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In the last few decades, multiscale modelling has
emerged as one of the dominant modelling paradigms
in many areas of science and engineering. Its rise
to dominance is primarily driven by advancements
in computing power and the need to model
systems of increasing complexity. The multiscale
modelling paradigm is now accompanied by a vibrant
ecosystem of multiscale computing software (MCS)
which promises to address many challenges in the
development of multiscale applications. In this paper,
we define the common steps in the multiscale
application development process and investigate to
what degree a set of 21 representative MCS tools
enhance each development step. We observe several
gaps in the features provided by MCS tools, especially
for application deployment and the preparation and
management of production runs. In addition, we find
that many MCS tools are tailored to a particular
multiscale computing pattern, even though they are
otherwise application agnostic. We conclude that
the gaps we identify are characteristic of a field
that is still maturing and features that enhance
the deployment and production steps of multiscale
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application development are desirable for the long-term success of MCS in its application
fields.

This article is part of the theme issue “Multiscale modelling, simulation and computing: from
the desktop to the exascale’.

1. Introduction

Many phenomena in science and engineering are amenable to multiscale modelling. Multiscale
modelling is a divide-and-conquer paradigm in which multiscale models are built as assemblies
of individual unit processes, often also referred to as at-scale models, operating at distinct spatial
or temporal scales. With the inclusion of relevant unit processes, multiscale models are capable of
accurately characterizing phenomena in regimes not easily observed in vivo or in vitro. Multiscale
modelling is primarily a computational endeavour and, over the last two decades, a range of
supporting software has emerged for building computational multiscale models, for example,
facilitating the coupling of existing at-scale models, enabling the use of (remote) high-performance
computing resources, or simplifying the management of multiscale simulation runs through
automation. Although current multiscale computing software (MCS) has been shown to provide
benefits, as evidenced by their uptake [1,2], we seek to more clearly analyse their current added
value to the multiscale application development process, and find previously under-prioritized
areas in which software could provide further support.

In this article, we define MCS as software that provides added value during one or more
stages of the multiscale application development process, and has an explicitly formulated
orientation towards multiscale, multiphysics, multimodel or other coupled applications. Using
this definition, we then analyse a representative set of existing MCS in order to establish the
current state of the art in MCS, identify the main obstacles preventing a widespread adoption of
MCS in science and engineering, and chart a path forward for development of the next-generation
MCS. To that end, we start by summarizing the recent developments in MCS in §2, review the
common steps in the process of developing a multiscale application in §3, and reflect on the
scope, advantages and drawbacks of adopting generic MCS in §4. In §5, we present our analysis
approach, followed by an overview of key results from our analysis in §6, and a discussion with
conclusion in §7.

2. Recent developments in multiscale computing software

Following the formulation of mathematical foundations of multiscale modelling (cf. [3,4] for
an overview), computational aspects of multiscale modelling have only recently become the
focus of the scientific community. This interest has yielded a number of MCS aiming to ease
creation of multiscale models, especially those relying on modern high-performance computing
architectures. In particular, emerging exascale computing architectures present both a challenge
and an opportunity for MCS development [5]. On the one hand, exascale computers promise to
provide an unprecedented compute capacity, most probably required for multiscale modelling.
On the other hand, in order to fully harness this capacity, significant algorithmic advances are
necessary to handle fault tolerance and robustness, heterogeneity of processors and memory and
energy-efficiency, to name a few.

Multiscale modelling is a divide-and-conquer endeavour. Relevant scales, both temporal and
spatial, are identified and models developed at each individual scale. These at-scale models are
then combined to form a multiscale model. The description of a multiscale model can be formally
handled by means of the scale-separation map which defines the individual scales in a multiscale
model along with the interactions between scales [6]. The scale separation map is often encoded
in the multiscale modelling language (MML), a descriptive language for multiscale model
development [7]. More recently, multiscale computing patterns (MCP), higher-level abstractions
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serving as a basis for more generic MCS software, have been introduced [8]. MCP are categories of
multiscale models that exhibit common scale-separation maps and coupling topologies between
model components. Example MCP include the Extreme Scaling (ES) pattern where a single
at-scale model dominates computational cost within a multiscale model, the Heterogeneous
Multiscale Computing (HMC) pattern based on the heterogeneous multiscale method (HMM) [4]
where many microscale models are coupled to a macroscale model and launched on-demand,
and the Replica Computing (RC) pattern where a large number of individual model ensembles
are evaluated under a range of initial conditions.

By their nature, multiscale models are composed of individual at-scale (or single scale) model
components. Each at-scale component is frequently a complex parallel software developed over
many years. This fact has motivated a shift away from monolithic approaches to multiscale
model development and towards more heterogeneous component-based approaches, capable of
incorporating existing at-scale models with minimal software modifications. One such approach,
the cooperative parallelism programming model, is a task-based multiple-program multiple-
data approach to parallel programming [9]. In cooperative parallelism, single unit computation
tasks named symponents (a portmanteau of simulation and component) are executed by a
runtime system. Symponents are able to interact dynamically with the runtime system to launch,
communicate with, and destroy additional symponent calculations. The Co-op MCS implements
the cooperative parallelism programming model and leverages the Babel software [10] to
integrate symponents together that are written in different programming languages [11,12].
The cooperative parallelism programming model is well-suited for development of multiscale
models [13] and the Co-op MCS has been successfully employed for multiscale modelling of
materials [14].

Owing to the modularity of the cooperative parallelism approach, developers can easily mix-
and-match various at-scale models and incorporate surrogate models to reduce computational
cost. For example, adaptive sampling algorithms have been developed within the Co-op system
to automatically construct surrogate models during multiscale model evaluation [15]. In adaptive
sampling, input and output data obtained from evaluation of at-scale model components are used
to construct surrogate models that are stored in a metric-tree database. The surrogate models are
much cheaper to compute and can often be evaluated in place of at-scale models with manageable
errors. The use of adaptive sampling techniques in a multiscale model can reduce computational
cost by several orders of magnitude [14,16]. Moreover, the modular nature of the Co-op system
allows for the use of adaptive sampling techniques in any multiscale model developed within the
framework. In addition to its implementation in Co-op, the adaptive sampling method has been
released in software as the Adaptive Sampling Proxy Application (ASPA) [17].

A modular component-based approach to multiscale modelling is also fundamental to the
Multiscale Coupling Library and Environment (MUSCLE) [18]. The MUSCLE software has
matured over many years and several different versions have been released. The original
MUSCLE is tailored to complex automata modelling and multi-agent computing [19-21].
A subsequent version, MUSCLE 2, is designed for distributed multiscale computation where
at-scale model components execute across disparate and potentially geographically separate
computers [22]. MUSCLE 2 is able to incorporate at-scale model components written in a variety
of programming languages including Java, C, C++, Python and Fortran and is able to directly
generate runtime configurations using the MML specification of a multiscale model. Among
other things it has been embedded in the VPH Hypermodelling Framework [23]. The newest
version, MUSCLE 3, aims to more tightly integrate an extended version of the MML, with better
support for dynamic submodel instantiation, surrogate modelling and uncertainty quantification
and sensitivity analysis.

Another computational framework for scale-bridging in multiscale modelling is the
Hierarchical Multiscale Simulation (HMS) framework [24]. The HMS framework closely follows
the HMM for multiscale model construction. HMS combines hierarchies of at-scale model
components together and implements a runtime system to schedule and execute at-scale models
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on available computational resources. Each at-scale model component is taken to be a standalone
executable written in any programming language to ease incorporation of existing complex at-
scale models into a multiscale model. The HMS framework has been extended to allow for
execution of at-scale model components across multiple high-performance computers [25]. In
addition, an adaptive sampling algorithm has been introduced into the framework to reduce
computational expense [16].

MCS has also arisen within a number of scientific areas, including astrophysics, climate
modelling, materials modelling, plasma physics and systems biology [2]. An exhaustive
bibliography of multiphysics and multiscale software frameworks through 2015 has been
provided in [1]. These MCS are frequently tailored to a particular phenomenon under
consideration by each community. Yet, they are often sufficiently generic to be adapted to
other areas with minimal effort. One example in astrophysics, the Astrophysical Multipurpose
Software Environment (AMUSE), is a Python-based software framework to combine simulation
codes together for astrophysical simulations [26]. AMUSE includes a large number of
community astrophysics simulation codes to handle gravitational dynamics, stellar evolution,
hydrodynamics, and radiative transfer and implements user-friendly features including a unit
algebra model to simplify unit-conversions between models in the framework. The AMUSE
approach has been proven successful and it now serves as the basis for the Oceanographic
Multipurpose Software Environment (OMUSE) for ocean modelling [27]. Other MCS for
atmosphere and ocean modelling includes The Earth System Modelling Framework (ESMF), a
component-based software platform under development since the early 2000s [28].

For materials science applications, the Exascale Co-design Center for Materials in Extreme
Environments (ExMatEx) has developed a number of MCS [29]. ExMatEx has placed
a particular emphasis on new exascale computing architectures as an enabler for new
approaches to multiscale modelling including task-based computation and adaptive fault-
tolerant algorithms [30]. In order to facilitate the creation of new multiscale computing
algorithms, ExMatEx has developed a number of proxy apps: simplified at-scale models which
mimic the computational workload of more complex models. The proxy apps are designed to
be simpler to work with than more complex models for the development of new multiscale
computing algorithms. Through the use of the proxy apps, ExMatEx has created and released
several software packages for multiscale computing. The Task-based Scale-bridging Code
(TaBaSCo) uses Charm++ to execute an adaptive and asynchronous task-based computation of
an embedded viscoplasticity model (CoEVP) for the constitutive response of a continuum model
of Lagrangian hydrodynamics [31,32]. The software is written to evaluate multiscale computing
approaches on the Trinity Advanced Technology System supercomputer, a pre-exascale system
at Los Alamos National Laboratory. Another software, the Distributed Database Kriging for
Adaptive Sampling (D?KAS) implements a redis in-memory data store in combination with
locally aware hashing to construct and evaluate kriging surrogate models on-the-fly from at-scale
model data [33]. A twist on the adaptive sampling approach is a method which avoids use of
a data store entirely, but samples an at-scale model at a set of spatial points at each timestep to
construct a surrogate model using Akima splines [34].

In systems biology, the ENteric Immunity Simulator Multi-scale Modelling (ENISI MSM)
is a Java-based system for multiscale modelling of immunological processes [35]. ENISI MSM
combines together agent-based models, ordinary differential equation-based models, and partial
differential equation-based models along with a visualization interface to control the simulation.
A recent version of ENISIMSM has been released for high-performance computing environments.

In addition to the task-based integrative frameworks for multiscale modelling described
above, there exist a number of coupling frameworks for multiphysics and multiscale modelling.
Coupling frameworks are mainly designed to facilitate the exchange of data between different
models. Such data exchange occurs at an interface or handshake region between models, as is
often the case in partitioned-domain multiscale methods [36]. Coupling frameworks typically
implement methods for the interpolation of data between different meshes and parallel data
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exchange between individual processes in each model. Software implementing this type of
coupling includes the Model Coupling Toolkit (MCT) [37] and Multiscale Universal Interface [38].
MCT has been employed in OASIS-MCT to couple two-dimensional fields for climate system
modelling [39]. The Macro-Micro-Coupling Tool (MaMiCo) enables coupling molecular dynamics
and computational fluid dynamics codes and includes capabilities to perform ensemble sampling
of molecular dynamics trajectories to obtain statistically converged flow field quantities [40,41].

Since multiscale models are inherently complex software with individual components which
are themselves large-scale parallel applications, tools to aid developers and users of multiscale
models are required for multiscale modelling approaches to become widely adopted. For
example, the deployment of a multiscale model across multiple high-performance computers
where each system has a different compiler suite, MPI version, node configuration, etc., still
presents a formidable challenge. Fortunately, these needs are not unique to multiscale modelling,
and it is likely that software tools developed in other areas, for example in cloud-based distributed
systems, can be easily adopted to form a complete MCS stack.

One effort to address the relative lack of supportive tools for deployment of multiscale models
is FabSim [42]. FabSim aims for reproducible execution of complex workflows across multiple
high-performance computers and has been successfully applied to multiscale models requiring
ensembles of molecular dynamics simulations [43], as well as blood flow [44]. A larger framework
like Automated Interactive Infrastructure and Database for computational science (AiiDA) [45]
can also be used for this purpose, while tools such as Longbow [46] are suitable alternatives
for running single jobs remotely using quick one-liner commands. Workflow packages which
can be used to help execute multiscale applications include the Kepler Project [47], the Swift
scripting language [48], the Ensemble Toolkit [49] and Parsl [50] which allow for development
and execution of parallel workflows involving many individual programmes across clouds and
supercomputers.

3. Multiscale computing applications: the development process

Before assessing in what ways MCS can benefit the developer of multiscale computing
applications, we review a number of common steps we recognize in the development process
for multiscale applications.

We identify the typical steps required when developing a multiscale computing application in
figure 1. Development starts with the design of the conceptual models to address a scientific
challenge of interest (Design Step). This includes selecting necessary single-scale models and
determining which of these need to be coupled directly. Next, the computational models are
adapted, and coupling mechanisms are implemented to facilitate the transport of data between
the submodels (Implementation Step). This can, for example, be done using coupling libraries or
workflow tools. Once the single-scale models and coupling mechanisms have been established,
the implementation can be applied to the specific scientific problem of interest (Instantiation).
This includes adding relevant data and parameters, e.g. force field definitions and initial particle
configurations for a multiscale molecular application.

After Instantiation, the application is made operational at the target platform (e.g. cluster,
cloud or supercomputer, Deployment Step), upon which it is (initially) run (Execution Step).
Deployment is complicated due to the fact that various single-scale models and their coupling
have to be orchestrated, potentially on a heterogeneous platform (CPU/GPU supercomputer)
or even multiple platforms (combining clusters or working in a cloud). After the initial run,
the application is usually subject to a cycle of further optimizations (Optimization Step) and
executions (or repetitions of earlier steps as needed). Optimization in the context of this paper
refers to bolstering the scientific and technical quality of the application such that it becomes
suitable for use in production runs. This may involve fixing verification or validation issues
that arose during execution, rerunning the application multiple times to test the sensitivity of
key parameters, or to check the propagation of uncertainties in the model. Once the application
has been sufficiently optimized, researchers proceed with performing the main runs (Production
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Figure 1. Overview of a typical process for developing multiscale computing applications. (Online version in colour.)

Step) and analyse its output data (Analysis Step). Lastly, researchers disseminate their work by
publishing key results, and/or the software approach that they have developed to obtain these
results (Dissemination Step).

4. The role of multiscale computing software

We define MCS as software which adds value during one or more stages of the multiscale
application development process, and has an explicitly formulated orientation towards
multiscale, multiphysics, multimodel or coupled applications. Arguably, there are six steps
in the multiscale application development process where MCS can provide added value: (1)
Implementation, (2) Instantiation, (3) Deployment, (4) Execution, (5) Optimization and (6)
Production.

In this work, we investigate the added value of a range of MCS, attempting to include an
example of each type that is commonly used. Because the number of MCS packages is very large,
our analysis is not exhaustive, but focuses on major examples of each specific type that we are
aware of, and that are publicly available. For example, our analysis of the potential added value
of the OpenFOAM multiphysics code [51] will apply to a large extent to other multiphysics codes,
such as Elmer or LAMMPS [52]. Likewise, analysis concerning the widely used OASIS-MCT
coupler similarly helps to determine the added value of other couplers, such as C-Couplerl [53]
or YAC [54].

(i) Scope

An important aspect of MCS is the intended scope of the software. Here we briefly reflect on a few
relevant scopes of applicability for these tools, from more specific to more generic. Software can
be instance-specific (e.g. written ad-hoc for a single run or typed into an interactive terminal),
problem-specific (e.g. custom-made for a clay-polymer MD simulation), system-specific (e.g.
tailored for MD simulations), discipline-specific (e.g. intended for materials science applications)
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Table 1. Overview of drawbacks when using generic MCS

description of drawback example means of mitigation
adoption overhead it takes time to understand and set up good and simple build systems, clear
software which is written by others documentation, tutorials
application overhead it takes time to introduce domain- or make MCS non-intrusive, limit the range of
problem-specific in a generic setting, features provided by the MCS, clear
and to modify generic code to facilitate documentation, tutorials
an unexpected situation
search overhead it can take time to find the right software create search directories, pursue good
(or it might not exist at all) citation practices of directly used and
closely related MCS in scientific articles
increased support more support effort is necessary due to a establish a self-supporting user
requirements larger community size, leading to less community
support per user
lack of control and/or development is frequently managed by make code open-source, support branching
ownership others, reduced academic credit due to developments and spin-offs, avoid
not developing own tools, no control centralized installations, make a clear
over the software installation in the case against reinventing the wheel

case of software as a service

or generic. More generic software tends to have a stronger focus on ease of reuse, serves a larger
community and tends to get scrutiny from people with a wider range of academic backgrounds.
However, a major drawback is the need to engineer the software for a wider range of possible use
cases, which may increase the effort required to develop more generic MCS.

Reusability may be limited not only to the extent that MCS is generic from a scientific
perspective. Other limitations, such as restrictions on supported codes, programming languages,
user types, operating systems or resource platforms can further limit both the reusability of MCS,
and other aspects such as the maximum attainable size of its user community.

(ii) Advantages

Many different kinds of added value can be provided by MCS, but for the purposes of this work
we place any added value advertised by these tools within four categories, each of which may
apply to the aforementioned six steps in the development process.

Software may help Curate multiscale applications, e.g. by making activities more reproducible,
more organized, more transparent and/or easier to scrutinize. Software may help to Accelerate
multiscale applications by speeding up the progress in a process step, or to Simplify by reducing
the amount of skills and knowledge needed to perform that step. Lastly, MCS may Expand the
range of possibilities for the developer by introducing alternative approaches, or by providing
more flexible use of existing ones.

(iii) Drawbacks

Adopting generic software for multiscale computing provides clear benefits, but choosing more
generic tools over more specific ones comes with a range of drawbacks as well. These drawbacks
are described in detail in table 1.

We argue that the first four of these five drawbacks apply less frequently when choosing
domain- or system-specific MCS, while the fifth drawback applies to any type of externally owned
or controlled software. Though a detailed drawback analysis is beyond the scope of this work, we
do recommend that application developers consider these possible drawbacks prior to adopting
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new MCS, and that MCS developers attempt to identify and mitigate the most serious drawbacks
in their software.

5. Analysis approach

We have collectively gathered data on a range of MCS, allowing all authors to submit information
about specific tools into a database using a Google Form. Each tool was examined by at least two
of the authors. An empty example form is provided in the electronic supplementary information
as a reference. As a starting point, we investigated a subset of the software presented by
Groen et al. [2], upon which we then manually searched for more recent MCS. We recorded
26 tools in total, and chose to analyse 21 of them. Of the analysed tools, 20 of them are freely
available to the public, while 1 tool (HMS) was freely available to the authors, and is expected
to be released freely to the public in early 2019. The other five tools were omitted either
because we could not access their public website or because they had been superseded with
newer tools.

6. Results

(a) High-level overview

We provide a brief overview of the scope and supported platforms and patterns in table 2. Here,
we find that C++ is the most widely supported language, although Python is also quite prevalent.
In terms of MCPs, we see a clear segregation of tools, with a large number of tools providing
support for one specific MCP. This is interesting, because the MCPs were introduced well after
many of these tools were established [8].

We provide an overview of the added values from the tools in figure 2, using the approach
we introduced earlier. This list includes 11 generic toolkits, 7 discipline-specific toolkits and 3
system-specific toolkits. In this figure, we can quickly distinguish several things. Firstly, tools
that serve more development steps are shown with more filled boxes in the figure. Entries that
contain all (or nearly all) filled boxes provide support throughout the development process,
while entries with fewer filled boxes are more specific in their purpose. Using more specific
tools can mitigate the adoption overhead, as there are fewer development steps that need to be
incorporated. Second, the number of arrows inside each box helps indicate the completeness of
added values a tool provides in that step. For example, MUSCLE 2 and MPWide both provide
added value in the implementation step, but whereas MPWide only expands the range of options
in this step, MUSCLE 2 also delivers curation and acceleration benefits due to it providing a more
structured framework. This does not necessarily mean that MUSCLE 2 is the better option in all
cases; the choice between the two may partially depend on the application need for curation and
acceleration in the implementation step.

We provide summary statistics for the added values in table 3. Although our review is far
from exhaustive, and many tools we examine have counterparts that are somewhat similar (e.g.
OpenFOAM to Elmer, AiiDA to FabSim), it does give a general impression of which areas of
added value are targeted to which extent. Based on the results, we find that the tools in our study
particularly focus on the Implementation step, and less on the Instantiation and Execution steps.
In terms of added values, we recognize a strong focus on simplification and curation, with many
of the more recently emerged tools particularly targeting the latter.

The table also exposes a range of clear added value gaps in our examined tools. We did not
record any added value towards accelerating the optimization step (and relatively little added
value overall), and tools provide even fewer features that help users during the production step.
The strong focus of tools on earlier phases of the development process, and relative lack of focus
on later phases, could be seen as an indicator that multiscale computing as a discipline has not
yet fully matured.
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Table 2. Summary of MCS scope and platforms. The scope is given in the second column, supported programming languages n
in the third column, and supported multiscale computing patterns (Extreme Scaling (ES), Heterogeneous Multiscale Computing
(HMC) or Replica Computing (RC)) in the fourth column.

supported supported
name scope languages EE
ASPA generic ++ HMC
e ; |sc|pI|nespec|ﬁc ................... Python ............................................................................. = HMCR(
s g o L (Ianguageofchmce) ........................................... i
TS T g e C—|—+ .............................................................................. i
s g e C—|—+,FORTRAN, Wrappersfor ....................................... = ’ .

(/C+-+/Fortran modules exist
(explains my answer here)

ELMER system-specific (++, FORTRAN, C ES
ENISI MSM discipline-specific Java ES
ESMF discipline-specific (4, FORTRAN ES,HMC,RC

FORTRAN
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Ruby, C, Matlab
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SCons for compiling
0ASISSMCT_3 G ; |sc|p||nespec|ﬁc ................... e ’ e o
G ; |sc|pl|nespec|ﬁc ................... Python ............................................................................. o HMCR(
s g e Python ............................................................................. S
o g e - nspe o rbespokelanguage ............................ 2 HMCRC
L . |sc|p||nespec|ﬁc ................... C++ CHARM++ ........................................................ P

Table 3. Summation of added values from MCS in each development step

step no. curate no. accelerate no. simplify no. expand
implementation 10 5 14 12
e j— R g
deployment ................................ o e g
s J G G
opt|m|zat|on ............................... J— s [
product|on ................................... e o [



name of tool ~ curate accelerate

CoHMM/D2KAS

CouPE

ELMER

ENISI MSM

ESME

FLASH

MPWide

MUI

MUSCLE2

MaMiCo

OASIS3-MCT_3.0
<

OMFIT

Parsl

Swift

JELEN O

Figure 2. Overview of added value of the software tools. Here, the tools are provided one per row and the number of each
relevant development step in each column (respectively (1) Implementation, (2) Instantiation, (3) Deployment, (4) Execution,
(5) Optimization and (6) Production). Tools are sorted alphabetically. (Online version in colour.)

(b) Detailed analysis of selected tools
(i) Adaptive Sampling Proxy Application

The Adaptive Sampling Proxy Application (ASPA) is a toolkit for automated construction of
surrogate models within a multiscale model hierarchy. It allows developers across disciplines to
construct kriging surrogate models on-the-fly using data obtained from the evaluation of at-scale
model components of a multiscale model. ASPA uses a local kriging strategy to limit the amount
of data incorporated in an individual surrogate model and contains a metric tree database to
store the collection of surrogate models and allow for their quick retrieval. The adaptive sampling
method is intended for use in applications that fit the HMC pattern, specifically for cases where a
surrogate model is able to approximate the microscale model well for particular model inputs.
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Implementation. Expand. Expands the concept of multiscale simulation software. In addition
to software consisting solely of coupled at-scale models, ASPA introduces a database to store
surrogate models constructed using model output data and allows the surrogate models to be
incrementally updated and quickly evaluated, including an error estimate.

Instantiation, Deployment, Execution and Optimization. To the best of our knowledge, ASPA does
not directly add value on these steps of the development process.

Production. Accelerate and Expand. Accelerates evaluation of computationally demanding
multiscale models and enables using surrogates in production.

(ii) MUSCLE 2

The MUItiScale Coupling Library and Environment 2 establishes couplings between at-scale
model components in a systematic and discipline-agnostic manner. It takes a description of
the model in terms of components and conduits between them, and executes the simulation
accordingly by starting processes and opening TCP connections. Components must be linked
with the MUSCLE 2 library, available in a range of languages, to be usable. Although it is not
impossible to dynamically instantiate model components separately, MUSCLE 2 provides no
support for this, and is mostly geared towards ES applications.

Implementation. Curate, Accelerate and Expand. Requires the model structure to be clearly
described, takes care of network communications and enables coupling of very diverse models.

Instantiation. Curate and Accelerate. Unifies multiscale application definition and parameter
values in a single archivable file.

Execution Curate, Accelerate, Simplify. Model description includes directions for starting
the full application. Can start up all components locally in a single command, automatically
establishes network connections, and logs what was done.

Deployment, Optimization and Production. To the best of our knowledge, MUSCLE 2 does not
directly add value on these steps of the development process.

(iii) OASIS3-MCT

OASIS3-MCT is a so-called coupler which enables the coupling of models with a focus on climate
model components. It originates from the Centre Européen de Recherche et Formation Avancée
en Calcul Scientifique (CERFACS). OASIS3-MCT provides a high level of parallelism, and is
particularly optimized for efficient interpolation and regridding as well as data exchange in
coupled mesh-based applications.

Implementation. Expand. OASIS3-MCT supports one-to-many concurrent couplings, a feature
which is relatively rare in other toolkits.

Deployment. Simplify. Provides a wrapper which makes deployment of all models easier.

Execution. Accelerate. OASIS3-MCT supports parallel coupling channels using MPI, clearly
improving performance compared to single MPI channels, or TCP/file I/O communications. The
toolkit as a whole is also heavily optimized to be fast.

Instantiation, Optimization and Production. To the best of our knowledge, OASIS3-MCT does not
directly add value on these steps of the development process.

(iv) OMFIT

OMEFIT is a model coupling framework which features a GUI, and is used extensively in the
Fusion community. Its implementation is generic, and supports the use of parallel codes on HPC
resources. It has a large range of supported modules built-in, which provide both physics solvers
as well as other functionalities such a integrations with data sources and visualization tools.

Implementation. Simplify, Expand. Provides a wide range of modules that can be easily coupled,
and a GUI to simplify the process of making couplings.

Instantiation. Accelerate, Simplify. Integrates with a range of experimental databases, which
makes instantiation simpler and faster in a range of cases.
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Execution. Simplify. OMFIT allows predefining coupling schemes, and simplify doing test runs
in that way.

Optimization. Simplify, Expand. Supports a range of analysis and visualization techniques to
make this step more flexible and simpler.

Deployment and Production. To the best of our knowledge, OMFIT does not directly add value
on these steps of the development process.

(v) Parsl

Parsl is a Python-based parallel scripting library that supports development and execution of
asynchronous and parallel data-oriented workflows (dataflows). These workflows glue together
existing executables (called Apps) and Python functions with control logic written in Python.
Parsl brings implicit parallel execution to standard Python scripts.

Implementation. Curate, Simplify, Expand. Provides a dependency-driven workflow model.
Allows creation of complex workflow using any infrastructure (from laptop to supercomputer)
through one script. Enables the creation of interactive data-intensive workflows.

Instantiation. Simplify. Simplifies the passage of data between models.

Deployment. Accelerate, Simplify. Single scripts map directly to a range of resource platforms.

Execution. Curate. Provides a range of sophisticated data handling and error management
features.

Optimization and Production. To the best of our knowledge, Parsl does not directly add value on
these steps of the development process.

(vi) Macro-Micro-Coupling

The Macro-Micro-Coupling Tool (MaMiCo) [40,41] attempts to ease the development of and
share existing coupling algorithms for particle-mesh, in particular for molecular-continuum,
flow simulations and is therefore a system-specific MCS. Separating continuum and molecular
dynamics (MD) solvers from the actual coupling algorithm via strict interfacing and also
separating coupling steps in a modular way within MaMiCo, arbitrary solvers can be plugged
together. The software supports execution on distributed-memory platforms using MP]I, is written
in C++ and uses SCons for compiling.

Implementation. Curate, Accelerate, Simplify and Expand. MaMiCo features well-defined
interfaces to support among others debugging and unit/integration testing. After a certain
accustomization phase, this also accelerates and simplifies code development. Accordingly, new
algorithms to couple MD and continuum solvers can be easily incorporated as demonstrated
in [40] (expansion).

Instantiation. Expand. Once a new coupling algorithm for a particular flow problem has been
incorporated, this coupling can be evaluated using any interfaced particle/continuum package
immediately.

Deployment. None.

Execution. Accelerate. Through the multi-instance sampling in MaMiCo [40], faster time-to-
solution is reached, although at higher compute cost. Incorporation of noise filters is a work in
progress and is meant to further accelerate sampling/noise reduction in MD.

Optimization. Curate. Standardized coarse-grained output is provided through MaMiCo (csv
and vtk formats), allowing to compare results for different couplings.

Production. See acceleration aspect for multiscale software execution above.

(vii) FabSim

FabSim is an automation environment which is optimized for curating complex multiscale
workflows and providing one-liner access to perform simulations on remote machines. Its base
implementation is generic, and has been used in disciplines ranging from materials to blood flow
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and migration. It is designed to be easy to modify, and has resulted in several domain-specific
spin-off tools (e.g. FabMD [43] and FabFlee [55]) over the years.

Implementation. Curate and Simplify. Easily combine execution patterns. Curate workflow
building blocks.

Instantiation. Curate. Curate collections of simulation input.

Deployment. Curate and Accelerate. Automate deployment. Reuse working configs from other
users.

Execution. Curate and Simplify. Curate simulation output and environment. Simplify execution
on remote resources.

Optimization. Curate and Simplify. Curate output and environment. One-liner commands for
parameter explorations.

Production. Curate. Curate output and environment. Curate multi-machine workflows in single
commands.

7. Conclusion

Several conclusions can be drawn from our analysis. First, the availability of MCS has become
considerably broader since 2014 [2], with many of the newer tools aiming explicitly to simplify
application development. Second, Python has now become one of the leading platforms to help
facilitate multiscale applications (e.g. see FabSim, OMFIT and Parsl for recent examples). Third, in
terms of generality, we now find generic MCS being applied in all major computational research
disciplines. However, the tools remain quite specific in other aspects: most MCS are far from
language-agnostic and 16 of the 21 tools are intended for a subset of applications that fit one or
two particular MCPs [8].

Until now, the majority of the MCS development has focused on integrating frameworks
to combine at-scale models together to form a multiscale model. As the multiscale computing
field remains still quite immature, there has been a corresponding lack of development of
tools to ease deployment, configuration, debugging, profiling, optimization and visualization of
multiscale models. As a consequence, we find in our analysis that relatively few tools provide
added value in the later steps in the development process (especially deployment, optimization
and production). These steps are both labour-intensive and crucial for the long-term success of
multiscale applications, and the introduction of mature MCS there may drive the research impact
in the field as a whole.

Within our work we also briefly reflect on the (frequently under-documented) drawbacks
associated with MCS. A systematic analysis of drawbacks, describing the trade-offs expected
when adopting the software, does not solely serve the community as a whole. It can also give
a much clearer justification to the existence of individual tools, particularly when two tools with
similar added values provide these benefits with substantially different kinds of drawbacks.

Major progress has been made towards providing discipline-agnostic MCS. Now, our next
targets should be to address the previously overlooked parts of application development, and to
more clearly present and curate the adoption drawbacks and benefits to the users.
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