
IEEE INTERNET OF THINGS JOURNAL 1

End-to-End Delay Enhancement in 6LoWPAN
Testbed Using Programmable Network Concepts

Bilal R. Al-Kaseem, Member, IEEE, Yousif Al-Dunainawi and Hamed S. Al-Raweshidy, Senior Member, IEEE

Abstract—This paper introduces a proof-of-concept 6LoWPAN
testbed to study the integration of programmable network
technologies in relaxed throughput and low-power IoT devices.
Open source software and hardware platforms are used in
the implemented testbed to increase the possibility of future
network extension. The proposed architecture offers end-to-end
connectivity via the 6LoWPAN gateway to integrate IPv6 hosts
and the low data rate devices directly. Nowadays, Software-
Defined Networking (SDN) and Network Function Virtualization
(NFV) are the most promising technologies for dealing with the
massive increase in M2M devices and achieving agile traffic. The
developed approach in this paper is entitled tailored Software
Defined-Network Function Virtualization (SD-NFV), which is
aimed at reducing the end-to-end delay and improving the
energy depletion in sensor nodes. Experimental scenarios of
the implemented testbed are conducted using a simple sensing
application and the obtained results indicate that the introduced
approach is appropriate for constrained IoT devices. By utilizing
SD-NFV scheme in 6LoWPAN network, the data delivery ratio
increased by 5-14%, the node operational time prolonged by
70%, the end-to-end latency for gathering sensor data minimized
by ≈160%, and the latency for transmitting control messages
to a specified node diminished by ≈63% when compared to a
traditional (non SDN-enabled) 6LoWPAN network.

Index Terms—M2M; 6LoWPAN Testbed; IoT; Programmable
Network; NFV; Tailored SDN Controller; Cloud Computing.

I. INTRODUCTION

The number of connected devices to the Internet is fore-
seeable to surpass the world’s projected population by 2021,
with there being 1.5 devices per capita [1]. The main pur-
pose of these devices is to provide useful information about
the surrounding environment and make it smarter. Machine-
to-Machine (M2M) communication enables smart end-user
devices to communicate with each other without human in-
tervention [2]. Such communication will bring together peo-
ple, objects, and processes to make the connected network
more valuable and relevant through the Internet-of-Things
(IoT) [3]. In the recent future, the IoT will bridge different
technologies and produce new trends of applications via the
connected users, computing systems and everyday objects.The
connotations relating to the IoT concepts can be achieved
through two seamless perspectives: communication standards
and network types. The communication standards include but
not limited to Bluetooth Low Energy (BLE), Radio Frequency
Identification (RFID), ZigBee and IPv6 over Low power
Wireless Personal Area Network (6LoWPAN) and Wireless-
Fidelity (Wi-Fi) including the 5.850-5.925 GHz band that
is used by the Wireless Access in Vehicular Environment

(WAVE) communication system. While the network types are
Wireless Sensor Network (WSN), Low Power Wide Area
Network (LPWAN) and cellular network [4] [5]. The M2M
network is completely different from the conventional one, in
that it is characterized by a massive number of wireless devices
that have the ability to communicate autonomously using low-
power and low-data rate communications. Most of the M2M
nodes are battery-powered and generate tremendous amounts
of data, which have to be processed, stored, and presented in
an interpretable form [6]. These sensor nodes are deployed
in many applications, such as healthcare monitoring, natural
disaster relief, surveillance, smart cities and transportation.
However, their full effect will not been realized unless their
data are being shared over the Internet [7].

Two models have been proposed for providing interaction
between M2M sensor networks and the Internet. The first
model is a proxy based system in which the Internet user’s
queries are forwarded to the sensor nodes via the system
base station (gateway) [8]. This model suffers from high
energy consumption and high end-to-end delay between the
base station and the sensor nodes. Hence, network scalability
and application development are restrained. Whilst the sec-
ond model is an Internet protocol (IP)-based system, which
considered as being an extension to the Internet [9]. In this
model, the gateway is responsible for bridging the traditional
communication network with a sensor network. However, IP-
based M2M networks face considerable challenges, such as
global addressing scheme, large IP header overhead, and the
development of appropriate sensing applications.

In order to tackle the aforementioned challenges, the Inter-
net Engineering Task Force (IETF) working group introduced
the 6LoWPAN, which is based on the IEEE 802.15.4 standard.
6LoWPAN outlined the specifications required to carry out
Internet protocols over lossy and relaxed throughput wireless
devices. It also ensures the interoperability of the sensor net-
works and the Internet by taking into account the constrained
characteristics of the M2M sensor nodes regarding the limited
processor, small memory footprint, and scarce energy source.
In addition, 6LoWPAN has an adaptation layer in its protocol
stack, which achieves the suitability and sustainability of IPv6
packet when it is transmitted or received over the MAC and
PHY layers [10].

The programmable networks have received considerable
research interest, with many projects, such as Active Net-
working [11], Open Signaling [12], Ethane [13], and ForCES
[14] having been implemented, but the outcomes have failed
to be widely adopted by the research community. Two key
reasons for this, are that they only focused on data plane



2 IEEE INTERNET OF THINGS JOURNAL

programmability, while neglecting the network control plane,
and that they were vendor-dependent. Hence, the findings
from these projects cannot be integrated directly into the IoT
infrastructure owing to its heterogeneity.

Nowadays, Software-Defined Networking (SDN) [15] and
Network Function Virtualization (NFV) [16] are the most
promising advances for providing agile and seamless integra-
tion of different technologies in the IoT environment. On the
one hand, SDN disengages the data forwarding functionalities
(data plane) and the network control and management plane
(control plane) to provide centralized and programmable net-
work control. On the other hand, NFV implements network
hardware functions in software packages and hence, delivers
more elastic and efficient resource management.

The cloud-computing platform is another component set to
help the IoT succeed. It enables end-to-end service delivery
for remote end-users to access the M2M sensor network
application from anywhere. The IoT generates tremendous
amounts of data, and cloud computing provides a pathway
for these to be stored and processed. That is, cloud computing
architectures leverage several networks’ infrastructure, func-
tions, and services of the IoT [17] [18].

The remainder of this paper is organized as follows: Sec-
tion II highlights the strategies for constructing 6LoWPAN
networks that are related to the proposed approach. Section III
details the general architecture and topologies of 6LoWPAN
that have been introduced by the IETF working group. Section
IV presents the programmable network concepts, whilst in
Section V, the proposed approach is described and discussed.
In Section VI, the performance of the developed approach is
analyzed. Finally, the paper is concluded in Section VII with
the current research challenges and future research directions.

II. RELATED WORKS

Before introducing our proposed approach, first, we explore
the related research and give a brief review about the interoper-
ability of programmable network concepts (i.e. SDN and NFV)
in cloud-based LoWPANs (i.e. ZigBee and 6LoWPAN). In this
paper the network programmability approaches are reviewed
to assess their impacts on network performance.

The approach introduced by Mahmud et al. [19] can be
recognized as one of the first efforts that leveraged SDN and
network programmability for WSNs. Their proposed method,
called the Flow-Sensor, was aimed at tackling the inherent
problems of WSN and led to considerable enhancement in
cloud–based network performance through network virtual-
ization. The reachability points of the Flow-Sensor were more
than that of a typical sensor. Finally, the authors concluded that
improved outcomes might be attained if Flow-Sensor method
deployed in large scale WSN.

Luo et al. [20] took a step forward by introducing a
more coherent framework through identifying two common
WSN problems: network management and difficulty of policy
changes. In traditional WSN, network management was hard
to perform and hence, a new paradigm was needed, where
node re-tasking would be easily managed through software.
Manual policy reconfiguration was required, if they needed to
be deployed in alternative ways. Their developed architecture

called, Software Defined-WSN (SD-WSN), was very similar to
traditional SDN architecture. A modified version of OpenFlow
protocol was deployed, called Sensor OpenFlow (SOF). How-
ever, their proposal was limited as no experimental validation
was conducted.

Costanzo et al. [21] introduced another SDN-based architec-
ture, called the Software-Defined Wireless Network (SDWN).
The authors analyzed the impact of SDN in Wireless Personal
Area Networks (WPANs) and discussed the SDWN require-
ments for achieving network flexibility through flow table rules
and enhancing node duty cycles in wireless networks that are
based on the IEEE 802.15.4 standard.

Gante et al. [22] developed a smart management scheme for
WSN based on SDN. In their approach, the SDN controller
was executed inside the network base station. In addition, a
new solution was offered by their architecture for dealing with
some of the inherited problems, such as network management
and energy efficiency. The forwarding rules were simply
modified by the network application at the SDN controller,
which then disseminated the changes to sensor nodes.

Kruger et al. [23] introduced an IoT gateway using a
Raspberry PI B board, based on a 6LoWPAN protocol stack.
The sensor nodes were connected to the IPv6 network using a
Constrained Application Protocol (CoAP) and tested using a
smart water meter application. Krylovskiy [24] utilized several
synthetic and application benchmarks to determine the virtu-
alized layer overhead for efficiently designing IoT gateways.
His proposed approach was implemented using a Raspberry
Pi 2 board, but it lacked an energy efficiency evaluation.
Morabito et al. [25] proposed a multi-functional IoT gateway
using Raspberry Pi 3 and Odroid C2 boards. They investigated
the interaction and orchestration in distributed data processing
applications using different hardware platforms. Petrolo et al.
[26] utilized virtualized software to support lightweight and
dense deployment of services at the gateway level using a
Raspberry Pi 2 board. Their proposed approach involved ana-
lyzing the possibility of sensor node and gateway interaction in
an IoT environment through dynamic allocation of virtualized
services. Another sensor virtualization scheme for WSN was
presented in [27], which was first introduced by Khan et
al. [28]. Their proposed approach was based on multi-layer
architecture aimed at enhancing the performance of the already
deployed WSN hardware by enabling the sensor nodes to run
concurrent tasks that belong to different applications.

A large number of published studies sought to investigate
the effectiveness of cloud computing and programmable net-
work concepts in WSN. To the best of our knowledge, none of
this research involved investigating the incorporation of SDN,
NFV, and cloud computing in IoT, except for that of Bizanis
et al. [15] and Al-Kaseem et al. [29]. The works presented
by Yang et al. [30] and Li and Chen [31] are relevant to both
SDN and virtualization in wireless and mobile networks. Such
surveys, however, have failed to target IoT applications. Sood
et al. [32] reviewed the emergence of SDN and highlighted
its recent significant in wireless and optical domains with the
aim of consolidating SDN and IoT, but the authors did not
give any attention to network virtualization.

Surveys, such as that conducted by Khan et al. [27],



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 3

were focused on virtualization in WSN without considering
SDN integration in IoT architectures. On the other hand, a
survey presented by Al-Fuqaha et al. [33] offered probably
the most comprehensive information regarding IoT enabling
technologies, protocols, and applications. However, it had
certain limitations regarding SDN and/or NFV as future IoT
enabling technologies.

This paper is motivated from the observation that an
enormous number of M2M sensor nodes perform control
decisions independently, which makes network management
and control more difficult. The ever-growing M2M devices
will generate massive traffic, which result in an energy scarcity
in M2M sensor nodes and may increase the latency. One
of the paramount challenges to be resolved in developing
IoT-based applications, is the integration of different wireless
communication standards and programmable network enabling
technologies, as well as different types of sensor hardware. Re-
cent developments in M2M sensor networks have strengthened
the need for node re-tasking even after deployment. SDN and
NFV are being used to add programmability and flexibility to
M2M sensor networks and to enable a node’s reconfiguration
during its lifetime. Finally, 6LoWPAN is enabling IPv6 for
constrained IoT devices, because it can deal with the limited
processing capability, small memory size, and finite energy
source of the M2M sensor nodes.

From the published studies in the literature explored previ-
ously, it would appear that there has been limited research that
integrates SDN and NFV with available 6LoWPAN hardware.
In contrast to these proposed solutions, our published work
in [29] comes up with a new architecture to enhance the
performance of 6LoWPAN network and analyze the network
from energy efficiency perspectives. The proposed approach
comprises of a tailored SDN controller and NFV technol-
ogy, where these technologies being deployed in 6LoWPAN
network with cloud connectivity. When designing 6LoWPAN
testbed with node re-tasking, there are some systematic and
situational challenges need to be considered, these include:
a) The cost and type of network infrastructure that support
different new technologies; b) Available software tools and
hardware platforms to build and manage the network; c) The
risk of shifting to a new technology to enhance the perfor-
mance of the existing network; d) The ability of deploying
new protocols, procedures and applications that support other
technologies. It is therefore, this paper distinguishes from our
previous work [29] by the following main contributions:

1) This paper proposes SDN controller based functional-
ities that are capable of accessing and updating the
running processes on programmable sensor nodes by
modifying sensor node properties on the fly and per-
forming autonomous decisions;

2) Developing new packet forwarding procedure for the
introduced packet format to minimize the latency in
flow-table construction and reduce the delay during
network discovery and data communication phases;

3) Minimizing path construction delay and performing
address-independent source routing in 6LoWPAN net-
works by running concurrent virtualized procedures of
6LoWPAN protocol stack on the controller.

In this work, the entire 6LoWPAN platform relies on low
cost and open source components (hardware and software).
It is validated through a proof-of-concept testbed experiments
consisted of 12 simple nodes, 12 advanced nodes and one
gateway. The obtained experimental results show a remarkable
enhancement compared to a traditional (non SDN-enabled)
6LoWPAN network in terms of end-to-end delay.

III. IPV6 OVER IEEE 802.15.4 STANDARD (6LOWPAN)

In 2003, the first version of the IEEE 802.15.4 standard [34]
was released and this was revised in 2006 [35]. This standard
defines the radio communication at 868 MHz, 915 MHz and
2.4 GHz for low-power, short range and low-data rate wireless
embedded devices.

Depending on the operational frequency of the IEEE
802.15.4 standard, different data rates are provided ranging
from 20-250 kbps, while the channel access mechanism op-
erates using Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA). In CSMA/CA, the node with a packet
to transmit tries to listen to the communication channel to
check whether there is another node transmitting a packet
within its communication range. If this is the case, the node
waits until the current transmission is complete. If the medium
becomes free and no traffic is generated, the node will start
transmitting a packet, whilst otherwise, it has to wait until the
medium becomes clear, as it is being used by another node.
In addition, CSMA/CA with acknowledgment, is provided
to increase the reliability at the MAC layer and the 128-bit
Advanced Encryption Standard (AES) is provided to enhance
security at the link layer. Unicast and broadcast addressing
capabilities are provided with two types: short (16-bit) and
long (64-bit). Also, the MAC layer runs in one of two
modes: beacon-enabled and beaconless modes. The beacon-
enabled mode uses Time Division Multiple Access (TDMA)
for allocating time slots to each node, while the beaconless
mode uses the pure CSMA mechanism. Finally, the PHY layer
payload is up to 127 bytes, and it uses different types of
modulation depending on the operational radio frequency.

The Internet can be divided into three categories [36]: the
core, the edge and the wireless embedded Internet. The core
internet pertains to the build-up of servers, routers and the
connected network devices, while the edge Internet relates to
the user’s units, such as PCs, cell phones, etc. The last category
is not very large-scaled and is the wireless embedded Internet.
It refers to the smart objects and small embedded devices with
limited computation capability and that are power constrained.
The wireless embedded Internet is built-up by many small stub
networks. 6LoWPAN is one of these, where the edge router
or gateway shares the same IPv6 address prefix with all the
connected nodes. The edge router can be connected to the
Internet and be responsible for routing the traffic from and
to the 6LoWPAN nodes. 6LoWPAN networks can also exist
without a edge router connected to the Internet, as so-called
Ad-hoc LoWPAN, which is outside of the scope of this paper.

As stated earlier, 6LoWPAN was developed by the IETF
working group in 2007 and IPv6 is the newest version of the
Internet protocol, with 6LoWPAN providing direct integration



4 IEEE INTERNET OF THINGS JOURNAL

Fig. 1. The 6LoWPAN architecture

of IPv6 over the IEEE 802.15.4 standard. Accordingly, each
node in the 6LoWPAN network becomes accessible through
the Internet. 6LoWPAN has been designed with IEEE 802.15.4
in mind and consequently, some of its specifications are closely
tied to features of the IEEE 802.15.4 link layer, such as using
the Personal Area Network Identification (PAN ID) for address
management. 6LoWPAN networks run in the beaconless mode
of the CSMA/CA via IEEE 802.15.4 channel, which is called
unslotted by the IEEE 802.15.4 standard. According to the
6LoWPAN specifications provided in [10], the acknowledg-
ment frames are recommended in order to enhance network
reliability and to recover the lost frames during transmissions
at the data link layer.

Due to M2M node constraints, supporting IPv6 to these
heavily constrained devices poses several challenges: IPv6
datagrams do not directly fit with LoWPAN, there is limited
buffer size in M2M devices, and there are energy efficiency
requirements. The minimum Maximum Transmission Unit
(MTU) required for IPv6 is 1,280 bytes, whereas the IEEE
802.15.4 link layer frame is only 127 bytes long, which
is thus just one-tenth of the IPv6 frame. Accordingly, data
fragmentation and compression are needed. 6LoWPAN defines
an intermediary adaptation layer between the IEEE 802.15.4
MAC layer and the IPv6 layer for compressing the IPv6
header, performing fragmentation and for the assembly of an
IPv6 packet when it is transmitted or received over IEEE
802.15.4 as well as providing seamless integration with the
existing Internet network [37].

A 6LoWPAN network consists of many embedded wireless
devices that are recognized by power constrained, low-data
rate, and limited memory. The 6LoWPAN architecture is
depicted in Fig. 1 in which the end-to-end communication for
interconnecting LoWPANs to the Internet is illustrated. Each
connected LoWPAN is an IPv6 stub network on the Internet,

because the IP packets can be received from or sent to it, but
there cannot be packet transit to other Internet networks.

As shown in Fig. 1, the architecture defines three types of
LoWPANs, where each consists of multiple 6LoWPAN nodes
with role and function: Ad-Hoc LoWPAN, simple LoWPAN
and extended LoWPAN. Ad-Hoc LoWPAN is recognized as
being infrastructureless and functions autonomously without
being connected to the Internet. Within the 6LoWPAN net-
work, there are two types of connected devices: host and
router. The host does not route any packets and it is also
known as end-device. The router can route data destined
to another node (hosts and routers) inside the 6LoWPAN
network. The simple and the extended LoWPANs are also
infrastructureless. However, the former is connected to another
IP network through one 6LoWPAN edge router, whilst the
latter has multiple edge routers for connecting LoWPAN to
external IP networks.The multiple edge routers of extended
LoWPAN are connected together through a backbone link.
The edge router is the coordinator of the 6LoWPAN network.
It handles the translations between the 6LoWPAN and IPv6
networks. Typical 6LoWPAN consists of many nodes with one
or more edge router, with the nodes using the same active
link to communicate with each other and to send data to
the IP network via the edge router. In the scenario of one
or multiple edge routers, LoWPAN may be connected to the
external IP networks through one or more dedicated links, such
as Ethernet, Wi-Fi or General Packet Radio Service (GPRS)
communications [36] [38].

IV. PROGRAMMABLE NETWORK CONCEPTS

The data communication in traditional sensor networks
occurs between one end of the system and the other. The
network scalability and availability are limited to the routing



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 5

algorithm, congestion and moderate the Quality-of-Service
(QoS). In recent years, increasing interest has been raised
in deploying more functions inside current network elements
in order to achieve better performance in terms of network
services and cost. As a result, programmable networks have
been developed to cope the limitations present in traditional
networks, which are able to build adaptive networks that have
the ability to be reprogrammed even after deployment. The
major difference between the traditional and programmable
networks is that for the latter network elements are directly
programmed using a minimal set of Application Programming
Interfaces (APIs) by the user. The programmable networks
target reconfiguration, simplifying and accelerating network
programmability in a secure and centralized manner. The
most recent approaches to programmable networks are SDN
and NFV. The SDN architecture provides centralized control
and management by increasing the network programmability
through a centralized software-based controller (the control
plane), while the network devices become simple packet
forwarding devices (the data plane). On the other hand, the
NFV architecture provides programmability features by run-
ning different network applications simultaneously on a single
physical network node. SDN and NFV with the cloud-based
gateway enable the remote users to deploy an executable code
dynamically to perform new operations at runtime [39] [40].

A. Software-Defined Networking

Traditional (non SDN-enabled) network devices, such as
switches and routers, have control and data planes. Network in-
telligence is centered on the control plane, where the decision
what to do with incoming traffic is made. On the other hand,
the data plane performs action on the arrived packets based
on the decision taken by the control plane. The standardized
protocols provided by the IETF and IEEE are usually imple-
mented by different vendors. As a result, the same protocol
may be executed in several ways by various vendors. In
addition, these vendors may add proprietary features to the
standardized protocols, which results in complex configuration
and their being prone to error due to vendors’ diversity in
manufacturing network devices. These actions mean that the
control plane of legacy networks is distributed. That is, every
node in the network is independent and does not have the
complete information about the network connectivity [41].

The Open Networking Foundation (ONF) [42] is a non-
profit user-driven organization, concentrated on developing a
new open standard for SDN. The main goal of SDN is to make
the network manageable and agile by deploying programmable
components in the network architecture. Two main features
distinguish SDN from traditional network architecture: sepa-
rating of the network intelligence, i.e. the control plane, from
the packet-forwarding engine, i.e. the data plane, as well as
enabling a centralized programmable component in network
intelligence at the controller. SDN enables instantaneous moni-
toring of network resources and applying user defined policies,
which brings new innovations for optimizing the network
configurations through the centralized SDN controller [43].

The connotation of programmable networks has been in-
troduced as an unprecedented method to expedite network

control and management. SDN paradigm improves network
configuration through programmable data-paths by disassoci-
ating the data plane from the control plane. Since network
control is no longer included in each network element, SDN
introduces a new component: the centralized SDN controller.
The forwarding components disassociation makes the network
more flexible to adopt the deployment of newfangled services
straightforwardly via the centralized network controller by the
network administrator [44] [45]. Fig. 2 shows the SDN archi-
tecture, where the network management is logically centralized
in software-based controllers (the control plane), and network
devices become a hardware forwarding device (the data plane).
The application plane and data plane can be reconfigured
via open programmable interfaces namely northbound and
southbound interfaces respectively [46].

OpenFlow (OF) can be view as the first multivendor stan-
dard introduced by the ONF in order to implement SDN
in network devices (switches and routers). It provides the
interface between the SDN controller and network devices,
both physical and virtual (hypervisor-based). The OF protocol
enables the SDN controller to command the network devices
on how to handle ingress data packets. In addition, the OF
protocol enables independent innovation to be added to the
network without any hardware replacement and start testing
new application under different configurations [47] [48].

Fig. 2. High-level SDN architecture

When the control plane is separated from the data plane
of networking devices, the whole network architecture is
changed and hence, the SDN architecture encompasses three
fundamental parts [43]:

1) The data plane pertains to the physical network forward-
ing devices (network elements), such as switches and
routers, which provide network connectivity. Network
elements become responsible for routing the data de-
pending on the flow table entries that are provided by
the SDN controller. The southbound Application Pro-



6 IEEE INTERNET OF THINGS JOURNAL

gramming Interfaces (APIs) are used by the controller
to optimize and configure the network.

2) The control plane or the centralized controller is the
mastermind and the organizer of SDN-based infrastruc-
ture. It is in charged of administrating the flow con-
trol (forwarding rules) in SDN hardware components,
based on the desired performance requested from the
SDN applications. The SDN controller configures the
network elements via the general southbound APIs, and
provides an abstract view about the network to the
SDN applications via the northbound one. The SDN
controller brings intelligence to the network architecture
by enabling network programmability and management
in centralized manner.

3) The application plane comprises programs that recip-
rocate network information with the centralized control
plane via northbound APIs. These programs are able
to construct a conceptualized network infrastructure de-
pending on the gathered information by the centralized
controller. The advantages over the current state net-
works, is that this enables new protocols to be deployed
and tested, with the network being customized by only
replacing the applications. In sum, network behavior can
be altered via software with SDN, because it is fast,
inexpensive, and easy to replace or update.

B. Network Function Virtualization

In the near future, the vast number of embedded devices
connected to the Internet will need a new architecture in order
to handle the massive quantities of generated traffic. NFV
has the aim of virtualizing network services or applications
with a view to running them on a distinct programmable unit.
The NFV research has received considerable critical attention
from both academia and industry as an essential trend towards
the virtualization of network applications. It diminishes the
operational and capital expenditures, whilst also empowering
the integration of various services using software packages
instead of physical network devices. These software-based
services accelerate the deployment of user-defined applications
on the same network physical platform and modify network
behavior during its operation. Upgrading and replacing of
virtualized software-based services is much easier than doing
so for any physical device [41] [49].

The basic NFV architecture is illustrated in Fig. 3, where the
Network Function (NF) has been abstracted from the physical
network devices and implemented separately. In the NFV
technique, the Virtual Network Function (VNF) is analogous to
Physical Network Functions (PNF) in conventional networks.
The relevance between VNF and PNF can be: one to one
relationship in which single PNF is allocated to a single VNF,
or one to many relationship in which diversified PNFs may be
allocated to a unique VNF, or many to one mapping in which
a single PNF is dispensed to multiple VNFs. By optimizing
these mapping relationships, the network management and
control is enhanced. NFV is one of the promising technolo-
gies appropriate for future IoT infrastructure, because of the
following features [50] [51]:

• Network Performance: the same network performance
obtained from traditional network functions running on
dedicated hardware should be achieved, if the NFV
technique is adopted. This task can be accomplished by
minimizing network deadlocks;

• Heterogeneity Support: one of the trickier challenges
needing to be addressed by NFV is the considerable
variety of participating devices. Network heterogeneity
can be generated from proprietary hardware based service
perspectives and consequently, NFV is able to surmount
the existing challenges of working across different com-
munication standards;

• Dynamic Resource Allocation: NFV enables different
network functions to be performed by the same physical
hardware devices at different times. This can be achieved
by reallocating the physical network resources among the
available software packages.

NFV and its relationship with the complementary fields of
SDN and cloud computing is discussed in [51] and [31], with
comprehension of the state-of-the-art being provided in both
works. A case study on NFV based gateways for Virtualized
Wireless Sensor Networks (VWSN) was proposed in [52].
Bizanis et al. [15] reviewed some general SDN/NFV-enabled
IoT architectures and identified promising research directions
for future research.

Fig. 3. Elementary NFV architecture

V. THE PROPOSED PROGRAMMABLE APPROACH

The topics M2M communication, SDN, NFV and cloud
computing are the in demand research domains of recent years.
Much investigation has been focused on how to integrate them
together to obtain consistent connectivity and to harmony the
traffic load across the network. Extended SDN and NFV to
M2M sensor networks were considered to be unpractical due
to the resource constrained features of the embedded IoT
devices in terms of small memory size, limited computation
and low energy consumption. Most M2M devices in the IoT
environment format the transmitted packets close to 127 bytes,
while the current OpenFlow packets are close to 1,500 bytes.
In addition, the addressing scheme of an M2M sensor network
is unlike that used by IP-based ones. Consequently, the current
OpenFlow protocol is not suitable for M2M sensor networks,
because of the addressing scheme and the limited resources.
In order to make the SDN concept valuable and applicable to



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 7

M2M sensor nodes in the IoT environment, there is a need for
an unprecedented tailored SDN controller with an OpenFlow-
like approach to overcome the limitations of these nodes, as
outlined earlier.

In this paper, we adopted the programmable approach
published in our previous work [29], which is called Software
Defined-Network Functioning Virtualization (SD-NFV). On
the other hand, this paper introduces a modified version of the
tailored SDN controller where a new flow-table construction
algorithm is presented. The main goal of this algorithm is to
shorten path setup latency and accelerate link failure recovery.
It is being deployed in a cloud-based 6LoWPAN testbed with
12 simple nodes, 12 advanced node and 1 border gateway.
The introduced approach in the paper at hand reduces end-to-
end delay and prolongs the network operational time through
software injection techniques that modified node’s properties
during its operation.

A. Testbed Hardware Components

The main components of an M2M sensor node are a
microcontroller for performing some processing, a transceiver
to communicate with other connected nodes in the network,
an external memory to store sensory data, a power source
to turn on the node and one or more sensors to gather
sensory information from the surrounding environment. These
wireless M2M devices have traditionally been connected using
the IEEE 802.15.4 standard as the base with standards like
ZigBee [53], 6LoWPAN [10] or WirelessHART [54] form-
ing the upper layers. 6LoWPAN is the forerunner protocol
endeavored at enabling constrained IoT devices that have
limited computational capability and scarce energy to have
IPv6 connectivity. In recent years, there has been a surge of
interest in developing various open source and commercial
6LoWPAN testbeds. Most of these have been implemented
to target operating system based nodes, where the 6LoWPAN
protocol stack is run along with the node’s operating system.
However, the 6LoWPAN sensor nodes are typified as being
severely resource-constrained devices and thus, it is unprac-
tical to embed an operating system with dedicated software
applications into those constrained nodes jointly.

With a view to promoting resource-constrained sensor nodes
having IP connectivity, 6LoWPAN open source software and
hardware resources need to be utilized efficiently for faster
integration with existing IP networks. Accordingly, in this
paper, an open source hardware based proposal for both sensor
and sink nodes is introduced.

Recent research suggests that choosing an M2M node
processing platform is among the most important factors
that affects a node’s performance. In order to meet the
IoT network requirements, the 6LoWPAN nodes need to be
energy-efficient and cost-effective. In this paper, the proposed
approach is based on Arduino boards, which are open source
microcontroller boards, based on the ATmega328 chip, as a
computational platform. The Arduino based approach has a
number of attractive features: small size, large memory, cost-
effectiveness, low energy consumption, and it supports high
level programming language. Based on the aforementioned
features, Arduino boards pertain to a new perspective for

enhancing network programmability and control via the in-
tegration of open source hardware platforms in IoT infras-
tructure. An XBee module is integrated with the Arduino
board to transmit and receive IPv6 packets over the IEEE
802.15.4 standard. Finally, a temperature and humidity sensor
is attached to the node’s board as a sensing unit.

In order to implement the IoT paradigm, the things (con-
nected objects) must be addressable and reachable via the
Internet to enhance their controllability. For this research, a
simple sensing application is used to investigate the effec-
tiveness of the modified version of the SD-NFV approach.
The 6LoWPAN nodes disseminate the sensor data to the
6LoWPAN edge router (gateway), and these sensor nodes are
prototyped into three categories, as follows:

1) A simple node is capable of sensing the surrounding
environment and communicating with other joined nodes
in the network. However, this type of 6LoWPAN node
has not been able to serve as cluster head in hierarchical
topology. The simple 6LoWPAN node is based on the
built-in microcontroller of the XBee module for data
processing in which the temperature sensor (TMP36)
and the data indicator (LED) are connected to it directly.
A 5 V / 1200 mAh power bank is used to power the
simple node and this is shown in Fig. 4.

Fig. 4. 6LoWPAN-based simple node prototype

2) An advanced node has higher initial energy than a simple
node. It performs the same functions of the simple node.
In addition, It acts as a cluster head in hierarchical topol-
ogy because it has extra processing power compare to
simple nodes. The advanced 6LoWPAN node functions
through an Arduino Uno board, which is connected to
DHT11 sensor, XBee module, and an LED. A power
bank with 5 V / 4000 mAh is used to turn on the
advanced node components, as is shown in Fig. 5.



8 IEEE INTERNET OF THINGS JOURNAL

Fig. 5. 6LoWPAN-based advanced node prototype

3) A border gateway or sink node is the eventual destination
of the entire 6LoWPAN nodes data, which lies between
the sensory field and the cloud-computing platform. The
6LoWPAN gateway is based on a Arduino Mega board
that is connected to two communication modules (XBee
and ESP8266) and a Secure Digital Card (SD Card).
The XBee module is used for low data rate 6LoWPAN
communication, while the ESP8266 is deployed to con-
nect the 6LoWPAN network to existing IP networks in
conjunction with the cloud platform via the Internet.
The SD card is used to provide large memory space to
store the SDN flow tables. The sink node is permanently
powered and is shown in Fig. 6.

Fig. 6. 6LoWPAN-based sink node prototype

B. Tailored and Centralized Control Plane

The SDN and NFV are important trends that often exist
together in IoT infrastructure. They aimed at evolving open
software solutions for vendor-dependent networking devices.
The NFV technology is directed towards bringing desired

programmable components in order to utilize network re-
sources efficiently by pinpointing their location in the network
infrastructure. The SDN technology enables reconfiguration of
network computing and programmability in network manage-
ment by decoupling the control plane from the data plane. On
the other hand, in spite of these explicit advantages about im-
plementing SDN and NFV separately, bringing them together
in one network infrastructure will attain greater achievements.

Unfortunately, the previously mentioned methods for con-
necting M2M sensor networks with the existing IP ones do not
always guarantee a reliable connectivity and there are certain
drawbacks associated with the use of them. Accordingly,
another possible alternative approach is necessary in order
to address these shortcomings. The proposed approach is
to integrate SDN and NFV in 6LoWPAN networks, which
enables the correlation of various routing algorithms via the
deployed VNF in the 6LoWPAN gateway with integrated
cloud connectivity. The typical architecture of a 6LoWPAN
based sensor node is shown in Fig. 7 alongside 6LoWPAN
and TCP/IP stacks. The SDN controller is a firmware network
element that acts as strategic control point for deploying
intelligent networks by enabling programmable components
through various APIs. The SDN approach to M2M sensor
networks is envisaged as resolving most of the inherent energy,
routing, and latency challenges. In this paper, a tailored SDN
controller is developed to bridge the research gap found in
current literature.

Fig. 7. Ideal architecture of M2M sensor node

The tailored controller is the brain of the SDN architecture
that handles simultaneous flow control to provide intelligent
networking. The tailored controller is in charge of the fol-
lowing: (i) construction of the global network topology; (ii)
management of different network services; (iii) virtualization
of various network functions; and (iv) load balancing and
data routing. Furthermore, the SD-NFV approach enables the
insertion of a new flow table entry to overcome the intensive
memory profiteering of the programmable interface.



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 9

The architecture of the tailored SDN controller of the SD-
NFV scheme is depicted in Fig. 8. The 6LoWPAN gateway
comprises the network coordinator and the SDN controller.
The 6LoWPAN coordinator is responsible for network initial-
ization using a unique PAN ID and the topology discovery
manager is in charge of constructing the global network
topology using a discovery function. This function periodically
checks the availability of the alive or newly joined 6LoWPAN
nodes to update the alive node table entries in case of any
network topology changes. The service manager has the vital
function of dynamically assigning every node with a distinct
function based on the node’s preference in the tailored flow
table entries. In addition, the service manager equips the
6LoWPAN network with cloud service connectivity, whilst
the virtualization manager authorizes various sensor nodes to
share the similar network function in the 6LoWPAN boarder
router. Also, it enables each 6LoWPAN node to have virtual
individual connectivity to the cloud computing platform. The
last component of the SDN control plane is the load balanc-
ing and routing manager that engages in performing various
data routing algorithms and running different load balancing
techniques to optimize sensor network resources and to attain
improved throughput with minimum end-to-end latency.

Fig. 8. The architecture of the tailored SDN controller

The OpenFlow protocol [46] has entirely been developed
for wired networks and cannot be applied directly to wireless
M2M sensor networks due to its complexity. The flow table
entries are shown in Fig. 9, which are customized from the
conventional SDN concepts and the OpenFlow standard. Its
entries take into account the constrained nature of the M2M
sensor nodes and each table entry is divided in three entities.
The matching fields contain the conditions a packet needs to
comply in order to be processed, the action field specifies the
executed action, and the statistics field is used for processed
packet counting. The most common actions are to discard the
packet, to forward it or to modify the flow table entries.

Fig. 9 epitomizes the proposed approach of this paper which
illustrates the association between 6LoWPAN based sensor
networks, SDN, NFV and a cloud computing platform. It
is clearly evident from Fig. 9 that each technology dissoci-
ates a specific function from several network resources and
the significant advantages of using them are analogous in
terms of saving node energy, agility of network traffic, cost-
effectiveness, and scalability of the network.

The pico Internet Protocol version 6 (pIPv6) [55] is an
open source Arduino-based software library used to implement
the 6LoWPAN protocol stack in the current testbed. An C++
program that represents the tailored controller was executed
within the 6LoWPAN gateway. The NFV is applied to re-
move the most energy harvesting layers from the physical
6LoWPAN node protocol stack to a logically centralized
SDN controller at the gateway. The introduced virtualized
mechanism is called Sensor Function Virtualization (SFV),
which alters several node functions into separated applications
executed within the border router. As a result, the border router
utilizes the tailored SDN controller, the PAN coordinator, and
the couple of virtualized layers (network and adaptation layers)
from the sensor node protocol stack.

The first IPv6 specification of node discovery was released
by Requests for Comments (RFC) 4861, which was then
extended in 2012, by RFC 6775, in order to support the special
requirements of 6LoWPAN node discovery. The border router,
where the 6LoWPAN network coordinator is executed, is in
charge of interconnecting the PAN network to the external IP
networks and disseminating the IPv6 prefixes in association
with the whole sensor nodes. In a traditional 6LoWPAN
network, every node performs massive control message ex-
change with the border router to maintain its reachability.
These control messages are Node Discovery (ND), Router
Advertisement (RA), Neighbor Advertisement (NA), Neighbor
Unreachability Detection (NUD), Duplicate Address Request
(DAR), and Duplicate Address Confirmation (DAC). The
6LoWPAN node continuously transmits NUD messages until
it receives an affirmation from the border router, even if it does
not have data to send. The main issue in traditional 6LoWPAN
topology discovery is that a considerable amount of energy
is dissipated to keep reliable network connectivity through
massive packet transmissions over the IEEE 802.15.4 medium.
The challenge now is to develop a node discovery mechanism
for a 6LoWPAN network that utilizes less packet exchange
to maintain network connectivity, consumes less energy, thus
prolonging network lifetime, and has minimum latency when
discovering the global network topology.

The topology discovery manager, which is executed inside
the centralized SDN controller, is in charge of keeping the
6LoWPAN network topology updated for dynamic data rout-
ing. The developed topology discovery mechanism benefits
from the virtualized layers, as IP connectivity is not necessary
at the 6LoWPAN node stage. Accordingly, the proposed
scheme will minimize the number of transmitted packets to
discover the node and increase the nodes’ energy saving
by eliminating the frequent NUD packets transmission and
its correlated packet reciprocation. The developed discovery
mechanism depends on the SDN flow table records. Upon



10 IEEE INTERNET OF THINGS JOURNAL

Fig. 9. The implemented programmable scheme of the 6LoWPAN sensor network with cloud connectivity

the completion of the network initialization phase, the ad-
dresses of the active nodes are reported to the SDN controller
by the 6LoWPAN coordinator. Thereafter, the tailored SDN
controller assigns an IP address to each node and stores this
entry in the alive node table. The SDN controller is able
to setup the flow table to every 6LoWPAN node with the
corresponding IP assignment based on the global knowledge
of the network topology, as depicted in Fig. 9. The topology
discovery manager of the proposed approach executes the
nodes discovery function periodical, however, the alive node
table will not be modified unless a new node associated with
or dissociated from 6LoWPAN network. In summary, the
introduced SD-NFV scheme decreases the node discovery time
beside increases the energy conservation in 6LoWPAN nodes
throughout network initiation and nodes discovery phases.

Fig. 10 shows the detailed implementation of the flow table
at the 6LoWPAN gateway and it is continued in Fig. 11.
The flow table contains the list of rules to perform certain
actions depending on the ingress and egress flow entities. In
the proposed SD-NFV testbed, the control traffic from the
controller to the data plane (i.e., downstream and upstream
traffics) contains three actions: forward, modify-state (config-
uration), and drop.

In SDN devices, the flow tables are the essential data struc-
tures that authorize these devices to appraise ingress packet
and perform the relevant action based on packet’s information.
At least, one flow-entry per flow is needed to be installed
in each 6LoWPAN advanced node by the tailored controller.
Each flow in the flow tables has a simple action associated
with it. After the network discovery phase, the tailored SDN

controller retrieves information from the PAN coordinator to
make intelligent control plane decisions. Upon the arrival of
the first packet at the controller, the controller determines a
path for the flow then setup a new flow entry in the flow
tables. Then the tailored SDN controller disseminate the flow
tables to the 6LoWPAN advanced nodes which function as
SDN switches. The switches monitor the incoming packets and
check the matching field to perform the associated action. If no
match is existed, the switch sends the packet to the controller
in order to determine how to handle the packet. The controller
will insert new flow entries and update the switch flow table.
Accordingly, the controller’s burden will be minimized and
the network became programmable by the applications that are
running on top of the tailored SDN controller. The proposed
approach enhances the network control and visibility because
immediate issues are reported directly to the controller.

We believe that this paper provides an exciting opportunity
to advance our knowledge in relation to leveraging of SDN,
NFV, and cloud computing technologies in the 6LoWPAN
sensor node. The modified version of the SD-NFV scheme
prolongs the network lifetime by normalizing the energy
consumption with the quality of information and reduces end-
to-end delay by shorten flow-table construction time. Multi-
vendor compatibility for WSN can be achieved by adopting
the tailored SDN controller with NFV technology and the
integrated cloud platform. These technologies enable smooth
protocol evaluation and implementation. The identified re-
search gap will be bridged by the SD-NFV scheme, which
provides hardware-independent approach with on-demand pro-
grammable component execution.



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 11

Fig. 10. Tailored SDN controller flow chart



12 IEEE INTERNET OF THINGS JOURNAL

Fig. 11. Tailored SDN controller flow chart (continued)

C. Enabling of Cloud Connectivity to 6LoWPAN Gateway

ThingSpeak is an open source cloud platform for IoT
applications that uses APIs to store and retrieve things data
using the Hypertext Transfer Protocol (HTTP) over the Inter-
net. ThingSpeak was chosen because it enables the users to
create sensor-logging applications with status updates and to
analyze and visualize the uploaded data using MATLAB. The
proposed modified SD-NFV approach has been integrated with
ThingSpeak through the 6LoWPAN gateway.

Fig. 12. Cloud-based 6LoWPAN border router

Fig. 12 shows the interoperation of services and net-
work connectivity for the introduced approach. Two types
of ThingSpeak channels are introduced: the data and control
channels. The 6LoWPAN sensor nodes data are stored in their
corresponding data channels that are assigned by the tailored
SDN controller, while the control messages are sent to a
particular 6LoWPAN node via the control channels over the IP
network. The main purpose of these channels is to ensure that
the 6LoWPAN gateway supports dual communication path for
the sensor network. The cloud architecture has two ends: the
front- and back-end. The front-end is available for the user to
execute various algorithms and to modify network settings and
options. Whilst the back-end is located near the 6LoWPAN
nodes to provide ubiquitous connectivity through the border
gateway via the Internet.

D. End-User Monitoring Application
In order to simulate external IP accessibility to 6LoWPAN

sensor network, the MATLAB software has been used to
execute an elementary end-user monitoring application. The
application primarily is used to retrieve the sensed data which
are already stored in ThingSpeak and to analyze these data on a
remote PC. Furthermore, it is able to send control messages to
a specified 6LoWPAN node (altering the state of the connected
LED on/off) in order to demonstrate the IP accessibility in
a heterogeneous network. Fig. 13 shows the Graphical User
Interface (GUI) of the remote monitoring application. The
remote application works as follows: it retrieves the sensed
data that stored in the ThingSpeak platform through the data
channels and visualizes it on a remote PC, then based on



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 13

these readings, the end-user forwards the modified settings
of the sensor network to the border router through the control
channels of the ThingSpeak platform via the Internet.

Fig. 13. Remote monitoring application

VI. PERFORMANCE EVALUATION RESULTS

This section discusses the obtained results from the proof-
of-concept M2M testbed that integrates SDN and NFV in
6LoWPAN testbed with cloud connectivity. The experimental
scenarios were conducted in an indoor LAB environment
at Brunel University London (UK) and Al-Iraqia University
(Iraq). The 6LoWPAN PAN coordinator initiates two sequen-
tial processes that run concurrently with the SDN controller.
First, the topology discovery manager is executed prior to any
sensing task in order to construct the global topology of the
6LoWPAN network at the tailored SDN controller. Thereafter,
the second process is commenced by running simple sensing
function in every 6LoWPAN node and disseminating the mea-
sured phenomena to the 6LoWPAN edge router before being
stored on the cloud platform (ThingSpeak), which enables the
SD-NFV approach to have an ubiquitous connectivity among
the remote end-users.

It is resource intensive and strenuous to detect all the
alive nodes manually in a 6LoWPAN network. Hence, a
cognitive mechanism for global 6LoWPAN topology discovery
is developed to scan the state of every alive node in the
sensor network, which is accredited to the PAN coordinator.
It and the tailored SDN controller are merged together, which
enables them to work with consistency and thus, reduces the
communication overhead between the nodes. By the same
token, high bandwidth utilization with respect to a traditional
(non SDN-enabled) 6LoWPAN network can be achieved by
the proposed node discovery function in which the energy con-
sumed by communication is more than that of data processing
and environmental sensing. The information in the flow-tables
can be used to predict the behavior of a 6LoWPAN network
during its operational lifetime.

The global topology discovery mechanism aimed at attain-
ing minimum packet exchanges between the sensor nodes to
maintain their connectivity with the 6LoWPAN coordinator.

Both the tailored controller and the PAN coordinator are
delegated by the discovery manager to be in charge of looking
after nodes status updates across the entire network. The nodes
status updates are propagated to the tailored SDN controller
to build-up the flow-tables for the entire network. The tailored
SDN controller is responsible of creating two individual tables
that contain all the up-to-date information about the network
infrastructure. The first table comprises the alive 6LoWPAN
nodes that are associated with the PAN coordinator, and the
second table includes the network flow-table that includes the
node to IP and ThingSpeak APIs assignments.

We go a step further in evaluating the performance of
the tailored controller that is responsible for building the
control plane rules as well as tracing the packets at the data
plane. Accordingly, the flow-table installation latency and data
delivery metrics have been considered in SDN performance
evaluation. Fig. 14 pinpoint the most important metric that
influence the speed of data delivery process. The flow-table
latency increases as the number of 6LoWPAN nodes joined
the controller. Therefore, the rules update time will increase
accordingly. The 10 rules indicate that the network consists of
4 simple nodes and 1 advance node while 100 rules stands for
the network of 12 simple nodes and 12 advanced nodes. The
proposed tailored SDN controller ensures a lower and constant
rate to modify the existing rules or insert new rules in the
current flow-table. This firmness is a result of the developed
systematic way that takes into account the total flow-table size,
and the cost of modifying the table with new rules.

Fig. 14. The flow-tables update latency

The term end-to-end delay in this paper is defined as the
delay from the moment a source node has a data packet ready
to send until the moment it reaches the application layer of
the destination node. Due to the nature of a 6LoWPAN link,
giving delay guarantees is not always straightforward. The
end-to-end delay is based on multiple tentative variables. That
is, it contains all potential delays during packet generation,
propagation, route discovery latency, transfer times and delays
of retransmission at the MAC layer until it is successfully
received by the application layer of the destination node. Fig.
15 shows the end-to-end delay between the 6LoWPAN sensor
nodes and the 6LoWPAN gateway for both the proposed



14 IEEE INTERNET OF THINGS JOURNAL

and the traditional approaches. It is clear that SD-NFV has
lower delay in collecting the sensors’ data as compared to
a traditional 6LoWPAN (non SDN-enabled) network. In the
developed SD-NFV approach, the end-to-end delay increases
as the number of sensor nodes increases, because the packet
waiting time in the SDN controller queue is raised. On the
other hand, a traditional 6LoWPAN network has higher delay
than the SD-NFV approach for varying numbers of connected
nodes. In a non SDN-enabled 6LoWPAN network, the sending
rates of the sensor nodes are increased periodically to enable
the sensor nodes transmitting the fragmented IPv6 packets over
the MAC and PHY layers of the IEEE 802.15.4 standard. As a
result, the fragmented packets wait a longer time in the nodes’
buffers and hence, the end-to-end delay increases. In summary,
the proposed SD-NFV approach enhances end-to-end delay
for reading the sensors’ data by ≈160% in comparison to the
traditional (non SDN-enabled) 6LoWPAN network.

Fig. 15. Sensor reading latency

Fig. 16. Sending control command latency

Fig. 16 shows the other path of communication that exists
in the 6LoWPAN based networks, which pertains to the
data communication between the remote user and the sensor
node via the connected border gateway. End-to-end delay for

sending control messages from the 6LoWPAN gateway to the
sensor nodes slightly increases when more packets come back
and forth between the 6LoWPAN nodes, but this remains very
low and does not vary much as the number of connected nodes
is increased. In the traditional 6LoWPAN network, end-to-
end delay is high when compared to the SD-NFV approach,
which occurs because a larger number of packets are being
transmitted to each individual node. In summary, the proposed
SD-NFV approach improves end-to-end delay for sending
control messages to sensor nodes by ≈63% in comparison
to the traditional (non SDN-enabled) 6LoWPAN network.

Fig. 17 shows the end-to-end latency for both the proposed
SD-NFV and traditional 6LoWPAN approaches in terms of
gateway and remote end-user connectivity with the cloud
platform (ThingSpeak). There is a slight variance between
the two approaches regarding end-user connectivity with the
cloud platform, because it uses HTTP for data sending and
retrieval. This disparity may result from the Internet connec-
tion speed owing to the varying end-to-end latency values
during the testbed runtime. On the other hand, there is a
considerable difference in the end-to-end latencies between
the proposed SD-NFV and traditional 6LoWPAN approaches.
This disproportion results from the way that the 6LoWPAN
gateway transports and stores the sensed data on ThingSpeak.

Fig. 17. End-to-End connectivity delay

Upon the execution of the simple sensing function in every
6LoWPAN nodes, the boarder router will be in charge of
ingress and egress traffic refinement for the sensor network.
The 6LoWPAN gateway will perform assembly or fragmen-
tation tasks for the received packets based on the collected
transceiver. The network lifetime substantially relies on the
individual nodes lifetime that establish the sensor network.
The lifetime is one of the important metrics that are used
to evaluate the performance of a specific application or al-
gorithm because changing or recharging the nodes’ battery
is not feasible in many scenarios. Generally, it is defined as
maximum duration of time that a 6LoWPAN node would be
considered fully functional. Two factors affects the sensor node
operational lifespan: how much residual energy is available
for node’s usage and how much energy it exhausts over time.
Current analysis of node lifetime focuses only on the advanced



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 15

node energy consumption as it can be run as a cluster in
cluster-based topologies. Compared to traditional (non SDN-
enabled) approach, the introduced approach in this paper
extends the advanced 6LoWPAN node lifetime by ≈70%, as
presented in Fig. 18 for theoretical and testbed results.

Fig. 18. The operational lifespan of the advanced 6LoWPAN node

The theoretical battery lifetime is modeled and evaluated
using MATLAB/Simulink 2018a, as shown in Fig. 19. The
model is based on the same parameters of the power banks
that are used to turn on the advanced nodes, whilst the
6LoWPAN node is modeled as variable resistor load with time
to emulate the sensor node activity. In summary, the sensor
node joins the 6LoWPAN gateway that runs the SD-NFV
approach can exhaust its energy wisely, as superfluous IPv6
packet transmissions are excluded (i.e. IPv6 headers). The
virtualized layers of the 6LoWPAN protocol stack facilitate
the utilization of a low-energy sleep mode in the M2M sensor
nodes to sustain the available energy for a longer period.

Fig. 19. 6LoWPAN sensor node model

It is possible to calculate the approximate autonomous time
(AT) as the ratio between the battery capacity (BC) and
the device power consumption (DPC) [56]. In general, the
theoretical battery discharge curve that is shown in Fig. 18
was calculated using Eq. 1 within the MATLAB/Simulink

environment. A lithium-ion polymer battery with 4000 mAh
capacity was used to power the advanced node and the same
specifications was adopted in the proposed battery model to
reflect the same testbed conditions in order to obtain reliable
and trusted results.

AT =
BC[mAh]

DPC[mA]
(1)

Fig. 20 and Fig. 21 show the data delivery rate for both
SDN and non SDN-enabled 6LoWPAN sensor networks re-
spectively. For small network size, both 6LoWPAN networks
have approximately similar data delivery rate, while as the
number of connected nodes increases more variations were
appeared. These variations in network performance in terms
of data delivery rate can be interpreted as the sensor nodes far
away from the PAN coordinator would not join the network.
Therefore, the farthest nodes will not be able to deliver data
packets and decrease the overall delivery rate. However, the
proposed flow-table management policy aimed at improving
the scalability by modifying the data flow path in the flow-
tables entries. In addition, the long lifetime of the sensor nodes
that adopts SD-NFV approach will increase the data delivery
rate by approximately 5-14% depending on the network size.

Fig. 20. Data delivery results for SDN enabled 6LoWPAN sensor network

Fig. 21. Data delivery results for non SDN-enabled 6LoWPAN sensor network



16 IEEE INTERNET OF THINGS JOURNAL

We realize that an Arduino board draws relatively higher
current than other existing microcontroller boards, thus only
working for shorter periods. However, they were selected so
as to accelerate the observation process of the implemented
approach, thereby obtaining the testbed results within a brief
time period.

VII. CONCLUSION

A proof-of-concept real-time testbed has been implemented
to study the impact of programmable network techniques (i.e.
SDN and NFV) on an IEEE 802.15.4-based sensor network
(i.e. 6LoWPAN) with integrated cloud service. In addition, the
implemented testbed is aimed at tackling the extant challenges
of engaging SDN and NFV in IPv6 M2M sensor nodes based
on the IEEE 802.15.4 standard. Simple sensing application is
executed in the current testbed with a particular programmable
network approach, being called Software Defined-Network
Function Virtualization (SD-NFV).

The main objectives of the proposed SD-NFV architecture
are to enhance end-to-end delay and to improve node energy
consumption during their lifetime with acceptable flow-table
update latency. The SD-NFV approach outperforms the tra-
ditional (non SDN-enabled) 6LoWPAN network in terms of
network discovery and end-to-end delay. In the implemented
6LoWPAN testbed, the network data delivery ratio is improved
by 5-14%, and the 6LoWPAN node operational time prolonged
by 70%, when compared to the traditional (non SDN-enabled)
approach. These achievements of the introduced approach are
obtained, because the proposed SD-NFV architecture abstracts
the most profligate energy layers from the sensor node protocol
stack and virtualized them in the 6LoWPAN gateway. The
virtualized scheme makes the functions of both layers visible
in association with the remainder 6LoWPAN nodes via the
tailored SDN controller.

The end-to-end delay is also enhanced by the SD-NFV
approach. Specifically, the end-to-end latency for reading
sensor data by the 6LoWPAN gateway is reduced by ≈160%
and the latency for sending a control message to a specified
node is minimized by ≈63% when compared to a traditional
6LoWPAN network. These reductions in end-to-end delay
of a 6LoWPAN network were obtained, because the SDN
controller eliminates the need for multiple control packet ex-
change to maintain node connectivity and the virtualized layers
eliminate the transmission of a large number of fragmented
packets over the IEEE 802.15.4 standard.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2016-2021,” 2017, White Paper, [Accessed on Septem-
ber 2017].

[2] N. C. Luong, D. T. Hoang, P. Wang, D. Niyato, D. I. Kim, and
Z. Han, “Data Collection and Wireless Communication in Internet of
Things (IoT) Using Economic Analysis and Pricing Models: A Survey,”
IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp. 2546–2590,
Fourthquarter 2016.

[3] V. Gazis, “A Survey of Standards for Machine-to-Machine and the
Internet of Things,” IEEE Communications Surveys Tutorials, vol. 19,
no. 1, pp. 482–511, Firstquarter 2017.

[4] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “IoT
Middleware: A Survey on Issues and Enabling Technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, Feb 2017.

[5] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A Survey on 5G Networks for the Internet of Things: Communication
Technologies and Challenges,” IEEE Access, vol. 6, pp. 3619–3647,
2018.

[6] A. Aijaz and A. Aghvami, “Cognitive Machine-to-Machine Communi-
cations for Internet-of-Things: A Protocol Stack Perspective,” Internet
of Things Journal, IEEE, vol. 2, no. 2, pp. 103–112, April 2015.

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” Communications Surveys Tutorials, IEEE,
vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.

[8] N. Correia, D. Sacramento, and G. Schütz, “Dynamic Aggregation and
Scheduling in CoAP/Observe-Based Wireless Sensor Networks,” IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 923–936, Dec 2016.

[9] K. Kwon, M. Ha, T. Kim, S. H. Kim, and D. Kim, “The Stateless Point
to Point Routing Protocol Based on Shortcut Tree Routing Algorithm for
IP-WSN,” in 2012 3rd IEEE International Conference on the Internet
of Things, Oct 2012, pp. 167–174.

[10] IETF, “Transmission of IPv6 Packets over IEEE 802.15.4 Networks,
RFC 4944, Network Working Group,” https://tools.ietf.org/html/rfc4944,
2007, [Accessed on September 2017].

[11] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden, “A Survey of Active Network Research,” IEEE
Communications Magazine, vol. 35, no. 1, pp. 80–86, Jan 1997.

[12] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open Signaling
for ATM, Internet and Mobile Networks (OPENSIG’98),” SIGOPS Oper.
Syst. Rev., vol. 33, no. 2, pp. 15–28, Apr. 1999.

[13] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007.

[14] IETF, “Forwarding and Control Element Separation (ForCES) Protocol
Specification,” https://tools.ietf.org/html/rfc5810, 2010, [Accessed on
September 2017].

[15] N. Bizanis and F. A. Kuipers, “SDN and Virtualization Solutions for
the Internet of Things: A Survey,” IEEE Access, vol. 4, pp. 5591–5606,
2016.

[16] J. G. Herrera and J. F. Botero, “Resource Allocation in NFV: A
Comprehensive Survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, Sept 2016.

[17] C. Wang, Z. Bi, and L. D. Xu, “IoT and Cloud Computing in Automation
of Assembly Modeling Systems,” IEEE Transactions on Industrial
Informatics, vol. 10, no. 2, pp. 1426–1434, May 2014.

[18] S. Mubeen, P. Nikolaidis, A. Didic, H. Pei-Breivold, K. Sandström,
and M. Behnam, “Delay Mitigation in Offloaded Cloud Controllers in
Industrial IoT,” IEEE Access, vol. 5, pp. 4418–4430, 2017.

[19] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of Flow-
Sensors in Internet of Things’ Virtualization via OpenFlow,” in Mobile,
Ubiquitous, and Intelligent Computing (MUSIC), 2012 Third FTRA
International Conference on, June 2012, pp. 195–200.

[20] T. Luo, H. P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: Enabling
Software-Defined Wireless Sensor Networks,” IEEE Communications
Letters, vol. 16, no. 11, pp. 1896–1899, November 2012.

[21] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
Defined Wireless Networks: Unbridling SDNs,” in 2012 European
Workshop on Software Defined Networking, Oct 2012, pp. 1–6.

[22] A. D. Gante, M. Aslan, and A. Matrawy, “Smart Wireless Sensor
Network Management Based on Software-Defined Networking,” in 2014
27th Biennial Symposium on Communications (QBSC), June 2014, pp.
71–75.

[23] C. P. Kruger, A. M. Abu-Mahfouz, and G. P. Hancke, “Rapid Prototyping
of a Wireless Sensor Network Gateway for the Internet of Things Using
Off-The-Shelf Components,” in 2015 IEEE International Conference on
Industrial Technology (ICIT), March 2015, pp. 1926–1931.

[24] A. Krylovskiy, “Internet of Things Gateways Meet Linux Containers:
Performance Evaluation and Discussion,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), Dec 2015, pp. 222–227.

[25] R. Morabito and N. Beijar, “Enabling Data Processing at the Network
Edge through Lightweight Virtualization Technologies,” in 2016 IEEE
International Conference on Sensing, Communication and Networking
(SECON Workshops), June 2016, pp. 1–6.

[26] R. Petrolo, R. Morabito, V. Loscrı̀, and N. Mitton, “The Design of
the Gateway for the Cloud of Things,” Annals of Telecommunications,
vol. 72, no. 1, pp. 31–40, 2017. [Online]. Available: http://dx.doi.org/
10.1007/s12243-016-0521-z

[27] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
“Wireless Sensor Network Virtualization: A Survey,” IEEE Communica-
tions Surveys Tutorials, vol. 18, no. 1, pp. 553–576, Firstquarter 2016.



AL-KASEEM et al.: END-TO-END DELAY ENHANCEMENT IN 6LOWPAN TESTBED USING PROGRAMMABLE NETWORK CONCEPTS 17

[28] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A Multi-Layer
Architecture for Wireless Sensor Network Virtualization,” in 6th Joint
IFIP Wireless and Mobile Networking Conference (WMNC), April 2013,
pp. 1–4.

[29] B. R. Al-Kaseem and H. S. Al-Raweshidy, “SD-NFV as an Energy
Efficient Approach for M2M Networks Using Cloud-Based 6LoWPAN
Testbed,” IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1,
2017.

[30] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-
Defined and Virtualized Future Mobile and Wireless Networks: A
Survey,” Mobile Networks and Applications, vol. 20, no. 1, pp. 4–18,
2015. [Online]. Available: http://dx.doi.org/10.1007/s11036-014-0533-8

[31] Y. Li and M. Chen, “Software-Defined Network Function Virtualization:
A Survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[32] K. Sood, S. Yu, and Y. Xiang, “Software-Defined Wireless Networking
Opportunities and Challenges for Internet-of-Things: A Review,” IEEE
Internet of Things Journal, vol. 3, no. 4, pp. 453–463, Aug 2016.

[33] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” Communications Surveys Tutorials, IEEE,
vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.

[34] IEEE 802.15.4-2003, “IEEE Standard for Telecommunications and
Information Exchange Between Systems - LAN/MAN Specific Re-
quirements - Part 15: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low Rate Wireless Personal
Area Networks (WPAN),” https://standards.ieee.org, 2003, [Accessed on
September 2017].

[35] IEEE 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), “IEEE
Standard for Information Technology - Local and Metropolitan Area
Networks - Specific Requirements - Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (WPANs),” https://standards.ieee.org,
2006, [Accessed on September 2017].

[36] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet.
Wiley Publishing, 2010.

[37] Y. Qiu and M. Ma, “A Mutual Authentication and Key Establishment
Scheme for M2M Communication in 6LoWPAN Networks,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 6, pp. 2074–2085,
Dec 2016.

[38] S. H. Yang, Wireless Sensor Networks: Principles, Design and Applica-
tions. Springer Publishing Company, Incorporated, 2013.

[39] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation Using
OpenFlow: A Survey,” IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 493–512, First 2014.

[40] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014.

[41] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT,
and Cloud. Pearson Education, 2016.

[42] Open Networking Foundation, https://www.opennetworking.org/, [Ac-
cessed on September 2017].

[43] J. Doherty, SDN and NFV Simplified: A Visual Guide to Understanding
Software Defined Networks and Network Function Virtualization, 1st ed.
Addison-Wesley Professional, 2016.

[44] B. R. Al-Kaseem and H. S. Al-Raweshidy, “Enabling Wireless Software
Defined Networking in Cloud based Machine-to-Machine Gateway,” in
2016 8th Computer Science and Electronic Engineering (CEEC), Sept
2016, pp. 24–29.

[45] T. D. Nadeau and K. Gray, SDN: Software Defined Networks. ”O’Reilly
Media, Inc.”, 2013.

[46] F. Hu, Network Innovation Through OpenFlow and SDN: Principles and
Design, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 2014.

[47] S. Al-Rubaye, E. Kadhum, Q. Ni, and A. Anpalagan, “Industrial Internet
of Things Driven by SDN Platform for Smart Grid Resiliency,” IEEE
Internet of Things Journal, vol. Early Access Article, pp. 1–1, 2018.

[48] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control:
Survey, Taxonomy, and Challenges,” IEEE Communications Surveys
Tutorials, vol. 20, no. 1, pp. 333–354, Firstquarter 2018.

[49] R. Chayapathi, S. F. Hassan, and P. Shah, Network Functions Virtualiza-
tion (NFV) with a Touch of SDN, 1st ed. Indianapolis, Indiana, USA:
Pearson Education, Inc., 2016.

[50] Q. Duan, N. Ansari, and M. Toy, “Software-Defined Network Virtual-
ization: an Architectural Framework for Integrating SDN and NFV for
Service Provisioning in Future Networks,” IEEE Network, vol. 30, no. 5,
pp. 10–16, September 2016.

[51] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236–262, Firstquarter 2016.

[52] C. Mouradian, T. Saha, J. Sahoo, R. Glitho, M. Morrow, and P. Polakos,
“NFV Based Gateways for Virtualized Wireless Sensor Networks: A
Case Study,” in 2015 IEEE International Conference on Communication
Workshop (ICCW), June 2015, pp. 1883–1888.

[53] ZigBee Alliance, “Zigbee Overview,” http://www.zigbee.org, 2003, [Ac-
cessed September 2017].

[54] I. Muller, J. C. Netto, and C. E. Pereira, “WirelessHART Field Devices,”
IEEE Instrumentation Measurement Magazine, vol. 14, no. 6, pp. 20–25,
December 2011.

[55] Arduino pico IPv6 stack (pIPv6), https://github.com/telecombretagne/
Arduino-pIPv6Stack, [Accessed on September 2017].

[56] M. Pulpito, P. Fornarelli, C. Pomo, P. Boccadoro, and L. A. Grieco,
“On Fast Prototyping LoRaWAN: a Cheap and Open Platform for Daily
Experiments,” IET Wireless Sensor Systems, vol. 8, no. 5, pp. 237–245,
2018.


