

VOLUME XX, 2017 1

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Optimisation of computing and networking
resources of a Hadoop cluster based on
software defined network

Ali Khaleel1, (MEMBER, IEEE), HAMED AL-RAWESHIDY2, (SENIOR MEMBER, IEEE).

1Wireless Networks and Communications Centre (WNCC), Department of Electronic and Computer Engineering (ECE), College of

Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK (e-mail: Ali.Khaleel@brunel.ac.uk)

2Wireless Networks and Communications Centre (WNCC), Department of Electronic and Computer Engineering (ECE), College of

Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.

Corresponding author: Ali Khaleel (Ali.Khaleel@brunel.ac.uk)

ABSTRACT in this paper, we discuss some challenges regarding the Hadoop framework. One of the main

ones is the computing performance of Hadoop MapReduce jobs in terms of CPU, memory and hard disk

I/O. The networking side of a Hadoop cluster is another challenge, especially for large scale clusters with

many switch devices and computing nodes, such as a data centre network. The configurations of Hadoop

MapReduce parameters can have a significant impact on the computing performance of a Hadoop cluster.

All issues relating to Hadoop MapReduce parameter settings are addressed. Some significant parameters of

Hadoop MapReduce are tuned using a novel intelligent technique based on both genetic programming and a

genetic Algorithm, with aim of optimising the performance of a Hadoop MapReduce job. In the Hadoop

framework, there are more than 150 configurations of parameters and hence, setting them manually is not

difficult, but also time consuming. Consequently, the above-mentioned algorithms are used to search for the

optimum values of parameter settings. Software Defined Network (SDN) is also employed to improve the

networking performance of a Hadoop cluster, thus accelerating Hadoop jobs. Experiments have been

carried out on two typical applications of Hadoop, including a Word Count Application and Tera Sort

application, using 14 virtual machines in both a traditional network and an SDN. The results for the

traditional network show that our proposed technique improves MapReduce jobs performance for 20 GB

with the Word Count application by 69.63% and 30.31% when compared to the default and Gunther work,

respectively. Whilst for the Tera Sort application, the performance of Hadoop MapReduce is improved by

73.39% and 55.93%, compared with the default and Gunther work, respectively. Moreover, the

experimental results in an SDN environment showed the performance of a Hadoop MapReduce job is

further improved due to the advantages of the intelligent and centralised management achieved using it.

Another experiment has been conducted to evaluate the performance of Hadoop jobs using a large scale

cluster in a data centre network, also based on SDN, with the results revealing that this exceeded the

performance of a conventional network.

INDEX TERMS: Big Data, data centre network, genetic algorithm, genetic programming, Hadoop,

MapReduce, parameter settings optimisation, shuffling flow, Software Defined Network.

I. INTRODUCTION

Big data is a term that refers to large and complex

data sets that cannot be processed, captured,

stored or analysed using traditional tools [1].

These amounts of huge data are generated from

different, sources such as social media, sensor

devices, the Internet of things, mobile banking

amongst many more origins. Furthermore, many

governments and commercial organisations are

producing large amounts of, data such as

financial and banking statements, healthcare

providers, high education systems, research

centres, the manufacturing sector, insurance

companies and the transportation sector.

mailto:Ali.Khaleel@brunel.ac.uk

2

Regarding which, International Data Corporation

(IDC) reported that 2,800 Exabyte of data in the

world were stored in 2012 and this is expected to

reach up to 40,000 Exabyte over the next ten

years. For instance, Facebook processes around

500,000 GB every day. The vast amount of data

includes both structured, such as relational

databases as well as, semi structured and

unstructured data, such as texts, videos, images,

multimedia, and web pages. These types of huge

data with various formats have led to the coining

of the term big data [2]. However, these massive

datasets are hard to be processed using traditional

tools and current database systems. Hadoop

MapReduce is a powerful computing technology

tasked with supporting big data applications [3].

Hadoop is an open source framework that enables

the implementation of the MapReduce algorithm

for data processing purposes. It is scalable, fault-

tolerant and able to process massive data sets in

parallel. Moreover, large datasets can be

distributed across several computing nodes of a

Hadoop cluster to achieve better computation

resources and power [4]. Hadoop has a complex

structure that contains a number of parts that react

with each other through several computing

devices. Moreover, Hadoop it has more than 150

configuration parameters and recent studies have

shown that tuning some of these can have a

considerable effect on the performance of a

Hadoop job [5, 6]. Because of the black box

feature of the Hadoop framework, the tuning of

parameters values manually is a challenging task

as well as being time consuming. To tackle this

issue, genetic algorithms (Gas) for Hadoop have

been developed to achieve optimum or near

optimum performance of the Hadoop MapReduce

parameter settings. However, there are some

traffic issues for Hadoop jobs especially in the

shuffling phase during the transfer of

intermediate output data from the mappers to the

reducers. As a consequence, SDN is proposed to

alleviate these traffic issues in a Hadoop cluster.

We employed SDN for a small Hadoop cluster

using 14 virtual machines connected to one

physical switch and two open virtual switches.

SDN was also used to evaluate the performance

of Hadoop jobs in a large scale cluster in a data

centre network. The major contributions of this

paper are as follows.

• Genetic programming is employed to construct

a fitness function based on the running of Hadoop

job samples that can be considered as CPU or I/O

intensive. The interrelations among Hadoop

parameters are represented by the constructed

fitness function and described mathematically.

• A GA is also used in this work to optimise the

configuration parameters of Hadoop. It is applied

to the fitness function constructed by the genetic

programming to search for the optimum or near

optimum settings of the Hadoop parameters.

• For better optimisation, SDN is used to improve

the performance of Hadoop jobs. The networking

aspect of a Hadoop cluster is optimised using

SDN by achieving centralised control and agile

management. This can improve the performance

of a Hadoop job by accelerating the shuffling

phase that can be network intensive. The

optimised values of the Hadoop parameters are

applied in the optimised network to evaluate the

performance of a Hadoop job.

• An application-aware networking based on SDN

is used for a Hadoop cluster in a data centre

network to improve further the performance of a

Hadoop job by reducing the execution time of the

exchanged shuffling flows between nodes during

the shuffle phase. An effective routing algorithm

based on SDN is proposed to accelerate the

shuffling phase of a Hadoop job by allocating

efficient paths for each shuffling flow According

to the network resources demand of each flow as

well as their size and number in the data centre

network. Accordingly, the proposed work

improves the execution time of a Hadoop job.

The proposed work also reduces the routing

convergence time in the case of any link crashing

or failure.

 The remaining sections of this paper are

organised as follows. Section II presents some

related work, whilst in section III, a set of

Hadoop MapReduce parameters are introduced.

Section IV explains the implementation of

3

genetic programing for building an objective

function of the Hadoop MapReduce parameters.

The implementation of GA for MapReduce

parameter optimisation is explained in section V

and section VI presents a performance evaluation

of the proposed work using a Hadoop cluster in

Microsoft azure cloud. Section VII describes and

discusses the experimental results of Hadoop jobs

in a small cluster in Microsoft azure. Discussion

and the experimental results of the small cluster

based on SDN are provided in section VIII.

Section IX presents and discusses the

experimental results for a Hadoop cluster based

on SDN in a data centre network and

subsequently, the paper is concluded in section X.

II. RELATED WORK

Many ways have been proposed for the automatic

tuning of Hadoop MapReduce parameter settings,

one of which being PPABS [7] (Profiling and

Performance Analysis-Based Self-tuning). In this

framework, the Hadoop MapReduce parameter

settings are tuned automatically using an analyser

that classifies MapReduce applications into equal

classes by modifying k- means ++ clustering and

a simulated annealing algorithm. Furthermore,

recogniser is also used to classify unknown jobs

into one of these equivalent classes. However,

PPABS cannot tune parameters of an unknown

job not included on these equivalent classes.

Another approach, called Gunther, has been

proposed for Hadoop configuration parameters

optimisation using genetic algorithm. However,

all MapReduce jobs have to be executed

physically to evaluate the objective functions of

required parameters, because Gunther does not

have an objective function for each of them.

Moreover, the execution time for running

MapReduce jobs for objective function evaluation

is very long [8]. Panacea framework has been

proposed to optimise Hadoop applications based

on a combination of statistic and trace analysis

using a compiler guided tool. It divides the search

place into sub places and subsequently performs a

search for best values within predetermined

ranges [9]. A performance evaluation model of

MapReduce is proposed in [10].This framework

correlates performance metrics from different

layers in terms of hardware, software, and

network. Industrial professionals proposed the

Rule-Of-Thumb (ROT), which is merely a

common practice for Hadoop parameter settings

tuning [11, 12]. In [13] an online performance

tuning system for MapReduce is proposed to

monitor the execution of a Hadoop job and it

tunes associated performance-tuning parameters

based on collected statistics. [14] optimises

MapReduce parameters by proposing profile to

collect profiles online during the execution of

MapReduce jobs in the cluster. In [15] a self-

tuning system for big data analytics, called

starfish, is proposed to achieve the best

configurations of a Hadoop framework so as to

utilise cluster resources better in terms of CPU

and memory. Narayan proposed the integration of

SDN technology and Hadoop. The main idea of

the proposed work is to identify the traffic of

Hadoop intermediate data and the background

traffic by using the flow rules, subsequently

applying different quality of service (QoS) for

them. The experimental results of this work

showed that the execution time of a MapReduce

job went down due to the sufficient amount of

bandwidth being allocated for the shuffle traffic.

However, this method is only suitable for small

scale clusters and not for large ones in a data

centre network with a large number of switches

and servers [16]. The work proposed in [17]

presents an application-aware SDN routing

scheme for Hadoop to speed up the data shuffling

of MapReduce over the network. Another work

was proposed in [18] to improve the job

completion time. An application-aware network

in SDN (AAN-SDN) for Hadoop MapReduce

was suggested to provide both underlying

networks functions and specific MapReduce

forwarding logics. A flexible network framework

(FlowComb) was proposed in [19] for big data

applications to achieve high bandwidth utilisation

and fast processing time by predicting the

network application transfers. Yi Lin and Yu

Liao, in [20], used an SDN app for a Hadoop

cluster to speed up the execution time of

MapReduce jobs. The proposed method involved

implementing the SDN app in the Hadoop cluster

for easy deployment of the flow rules for Hadoop

4

applications. However, only a small cluster with

one physical switch was investigated and hence,

the impact on the performance of Hadoop jobs in

large clusters in a data centre network using this

method was not assessed.

III. HADOOP MAPREDUCE PARAMETERS SETTINGS

Hadoop is a software platform written in java that

enables distributed storage and processing of

massive data sets using clusters of computer

nodes. It provides large storage of any type of

data (structured, semi structured and unstructured

data) due to its scalability and fault tolerance.

Furthermore, it has more than 150 tuneable

parameters that play a vital role on the flexibility

of Hadoop MapReduce jobs and some of them

have remarkable influence on performance of

Hadoop jobs. Table I presents the main

parameters of Hadoop system that have the most

significant impact on the performance of a

Hadoop job.

TABLE I. THE MAIN PARAMETER SETTINGS OF HADOOP

FRAMEWORK

Parameters Default

MapReduce.task.io.sort.mb 100

MapReduce.task.io.sort.factor 10

Mapred.compress.map.output false

MapReduce.job.reduces 1

Mapreduce.map.sort.spill.percent 0.80

MapReduce.tasktracker.map.tasks.

maximum

2

MapReduce.tasktracker.reduce.tasks.
maximum

2

Mapred.job.shuffle.input.buffer.percent 0.70

Below further description of the main parameter

settings mentioned in the table I.

1) MapReduce.task.io.sort.mb: During sorting

files, amount of buffer memory is required for

each merge stream. This amount is determined by

this parameter and by default it is set to be 1MB

for each merge stream and the total amount is 100

MB.

2) MapReduce.task.io.sort.factor: This parameter

determines the required number of merged

streams during sorting files process. The default

value is set to be 10 as explained in table I.

3) Mapred.compress.map.output: The output

results generated from mappers should be sent to

the reducer through the shuffle phase. However,

high traffic is generated during the shuffling

process especially when the output data of

mappers is large. Therefore, the results generated

from mappers should be compressed to reduce the

overhead in the network during the shuffling

process and thus accelerate the hard disk IO.

4) MapReduce.job.reduces: a specific number of

map tasks are required to perform the process of

MapReduce job in Hadoop cluster. Number of

map tasks is specified by this parameter. The

default settings of this parameter are assigned to

1. Furthermore, this parameter has a significant

effect on Hadoop job performance.

5) Mapreduce.map.sort.spill.percent: the default

setting of this parameter is 0.80 which

represents the threshold of in memory buffer used

in the map process. The data of in memory buffer

is spilled to the hard disk once the in memory

buffer reaches to 80%.

6) MapReduce.tasktracker.reduce.tasks.maximum

: each

MapReduce job has several Map and Reduce

tasks running simultaneously on each data node

in Hadoop cluster by task tracker. Reduce tasks

number is determined by this parameter and its

default setting is set to be 2. This parameter can

have an important impact on the performance of

Hadoop cluster when better utilising the cluster

resources in terms of CPU and memory by tuning

this parameter to the optimal value.

7) MapReduce.tasktracker.map.tasks.maximum:

while number of reduce tasks is determined by

parameter 6, this parameter defines number of

map tasks running simultaneously on each data

node. The default value of this parameter is 2. On

the other hand, any change in the default settings

of this parameter can have a positive impact on

the total time of MapReduce job.

5

8)MapReduce.reduce.shuffle.input.buffer.percent:

the output of mapper during the shuffling process

requires a specific amount of memory from the

maximum heap size for storage purposes. The

percentage of this mount is determined by this

parameter and its default value is set to be 0.70.

IV. EVEOLVING HADOOP MAPREDUCE PARAMETERS
WITH GENETIC PROGRAMMING

Genetic programming (GP) [16] is a technique

used to solve problems automatically with a set of

genes and chromosomes. These are evolved using

two essential genetic operations: crossover and

mutation. In this work, GP is employed to create

an objective function of the MapReduce

parameters. The parameters of Hadoop

MapReduce are represented as (k1, k2, ……,kn,) and

here, eight parameters are tuned using a genetic

algorithm (GA). An objective function should be

built first using GP. Hence, a mathematical

expression or function between these parameter

settings needs to be determined. GP is used to

evolve an expression between these parameters

using arithmetic operations (*, +, -, /). The fitness

assigned to each parameter during the population

process in GP should reflect how closely the

output of the mathematical expression (function)

for this parameter is to that for the original one.

The arithmetic operations in GP are called

functions, while the parameters (k1,…,kn) are the

leaves of the tree, which are also called terminals.

The mathematical expressions between the

Hadoop MapReduce parameters are determined

based on their data type. The mathematical

expression should have same input data type and

same number of input parameters. After its

determination, the completion time of these

functions needs to be calculated and compared

with the real one. The best mathematical

expression among the parameters (k1,…,kn) will

be selected based on its approximated completion

time, which should be very near to the real one.

The tree in GP is used to hold both functions and

terminals. As mentioned above, arithmetic

operations (*, +, -, /) are called functions and

(k1,…,kn) are called leaves or terminals. Fig. 1

shows an example of the representation of

parameters using GP.

FIGURE 1. An example of a genetic algorithm

The figure shows that the function (*) has two

input arguments, which are (+) and (/) and the

function (+) also has two (k1, k2). The completion

time of MapReduce job of Hadoop parameters

can be represented as f (k1, k2,.., kn). The

approximated completion time of Hadoop

MapReduce job represents the evolved function

that will be compared to the real completion time

of Hadoop MapReduce that pertains to the target

function. According to [16], the approximated

completion time of Hadoop MapReduce (evolved

function) should be very near to the real

completion time of the job (target problem or

function). Algorithm 1 shows the procedures of

GP.

Algorithm 1

 Input: Hadoop MapReduce job samples
Output: Relation between MapReduce

parameters

1: For i = 1 to population size do

2: Create chromosome (i) with functions and

terminals;

3: Fitness (i) =0;

4: i++;

5: end for

6: while n < iterations terminated do

7: move chromosome(i) into form of tree(i);

8: for x = 1 to population size do

6

9: Compute estimated execution time for (x)

10: if difference between estimated and real time

< TS THEN

11: fitness (i)++;

12: end if

13: x++;

14: end for

15: x++;

16: end for

17: Compute the fitness (i) of chromosome i

18: If fitness(i)= number of samples then

19: Chromosome(i)= best chromosome;

20: End while

21: If fitness(i)>best fitness value then

22: Chromosome(i)= best chromosome;

23: Fitness(i)= best fitness;

24: End if

25: Use selection, mutation and crossover on

chromosome(i);

26: Gen= Gen+1;

27: i++;

28: End for

29: n++;

30: End while

31: Return best chromosome

In this work, a list of MapReduce jobs is used as

input datasets and a large number of experiments

was run for both Word count and Tera sort

applications, being used to process different sizes

of these input datasets, as presented in section

VII. The implementation of GP is performed to

find all possible expressions between the Hadoop

MapReduce parameters by generating hundreds

of chromosomes and in this work, 600 were

initially generated. All linear chromosomes are

represented into form of graph tree and the fitness

value of each is calculated based on the

completion time of a Hadoop MapReduce job for

each training dataset. The completion time of a

Hadoop MapReduce job f (k1, k2,.., kn) for training

datasets generated from genetic chromosomes is

compared with the real completion time of the

Hadoop MapReduce job. The difference between

the approximated and real completion time of the

Hadoop MapReduce job should not be more than

40s, which is referred as TS. The chromosome

with the high fitness value is selected. The

measure of fitness value is the same as the

number of Hadoop MapReduce job used in this

process. This measure is supposed based on the

example of soccer player to test the fitness in

[17]. The evolution process will terminate once

the best fitness value is obtained, i.e. when

reaches to the number of Hadoop MapReduce

jobs used in the process. Moreover, genetic

selections and operators are applied, such as

mutation and crossover, to produce new

chromosomes and update the current ones. The

expression between the parameters is obtained

after 40,000 iterations. Equation1 below

represents the mathematical expression and the

relation between the Hadoop MapReduce

parameters, which is used as an objective

function in the next algorithm (GA).

 f(k1,k2,…,k8) = (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8) (1)

V. HADOOP MAPREDUCE PARAMETER SETTINGS
TUNING USING A GENETIC ALGORITHM

A genetic algorithm (GA) is a metaheuristic one,

which belongs to the group of evolutionary

algorithms (EA) and was first proposed by John

Holland to provide better solutions to complex

problems. GAs are widely used to solve many

optimisation problems based on natural evolution

processes. They work with a set of artificial

chromosomes that represent possible solutions to

a particular problem. Each chromosome has a

fitness value that evaluates its quality as a good

solution to the given problem [18]. GAs start with

generating a random population of chromosomes.

A set of essential genetic operations, such as

crossover, mutation and update are applied on the

chromosome to perform recombination and

selection processes on solutions for specific

problem. The selection process of chromosomes

is performed based on their fitness value. The

chromosome with high fitness has the chance to

be chosen and create an offspring to generate the

next population [19]. Algorithm 2 describes the

procedure for GA implementation, where the

equation 1 generated from GP is used as an

objective function that needs to be minimised,

which is expressed as:

7

f (k1, k2,.., kn) = (k3+k7)*(k5/k2)+(k1*k6)-(k4+k8)

Algorithm 2

Input: Data sets (MB)
Output: Optimised Hadoop MapReduce

parameters

1: GA_process () {

2: Gen = 0

3: P= Intial_population ();

4: fitness = evaluate_population () ;

5: repeat {

6: repeat {

7: Use selection, crossover and mutation on

population;

8: finess = evaluate_population () ;

9: Gen = Gen+1;

10 :} until fitness (i) = bestfitness , 1 ≤ i ≤

popsize or generation ≥ iteration number;

}

}

In algorithm 2, an initial population of

chromosomes is randomly generated and each

MapReduce parameter is represented as one of

these. It means that chromosome(i) = k1,k2,..,kn ,

where n is the number of parameters. As

aforementioned, in this work, there are eight

parameters that need to be tuned. After the

generation of the population, the fitness value of

each chromosome in it is evaluated based on the

objective function f(k1, k2,.., kn). The

chromosome with high fitness is selected and

genetic operators, which are selection, crossover

and mutation, are applied to update the current

population and generate a new one. The

procedures are repeated until the best fitness

values of chromosomes, which represent the

optimised MapReduce parameters, are obtained

or the number of iterations is finished. In this

algorithm, 15 chromosomes are used as a

population size and the number of iterations set to

be 100. Furthermore, the probability of crossover

Pc =0.2 and the probability of mutation Pm =0.1

are empirically determined and used as genetic

operators. Roulette wheel spinning is employed

as a selection process. The ranges and

recommended values of the eight Hadoop

MapReduce parameters are presented in table II.

TABLE II. HADOOP MAPREDUCE PARAMETERS

RECOMMENDED FROM THE GENETIC ALGORITHM

VI. PERFORMANCE EVALUATION ENVIRONMENT

The proposed work was implemented and

evaluated using eight virtual machines (VMs) of a

Hadoop cluster placed on Microsoft azure cloud.

Each VM was assigned with 8 GB memory, 4

CPU cores and 320 GB storage for the whole

cluster. Hadoop Cloudera (Hadoop 2.6.0-

cdh5.9.0) was installed on all nodes, with one

being configured as a master and the rest as

slaves. The master node could also be run as a

slave. For fault-tolerance purposes, we set the

replication factor of the data block at 3 and the

HDFS block size was 128 MB. Table III presents

the specifications of the Hadoop cluster.

Hadoop
MapReduce

parameters

Range Parameters name

K1 100-165 MapReduce.task.io.sort.mb

K2 10-160 MapReduce.task.io.sort.factor

K3 True Mapred.compress.map.output

K4 1-16 MapReduce.job.reduces

K5 0.60-0.80 MapReduce.task.io.sort.spill.

percent

K6 2-4 MapReduce.tasktracker.map.t
asks.

maximum

K7 2-4 MapReduce.tasktracker.reduc
e.tasks.

maximum

K8 0.70-0.71 MapReduce.reduce.shuffle.in

put.buffer.percent

8

TABLE III. HADOOP CLUSTER SETUP

Intel Xeon X5550

server1
and

uxisvm04 server 2

CPU 4 cores for each

VM

Processor 2.27 GHz

Hard disk 360 GB

Connectivity 1 GBit Ethernet

LAN

interconnectivity
between two

servers

memory 64 GB

Operating System Host

Operating

System

Microsoft

windows server

2012 R2

Guest

Operating

System

Ubuntu 14.04.4

LTS (GNU/Linux

4.2.0-27-generic

x86_64)

VII. EXPERIMENTAL RESULTS

Both the Word Count and Tera sort applications

have been run as real job programs for Hadoop

MapReduce framework to evaluate the

performance of our proposed work on a Hadoop

cluster. It can be clearly observed that there is a

difference among the tuned configurations of the

Hadoop MapReduce parameter settings using our

proposed system, the default one and Gunther’s

method. For instance, figure 2 shows that when

the value of io.sort.mb increases, this leads to a

decrease in the execution time of the Hadoop

MapReduce job. Moreover, the io-sort-factor

parameter defines the number of data streams to

merge during the sorting of files. From figure 3, it

can be clearly seen that when the value of this

parameter goes up, the execution time of the job

goes down. It can also be observed from figure 4

that when the number of reduce tasks is increased

from 5 to 10, the execution time of the Hadoop

MapReduce job decreases. However, increasing

the number of reduce task results in longer

execution time due to the overhead of network

resources as well as over utilisation of computing

resources, such as CPU and memory. Moreover,

it is evident that any further increase in reduce

tasks leads to the generation of high network

traffic and consequently, an increase the overall

time of the Hadoop job. Figure 5 shows that

increase in the slots of map and reduce can play

crucial role for better utilisation of cluster

resources and accordingly minimise the overall

time. One slot has been configured per CPU core,

in the cluster setup 4 cores has been allocated for

each cluster node and therefore 4 slots has been

employed to maximise the utilisation of CPU. If

additional slots are included in the setup, this

exhausts the CPU and results in a delay in the

processing time of the MapReduce job. Figure 6

shows the completion time of MapReduce jobs

for different sizes of datasets by applying a

compression parameter. It is observed that

applying this parameter by switching its Boolean

value empirically from false to true can reduce

the completion time of a MapReduce job by

alleviating the traffic consumption of the network

and reducing the pressure on the I/O operation.

However, the compression of input data and

reduce output data is not available in some

applications such as Tera sort. Moreover, the

performance of this parameter is reduced when

massive datasets are used such as, 40 or 50 GB.

The reason for this is that any increase in dataset

size leads to the generation of high volumes of

shuffling traffic, especially in a static IP network

environment. As a result, a software defined

network is implemented on a Hadoop cluster to

reduce the shuffling traffic generated from a

MapReduce job. The following section describes

the implementation of a Hadoop cluster based on

SDN.

FIGURE 2. The effect of the io.sort.mb parameter.

9

FIGURE 3. The effect of io.sort.factor.

FIGURE 4. Reduce tasks influence.

FIGURE 5. Map and Reduce slots influence on MapReduce job.

FIGURE 6. The influence of compression parameter.

TABLE IV. HADOOP MAPREDUCE PARAMETER SETTINGS
RECOMMENDED BY A GENETIC ALGORITHM ON EIGHT

VIRTUAL MACHINES

Table IV shows the optimised values of the

Hadoop MapReduce parameters for each size of

dataset on eight virtual machines. To show the

performance of our method, different sizes of

data, including 1 GB, 10 GB and 20 GB, were

generated. The tuned parameters were used for

both the Word Count and Tera sort applications.

The execution time of both the word count and

Tera sort applications based on the tuned settings

by our proposed method is compared with the

execution time of the two applications based on

the default setting as well as the settings achieved

by Gunther. Both Word count and Tera sort were

run twice and it emerged that our proposed

method can improve the performance of a

MapReduce job in a Hadoop cluster, most

notably with large input data sizes. Figure 7 and

figure 8 show the completion time of a Hadoop

MapReduce job using the proposed method in

comparison with the default one and Gunther’s

method. From figure 7, it can be observed that the

performance of the Hadoop Word Count

Application is improved using the proposed

approach by 63.15% and 51.16% for the 1 GB

Name Default Optimised Values using

Genetic algorithms

1GB 10GB 20GB

mapreduce.task.io.sort.mb 100

100 140 165

mapreduce.task.io.sort.
factor

10

50 125 160

mapred.compress.map.

output

false

True True True

mapreduce.job.reduces 1

16 10 10

mapreduce.map.sort.spill.percent 0.80

0.87 0.68 0.77

mapreduce.tasktracker.map

.tasks.maximum

2

4 4 4

mapreduce.tasktracker.

reduce.tasks.maximum

2

4 3 4

mapreduce.reduce.shuffle
.input.buffer.percent

0.70 0.70 0.71 0.71

10

dataset when compared with the default and

Gunther’s settings, respectively. Furthermore, the

experiments carried out on a 10 GB dataset show

that our proposed method improves the

performance of the Word Count Application by

69% and 37.93% when compared with the default

and Gunther’s method, respectively. Finally, the

proposed method also achieved better

performance than the default and Gunther settings

on the Word Count application by 69.62% and

30.31%, respectively, for 20 GB.

From figure 8, it can be clearly seen that our

proposed method improved the Tera Sort

application performance by 52.72% over the

default system and 44.28% when compared to the

Gunther settings for 1GB. For 10 GB, the

performance was improved by 55.17% as

compared to the default one and was 51.25%

better than with Gunther’s method. Finally, Tera

Sort application performance for 20 GB was

improved by 73.39 % and 55.93 % more than the

default and Gunther settings, respectively.

FIGURE 7. Comparison of Word Count Application.

FIGURE 8. comparison of Tera sort application.

VIII. A HADOOP CLUSTER BASED ON SDN

Software defined networking (SDN) [20] is an

emerging technology that provides agile and

dynamic management for the network through

central and intelligent programming. In this novel

technology, the control plane is decoupled from

the data plane to provide more flexibility and

agility, which leads to network performance

improvement by obtaining better routing

decisions. The controller communicates with the

OpenFlow switch through the OpenFlow

protocol. In this work, SDN is implemented to

improve the performance of Hadoop networking

by efficient utilisation of bandwidth for shuffling

traffic. Different sorts of traffic are generated

from a Hadoop cluster, such as shuffle phase

traffic, HDFS data transfer, HDFS read and write

along with Hadoop monitoring messages. It is

worth noting that the shuffling traffic represents

the most traffic produced by both Word Count

and Tera Sort in a Hadoop cluster followed by

HDFS read and write. In the proposed system,

SDN is employed with OpenVswitch to allocate

more bandwidth for the traffic generated by the

shuffling phase when the mapper transfers its

output to the reducer. However, identifying the

network resources of shuffling traffic is a

challenging task, because the core framework of

Hadoop does not include sufficient information

regarding network resources demand for this

traffic. A Hadoop cluster has a single job tracker

and several task trackers. The progress of Hadoop

jobs is monitored by the job tracker, whilst each

task tracker sends heartbeat messages to the job

tracker about its status. However, these messages

lack sufficient information about the network

resources. To address this, our proposed system

installs software engines on each Hadoop host to

record the required information of network

resources for each shuffling flow. This

information contains the size of map output data

(intermediate data) being transferred over each

flow to the reducers. Furthermore, software

engines determine the required network

bandwidth for each shuffling flow and record

sufficient information, such as the IP address of

the source and destination nodes as well as the

size of each flow. Then, all the required

information is delivered to the SDN controller to

assign an efficient bandwidth for shuffling flows.

The SDN controller installs flow entry in each

11

Open vSwitch for each shuffling flow and moves

the shuffling flows to a queue with higher

bandwidth. On the other hand, flow rules are

installed in Open vSwitch for other types of

traffic, such as control messages and HDFS

read/write, to switch them to another queue with

low bandwidth allocation. The TCP

communication between the task trackers to send

the map output data in a Hadoop cluster is

performed using port 50060. Open vSwitch

matches the incoming packets to identify them by

their port number. In the proposed system, 14

virtual machines, installed on two servers, were

used with two packages of Open vSwitch

installed on two PCs, with one floodlight SDN

controller being installed on one PC. SDN

application was also installed on one PC. The two

servers were connected to two open virtual

switches, which are connected to a single

physical switch with 1GB link capacity. Figure 9

shows the proposed cluster based on an SDN

environment. Both Word Count and Tera Sort

applications were used to evaluate our proposed

system using SDN technology. The experimental

results show that our proposed system based on

an SDN environment improves the performance

of the Word Count application by reducing the

completion time up to 12.4% for 30 GB when

compared to a TCP/IP environment. Moreover,

this rises to 21.9% for 40 GB, while for 50 GB,

the completion time is reduced by 32.8% when

compared to a TCP/IP Hadoop cluster, as shown

in figure10. Figure11 shows the performance for

the Tera Sort application using the proposed

system for different data sizes ranging from 30-50

GB. It emerges that the proposed system reduces

the completion time of Tera Sort for 30 GB on

average by 53%. Furthermore, the completion

time for 40 GB and 50 GB is reduced by 48.1 %

and 38.7%, respectively, over a TCP/IP

environment. It is worth noting that performance

of Tera Sort application decreases with larger

data sizes due to the high volume of shuffling

traffic that is generated form these jobs.

FIGURE 9. Small Scale Hadoop cluster in an SDN environment.

FIGURE 10. Word Count Performance in an SDN environment.

FIGURE 11. Tera Sort performance in an SDN environment.

IX. A HADOOP CLUSTER BASED ON SDN IN A DATA
CENTRE NETWORK

We expanded our set up to be implemented in a

data centre network with a large scale Hadoop

cluster with many switches and computing nodes.

The advantage of using many switches is the

capacity for utilisation of bisection network

bandwidth. We employed SDN in the data centre

network to achieve intelligent services and agile

12

network management. Furthermore, we used

large the Hadoop cluster with different sizes of

network topology to measure the convergence

routing. The following section explains some

adopted routing techniques and network

topologies in a Data centre network.

A- Routing techniques and network topologies

Before the discussion of our proposed work, it is

important to explain some routing techniques,

like ECMP and some data centre network

topologies. Multipath techniques are widely used

in the modern data centre network for forwarding

and distributing flows across multiple paths so as

to achieve better bandwidth utilisation. ECMP is

used to distribute the flows across multiple equal

cost paths to exploit the full capacity of network

bandwidth. However, it has some limitations,

such as the static scheduling of flows across

multiple paths. That is, it uses a hashing value

policy to allocate flows with certain paths. It also

lacks a global view of the entire network, missing

its current load as well as the individual

characteristics of flows and their future network

demand. As a result, we propose in this paper an

effective routing algorithm based on application

level information to estimate the demand of all

shuffling flows during the MapReduce process, as

explained in section B.

The characteristics of the most popular topologies

of three-tier architectures, like fat tree topology,

have been studied. From this study, we have

identified some limitations and bottlenecks of this

topology. Fat tree topology is divided into

multiple pods, with each including the switches

of the edge and aggregation layers. The

connection inside the pod is considered as a local

pod connection, because the traffic remains inside

it. On the other hand, the connection between

different pods is considered as a remote

connection, because the traffic of connecting pod

passes through one or more core switches. This

hierarchical architecture limits the locations of

end hosts and also creates loops in the network

due to the redundant paths that connect the end

hosts when multipath techniques are used, like

ECMP. As a result, a spanning tree is used to

prevent loops by selecting a single path and

disabling all other redundant paths. However, this

routing scheme of a spanning tree leads to poor

network utilisation, because the flows in the data

centre network will employ few paths and leave

others redundant, only reutilising them in the case

of any outage or failure. We illustrate some

examples of flow transfer based on fat tree

topology.

There are three cases of transfer flows between

two hosts in a data centre based on fat tree

topology. The first, involves sending shuffling

flow from host 1 to host 2. In this case, there is

only a single path between them, because both

hosts are located in the same rack. Hence, all

possible paths between the two hosts go through

edge switches only and the generated traffic

remains inside the rack, with there being no need

to traverse any aggregation switches. In the

second case, host 1 sends its flow to host 4, which

is located in a different rack, but within the same

pod. In this case, the connection between them is

an intra-pod connection, because all the possible

paths between these two hosts will pass through

edge and aggregation switches. The third case is

in relation to transferring flows between two

hosts located in different pods, such as host 2 and

host 8. In this case, there are multiple paths

between them to transfer flows. However, the

produced traffic between the two hosts has to

traverse edge, aggregation and core switches,

because each host is located in a different pod and

all possible paths should go through different core

switches. The situation becomes more

sophisticated when some hosts in different pods

exchange shuffling flows at the same time and

might contend for the same links, especially in

the aggregation and core switches, thus creating

congestion that makes the bandwidth utilisation

of the core and aggregation links becoming over-

utilised.

It is supposed that multiple hosts exchange their

flows at the same time. Specifically, host 2 sends

its flow to host 6, host 10 sends it flow to host 16

and host 5 sends its flow to hosts 15, respectively,

all simultaneously. Fig. 12 illustrates the path

between hosts 2 and 6 as well as that between

hosts 10 and 16 in bold lines. It is observed that

13

there are multiple paths between all the hosts.

However, it is noted that there is a challenge to

assign even a single path among the multiple

paths in the data centre network for hosts 5 and

15 because of the congestion that has occurred in

the network. The main cause of this is the

architecture of fat tree topology that constrains

the location of end hosts. Since host 5 is located

in pod 2 and host 15 is in pod 4, it is a

challenging task to assign a path between the two

hosts even though we selected the right side of

pod 2 to avoid the overlapping. It is impossible to

avoid the overlapping in pod 4, because the right

side in pod 2 can only reach the left side of pod 4

and consequently, this creates congestion

between the two hosts. As a result, it has become

crucial to design an efficient type of data centre

architecture, like leaf-spine topology. Unlike fat

tree topology, this consists of two layers. The first

is the leaf layer that includes several switches

connected to end hosts in the network. It is

connected to the spine layer that represents the

second or top layer. Leaf-spine topology is

widely adopted in large data centres and cloud

networks due to its remarkable features, such as

scalability, reliability and effective performance.

However, applying multipath algorithms, such as

ECMP, as a forwarding technique for shuffling

flows to utilise more bandwidth in the leaf-spine

topology is not an effective way, because it is a

static scheduling algorithm and it does not

consider the network utilisation or flow size. For

instance, there are three different hosts in the

same rack, which are connected to the same

switch in the leaf layer transferring their flows to

other hosts in different racks. The first case, is

when host 2 sends its shuffling flow to host 8,

whilst the second, is when host 4 sends its

shuffling flow to host 6 and the third case is when

host 3 transfers his shuffling flows to host 10, as

shown in fig.13. We observed that host 3 might

compete for the same heavy loaded link in the

leaf switch, because of the allocation technique of

ECMP, whereby it might choose the same heavy

loaded link for two large shuffling flows, thus

resulting in a congestion and collision. The

reason for this, is because, as aforementioned,

ECMP lacks a global view of entire network.

Moreover, with ECMP algorithm, the flow is

routed based on its hash value. Hence, flows

might result in using the same path and creating

congestion in some links in the leaf and spine

switches. It is also seen in fig.13, that all possible

paths of shuffling flows for all cases might

compete for the same leaf and spine switches,

which leads to overload on some link switches.

Furthermore, crashing or failure might occur on

some links that belong to the allocated path for

shuffling flows in the leaf and spine switches. As

a consequence, we propose an effective routing

algorithm based on SDN that performs the

routing process, which respects the network

resources demand of each shuffling flow as well

as their size and number. The proposed algorithm

is also able to reroute the shuffling flows to

another available path in the case of any failure or

crashing on any link in the network. The

proposed algorithm is explained in the following

section.

FIGURE 12. Path allocations challenging in fat tree topology

14

FIGURE 13. Path allocation using ECMP in leaf-spine topology

B- The implementation of the proposed method
for a Hadoop cluster in a data centre network

Our proposed work consists of three modules as

follows.

1- Link monitor module: This module monitors

network link status, such as link loading in the

network and computes the link weight. It

periodically gets the statistics information of all

links loaded in the data centre network from all

the connected OpenFlow switches at specific

intervals. Statistics such as per-table, per-flow

and per-port are collected and stored as

snapshots. All switches in the network are

connected to the SDN control. However, the SDN

controller lacks the required information of all

links between the switches and hence, a link layer

discovery protocol (LLDP) [16] is used to

identify the needed information of all links and

the switches layer in the network topology.

Statistic information about links loading is used

by the routing module to calculate the paths

accordingly. The current load of each link in the

data centre network is computed by using N

transmitted bytes from the port within recent

interval t over the bandwidth (B) of the link. The

formula below calculates the current load of the

link:

LLk = (2)

It is supposed that all links have the same

bandwidth and each has a fixed weight (W), in

this case it is set to 1. It is very important to check

whether the current load of each link (LLk)

reaches or does not reach the peak of link

depending on the link weight (W) by comparing it

with (LLk). If LLk<1, it means that is has not yet

reached the peak of the link. However, if Lk=1, it

means that it has and this may cause link

overloading, because of some heavier flows and

consequently, result in improper path allocation.

Hence, the weight of each link should be

estimated based on the number of flows and the

throughput of each. The natural demand of

shuffling flows is estimated by the Hadoop

engine module. It is worth noting that the current

load reaches the link capacity, if it exceeds

threshold γ which has been set to be 90% of the

link capacity. Furthermore, we compute the path

load for all flow paths in the leaf and spine

switches by using the maximum load of each link,

which belongs to the path as explained in the

equation below.

Lp = ll (3)

Where, (p) is defined as the path used to route the

shuffling flow from source to destination. Each

link that belongs to the path (p) is represented by

(l) and (ll) pertains to the load of each link that

traverses the path at the leaf and spine switches

from the source node to the destination node.

Once the path load of each link is computed, all

information is delivered to the scheduling and

routing component to select the convenient path

that has the least path load (Lp). Then, it installs

the flow entries into a set of switches of the

selected path.

2- Hadoop monitor engine: In a Hadoop cluster

environment when the map task in the mapper

node writes its output data to the reducer node,

shuffling traffic is generated during the shuffle

phase of a Hadoop job. This traffic needs

sufficient network bandwidth to accelerate the

processing time of the Hadoop job. However, the

main Hadoop framework does not contain

sufficient information about the required network

resources. Therefore, this module is proposed to

identify the data transferred from the mapper

node to the reducer node in a Hadoop cluster

during the shuffle phase of a Hadoop job. The

15

data is transferred through a number of flows

during the shuffling phase. This module is

responsible for recording all the required

information of these flows from all the connected

Hadoop servers. In a Hadoop cluster, as

aforementioned, there is one job tracker and

several task trackers. The job tracker is

responsible for monitoring the progress of

Hadoop jobs by receiving heartbeat messages

from each task tracker, but these messages do not

include information about the network resources.

To obtain such information, a software engine has

been installed on each Hadoop server. This

engine detects when a map task has finished and

starts to send its shuffling information to the

reducers, whilst then recording the size of the

map output data, which is transferred over the

flow to the other reducers. After this process, the

Hadoop engine will obtain the required network

bandwidth for each shuffling flow. It maintains a

table that contains all shuffling flows with their

networking demands. Furthermore, all the

collected shuffling information includes the

source IP address, destination IP address and the

size of each shuffling flow. The Hadoop monitor

engine also determines the total amount of

shuffled data and the number of shuffling flows

transferred over each link. All information about

shuffling flows is delivered by the Hadoop

monitor to the scheduling and routing module to

assign proper paths, according to the bandwidth

needed for each shuffling flow and the current

load of link utilisation.

3- Scheduling and routing module: In the

forwarding module of the OpenFlow floodlight

controller, a packet-in message is generated to

notify the controller that new flows have arrived

at an OpenFlow switch. The switch checks the

packet and if there is no match with its flow

entries, the packet is forwarded to the controller.

On the other hand, a flow-removed message is

also generated when a flow expires in an open

flow switch. In this work, we propose a

scheduling and routing module to assign efficient

paths for the exchangeable shuffling flows

between different hosts in the data centre

network. This module performs the scheduling

and routing of the shuffling flows on the chosen

paths and it has two tasks. The first is the

calculation of the possible paths based on the

statistics from the link monitor module that

includes the loads on all links in the network. It

also uses the collected information by the Hadoop

monitor engine to compute the possible paths of

different shuffling flows. The collected

information by the Hadoop engine module

contains a list of shuffling flows including

source/destination IPs, flow size and transfer

volume over each link. All this information is

recorded in a network table to be used for the

calculation of the path load in the routing process.

This table also contains scheduled flows and

available capacity for each of them. Once all the

information of shuffling flows has been received

by the scheduling and routing module, it will

compute the possible paths with low load based

on the information collected from the link

monitor module and Hadoop monitor engine. The

second task is to assign efficiently the best

possible paths for all shuffling flows, according

to the bandwidth needed for each flow. We

propose a scheduling and routing algorithm based

on SDN to obtain an effective routing technique

for shuffling flow, according to network

utilisation and flow size by computing the current

load of all possible paths in the leaf and spine

switches. Once the current load is determined

according to equation 2, the shuffling flows are

routed onto the proper paths. Our proposed work

moves the large shuffling flows from heavy

loaded links to lightly loaded ones so as to

prevent congestion. What is proposed is

demonstrated in Algorithm 3.

Algorithm3

1: For each shuffling flow (SF) do

2: Collect SF size and its network resources

demand from the SDN controller

3: Compute the current load of all possible

paths for each SF according to equation3

4: Compare the size of each SF with the

current load of all possible paths

5: Choose the shortest available path for SF

and check

16

6: If the link of shortest path is active and its

current load does not override the pre-defined

threshold then

7: Keep SF routing on this path;

8: Else

9: If there is any failure in the link of the shortest

path or its load exceeds the pre-defined

threshold then

10: Choose another available path with light

loaded or unused links calculated by

equation3;

11: Re-route the shuffling flow on new chosen

path;

12: End if

13: End if

14: End for

In this algorithm, we determine the size of the

shuffling flow and the demand of the network

resources using the Hadoop engine module. This

module sends all the required information to the

SDN controller. After that, the current load of all

possible paths of each shuffling flow between any

two hosts is computed using the information

received from both the link monitor and Hadoop

engine model, as mentioned before. Then, the

shortest path with minimum load will be chosen.

If the link of the shortest path is active and there

is no failure or congestion, the routing of the

shuffling flow is kept on this path. However, if

there is any crash in the link or its current load

exceeds the pre-specified threshold, which is set

to 90% of the link capacity of this path, as

mentioned for the link monitor module, then

another unused or light loaded shortest path

should be chosen. This is also computed based on

equation 3 and the information received from the

Hadoop engine and the shuffling flow is rerouted

accordingly. It is worth noting that the SDN

controller receives all the required information of

link loading for all the Open vSwitches in

different layers from the link monitor module, as

detailed above.

X. EXPERIMENTAL RESULTS AND DISCUSSION

Two experiments were carried out on a Hadoop

cluster based on SDN in the data centre network

to evaluate the performance of the proposed

work. In the first experiment, we used EstiNet

emulator software to build two different

topologies: fat tree and leaf-spine topology. In

both SDN and conventional networks, three

layers of switches were used for fat tree topology.

The first was the edge layer, which was assigned

with eight switches at the top of the rack. The

middle layer or aggregation layer was also

allocated eight switches and finally, four switches

were used for the core layer. The emulated leaf-

spine topology consisted of two layers, with the

bandwidth of all the links in the SDN and

conventional network being set at 10 Mbps,

whilst the link delay was 1ms. We used 16

Hadoop nodes, with each being allocated four

CPU cores and 8GB of RAM. All the Hadoop

hosts were connected to the emulated fat tree and

leaf-spine topology using EstiNet emulator

software. The traffic produced by each Hadoop

host went into the emulated network. We used the

previously utilised two real application programs,

namely Word Count and Tera Sort to evaluate the

work performance. All switches in the emulated

fat tree and leaf-spine topology were connected to

the SDN (Floodlight) controller using a TCP

connection. Another TCP connection was

deployed to connect the floodlight controller to

the Hadoop engine. The fat tree topology of data

centre network based on SDN was compared with

the conventional network to evaluate the

performance of Hadoop MapReduce jobs. The

leaf-spine topology based on SDN was also

compared with the conventional network. Open

shortest path first (OSPF) was used for the

conventional network. Figure14a shows the fat

tree topology of the proposed work based on

SDN using 20 switches. The leaf-spine topology

with 12 switches is shown in figure14b.The

second experiment also involved the same

software emulator in the first experiment, but

with different network topology size, as shown in

figure15a. In both the SDN and conventional

networks, we used eight switches in the edge and

aggregation layers and only two in the core layer.

On the other hand, six switches were used in the

leaf-spine topology for the SDN and conventional

network, as shown in figure15b. The evaluation

17

of the proposed method using both types of

network was made based on the routing

convergence time in the case of link failure. We

also ran the Word Count and Tera Sort

applications to evaluate the performance of

Hadoop jobs under different network topology

sizes for data centre network.

To evaluate the routing convergence time in the

case of link failure, we proposed that the failure is

occurred in any link of all possible paths

specified for each shuffling flow in both

topologies. The routing change of the packets in

the conventional network needs some time,

because any change or update in link status and

routing computation has to be performed by each

router in the entire network. While in SDN, the

controller is the brain of the entire network

management and maintains the routing process of

the whole network in a centralised manner. We

used floodlight controller in SDN to manage and

maintain the status of all links in the data centre

network using the link layer discovery protocol

(LLDP), whilst the information of the network

topology was maintained by the topology service

responsible for calculating the routing

computation. In the conventional network, the

routing module uses the flooding method to

transmit the information of link status to other

routers in the data centre network in a distributed

manner. Two experiments were conducted to

evaluate the convergence time of the routing

process. As can be seen in figure16, the

convergence time of the routing process for

different sizes of topology is minimised using the

SDN network for the leaf-spine topology, which

is not the case with the conventional network.

The reason for this, is because the convergence

process in the SDN network is more flexible and

faster than with the conventional network. The

convergence process of the latter depends on the

routers, whereby each maintains a routing table

which forwards and queries each packet in the

network using a specific path. When any change

or update occurs in the routing process of packets,

like link failure, router 1 will send its update to its

neighbour router 2 that will check for any

required changes or updates in its routing table,

then sending its update to its neighbour and so on.

This is means that the changes and updates will

broadcast over the whole network and

consequently, it leads to slowing of convergence

time in the conventional network, especially

when the size of network topology is increased.

This is because the routers will be scaled when

the size of network is increased. On the other

hand, the floodlight controller in the SDN

network is responsible for any change or update,

such as link down, by using the OpenFlow

control that installs flow entries into the switches.

The controller can also add, delete and modify

flow entries for all connected switches in the

network. The SDN controller detects whether any

link failure has occurred using PORT_STATUS.

Furthermore, switches in the network notify the

controller of any link down through error

messages. When the controller receives the error

messages from the connected switches, it

computes new available routes based on the flow

tables. As a result of the centralised manner of the

SDN control, this makes the convergence routing

time more rapid and agile. We ran the Word

Count and Tera Sort applications to evaluate the

performance of a Hadoop job using the proposed

system in the leaf-spine topology. We used the

optimised values of the Hadoop parameters in the

proposed SDN network under different sizes of

network topology. Moreover, different sizes of

datasets ranging from 1GB to 5GB were used. In

the first experiment, it can be clearly observed

from figure17 that the execution time of the

proposed work based on SDN is reduced when

compared to the conventional network for the

Word Count application. The execution time of

Tera Sort application is also decreased using our

proposed approach when compared to the

conventional network. In the second experiment,

the execution time of Word Count and Tera Sort

applications is also shorter than with the

conventional network as shown in figure 18.

Furthermore, the execution time of both

applications under 12 switches in the proposed

SDN network was relatively same as that using

six switches due to the centralised management of

the SDN controller, which can deal with any

issues of the routing process, such as congestion

or link crashing, irrespective of network topology

18

size. However, the execution time of both

applications in the conventional network using 12

switches was increased when compared to

utilising six. As we mentioned above, the routing

convergence time is increased when we use a

larger network topology size, because of the

distributed technique of the conventional network

in case of congestion or link down. The dynamic

routing of the scheduling and routing process

based on an SDN environment has a significant

impact on the performance of Hadoop jobs,

which is not present in the static environment of a

conventional network. We also run Word Count

and Tera Sort applications using both fat tree and

leaf-spine topology under different sizes of

datasets to evaluate the performance of a Hadoop

jobs under different topologies further. Figure 19

shows the execution time of a Hadoop job for the

Tera Sort application using both of fat tree and

leaf-spine topology under different numbers of

reducers. From this figure, it can be clearly

observed that the execution time of shuffling

flows in the leaf-spine topology can be reduced

when compared with the fat tree topology. The

reason for this is that fat tree topology is mainly

designed to process north-south traffic (i.e form

the core switches to the edge switches). On the

other hand, the traffic between hosts (west-east

traffic) in the fat tree topology is representing a

challenging task, because some hosts in the

network might connect to the same port and then

compete for bandwidth, which results in a delay

in the response time. Furthermore, the

communication between two hosts in the fat tree

topology needs to traverse through a hierarchical

path from the edge layer to the core layer, thus

resulting in latency and traffic bottlenecks.

FIGURE 14a. Fat tree topology with 20 switches based on SDN

FIGURE 14b. Leaf-spine topology with 12 switches based on SDN

FIGURE 15a. Fat tree topology with 10 switches based on SDN

19

FIGURE 15b. Leaf-spine topology with 6 switches based on SDN

FIGURE 16. Routing convergence time using different topology
sizes

FIGURE 17. Hadoop execution time within leaf-spine using 12

switches

FIGURE 18. Hadoop execution time within leaf-spine using 6

switches
.

FIGURE 19. Shuffling execution time of the Tera Sort application
using different numbers of reducers for both fat tree and leaf-spine

topology

XI. CONCLUSION

Both a genetic algorithm and genetic

programming have been used to tune the

configuration parameters of Hadoop MapReduce

automatically. By optimising the configuration

parameter settings, the computing aspect of a

Hadoop framework has been improved. This

improvement has led to reduce the completion

time of Hadoop MapReduce jobs. Further

optimisation has been performed using software

defined network technology. Two applications,

namely Word Count and Tera Sort, have been run

to evaluate the MapReduce job performance of

the Hadoop framework. This work was evaluated

using a cluster consisting of 14 VMs placed on

the internal cloud at Brunel University London.

Another cluster of 14 virtual nodes was employed

based on SDN. The results in the traditional

network using 14 VMs have shown that our

proposed method betters the MapReduce job

performance in a Hadoop cluster over Gunther’s

20

approach and the default system in a traditional

network. Moreover, the results using 14 VMs

based on an SDN environment have demonstrated

that the performance of Hadoop jobs is superior

to that for the traditional network. Another

experiment was run to evaluate the performance

of Hadoop jobs in a large scale network, namely a

data centre network also using SDN. The

experimental results showed that the performance

of Hadoop jobs is higher than for a conventional

data centre network.

ACKNOWLEDGMENT

The authors would like to thank the Iraqi Ministry

of Higher Education and Scientific Research as

well as University of Diyala to financially

sponsor the current research and study. The

authors also thank Brunel University London for

providing the efficient environment to implement

this work experimentally.

REFERENCES

[1] J. Nandimath, et al, "Big data analysis using apache hadoop,"

Information Reuse and Integration (IRI), IEEE 14th International

Conference , pp. 700-703, 2013.

[2] A. B. Patel, M. Birla and U. Nair, "Addressing big data problem using

hadoop and map reduce," Nirma University, International Conference on
Engineering (NUiCONE), pp. 1-5, 2012.

[3]. Dean J, Ghemawat S. MapReduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on

Opearting Systems Design & Implementation - Volume 6, 10, 2004.

[4]. Pavlo A, Paulson E, Rasin A. A comparison of approaches to large-

scale data analysis. In SIGMOD ’09 Proceedings of the 2009 ACM

SIGMOD International Conference on Management of Data, pp.165–
178,2009.

[5]. 7 tips for Improving MapReduce Performance. 2009. [Online].

Available: http://blog.cloudera.com/blog/2009/12/ 7-tips-for-improving-

mapreduce-performance/. [Accessed: 15-Aug-2017].

[6]. Apache Hadoop. Apache. [Online]. Available:

http://hadoop.apache.org/. [Accessed: 15-Aug-2017].

 [7] D. Wu and A. Gokhale, "A self-tuning system based on application

profiling and performance analysis for optimizing hadoop MapReduce

cluster configuration," High Performance Computing (HiPC20th
International Conference, 2013, pp. 89-98), 2013.

[8] G. Liao, K. Datta and T. L. Willke, "Gunther: Search-based auto-

tuning of mapreduce," European Conference on Parallel Processing, pp.
406-419, 2013.

[9] J. Liu ,et al, "Panacea: Towards holistic optimization of MapReduce
applications," Proceedings of the Tenth International Symposium on Code

Generation and Optimization, pp. 33-43, 2012.

[10] Y. Li, et al, "Breaking the boundary for whole-system performance

optimization of big data," Proceedings of International Symposium on Low

Power Electronics and Design, pp. 126-131, 2013.

[11]. Hadoop Performance Tuning. [Online]. Available: https://hadoop-

toolkit.googlecode.com/files/White paper-HadoopPerformanceTuning.pdf.
[Accessed: 15-Aug-2017].

[12]. White T. Hadoop:The Definitive Guide (3rd edn). Yahoo press:
Sebastopol, CA, USA, 2012; 688.

[13]. M. Li et al, "Mronline: Mapreduce online performance tuning," in
Proceedings of the 23rd International Symposium on High-Performance

Parallel and Distributed Computing, pp. 165-176 ,2014.

[14] H. Herodotou and S. Babu, "Profiling, what-if analysis, and cost-

based optimization of mapreduce programs," Proceedings of the VLDB

Endowment, vol. 4, (11), pp. 1111-1122, 2011.

[15] H. Herodotou et al, "Starfish: A self-tuning system for big data

analytics." in Cidr, pp. 261-272 , 2011.

[16] S. Narayan, S. Bailey, and A. Daga, “Hadoop acceleration in an
openflow-based cluster,” Proc. - 2012 SC Companion High Perform.

Comput. Netw. Storage Anal. SCC 2012, pp. 535–538, 2012.

[17] L. W. Cheng and S. Y. Wang, “Application-aware SDN routing for
big data networking,” 2015 IEEE Glob. Commun. Conf. GLOBECOM

2015, 2015.

[18] S. Zhao and D. Medhi, “Application-Aware Network Design for
Hadoop MapReduce Optimization Using Software-Defined Networking,”

IEEE Trans. Netw. Serv. Manag., vol. 4537, no. c, pp. 1–14, 2017.

[19] Anupam Das; Cristian Lumezanu; Yueping Zhang; Vishal Singh;

Guofei Jiang; Curtis Yu, “Transparent and Flexible Network Management

for Big Data Processing in the Cloud,” USENIX Work. Hot Top. Cloud
Comput., 2013.

[20] C. Y. Lin and J. Y. Liao, “An SDN app for hadoop clusters,” Proc. -
IEEE 7th Int. Conf. Cloud Comput. Technol. Sci. CloudCom 2015, pp.

458–461, 2016.

[21] N. F. McPhee, R. Poli and W. B. Langdon, "Field guide to genetic

programming," 2008.

[22] M. Walker, "Introduction to genetic programming," Tech.Np:

University of Montana, 2001.

 [23] J. McCall, "Genetic algorithms for modelling and optimisation," J.

Comput. Appl. Math., vol. 184, (1), pp. 205-222, 2005.

[24] S. Sivanandam and S. Deepa, Introduction to Genetic

Algorithms. Springer Science & Business Media, 2007.

[25] Open Networking Foundation, “SDN Architecture Overview,” Onf,

pp. 1–5, 2013.

