed and stored into HDFS and HBase using Sqoop 

command-line interface. Sqoop can be employed to perform some operations like ETL 

processing and data extraction from Hadoop. It can increase the system utilisation and 

improve the performance of parallel data transfer. It also improves the efficiency of data 

processing and analysis in Hadoop cluster by combining both structured and 

unstructured data [50] [51]. 

 

2.5.2 Hadoop 2 

With the wide development of big data applications, Apache Hadoop launched another 

version, which is the Hadoop 2 to support different applications that cannot be achieved 

using Hadoop 1. Since Hadoop 1, supports only the batch processing of big data and 

lacks the support of non-MapReduce tools, Hadoop 2 was developed to support non-
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batch processing and different applications of big data such as Machine learning 

applications in a distributed processing environment. It also provides the support of 

other distributed tools, such as spark and HBase to be implemented in Hadoop 

MapReduce environment. Hadoop 2 provides (YARN), which is the resource manager 

that manages the cluster resources, while data processing is performed using different 

processing tools. On the other hand, in Hadoop 1, the processing and the management 

of the cluster resources are both performed by the MR itself. One of the significant 

characteristics of the Hadoop system is the scalability. Despite both Hadoop 1 and 

Hadoop 2 are scalable systems; however, the limited number of computing nodes in 

cluster network of Hadoop 1 is the key limitation to process and analyse very large 

datasets in the cluster network. Therefore, developers have designed Hadoop 2 to 

support large number of machines to be run per cluster. In Hadoop 2, the number of 

cluster machines can be scaled up to 10000 nodes per cluster while in Hadoop 1; the 

cluster network can run up to 4000 nodes [52] [53]. Hadoop 1 has several data nodes 

and one Name Node that manages the namespaces of the entire cluster network. 

Hadoop 2 provides HDFS federation to address the drawbacks of previous HDFS 

architecture that supports only single Name Node to manage the entire cluster. Multiple 

Name Nodes can be used with HDFS federation to improve the scalability of the name 

services and support the management of the whole cluster namespace [54]. It provides a 

remarkable feature for HDFS architecture by configuring two name nodes in an 

active/passive mode instead of one name node to avoid the Single-Point-of-Failure 

(SPOF) and provides high availability (HA) of HDFS. This feature has been added to 

overcome the limitation in Hadoop 1 where a failure happens in the single name node, 

operator intervention is required to overcome such issue. On the other hand, standby 

name node is added in Hadoop 2 to automatically overcome any crashing hardware or 

software in the active name node. 

 

2.5.3 Hadoop 3 

Hadoop 3 has included some important improvements over the previous editions of 

Hadoop 1 and Hadoop 2 [55]. The minimum support of Java has been increased from 

Java 7 to Java 8 in Hadoop 3. The fault tolerant feature and the storage scheme in the 

Hadoop 3 has been improved by enabling erasure coding in HDFS to reduce the storage 
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overhead instead of using replication method in both Hadoop 1 and Hadoop 2. Hadoop 

3 has improved the scalability and availability of the Hadoop system by adding multiple 

standby name nodes. The timeline service of Hadoop 2 has been updated to be more 

scalable and reliable in Hadoop 3. It can improve the performance of machine learning 

and data science applications by enabling GPUs support that play a significant role to 

enhance the computations needed for these applications. It performs better in data 

balancing than Hadoop 1 and Hadoop 2, because it supports intra-data node disk 

balancing. The HDFS balancing scheme used in Hadoop 1 and Hadoop 2 is not 

effective balancer, because it leads to unequally disk space in each server in case of 

adding new storage to an existing server with old drives. Therefore, applying intra-node 

disk balancer can overcome this issue and make the disk space in each sever is 

distributed equally [56] [57]. 

 

2.6 Machine Learning Applications in Hadoop Environment 

Nowadays, massive datasets are generated from different sources and applications. 

Extracting and predicting useful information based on input data and without any 

explicit programming has become possible with machine learning algorithms. However, 

the prediction and extraction of such information from huge datasets is a challenging 

task and time consuming, because it requires high computation resources, which are not 

provided by single machines. As a result, some software and tools have been designed 

to support the integration between machine learning algorithms and a Hadoop 

framework that supports the implementation of several machine learning applications 

and techniques using multiple cluster machines. An introduction of some machine 

learning tools in Hadoop environment is given below. 

 

Apache Mahout: Mahout is an open source distributed framework that was developed 

to support machine learning applications running on top of a Hadoop cluster. It can run 

scalable machine learning algorithms based on Hadoop platform using MapReduce 

paradigm to implement different machine learning techniques such as clustering, 

filtering, classification and recommendation [58]. It is also used to perform different 

machine learning applications like forecasting, data mining, pattern recognition and 
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many more. It provides some math and statistic operations by applying java libraries. 

Furthermore, Mahout supports applications that require evolutionary programming by 

providing distributed fitness function capabilities. It uses the library of Apache Hadoop 

to scale the machine learning algorithms to be run in the cloud computing environment. 

Moreover, it can speed up the execution time of analysing large datasets for different 

machine learning applications. Some clustering algorithms, such as k-means, fuzzy k-

means and mean-shift can be implemented using Apache mahout based on the 

MapReduce programming. Many companies and organisation such as Facebook, 

Twitter, LinkedIn, Adobe and yahoo use Mahout for different needs.  

  

R language: R is a programming language and free software tool that is written in C, 

Fortran and R. It was first developed by Ross Ihaka and Robert Gentleman at the 

University of Auckland in New Zealand and it is currently developed by the R 

development core team. R is mainly designed to perform calculations and statistical 

computing on data. It is also widely used for time series analysis, data mining, machine 

learning applications (linear and nonlinear modelling, classification and clustering) 

[59]. R Language provides reliable and flexible services for data manipulation, 

calculation and analysis such as data cleaning, data extraction and predictive modelling. 

It can effectively store data as it can connect with different data stores such MySQL, 

MongoDB and HDFS in Hadoop cluster. It also can handle data and provides effective 

support for relational database systems. Efficient tools for data analysis and 

visualisation are also provided by R language. It is not a statistical tool but provides the 

efficient environment to implement different statistical techniques to extract meaningful 

information from datasets. However, it is not scalable and distributed system that can 

handle large scale datasets, it is designed to handle and process limited amount of 

dataset. As a consequence, it became imperative step to integrate R language with 

Apache Hadoop, which is the main platform for big data processing and analysis. The 

operations of data analytics with R language can be scaled up using several computing 

machines running on a Hadoop cluster. The following section explains the integration 

between R and Hadoop. 
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RHadoop: RHadoop is an open source framework developed by revolution analytics to 

support big data analytics with R based on a Hadoop cluster [60]. It has three different 

collections of R packages including rhdfs, rhbase and rmr. All three packages have been 

implemented and tested on recent versions of Cloudera and Hortonworks commercial 

Hadoop distribution as well as the recent R version [61]. The connection between 

HDFS and R is provided by rhdfs, which allows R users to read, write and amend any 

files that managed by R functions and stored in the HDFS. On the other hand, the files 

stored in HBase distributed system can be read, write and modified by R programmers 

using rhbase. Map and Reduce functions can be applied on different statistical analysis 

in R using rmr software package. 

 

RHIPE: RHIPE is an open source software package that used for big data analytics 

using R expressions and MapReduce programming in a Hadoop environment [62]. It 

was developed by Mozilla’s Suptarshi Guha at Purdue University in 2012 to enable R 

programmers to run Map and reduce jobs in R environment based on Hadoop and 

HDFS. It uses D&R mechanism (divide and recombine) to perform the analysis on 

large datasets in a distributed environment. It takes the large input datasets and divides 

them into several subsets and then applies R operations within the map phase to process 

them in parallel to obtain intermediate results. All the intermediate results that 

generated from the map phase are recombined during the reduce phase into a set to 

obtain the final output. Since RHIPE is an integrated system of R and Hadoop, several 

software packages and libraries need to be installed on several machines in the cluster 

network. The installation process of RHIPE is explained in chapter 4.    

 

2.7 Data Centre Network Architecture 

Data centre network (DCN) is a collection of large number of interconnected devices 

that provide computational, storage and network services for different users and 

enterprises. It includes a large number of servers and switches, which are connected 

through communication links.  It has been widely deployed for a wide variety of 

internet and cloud-based applications like Google, Yahoo, YouTube and many social 

networking including Facebook and twitter. It is also used for data processing and 
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management by various projects, such as Google file system (GFS), Big Table, Dryad, 

Hadoop distributed file system (HDFS) and MapReduce programming model. One of 

the largest data centres in the world is Chicago-based data centre that provides different 

Microsoft services. With the increasing demand of data centre network in different 

cloud-based services, large number of hosted servers has been increased to provide 

efficient computing and storage services. However, high traffic is generated due to the 

information exchanged between the large numbers of servers that stresses the 

bandwidth in traditional data centre network. As a result, some architectures have been 

proposed to tackle the traffic issues and improve scalability, resiliency, flexibility, fault 

tolerance, cost effectiveness and energy efficiency [63] [64]. One of the proposed 

network topologies of a data centre network is fat tree topology that was proposed by 

Al-Fares [65]. A description of fat tree topology is given below. Furthermore, leaf-spine 

topology is another architecture, which is explained in section 2.7.2.   

 

2.7.1 Fat Tree Topology 

The traditional design of a data centre network involves three different layers of 

interconnected switches or routers. Fat tree topology consists of three layers of 

switches. The first one is the core layer that provides packet forwarding services for all 

flows between the lower layers within the data centre network as well as flows going 

outside the data centre. This layer provides resilient route to avoid single point of 

failure and provides connections between different aggregation layer switches. The 

second one is the aggregation layer, which is located in the middle between the core and 

edge layer. It has some integrated modules that provide various services, such as 

firewall, network analysis, intrusion detection, SSL offload and server load balancing. 

The edge layer, which is located on the top of rack, is the third layer that provides the 

connection between different hosted servers within the same rack. The hosted servers in 

the data centre network can directly connect to the edge layer switches. The switches in 

the core layer provide the connection between the data centre and the internet [66] [67]. 

Fat tree topology has some salient features that can be invested to obtain efficient 

performance for big data applications like MapReduce in the data centre network. Fat 

tree topology has a number of pods depending on the topology size of the data centre 

network. Each pod contains a number of edge and aggregation switches that connect to 
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each other without the need to pass through the switches in the core layer. However, if 

the switches in the aggregation and edge layers are located in different pods, the traffic 

between them should pass through the switches of core layer. According to [68] the 

relationships between the switches in the same pod or in different pods should be 

exploited to achieve effective routing and better path allocations for the flows in the 

data centre network. Moreover, another significant feature, which is the connection 

between the hosted servers, can be also employed to obtain an efficient path allocation. 

Three different connections are exist among the servers in the fat tree topology, the 

connection between any two servers in the same rack called rack-local connection, 

because the traffic between them remains inside the rack. On the other side, the 

connection between two servers, which are located within the same pod called pod-

local connection as the traffic between the two connected servers should traverse at 

least one switch in the aggregation layer. The last type of connection between two 

servers is the remote connection where both two servers are located in different pods. In 

this connection, the traffic between the two servers should traverse the switches in the 

core layer. The architecture of fat tree topology is shown in Figure 2.6. 

 

 

Figure 2. 6: fat tree topology architecture 
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2.7.2 Leaf-Spine Topology 

Due to the wide use of cloud networks and data centre network, efficient and resilient 

design is highly required to improve the performance of east-west traffic. As a 

consequence, a flat design like leaf-spine is proposed to meet the requirements of 

current network applications, such as cloud applications and big data applications. Leaf-

spine topology is a list of leaf switches at the access layer, which are connected to a list 

of spine switches at the top layer in a mesh full topology.  Each leaf switch is connected 

to spine switch; however, the switches in the same layer are not interconnected to each 

other as shown in Figure 2.7. One of the main advantages of leaf-spine topology is the 

minimization of latency and some other bottlenecks between the leaf switches by 

making only one hop away from each other. Both layer 2 and layer 3 can be used to 

switch and route the links between the leaf and spine switches. In the layer 3, each link 

between the spine and leaf layers is routed using open shortest path (OSPF) or border 

gateway protocol (BGP) based on equal cost multiple path (ECMP). On the other hand, 

Transparent Interconnection of Lots of Links (TRILL) or Shortest Path Bridging (SPB) 

can be applied by layer 2 for switching the links in the leaf-spine topology [69]. 

 

 

Figure 2. 7: leaf-spine topology architecture 
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2.7.3 Routing Algorithms in Data Centre Network 

Several algorithms are exist for general routing in computer and communication 

networks. These algorithms can also be applied to rout the traffic of shuffling flows 

between different hosts in a data centre network based on fat tree topology to improve 

the performance of big data applications. For instance, the traffic of shuffling flow 

between any two hosts can be routed by selecting the shortest path between them based 

on the shortest path algorithm. However, the shortest path might trigger congested links 

in the fat tree topology. Single best path for the traffic can be selected using Open 

Shortest Path First algorithm (OSPF) [70]. However, this algorithm lacks the efficient 

scalability. Since the fat tree topology provides redundant links, Equal Cost Multipath 

Algorithm (ECMP) [71] can now be used to route the traffic using these links to utilise 

multiple paths between any two hosts to route the traffic of shuffling flows. However, 

use multiple paths will result in a low performance especially for large data centres, 

because the amount of entries in the routing table increases exponentially and 

consequently increase the latency of the routing algorithm. In addition, the nature of 

conventional data centre network can also affect the performance of routing algorithms 

for flow scheduling due to its static network configurations. The flow scheduling can 

only be implemented by the switches in the aggregation and core layers because of the 

hardware constraints. As a result, a central controller is required to achieve better flow 

scheduling. The solution is provided by software defined network that can provide a 

dynamic network configuration to adopt different requirements for different 

applications. 

 

2.8 Cloud Computing Technology 

Cloud computing is a term that refers to use wide variety of computing services, storage 

and other IT resources over the internet. In recent years, cloud computing has become 

very common technology that used by many companies and organisations. Many 

companies are choosing to depend on the cloud computing technology for crucial 

business duties. Some companies, such as Google and IBM use cloud computing to 

store their information and manage their resources. Furthermore, cloud computing is 

used in different fields including marketing, data centres and libraries [72]. It is also 
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scalable and reliable technique for distributed processing and massive data sets storage. 

Amazon uses cloud computing in the form of virtual servers to provide elastic 

computing services and storage management for big data applications, such as 

MapReduce and other distributed tools that run on top of apache Hadoop. Due to many 

facilities offered by cloud computing, a large number of companies have depended on it 

and many of them have invested more money on it recently. According to Gartner 

research, the expectancy of investment in cloud computing will reach $150 billion. A 

survey has been conducted on six data centres showed that between 10% and 30% of 

computing power was utilised by servers, while less than 5% of the computing power 

was employed by Desktop PCs. About 66% of the information technology budget is 

spent by companies and organizations on support and conservation activities, which are 

not needful in the era of globalisations [73]. A phone survey of 54 organizations was 

conducted in the summer of 2012, ranging in size between twelve and hundred 

thousand of workers. According to this survey, some form of cloud service was being 

used by 22% of users. The average size of cloud services users was 1,378 workers, in 

comparison with the average size of 322 workers who were not utilising the cloud 

services. Today, the larger companies and enterprises are exploring methods to include 

expenses and manage the enormous increasing of data sets [74].  

Cloud computing has salient characteristics that attract many enterprises and 

organisations, such as scalability, resiliency, on-demand utilisation, ubiquitous access 

and cost effectivity. It provides many benefits for many companies and users. It has 

become easily for users to use and access servers, storage and databases over the 

internet using cloud web services platform. For instance, as we mentioned before 

amazon can offer reliable computing resources for users and organisations to process, 

store and analyse large scale data sets through virtual computing and distributed 

environment called instances. The companies and users can choose their own instances, 

according to their processing and storage requirements. There are several types of cloud 

services are provided like public cloud, where the services of this cloud are open to the 

public and can be accessed by users through the internet; such services are provided by 

Google and Microsoft. Some companies prefer to choose their cloud services to be 

private where they can store and manage their own data that cannot be accessed or 

shared with other companies or organisations. This type of cloud services can be 

managed by the company itself or third party. Some other companies use the hybrid 
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type of cloud services where both public and private cloud services are combined 

together. These companies choose to store their own critical information on the private 

cloud, whilst the non-critical information is stored on the public cloud [75]. Cloud 

computing has three main models [76] [77] ,which are explained below. 

 

Infrastructure as a service (IaaS): IaaS provides the hardware infrastructures of cloud 

computing including virtual serves, computing facilities, storage system and database 

management, network devices and data centre place. Users can configure and install 

any software and write some programs over the services provided by Iaas. Some 

companies that provide such services are Amazon web services, GoGrid and 3 Tera. 

 

Platform as a service (PaaS): PaaS is a software layer that runs on infrastructures 

provided by Iaas. It allows customers to manage and develop their own applications 

without the need to build and maintain the infrastructures by providing operating 

system and application servers through platform providers like Google App engine, 

force.com, Azure service platform and LAMP platform (Linux, Apache, MySql and 

PHP). 

 

Software as a service (SaaS): SaaS is software provided to the users over the internet 

as a service on demand. It can be accessed by the users through a web browser. Using 

SaaS, the users are not required to maintain storage space, handling data loss and 

manage installations for software as all of these services are provides by SaaS. It is 

provided by many companies like Google Docs, Salesforce, Microsoft and many more. 

Figure 2.8 shows the three models of cloud computing. 
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Figure 2. 8: Cloud Computing Model 

 

2.9 Software Defined Networking 

With the advent of internet of things (IoT) and virtualisation technology of IT and 

networking resources as well as the increasing demand of cloud computing services, it 

has become very crucial for networking industry to explore efficient network 

architectures that can cope up with the increasing size of networks due to the large 

number of connected devices. Software defined networking (SDN) is a novel 

technology that can provide the solution for many network applications that cannot be 

managed by the conventional IP networks. It is the technology that separates the control 

plane from the data plane to tackle the limitations of current network infrastructures by 

providing agile centralised management and intelligent programming for network 

configurations. In conventional networks, both the forwarding and routing process are 

performed by network device itself. However, in SDN environment, the control plane is 

separated from the data plane to be implemented as a software layer that runs on 

commodity server called the SDN controller. The control plane is responsible to 
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manage and control the routing process of packets in the SDN network. It acts as the 

brain of the SDN network that provides an intelligent and centralised management. On 

the other hand, the forwarding process of packets in the SDN network is performed by 

the data plane (network device). Software defined network brings many benefits that 

can have a significant impact on many network applications. It provides the support for 

the accurate and automatic configuration management of the entire network. It also 

supports automated load balancing and the scalability of network resources by 

providing data flow optimisation technique that enables multiple paths for each flow 

from the source to the destination. This technique, which is provided by the SDN 

controller, can split the traffic of each flow across multiple nodes in the network. SDN 

can also optimise the networking and computing resources, in addition to the storage 

resources in the network. It is able to provide efficient network administrations and 

improves the performance of server virtualisations that leads to reduce the operation 

cost [78] [79]. The architecture of SDN consists of three layers [80] [81], which are 

explained below. 

1- Application layer: Application layer is the layer of SDN applications, which provides 

programming interfaces where programs directly communicate and exchange 

information with the SDN controller via northbound APIs. This layer is responsible to 

provide abstract network view of network applications by collecting status information 

like network devices and links from the SDN controller. Information collected can help 

the control layer to obtain efficient guidance for the network configurations.  

2- Control layer (SDN): Control layer represents the core of the SDN network that 

includes the control plane, which is responsible to manage and program the data plane 

to provide the routing operations of the network. The flow control between the software 

controllers in this layer can communicate with the forwarding (data plane) via 

southbound APIs and with the SDN applications of application layer via northbound 

APIs to provide intelligent networking operations. 

3- Infrastructure layer: Network infrastructure layer is also called the data plane layer, 

because it manages and controls the forwarding process of data path. It includes the 

SDN forwarding devices that perform the forwarding and routing decisions based on 

the flow tables provided by the SDN controller in the control layer via the southbound 

APIs. The layers of the SDN network are shown in Figure 2.9. 
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Figure 2. 9: SDN layers architecture 

 

2.9.1 OpenFlow 

OpenFlow is a standard network protocol provided by the Open Networking 

Foundation (ONF) for software defined networking. It acts as an interface between the 

control layer (control plane) and the infrastructure layer (data plane). OpenFlow enables 

the interaction between the SDN controller in the control plane and the forwarding 

devices (OpenFlow switches) in the data plane. All switches in the SDN network are 

OpenFlow switches that forward traffics according to the flow table entries installed by 

the SDN controller. OpenFlow supports both physical and virtual switches that work in 

hypervisor mode. The traffic in the SDN network is identified using flows, which are 

sequence of packets transferred from the source to the destination that have the same 
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value in particular fields over the OpenFlow switches. Each packet is matched based on 

the match rules specified in the flow table that provided by the SDN controller [82].  

 

2.9.2 Floodlight Controller 

Floodlight controller is a SDN controller that licenced under Apache and written in 

java. It is provided by big switch networks to support OpenFlow switches in software 

defined network. The OpenFlow switches, which are connected to the floodlight 

controller, are managed by the floodlight module. The floodlight controller can be 

easily used and configured. It can also develop applications that are written in java by 

providing REST APIs. It supports combination of the SDN network and the 

conventional network [83] . It is widely used by researchers, because it is open source 

and can support both physical and virtual switches. Since it supports the virtual 

switches, researchers can test and develop their own models according to their needs in 

virtual environments. Floodlight controller provides CPU efficiency and supports 

multiple threads due to its java nature. It also provides efficient memory management 

and can be run on several platforms [84]. 

 

2.9.3 Hadoop Networking Performance Improvements Techniques 

With the emergence of big data concept, Hadoop framework has become one of the 

main platforms for many big data applications. However, some issues regarding the 

networking aspect of a Hadoop cluster have been identified. MapReduce programming 

techniques are used to analyse and process massive data sets across several computing 

machines in the Hadoop cluster. Since the MapReduce consists of two phases, which 

are the Map and Reduce phase. The transfer process of the intermediate data that is                                                                                                                                                                                                           

generated from the map phase to the reduce phase goes through the shuffling phase. 

High traffic is generated during this phase to transfer the intermediate data of the map 

phase to the reducers that communicate with other nodes in the cluster to collect the 

intermediate results. Moreover, another traffic is also generated during the reduce 

output phase when the final outcomes of the MapReduce job are written to the HDFS 

with three replicas depends on the replication factor that configured in the Hadoop 
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cluster. The situation becomes more sophisticated in large scale clusters, especially in 

the data centre network where large numbers of switch devices are included. 

Consequently, several research works have been proposed to discuss and tackle such 

issues to improve the performance of Hadoop jobs by reducing their execution time. 

Most of the proposed systems used Software defined networking to enhance the 

networking side of a Hadoop cluster with different topologies. Some works like [85]  

proposed  bandwidth-aware scheduling for tasks allocation on local data nodes. In the 

work, heuristic bandwidth-aware task scheduler has been proposed based on SDN to 

assign tasks in a global view and improve data locality. Similar work have been also 

implemented such as BAlance-Reduce(BAR) to improve data locality in an optimised 

global way [86]. Some other works have focused on the network-awareness instead of 

bandwidth-awareness. Zhao and Medhi developed Application-Aware Network (AAN) 

platform based on SDN to improve the performance of a Hadoop MapReduce job 

without any modifications in the underlying design of Hadoop MapReduce framework 

[87]. The proposed system in [68] developed an application-aware routing algorithm 

based on SDN to speed up the execution time of the shuffling traffic for the MapReduce 

job in the data centre network. This thesis also propose routing algorithm based on SDN 

to improve the performance of a MapReduce job by reducing the execution time of the 

shuffling phase in the data centre network.  The details of the proposed work are 

presented in Chapter 5. 

 

2.10 Summary 

In this chapter, the background of the Hadoop framework and MapReduce 

programming technique was presented. This chapter also presented the architectures of 

data centre network as well as the routing algorithms used to route the traffic inside it. 

SDN was also presented in details along with the open flow protocol and the floodlight 

controller. This chapter presented the cloud computing technology and the ecosystem of 

Hadoop framework. A number of optimisation techniques and methods used in 

optimising the computing aspect and networking of a Hadoop MapReduce job were 

also reviewed.   
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Chapter 3 

Optimisation of MapReduce Configuration Parameter Settings Using 

Genetic Algorithms for Hadoop Cluster Based on Software Defined 

Networking  

Nowadays, Hadoop framework with MapReduce programming technique has been 

widely used for big data analytics. Hadoop MapReduce is a complicated system that 

contains large number of complex parts and parameters. Hadoop MapReduce includes a 

large number of parameters which is set with default values. Some of these parameters 

can affect the overall performance of Hadoop MapReduce jobs. It can be improved by 

tuning theses parameters with the optimal settings. However, setting this number of 

parameters manually with the optimal settings faces some challenges from the aspect of 

time and accuracy. 

 

3.1 Introduction  

Big data is a term that refers to the large and complex data sets that cannot be  

processed, captured, stored and analysed using traditional tools [17]. These amounts of 

huge data are generated from different, sources such as social media, sensor devices, the 

Internet of things, mobile banking amongst many more origins. Furthermore, many 

governments and commercial organisations are producing large amounts of, data such 

as financial and banking statements, healthcare providers, high education systems, 

research centres, the manufacturing sector, insurance companies and the transportation 

sector. Regarding which, International Data Corporation (IDC) reported that 2,800 

Exabyte of data in the world were stored in 2012 and this is expected to reach up to 

40,000 Exabyte over the next ten years. For instance, Facebook processes around 

500,000 GB every day. The vast amount of data includes both structured, such as 

relational databases as well as, semi structured and unstructured data, such as texts, 

videos, images, multimedia, and web pages. These types of huge data with various 

formats have led to the coining of the term big data [7].
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However, these massive datasets are hard to be processed using traditional tools and 

current database systems. Hadoop MapReduce is a powerful computing technology 

tasked with supporting big data applications [18]. Hadoop is an open source framework 

that enables the implementation of the MapReduce algorithm for data processing 

purposes. It is scalable, fault-tolerant and able to process massive data sets in parallel. 

Moreover, large datasets can be distributed across several computing nodes of a 

Hadoop cluster to achieve better computation resources and power [88]. Hadoop has a 

complex structure that contains a number of parts that react with each other through 

several computing devices. Moreover, Hadoop it has more than 150 configuration 

parameters and recent studies have shown that tuning some of these can have a 

considerable effect on the performance of a Hadoop job [89] [13].  

Because of the black box feature of the Hadoop framework, the tuning of parameters 

values manually is a challenging task as well as being time consuming. To tackle this 

issue, genetic algorithms for Hadoop have been developed to achieve optimum or near 

optimum performance of the Hadoop MapReduce parameter settings. However, there 

are some traffic issues for Hadoop jobs especially in the shuffling phase during the 

transfer of intermediate output data from the mappers to the reducers. As a 

consequence, SDN is proposed to alleviate these traffic issues in a Hadoop cluster. SDN 

was employed for a small Hadoop cluster using 14 virtual machines connected to one 

physical switch and two open virtual switches. SDN was also used to evaluate the 

performance of Hadoop jobs in a large scale cluster in a data centre network.  

 

3.2 Related Work  

Many ways have been proposed for the automatic tuning of Hadoop MapReduce 

parameter settings, one of which being PPABS [90] ((Profiling and Performance 

Analysis-Based Self-tuning). In this framework, the Hadoop MapReduce parameter 

settings are tuned automatically using an analyser that classifies MapReduce 

applications into equal classes by modifying k- means ++ clustering and a simulated 

annealing algorithm. Furthermore, recogniser is also used to classify unknown jobs into 

one of these equivalent classes. However, PPABS cannot tune parameters of an 

unknown job not included on these equivalent classes. Another approach, called 

Gunther, has been proposed for Hadoop configuration parameters optimisation using 
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genetic algorithm. However, all MapReduce jobs have to be executed physically to 

evaluate the objective functions of required parameters, because Gunther does not have 

an objective function for each of them. Moreover, the execution time for running 

MapReduce jobs for objective function evaluation is very long [91]. Panacea 

framework has been proposed to optimise Hadoop applications based on a combination 

of statistic and trace analysis using a compiler guided tool. It divides the search place 

into sub places and subsequently performs a search for best values within 

predetermined ranges[92]. A performance evaluation model of MapReduce is proposed 

in [93]. This framework correlates performance metrics from different layers in terms of 

hardware, software, and network. Industrial professionals proposed the Rule-Of-Thumb 

(ROT), which is merely a common practice for Hadoop parameter settings tuning[94] 

[95]. In [96] an online performance tuning system for MapReduce is proposed to 

monitor the execution of a Hadoop job and it tunes associated performance-tuning 

parameters based on collected statistics. [97] Optimises MapReduce parameters by 

proposing profile to collect profiles online during the execution of MapReduce jobs in 

the cluster. In [98] a self-tuning system for big data analytics, called starfish, is 

proposed to achieve the best configurations of a Hadoop framework so as to utilise 

cluster resources better in terms of CPU and memory.  

 

3.3 Hadoop MapReduce Parameters Settings 

Hadoop is a software platform written in java that enables distributed storage and 

processing of massive data sets using clusters of computer nodes. It provides large 

storage of any type of data (structured, semi structured and unstructured data) due to its 

scalability and fault tolerance. Furthermore, it is a complex system that contains a large 

number of components and parameters that interact witch each other. It has more than 

150 tuneable parameters that play a vital role on the flexibility of Hadoop MapReduce 

jobs and some of them have remarkable influence on performance of Hadoop jobs if 

they are tuned with optimal values. In this work, we consider eight parameters that have 

a significant impact on the Hadoop jobs performance as shown in Table 3.1. 
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Table 3. 1: The main parameter settings of Hadoop framework 

parameter Default 

MapReduce.task.io.sort.mb 100 

MapReduce.task.io.sort.factor 10 

Mapred.compress.map.output false 

MapReduce.job.reduces 1 

Mapreduce.map.sort.spill.percent 0.80 

MapReduce.tasktracker.map.tasks. 

maximum 

2 

MapReduce.tasktracker.reduce.tasks. 

maximum 

2 

Mapred.job.shuffle.input.buffer.percent 0.70 

 

Below further description of the main parameter settings mentioned in the Table 3.1 

 

1) MapReduce.task.io.sort.mb: During sorting files, amount of buffer memory is 

required for each merge stream. This amount is determined by this parameter and by 

default it is set to be 1MB for each merge stream and the total amount is 100 MB. 

 

2) MapReduce.task.io.sort.factor: This parameter determines the required number of 

merged streams during sorting files process. The default value is set to be 10 as 

explained in Table 3.1.  

 

3) Mapred.compress.map.output: The output results generated from mappers should be 

sent to the reducer through the shuffle phase. However, high traffic is generated during 

the shuffling process especially when the output data of mappers is large. Therefore, the 

results generated from mappers should be compressed to reduce the overhead in the 

network during the shuffling process and thus accelerate the hard disk IO. 
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4) MapReduce.job.reduces: a specific number of map tasks are required to perform the 

process of MapReduce job in Hadoop cluster. This number of map tasks is specified by 

this parameter. Default settings of this parameter are assigned to 1. Furthermore, this 

parameter has a significant effect on Hadoop job performance. 

  

5) Mapreduce.map.sort.spill.percent: the default setting of this parameter is 0.80

 which represents the threshold of in memory buffer used in map process. The 

data of in memory buffer is spilled to the hard disk once the in memory buffer reaches 

to 80%. 

 

6) MapReduce.tasktracker.reduce.tasks.maximum : each MapReduce job has several 

Map and Reduce tasks running simultaneously on each data node in Hadoop cluster by 

task tracker. Reduce tasks number is determined by this parameter and its default 

setting is set to be 2. This parameter can have an important impact on the performance 

of Hadoop cluster when better utilising the cluster resources in terms of CPU and 

memory by tuning this parameter to the optimal value. 

 

7) MapReduce.tasktracker.map.tasks.maximum: while number of reduce tasks is 

determined by parameter 6, this parameter defines number of map tasks running 

simultaneously on each data node. The default value of this parameter is 2. On the other 

hand, any change in the default settings of this parameter can have a positive impact on 

the total time of MapReduce job. 

 

8) MapReduce.reduce.shuffle.input.buffer.percent: the output of mapper during the 

shuffling process requires a specific amount of memory from the maximum heap size 

for storage purposes. The percentage of this mount is determined by this parameter and 

its default value is set to be 0.70. 
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 3.4 Evolving Hadoop MapReduce Parameters with Genetic 

Programming 

Genetic programming (GP)  [99] is a technique used to solve problems automatically 

with a set of genes and chromosomes. These are evolved using two essential genetic 

operations: crossover and mutation. In this work, GP is employed to create an objective 

function of the MapReduce parameters. The parameters of Hadoop MapReduce are 

represented as (k1, k2, ……,kn,) and here, eight parameters are tuned using a genetic 

algorithm (GA). An objective function should be built first using GP. Hence, a 

mathematical expression or function between these parameter settings needs to be 

determined. GP is used to evolve an expression between these parameters using 

arithmetic operations (*, +, ¬-, /). The fitness assigned to each parameter during the 

population process in GP should reflect how closely the output of the mathematical 

expression (function) for this parameter is to that for the original one. The objective 

function for GP is the execution time of running MapReduce jobs.  

The tree in GP consists of two levels. The first one is called functions and used to hold 

operations. The second is called terminals or leaves and used to hold the input data. The 

arithmetic operations in GP are the functions, while the parameters (k1,…,kn) are the 

leaves of the tree. The mathematical expressions between the Hadoop MapReduce 

parameters are determined based on their data type. The mathematical expression 

should have same input data type and same number of input parameters. After its 

determination, the completion time of these functions needs to be calculated and 

compared with the real one. The best mathematical expression among the parameters 

(k1,…,kn)  will be selected based on its approximated completion time, which should be 

very near to the real one. The tree in GP is used to hold both functions and terminals. 

As mentioned above, arithmetic operations (*, +, ¬-, /) are called functions and 

(k1,…,kn) are called leaves or terminals. Figure 3.1 shows an example of the 

representation of parameters using GP. 
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Figure 3. 1: an example of Genetic programming 

 

The Figure shows that the function (*) has two input arguments, which are (+) and (/) 

and the function (+) also has two (k1, k2). The completion time of MapReduce job of 

Hadoop parameters can be represented as f (k1, k2,.., kn). The approximated completion 

time of Hadoop MapReduce job represents the evolved function that will be compared 

to the real completion time of Hadoop MapReduce that pertains to the target function. 

According to [99], the approximated completion time of Hadoop MapReduce (evolved 

function) should be very near to the real completion time of the job (target problem or 

function). Figure 3.2 shows the procedure of GP. 
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Figure 3. 2 The flowchart of genetic programming 
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In this work, a list of MapReduce jobs is used as input datasets and a large number of 

experiments was run for both Word count and Tera sort applications, being used to 

process different sizes of these input datasets, as presented in section 3.6.1. The 

implementation of GP is performed to find all possible expressions between the Hadoop 

MapReduce parameters by generating hundreds of chromosomes and in this work, 600 

were initially generated. All chromosomes are represented in the form of tree graph and 

the fitness value of each is calculated based on the completion time of a Hadoop 

MapReduce job for each training dataset. The completion time is considered as an 

objective function of the genetic programming. 

The completion time of a Hadoop MapReduce job f (k1, k2,.., kn) for training datasets 

generated from genetic chromosomes is compared with the real completion time of the 

Hadoop MapReduce job. The difference between the approximated and real completion 

time of the Hadoop MapReduce job should not be more than 40s, which is referred as 

TS. The chromosome with the high fitness value is selected. The measure of fitness 

value is the same as the number of Hadoop MapReduce job used in this process. This 

measure is supposed based on the example of soccer player to test the fitness in [100]. 

The evolution process will terminate once the best fitness value is obtained, i.e. when 

reaches to the number of Hadoop MapReduce jobs used in the process. Moreover, 

genetic selections and operators are applied, such as mutation and crossover, to produce 

new chromosomes and update the current ones. The expression between the parameters 

is obtained after 40,000 iterations. The probability of crossover and mutation was 0.9 

was 0.05, respectively. Equation 3.1 represents the mathematical expression and the 

relation between the Hadoop MapReduce parameters, which is used as an objective 

function in the next algorithm (GA). The tree in Figure 3.3 illustrates the objective 

function. In this tree, eight parameters are taken as inputs. In the first part, the addition 

function is first applied to terminals k3 and k7. Next, the division is applied for terminals 

k5 and k2. The multiplication sign is used for the above-mentioned functions to generate 

intermediate result in the first part. In the second part, both the multiplication and the 

addition are used for terminals k1, k6, k4 and k8, respectively to generate the intermediate 

results of the second part. Finally, the addition sign is applied for both parts to generate 

the final results. 

   f(k1,k2,…,k8) =  (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8)                                                   (3.1)   
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Figure 3. 3 the tree of the objective function 

 

3.5 Hadoop MapReduce Parameter Settings Tuning Using a Genetic 

Algorithm  

A genetic algorithm (GA) is a metaheuristic one, which belongs to the group of 

evolutionary algorithms (EA) and was first proposed by John Holland to provide better 

solutions to complex problems. GAs are widely used to solve many optimisation 

problems based on natural evolution processes. They work with a set of artificial 

chromosomes that represent possible solutions to a particular problem. Each 

chromosome has a fitness value that evaluates its quality as a good solution to the given 

problem [101]. GAs start with generating a random population of chromosomes. A set 

of essential genetic operations, such as crossover, mutation and update are applied on 

the chromosome to perform recombination and selection processes on solutions for 

specific problem. The selection process of chromosomes is performed based on their 

fitness value. The chromosome with high fitness has the chance to be chosen and create 

an offspring to generate the next population [102]. Figure 3.4 describes the procedure 

for GA implementation, where Equation 3.1 generated from GP is used as an objective 

function that needs to be minimised, which is expressed as: 

       f (k1, k2,.., kn) =  (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8)       
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Figure 3. 4 The flowchart of the genetic algorithm 
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Figure 3. 5 The error against the iterations in GA 

In algorithm 2, an initial population of chromosomes is randomly generated and each 

MapReduce parameter is represented as one of these. It means that chromosome (i) = 

k1, k2,.., kn , where n is the number of parameters. As aforementioned, in this work, 

there are eight parameters that need to be tuned. After the generation of the population, 

the fitness value of each chromosome in it is evaluated based on the objective function f 

(k1, k2,.., kn). The chromosome with high fitness is selected and genetic operators, which 

are selection, crossover and mutation, are applied to update the current population and 

generate a new one. The procedures are repeated until the best fitness values of 

chromosomes, which represent the optimised MapReduce parameters, are obtained or 

the number of iterations is finished. In this algorithm, the population size is 15 and the 

number of iterations set to be 100. Furthermore, the probability of crossover Pc = 0.8 

and the probability of mutation Pm = 0.05 are empirically determined and used as 

genetic operators. Roulette wheel spinning is employed as a selection process. The 

ranges and recommended values of the Hadoop MapReduce parameters in GA are 

presented in Table 3.2.  The search space is performed based on these ranges provided 

in the Table 3.2. Figure 3.5 shows the performance of GA during the search of the 

optimal values of the Hadoop parameters. The performance is evaluated based on the 

error occurred during the search of the optimal values against the generation number. 

As mentioned before, the objective function is constructed based on the estimated 

execution time of Hadoop MapReduce job samples compared to real execution time. 
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The error should not be exceeding 15 %, considering the execution time of a Hadoop 

MapReduce job sample into account. 

Table 3. 2: Hadoop MapReduce parameters settings in genetic algorithm 

 

3.6 Performance Evaluation Environment 

The proposed work was implemented and evaluated using eight virtual machines (VMs) 

of a Hadoop cluster placed on Microsoft azure cloud. Each VM was assigned with 8 GB 

memory, 4 CPU cores and 320 GB storage for the whole cluster. Hadoop Cloudera 

Hadoop 

MapReduce 

parameters 

Range Parameters name Illustrations 

K1 100-

165 

MapReduce.task.io.sort.mb Depends on the block 

size of an input data set. 

64 MB is used as a 

block size 

K2 10-

160 

MapReduce.task.io.sort.factor Empirically 

K3 True Mapred.compress.map.output  

K4 1-16 MapReduce.job.reduces Depends on the total 

number of reduce slots 

used in the cluster 

K5 0.60-

0.80 

MapReduce.task.io.sort.spill.percent Empirically 

K6 2-4 MapReduce.tasktracker.map.tasks. 

maximum 

Depends on the 

specification of a data 

node (slave node) 

K7 2-4 MapReduce.tasktracker.reduce.tasks. 

maximum 

Depends on the 

specification of a data 

node (slave node) 

K8 0.70-

0.71 

MapReduce.reduce.shuffle.input.buff

er.percent 

Empirically 
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(Hadoop 2.6.0-cdh5.9.0) was installed on all nodes, with one being configured as a 

master and the rest as slaves. The master node could also be run as a slave. For fault-

tolerance purposes, we set the replication factor of the data block at 3 and the HDFS 

block size was 128 MB. Table 3.3 presents the specifications of Hadoop cluster. 

 

Table 3. 3: Hadoop cluster setup 

Intel Xeon X5550 server 1 

and 

uxisvm04 server 2 

CPU 4 cores for each VM 

Processor 2.27 GHz 

Hard disk 360 GB 

Connectivity 1 GBit  Ethernet LAN 

interconnectivity between two 

servers 

memory 64 GB 

Operating System Host Operating 

System 

Microsoft windows server 2012 

R2 

Guest 

Operating 

System 

Ubuntu 14.04.4 LTS 

(GNU/Linux 4.2.0-27-generic 

x86_64) 

 

3.6.1 Experimental Results 

Both the Word Count and Tera sort applications have been run as real job programs for 

Hadoop MapReduce framework to evaluate the performance of our proposed work on a 

Hadoop cluster. It can be clearly observed that there is a difference among the tuned 

configurations of the Hadoop MapReduce parameter settings using our proposed 

system, the default one and Gunther’s method. For instance, Figure 3.6 shows that 

when the value of io.sort.mb increases, this leads to a decrease in the execution time of 

the Hadoop MapReduce job. The reason for this is that increase the value of this 
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parameter results in less operation during of spill records to the hard disk. Moreover, 

the io-sort-factor parameter defines the number of data streams to merge during the 

sorting of files. From Figure 3.7, it can be clearly seen that when the value of this 

parameter goes up, the execution time of the job goes down. The reason is because 

increase the value of this parameter leads to less overhead during IO operations.  

It can also be observed from Figure 3.8 that when the number of reduce tasks is 

increased from 5 to 10, the execution time of the Hadoop MapReduce job decreases. 

However, increasing the number of reduce task results in longer execution time due to 

the overhead of network resources as well as over utilisation of computing resources, 

such as CPU and memory. Moreover, it is evident that any further increase in reduce 

tasks leads to the generation of high network traffic and consequently, an increase the 

overall time of the Hadoop job. Figure 3.9 shows that increase in the slots of map and 

reduce can play crucial role for better utilisation of cluster resources and accordingly 

minimise the overall time. One slot has been configured per CPU core, in the cluster 

setup 4 cores has been allocated for each cluster node and therefore 4 slots has been 

employed to maximise the utilisation of CPU. If additional slots are included in the 

setup, this exhausts the CPU and results in a delay in the processing time of the 

MapReduce job.  

Figure 3.10 shows the completion time of MapReduce jobs for different sizes of 

datasets by applying a compression parameter. It is observed that applying this 

parameter can reduce the completion time of a MapReduce job by alleviating the traffic 

consumption of the network and reducing the pressure on the I/O operation. However, 

the compression of input data and reduce output data is not available in some 

applications such as Tera sort. Moreover, the performance of this parameter is reduced 

when massive datasets are used such as, 40 or 50 GB. The reason for this is that any 

increase in dataset size leads to the generation of high volumes of shuffling traffic, 

especially in a static IP network environment. As a result, a software defined network is 

implemented on a Hadoop cluster to reduce the shuffling traffic generated from a 

MapReduce job. The following section describes the implementation of a Hadoop 

cluster based on SDN. 
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Figure 3. 6: The effect of the io.sort.mb parameter (K1) 

 

 

 

Figure 3. 7: The effect of io.sort.factor (K2) 
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Figure 3. 8: Reduce tasks influence (K4) 

 

 

Figure 3. 9: Map and Reduce slots influence on MapReduce job (K6 & K7) 
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Figure 3. 10: compression parameter influence (K3) 

 

Table 3. 4: Hadoop MapReduce parameter settings recommended from genetic 

algorithm on eight virtual machines 
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Data size in GB

compressed uncompressed

Name Default Optimised Values using Genetic 

algorithms 

1GB 10GB 20GB 

mapreduce.task.io.sort.mb 100 

 

100 140 165 

mapreduce.task.io.sort. 

factor 

10 

 

50 125 160 

mapred.compress.map. 

output 

false 

 

True True True 

mapreduce.job.reduces 1 

 

16 10 10 

mapreduce.map.sort.spill.percent 0.80 

 

0.87 0.68 0.77 

mapreduce.tasktracker.map 

.tasks.maximum 

2 

 

4 4 4 

mapreduce.tasktracker. 

reduce.tasks.maximum 

2 

 

4 3 4 

mapreduce.reduce.shuffle 

.input.buffer.percent 

0.70 0.70 0.71 0.71 
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Table 3.4 shows the optimised values of the Hadoop MapReduce parameters for each 

size of dataset on eight virtual machines. It is worth mentioning that the hardware 

resources in terms of CPU and memory as well as the size of an input data set are 

considered by the implemented GA algorithm. The size of input datasets should be 

considered before setting specific values for each parameter. For instance, setting a 

large number of reduce tasks for small data sizes like 1 GB better utilises hard disk 

during the parallelisation of tasks. However, high overhead is generated when setting 

such large number of reduce tasks. Therefore, small number of reduce tasks that can be 

finished in a single wave should be configured for small data sizes like 1 GB to reduce 

the overhead during the configuration of the reduce tasks. To show the performance of 

our method, different sizes of data, including 1 GB, 10 GB and 20 GB, were generated. 

The tuned parameters were used for both the Word Count and Tera sort applications. 

The execution time of both the word count and Tera sort applications based on the 

tuned settings by our proposed method is compared with the execution time of the two 

applications based on the default setting as well as the settings achieved by Gunther. 

Both Word count and Tera sort were run twice and it emerged that our proposed 

method can improve the performance of a MapReduce job in a Hadoop cluster, most 

notably with large input data sizes.  

Figure 3.11 and Figure 3.12 show the completion time of a Hadoop MapReduce job 

using the proposed method in comparison with the default one and Gunther’s method. 

From Figure 3.11, it can be observed that the performance of the Hadoop Word Count 

Application is improved using the proposed approach by 63.15% and 51.16% for the 1 

GB dataset when compared with the default and Gunther’s settings, respectively. 

Furthermore, the experiments carried out on a 10 GB dataset show that our proposed 

method improves the performance of the Word Count Application by 69% and 37.93% 

when compared with the default and Gunther’s method, respectively. Finally, the 

proposed method also achieved better performance than the default and Gunther 

settings on the Word Count application by 69.62% and 30.31%, respectively, for 20 

GB.  

From Figure 3.12, it can be clearly seen that our proposed method improved the Tera 

Sort application performance by 52.72% over the default system and 44.28% when 

compared to the Gunther settings for 1GB. For 10 GB, the performance was improved 

by 55.17% as compared to the default one and was 51.25% better than with Gunther’s 
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method. Finally, Tera Sort application performance for 20 GB was improved by 73.39 

% and 55.93 % more than the default and Gunther settings, respectively. 

 

 

 

Figure 3. 11: Comparison of Word Count Application 
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Figure 3. 12: comparison of Tera sort application 

 

 3.7 Hadoop Cluster Based on Software Defined Network 

 Software defined network [103] is an emerging technology that provides agile and 

dynamic management for the network through central and intelligent programming. In 

this novel technology, the control plane is decoupled from the data plane to provide 

more flexibility and agility, which leads to network performance improvement by 

obtaining better routing decisions. The controller communicates with the OpenFlow 

switch through the OpenFlow protocol. In this work, SDN is implemented to improve 

the performance of Hadoop networking by efficient utilisation of bandwidth for 

shuffling traffic. Different sorts of traffic are generated from a Hadoop cluster, such as 

shuffle phase traffic, HDFS data transfer, HDFS read and write along with Hadoop 

monitoring messages. It is worth noting that the shuffling traffic represents the most 

traffic produced by both Word Count and Tera Sort in a Hadoop cluster followed by 

HDFS read and write. In the proposed system, SDN is employed with openVswitch to 

allocate more bandwidth for the traffic generated by the shuffling phase when the 

mapper transfers its output to the reducer. However, identifying the network resources 

of shuffling traffic is a challenging task, because the core framework of Hadoop does 
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not include sufficient information regarding network resources demand for this traffic. 

A Hadoop cluster has a single job tracker and several task trackers. The progress of 

Hadoop jobs is monitored by the job tracker, whilst each task tracker sends heartbeat 

messages to the job tracker about its status. However, these messages lack sufficient 

information about the network resources. To address this, our proposed system installs 

software engines on each Hadoop host to record the required information of network 

resources for each shuffling flow. This information contains the size of map output data 

(intermediate data) being transferred over each flow to the reducers.  

Furthermore, software engines determine the required network bandwidth for each 

shuffling flow and record sufficient information, such as the IP address of the source 

and destination nodes as well as the size of each flow.  Then, all the required 

information is delivered to the SDN controller to assign an efficient bandwidth for 

shuffling flows. The SDN controller installs flow entry in each Open vSwitch for each 

shuffling flow and moves the shuffling flows to a queue with higher bandwidth. On the 

other hand, flow rules are installed in Open vSwitch for other types of traffic, such as 

control messages and HDFS read/write, to switch them to another queue with low 

bandwidth allocation. The TCP communication between the task trackers to send the 

map output data in a Hadoop cluster is performed using port 50060. Open vSwitch 

matches the incoming packets to identify them by their port number. 

In the proposed system, 14 virtual machines, installed on two servers, were used with 

two packages of Open vSwitch installed on two PCs, with one floodlight SDN 

controller being installed on one PC. SDN application was installed on another PC to 

install flow entries on each open vSwitch and to manage and administrate MapReduce 

jobs in a Hadoop cluster as well as the replication of Hadoop distributed file system 

(HDFS) blocks through web interface. The two servers were connected to a single 

physical switch with 1GB link capacity. 

 Figure 3.13 shows the proposed cluster based on an SDN environment. Both Word 

Count and Tera Sort applications were used to evaluate our proposed system using SDN 

technology. The experimental results show that our proposed system based on an SDN 

environment improves the performance of the Word Count application by reducing the 

completion time up to 12.4% for 30 GB when compared to a TCP/IP environment. 

Moreover, this rises to 21.9% for 40 GB, while for 50 GB, the completion time is 
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reduced by 32.8% when compared to a TCP/IP Hadoop cluster, as shown in Figure 

3.14. Figure 3.15 shows the performance for the Tera Sort application using the 

proposed system for different data sizes ranging from 30-50 GB. It emerges that the 

proposed system reduces the completion time of Tera Sort for 30 GB on average by 

53%. Furthermore, the completion time for 40 GB and 50 GB is reduced by 48.1 % and 

38.7%, respectively, over a TCP/IP environment. It is worth noting that performance of 

Tera Sort application decreases with larger data sizes due to the high volume of 

shuffling traffic that is generated form these  jobs. 

 

 

 

Figure 3. 13: Small scale Hadoop cluster in SDN environment 
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Figure 3. 14: Word Count Performance in SDN Environment 

 

 

 

Figure 3. 15: Tera sort Performance in SDN Environment 
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3.8 Summary 

In this chapter, both of Genetic Algorithm and Genetic Programming have been used to 

tune the configuration parameters of Hadoop MapReduce automatically. By optimising 

the configuration parameter settings, the computing performance of a Hadoop 

framework can be improved and then reduces the completion time of Hadoop 

MapReduce jobs. Further optimisation has been performed using software defined 

network technology. Two applications, which are Word Count and Tera Sort, have been 

run to evaluate the MapReduce job performance of the Hadoop framework. This work 

was evaluated using a cluster consisting of eight virtual machines placed on internal 

cloud in Brunel University London. Another cluster of 14 virtual nodes was employed 

based on SDN. The experimental results in traditional network using 8 VMs showed 

that our proposed method improved the MapReduce job performance in a Hadoop 

cluster in comparison with Gunther and default settings. Moreover, the results using 14 

VMs based on SDN network showed that the performance of a Hadoop job has been 

further improved when compared to traditional network.  
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Chapter 4 

Solar Radiation Time Series Analytics Based on R and Hadoop 

Integrated Programming Environment  

Solar energy has become the most important source of renewable energy. However, it is 

mainly dependent on the weather conditions and solar irradiation. The calculation of 

daily solar irradiation is very important to estimate the final output power of solar 

arrays. There are some computational and storage challenges for the calculation of the 

solar irradiation collected by massive solar panel arrays. It is a challenging task to 

process and store massive solar irradiation data by the current calculation tools like R 

language or solaR. Effective technique is highly required to accelerate the calculation of 

the solar irradiation data of large solar arrays. This chapter presents an effective 

technique for fast statistical calculation for huge solar irradiation data by using R and 

Hadoop integration programming language environment (RHIPE). It is evaluated using 

data provided by the London Weather Centre for the period (1996-2005) that includes 

monthly mean daily irradiation on inclined planes in terms of scalability, speedup and 

accuracy. The speedup of RHIPE in computation is first analysed through Gustafson's 

law. This law is revised to improve its ability to analyse the performance achievement 

in computation for parallelising data in a cluster computing environment like Hadoop. 

 

4.1   Introduction 

With the emergence of Internet of things (IoTs), huge data are generated every day. 

Different types of data are produced from various sources including social media, 

sensors, financial sector and healthcare. Time series data is one of the main sources of 

generated data. However, it has big challenges in terms of processing and analysing. 

Moreover, another challenge is the deriving of knowledge from time series data that can 

help to improve the productivity [104]. Time series is any data gathered sequentially in 

time such as a series of data points recorded over a continuous time interval. The time 

series data arises from different sources including Economics and Finance, 

environmental modelling, meteorology and hydrology, demographics, medicine, 

engineering and quality control [105] . One of the most important sources of time series 

data is the solar data, which includes the temperature and irradiation produced by sun. 
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One of the best tools to analyse all types of time series data including solar data is R 

language. R is an open source environment to perform statistical analysis and data 

visualization. Many data scientists and statisticians used R language to perform 

statistical analysis and discover key insights from data using techniques such as 

regression, classification, clustering, recommendation and text mining [61]. However, 

due to the large time series data sets produced from many sectors, it has become 

difficult to store, analyse and process these big time series data sets. As a consequence, 

Hadoop MapReduce Framework can be integrated with R language to perform the 

analysis of time series data. Hadoop MapReduce is robust computing platform used for 

big data analytics. Hadoop is an open source framework implementation of MapReduce 

algorithm. It has superb features such as high scalability, fault-tolerance and data 

parallelization. It is also able to distribute data and parallelizes computation through a 

cluster of computing nodes. Therefore, parallel computing is an effective way to 

improve the performance in terms of accuracy and timely analysis of solar time series 

data. In this chapter, the design and implementation of integration of Hadoop and R 

language for fast calculation and analysis on massive amounts of solar time series data 

is presented.  

 

4.2 Overview of Big Data Analytics Based on Cloud Computing and 

High Performance Computing 

Nowadays, many individuals and companies use IT and communication technologies to 

develop their own business. Consequently, massive data sets are enormously generated 

leading to some computational issues. The traditional tools face some challenges in 

terms of computation and storage. For example, it has become a challenging task for the 

traditional tools to store and process huge amount of data sets that generated from 

different sources at a high pace. These challenges can be solved through the 

implementation of the parallel computing and processing by using the technology of 

high performance computing (HPC).The computational problems can be tackled using 

multi-processor system ranging from 2 to 64 CPUs. The multiprocessor system consists 

of number of High performance RISC (Reduced instruction set computer) processors. 

Furthermore, the multiprocessor system is designed to access the same memory through 

symmetric multi-processing (SMP). However, applying multi-processors to deal with a 
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single problem requires an efficient programming to achieve an effective processing. 

Moreover, this system is designed to solve small applications only.  

As a result, it has become necessary to provide a reliable solution to fit large 

applications. The solution can be found in the use of multi- computing nodes through 

using a message passing tool such as parallel virtual machine (PVM) or message-

passing interface programming (MPI) to achieve parallel computing over the large 

problems and applications. Another system called NUMA can be used to solve large 

problems through a number of interconnected processors that can access a distributed 

shared memory using a load/store paradigm similar to SMP system [106]. Cloud 

computing can be a valuable remedy for processing and storing large applications that 

do not fit into memory and cannot be processed using HPC. Cloud computing can 

provide some computing services for processing big data applications by using amazon 

elastic MapReduce (Amazon EMR). Amazon EMR uses a cluster of computing nodes 

that run on virtual servers provided by Amazon Elastic Compute Cloud (EC2). Apache 

Hadoop is installed on each node in the cluster. Apache Hadoop is a framework that 

currently deployed to provide distributed storage and parallel processing for data 

intensive applications. It distributes the computation and parallelises the execution of 

big data jobs across several machines in a cluster computing environment. Hadoop uses 

MapReduce programming to implement the parallel processing by writing two 

functions (map and reduce). More details on the MapReduce programming model and 

the Hadoop framework are presented in section 4.3 and 4.4, respectively.  

With the increasing demand of the renewable energy such as wind and solar, the 

electric power is becoming more complicated from the aspect of secure storage and 

computation process. For instance, solar energy has attracted many researchers to study 

the characteristics and behaviour of its resources in depth. One of the most important 

aspects of solar energy is its unpredictability. It is becoming very important to have a 

balance between the demand of power and generation. Consequently, it has become 

very necessary to estimate how much power can be produced using solar arrays. The 

power produced by solar arrays mainly depends on the availability of the solar 

irradiation and since the solar irradiation is unpredictable and relies on the weather 

conditions. The solar radiation that comes from the sun is a number of values that can 

be calculated on daily, weekly or monthly basis and these values are considered as a 

time series data. Nowadays, large number of solar arrays being installed in different 



68 
 

locations around the world. This numerous number of solar arrays will produce huge 

amount of time series data such as the irradiation that comes from the sun. As a result, 

huge amount of data will be generated and it is very complex to analyse and store these 

large datasets based on traditional methods.  

High performance methods can be used to analyse and store theses datasets through 

parallel processing. For instance, massage passing interface (MPI) is a parallel 

programming model that used to distribute and parallelize computation across number 

of processors or computing nodes. In [107] MPI system model has been employed to 

parallelize computation jobs across several nodes of grid computing. High Performance 

Computing environment (HPC) was used by [108] for parallel contingency analysis. 

However, MPI has some weaknesses in some parts such as topology awareness, fault 

tolerance and scalability [109]. Cluster computing can be used as an alternative 

approach. In [110] a high performance hybrid computing approach was used for 

massive contingency  analysis in the power grid. A XMT multithread C/C++ compiler 

on Gray XMT (multithread HPC computing platform) and conventional Cluster 

computers were employed to parallelize the algorithm. Parallel computing toolbox 

within MATLABs Distributed Computer Server (MDCS) was used to parallelize 

contingency analysis algorithm on multiple Processors [111]. In [112] a distributed 

framework for efficient analytics on ordered datasets using Hadoop is proposed. This 

framework adopts an efficient group-order–merge mechanism to speed up the execution 

of Re-Org tasks. In [113] runtime framework for automatic and transparent 

parallelization of the popular R language used in statistical computing is proposed.  

A number of research works has been done on time series data. The work described in 

[114] proposes effective and distributed framework called R2Time to process data in 

Hadoop environment. This work has integrated R language with a distributed time 

series database (Open TSDB) using MapReduce programing technique (RHIPE) that 

supports analysts to work on massive datasets within robust analysis environment. 

Another research work proposed in [115] parallel genetic algorithm for the automatic 

generation of test units. This work is based on Hadoop MapReduce due to its high 

scalability and fault tolerance. Furthermore, this proposed work evaluated the speed-up 

with respect to the sequential execution. Gowri and Rathipriya  [104] used the Map 

Reduce based genetic Algorithm for biclustering time Series Data. This work used the 

biclustering approach for time series data. For the optimal mining of patterns, genetic 
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algorithm was employed in this work. Moreover, MapReduce is also used to overcome 

the complexity of Big Data issues.  

In [116]  rolling win Novel framework was proposed for time series data prediction 

based on MapReduce. This proposed work used R programming language and Hadoop 

platform to support parallelization and fault tolerance. MapReduce algorithm was 

proposed with Ant Brood Clustering with Intelligent Ants) for clustering financial time 

series data in [117]. The work presented in [118] employed MapReduce framework and 

extended kalman filter based echo state network for time series prediction. The work 

proposed in [119] used distributed processing for time series data analysis based on pig 

and Hadoop cluster. A distributed parallel approach for anomaly detection was 

presented in [120]. MapReduce framework was used with this approach to detect 

automatic aberrant behaviour in large time series data sets. In [121] MapReduce was 

employed with dynamic time warping (DTW) for fast similarity search in time series 

data mining. The work described in [122] details an adaptive time series forecasting of 

energy consumption using optimized cluster analysis. Another number of research 

works has been conducted on the solar irradiation analysis. The proposed system in 

[123] developed a novel model to estimate solar irradiation on hourly and daily basis 

for hydrological studies. In [124] simple recurrent neural networks (SRNNs) was used 

to build a predictive model to predict the density of daily solar irradiation.   

The work presented in [125] proposes a statistical model for solar radiation 

characterisation. In the proposed work, the daily variability of solar radiation is 

considered to produce synthetic time series from the measured and historical data of 

solar radiation. Four statistical methods were considered by the system proposed in 

[126] to estimate the global radiation data which is inaccessible for all locations. As a 

result, this system was developed to estimate the daily global radiation statistically 

based on the continuous series of other measurable meteorological parameters. 

Statistical analysis was conducted on the solar irradiation data to determine the error 

between the actinography values in relation to the pyrometer [127]. The proposed work 

was evaluated based on data from the Santa Maria University in Valparaiso that 

measured by the actinography and the pyrometer. SolaR is a statistical tool proposed by 

[128] and designed to calculate the daily and inter-daily global horizontal irradiation by 

using a set of classes and functions. This tool can also calculate the final output power 

of grid-connected PV systems. 
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4.3 MapReduce Programming Model 

MapReduce is a parallel programming model for processing massive datasets across a 

cluster of computer devices in distributed computing environment [17]. MapReduce is a 

powerful computing technology for many intensive applications because of its 

characteristics such as fault-tolerance, scalability and elasticity. In MapReduce, 

thousands of computing nodes can be used to support parallel and distributed 

processing and analysis. With MapReduce model, computational tasks will be 

partitioned into Map and Reduce phases. Map phase divides the input data into several 

tasks to be performed in parallel across cluster of computers or virtual machines. Map 

task processes the input datasets to generate a list of intermediate key/value pairs. While 

the Reduce phase takes all intermediate values and merge them in a single key to 

generate the final result. Figure 4.1 shows the execution of MapReduce. 

 

 

Figure 4. 1: MapReduce execution 
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4.3.1 The Implementation of MapReduce with Hadoop 

The implementation of the MapReduce programming model can be performed using a 

number of systems such as Dryad [129], Mars [130], Phoenix [131] and Hadoop [132]. 

Hadoop is one of the most popular systems for MapReduce implementation because of 

its open source nature. The following section details more information about Hadoop 

framework. 

 

4.4 Hadoop Framework 

Hadoop is an open source framework written in java used for processing, analysing and 

querying massive amount of data across large clusters of commodity nodes. Hadoop is 

an apache project was originally developed by Yahoo and Doug Cutting [61]. Hadoop 

has useful characteristics which involves scalability, simplicity and fault-tolerance. It 

enables distributed processing of huge amount of data using MapReduce algorithm. 

Moreover, Hadoop can deal with both structured and unstructured data and can work on 

cluster computing environment and cloud computing system. Hadoop employs HDFS 

(Hadoop distributed file system) for data storage. HDFS is a distributed file system 

provides storage for huge amount of data across a massive number of computer clusters. 

HDFS is also able to provide rapid and scalable access to data [132]. All input data are 

stored on HDFS. Massive data is automatically divided into blocks that are managed by 

different nodes within Hadoop cluster. HDFS support master/slave architecture. It has 

single master node or Name node which acts as a server and multiple slave or data 

nodes which act as clients. File system namespace and access regulation to files by 

clients is managed by the master node. While the data nodes are responsible to manage 

storage attached to each data node and performs the execution of Map and Reduce tasks 

[7]. The name node has job tracker that divides jobs into multiple tasks and schedules 

the tasks on the data nodes. It also monitors and reassigns the task in case of any 

hardware or software failure. Data nodes have task tracker that is responsible to receive 

all Map and Reduce tasks from the job tracker. Job tracker is periodically contacted by 

the task tracker to report the completion progress of the tasks and requests for new 

tasks. Hadoop architecture can be shown on Figure 4.2. 
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Figure 4. 2: Hadoop Architecture 

  

4.5 R Language 

R is an open source programming language and software package widely used by 

statisticians and data scientists to perform statistical analysis of data [59].R uses several 

mechanisms for data analysis such as clustering, classification, regression and text 

analysis. It provides a wide variety of libraries to perform analysis and visualization. 

These libraries include statistical, machine learning, graphical techniques and time 

series analysis. Furthermore, R is able to perform additional functions such as data 

cleaning, data extraction, data loading, data transformation and predictive modelling. 

Many data scientists use R due to its remarkable features that include effective 

programming language, data analytics and relational database support. R now can be 

connected with several data stores like MySQL, SQLite and MongoDB as well as 

Hadoop for data storage activities. It also can be integrated with Hadoop MapReduce 

for data analytics [61].  
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 4.5.1 R and Hadoop Integrated Programming Environment  

RHIPE is R Hadoop integrated programming environment. It is used to integrate R with 

Hadoop and MapReduce programming model. It is a software package that allows R 

users to create Map and reduce jobs completely within R environment using R 

expressions [61]. It was developed by Saptarshi Guha as a PhD thesis in the Department 

of Statistics at Purdue University in 2012. To perform data analysis using RHIPE, some 

software and packages need to be installed as follows: 

1. Installing Hadoop. 

2. Installing R. 

3. Installing protocol buffers. 

4. Setting up environment variables. 

5. Installing rJava. 

6. Installing RHIPE. 

RHIPE has some components that used for data analytics as follows: 

1. RClient is an R application used to call the JobTracker to execute the job with an 

indication of several MapReduce job resources such as Mapper, Reducer, input format, 

output format, input file, output file, and other several parameters that can handle the 

MapReduce jobs with RClient. 

2. JobTracker is the master node in Hadoop MapReduce operations. It is used to 

initialise and monitor the MapReduce jobs over the Hadoop cluster. 

3. TaskTracker is the slave node of the Hadoop cluster. It performs the MapReduce jobs 

as per the orders given by Job Tracker. It also retrieves the input data chunks and run R-

specific Mapper and Reducer over it and then the output will be written on the HDFS 

directory. 

4. HDFS is a distributed filesystem used for data storage over Hadoop cluster. It also 

provides data services for various data operations. Figure 4.3 shows all components of 

RHIPE. 
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Figure 4. 3: Components of RHIPE 

 

 

4.6 The Implementation of Solar Radiation Time Series Analysis Using 

R and Hadoop Integrated Programming Environment 

The analysis of solar radiation time series was implemented in the Hadoop MapReduce 

framework with R language. In this paper, RHIPE is employed to analyse and extract 

massive volumes of solar radiation data. These datasets are taken from London weather 

centre for period from (1996-2005) that include monthly mean daily irradiation on 

inclined planes. We used such old data because it is available for no charge and it is 

also the most accurate irradiation data since the solar irradiation is estimated. Our 

proposed work can suit any solar irradiation time series data at any period. The datasets 

are converted to .csv format (comma-separated values) and then moved directly to 

HDFS storage for offline analysis. The analysis of solar data includes a calculation of 

the irradiation of west and south west London using statistical calculations by R 

language in Hadoop cluster. In this work, R Hadoop integrated programming 

environment (RHIPE) was employed to perform the statistical calculations on the solar 
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irradiation. RHIPE package used divide and recombine technique to perform the 

analysis and calculation on solar data. The solar datasets were automatically divided 

into several chunks by HDFS. The computation is performed across Hadoop cluster on 

these chunks by specific R analytics operation. The size of chunks is specified in the 

cluster configuration file on Hadoop cluster (hdfs-site.xml). 

 

 

Figure 4. 4: Solar data analytics based on HadoopR 

 

Figure 4.4 shows the whole process of solar data analysis using Hadoop R framework. 

When HDFS divides the solar datasets into chunks, each chunk of solar dataset is 

assigned to a Map task. All Map tasks are executed in parallel to process the solar 

datasets. Number of Map tasks relies on the number of Map slots. Number of Map slots 

can be specified in the cluster configuration file (mapred-site.xml). In this work, one 

slot was assigned on each VM. Since the cluster involves 8 VMs, 8 slots were assigned 

in the cluster and consequently 8 Map tasks were executed in parallel for solar datasets 

processing. Furthermore, Map slots numbers that are specified to each VM relies on 

Hardware specifications and processing capacity like CPU cores number and physical 

memory. Map tasks are responsible to process the data chunks. Each Map task 

processes the assigned data chunk. When the Map process is finished, all intermediate 

results will be sent to the Reduce tasks to be processed. Similarly, the number of reduce 

tasks depends on the number of Reduce slots configured in the cluster configuration 
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file. Eight Reduce slots were configured and so eight Reduce tasks were executed to 

obtain the final results. The analysis of solar data is implemented in Hadoop computing 

environment using R language. Hadoop R framework is fault-tolerant and scalable and 

provides replication of data chunks and can distribute them on different nodes to avoid 

any delays and failures. Since Hadoop provides scalability, it can easily add more nodes 

to increase the computation speedup for the proposed work. It also provides the 

availability and fault-tolerance. For instance, if any failure happens on the node due to 

software or hardware issues, the job tracker is responsible to find it and assign the 

running tasks to another available node. 

 

4.7 Work Evaluation 

The evaluation on solar data analysis based on Hadoop R framework (RHIPE) was 

conducted. A comparison between R language and the Hadoop R framework (RHIPE) 

have been carried out in terms of computation efficiency and accuracy. The 

performance evaluation was implemented on irradiation solar data provided by the 

London Weather Centre (1996-2005). Since these datasets are not very massive, 

duplication on the datasets was performed to create big data scenario. Datasets were 

replicated to be tens of Gigabytes. 

 

4.7.1 Cluster Setup 

The proposed work was implemented using Hadoop cluster. This cluster involves eight 

virtual machines and each machine is assigned with 8 GB of RAM and 4 CPU cores 

with total 300 GB for storage. This cluster was setup on two high performance servers. 

The analysis on solar data using Hadoop R framework (RHIPE) was performed on eight 

virtual machines while the analysis based on R language was executed on one machine 

in R environment. The specifications of Hardware and Software resources are displayed 

below in Table 4.1. 
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Table 4. 1: Cluster setup 

 

 

Intel Xeon X5550 server 1 

and uxisvm04 server 2 

CPU 32 cores 

Processor 2.27 GHz 

Hard disk 360 GB 

Connectivity 1 GBit  Ethernet LAN 

interconnectivity between two 

servers  

memory 64 GB 

 

Operating System 

Host 

Operating 

System 

Microsoft windows server 

2012 R2 

Guest 

Operating 

System 

Ubuntu 14.04.4 LTS 

(GNU/Linux 4.2.0-27-generic 

x86_64) 

Software R, RHIPE 0.65.2, protocol buffer 2.4.1, rjava. 

 

 

4.8 Experimental Results 

A number of experiments were carried out to evaluate the efficiency of the Hadoop R 

framework (RHIPE). From Figure 4.5, it can be observed that the RHIPE significantly 

outperforms R in terms of computation using a single virtual machine. The execution 

time of solar irradiation data processing is decreased using RHIPE framework, while 

the execution time is increased using R language. Figure 4.6 shows that the execution 

time of R goes up when the data size is increased, while the execution time of RHIPE 

using eight virtual machines keeps constant .The scalability of RHIPE is performed 

based on Gustafson's law [133]. Furthermore, it was evaluated using various numbers 

of data sizes and different numbers of VMs. Five different sizes of dataset and varied 

number of virtual machines from 1 to 8 were employed to evaluate the proposed work. 

The scalability of the RHIPE work is shown in Figure 4.6. Based on the results shown 

in Figure 4.6, the calculation of the speedup of the RHIPE can be calculated using 
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Speedup (S) = 
𝑇𝑠 (𝑆)

𝑇𝑝 (𝑆)
                                                                                     (4.1) 

Where 𝑇𝑠 represents the execution time of solar data analysis based on RHIPE using 

one VM while 𝑇𝑝 represents the execution time of solar data analysis in parallel based 

on RHIPE using several processing nodes. 

 

 

Figure 4. 5: Comparison between RHIPE and R using single virtual node 
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Figure 4. 6: RHIPE Scalability 

 

 

 

Figure 4. 7: RHIPE Speedup 
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4.8.1 The Analysis of R and Hadoop Integrated Programming 

Environment Speedup  

The speedup in computation for parallelizing sequential program can be calculated 

using Gustafson's law as follows: 

S = 𝑓 + 𝑝(1 − 𝑓)                                                                                     (4.2) 

Where S is the speedup, f is the serial portion of the unscaled workload and p is the 

number of processing nodes used in the computation process. Gustafson's law is known 

as fixed-time speedup model. It maintains the execution time is fixed and scales the 

workload with an increasing number of processing nodes. Figure 4.7 shows the speedup 

analysis of RHIPE. It can be clearly noted that the speedup goes up with an increasing 

number of data size. However, as displayed in the Figure, the results never obtain that 

which is expected by Gustafson's Law. This means that Gustafson's Law is not 

sufficient to calculate the speedup of a parallelized program which is executed in a 

cluster computing environment such as Hadoop because the communication overhead 

of a user job in the cluster computing is not considered by Gustafson's Law. As a result, 

revision of Gustafson's Law has been done. Equation 4.3 represents the revised 

Gustafson's Law: 

S = 𝑓 + 𝑝(1 − 𝑓) + RC                                                                             (4.3) 

Where RC is the ratio of communication overhead to the computation needed for each 

Hadoop job. High ratio of communication to the computation of parallel program can 

affect the performance in speedup. Therefore, the ratio of the communication to the 

computation should be minimized to obtain better performance in speedup in Hadoop 

cluster. To perform that, the size of data chunks should be large as illustrated in Figure 

4.8. In this Figure, four different sizes of data blocks ranging from 8 to 64 MB have 

been used to evaluate the performance of speedup. It can be clearly observed that the 

execution time of (RHIPE) goes down when the size of data block goes up. This is 

because the large size of data chunk produces a small number of tasks that results in a 

small overhead in communication. Furthermore, the larger data blocks leads to a high 

workload in computation that leads to increase the speedup according to Gustafson's 

law.  
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Figure 4. 8: Computational overhead of RHIPE 

 

 

 

 

Figure 4. 9: Speedup of RHIPE against data block size 
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Figure 4.9 shows the speedup of RHIPE using varied sizes of data blocks. From this 

Figure, it can be seen that the speedup of RHIPE in computation goes up with an 

increasing size of data blocks. Furthermore, the speedup of RHIPE is 2.2 times faster in 

computation using 64 than when using 8 MB data blocks, consequently a better 

improvement in performance can be achieved with larger datasets.  

 

4.9 Summary 

This chapter presented R Hadoop integrated programming environment (RHIPE) for the 

analysis and statistical calculations on solar irradiation. This work was carried out based 

on an offline analysis of solar data available from the London Weather Centre for the 

period (1996-2005) that includes monthly mean daily irradiation on inclined planes. 

The data sets were uploaded into HDFS (Hadoop distributed file system) as a CSV file 

and were divided into multiple chunks and distributed amongst a cluster of computing 

nodes. This work was evaluated using eight virtual nodes of Hadoop cluster. The 

experimental results showed that RHIPE outperformed R in terms of computation, 

scalability and accuracy. Furthermore, Gustafson's law has been amended to calculate 

the speedup of the sequential program for RHIPE using parallel computing. 
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Chapter 5 

Routing and Scheduling Algorithm Based On Software Defined 

Networking for Big Data Applications in Data Centre Network 

 

We live in the era of internet of things, big data, virtualization and cloud computing 

technologies. However, the current network infrastructures of these technologies lack 

scalability, cost effective maintenance, centralized management and fault tolerance. As 

a result, the emergence of software defined network (SDN) provides many network 

facilities from the aspect of intelligent and centralized management, scalability, less 

operation cost and less complex maintenance. For intensive big data applications like 

MapReduce in a data centre network, SDN provides an intelligent and dynamic control 

for data traffic to improve the performance of big data jobs. Heavy traffic is generated 

during the shuffle phase of MapReduce jobs, when the output intermediate data of 

mapper nodes is transferred to the reducer nodes leading to increase the execution time 

of the shuffle phase. In this chapter, SDN is employed to reduce the shuffling time by 

proposing an effective scheduling and routing algorithm to control each shuffling flow 

in the data centre network. The proposed algorithm is to provide efficient network 

bandwidth for shuffling flows according to their network demand as well as their size 

and number. It also prevents the congestion by assigning efficient alternative routes 

based on the network bandwidth utilization of each path in the data centre network as 

well as the size of each routed shuffling flow. 

 

5. 1 Introduction 

Nowadays, vast amount of data is generating everywhere due to the rapid development 

of cloud services and the wide use of internet of things (IoT) applications. Moreover, 

large datasets are also generated from different sources such as sensors, social 

networking, video streaming and online services. This leads to an explosion of data, 

which is considered as a big data that cannot be captured, analysed and processed using 

the traditional tools. These massive datasets require enormous parallel processing and 

distributed computation. As a result, powerful platform such as Hadoop MapReduce 

can be implemented based on a cloud computing environment to utilize massive parallel 
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processing and distributed computation for the large datasets. Hadoop [21] is scalable 

computing platform that enables parallel processing and distributed storage across 

number of servers and computing nodes. It is also fault tolerant and able to execute the 

code of MapReduce directly close to the data that operates on to limit the data transfer 

within the cluster. However, large data blocks are transferred between mappers and 

reducers during the shuffling phase, which consumes considerable traffic that requires 

appropriate network resources. Moreover, computing resources such as memory, CPU, 

storage and disk I/O requirements can be scaled with number of servers; however, 

scaling the system will lead to increase the network traffic in the underlying network. 

Furthermore, massive collections of datasets are exchanged between servers in a data 

Centre network. As a consequence, many flows among servers are generated to transfer 

these massive datasets during the processing phase. Transfer such large datasets quickly 

and process them efficiently needs a convenient bandwidth allocation for each flow. It 

may be argued that the networking part for a Hadoop cluster still bottleneck even with 

the optimal configurations of the computing part. A previous study on Facebook 

showed that the communication phase consumes 33% of the running time of jobs and 

some cases even reaches to more than 50% of the running time [134]. SDN can be used 

to improve the performance of the networking part of Hadoop MapReduce jobs, 

especially during the shuffling phase. It has some remarkable advantages such as direct 

network programming, centralised management, intelligent control, agility, flexibility, 

network abstraction as well as CapEx and OpEX reduction. In this work, a dynamic and 

effective approach based on SDN has been proposed to improve the performance of 

Hadoop MapReduce jobs by reducing their shuffle phase time.  

 

5.2 Related Work 

Hadoop is the most popular framework of distributed storage and parallel processing for 

massive datasets, which generate from different sources. Many research works have 

been carried out to improve the performance of Hadoop MapReduce. In [135] Narayan 

proposed the integration of SDN technology and Hadoop. The main idea of the 

proposed work is to identify the traffic of Hadoop intermediate data and the background 

traffic by using the flow rules and then apply different quality of service (QoS) for 

them. The experimental results of this work showed that the execution time of 
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MapReduce job went down due to the sufficient amount of bandwidth allocated for the 

shuffle traffic. However, this work is only suitable for small scale cluster and cannot be 

applied to large scale clusters in data Centre network with large number of switches and 

servers. The work proposed in [68] presented an application-aware SDN routing 

scheme for Hadoop to speed up the data shuffling of MapReduce over the network. 

Another work was proposed in [87] to improve the job completion time. This work 

proposed application-aware network in SDN (AAN-SDN) for Hadoop MapReduce to 

provide both underlying networks functions and MapReduce particular forwarding 

logics. Flexible Network framework (FlowComb) was proposed in [136] for big data 

applications to achieve high bandwidth utilization and fast processing time by 

predicting the network application transfers. Yi Lin and Yu Liao [137] used an SDN 

app for Hadoop cluster to speed up the execution time of MapReduce jobs. The 

proposed work implemented the SDN app in Hadoop cluster for easy deployment of 

flow rules for Hadoop applications. However, the work has evaluated small cluster with 

one physical switch and have not investigated the performance of Hadoop jobs in large 

clusters in data Centre network.  

The work presented in [85] focuses on enhancing the data locality of Hadoop in a 

global way and assigning tasks efficiently by proposing bandwidth-aware scheduling 

with SDN in Hadoop cluster. It exploits SDN capabilities for jobs scheduling of big 

data processing. Jin et al. [86] Proposed different approach to reduce the running time 

of a Hadoop job. The proposed approach is based on an initial task allocation produced 

by balance reducer (BAR), and then the completion time of a Hadoop job can be 

progressively decreased by the initial task allocation. SDN is employed to build big data 

platform for social TV analytics in [138]. The proposed system integrated SDN with 

Hadoop to enable intermediate data transfer among different processing units to achieve 

fast data processing rate. SHadoop is presented in [33] to improve the performance of 

Hadoop MapReduce jobs by optimizing the setup and clean-up tasks of a Hadoop job. It 

also provides massaging communication mechanism to obtain rapid performance of 

task scheduling and execution. In [139] Hedera is proposed based on SDN to replace 

congested flow path for data transfer with less congested flow paths by using 

centralized controller. However, setting new flow path instead of the existing path for 

flows leads to the loss and reordering of packets. Some other work like [140] proposed 

multiple paths to split and transmit large flows to obtain high throughput by splitting the 
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flows at switches. However, this process is a challenging task because the switch lacks 

the ability to match the sequential number of TCP. 

 

5.3 Software Defined Networking 

SDN is an emerging network architecture approach that provides dynamic, manageable 

and cost-effective platform to enable networks to be intelligently and centrally 

programmed. It is adaptable platform for many network applications. It decouples the 

network’s control logic (control plane) from the data plane. The separation of the 

control and data planes brings direct programming and central management of networks 

using the SDN controller. SDN allows network administrators to provide abstraction of 

lower level functionality and enable the programming of network behaviour 

dynamically via well-defined open application programming interface(APIs), which 

includes both of northbound and southbound APIs that represent the communication 

channels between SDN layers [141]. We used Openflow protocol to enable the SDN 

controller to interact with the forwarding plane and manage the configuration state of 

switches and routers [142] . Figure 5.1 shows the architecture of software defined 

network. The following layers define and explain the architecture of SDN [103]. 

1- Application layer is the layer that includes SDN applications, which are programs 

that directly communicate and exchange information with the SDN controller via 

northbound APIs. Furthermore, applications can construct an abstracted view of 

network infrastructure by collecting information from the SDN controller for their 

decision making purposes. 

2- Control layer (SDN controller) is the core of the SDN network that manages the flow 

control between the SDN networking devices via southbound APIs and the SDN 

applications via northbound APIs to provide intelligent networking. 

3- Network infrastructure layer is the layer that includes the SDN networking devices 

that control the forwarding process of data path. All forwarding and routing decisions 

will be executed based on the flow tables provided by the SDN controller via the 

southbound APIs. 
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Figure 5. 1: SDN architecture 

 

5.4 Routing Techniques and Network Topologies 

Before the discussion of our proposed work, it is important to explain some routing 

techniques, like ECMP and some data centre network topologies. Multipath techniques 

are widely used in the modern data centre network for forwarding and distributing 

flows across multiple paths so as to achieve better bandwidth utilisation. ECMP [71] is 

used to distribute the flows across multiple equal cost paths to exploit the full capacity 

of network bandwidth. However, it has some limitations, such as the static scheduling 

of flows across multiple paths. That is, it uses a hashing value policy to allocate flows 

with certain paths. It also lacks a global view of the entire network, missing its current 

load as well as the individual characteristics of flows and their future network demand. 

As a result, we propose in this paper an effective routing algorithm based on application 

level information to estimate the demand of all shuffling flows during the MapReduce 

process, as explained in section 5.5. The characteristics of the most popular topologies 

of three-tier architectures, like fat tree topology, have been studied. From this study, we 

have identified some limitations and bottlenecks of this topology. Fat tree topology 

[143] is divided into multiple pods, with each including the switches of the edge and 
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aggregation layers. The connection inside the pod is considered as a local pod 

connection, because the traffic remains inside it. On the other hand, the connection 

between different pods is considered as a remote connection, because the traffic of 

connecting pod passes through one or more core switches. This hierarchical architecture 

limits the locations of end hosts and also creates loops in the network due to the 

redundant paths that connect the end hosts when multipath techniques are used, like 

ECMP. As a result, a spanning tree [144] is used to prevent loops by selecting a single 

path and disabling all other redundant paths. However, this routing scheme of a 

spanning tree leads to poor network utilisation, because the flows in the data centre 

network will employ few paths and leave others redundant, only reutilising them in the 

case of any outage or failure. We illustrate some examples of flow transfer based on fat 

tree topology.  

There are three cases of transfer flows between two hosts in a data centre based on fat 

tree topology. The first, involves sending shuffling flow from host 1 to host 2. In this 

case, there is only a single path between them, because both hosts are located in the 

same rack. Hence, all possible paths between the two hosts go through edge switches 

only and the generated traffic remains inside the rack, with there being no need to 

traverse any aggregation switches. In the second case, host 1 sends its flow to host 4, 

which is located in a different rack, but within the same pod. In this case, the 

connection between them is an intra-pod connection, because all the possible paths 

between these two hosts will pass through edge and aggregation switches. The third 

case is in relation to transferring flows between two hosts located in different pods, 

such as host 2 and host 8. In this case, there are multiple paths between them to transfer 

flows. However, the produced traffic between the two hosts has to traverse edge, 

aggregation and core switches, because each host is located in a different pod and all 

possible paths should go through different core switches. The situation becomes more 

sophisticated when some hosts in different pods exchange shuffling flows at the same 

time and might contend for the same links, especially in the aggregation and core 

switches, thus creating congestion that makes the bandwidth utilisation of the core and 

aggregation links becoming over-utilised. It is supposed that multiple hosts exchange 

their flows at the same time. Specifically, host 2 sends its flow to host 6, host 10 sends 

its flow to host 16 and host 5 sends its flow to hosts 15, respectively, all simultaneously. 

Figure 5.2 illustrates the path between hosts 2 and 6 as well as that between hosts 10 
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and 16 in bold lines. It is observed that there are multiple paths between all the hosts. 

However, it is noted that there is a challenge to assign even a single path among the 

multiple paths in the data centre network for hosts 5 and 15 because of the congestion 

that has occurred in the network. The main cause of this is the architecture of fat tree 

topology that constrains the location of end hosts. Since host 5 is located in pod 2 and 

host 15 is in pod 4, it is a challenging task to assign a path between the two hosts even 

though we selected the right side of pod 2 to avoid the overlapping. It is impossible to 

avoid the overlapping in pod 4, because the right side in pod 2 can only reach the left 

side of pod 4 and consequently, this creates congestion between the two hosts. As a 

result, it has become crucial to design an efficient type of data centre architecture, like 

leaf-spine topology [145]. Unlike fat tree topology, this consists of two layers. The first 

is the leaf layer that includes several switches connected to end hosts in the network. It 

is connected to the spine layer that represents the second or top layer. Leaf-spine 

topology is widely adopted in large data centres and cloud networks due to its 

remarkable features, such as scalability, reliability and effective performance. However, 

applying multipath algorithms, such as ECMP, as a forwarding technique for shuffling 

flows to utilise more bandwidth in the leaf-spine topology is not an effective way, 

because it is a static scheduling algorithm and it does not consider the network 

utilisation or flow size. 

 For instance, there are three different hosts in the same rack, which are connected to 

the same switch in the leaf layer transferring their flows to other hosts in different racks. 

The first case, is when host 2 sends its shuffling flow to host 8, whilst the second, is 

when host 4 sends its shuffling flow to host 6 and the third case is when host 3 transfers 

his shuffling flows to host 10, as shown in Figure 5.3. We observed that host 3 might 

compete for the same heavy loaded link in the leaf switch, because of the allocation 

technique of ECMP, whereby it might choose the same heavy loaded link for two large 

shuffling flows, thus resulting in a congestion and collision. The reason for this, is 

because, as aforementioned, ECMP lacks a global view of entire network. Moreover, 

with ECMP algorithm, the flow is routed based on its hash value. Hence, flows might 

result in using the same path and creating congestion in some links in the leaf and spine 

switches. It is also seen from Figure 5.3, that all possible paths of shuffling flows for all 

cases might compete for the same leaf and spine switches, which leads to overload on 

some link switches. Furthermore, crashing or failure might occur on some links that 
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belong to the allocated path for shuffling flows in the leaf and spine switches. As a 

consequence, we propose an effective routing algorithm based on SDN that performs 

the routing process, which respects the network resources demand of each shuffling 

flow as well as their size and number. The proposed algorithm is also able to reroute the 

shuffling flows to another available path in the case of any failure or crashing on any 

link in the network. The proposed algorithm is explained in the following section.   

 

 

Figure 5. 2: Path allocation challenging in fat tree topology 
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Figure 5. 3: Path allocation using ECMP in leaf-spine topology 

 

5.5 The Implementation of the Proposed Work 

Our proposed work consists of three modules as follows. 

1- Link monitor module: This module monitors network link status, such as link loading 

in the network and computes the link weight. It periodically gets the statistics 

information of all links loaded in the data centre network from all the connected 

OpenFlow switches at specific intervals. Statistics such as per-table, per-flow and per-

port are collected and stored as snapshots. All switches in the network are connected to 

the SDN control. However, the SDN controller lacks the required information of all 

links between the switches and hence, a link layer discovery protocol (LLDP) [146] is 

used to identify the needed information of all links and the switches layer in the 

network topology. Statistic information about links loading is used by the routing 

module to calculate the paths accordingly. The current load of each link in the data 

centre network is computed by using N transmitted bytes from the port within recent 

interval t over the bandwidth (B) of the link. The formula below calculates the current 

load of the link: 
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LLk =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑦𝑡𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡

𝐵
                                                                                                             (5.1) 

It is supposed that all links have the same bandwidth and each link has fixed weight. In 

our case, we propose that the link weight (W) is 1. It is very important to check whether 

the current load of each link (LLk) reaches or does not reach the peak of link depending 

on the link weight (W) by comparing it with (LLk). If LLk<1, it means that is has not yet 

reached the peak of the link. However, if Lk=1, it means that it has and this may cause 

link overloading, because of some heavier flows and consequently, result in improper 

path allocation. Hence, the weight of each link should be estimated based on the 

number of flows and the throughput of each. The natural demand of shuffling flows is 

estimated by the Hadoop engine module. It is worth noting that the current load reaches 

the link capacity, if it exceeds threshold γ which has been set to be 90% of the link 

capacity. Furthermore, we compute the path load for all flow paths in the leaf and spine 

switches by using the maximum load of each link, which belongs to the path as 

explained in Equation 5.2. 

. 

      Lp =     𝑚𝑎𝑥𝑙∈𝑝 ll                                                                                                                   (5.2) 

 

Where, (p) is defined as the path used to route the shuffling flow from source to 

destination. Each link that belongs to the path (p) is represented by (l) and (ll) pertains 

to the load of each link that traverses the path at the leaf and spine switches from the 

source node to the destination node. Once the path load of each link is computed, all 

information is delivered to the scheduling and routing component to select the 

convenient path that has the least path load (Lp). Then, it installs the flow entries into a 

set of switches of the selected path.  

2- Hadoop monitor engine: In a Hadoop cluster environment when the map task in the 

mapper node writes its output data to the reducer node, shuffling traffic is generated 

during the shuffle phase of a Hadoop job. This traffic needs sufficient network 

bandwidth to accelerate the processing time of the Hadoop job. However, the main 

Hadoop framework does not contain sufficient information about the required network 

resources. Therefore, this module is proposed to identify the data transferred from the 

mapper node to the reducer node in a Hadoop cluster during the shuffle phase of a 
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Hadoop job. The data is transferred through a number of flows during the shuffling 

phase.  

This module is responsible for recording all the required information of these flows 

from all the connected Hadoop servers. In a Hadoop cluster, as aforementioned, there is 

one job tracker and several task trackers.  The job tracker is responsible for monitoring 

the progress of Hadoop jobs by receiving heartbeat messages from each task tracker, 

but these messages do not include information about the network resources. To obtain 

such information, a software engine has been installed on each Hadoop server.  This 

engine detects when a map task has finished and starts to send its shuffling information 

to the reducers, whilst then recording the size of the map output data, which is 

transferred over the flow to the other reducers. After this process, the Hadoop engine 

will obtain the required network bandwidth for each shuffling flow. It maintains a table 

that contains all shuffling flows with their networking demands. Furthermore, all the 

collected shuffling information includes the source IP address, destination IP address 

and the size of each shuffling flow. The Hadoop monitor engine also determines the 

total amount of shuffled data and the number of shuffling flows transferred over each 

link. All information about shuffling flows is delivered by the Hadoop monitor to the 

scheduling and routing module to assign proper paths, according to the bandwidth 

needed for each shuffling flow and the current load of link utilisation.     

3- Scheduling and routing module: In the forwarding module of the OpenFlow 

floodlight controller, a packet-in message is generated to notify the controller that new 

flows have arrived at an OpenFlow switch. The switch checks the packet and if there is 

no match with its flow entries, the packet is forwarded to the controller. On the other 

hand, a flow-removed message is also generated when a flow expires in an open flow 

switch. In this work, a scheduling and routing module is proposed to assign efficient 

paths for the exchangeable shuffling flows between different hosts in the data centre 

network.  

This module performs the scheduling and routing of the shuffling flows on the chosen 

paths and it has two tasks. The first is the calculation of the possible paths based on the 

statistics from the link monitor module that includes the loads on all links in the 

network. It also uses the collected information by the Hadoop monitor engine to 

compute the possible paths of different shuffling flows. The collected information by 
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the Hadoop engine module contains a list of shuffling flows including 

source/destination IPs, flow size and transfer volume over each link. All this 

information is recorded in a network table to be used for the calculation of the path load 

in the routing process. This table also contains scheduled flows and available capacity 

for each of them. Once all the information of shuffling flows has been received by the 

scheduling and routing module, it will compute the possible paths with low load based 

on the information collected from the link monitor module and Hadoop monitor engine. 

The second task is to assign efficiently the best possible paths for all shuffling flows, 

according to the bandwidth needed for each flow. 

 A scheduling and routing algorithm based on SDN is proposed to obtain an effective 

routing technique for shuffling flow, according to network utilisation and flow size by 

computing the current load of all possible paths in the leaf and spine switches. Once the 

current load is determined according to Equation 5.2, the shuffling flows are routed 

onto the proper paths. Our proposed work moves the large shuffling flows from heavy 

loaded links to lightly loaded ones so as to prevent congestion. What is proposed is 

demonstrated in Algorithm 1 and 2. 

 

Algorithm 1

 

1- For each shuffling flow (SF) do 

2- Collect SF size and its network resources demand from the SDN controller 

3- Compute the current load of all possible paths for each SF according to Equation 5.1 

4- Compare the size of each SF with the current load of all possible paths              

5- Choose the shortest available path for SF and check 

6- If the link of shortest path is active and its current load does not override the pre-defined 

threshold then 

7- Keep SF routing on this path; 

8- Else 

9- If there is any failure in the link of the shortest path or its load exceeds the pre-defined 

threshold then 
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10- Choose another available path with light loaded or unused links calculated by Equation 5.2; 

11- Re-route the shuffling flow on new chosen path; 

12-           End if 

13-     End if 

14- End for 

 

In this algorithm, the size of the shuffling flow and the demand of the network 

resources are determined using the Hadoop engine module. This module sends all the 

required information to the SDN controller. After that, the current load of all possible 

paths of each shuffling flow between any two hosts is computed using the information 

received from both the link monitor and Hadoop engine model, as mentioned before. 

Then, the shortest path with minimum load will be chosen. If the link of the shortest 

path is active and there is no failure or congestion, the routing of the shuffling flow is 

kept on this path. However, if there is any crash in the link or its current load exceeds 

the pre-specified threshold, which is set to 90% of the link capacity of this path, as 

mentioned for the link monitor module, then another unused or light loaded shortest 

path should be chosen. This is also computed based on Equation 5.2 and the 

information received from the Hadoop engine and the shuffling flow is rerouted 

accordingly. It is worth noting that the SDN controller receives all the required 

information of link loading for all the Open vSwitches in different layers from the link 

monitor module, as detailed above. 

 

Algorithm 2

 

1- For each shuffling flow (SF) do 

2- Collect SF size and its network resources demand from the SDN controller 

3- Compute the current load of all possible paths for each SF according to Equation 5.1 

4- Compare the size of each SF with the current load of all possible paths 

5- Choose the shortest available path for SF and check 
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6- If the shuffling flow (SF) size does not override the pre-defined threshold of link switches of 

this shortest path then 

7- Keep SF routing on this path; 

8- Else 

9- If the load of SF exceeds the pre-defined threshold then 

10- Choose another available path with light loaded or unused links calculated by Equation 5.2; 

11- Re-route the shuffling flow on new chosen path; 

12-           End if 

13-     End if 

14- End for 

 

In algorithm 2, the size of the shuffling flow and the demand of the network resources 

are determined using the Hadoop engine module. This module sends all the required 

information to the SDN controller. After that, the current load of all possible paths of 

each shuffling flow between any two hosts is computed using the information received 

from both the link monitor and Hadoop engine model, as mentioned before. Then, the 

shortest path with minimum load will be chosen. If the shuffling flow does not exceed 

the current load of this shortest path, its routing is kept on this path. However, if the 

shuffling flow exceeds the pre-specified threshold, which is set to 90% of the link 

capacity of this path as mentioned for the link monitor module, then another unused or 

light loaded shortest path should be chosen. This is also computed based on Equation 

5.2 and the information received from the Hadoop engine and the shuffling flow is 

rerouted accordingly. It is worth noting that the SDN controller receives all the required 

information of link loading for all the Open vSwitches in different layers from the link 

monitor module, as detailed above. 

 

5.5.1 Performance Evaluation  

The proposed work is evaluated using EstiNet emulator because of its scalability and 

the correctness of performance results [21]. The software emulated a leaf spine 

topology consisting of 12 switches using 1Gbps links. It includes two layers, which are 

spine and leaf. The leaf layer is responsible to provide the connectivity to endpoints 
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such as computing nodes, storage devices, firewalls and other endpoints devices. On the 

other hand, the spine layer provides the connections between leaf switches. Each switch 

in the leaf layer connects to every switch in the spine layer. However, the switches in 

the spine layer are not interconnected with each other. Similarly, the switches in the leaf 

layers are also not interconnected with each other. EstiNet software also emulates fat 

tree topology, which includes three layer switches using 1Gbps links. The three layers 

contain 20 4-ports switches. Both of edge and aggregation layers are configured with 16 

switches divided into 4 pods and 4 switches is configured for core layer.  Apache 

Hadoop is installed on 16 hosts using two Linux servers managed by Microsoft azure. 

All hosts are connecting to the emulated leaf-spine topology by Estinet software .The 

traffic generated from each Hadoop host goes inside the emulated network. Word count 

and Tera Sort applications have been run on top of Hadoop hosts. All switches forward 

packets according to the flow rules received from the floodlight controller. These 

switches are connected to the Floodlight controller using TCP connection. Another TCP 

connection is established between the floodlight controller and the Hadoop engines of 

Hadoop hosts to collect all required information of shuffling flows. The proposed 

algorithm of our routing scheme is compared with ECMP and TRILL (Transparent 

Interconnection of Lots of Links) [22]. The performance of the proposed work is 

measured by using the following metrics: (1) the execution time of shuffling phase 

using different sizes of datasets (2) the execution time of shuffling phase using different 

numbers of reducers. The execution time of shuffling phase in leaf spine topology has 

also been compared with fat tree topology under different number of reducers. The 

experimental results and discussions are explained in sections 5.5.2 and 5.5.3, 

respectively. 

 

5.5.2 The First Experimental Results and Discussion 

Two experiments were carried out using Word count and Tera Sort applications to 

evaluate our proposed work. In the first experiment, the performance of our proposed 

algorithm is evaluated using fat tree topology and leaf-spine topology. The second 

experiment evaluates the performance work against ECMP and TRILL in the leaf-spine 

topology. Furthermore, the two applications have been run under different scenario. In 

the first scenario, different input data sizes ranging from 1-5 GB have been used. The 
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second scenario employs various numbers of mappers and reducers. Figure 5.4 shows 

the execution time of a Hadoop job for the Tera Sort application using both the fat tree 

and leaf-spine topology based on ECMP under different number of reducers. From this 

Figure, it can be clearly observed that the execution time of shuffling flows in the leaf-

spine topology can be reduced, when compared to the fat tree topology. The reason for 

this is that fat tree topology is mainly designed to process north-south traffic (i.e form 

the core switches to the edge switches).  

On the other hand, the traffic between hosts (west-east traffic) in the fat tree topology is 

representing a challenging task, because some hosts in the network might connect to the 

same port and then compete for bandwidth, which results in a delay in the response 

time. Furthermore, the communication between two hosts in the fat tree topology needs 

to traverse through a hierarchical path from the edge layer to the core layer, thus 

resulting in latency and traffic bottlenecks. Figure 5.5 shows the execution time of Tera 

Sort application for different data sizes using different algorithms based on the leaf-

spine topology. Our proposed algorithm was compared with different techniques such 

as ECMP and TRILL. It is clearly seen that the execution time of shuffling flows are 

reduced for different data sizes using our proposed algorithm comparing to ECMP and 

TRILL. The reason is because of the inconvenient path allocation for shuffling flows by 

ECMP and TRILL. TRILL is mainly designed to solve the issues of Layer 2 spanning 

tree that utilizes only single path during the communication between any pair of hosts, 

whilst other redundant paths are only utilized in the case of any crashing or failures. 

However, TRILL is not able to support multipath routing at layer 3, where only a single 

router will be active with virtual router redundancy protocol (VRRP). Moreover, it has 

some limitations like VLAN scale, where the spanning of VLANS is eliminated in the 

network. VLAN segments in each leaf switch are not accessible by other leaf switches 

in the network and consequently, constraints the mobility of virtual machine within the 

data centre. Spanning tree topology might be appropriate for conventional business 

networks, where few paths are used to exchange the traffic between hosts. However, it 

is not appropriate for the modern data Centre networks, where high traffic is generated, 

because it is unable to utilize the full capacity of the network bandwidth and thus leads 

to the throughput degradation.  

Therefore, multipath forwarding techniques such as ECMP is employed to utilize the 

overall capacity of the network bandwidth in the modern data Centre network. ECMP 



99 
 

can forward the shuffling flows to multi paths equally based on hashing policy. Each 

packet belongs to a single flow is assigned with the same hashing value in the packet 

header. However, ECMP lacks a global view of the entire network. The bandwidth 

needed in the network, future traffic demand and the size of each shuffling flow is not 

considered in ECMP as it uses static routing process for flow scheduling. Moreover, 

ECMP follows a distributed scheme at each host that leads to utilize some overloaded 

links, while leave other light loaded links are unutilized. Our proposed algorithm 

schedule and route the shuffling flows dynamically, according to their bandwidth 

required as well as their size and number. 

Our observation showed that the shuffling execution time goes up, when number of 

reducers increase in ECMP and TRILL due to the high traffic generated, as shown in 

Figure 5.6. On the other hand, the shuffling execution time in our proposed algorithm 

remains constant, because of the effective utilization of the network bandwidth and 

efficient dynamic path allocation for shuffling flows. However, the execution time went 

up, when using 16 reducers due to the over-utilized of CPU, which leads to the 

resources overhead and hence, increases the execution time.  

 

 

Figure 5. 4: shuffling execution time of Tera Sort using different number of reducers for 

leaf-spine and fat tree topology 
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Figure 5. 5: shuffling execution time of Tera Sort 

 

 

 

Figure 5. 6: shuffling execution time of Tera Sort using different number of reducers 
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5.5.3 The Second Experimental Results and Discussion 

Two experiments were carried out on a Hadoop cluster based on SDN in the data centre 

network to evaluate the performance of the proposed work. The performance of the 

proposed work in these experiments is evaluated based on the following metrics (1) 

Routing convergence time using different topology sizes (2) Hadoop execution time of 

Word count and Tera Sort applications within leaf-spine topology under different 

topology and data sizes. In the first experiment, EstiNet emulator software was used to 

build two different topologies, namely, fat tree and leaf-spine. In both SDN and 

conventional networks, three layers of switches were used for fat tree topology. The 

first was the edge layer, which was assigned with eight switches at the top of the rack. 

The middle layer or aggregation layer was also allocated eight switches and finally, four 

switches were used for the core layer. The emulated leaf-spine topology consisted of 

two layers, with the bandwidth of all the links in the SDN and conventional network 

being set at 10 Mbps, whilst the link delay was 1ms. 16 Hadoop nodes were used, with 

each being allocated four CPU cores and 8GB of RAM.  

All the Hadoop hosts were connected to the emulated fat tree and leaf-spine topology 

using EstiNet emulator software. The traffic produced by each Hadoop host went into 

the emulated network. The previously utilised two real application programs, namely 

Word Count and Tera Sort were used to evaluate the work performance. All switches in 

the emulated fat tree and leaf-spine topology were connected to the SDN (Floodlight) 

controller using a TCP connection. Another TCP connection was deployed to connect 

the floodlight controller to the Hadoop engine. The fat tree topology of data centre 

network based on SDN was compared with the conventional network to evaluate the 

performance of Hadoop MapReduce jobs. The leaf-spine topology based on SDN was 

also compared with the conventional network. Open shortest path first (OSPF) was used 

for the conventional network. Figure 5.7 shows the fat tree topology of the proposed 

work based on SDN using 20 switches. The leaf-spine topology with 12 switches is 

shown in Figure 5.8.The second experiment also involved the same software emulator 

in the first experiment, but with different network topology size, as shown in Figure 5.9. 

In both the SDN and conventional networks, eight switches in the edge and aggregation 

layers and only two in the core layer were used. On the other hand, six switches were 
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used in the leaf-spine topology for the SDN and conventional network, as shown in 

Figure 5.10. The evaluation of the proposed method using both types of network was 

made based on the routing convergence time in the case of link failure. The Word 

Count and Tera Sort applications were also run to evaluate the performance of Hadoop 

jobs under different network topology and data sizes for data centre network.   

To evaluate the routing convergence time in the case of link failure, it is proposed that 

the failure is occurred in any link of all possible paths specified for each shuffling flow 

in both topologies. The routing change of the packets in the conventional network needs 

some time, because any change or update in link status and routing computation has to 

be performed by each router in the entire network. While in SDN, the controller is the 

brain of the entire network management and maintains the routing process of the whole 

network in a centralised manner. The floodlight controller in SDN was used to manage 

and maintain the status of all links in the data centre network using the link layer 

discovery protocol (LLDP), whilst the information of the network topology was 

maintained by the topology service responsible for calculating the routing computation. 

In the conventional network, the routing module uses the flooding method to transmit 

the information of link status to other routers in the data centre network in a distributed 

manner.  

Two experiments were conducted to evaluate the convergence time of the routing 

process. As can be seen in Figure 5.11, the convergence time of the routing process for 

different sizes of topology is minimised using the SDN network for the leaf-spine 

topology, which is not the case with the conventional network. The reason for this, is 

because the convergence process in the SDN network is more flexible and faster than 

with the conventional network. The convergence process of the latter depends on the 

routers, whereby each maintains a routing table which forwards and queries each packet 

in the network using a specific path. When any change or update occurs in the routing 

process of packets, like link failure, router 1 will send its update to its neighbour router 

2 that will check for any required changes or updates in its routing table, then sending 

its update to its neighbour and so on. This is means that the changes and updates will 

broadcast over the whole network and consequently, it leads to slowing of convergence 

time in the conventional network, especially when the size of network topology is 

increased. This is because the routers will be scaled when the size of network is 

increased.  
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On the other hand, the floodlight controller in the SDN network is responsible for any 

change or update, such as link down, by using the OpenFlow control that installs flow 

entries into the switches. The controller can also add, delete and modify flow entries for 

all connected switches in the network. The SDN controller detects whether any link 

failure has occurred using PORT_STATUS. Furthermore, switches in the network 

notify the controller of any link down through error messages. When the controller 

receives the error messages from the connected switches, it computes new available 

routes based on the flow tables. As a result of the centralised manner of the SDN 

control, this makes the convergence routing time more rapid and agile.  The Word 

Count and Tera Sort applications were run to evaluate the performance of a Hadoop job 

using the proposed system in the leaf-spine topology. The optimised values of the 

Hadoop parameters in chapter 3 were used in the proposed SDN network under 

different sizes of network topology. Moreover, different sizes of datasets ranging from 

1GB to 5GB were used. In the first experiment, it can be clearly observed from Figure 

5.12 that the execution time of the proposed work based on SDN is reduced when 

compared to the conventional network for the Word Count application. The execution 

time of Tera Sort application is also decreased using our proposed approach when 

compared to the conventional network. In the second experiment, the execution time of 

Word Count and Tera Sort applications is also shorter than with the conventional 

network as shown in Figure 5.13. 

 Furthermore, the execution time of both applications under 12 switches in the proposed 

SDN network was relatively same as that using six switches due to the centralised 

management of the SDN controller, which can deal with any issues of the routing 

process, such as congestion or link crashing, irrespective of network topology size. 

However, the execution time of both applications in the conventional network using 12 

switches was increased when compared to utilising six. As it is mentioned above, the 

routing convergence time is increased when a larger network topology size is used, 

because of the distributed technique of the conventional network in case of congestion 

or link down. The dynamic routing of the scheduling and routing process based on an 

SDN environment has a significant impact on the performance of Hadoop jobs, which is 

not present in the static environment of a conventional network. 
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Figure 5. 7: Fat tree topology with 20 switches based on SDN 
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Figure 5. 8: Leaf-spine topology with 12 switches based on SDN 

 

 

 

 

Figure 5. 9:  fat tree topology with 10 switches based on SDN 
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Figure 5. 10:  Leaf-spine topology with 6 switches based on SDN 

 

 

 

Figure 5. 11:  Routing convergence time using different topology sizes 
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Figure 5. 12: Hadoop execution time within leaf-spine using 12 switches 

 

 

 

Figure 5. 13:  Hadoop execution time within leaf-spine using 6 switches 
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5.6 Summary  

This chapter proposed scheduling and routing algorithm based on SDN to achieve 

reliable bandwidth utilization in the leaf-spine topology of data Centre network. The 

proposed work consists of three modules. The first module is to monitor the current 

load of all links in the data centre network and obtain the statistics information from all 

Open vSwitch. The second one is to obtain the network resources and all required 

information of shuffling flows from Hadoop hosts. The routing process is performed by 

the scheduling and routing module, where the implementation of our scheduling 

algorithm. Our proposed work was evaluated by using Tera Sort and Word count 

applications. The results show that our proposed work outperforms ECMP and TRILL 

by reducing the execution time of shuffling flows in the leaf-spine topology. The leaf-

spine topology was also compared with the fat tree topology and the experimental 

results showed that the leaf-spine has achieved better performance. Furthermore, the 

routing convergence time has been reduced using the SDN network for the leaf-spine 

topology in comparison with the conventional one under different topology sizes. The 

execution time of a Hadoop job was also reduced using the SDN network for the leaf-

spine topology under different topology and data sizes, when compared to the 

conventional network.   
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Chapter 6 

Conclusion and Future Work 

The major contributions of this thesis are provided in this chapter. It also includes some 

considerations and proposals for future work to expand up on the work presented in this 

thesis. 

 

6.1 Conclusion 

In this thesis, first, an approach to automatically setting the configuration parameters of 

Hadoop framework, so as to improve its performance was presented. Secondly, the 

performance of an R and Hadoop Integrated Programming Environment for the fast 

calculation and analysis regarding solar irradiation datasets was evaluated. Finally, the 

superior performance of a Hadoop job in a large scale cluster in a data centre network 

was demonstrated by presenting an effective routing algorithm based on SDN 

technology to alleviate the produced traffic in the shuffle phase. 

The first part of the thesis was focused on the optimisation of Hadoop performance by 

tuning the values of its parameters. The framework of Hadoop contains more than 150 

parameters and some of them have a significant effect on the performance of a Hadoop 

job if they are tuned with the optimum values. The optimal settings of the Hadoop 

parameters are a challenging task as well as being time consuming. In this part, a novel 

technique is proposed to set the Hadoop MapReduce parameters with the optimal or 

near optimal settings in an automatic manner. First, Genetic programming was utilised 

to construct a fitness function, used to represent the interrelations among the Hadoop 

parameters. Second, a GA was employed to find the optimum values of the Hadoop 

parameters by applying the constructed fitness function. 

 For further improvement, SDN is employed to enhance the networking part of a 

Hadoop job during the shuffle phase. Furthermore, the optimised values were applied in 

the optimised SDN network to evaluate the job performance. The work performance 

was first evaluated using eight virtual machines (VMs) of a Hadoop cluster placed on a 

Microsoft azure cloud, whilst another cluster, consisting of fourteen VMs, was used 

based on SDN. The experimental results showed that the proposed approach improves 
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the performance of a Hadoop job in the conventional network as compared to Gunther’s 

work and the default settings. Moreover, the performance of a Hadoop job in the SDN 

network is better than for the conventional one.  

In the second part of the thesis, an effective computing platform that provides 

distributed processing and storage for large amounts of solar irradiation data was 

presented. This platform is built by using R language in Hadoop environment (RHIPE). 

RHIPE was employed for solar irradiation data analysis in a Hadoop cluster, which was 

evaluated in comparison with R language in terms of scalability, accuracy and speedup. 

Experimental results showed that RHIPE can achieve a significant improvement over 

the R language. Furthermore, the speedup of parallel RHIPE in the Hadoop cluster was 

analysed by Gustafson's Law, which was revised to improve the performance of the 

parallel computation on intensive irradiation data sets in the Hadoop cluster based on a 

cloud computing environment.  

For the third part of the thesis, the focus was on the performance of a Hadoop job in a 

large scale cluster in a data centre network. SDN is used to improve the performance of 

Hadoop jobs. The networking aspect of a Hadoop cluster is optimised using SDN by 

achieving centralised control and agile management. This can improve the performance 

of a Hadoop job by accelerating the shuffling phase that can be network intensive.  Two 

effective routing algorithms based on SDN were implemented to improve the 

networking part of a Hadoop job during the shuffle phase. The first algorithm was used 

to allocate efficient paths for each shuffling flow, according to its network resources 

demand as well as its size and number in the data centre network. The second algorithm 

was also based on SDN and used to reroute the shuffling flows to another available 

paths in the case of any link crashing or failure. The proposed work was evaluated using 

different network topologies and sizes. Both the fat tree and leaf-spine topology with 

different sizes were employed to assess performance, being built by EstiNet emulator 

software. Different sizes of network topologies were emulated consisting of 20 and 10 

switches for the fat tree, whilst 12 and 6 switches were deployed for the leaf-spine. The 

experimental results showed the performance of a Hadoop job in the SDN network was 

improved when compared to the conventional network under different network 

topologies and sizes. Furthermore, the routing convergence time was also reduced in the 

case of link failure in the SDN network when compared to the conventional one. 
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6.2 Future Work 

Despite the significant contributions of this thesis in optimising the computing and 

networking resources of a Hadoop framework, a number of works should be considered 

in the future to improve this framework’s performance. Data locality algorithms could 

be applied to this end, which would move the computation close to the data location 

instead of moving the data towards the computation node. Data locality is a technique 

of moving the computation task near to where the actual data resides on the node. This 

technique is particularly effective for massive datasets, because moving the 

computation results in this way reduces the congestion occurring in the network and 

hence, improves the performance of the Hadoop system. Massive amounts of data can 

be transmitted across thousands of shared nodes in a cluster computing environment 

and this puts load on the network, thus creating congestion. However, a scheduler for 

Hadoop can be used to avert unnecessary data transmission and minimise network 

congestion so as to improve the overall throughput of the system. Data locality can be 

characterised into three different levels, the first being data node level locality, where 

the mapper is running on the same node that holds the data. In this case, the located data 

are very close to the computation task. In the second level, the data are located in a 

node and the mapper is running on another node within the same rack, which is called 

rack level locality. The third level, termed inter-rack level, is where the mapper is 

running on a node and the data are located on another in a different rack.  

Furthermore, SDN can be used in a Hadoop cluster to improve data locality by 

providing bandwidth-aware scheduling since the network bandwidth is a scare resource. 

Such a system can allocate tasks in a global view and assign them effectively in an 

optimised way using SDN technology. This provides agile control and centralised 

management through the separation of the control plane from the data plane.  

In this thesis, RHIPE was utilised for analysing solar irradiation datasets with this 

process being conducted offline using estimated data provided by the London Weather 

Centre for the period 1996-2005. In future, an online collection method for solar 

irradiation data could be used to process them in real time using a Hadoop framework. 

Furthermore, SDN can be applied for RHIPE for better optimisation. 

Finally, in this thesis the computing and networking performance of a Hadoop 

MapReduce job in a homogenous cluster where all the computing nodes are 
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homogenous was evaluated. Future work could be aimed at determining the networking 

and computing performance of Hadoop in a heterogeneous cluster, where the nodes 

have different computing capacity.  
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