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Abstract 
 
Friedreich’s ataxia (FRDA) is a progressive neurodegenerative disorder caused by a 

homozygous GAA repeat expansion mutation in intron 1 of the frataxin gene (FXN), which 

instigates transcriptional issues. As a consequence, reduced levels of frataxin protein lead to 

mitochondrial iron accumulation, oxidative stress and ultimately cell death; particularly in 

dorsal root ganglia (DRG) sensory neurons and the dentate nucleus of the cerebellum. In 

addition to neurological disability, FRDA is associated with cardiomyopathy, diabetes 

mellitus and skeletal deformities. Currently there is no effective treatment for FRDA and 

patients die prematurely.  

Recent findings suggest that abnormal GAA expansion plays a role in histone modification, 

subjecting the FXN gene to heterochromatin silencing. Therefore, as an epigenetic-based 

therapy, I investigated the efficacy and tolerability of two histone methyltransferase 

(HMTase) inhibitor compounds, BIX0194 (G9a-inhibitor) and GSK126 (EZH2-inhibitor), to 

specifically target and reduce H3K9me2/3 and H3K27me3 levels, respectively, in FRDA 

human and mouse primary fibroblasts. We show that a combination treatment of BIX0194 

and GSK126, significantly increased FXN gene expression levels and reduced the repressive 

histone marks. However, no increase in frataxin expression was seen. Nevertheless, our 

results are still promising and may encourage to investigate HMTase inhibitors with other 

synergistic epigenetic-based therapies for further preliminary studies.  

Additionally, it has been reported that ubiquitin-proteasome pathway (UPP) controls frataxin 

stability, thus leading to the development of new therapeutic approaches aimed at preventing 

the degradation of frataxin. Here we investigated the efficacy of various proteasome 

inhibitors (MG132, Bortezomib, Salinosporamide A and Ixazomib) using human primary 

fibroblasts. Only treatments using ixazomib indicated a small increase in frataxin protein; 
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however, an increase in the cell cycle stress modulator, p27Kip1, was also observed. 

Therefore, at this stage the use of proteasome inhibitor compounds cannot be advocated for 

FRDA therapy.  

Moreover, a study has proposed that increased degradation of D-serine by D-amino acid 

oxidase (DAO), may lead to low NMDA functioning and impair neural signalling, causing 

ataxia. Therefore, we investigated a DAO inhibitor, TAK-831, on the YG8sR FRDA mouse 

model, and detected a significant improvement in ataxia motor coordination deficits. TAK-

831 is now proposed for further studies and is currently undergoing randomized Phase 2 

clinical trials for FRDA in USA. 
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1.1 Friedreich’s ataxia (FRDA) 

FRDA is a form of neuropathy that was discovered in 1863 by the German pathologist, 

Nikolaus Friedreich (Figure 1.1). He first described the disorder in a series of 5 papers 

published from 1863 to 1877, defining a characteristic type of progressive spinal 

degeneration and atrophy in nine members of three families, distinguishable from tabes 

dorsalis (Friedreich, 1863a, 1863b, 1863c, 1876, 1877, Koeppen and Mazurkiewicz, 2013). 

Friedreich recognised the main clinical and pathological features of the disorder, including 

the remarkable description of fatty degeneration in the cardiac muscle, which is now 

identified as hypertrophic cardiomyopathy, a prominent cause of death in FRDA.   Although 

Friedreich articulated the familial element of the condition, he was unable to identify the 

exact mode of inheritance. It was not until 120 years later that our knowledge on the genetic 

defect(s) underlying FRDA, and its pattern of autosomal recessive inheritance was 

discovered (Campuzano et al., 1996). The discovery of the pathogenic mutation, an intronic 

trinucleotide (GAA) repeat expansion in the causative gene that encodes frataxin (FXN), has 

served as a catalyst for rapidly advancing research on FRDA (Koeppen and Mazurkiewicz, 

2013). Being the most common autosomally recessive neurodegenerative disorder, FRDA 

now exemplifies a fascinating model of the so-called ‘triplet-repeat’ diseases.  

  
 

Figure 1. 1 -  Nikolaus Friedreich (1825–1882) 
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1.1.1 Prevalence  
 
FRDA most commonly occurs in Caucasian populations with an estimated prevalence of 

1:20,000 to 1: 50,000 with no gender preference (Harding, 1981, Cossee et al., 1997, 

Vankan, 2013). Epidemiological studies have provided evidence of a west to east incidence 

gradient in Europe, with highest levels in the south of France, north of Spain and Ireland and 

lowest levels in Scandinavia and Russia (Vankan, 2013). The carrier frequency varies from 

1:60 to 1:110. FRDA is almost non-existent amongst far eastern populations and sub-Saharan 

Africans (Labuda et al., 2000, Pandolfo and Montermini, 1998, Vankan, 2013). 

1.1.2 Clinical features  
 
The cardinal clinical feature of FRDA is progressive gait ataxia, which usually appears 

around puberty, but the age of symptom onset can vary from infancy (2-3 years) to adulthood 

(25 years old) (De Michele et al., 1994, Moschner et al., 1994). Scoliosis and foot 

deformities are also early signs that present when neurological symptoms appear. With 

disease progression, other clinical features become prominent due to degenerative atrophy of 

the spinal cord, including sensory loss and muscle weakness, dysphagia, dysarthria, visual 

and hearing loss, and presence of spasticity. Additionally, following neurological symptoms, 

asymptomatic hypertrophic cardiomyopathy usually develops, contributing to the disability, 

causing premature death. At a later stage, diabetes mellitus is often observed in up to 30% of 

cases. Patients with late onset FRDA show a slower disease progression, where tendon 

reflexes are often retained. Nearly all patients gradually lose their ability to walk at 

approximately 15 years after disease onset, and become wheelchair bound in their early teens. 

This is followed by premature death at the end of their third decade (Harding, 1981, Alper 

and Narayanan, 2003, Tsou et al., 2011). Although cognitive ability seems unaffected, FRDA 

has a substantial effect on patient’s daily activity, and also on their personal and professional 

development (Pandolfo, 2008).  
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1.1.3 Pathophysiological features 

In FRDA, the primary site of pathology is the dorsal root ganglion (DRG), accompanied by 

early loss of large sensory neurons in the peripheral nerves, and degeneration of posterior 

columns in the spinal cord, spinocerebellar and pyramidal tracts, and the dentate nucleus of 

the cerebellum (Harding et al., 1984, Koeppen, 2011). The process appears to progressively 

demyelinate the longest and largest fibres arising from the posterior columns which carry 

proprioceptive information (Hughes et al., 1968, Rizzuto et al., 1981, Said et al., 1986, 

Murayama et al., 1992). In early stages of the disease, the cerebellum is minimally affected, 

but with disease prominence, atrophy occurs in the superior vermis and medulla oblongata  

(Koeppen et al., 2007). As a typical secondary effect, FRDA is also associated with non-

neuronal tissue pathologies such as cardiac muscle and pancreatic β-cell dysfunction (Schulz 

et al., 2009). This triggers hypertrophic cardiomyopathy, which is observed in the majority of 

patients, due to thickening of the ventricular septum walls (Lamarche et al., 1980, Sanchez-

Casis et al., 1976). Additionally, FRDA patients have an increased risk to diabetes mellitus, 

due to the decrease in pancreatic β-cells with a combination of insulin resistance and 

insufficient insulin response (Schoenle et al., 1989, Cnop et al., 2012). 

1.2 Frataxin gene: structure and expression 

In 1988, Chamberlain et al. mapped the human FRDA gene (FXN) to chromosome 9 by 

linkage analysis (Chamberlain et al., 1988), and subsequently localised the gene in the long 

proximal arm at position 9q13-21.1 (Figure 1.2 A). Using complementary DNA (cDNA) 

selection and sequence analysis, the FRDA gene (initially referred as X25) was identified as 

one of the expressed genes. Further studies detected a mutation in X25 in some FRDA 

patients, which resulted in the identification of an expanded GAA (guanine-adenine-adenine) 

trinucleotide repeat within the first intron of the FRDA gene. The FXN gene covers 95kb of 

genomic DNA and is comprised of seven exons: 1-5a, 5b and 6 (Campuzano et al., 1996) 
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(Figure 1.2 B).  The main functionally-relevant mRNA is 1.3kb in size and is transcribed 

from the first five exons, 1-5a, in the centromere to telomere direction. This encodes a 220 

amino acid protein named frataxin. Exon 6 is non-coding; however, exon 5b can be 

transcribed by alternative splicing to synthesise a potential 171 amino acid protein 

(Campuzano et al., 1996, Cossee et al., 1997). 

 

The FXN gene is ubiquitously expressed in all cells, but at variable levels in different tissues 

and during development (Campuzano et al., 1996, Koutnikova et al., 1997). In adult humans, 

frataxin mRNA is most abundant in mitochondria-rich cells, such as cardiomyocytes and 

neurons. Tissues such as the DRG, cerebellum, cerebral cortex and heart display the highest 

level of frataxin. In mouse embryos, frataxin mRNA is highly expressed in the developing 

brain, spinal cord and in the DRG. However, frataxin mRNA expression drastically reduces 

in the adult mouse brain but remains high in the spinal cord and DRG (Koutnikova et al., 

1997). Moreover, minute frataxin levels have also been detected in the liver, skeletal muscle, 

kidney, pancreas and brown fat (Koutnikova et al., 1997, Campuzano et al., 1997). 

A B 

Figure 1. 2 - A) Schematic representation of human chromosome 9 and the 
location of FXN gene (represented by the red arrow). B) Schematic 
representation of FXN gene exons, extending from centromere to telomere. The 
GAA repeats are located in intron 1 (indicated by the red triangle). The diagram 
is annotated from Cossee et al. (1997). 
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1.2.1 The GAA trinucleotide repeat mutation  
 
Molecular analysis has revealed that a biallelic GAA triple repeat hyperexpansion is the 

leading (98% of cases) cause of FRDA. This GAA triplet repeat is found within an Alu 

sequence in intron 1, at 1.4kb downstream from the end of exon 1. Normal alleles contain 

less than 40 triplets, whereas alleles in FRDA contain 70 to 1700 triplet repeats (Cossee et 

al., 1997, Montermini et al., 1997a). Consequently, this GAA expansion has shown to 

influence the disruption of FXN gene transcription, and subsequently reduce the level of 

frataxin protein as verified by ribonuclease (RNase) protection assays and western blot 

analysis, respectively (Figure 1.3) (Cossee et al., 1997, Campuzano et al., 1997, De Biase et 

al., 2007a, Punga and Buhler, 2010, Silva et al., 2015). In fact, a study by Punga and Buhler 

(2010) demonstrated an inverse correlation between the GAA repeat length and frataxin gene 

and protein expression levels in FRDA patient-derived lymphoblastoid cell lines.  

 

Figure 1. 3 - Schematic presentation of the frataxin expression. In FRDA, the hyperexpansion of 
GAA repeats within intron 1 of FXN gene instigates reduced expression of frataxin. 
 

Due to the recessive nature of the disease, the majority of the patients are homozygous for 

GAA expansion, whereas heterozygous carriers show no disease phenotype and appear 
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clinically normal (Bidichandani et al., 2000, Grabczyk and Usdin, 2000). Rarely (4%) 

patients are compound heterozygous for a GAA expansion in one allele and a missense or 

nonsense point mutation, disrupting the coding sequence in FXN gene (Campuzano et al., 

1996). To date, the most frequent point mutations are I154F, M1I and G130V (Alper and 

Narayanan, 2003). So far, no FRDA patient has been found to carry a homozygous point 

mutation, suggesting that this mutation may be associated with lethality (or incompatible with 

survival).  

1.2.2 Genotype-phenotype correlation 

Since smaller GAA repeat expansions permit higher residual FXN gene expression, 

expansion sizes can influence the severity of the FRDA disease phenotype and age of onset, a 

feature also observed in other repeat disorders (Pandolfo, 2002). With increased repeat 

expansion, the age of onset reduces, disease progression becomes more rapid, and the 

presence of additional disease manifestations, such as cardiomyopathy and diabetes, appear 

more prominent, suggestive of a more widespread degeneration (Montermini et al., 1997c). 

Nevertheless, the size of the GAA repeat expansions only accounts for about 50% of the age 

of onset variability. This indicates that there is still substantial variability in the FRDA 

phenotype, which is influenced by other factors. The molecular mechanisms underlying such 

clinical variability are unknown, but it has been proposed that somatic mosaicism for the 

expansion size, variation and interruption in the repeat sequence, modifier genes and 

environmental factors may all contribute to clinical variability (Filla et al., 1996, Durr et al., 

1996, Montermini et al., 1997c). Therefore, it is not possible to accurately predict disease 

severity or rate of progression, based on GAA repeat size only.  
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1.2.3 GAA repeat instability  

Along with FRDA, trinucleotide repeat (TNR) expansions have also been the underlying 

mechanism for other inherited human disorders. This includes expansion of CAG repeats in 

Huntington disease (HD), and CTG repeats in myotonic dystrophy type 1 (MD1) (Cossee et 

al., 1997, Cummings and Zoghbi, 2000, Savouret et al., 2003). Generally, these expansions 

occur in either the coding or the non-coding regions of genes. Non-coding TNR expansion 

disorders typically result in loss of gene function, while coding trinucleotide repeat 

expansions instigate either a polyglutamine or polyalanine tract in the protein products, thus 

resulting in protein dysfunction (Pizzi et al., 2007). Moreover, a significant molecular 

phenomenon is observed, which is a TNR expansion instability, where the repeats increase in 

size across generations (meiotic instability) and within tissues (somatic instability). Such 

instability has also been identified in FRDA with GAA repeat expansions (La Spada, 1997). 

1.2.3.1 Intergenerational instability  
 
In FRDA, the GAA repeat expansion is unstable when transmitted from parent to child, 

where both expansion and contraction are observed. Thus, non-pathogenic parental pre-

mutations can be transmitted to offspring as expanded pathogenic GAA repeats (Montermini 

et al., 1997a). During maternal transmission the pathological GAA repeat is equally prone to 

either contract or to further expand, whereas during paternal transmission only contraction is 

identified (Campuzano et al., 1996, Durr et al., 1996, Pianese et al., 1997, Monros et al., 

1997). This sex bias in the intergenerational GAA instability has been confirmed by sperm 

analysis, although the underlying molecular mechanism instigating this is still unknown (De 

Michele et al., 1998, Pearson et al., 2005, Delatycki et al., 1998, Monros et al., 1997). 

Moreover, parental age and the intergenerational change in expansion are directly correlated 

in maternal transmission and inversely correlated in paternal transmission (Kaytor et al., 

1997, De Michele et al., 1998).  
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1.2.3.2 Somatic instability is tissue and age dependant 
 
In FRDA, progressive somatic instability has been observed, where different lengths of 

repeats are identified in various tissues from the same patient (Sharma et al., 2002). This was 

detected by small pool PCR studies in the particular disease-relevant tissues, cerebellum and 

DRG, which displayed a preference to a higher rate of expansion as compared to other tissues 

(Figure 1.4). Additionally, an age-depended significant increase in repeat expansion was also 

observed in DRG, which ranged from 0.5% at 17 years to 13.9% at 47 years (De Biase et al., 

2007a). Similarly, analysis from tissues of an 18-week foetus homozygous for expanded 

GAA alleles revealed very low instability levels as compared to adult-derived tissues (4.2% 

versus 30.6%). The mutation load in blood samples from multiple patients and carriers 

increased significantly with age, ranging from 7.5% at 18-week gestation to 78.7% at 49 

years of age (Figure 1.5). This suggests that somatic instability is a crucial element in FRDA 

and commonly arises after embryonic development and it progresses throughout life (De 

Biase et al., 2007b). Moreover, an inconsistent heterogeneity in expansion sizes is detected 

amongst cells from different tissues, whereby fibroblasts show less heterogeneity and 

lymphocytes show more heterogeneity. Extensive cellular heterogeneity in repeat size is also 

observed in different brain regions (Montermini et al., 1997b), indicating a manifestation of 

extreme mitotic instability. These findings support the role of postnatal somatic instability in 

disease pathogenesis (De Biase et al., 2007b), possibly involving DNA repair and replication 

mechanisms.  
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Figure 1. 4 - Small pool-PCR analysis detected a higher prevalence of large expansions in DRG. 
Frequency distribution (plotted on the Y-axis) of expansion (magnitude plotted on the X-axis as 
increase in size (%) over constitutional allele) seen in various tissues derived from FRDA patient. All 
data points to the right of the bold line, plotted at 20% represent large expansions (De Biase et al., 
2007a). 
 

 
Figure 1. 5 - Small-pool PCR analysis indicating different GAA mutation load in foetus versus 
adults. A) Tissues analysis showing a highly significant 7.3 fold lower levels of somatic instability in 
foetal tissues compared with adult tissues. B) Mutational load in blood of foetus versus both parents 
combined showing a highly significant, 7 fold lower levels of somatic instability in foetal blood 
compared with adult blood. Error bar -/+ 2 SEM (De Biase et al., 2007b). 

Tissue Samples Blood Samples A B 
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In FRDA, studies have revealed that the decrease in FXN mRNA molecules is essentially due 

to a dysfunction at the pre-transcriptional level, instigated by the mutational GAA repeat 

expansion, and not at the post-transcriptional RNA processing level (Delatycki et al., 2000, 

Sakamoto et al., 2001). Although, the exact mechanism of transcriptional reduction remains 

controversial, there are several hypotheses presently under debate. Recent evidence has 

proposed that the transcriptional silencing caused by pathologic GAA repeat expansions may 

be due to the formation of non-B DNA structures, such as DNA triplexes, RNA-DNA 

hybrids and sticky DNA structures (Mariappan et al., 1999, Sakamoto et al., 1999, Sakamoto 

et al., 2001), and/or cause epigenetic changes, such as heterochromatin formation (Figure 

1.6) (Herman et al., 2006, Al-Mahdawi et al., 2008).  Therefore, a better understanding of the 

mutational mechanisms involved in GAA-induced inhibition of FXN gene transcription 

associated with FRDA could lead to the development of several effective therapeutic 

approaches.  
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Figure 1. 6 - Schematic illustration of FXN gene silencing in FRDA. A) Unaffected individuals 
carrying 1-40 GAA repeats contain functional histone marks at the FXN promoter involved in gene 
transcription initiation and elongation. B) Individual with FRDA carry an expanded GAA repeat 
(≤1700) which leads to FXN gene silencing by two potential mechanisms: 1) the GAA repeat may 
adopt abnormal non-B DNA structures (triplexes) which triggers RNA Polymerase II arrest, 2) 
heterochromatin formation at the FXN gene triggers increased DNA methylation and HP1 levels, 
which subsequently causes a significant enrichment of repressive histone marks (Image annotated 
from Sandi et al. (2014)). 

 
 
 
 
 
 
 

A - Unaffected   B - FRDA   
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1.2.4 DNA triplex formation 

DNA triple helix structures are formed upon binding of a single strand, generally containing 

pyrimidine (Y) or purine (R), to the major-groove of a DNA double helix pairs through the 

Hoogsteen or reverse-Hoogsteen type of hydrogen bonding (Jain et al, 2002). Triplexes in 

general may take the form R.R.Y or Y.R.Y and depending whether the third strand is purine 

rich or pyrimidine rich it can be formed as either intermolecular structures or as folded 

intramolecular structures (Figure 1.7) (Frank-Kamenetskii and Mirkin, 1995, Usdin and 

Grabczyk, 2000, Mirkin, 2007). In FRDA, the GAA•TTC tract is a purine•pyrimidine (R•Y) 

polymer, containing only purines (R) in one strand and pyrimidine (Y) in the complementary 

strand and thus it may adopt the unusual triple helix DNA structure. Recent evidence 

suggests, that during transcription of a long GAA•TTC tract a transient intramolecular R•R–

Y triplex is formed behind the RNA polymerase II (RNAPII), entrapping the RNAPII at the 

distal end of the repeat. At the transcription bubble, the polymerase covers the Y (TTC) 

template strand, allowing the available non-template (GAA) strand to fold back which 

initiates the formation of R•R–Y triplex structure and creating a loop. The spread of triplex 

formation is propelled by the wave of negative superhelical energy released with the 

movement of RNAPII along the GAA•TTC tract. This unusual conformation pushes the 

RNAPII to the distal (3’) triplex-duplex junction, pausing its activity and consequently 

resulting in significant truncation and obstruction in transcription elongation (Mariappan et 

al., 1999, Usdin and Grabczyk, 2000, Grabczyk and Usdin, 2000, Jain et al., 2002).  
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Figure 1. 7 - Schematic diagram of intramolecular R•R–Y and Y•R–Y triplexes. R•R–Y type 
triplex (left) is formed when the single-stranded purine-rich folds back and interacts with the 
purine-rich strand of the remaining duplex in an antiparallel orientation. Y•R–Y type triplex 
(right) is formed when the single-stranded pyrimidine-rich folds back and interacts with the 
purine-rich strand of the remaining duplex in a parallel orientation (image annotated from 
Bacolla et al. (2015)). 

 

1.2.5 RNA-DNA hybrid formation  

Further studies by Grabczyk et al. (2007) reported an extensive RNA-DNA hybrid (R-loops) 

formation on the GAA•TTC template in E.coli by using T7 polymerase. During in vitro 

transcription of longer repeat, T7 RNAPII paused at the distal end of the repeat which was 

tightly linked to a persistent RNA-DNA hybrid formation (Figure 1.8) (Grabczyk and Usdin, 

2000, Grabczyk et al., 2007). Additionally, lesser extents of RNA-DNA hybrids were also 

detected with smaller GAA•TTC repeats (pre-mutation size), that do not cause the disease but 

are prone to expansion. Furthermore, a recent study revealed in patient cells that RNA/DNA 

hybrid (R-loops) forms on expanded GAA repeats, impede RNAPII transcription and co-

localises with H3K9me2, a characteristic repressive chromatin mark of the disease. 

Moreover, the study also reported that a decrease in H3K9me2 levels has no effect on R-loop 

levels. However, increasing R-loop levels by treatment with DNA topoisomerase inhibitor 

camptothecin leads to up-regulation of H3K9me2, resulting in FXN transcriptional silencing. 

This provides a direct molecular link between R-loops and FRDA pathology, suggesting that 

R-loops may act as an initial trigger to promote FXN silencing. Therefore, R-loops now 

provide a new therapeutic target for FRDA (Grabczyk et al., 2007, Groh et al., 2014). 
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Figure 1. 8 - Schematic illustration of a triplex and RNA-DNA hybrid formation in FRDA. 
Transcription through the repeat leaves the non-template purine-rich strand transiently unpaired. This 
strand can then fold back and interact with the duplex that has already reannealed behind the RNAPII, 
thereby forming a triplex. Triplex formation, in turn, leaves the pyrimidine-rich strand in the second 
half of the repeat free to form a hybrid with the nascent purine-rich RNA strand, forming a highly 
stable RNA-DNA hybrid (R-loop) construction. The net result is the formation of a stable R-loop in 
which the pyrimidine strand of the repeat is hybridized to the nascent transcript leaving the purine-
rich strand unpaired. This subsequently traps the RNAPII on the template at the 3’ end of the repeat 
(Diagram annotated from Kumari and Usdin (2012). 
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1.2.6 Sticky DNA formation  

Further investigation demonstrates the stable triplex formation, adopted by the long 

GAA•TTC tract, to form a higher-order conformation known as sticky DNA (Gacy et al., 

1998, Sakamoto et al., 1999). Sticky DNA structures are formed intramolecularly by two 

interacting R•R–Y triplexes that are distal to each other and is highly dependent on negative 

supercoiling and divalent metal ions (Figure 1.9) (Vetcher et al., 2002). This in turn severely 

impairs transcription by sequestrating the progression of RNAPII complex to unwind the 

DNA template and move forward, and possibly providing a direct mechanism for FXN 

silencing. A direct correlation was also documented between the length of GAA repeat and 

sticky DNA formation, which confers its pathogenicity in FRDA. However, the length 

threshold to encourage sticky DNA structure formation is about 60 repeats, and lower repeats 

have failed to demonstrate these non-B DNA structure conformations (Sakamoto et al., 2001, 

Pandolfo, 2008). Furthermore, agents used to interrupt GAA•TTC repeat sequence have been 

shown to destabilise the sticky DNA structure and encourage normal FXN gene transcription 

in vitro and in vivo (Ohshima et al., 1999, Burnett et al., 2006). 

 
 

Figure 1. 9 - Schematic diagram for sticky DNA structure in a closed circular plasmid. The green and 
yellow strands represent one GAA•TTC duplex and the red and blue strands represent the other 
duplex. Sticky DNA is the structure formed by the association of two long GAA•TTC repeat 
sequences in one DNA molecule. The interaction of these two tracts is dynamic and is facilitated by 
negative supercoiling and divalent cations (Son et al., 2006). 
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1.2.7 Epigenetic changes in FRDA  

In contrast to the abnormal DNA structure-based mechanism for gene silencing, the expanded 

GAA repeat is also consistent to behaving like pericentromeric heterochromatin and inducing 

chromatin condensation. This renders the gene inaccessible to the transcriptional machinery, 

thereby leading to FXN gene silencing (Saveliev et al., 2003). To understand whether the 

mutational GAA repeat exerts this heterochromatin gene silencing, Festenstein et al. (1996) 

generated an artificial transgene with a heterochromatin-sensitive lymphoid cell-surface 

marker protein (CD2). He demonstrated that the expanded repeats induce silencing of nearby 

genes via a phenomenon known as position-effect variegation (PEV). PEV is the hallmark of 

heterochromatin-mediated gene silencing, and is thought to occur when a gene is aberrantly 

positioned near regions of heterochromatin, characterized by various competing epigenetic 

marks. This includes increases in DNA methylation, histone modification, and antisense 

transcription, as well as sequence elements such as silencers, enhancers, insulators or locus 

control region and repetitive DNA (Figure 1.10) (Zuckerkandl, 1974, Tartof et al., 1989, 

Tartof et al., 1984, Locke et al., 1988, Festenstein et al., 1996, Festenstein et al., 1999, Dillon 

and Festenstein, 2002). In FRDA, this hypothesis was further strengthened by the findings of 

a differential DNA methylation profile accompanied by histone acetylation and methylation 

changes. Additionally, the FXN gene silencing was found to be highly correlated with an 

essential constituent of heterochromatin and a powerful PEV modifier, known as 

heterochromatin protein 1 (HP1) (Saveliev et al., 2003, Elgin and Reuter, 2013, Yandim et 

al., 2013). 
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Figure 1. 10 - Histone modifications between euchromatin and heterochromatin. Euchromatin 
structure is associated with DNA methylation, histone acetylation and H3K4 methylation. On the 
other hand, the tightly packed heterochromatin is related to DNA methylation, histne deacetylation, 
H3K4 demethylation, H3K9 and H3K27 methylation. The ‘glue proteins’ such as HP1 or PRC1 
components allows strong nucleosome interaction and create a higher order chromatin structure. The 
final status of transcription is determined by the concentration of these modifiers and the presence of 
the binding sites. It is hypothesised that if heterochromatin and euchromatin factors are in balance, 
stochastic expression of genes (PEV) takes place (Image annotated from Yandim et al. (2013)). 
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1.2.7.1 Histone modifications 

Recent FRDA studies have identified various heterochromatin hallmarks associated with 

gene silencing. This includes hypoacetylation of histone H3 and H4, and increased 

H3K9me2/3, H3K27me3 and H3K20me3 levels, predominantly at upstream and downstream 

regions of the expanded GAA repeat tract compared to normal individuals. Furthermore, it 

has been shown that the promoter region of FRDA patients is associated with reduced levels 

of acetylated H3K5, H3K14, H4K5, H4K12 and H4K16 (Herman et al., 2006, Al-Mahdawi 

et al., 2008, Sandi et al., 2014), indicating a less permissive region for transcription (Figure 

1.11). Although several epigenetic changes have been identified in FRDA, it is still unclear of 

which histone modification is directly involved in FXN silencing. Nevertheless, considering 

these histone changes in future studies may perhaps give rise to more potential FRDA 

therapies. 

 

Figure 1. 11 - Investigation of histone modifications in the FXN gene by ChIP analysis on a FRDA 
(GM15850) versus a normal lymphoblastoid cell line (GM15851). In FRDA, histone acetylation 
levels at specific lysine residues are generally lower immediately upstream and downstream of the 
GAA repeat (Herman et al., 2006). 
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1.2.7.2 DNA methylation changes  

Al-Mahdawi and colleagues (2008) studied the DNA methylation changes of the FXN 

promoter and flanking GAA regions by performing bisulfite sequence analysis on FRDA 

patient brain, cerebellum and heart tissues. The results revealed a shift in the FRDA DNA 

methylation profile, with the GAA-upstream CpG sites being consistently hypermethylated 

and the GAA-downstream CpG sites being consistently hypomethylated (Figure 1.12). Only 

4 selected CpG sites in the promoter region showed any degree of methylation, and the levels 

of methylation were not specifically and significantly increased in the FRDA samples.  

Comparable methylation patterns were also detected in tissues from two different strains of 

YAC transgenic FRDA mice, YG8 and YG22 (Al-Mahdawi et al., 2008). Furthermore, a 

positive correlation has been seen with the degree of methylation and extent of GAA 

expansion (Evans-Galea et al., 2012). 

 

Figure 1. 12 - DNA methylation analysis of the FXN promoter (A and B), upstream GAA (C and D) 
and downstream GAA (E and F) regions of human brain and heart tissues. In each case the mean 
percentage of methylated CpG sites is shown, as determined by bisulfate sequencing (Al-Mahdawi et 
al., 2008). 
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1.3 Frataxin protein: structure, localisation and maturation  

Frataxin is an essential and highly conserved mitochondrial protein that is found ubiquitously 

in most eukaryotic and prokaryotic cells (Adinolfi et al., 2002). In eukaryotes, frataxin is 

encoded in the nucleus, translated in the cytoplasm and then imported into mitochondria 

(Koutnikova et al., 1997). Initially, a precursor form of frataxin is translated consisting of 

210 amino acids, containing an N-terminal transit amino acid sequence, that allows its 

passage into the mitochondrial matrix (Gibson et al., 1996). The precursor form was 

originally found to undergo two proteolytic cleavages that removed the transit sequence and 

converted it first to a 19kDa intermediate form and then to a final form of 17kDa. These 

cleavages were shown take place in the mitochondria by the mitochondrial processing 

peptidase (MPP), with the first cleavage occurring between G41 and L42, and the second 

between A55 and S56 (Koutnikova et al., 1998). However, more recent studies have shown 

that frataxin processing in human cells actually produces an even smaller protein of 14kDa, 

by cleaving between K80 and S81 (Condo et al., 2007, Schmucker et al., 2008). The resulting 

130 amino acid protein is recognised as the mature and fully functional form of frataxin, and 

is predominantly localised in the mitochondrial matrix as a free soluble protein (Campuzano 

et al., 1997). Crystal structure analysis shows that mature frataxin consists of a globular and 

compact assembly in which two α-helices (α1-α2) are packed against seven β-sheets (β1-β5, 

β6 and β7). The two helices are N- and C-terminals to the β-sheets, forming a short and well-

ordered structure. The C-terminal coil fills a groove between the two α-helices (Figure 1.13) 

(Dhe-Paganon et al., 2000, Condo et al., 2007). The extensive structure and biochemical 

analysis of human (hFXN), yeast (Yfh1), and bacterial frataxin orthologues (CyaY) show that 

they all share a very similar fold, which directly reflects the high degree of sequence 

conservation and strongly indicates a common function (Sazanov and Hinchliffe, 2006). 
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Figure 1. 13 - A ribbon illustration of frataxin protein structure, demonstrating a compact assembly of 
α-helices (turquoise) and β-sheets (green) sandwich. The β-sheets, β1-β5,  form a flat antiparallel 
strand with the two α-helices, α1-α2. The two α-helices are nearly parallel to each other and to the 
plane of the large  β-sheets. A second, smaller β-sheets, β6 and β7, are formed by the C-terminus of β5 
(Dhe-Paganon et al., 2000). 

 

1.3.1 Molecular function of frataxin 

Although the exact function of frataxin has been a matter of debate since its discovery, lack 

of frataxin is known to result in mitochondrial dysfunction and ultimately cell death. Studies 

have emphasized a fundamental role of frataxin in cell survival by regulating mitochondrial 

iron homeostasis (Bradley et al., 2000, Lodi et al., 2001b), synthesizing Fe-S cluster (ISC) 

proteins (Koutnikova et al., 1997, Cavadini et al., 2000) and providing protection from 

oxidative stress (Schulz et al., 2000, Wilson, 2003). In addition, studies in FRDA human 

tissues, yeast and mouse frataxin-depleted mutants with selective disruption of the FXN 

homologue, have provided further evidence on the role of frataxin and FRDA pathogenesis. 

For example, frataxin deficiency in a conditional KO mouse model has been shown to 

develop cardiomyopathy, a prominent cause of death seen in most FRDA patients (Cossee et 

al., 2000, Calabrese et al., 2005).  
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1.3.2 Frataxin and iron homeostasis 
 
Studies carried out on the yeast frataxin homologue (Yfh1) led to the proposal that frataxin is 

involved in regulating iron efflux in mitochondria, because absence of Yfh1 resulted 

mitochondrial damage due to iron overload (Radisky et al., 1999, Babcock et al., 1997, Foury 

and Cazzalini, 1997). Furthermore, iron accumulation and deposits were consistently seen in 

the autopsy of heart muscles (Bradley et al., 2000) and the dentate nucleus (Waldvogel et al., 

1999, Koeppen et al., 2007) of FRDA patients. This led to the conclusion that frataxin was 

involved in mitochondrial iron homeostasis (Pandolfo, 1999).  

In the absence of iron, CyaY, Yfh1 and hFXN frataxin homologues all exist as highly soluble 

monomers. However, early in vitro studies of CyaY and Yfh1 show that in aerobic 

conditions, frataxin protein form iron-rich oligomeric spheroidal structures with high ionic 

strength (Adamec et al., 2000, Adinolfi et al., 2002, Gakh et al., 2002, Layer et al., 2006, 

Adinolfi et al., 2009). More recent studies have demonstrated that human frataxin can bind 

six to seven iron atoms, and depending on the type of frataxin homologue and oxidative state 

of iron, several iron binding sites have been identified. This indicates that frataxin may also 

play a role in mitochondrial iron storage. (Yoon and Cowan, 2003, Bou-Abdallah et al., 

2004, Yoon et al., 2007, Huang et al., 2008). Further biochemical investigations proposed 

that frataxin deficiency leads to a reduction of mitochondrial aconitase, ferrochelatase and 

proteins of the ISC machinery (Gerber et al., 2003, Bulteau et al., 2004, Yoon and Cowan, 

2004, Bencze et al., 2007). Additionally, studies of hFXN and Yfh1 frataxin homologues 

have reported an iron dependent interaction with Nfs1-Isu1 complex, suggesting that frataxin 

is required for ISC cluster biosynthesis, by acting as an iron donor (Yoon and Cowan, 2003). 

However, bacterial studies of CyaY have indicated that frataxin also serves as a molecular 

regulator to inhibit the formation of 2Fe-2S and store iron in a bio-available form for 

utilisation (Figure 1.14) (Layer et al., 2006, Adinolfi et al., 2009).  
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Furthermore, studies of a conditional knockout mouse model mimicking the FRDA 

cardiomyopathy showed that mitochondrial iron accumulation and changes in Fe-S 

dependent enzyme activity occur significantly later than the onset of pathology (Puccio et al., 

2001, Martelli et al., 2007). This indicates that deregulation in ISC formation is a secondary 

consequence and cannot be the only causative pathological mechanism. 

 

 

 
Figure 1. 14 - Schematic representation of the molecular mechanism of frataxin in the cell during a) 
normal iron concentration, b) excess of iron concentrations, and c) absent/ insufficient frataxin 
conditions (Adinolfi et al., 2009). 
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1.3.3 Frataxin and oxidative stress 
 
In frataxin-deficient cells, cellular oxidative stress has been observed as a secondary effect of 

impaired iron homeostasis and respiratory chain dysfunction, due to the increased production 

of reactive oxygen species (ROS).  This was initially proposed when high levels of hydrogen 

peroxide (H2O2) were detected in frataxin-deficient cells (Babcock et al., 1997, Wong et al., 

1999). The freely available Fe2+ can generate toxic reactive oxygen species by reducing 

oxygen and H2O2 to the extremely reactive superoxide and hydroxyl radical, respectively 

(Fenton chemistry) (Tozzi et al., 2002). Free radicals are known to be lethal and cause severe 

damage to essential proteins, lipids, nucleic acids and ultimately result in cell death. As well 

as triggering an iron overload, inefficient ISC synthesis in FRDA impairs the ISC-containing 

subunits of mitochondrial electron transport chain (ETC) complexes I, II and III, which 

triggers a subsequent increase in H2O2 levels, particularly in the cardiac tissue (Rotig et al., 

1997, Bradley et al., 2000, Tozzi et al., 2002). Additionally, aconitase, an ISC protein 

involved in iron homeostasis, is also reported to be deficient in FRDA (Figure 1.15) (Rotig et 

al., 1997). Furthermore, decreased levels of mitochondrial-DNA (mt-DNA) have been 

detected in patients with FRDA (Houshmand et al., 2006, Heidari et al., 2009). Naturally, mt-

DNA lacks the protective histones, and therefore, it is easily susceptible to damage by ROS. 

As mt-DNA partially encodes the ETC complexes, its damage by ROS in FRDA can further 

aggravate mitochondrial dysfunction yielding further ROS (Orsucci et al., 2011). Moreover, 

frataxin not only functions to protect against oxidative stress, but also determines antioxidant 

responses in the presence or absence of excess iron (O'Neill et al., 2005). This ability to 

interact with antioxidant defences is reduced in frataxin-deficient cells following mild 

exposure to oxidants (Jiralerspong et al., 2001, Chantrel-Groussard et al., 2001). As evidence 

of oxidative stress in FRDA, elevated urinary 8-hydroxy-2’-deoxyguanosine (a marker of 
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oxidative DNA damage) (Schulz et al., 2000) and raised plasma malondialdehyde (a lipid 

peroxidation product) (Emond et al., 2000) levels, have been observed. 

 

 

 

 

Figure 1. 15 - Schematic representation of events leading to cell dysfunction in FRDA. Although the 
precise sequence of events in FRDA pathogenesis is uncertain, it is proposed that frataxin depletion 
results in impaired ISC synthesis and/or stability with intramitochondrial accumulation of reactive 
iron. Reactive iron promotes Fenton chemistry, producing superoxide and hydroxyl radical, which in 
turn destroys more ISCs. Subsequently, this results in decrease in complexes I-III function, 
mitochondrial aconitase activity and mt-DNA. Impaired respiratory chain activity and decreased 
aconitase activity will impair ATP synthesis, which together with oxidative damage to cellular 
components, will compromise cell viability. Additionally, in frataxin-depleted cells, deficient 
signalling of antioxidant defences sensitises the frataxin-free ISCs to reactive oxygen species. This 
antioxidant sensitisation process results in intramitochondrial iron accumulation, mostly as 
amorphous nonreactive precipitates. Image annotated from Bradley et al. (2000); Bayot and Rustin 
(2013). 
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1.4 Therapeutic approaches  
 
Currently, there are no therapeutic approaches that have proven effective for treating FRDA 

or slowing progression of symptoms. However, based on improved research and findings on 

the role of frataxin and disease pathogenesis, presently numerous new compounds are in 

various different phases of development and testing (Figure 1.16). This mainly consists of 

compounds which target to either improve mitochondrial function or enhancing frataxin 

expression. However, the mode of action for most of these compounds in up-regulating 

frataxin expression is still unclear. 

 

Figure 1. 16 - Schematic illustration of the pathophysiological mechanisms in FRDA and their 
associated relevant therapeutic point of application (Nachbauer et al., 2011). 
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1.4.1 Antioxidant therapy  
 
Recent studies have identified decreased mitochondrial respiratory chain function and 

increased oxidative stress in FRDA pathophysiology (Cooper and Schapira, 2007). Therefore, 

the possible use of energy enhancement and antioxidant agent to preserve aerobic respiration 

may be a useful treatment in preventing or delaying disease symptoms and cell death. After 

extensive preclinical studies, several clinical trials on the antioxidant drugs, idebenone and 

coenzyme Q10, were conducted. The majority of clinical therapeutic studies were carried out 

on idebenone, a synthetic short-chain quinine analogue of coenzyme Q10. It plays a role in 

both shuttling electrons between damaged ETC complex proteins and scavenges intracellular 

potent free radicals (Rustin et al., 1999, Meier and Buyse, 2009). The initial clinical studies 

of idebenone revealed promising results, improving neurological symptoms (Di Prospero et 

al., 2007a), decreasing oxidative stress and lipid peroxidation and slowing down the 

progression of heart disease (Rustin et al., 1999, Schulz et al., 2000). However, very recently 

idebenone failed its Phase III study as no clinical significant benefits of neurological 

symptoms or cardiac hypertrophy in patients were reported (Lagedrost et al., 2011, Parkinson 

et al., 2013). However, these inconsistent outcomes could be a result of several variabilities, 

such as disease stage and age of treatment initiation, which could have influenced these 

negative effects. Therefore, this failure does not rule out antioxidants as potential therapeutic 

agents (Di Prospero et al., 2007a, Di Prospero et al., 2007b, Schulz et al., 2009). Moreover, 

several small trials have evaluated the effect of coenzyme Q10 and vitamin E in FRDA 

patients. Co-enzyme Q10 plays a role in mitochondrial ATP production, and vitamin E is a 

naturally occurring lipid-soluble antioxidant. A combination treatment of co-enzyme Q10 and 

vitamin E have shown an improvement of energy metabolism in cardiac- and skeletal muscle 

bioenergetics (Lodi et al., 2001a, Hart et al., 2005). However, more studies need to be carried 

out to make a conclusive evaluation.  
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1.4.2 Iron chelators  
 
Frataxin deficiency in FRDA is known to result in mitochondrial iron accumulation, thus 

disturbing ISC assembly (Yoon and Cowan, 2003, Pandolfo and Hausmann, 2013). As such, 

much effort has been put in designing and testing drugs with iron chelating potential for use 

in FRDA (Lodi et al., 2006, Santos et al., 2010). So far, many potential iron chelators have 

been disadvantaged by poor permeability in biological membranes (Pandolfo and Hausmann, 

2013). This includes deferoxamine and deferiprone, which have been investigated in both in 

vitro models (Goncalves et al., 2008, Kakhlon et al., 2008) and in clinical trials (Boddaert et 

al., 2007). Deferoxamine has not performed well in FRDA, as it can chelate iron in cell 

culture, but simultaneously also decreased the mRNA levels of both aconitase and frataxin, 

making it unsuitable for use in FRDA (Li et al., 2008). In contrast, deferiprone is an orally 

administered iron chelator with good permeability and is capable of crossing the blood brain-

barrier and shuttle iron between subcellular compartments (Glickstein et al., 2005, Pandolfo 

and Hausmann, 2013). Although deferiprone have been shown to successfully protect the 

mitochondria from ROS damage (Kakhlon et al., 2008) and reduce iron build-up in the brain 

with a small improvement in neurological function (Boddaert et al., 2007), it also reduced 

aconitase activity due to excessive iron chelation (Goncalves et al., 2008). Therefore, due to 

the inconclusive results obtained, more investigation is required to understand the 

effectiveness of deferiprone as a treatment for FRDA. 
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1.4.3 Epigenetic based therapies  
 
In FRDA, expanded GAA repeats have been shown to induce heterochromatin-mediated 

silencing of FXN gene, due to highly condensed DNA, in a manner reminiscent of PEV gene 

silencing (Saveliev et al., 2003). Further studies have subsequently identified epigenetic 

changes, including DNA methylation, histone deacetylation and histone methylation which 

may be involved in the FXN gene silencing in FRDA (Gottesfeld et al., 2013, Silva et al., 

2015). Thus, a promising therapeutic strategy is to directly target these epigenetic states with 

DNA demethylation agents, histone deacetylase (HDAC) inhibitors and the newly proposed 

histone methyltransferase (HMTase) inhibitors to restore frataxin levels.  

 

DNA demethylation therapies  
 
Numerous studies have indicated an increase of DNA methylation upstream of GAA repeat 

region of FRDA associated FXN alleles. Therefore, treatment with DNA demethylating 

agents, such as 5-Aza-2’-deoxycytidine (5-aza-CdR), is now suggested as a therapeutic 

option for FRDA (Figure 1.15). The nucleoside analogue DNA methyltransferase (DNMT) 

inhibitor, 5-aza-CdR, has previously been studied either alone or in combination with HDAC 

inhibitors in treating Fragile X syndrome (FXS) lymphoblasts, effectively restoring the 

FMR1 promoter hypermethylation and reinstating mRNA and protein levels to normal 

(Chiurazzi et al., 1999). Additionally, a recent study testing a combination treatment of 5-

aza-CdR and HMTase, increased FMR1 transcripts in FXS cells (Kumari and Usdin, 2016). 

Thus far, no reports have been published describing the effects of DNA demethylation agents 

in treating FRDA. However, promising results are obtained from using these agents to treat 

FXS, a disease similar to FRDA in having a non-translated nucleotide repeat inducing CpG 

hypermethylation and histone deacetylation. The FXS results further support the use of DNA 

demethylating agents as a potential therapeutic procedure for FRDA (Sandi et al., 2014). 
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HDAC inhibitors 
 
The use of small molecule inhibitor of chromatin modifying enzymes, such as HDAC 

inhibitors, have proven to be beneficial in reactivating FXN gene in FRDA, by reverting the 

silent heterochromatin to an active chromatin conformation (Gottesfeld, 2007, Soragni and 

Gottesfeld, 2016). Currently, HDAC inhibitors are the subject of intense research as a 

promising therapeutic strategy for FRDA (Figure 1.15). Treatment using HDAC inhibitors 

have produced a significant increase of frataxin mRNA and protein expression, and elevated 

levels of histone acetylation in cellular (Herman et al., 2006) and animal models (Rai et al., 

2008, Rai et al., 2010). This effect was supported by a five-month study on the mildly 

affected YG8R mice, where three 2-aminobenzamide (class I) HDAC inhibitors were 

investigated (Sandi et al., 2011). One of the HDAC inhibitors, designated 109/RG2833, has 

recently completed a small phase Ib clinical trials and is currently being further engineered to 

improve brain distribution and metabolic stability (Soragni et al., 2014, Shan et al., 2014, 

Gottesfeld et al., 2013). Another therapeutic testing with the class III HDAC inhibitor, 

nicotinamide (a form of vitamin B), decreased histone methylation marks, H3K9me3 and 

H3K27me3, at the FXN locus and increased FXN expression in FRDA cell lines and mouse 

models. Although nicotinamide was well tolerated by FRDA patients, it was observed, after 

entering the early stage of FRDA clinical trials (an open label pilot study), that it did not 

significantly improve or establish any clinical benefits (Chan et al., 2013, Libri et al., 2014, 

Aranca et al., 2016). Therefore, further research is still required to understand the underlying 

mechanism of nicotinamide treatment. Currently, research is underway to develop new and 

more potent HDAC inhibitors specific to the frataxin locus in addition to more complete 

animal studies determining the bioavailability and efficacy (Puccio et al., 2014). 
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HMTase inhibitors  
 
Histone lysine methylation, which is regulated by HMTases and histone demethylases 

(HDMs), is also highly associated with gene transcriptional repression and activation 

(Kouzarides, 2007). Such histone lysine modifications, including H3K9me2/3 and 

H3K27me3, are seen in FRDA. Therefore, specific HMTase inhibitors are currently being 

explored to revert the silent heterochromatin by inhibiting repressive marks and restoring 

FXN gene function (Figure 1.17). Thus far, treatments with HMTase inhibitors have 

produced a significant reduction in histone methylation and activation of previously silenced 

genes (McCabe et al., 2012, Sato et al., 2013, Sandi et al., 2013). Recently, treating FRDA 

lymphoblastoid cells with HMTase inhibitors caused significant reduction in H3K9me2/3 

levels, but no substantial change in FXN mRNA levels was detected (Punga and Buhler, 

2010). This may suggest a redundant role for the H3K9me2/3 alone in FXN gene silencing 

and perhaps targeting more than one methylation marks may be more effective. Therefore, to 

further explore the efficacy of HMTase inhibitors, we have carried out in vitro studies using 

human and mouse FRDA fibroblasts, which will be discussed in more detail in Chapter 3. 

 

Figure 1. 17 - Potential epigenetic-based therapies for FRDA. Large GAA repeats in FRDA patients 
are associated with heterochromatin-mediated FXN gene silencing. Agents designed to increase 
histone acetylation by inhibiting HDAC activity, and to reduce DNA and histone methylation levels 
by inhibiting DNMT and HMTase activity, are expected to increase FXN gene expression by 
reversing the heterochromatin formation to more open chromatin structure. Other epigenetic-based 
therapies for FRDA include HDM activators, HAT activators and agRNA activation (Image annotated 
from Festenstein (2006) and Chan et al. (2013)). 
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1.4.4 Synthetic transcription elongation factors 
 
In FRDA cells, the expanded GAA repeats are enriched in repressive histones and can also 

adopt abnormal DNA conformations that impede FXN transcription, by inducing a barrier to 

the productive elongation (Yandim et al., 2013, Li et al., 2015). A recent study reported the 

development of a sequence-specific synthetic transcription elongation factors (Syn-TEF1), 

capable of binding to the repressive GAA repeats and actively assisting productive elongation 

to restore FXN expression to normal levels (Erwin et al., 2017). The study demonstrated that 

Syn-TEF1 treatment significantly stimulated FXN gene expression and restored biological 

functions in primary cells derived from more than 20 FRDA patients with broad range of 

GAA repeat expansions and diverse genetic background. Furthermore, Syn-TEF1 treatment 

in mice carrying cells with expanded GAA repeats was found to restore frataxin protein 

levels to almost normal values (Erwin et al., 2017). This precision-tailored synthetic 

molecule may have the potential to treat FRDA and other diseases caused by transcriptional 

dysfunction; however, further research needs to be carried out before this molecule could be 

applied to humans.  
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1.4.5 Frataxin protein stabilising and enhancement therapies  

 
Erythropoietin 

In the past few years, erythropoietin (EPO) has received considerable attention as a 

therapeutic potential for FRDA, due to its neuroprotective capability. EPO is a glycoprotein 

that controls erythropoiesis, a process which regulates red blood cell production (Grasso et 

al., 2007, Siren et al., 2009). Initial in vitro treatments of recombinant human erythropoietin 

(rhuEPO) have been shown to significantly increase frataxin protein levels in FRDA patient 

lymphocytes and fibroblasts in a dose-dependent manner, without a concurrent rise in mRNA 

expression. This suggests that EPO acts at the post-transcriptional level (Sturm et al., 2005, 

Acquaviva et al., 2008). Subsequently, initial small open-label studies testing this drug 

indicated an improvement in FARS and SARA ratings and a decrease in oxidative-stress 

biomarkers, in the urine and blood of patients (Boesch et al., 2007, Boesch et al., 2008).  

However, the latest two open-label studies showed that regular high dose administration of 

rhuEPO resulted in a cumulative long lasting frataxin expression without any clinical 

improvements (Sacca et al., 2011, Nachbauer et al., 2011). Another latest phase II clinical 

trial study (double-blind and placebo-controlled), evaluated the safety and tolerability of 

carbamylated EPO (CEPO) in FRDA patients. The results indicated that while CEPO was 

safe and well tolerated, no significant change in frataxin levels or clinical outcomes were 

seen between the drug and placebo groups (Boesch et al., 2014). Therefore, due to the 

inconsistent evidence on the efficacy of EPO, and lack of knowledge on the specific drug 

mechanism of action in neuroprotection, EPO is not a likely candidate to be further 

investigated as a potential drug in treating FRDA (Mariotti et al., 2013).  
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Preventing frataxin ubiquitin-proteasome degradation  

It has been reported that frataxin protein stability and degradation is regulated by the 

ubiquitin-proteasome pathway (UPP) before its functional mitochondrial maturation. 

Therefore, researchers have proposed the use of ubiquitin competing molecules (UCMs) may 

have therapeutic potential by inhibiting frataxin ubiquitination and subsequently rescuing 

intracellular frataxin deficiency (Rufini et al., 2011, Rufini et al., 2015, Benini et al., 2017). 

Furthermore, other small molecules inhibitors designed to target different steps of the UPS 

pathway have been developed. These include proteasome inhibitors, some of which are now 

approved for cancer treatments and have shown to modulate frataxin turnover in FRDA cells 

(Richardson et al., 2006, Rufini et al., 2011, Kisselev et al., 2012, Rentsch et al., 2013, 

Rufini et al., 2015). Therefore, with aims to prevent frataxin degradation in vitro, we have 

carried out an extensive investigation on the efficacy of various proteasome inhibitors using 

human and mouse FRDA fibroblast, which is discussed in detail in chapter 4.  

1.4.6 Cell and gene therapy  

Recently, there has been a lot of interest in the development of cell and/or gene based 

therapies as an alternative to classical drug-based treatment for FRDA. The success of these 

therapies in other genetic diseases has encouraged their use with different experimental 

approaches for FRDA treatment. This includes the proposed autologous transplantation of 

patient’s own, genetically corrected, bone marrow (BM) derived cells or induced pluripotent 

stem cells (iPSCs) (Tajiri et al., 2014, Qin et al., 2015). Similar to other FRDA cellular 

models, FRDA iPSCs generated from FRDA patient fibroblasts retain the characteristics of 

unstable trinucleotide GAA expansions and decreased FXN mRNA expression (Ku et al., 

2010, Liu et al., 2011, Hick et al., 2013, Codazzi et al., 2016) with impaired mitochondrial 

function (Hick et al., 2013). This is also considered to be the same for FRDA BM-derived 

cells (Tajiri et al., 2014). Additionally, both iPSCs and BM-derived cells have been shown to 
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successfully transdifferentiate to neurons and cardiomyocytes, the two cell types primarily 

affected in FRDA (Weimann et al., 2003, Shetty et al., 2009, Liu et al., 2011, Hick et al., 

2013). Therefore, the genetically corrected stem cell transplantation can fuse with these 

damaged cells and eventually prevent FRDA-associated disease hallmarks and display 

normal phenotypes (Rocca et al., 2015). Importantly, since FRDA patients produce frataxin 

at low levels, transplantation of patient’s own stem cells expressing increased frataxin should 

not provoke an immune response (Evans-Galea et al., 2014b). Moreover, gene therapy is 

being considered as a strategic system to correct the genetic abnormality in FRDA by 

offering permanent FXN gene delivery (Khonsari et al., 2016). So far, several lines of 

evidence have indicated that FRDA is amenable to various gene therapy approaches. An 

initial attempt by  Fleming et al. (2005) reported the functional recovery of frataxin and 

partially reversing the oxidative stress effect in primary FRDA patient fibroblasts by 

delivering human frataxin cDNA encoded in adeno-associated viral (AAV) and lentiviral 

(LV) vector constructs. This effect was also seen in a recent study using LV-FXN gene 

delivery to FRDA patient and YG8sR cells, which reported long-term overexpression of FXN 

mRNA and frataxin protein levels (Khonsari et al., 2016). Furthermore, injection of AAV-

FXN in a mouse model of FRDA with severe cardiomyopathy (caused by total cardiac 

knockout of frataxin), completely reverses the functional features of cardiomyopathy 

(Perdomini et al., 2014). In addition, mice treated with the AAV9-FXN display an increase in 

frataxin protein expression, reduced cardiac hypertrophy, and a prolonged lifespan when 

compared to typical FRDA mouse models (Gerard et al., 2014). These findings suggest that 

AAV-FXN gene therapy may be beneficial as effective therapy for FRDA. Therefore, FRDA 

can be highly responsive to cell and gene therapy, with multiple and potential cellular targets 

(Evans-Galea et al., 2014a).  
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1.4.7 Pharmacotherapies for cerebellar ataxia  
 
Increasing knowledge of cerebellar ataxia (CA) disease pathophysiology has led to the 

development of potential new treatments. In particular, neuromodulation therapies which aim 

to reinforce residual cerebellar function, could be appropriate when cerebellar function is 

impaired (Ilg et al., 2014, Feil et al., 2016). Currently, only treatments with aminopyridines 

[4-aminopyridine (4-AP), 3, 4-diaminopyridine (3, 4-DAP)] have been shown to compliment 

motor rehabilitation and significantly improve specific cerebellar symptoms (episodic ataxia 

type 2, downbeat nystagmus), as well as benefitting gait ataxia in patients (Strupp et al., 

2003, Schniepp et al., 2011, Schniepp et al., 2012, Ilg et al., 2014). Aminopyridines act as 

K+ channel blockers and increase the excitability of neurons, especially of cerebellar 

Purkinje cells (PCs) and other cerebellar cells (Etzion and Grossman, 2001). Additionally, 

improved motor behaviour has been observed in ataxin-1 mutant mice treated with 

aminopyridines, which may be mediated by a neuroprotective effect due to an enhanced 

electrical activity of PCs (Hourez et al., 2011). Other drugs which have displayed significant 

improvement in clinical ataxic scales include acetyl-DL-leucine and chlorzoxazone (Feil et 

al., 2013, Strupp et al., 2013). However, the efficacies of these drugs in CAs, especially in 

improving daily life activities, still needs to be confirmed (Mitoma and Manto, 2016). In 

addition to these therapeutic approaches in treating CAs symptoms, we have investigated the 

long-term efficacy of a new small molecule compound inhibitor of D-amino acid oxidase 

(DAO) in FRDA mice, which is discussed in detail in chapter 5.  
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1.5 FRDA Mouse models 
 
To get a further insight into the physiological role of frataxin, the disease aetiology and 

progression, and to validate new therapeutic strategies, several FRDA mouse models have 

been developed.  

1.5.1 Knock-out models 
 
To study the disease mechanism Cossee et al. (2000) developed a mouse model by 

inactivating the Fxn gene by exon 4 deletion. However, while heterozygous deletion 

appeared normal, homozygous inactivation leads to early embryonic lethality, signifying an 

essential role for frataxin throughout early development. These results suggest that the 

weaker phenotype in humans is due to remaining frataxin expression associated with the 

expansion mutations. Subsequently, through a gene-targeting approach, Puccio et al. (2001) 

developed two conditional knockout mouse models in parallel. These are the striated muscle 

frataxin-deficient line and a neuron/cardiac muscle frataxin-deficient line. Both models 

displayed important progressive pathophysiological and biochemical features of FRDA. 

 

1.5.2 Knock-in models 
 
With the aim to generate an animal model closely mimicking the human FRDA disease, 

Miranda et al. (2002) inserted 230 GAA repeats into the mouse Fxn intron 1 region by 

homologous recombination to develop an FRDA knock-in mouse model. GAA repeat knock-in 

mice were crossed with frataxin knockout mice to obtain knock-in, knockout (KIKO) mice 

expressing 25-36% of wild-type frataxin levels. Although a decreased frataxin expression 

was observed in these mouse models, they failed to develop FRDA associated pathology such 

as GAA repeat instability, motor coordination abnormality, mitochondrial iron accumulation and 

premature death (Miranda et al., 2002). 
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1.5.3 FRDA YAC transgenic mouse models 
 
Human Frataxin is functional and rescues the FXN knockout mouse  
 
In an initial attempt to overcome the embryonic lethality in a homozygous Fxn knockout 

mice and to generate an essential resource to study the human frataxin effect in a mouse  

cellular environment, Pook et al. (2001) developed a human WT FRDA yeast artificial 

chromosome (YAC) transgenic mouse line, designated Y47R. The FRDA YAC transgenes 

were crossbred twice with heterozygous Fxn exon 4 deletion knockout mice (Figure 1.18) 

(Cossee et al., 2000, Pook et al., 2001). The transgenic mice showed to contain the entire 

FXN gene within the YAC clone, and effectively substitute for the endogenous murine 

frataxin, preventing lethality and producing phenotypically normal offspring (Pook et al., 

2001). These findings confirmed that the generation of rescued mice through re-introduction 

of human frataxin onto a mouse null background was an effective method that paved the way 

for further FRDA therapeutic studies.  

 
Human FXN YAC transgenic mouse containing a GAA repeat  
 
Subsequently, Al-Mahdawi et al. (2004) made further advances by delivering a GAA 

expansion mutation, derived from a FRDA patient’s DNA, into this transgenic model, using a 

yeast pop-in/pop-out homologous recombination strategy (Cemal et al., 1999). Two lines of 

human FRDA YAC transgenic mice, designated YG8R and YG22R, were generated (Figure 

1.19). Both lines of transgenic mice contained 370kb of human YAC frataxin transgene 

sequence spanning the entire FXN gene with expanded GAA repeats. The main difference 

between the two lines is that YG8R mice contained two copies of GAA sequence with 190 

and 90 repeats, whereas YG22R mice carried only one copy of 190 GAA repeats (Table 1.1) 

(Al-Mahdawi et al., 2004). Interestingly, both FRDA transgenic mice showed 

intergenerational and age-related somatic instability, particularly in the cerebellum, as seen in 

FRDA patients.  
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Figure 1. 18 - The position of YAC 37FA12 with respect to FRDA locus at 9q13. Genes are 
represented as solid arrows, which indicate the direction of transcription, and the broken lines 
represent incomplete gene sequence. Individual exons are numbered and are shown below the relevant 
gene. STS markers used in the analysis are shown as downward pointing arrows (Pook et al., 2001). 
 
 

 

Figure 1. 19 - GAA repeat modification of YAC 37FA12. The position and orientation of the normal 
FRDA gene (9 GAA repeats) within the human YAC clone 37FA12 are indicated by the arrow. L and 
R indicate left and right arms of the YAC. A 700-GAA PCR product was amplified from FRDA 
patient DNA using primers S2F and S3R. The PCR product was first cloned into pCR2.1 (not shown) 
and then into YEp24, which contains a selectable URA3 gene, with resultant contraction to 230-GAA 
repeats. Pop-in/pop-out homologous recombination between Yep24 and YAC 37FA12 FRDA 
sequences produced the 190-GAA repeat YAC clone 1(38), which was subsequently used to generate 
the transgenic mice (Al-Mahdawi et al., 2004).  
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Recently, a colony of a new YAC transgenic FRDA mouse model, designated YG8sR, has 

been established from intergenerational expansion, containing approximately 200 GAA 

repeats (Table 1.1). YG8sR mice were shown to have a single copy of the FXN transgene at a 

single site. Behavioural deficits, together with a degree of glucose intolerance and insulin 

hypersensitivity were identified in YG8sR FRDA mice compared with control Y47R and 

C57BL/6 (WT) mice. Additionally, YG8sR mice show increased somatic GAA repeat 

instability in the brain and cerebellum, together with a significantly reduced expression of 

FXN and aconitase enzyme activity, as compared to YG8R and YG22R models. Furthermore, 

the presence of pathological vacuoles within neurons of the DRG in YG8sR mice was also 

identified (Anjomani Virmouni et al., 2015). Very recently, through further intergenerational 

expansion a new YAC transgenic mouse model have been established in our lab, designated 

YG8LR. YG8LR mice have shown to have a single copy of 440 GAA repeats, and have 

demonstrated a more severe disease phenotype (unpublished data). These novel GAA-repeat-

expansion YAC transgenic FRDA mice, which exhibit progressive FRDA-like pathology 

similar to humans, are a good model for the investigation of FRDA disease mechanisms and 

therapy. 

 

Table 1. 1 – Characterisation of the FRDA YAC transgenic mouse cell lines (Anjomani Virmouni et 
al., 2015) 

Transgenic 
Line 

YAC transgenic 
integrity 

FXN copy 
number 

Founder GAA 
repeat length 

Range of GAA 
repeats 

YG8R Complete 2 190+90 90 to 223 
YG22R Complete 1 190 190 to 235 
YG8sR Complete 1 200 120 to 240 
YG8LR Complete  1 440 440-450 
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1.6 Aims of the study 

FRDA is a progressive neurodegenerative disorder with no effective therapy. Recently, it has 

been reported that the abnormal GAA expansion plays a role in histone modification, such as 

histone hypermethylation and histone hypoacetylation, subjecting the FXN gene to 

heterochromatin silencing (Herman et al., 2006, Greene et al., 2007, Al-Mahdawi et al., 

2008, De Biase et al., 2009). Therefore, in efforts to reduce the repressive histone marks, in 

chapter 3 I investigated the efficacy and tolerability of two HMTase inhibitor compounds, 

BIX0194 (G9a-inhibitor) and GSK126 (EZH2-inhibitor), in FRDA human and mouse 

primary fibroblasts. 

 

Moreover, the amount of residual frataxin critically affects the severity and progression of the 

disease; and recent advances in FRDA research have revealed the presence of the UPP 

pathway that regulates frataxin stability and degradation (Rufini et al., 2011, 2015). 

Therefore, to restore physiological frataxin levels, in chapter 4 I investigated efficacy of 

various proteasome inhibitors (MG132, Bortezomib, Salinosporamide A and Ixazomib) using 

human primary fibroblasts.  

 

Furthermore, it has been reported that increased degradation of D-serine by DAO 

overexpression results in ataxia, possibly due to low NMDAR functioning and impaired 

neural signalling in the cerebellum (Hashimoto et al., 2005). Therefore, as an alternative 

FRDA therapeutic approach to target ataxia, in chapter 5 I carried out an in vivo investigation 

to test the efficacy of a newly developed DAO inhibitor, TAK-831, using the YG8sR FRDA 

YAC transgenic mouse model.  
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2.1 Solution/ reagents 

DMEM medium 

 1X DMEM medium, 10% fetal bovine serum (FBS), 2% Pen-Strep (5000U/ml 

penicillin and 5000mg/ml of streptomycin, Fisher Scientific).  

Western blot analysis  

 Running buffer: 25mM Tris, 190mM glycine, 3.5mM SDS   

 Sample buffer: 80mM Tris-HCl (pH 6.8), 12.5% glycerol, 10% SDS, 0.5% BPB, 1% 

BME  

 Transfer buffer: 25mM Tris, 190mM glycine, 10% methanol   

 PBS/T: 0.2% Tween-20 in PBS   

 5% milk PBS/T: 5% w/v milk, 0.2% Tween-20 in PBS   

General Solutions  

 Tail digestion buffer: 100mM Tris-HCl (pH 8), 5mM EDTA, 200mM NaCl, 0.2% 

SDS  

 RIPA buffer: 10mM Tris-HCL (pH 8), 5mM EDTA, 200mM NaCl, 0.2% SDS 

 Orange G loading dye (6x): 0.35% Orange G dye, 30% sucrose   

 Tris/EDTA (TE) buffer: 10mM Tris-HCl (pH 7.5), 1mM EDTA.  

 TBE buffer: 90mM Tris, 90mM Boric acid, 2mM EDTA   

 TAE buffer: 40mM Tris, 20mM Acetic acid, 1mM EDTA   

 PBS buffer: For 1L – 8.0g NaCl, 1.15g Na2HPO4, 0.2g KH2PO4, 0.2g KCL 

 DEPC- treated water: 1ml DEPC solution in 999ml sterilized water filtered then 

autoclaved twice 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2.2 Primers  

The primer sequences were either attained from previous studies or designed using Primer3 

software (Rozen and Skaletsky, 2000). All primers were purchased from Sigma-Aldrich.  

 
Table 2. 1 – FRDA YAC transgenic mice genotyping primers  

Primer name Sequence (5’ – 3’) Product length 
GAA repeat (Campuzano et al, 1996) 

GAA-F GGGATTGGTTGCCAGTGCTTAAAAGTTAG 457bp + 
3(GAA)n GAA-R GATCTAAGGACCATCATGGCCACACTTGCC 

 
FXN knockout (Cossee et al, 2000) 

WJ5 CTGTTTACCATGGCTGAGATCTC  
WN39 (WT specific) CCAAGGATATAACAGACACCATT 520bp 
WC76 (KO specific) CGCCTCCCCTACCCGGTAGAATTC 245bp 
 
 
Table 2. 2 - Quantification of FXN expression primers  

Primer name Sequence (5’ – 3’) Product length 
FXN expression (Human specific - Al-Mahdawi et al, 2008) 
FXNRT-F CAGAGGAAACGCTGGACTCT 172bp FXNRT-R AGCCAGATTTGCTTGTTTGGC 
 
FXN expression (Human and mouse - Pook et al, 2001) 
FXN-FRT I TTGAAGACCTTGCAGACAAG 121bp FXN-RRT II AGCCAGATTTGCTTGTTTGG 
 
GAPDH (Human - Al-Mahdawi et al, 2008) 
GAPDH-h-F GAAGGTGAAGGTCGGAGT 226bp GAPDH-h-R GAAGATGGTGATGGGATTTC 
 
Gapdh (Mouse - Al-Mahdawi et al, 2008) 
Gapdh-m-F ACCCAGAAGACTGTGGATGG 81bp Gapdh-m-R GGATGCAGGGATGATGTTCT 
 
HPRT (Human) 
HPRT-h-F GGTGAAAAGGACCCCACGA 90bp HPRT-h-R TCAAGGGCATATCCTACAACA 
 
Hprt (Mouse) 
Hprt-m-F ATGAAGGAGATGGGAGGCCA 80bp Hprt-m-R TCCAGCAGGTCAGCAAAGAA 
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Table 2. 3 - ChIP qPCR primers 

Primer name Sequence (5’ – 3’) Product length 
FXN – 5’UTR 
h-FXN-pro - F AAGCAGGCTCTCCATTTTTG 186bp h-FXN-pro - R CGAGAGTCCACATGCTGCT 
 

2.3 Cell lines  

Table 2. 4 - Details of the human primary fibroblasts 

ID Gender Age (Years) Ethnicity Number of 
GAA repeats 

GMO7492 Male 17 Caucasian Normal 
C4 ND ND Caucasian Normal 

Gmo3816 Female 36 Caucasian 330/380 
FA1 ND ND Caucasian 416/590 

ND = not determined 
 
Table 2. 5 - Details of the mouse primary fibroblasts 

ID Gender Average Age 
(Month) Genotype Number of 

GAA repeats 
Y47R Female 3.6 Transgenic Control 9 

YG8sR Male 11.3 FRDA YG8 small Rescue 220 
YG8LR Male 5.9 FRDA YG8 large Rescue 450 

 

2.4 General techniques 

Dilutions  

All dilutions or stock solutions were mostly prepared in deionised water (18.2 MΩ) unless 

otherwise specified. However, for RNA dilutions and polymerase chain reaction (PCR) 

master-mix preparations, DNase-RNase-free DEPC-treated sterile water was used.  

Centrifugations  

For sample spin down, different centrifugation instrument was used according to the sample 

size and temperature necessity. A room temperature standard benchtop microcentrifuge (16K, 

BioRad) and a 4oC refrigerated microcentrifuge (max speed 14K rpm, 5415R – Eppendorf) 

were used for small samples (≤ 1.5ml). Whereas, large volume samples (50ml) and plate 

centrifugation were carried out using a Centaur 2 centrifuge (Sanyo/MSE) and Legend T 

centrifuge (max speed 1000 rpm, Sorvall), respectively.  
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Incubations and pH regulation 

Generally, water baths (Grant) were used for lower temperature incubation (37-60°C), 

whereas for higher temperatures (60-100oC) a heating block (DB-2A, Techne) was used.  

All genomic DNA (gDNA) containing solutions were stored at 4°C for a short time in the 

fridge and then in the cold room for long-term. Complementary DNA (cDNA) samples and 

PCR products were stored in -20oC. All fresh tissues and RNA samples were snap frozen in 

liquid nitrogen and stored at -80°C. Reagent kits were stored according to the manufacturer 

recommendations at room temperature, 4oC or 20oC, or if needed in the dark. Antibodies 

were also stored according to the manufacturer recommendations, either at 4°C or -20°C. 

Frozen cells were stored overnight in a container with isopropanol at -80oC and then 

transferred to the liquid nitrogen tank for long term storage. The pH of solutions was detected 

using a pH meter (Delta 340, Mettler) and pH adjustments were made by adding either 

concentrated HCl or NaOH.  

 
Sterilisation  

All necessary materials and reagents used in tissue culture and molecular analysis were 

sterilised in an autoclave at 121°C, 100kPa for 20 minutes. 

 

2.4.1 Agarose gel electrophoresis  

Agarose gel electrophoresis was used to detect and separate gDNA, cDNA or RNA 

fragments according to their size. Usually, the gels were prepared in the range of 1-2% with 

agarose (UltraPure electrophoresis grade; Invitrogen), in 1X TBE/TAE buffer. Initially, the 

agarose mixture was boiled in 1X TBE using a standard microwave then left to cool down. 

Ethidium bromide was then added to a final concentration of 0.025μg/ml, and immediately 

the gel mixture was dispensed into the casting tray with the appropriate well comb attached. 

The gel was then left to be set for 20 minutes at RT. Small gels (50ml capacity) were run in 



CHAPTER II - MATERIALS AND METHODS 

48  

mini gel tanks (Flowgen Biosciences). For some samples, before loading onto the gel, 6X 

orange G dye was added to a final concentration of 1X and then were run at 60V for 30 

minutes. The gels were visualised and recorded using a UV transilluminator imaging system 

(Alpha Innotech). 

2.5 General Cell culture maintenance  

Similar cell culture procedures were carried out on both human and mouse fibroblast cell lines.  

The cells were routinely cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) 

which was filter sterilised through a 0.22μM pore filter unit (Nalgene) with 10% FBS, 100 

units/ml penicillin and streptomycin (Invitrogen) supplementation. This was carried out in tissue 

culture biological safety cabinet, and the medium mixture was stored at 4oC until required to use. 

Generally, cells were cultured in a T-25 flask (Fisher Scientific) at 37oC in a 95% humidified 

atmosphere of 5% CO2. All cell culture was carried out in a temperature-controlled laboratory.  

2.5.1 Regeneration of cell lines  

To avoid the risk of cell damage during ice crystal formation, frozen cells were rapidly 

thawed in the 37oC water bath when taken from liquid nitrogen storage. To regenerate, the 

cells were then immediately transferred a 15ml conical tube containing 10ml pre-warmed 

culture medium and was gently mixed by pipetting up and down. The cells were collected by 

centrifugation at 1500 rpm for 5 minutes, then transferred to a T-25 flask containing new 

culture medium. The cells were incubated at 37oC in a CO2 incubator reach a confluent level. 

2.5.2 Sub-culturing and passaging of cell lines  

Sub-culturing was carried out when cells reached the log phase growth and were about 80% 

confluent. DMEM culture medium, 1X phosphate-buffered saline (PBS; Invitrogen) and 

0.25% trypsin-EDTA (Invitrogen) solutions were pre-warmed at 37°C in water bath. The cell 

medium was removed by vacuum suction in a disinfected biological safety cabinet and were 
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washed gently with sterile PBS. 2ml 0.25% trypsin-EDTA was then used to detach the bound 

fibroblast cells for 5 minutes at 37°C, followed by gentle tapping, to bring them into 

complete suspension. 10ml DMEM culture medium was then added to the detached fibroblast 

cells to neutralise the trypsin/EDTA solution. The cells were then collected by centrifugation 

at 1500 rpm for 5 minutes. Depending on when the cells were required to use, cells were sub-

cultured in 10ml DMEM culture medium at a 1:2, 1:4 or 1:6 ratios in a T-25 or T-75 flasks. 

The cells were then incubated at 37oC, 5% CO2 and 95% humidity, and growth was observed 

daily.  

2.5.3 Cryopreservation of cell lines  

To prevent the risk of microbial contamination and conserve a stock of cell lines for future 

studies, 1-2 vials of each line were cryopreserved in liquid nitrogen. The adherent cells were 

detached with 0.25% trypsin-EDTA, followed by cell quantification and viability assessment 

by trypan blue exclusion test (as described in 2.5.4). Subsequently, cells were pelleted by 

centrifugation at 1500 rpm for 5 minutes. The supernatant was discarded, and cells were 

resuspension in 1ml DMEM culture medium containing 10% (v/v) DMSO and transferred to 

the cryo-vials (Sarstedt). A good standard to freeze is 0.5-1x106 cells/ml. To avoid ice 

crystallization damage to the cells, cells were initially frozen slowly in -80oC for up to 24hrs 

in a cooling box containing isopropanol (Sigma-Aldrich). Subsequently, cryo-vials were 

transferred to liquid nitrogen for long-term storage.  

2.5.4 Cell quantification and viability (trypan blue exclusion assay)  

Knowing the cell number in culture at a given stage is critical as it reports whether there are 

enough viable cells for an experimental procedure. Trypan Blue dye exclusion assay is based 

on the principle that live viable cells which have a bound membrane do not take up the dye, 

whereas dead non-viable cells do. In this analysis, cells were first trypsinised with 0.25% 
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trypsin-EDTA followed by centrifugation at 1500 rpm for 5 minutes and cell suspension in 

1ml 1X PBS buffer. 10μl of the cell suspension were gently mixed with an equal volume of 

0.4% (w/v) trypan blue (Sigma). Subsequently, a Countess® automated cell counter 

(Invitrogen) was used to count the cells, and the following formula determined their viability: 

 

2.5.5 Presto-Blue cell viability assay  

For this assay, 2.5x104 cells were seeded in a 24 well plate (CorningTM) for 24hrs before drug 

treatment, followed by Presto-Blue® test to monitor the viability of the cells. The Presto-

Blue® reagent (Invitrogen) contains a non-fluorescent blue cell-permeant compound. 

However, when added to cells, the Presto-Blue® reagent is modified by the reducing 

environment of the viable cells, and thus changes to a highly fluorescent red colour. This 

change can be detected using an absorbance measurement. Therefore, after specific drug 

treatment, cells were washed with PBS, then fresh pre-warmed culture medium was added 

with 1X Presto-Blue® solution from a 10X stock. The cells were then incubated for 3hrs at 

37oC, 5% CO2 and 95% humidity. The change in solution fluorescent was then measured 

using a spectrophotometer (2000c, Invitrogen) at a wavelength of 570nm with 600nm 

reference.  

2.5.6 Primary fibroblast drug treatment 

All drug compounds were prepared as stock solutions and were stored at -20°C as specified 

until required to use. For every drug treatment, equal numbers of control and FRDA 

fibroblasts were seeded according to the size of the flask and experimental analysis 
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(confluency level of 50-60%). Successively, the medium was discarded, and cells were 

washed once with 1X PBS. Appropriate concentrations of drugs were diluted in pre-warmed 

DMEM medium from the stock solution to make the final drug concentration required and 

then supplemented to cultured cells. This was followed by incubation at 37oC, 5% CO2 and 

90-95% humidity, for a specific duration (usually 72hr). At the end of the incubation period, 

the cells were washed once with PBS, followed by collection for various molecular analysis.  

2.6 DNA extraction: Phenol/ Chloroform method   

Generally, to extract good quality genomic DNA from mouse tissues, ear clips, and cell lines, 

phenol/chloroform method was carried out. Samples were collected in 1.5ml tubes 

(Eppendorf), followed by the addition of 400μl of tail digestion buffer and 10μl of proteinase 

K (50mg/ml). After a brief vortex the samples were incubated overnight at 55oC. The 

digested samples were then vortexed, and 400μl of phenol (equilibrated with Tris-HCl pH 

8.0) was added. Samples were mixed well by vortex twice for 15 seconds followed by 

centrifuged at 14K rpm for 5 minutes at RT. 380μl of the supernatant was then removed to a 

fresh tube containing 380μl of chloroform/isoamyl alcohol (24:1, v/v). Samples were 

vortexed briefly and centrifuged again at 14K rpm for 5 minutes at RT. From the resulting 

supernatant, 350μl was transferred to a fresh tube followed by the addition of 35μl of 3M Na-

acetate (pH 5.2) and 700μl of absolute ethanol. The samples were mixed by inverting the tube 

several times and were subsequently incubated at -80oC for 2hrs.  This was followed by 

centrifugation at 14K rpm for 30 minutes at 4oC to collect the precipitated DNA pellet. The 

ethanol was drained off, and the pellet washed with 1ml of 70% ethanol. The samples were 

centrifuged again at 14K rpm for 20 minutes at 4oC. The ethanol was cautiously drained off, 

and the DNA pellet was air dried for 10 minutes. The DNA pellet was resuspended in 50μl of 

TE buffer and stored at 4oC. 



CHAPTER II - MATERIALS AND METHODS 

52  

2.7 Total RNA extraction - Trizol® Method  

Total RNA was isolated from the fibroblast cells or mouse tissues using the Trizol® reagent 

(Invitrogen) following the manufacturer’s instruction. The cultured cells (~1x 106) were 

washed once with PBS and collected by centrifugation at 1.5K rpm for 5 minutes after 

trypsinisation. The cell pellet was loosened by gentle flicking and resuspended in 1ml 

Trizol®. For RNA extractions from tissues (20-30mg), 400μl of Trizol® was added initially, 

and the tissues were homogenized with homogeniser sticks, followed by the addition of the 

remaining 600μl of Trizol®. The samples were then incubated for 10 minutes at RT. 200μl of 

chloroform (Sigma-Aldrich) per 1ml of Trizol® was added to each sample, followed by 

vigorous vortexing of samples for 15 seconds and incubation for further 15 minutes at RT 

and then centrifuged at 14K rpm for 15 minutes at 4oC. The chloroform affected the Trizol® 

to separate into a colourless aqueous phase and an organic phase. The upper aqueous phase 

(~500μl) was then transferred to a new labelled tube followed by the addition of 500μl of 

isopropanol alcohol (Sigma-Aldrich) to precipitate the RNA. Samples were incubated for 10 

minutes at RT followed by centrifugation at 14K for 15 minutes at 4oC. The supernatant was 

carefully removed and the RNA pellet was washed with 1ml of 75% ethanol, after a brief 

vortex the samples were centrifuged again at 14K rpm for 8 minutes at 4oC. The supernatant 

was removed carefully and the RNA pellet was air dried for 5-10 minutes at RT and then 

resuspended in 20-50μl of RNase free water. The total RNA samples were stored at -80oC if 

not used immediately.   
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2.8 RNA/DNA Quantity and Purity Check  

A NanoDropTM 2000c Spectrophotometer (NanoDrop, Thermo Scientific, UK) was used to 

determine the RNA/DNA concentration and purity. The absorption (A) of Ultra Violet light 

(UV-light) was measured at 260nm, and the quality was determined by A260/280 ratio using 1μl 

of the RNA/DNA samples. Additionally, the total RNA integrity was assessed on a 1% 

agarose gel electrophoresis by examining the ribosomal RNA (rRNA) bands under a UV 

transilluminator imaging system (Figure 2.1).  

 

Figure 2. 1 - Gel electrophoresis of RNA samples using 1% agarose gel. The upper ribosomalband 
(28S) should be about twice the intensity of the lower band (18S) indicating intact RNA. For size 
evaluation a 1kb+ ladder (Invitrogen) was used.  
 

2.9 DNase I treatment of RNA  

To eliminate genomic DNA contamination during RNA purification procedures, DNase I 

treatment was carried out (DNase I, Amp Grade, Invitrogen). 1μg of total RNA was added to 

the reaction mixture consisting of 1μl 10X DNase I reaction buffer, 1μl of DNase I Amp 

Grade (1U/μl) and nuclease-free water to 10μl. The samples were incubated for 15 minutes at 

RT. 1μl of 25mM EDTA was added to inactivate the DNase I reaction mixture and heated for 

10 minutes at 65oC. The DNase I treated RNA samples were used immediately or store at -

80oC. 
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2.10 Complementary DNA (cDNA) synthesis  

cDNA synthesis – using QuantiTect reverse transcription kit (Qiagen)  
 
All reactions were carried out on ice. In an RNase free Eppendorf tube 1μg RNA was added, 

followed by 2μl 7X gDNA wipeout buffer, followed by the addition of RNase free water to 

make a total volume of 14μl. The mixture was then incubated for 2 minutes at 42oC, followed 

by the addition of 1μl Quantiscript reverse transcriptase, 4μl of 5X Quantiscript RT buffer 

and 1μl of RT primer mix. The samples were incubated at 42oC for 15 minutes, followed by 

95oC for 3 minutes to terminate the reaction and inactivate Quantiscript reverse transcription. 

The samples were then stored at -20oC, if not used immediately.  

 

cDNA synthesis – using cloned AMV first-strand cDNA synthesis kit (Invitrogen) 

All reactions were carried out on ice. In an RNase free Eppendorf tube 1μg RNA was added, 

followed by the addition of 7μl of primer component master-mix (4μl of DEPC-water, 2μl 

10mM dNTP mix and 1μl Oligo(dT)20 primer). The RNA and primer were denatured by 

incubating at 65oC for 5 minutes, followed by immediately placing the samples on ice. To 

each sample the following reagents were then added in order: 4μl 5X cDNA synthesis buffer, 

1μl 0.1M DTT, 1μl cloned AMV RT (15U/μl). The 20μl reaction mixture was gently mixed 

by flicking the tube and briefly centrifuged to bring all the contents to the bottom. To initiate 

the reverse transcription process, samples were incubated at 55oC for 60 minutes, followed by 

reaction terminations at 85oC for 5 minutes. The cDNA samples were either used 

immediately or stored at -20oC.  
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2.11 Conventional Reverse Transcription PCR   

Various PCR amplification systems were utilised on DNA samples for mice genotyping, and 

to assess the cDNA and immunoprecipitated DNA quality.  

Fxn-KO and – FXN-GAA PCR 

A GAA repeat sequence and KO PCR amplification were carried out on mouse gDNA 

samples to detect the genotype. The Fxn-KO PCR was performed to identify the wild-type or 

knockout Fxn alleles, whereas FXN-GAA PCR identified the size of the GAA repeat. Using 

specific primers (primer sequence - Table 2.2), 1µl of template gDNA was added  to the 

appropriate reactions mix prepared in a PCR tube  (Fisher Scientific) as follows:  

PCR MIX 
KO GAA 

-12.5µl of 2X Master-mix (MgCl2, Taq DNA 

polymerase, dNTPs; Kapa Biosystem) 

- 0.5µl of 50µM WJ5 primer 

- 0.5µl of 50µM WN39 primer 

- 0.1µl of 50µM WC76 primer 

- Nuclease-free water to 25µl 

-12.5µl of 2X master-mix (MgCl2, Taq DNA 

polymerase, dNTPs; Qiagen) 

- 5µl of Q-buffer 

- 1µl of 50µl GAA forward primer 

- 1µl of 50µl GAA reverse  primer 

- Nuclease-free water to 25µl 

 

For Fxn-KO PCR amplification four controls were used: Wild-type, heterozygous, rescue and 

blank (dH2O). Whereas for FXN-GAA PCR amplification three controls were used: positive, 

negative and blank (dH2O). The samples were mixed, and the reaction was carried out in a 

PTC-225 Pelter Thermal Cycler (MJ Research) using the appropriate program as shown in 

Table 2.6. 
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Table 2. 6 - GAA and KO PCR programme 

 
FXN PCR 

Before performing FXN gene expression quantification, PCR amplification procedure was 

carried out to determine the quality of cDNA using FXN-FRT I and FXN-RRT II primers 

(primer sequence - Table 2.2). 1μl of cDNA sample was added to the following reagent mix: 

- 12.5μl of 2X master-mix (MgCl2, Taq DNA polymerase and dNTPs; Kapa 
Biosystem) 

- 1μl of 5μM FXN-FRT I primer 
- 1μl of 5μM FXN-RRT II primer  
- Nuclease-free water to 25µl 

Three controls were used: a positive, DNase treated total RNA, and blank (dH2O). The 

samples were mixed, and the reaction was carried out using the programme shown in Table 

2.7.  

Table 2. 7 - FXN PCR programme  

Steps Temperature Duration Cycles 
GAA PCR program 
Denaturation 94oC 2 minutes 1 
Denaturation 94oC 10 sec 

10 Annealing 60oC 30 sec 
Elongation 68oC 45 sec 
Denaturation 94oC 10 sec 

20 Annealing 60oC 30 sec 
Elongation 68oC 1 min, with 20 sec increment 
Extension 68oC 10 minutes 1 

KO PCR program 
Denaturation 94oC 1 minute 1 
Denaturation 94oC 20 sec 

30 Annealing 54oC 20 sec 
Elongation 72oC 20 sec 
Extension 72oC 10 minutes 1 

Steps Temperature Duration Cycles 
FXN PCR program 
Denaturation 94oC 1 minute 1 
Denaturation 94oC 30 sec 

30 Annealing 52oC 30 sec 
Elongation 72oC 1 min 
Extension 72oC 10 minutes 1 
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FXN Pro-5’UTR ChIP PCR 

FXN Pro-5’UTR PCR was carried out to validate and assess the quality of the 

immunoprecipitation DNA obtained during ChIP analysis before the quantitative assessment. 

2μl of immunoprecipitated DNA was added in the following reaction mix: 

- 12.5μl of 2X master-mix (MgCl2, Taq DNA polymerase and dNTPs; Kapa 
Biosystem) 

- 1μl of 5μM FXN-pro forward primer 
- 1μl of 5μM FXN-pro reverse primer  
- Nuclease-free water to 25µl 

For a control, a negative blank (dH2O) was used. The samples were mixed, and the reaction 

was carried out using the following programme, Table 2.8.  

 
Table 2. 8 – Pro-5’UTR ChIP PCR programme  

 

For the KO, FXN and ChIP DNA PCR reactions, to analyse the results, 10µl of PCR product 

was run in a 2% agarose gel alongside the controls and 1kb+ DNA size marker (Invitrogen) at 

70V for around 30 minutes. For the GAA PCR, the products were mixed with and 2µl of 6X 

orange G dye and were run in a 1% agarose gel instead. The correct amplicons in each 

reaction were then visualised in a UV gel documentation system.  

2.12 Quantitative Real-Time RT-PCR (qRT-PCR)  

Quantitative real-time RT-PCR (qRT-PCR) was performed using 2X SYBR® Green PCR 

master-mix (Applied Biosystems), to quantify the expression of the gene of interest, in a real-

time PCR machine (QuantStudio™ 6 Flex Real-Time PCR System; Applied Biosystems). 

Steps Temperature Duration Cycles 
Pro-5UTR’ ChIP PCR program 
Denaturation 94oC 1 minute 1 
Denaturation 94oC 30 sec 

35 Annealing 60oC 30 sec 
Elongation 72oC 3 min 
Extension 72oC 10 minutes 1 

Primer sequence - Table 2.3 
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SYBR® Green dye functions by binding to cDNA as it forms and producing a fluorescent 

signal which is detected by the spectrophotometer continuously. This signal intensity is 

proportional to the level of cDNA present. Thus, in each step of the PCR reaction, the 

intensity increases as the amount of product increases. The qRT-PCR reaction was performed 

in triplicates in a 96-well plate (MicroAmp, Applied Biosystems). Each reaction well 

contained a final volume of 10μl containing the following: 2.5μl of 5X diluted cDNA 

products, 0.5μl of 50μM optimised respective forward and reverse primers (Table 2.2), 5μl of 

2X SYBR Green master-mix and 2.5μl of nuclease-free water. Throughout the reaction 

preparation, the samples were exposed to low light. Target and endogenous master-mixes 

were prepared separately but added to the same plate. The diluted 5X cDNA were added last 

to the reaction plate. The plate was then sealed with real-time plate sealer (MicroAmp, 

Applied Biosystems) and centrifuged, for 30 seconds at 1000 rpm at 4oC. The real-time PCR 

reaction was run at various temperatures for different cycles as shown in Figure 2.2. 

Following qRT-PCR, a dissociation curve run was performed by increasing the temperature 

gradually from 60oC to 95oC. Relative quantification values were determined by the 2-ΔΔCt 

method by QuantStudio™ Real-Time PCR Software (Applied Biosystems). 

 

Figure 2. 2 - Schematic illustration of the real time PCR programme. 
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2.13 Chromatin Immunoprecipitation (ChIP) analysis 

This procedure was performed using the Chromatrap® spin column ChIP kit for qPCR 

(Chromatrap). Around 5 million cells were washed with pre-warm PBS, followed by 10 

minutes incubation at RT with 1% formaldehyde, prepared serum-free medium. The 

DNA/protein complex cross-linking was stopped by adding glycine solution at a final 

concentration of 0.65M and incubated for 5 minutes at RT. Glycine solution was then 

removed, and the cells were collected by scraping in cold PBS containing protease inhibitor 

cocktail (PIC, provided in the Chromatrap® kit) with 1:1000 dilution factor, followed by 

centrifugation at 3500xg for 5 minutes at 4ºC. The cell pellet was resuspended in 400µl 

hypotonic buffer and incubated on ice for 10 minutes, followed by centrifugation at 5000xg 

for 5 minutes at 4°C to collect the nuclei. The cell pellet was then resuspended in 300µl lysis 

buffer and then incubated at 4°C for 10 minutes. To achieve the desired lengths of <500bp 

DNA fragments, samples were sonicated for 10 cycles of 30s on/ 30s off program using 

Bioruptor® Pico sonicator (Diagenode), followed by centrifugation for 10 minutes at 

maximum speed and 4°C.  The supernatant was collected, and 1μl of PIC was added to it. 

Before sample immunoprecipitation, the shearing quality of DNA was assessed. 5μl of 1 M 

NaHCO3 and 5μl of 5 M NaCl was added to each 25μl sheared chromatin aliquot and was 

made up to 50μl with nuclease-free water. The samples were mixed and then incubated for 

2hrs at 65°C to reverse the cross-linking. After a brief centrifuge, 1μl of the Proteinase K 

solution was then added, mixed thoroughly and incubated for 1hr at 37°C. Subsequently, 2μl 

Proteinase K stop solution was added, and DNA concentration was quantified by Nanodrop. 

To assess the DNA fragment size, 10μl of the sheared chromatin (mixed with 2µl 6X orange 

loading dye) was run on 1.5% agarose gel. As a control, the respective 2X diluted un-sheared 

DNA was used (Figure 2.3). The DNA was either immediately submitted to 

immunoprecipitation (IP) or stored in -80oC. 
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Figure 2. 3 - Gel electrophoresis to assess the quality of the sonication DNA using 1.5% agarose gel. 
Lane 1,3,5 and 7 represent the unsheared DNA-chromatin samples. Lane 2,4,6 and 8 show the 
successfully sheared DNA-chromatin fragment less than 500bp in size.    
 

Immunoprecipitation (IP) 

The sheared chromatin was centrifuged at max speed and 4ºC for 10 minutes. The clear 

supernatant was subsequently used for IP slurry mixture containing 2:1 – antibody: chromatin 

ratio and were prepared as follows: 

- nuclease free dH2O to 40μl 
- 5μl of wash buffer 1 
- 1μl of PIC 
- 2μg of sheared chromatin  
- 4μg ChIP certified antibody specific to the protein of interest (Table 2.9) 

 

Each sample had a negative control (-Ab), where 2μg of immunoglobulin G (IgG; Upstate) 

was used. Additionally, for input control, 2μg of sheared chromatin was made up to 20μl with 

nuclease-free dH2O and stored in -80oC for later use.  The IP slurries were gently mixed and 

were kept on ice while the spin columns were being activated (add 600μl of column 

conditioning buffer to the columns 3 times and allow flow through under gravity). 
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Table 2. 9 - List of antibodies used in ChIP analysis 

Antibody Company of purchase 
Anti-H3K9ac rabbit polyclonal Merck Millipore (06-942) 

Anti-H3K9me3 rabbit polyclonal Merck Millipore (07-442) 
Anti-H3K27me3 rabbit polyclonal Merck Millipore (07-449) 
 

The slurries were transferred to spin columns and incubate for 1hr at 4oC on a rocking 

platform with gentle agitation. This was followed by washing the columns 5X with 600μl of 

wash buffer 1 and centrifugation at 4000xg for 30 seconds at RT to discard the buffer each 

time. This was repeated for wash buffer 2 and 3.  The columns were then dry centrifuged at 

top speed for 30 seconds at RT. 50μl of elution buffer was added to the columns and 

incubated at RT for 15 minutes. Subsequently, the immunoprecipitated chromatin was eluted 

by centrifuging the columns at top speed for 30 seconds.  

 

Reverse cross-linking 

To release the DNA from protein-bound complexes, the chromatin samples were first reverse 

cross-linked. The Proteins were degraded by proteinase K digestion before DNA purification.  

 To each 50μl eluted chromatin the following were added: 

 50μl 0.1M NaOH 
 5μl 1M NaHCO3 

 
Additionally, the 20μl input control was reintroduced, and the following were added: 

 40μl elution buffer 
 40μl 0.1M NaOH 
 5μl 1M NaHCO3  

 
The content was mixed thoroughly and incubate for 2hrs at 65ºC. 1μl of Proteinase K (0.5μg 

/μl) was then added to each IP and input samples and incubated for 1hr at 37ºC.  2μl of 

Proteinase K stop solution was added to all tubes, followed by a brief vortex and a short spin. 
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DNA clean up using phenol/chloroform with glycogen 

The total volume of IP and input samples were brought up to 300μl with clean TE buffer. 

300μl phenol was added then centrifuged at max speed for 5 minutes at RT. The supernatant 

was transferred to a new tube and mixed with 270μl chloroform: isoamyl (24:1), followed by 

centrifugation at max speed for 5 minutes at RT. The supernatant was transferred again to a 

new tube containing 2.5μl glycogen (20mg/ml), 30μl 3M NaAc (pH 5.2) and 600μl 100% 

ethanol. The tubes were gently agitated and incubated overnight at -80oC. Subsequently, the 

samples were centrifuged at max speed for 30 minutes at 4oC. The pellet obtained was 

washed in 1ml 70% ethanol, followed by a quick shake and centrifugation at max speed for 5 

minutes at RT. The supernatant was carefully discarded, and the pellet was air dried. The 

pellet was then resuspended in 25μl of TE buffer. The samples were stored at 4oC for 24hrs, 

then moved to -20oC storage if not needed immediately. 

ChIP qPCR 

Relative qPCR amplification was carried out to validate the ChIP samples with SYBR Green 

(Applied Biosystems) in a QuantStudio™ 6 Flex Real-Time PCR instrument (Applied 

Biosystems), as previously described (section 2.12). Reactions were carried out in triplicates 

in a final volume of 10μl containing 12.5pmol of each of the respective forward and reverse 

primers (Table 2.3). Relative quantification values were normalised to input and minus 

antibody samples and finally determined in relation to a control region.  

2.14 Nuclear Extraction  

This procedure was carried out on drug-treated cells using the EpiQuik™ nuclear extraction 

kit (EpiGenTek). All reactions were carried out on ice. Cells were collected as a pellet and 

were resuspended in 100μl of 1X pre-extraction buffer per million cells, followed by 

incubation on ice for 10 minutes. The samples were then vigorously vortexed for 10 seconds 

and centrifuged for 1 minute at 12K rpm at 4oC. The cytoplasmic supernatant was carefully 
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removed, and to the nuclear pellet, two volumes of extraction buffer containing PIC (1:1000 

diluted) was added. The extracts were incubated on ice for 15 minutes with vigorous 

vortexing every 3 minutes, followed by centrifugation for 10 minutes at 14k rpm and 4°C. 

The supernatant obtained was then transferred carefully to a new tube. The protein 

concentration of the nuclear extract was subsequently measured using BCA protein 

quantification assay as described below (section 2.18).  

2.15 Histone Methyltransferase Activity Assay  

This analysis was carried out using the EpiQuik™ histone methyltransferase activity assay kit 

(EpiGenTek). This assay is based on the principle that the HMTase enzyme G9a and EZH2, 

transfers a methyl group from S-Adenosyl methionine (Adomet) to lysine 9 and 27 of histone 

H3, respectively. The level of methylated histone H3K9 / H3K27 is then recognised with a 

high-affinity antibody, which is directly proportional to enzyme activity. This was quantified 

through horseradish peroxidase (HRP) conjugated secondary antibody-colour development 

system. Using strip wells, which captures the methylated histone substrates, the reaction mix 

for HMTase activity were prepared alongside positive and negative blank controls, as shown 

in Table 2.10. 

Table 2. 10 - HMTase activity assay reaction mix 

HMT activity Positive Control Blank 
- 24μl of 1X Histone 

Assay Buffer 
- 1.5μl of Adomet 

solution 
- 2μl of Biotinylated 

Substrate 
- 3μ of Nuclear Extract 

- 26μl of 1X Histone 
Assay Buffer 

- 1.5μl of Adomet solution 
- 2μl of Biotinylated 

Substrate 
- 1μl of Control Enzyme 

- 27μl of 1X Histone 
Assay Buffer 

- 1.5μl of Adomet 
Solution 

- 2μl of Biotinylated 
Substrate 

 
 
The strip wells were mixed and covered with Parafilm M (Sigma Aldrich) and incubated at 

37°C for 60-90 minutes. 150μl of 1X histone assay buffer was then used to wash the strip 

wells three times. 50μl of 1:100 diluted capture antibody (specific to either G9a or EZH2) 
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was then added, followed by incubation at RT for 1hr on an orbital shaker (50-100 rpm). 

Subsequently, the strip wells were washed 5X with 150μl of 1X histone assay buffer, 

followed by the addition of 50μl of 1:1000 diluted detection antibody and incubation at RT 

for 30 minutes. The detection antibody was washed away 5X with 150μl of 1X wash buffer. 

100μl of developing solution was then added and incubated at room temperature for 2-10 

minutes away from light. Subsequently, 50μl of stop solution was added to each well to stop 

enzyme reaction, and the absorption from the colour change was monitored within 2-15 

minutes at 450nm. The enzymatic activity of the samples was calculated using the following 

formula:  

 
 
 

2.16 Trypsin-like and chymotrypsin-like cell-based assay  

The trypsin-like and the chymotrypsin-like cell-based assay was carried out using the 

Proteasome-GloTM Cell-based kits (Promega). This test provides a specific luminogenic 

proteasome substrates in buffers, which is cleaved by the proteasomes when added to cells in 

culture, releasing luciferin. Luciferase then consumes luciferin, and a rapid luminescent 

signal is generated that correlates directly to the trypsin-like or chymotrypsin-like protease 

activity. This assay was highly sensitive to the presence of minute quantities of trypsin or 

chymotrypsin present in the cell suspension used for plating. Therefore, before cells were 

counted, the suspended cells were washed 3X in complete medium. Subsequently, the 

suspended cells were counted by trypan-blue exclusion assay as described above (section 

2.5.4). In a white-walled 96-well plate (Corning), 5000 fibroblast cells were seeded with 
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100µl culture medium, followed by incubation for 24hrs at 37oC, 5% CO2 and 95% 

humidity, before drug treatment. The plate was then equilibrated at RT before performing the 

Proteasome-GloTM assay. For reagent preparation, 10ml of Proteasome-GloTM cell-based 

buffer was added to luciferin detection reagent. For the chymotrypsin-like assay, only 

Proteasome-GloTM substrate was added, whereas for trypsin-like assay inhibitor 1 and 

inhibitor mix 2 was also added. After a gentle mix, the cell-based reagents were incubated for 

30 minutes at RT. Subsequently, 100µl of either the trypsin-like or chymotrypsin-like 

prepared Proteasome-GloTM cell-based reagent was added to each cell sample well. The 

content was mixed at 700 rpm on a shaker for 2 minutes, followed by incubation at RT for a 

minimum of 10 minutes. The luminescence of the samples, which determined the trypsin-like 

or chymotrypsin-like protease activity, was then measured using GlomaxTM 96-well 

microplate luminometer (Promega). 

2.17 Preparation of cell lysates  

To extract protein, cell pellets containing just over 1x 106 cells were homogenized in 192μl of 

Radio-Immunoprecipitation Assay (RIPA) buffer (Sigma-Aldrich) and 8μl of 25X Roche 

protease inhibitor (Sigma Aldrich) and centrifuged at 4oC for 30 minutes at a max speed of 

14K rcf. Subsequently, the supernatant consisting of total protein was separated from the 

pellet (cellular debris) and transferred to a clean Eppendorf tube. The protein concentration 

was determined using the BCA protein assay (as described below), followed by the addition 

of Dithiothreitol (DTT) at the final concentration of 1mM. If not used immediately, the 

samples were stored at -80 ̊C. 
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2.18 Determination of protein concentrations using BCA protein assay  

Protein samples were quantified using a Pierce®
 
BCA protein assay kit (Thermo Scientific) 

following the manufacturer's instructions. The BCA protein assay is based on the reduction of 

Cu2+ to Cu1+ by protein in an alkaline medium with highly sensitive and selective 

colorimetric detection of the cuprous cation (Cu1+) using bicinchoninic acid (BCA). To 

determine the protein concentration, BCA protein assay reagents A and B were mixed in a 

ratio of 50:1, respectively. Additionally, a set of protein standards (with known protein 

concentration) was prepared by a serial dilution of bovine serum albumin (BSA) 

(0.025mg/ml-1.5mg/ml, Table 2.11) to construct a standard curve. 200μl of the BCA solution 

(A+B) were added to individual wells of a 96-well microplate. 10μl of protein lysates (diluted 

1:10 with homogenising buffer) and 10μl of the BSA standards were then added to respective 

wells, followed by gentle mix. The plate was incubated at 37oC for 30 minutes and then 

allowed to cool at RT. The protein concentration was measured at 562nm absorption using a 

plate reader (Biohit HealthCare).  

Table 2. 11 - BSA standards preparation for BCA analysis 

 
 
 
 
 

Tube dH2O Volume BSA Volume Final Volume Final BSA 
concentration 

A 10µl 30µl 20µl 1500 µg/ml 
B 20µl 20µl 20µl 1000 µg/ml 
C 20µl 20µl of tube A 40µl 750 µg/ml 
D 20µl 20µl of tube B 20µl 500 µg/ml 
E 20µl 20µl of tube D 20µl 250 µg/ml 
F 20µl 20µl of tube E 30µl 125 µg/ml 
G 40µl 10µl of tube F 50µl 25 µg/ml 
H 40µl - 40µl 0 µg/ml 
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2.19 Western Blotting  

Polyacrylamide gel electrophoresis (PAGE) 

A 12% resolving polyacrylamide gel (37:5:1 acrylamide (Bio-Rad), 0.5mM Tris (pH 8.8), 

0.1% SDS) was prepared in a glass flask, followed by the addition of 0.05% TEMED (Fisher 

Scientific) to initiate polymerisation. The resolving gel was then gently poured between the 

gel plates (set up on the Bio-Rad mini gel casting stand) up to 1cm below the comb. Water 

saturated butanol was immediately added over the gel mix to prevent air contact, and the gel 

was left to polymerise for 30-40 minutes. The butanol was then rinsed off with dH2O, and a 

4% stacking polyacrylamide gel (37:5:1 acrylamide, 0.125mM Tris (pH 6.8), 0.1% SDS) was 

then prepared, followed by the addition of 0.1% TEMED. The stacking gel was then gently 

poured on top of the set resolving gel, and the well comb was fitted carefully. The gel was 

allowed another 45 minutes to polymerise. The casting gel was then placed inside the PAGE 

tank (Mini-PROTEAN® Tetra Cell (Bio-Rad) and approximately 1L of 1X running buffer 

were poured into the two compartments to establish an electric current through the gel. The 

comb was then removed and the wells were flushed with running buffer, using a syringe and 

needle. Before loading the samples, the protein amount (Table 2.12) was prepared in 1X 

working sample buffer to a final volume of 20μl and heated at 95°C for 5 minutes to fully 

denature and reduce the proteins. Subsequently, the protein samples and a 10μl Low 

molecular weight (LMW) protein marker (Precision Plus ProteinTM standard – Bio-Rad) were 

carefully loaded into the wells, and the SDS-PAGE gels were run at 120V for 2-3hrs. 

 Table 2. 12 -  List of protein amounts used for the appropriate antibody for western blotting 
 

Protein detection Protein amount used 
Frataxin 100μg 

c-Jun 20μg 
p27 20μg 

PSMß5 20μg 
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Protein transfer to membrane  

After electrophoresis, proteins transfer was carried out by either a wet-system (Mini Trans-

Blot®; Bio-Rad) or a semi-dry system (Trans-Blot Turbo System; Bio-Rad).  

Wet-transfer system 

After the SDS-PAGE was completed, the stacking gel was removed from the resolving gel 

and was equilibrated in 1X transfer buffer for 5 minutes. One piece of PVDF membrane 

(Amersham Biosciences) and four pieces of filter papers (3MM Whatman; Fisher scientific) 

were cut according to the gel size. The top corner of the PVDF membrane was marked with a 

pencil to distinguish the right side of the membrane. The PVDF membrane was then activated 

by equilibrating in 1X transfer buffer for 20 minutes. Additionally, both the filter papers and 

the blotting sponges were soaked in 1X transfer buffer for 5 minutes. The blotting system 

was assembled in 1X transfer buffer, as shown in Figure 2.4. At every step of layering, a 

roller was used to remove any air bubbles. The blotting cassette was placed in the transfer 

tank in a vertical position orientation, filled with ice-cold 1X transfer buffer and an additional 

ice-block. Thus the negatively charged molecules would migrate towards the grey anode 

efficiently, transferring the protein from the gel into the PVDF membrane. The transfer was 

carried out at constant 400mA, and 100-110V for 1hr 10 minutes.  

Semi-dry transfer system 

The same procedure was applied for semi-dry transfer system in preparing the filter papers 

and membrane, but very little transfer buffer is required. The transfer sandwich was 

assembled on the anode cassette base (Figure 2.4), by placing two pieces of wet filter paper, 

and then the PVDF membrane, the gel, and finally the remainder of the wet filter papers on 

top. The cathode cassette top was positioned on the sandwich and locked. The cassette was 

placed in the transfer system, and a transfer was carried out at constant 2.5A, 25V for 20 

minutes.  
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Figure 2. 4 - Schematic illustration of the blotting sandwich transfer cassette assembly for the two 
electro-transfer techniques: wet transfer and semi-dry transfer. 
 

Gel and membrane staining  

At the end of the transfer, the gel and the membrane was briefly washed in dH2O. To assess 

and visualise the residual proteins left on the gel, it was stained with Coomassie blue reagent 

(Instant Blue; Expedeon) on a shaker for 30 minutes and then washed with dH2O. The stained 

gel was placed on a piece of 3MM Whatman paper, covered with cling film and dried on a 

gel dryer (5040, Fisherbrand) under vacuum and ramp temperature of 80°C for 2hr. 

Additionally, to understand the effectiveness of the protein transfer, the membrane was 

stained with 1X Ponceau solution (Sigma Aldrich) on a shaker for 10 minutes. To de-stain 

the membrane after protein transfer assessment, membranes were washed twice with 5% 

acetic acid and once with dH2O for 10 minutes.  
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Hybridization of membrane with antibodies  

The PVDF membrane was briefly washed in PBS/T and then blocked in 5% w/v milk in 

PBS/T for 30 minutes at RT with gentle agitation. The membranes were then incubated with 

the corresponding primary antibodies (Table 2.13), at 4°C overnight with gentle agitation. 

The following day, unbound primary antibody was washed 3 times in PBS/T buffer for 30 

minutes, at RT. Secondary antibody, specific to the primary antibody and conjugated with 

HRP (Dako), was diluted by 1:2000 in 5% milk or BSA and added to the membrane. The 

membrane was then incubated at RT for 30 minutes with gentle agitation. The membrane was 

washed again 3 times in PBS/T buffer for 30 minutes. 

Table 2. 13 -  Primary antibodies with their dilution factor and observed molecular weight sizes 
Protein 
name Antibody Observed 

MW (kDa) Antibody dilution Source 

Frataxin Mouse anti-frataxin 
monoclonal Ab 

14m, 18i, 
21-26p 1 in 100 in 5 % BSA Abcam 

(ab110328) 

p27 Rabbit anti-p27 KIP1 
polyclonal Ab 22-25 1 in 200 in 5% non-fat milk Abcam 

(ab7961) 

c-Jun Rabbit anti-c-Jun 
monoclonal Ab 40 I in 2000 in 5% non-fat milk Abcam 

(ab32137) 

PSMß5 Rabbit anti-PSMB5 
Polyclonal Ab 19 I in 100 in 5% non-fat milk Sigma 

(HPA049618) 

Actin Rabbit anti-actin 
polyclonal Ab 42 1 in 2000 in 5% BSA/ non-

fat milk 
Sigma 

(SAB4301137) 

Tubulin Rat anti-tubulin 
monoclonal Ab 55 1 in 10,000 in 5% BSA/ 

non-fat milk 
Abcam 

(ab6160) 
 
 
Chemiluminescent visualisation and X-ray film processing 

A SuperSignal West-Pico (Perbio) or a ClarityTM Western (Bio-Rad) enhanced 

chemiluminescent (ECL) substrate was used for the detection of high and low abundance 

proteins, respectively. Initially, the membrane was transferred onto a saran wrap with the 

protein side upwards. The chemiluminescent reagent mix was prepared according to the 

manufacturer’s instruction (1:1 ratio of substrate components) in a total volume of 2ml. This 

was then pipetted onto each membrane covering its entire surface and incubated for 5 

minutes at RT. The reagent was drained and the membrane was tightly covered with Saran 
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wrap. To detect the luminescence, the membrane was then exposed to Amersham Hyperfilm 

ECL films (GE Healthcare) for various lengths of time up to 1hr in x-ray cassettes. The films 

were developed in the dark using an automatic firm processing unit (Xograph) .  

Western Blot quantifications   

Western blot signals were quantified using the Java-based image processing programme 

ImageJ (public domain). The developed hyperfilms were scanned and were saved as .jpg. The 

image file was then opened in ImageJ where the single protein bands were measured, 

resulting in one profile blot for each captured signal. Profile blots showed the relative density 

of the respective lanes, with darker signals giving higher peaks and broader signals resulting 

in lower peaks (Figure 2.5). Background signals were subtracted from the final quantification 

value by drawing a baseline on the bottom of each peak, thereby excluding the underlying 

area from the peak area measurements. The obtained numbers for the measured areas under 

the peaks showed arbitrary units and could thus only be compared within the context of one 

single blot. This was also carried out for their respective endogenous control protein bands, to 

which the sample protein’s peak area values were normalized to.  

 
 

Figure 2. 5 - Quantification of western blot signals by using ImageJ. 
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2.20 Frataxin protein measurement – Mitosciences dipstick assay  

The level of frataxin protein was measured by lateral flow immunoassay with the Frataxin 

Protein Quantity Dipstick Assay Kit (MitoSciences) according to the manufacturer’s 

instructions. 2μg of protein in 25μl of extraction buffer (buffer A) was mixed with 25μl of 2X 

blocking buffer (buffer B) and was added to individual wells on a 96-well plate with gold-

conjugated monoclonal antibody at the bottom of each well. The samples were incubated for 

5 minutes, allowing the gold-conjugate to hydrate. The mixture was then resuspended gently 

using a pipette and dipsticks were inserted into the wells. Subsequently, frataxin within each 

sample was immunocaptured onto designated capture zones on the dipstick, and the signal 

appeared 5-7 mm from the bottom of the dipstick in approximately 20 minutes. When the 

signal was developed, the dipsticks were washed for 20 minutes, with 30μl of washing buffer 

(buffer C) in an empty well of the microplate. The dipstick was air-dried for approximately 

20 minutes and the signal intensity (Figure 2.6) was measured with an MS-1000 

Immunochromatographic Reader (MitoSciences). 

 

 

 

 

 

 

 

 

Figure 2. 6 - Quantification of mouse fibroblast frataxin (FXN) expression 
level using dipstick immunoassay. Upper bands correspond to internal control 
(goat anti-mouse antibody (GAM); lower bands correspond to mouse FXN. 
Lanes correspond to Y47 (1), YG8s (2) and YG8L (3). 
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2.21 Aconitase Assay 

Aconitase activity assay was performed in cell lysates to determine conversion of citrate to 

isocitrate catalysed by aconitase, a Fe-S cluster protein. This procedure was carried out using 

the Cayman Chemical aconitase assay kit (USA, Cat. No. 705502). 

To perform the assay, whole-cell extracts of human fibroblast cell lines were resuspended in 

Cell-Lytic extraction buffer (Sigma) to 10% w/v. Lysates were centrifuged at 14K rpm for 15 

minutes at 4oC and used immediately. A substrate reaction premix was made, as shown in 

Table 2.14, and 200μl of substrate premix was added to each well of a preheated 96-well 

plate. The reactions were then initiated by adding 50μl of the diluted (1:10) samples to each 

well, in triplicates. Reactions were incubated at 37oC for 15 minutes in the dark and then the 

absorbance was measured once every minute at 340 nm for 15 minutes at 37oC using a 

spectrophotometer. The absorption monitors the formation of NADPH and the production of 

NADPH is proportional to the aconitase activity. The aconitase activity was then determined 

by the slope of the graph once the absorbance was plotted over time. 

 

Table 2. 14 - Aconitase assay substrate reaction premix 

Component Final Concentration 
Tris/HCl (pH 7.4) 50mM 

NADP 0.4mM 
Na Citrate 5mM 

MgCl2 0.6mM 
Isocitrate dehydrogenase 1U 
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2.22 TAK-831 drug preparation for in vivo study 

TAK-831 was synthesized and provided to us by Takeda Cambridge Limited. The drug was 

supplied in a solid form and stored at -20oC until required to use. Initially, 30mg of TAK-831 

was weighed and completely resuspended in 1ml Tween-80. This was then added to 99ml of 

0.5% (w/v) methylcellulose, to make a final volume of 100ml drug solution (0.3mg/ml). The 

drug dispersions were stored in 2ml aliquots at -20oC. A placebo/ vehicle solution was also 

prepared in the same way with 0.5% (w/v) methylcellulose containing 1% (v/v) Tween-80, 

and was stored at 4oC. 

 

2.23 Functional studies during drug treatment  

To assess the functional outcome of FRDA mice and the drug effect on their functional 

capacity, body weight measurement, locomotor activity, beam walk and accelerated rotarod 

tests were conducted.  

2.23.1 Body weight analysis  

Mouse body weights were recorded before and after treatment, to aid in drug dose 

preparation and to observe drug toleration on body weight. This was conducted using an LBK 

Compact Bench Scale (Adam equipment) (Figure 2.7). 

          Figure 2. 7 - Mice body weight analysis  
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2.23.2 Beam breaker test 

A beam breaker activity monitor (MED-OFA-510 activity chamber, Med Associates) (Figure 

2.8) was used to measure the locomotor activity of the mice. The system consisted of 2 

subject containment environment (chamber) each measure 27.3cm X 27.3cm with 16-beam 

infrared (I/R) transmitters connected to the computer with data analysis software (SOF-811). 

Each chamber could only take one mouse per run, and it assessed various standard 

parameters: jump counts, jump time, average velocity, ambulatory episodes, ambulatory 

distance, ambulatory time, ambulatory counts, stereotypic time, stereotypic counts, resting 

time, vertical counts and vertical time. These parameters were measured and recorded every 1 

minute for 5 minutes. Data analysis and processing was performed using Graphpad Prism 7 

program.  

 

 
 
 

Figure 2. 8 - Beam-breaker activity monitor chambers 
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2.23.3 Beam walk test 

Beam-walk test was performed to compare the motor coordination and balance capabilities of 

FRDA transgenic and control mice. The test was carried out with two wooden beams of 

90cm long, one with an external diameter of 12mm and the other 22mm (Figure 2.9). The 

beams were placed horizontally 10cm above the bench surface with one end mounted on a 

narrow support with a 60W lamp while a darkened escape box was located at the other end of 

the beam. Motor function was assessed by measuring the time taken for the mouse to cross 

the beam and enter the escape box. The mice received two trainings on the beam followed 

assessments four times on the wider and narrower beams respectively with a rest period of 5 

minutes between each trial.  

 

 

Figure 2. 9 - Beam walk analysis device. Motor function of the mice was measured using a 
12x900mm (top) and a 22x900mm (bottom) beams. 
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2.23.4 Accelerating rotarod  

The motor deficits associated with FRDA were assessed using a Ugo-Basille 7650 

accelerating rotarod treadmill apparatus (Figure 2.10), designated for testing the balance and 

coordination characteristics of general motor function. The rotarod device consisted of a 

rotating rod, driven by an electric motor, upon which the animals were placed. Mutant and 

control littermate mice were placed on the rods, and four trials were performed with the 

speed of the rotation gradually increasing from 4 to 40 rpm. The time score where the mouse 

completes the task (by staying on the rotarod for 400s) or falls from the apparatus was 

recorded. Four runs were performed, and a minimum of 5 minutes’ rest was given between 

each run.  

 

 

 
 

 
Figure 2. 10 - Rotarod apparatus  
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2.24 Post treatment mice tissue collection 

At the end of each drug treatment course, the mice were culled by cervical dislocation. This 

was followed by tissues collection, which included the brain (B), cerebellum (C), blood (Bl) 

and plasma (Pl) from both the male and female mice. The collected tissues were snap-frozen 

in liquid nitrogen and stored at -80oC. All procedures were carried out in accordance with the 

UK Home Office ‘Animals (Scientific Procedures) Act 1986’. Biochemical analysis and 

frataxin expression will be carried out on these tissues.  

2.25 Statistical analysis 

Statistical analyses, such as detailed measurements, and graphical visualisation were done 

using Microsoft excel 2016 software and Graphpad Prism7. Functional measurements 

(weight, locomotor activity, accelerated rotarod and beam walk performance) were 

statistically analysed using two-way analysis of variance (ANOVA) and /or Student’s t-test. 

Two-way ANOVA analysis compares the mean differences between groups with two 

independent variables; therefore, allowed us to investigate if there is an interaction between 

the two independent variables on the dependent variable. All other measurements comparing 

two sample groups at a specific time point were analysed using student’s t-test to determine if 

the mean values differed significantly or not. In all cases a p value of ≤0.05 was chosen as the 

significance threshold in all cases.  
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3.1 Introduction   
 

3.1.1 Mechanism of histone modification and transcriptional regulation  
 
The term epigenetics is commonly defined as heritable changes in gene expression without 

altering the DNA sequence. One of the vital constituents of epigenetic mechanisms that 

govern chromatin-based nuclear processes is histone post-translational modification. To date, 

more than 60 different histone modifications have been identified, including acetylation, 

methylation, ubiquitination, phosphorylation, and sumoylation (Table 3.1), all of which can 

serve as epigenetic tags (Kouzarides, 2007, Rothbart and Strahl, 2014). With the aid of 

specific enzymes, biochemical modification of histones predominantly occurs on the 

protruding N-terminal tails of H3 and H4 histones. Consequently, this influences higher-order 

chromatin structure formation, by affecting the inter-nucleosome or histone-DNA 

interactions, which then renders the gene accessibility to the transcriptional machinery. These 

histone modifications also act as a signalling platform by integrating responses to multiple 

biochemical signalling cascades, to recruit or repel the transcriptional machinery and 

chromatin remodelling signal complexes, which ultimately induces distinct biological 

responses (Bannister and Kouzarides, 2011). For this reason, histone modifications are 

increasingly recognized as having a substantial role to play in both normal cellular and 

disease physiology (Cheung and Lau, 2005, Morera et al., 2016). 

Table 3. 1- Different classes of modification identified on histones (Kouzarides, 2007) 

 



CHAPTER III - HMTASE INHIBITORS IN VITRO THERAPEUTIC STUDIES 

81  

The most prevalent and well-studied histone modifications are acetylation and methylation 

of lysine (K) residues. Generally, histone acetylation is associated with euchromatin 

formation and modulation of gene transcription. Acetylation is targeted to regions of 

chromatin by the recognition and binding of DNA sequence-specific transcription factors, 

that recruit histone acetyl transferase (HAT) cofactors such as CREB binding protein (CBP). 

Subsequently, the addition of the acetyl groups reduces the positive charge, which locally 

modifies the histone affinity towards DNA and promotes gene regulation (Lee and 

Workman, 2007, Abel and Zukin, 2008, Handy et al., 2011). The effects of the HATs on 

acetylation can be reversed by HDACs, which remove acetyl groups from the histone tails. 

Deacetylation of histones proteins shifts the balance towards chromatin condensation and 

thereby silences gene expression (Abel and Zukin, 2008).  

On the other hand, histone lysine methylation (mono-, di-, tri-methylated) patterns and their 

effects on transcription are more complex compared to acetylation. The addition of single or 

multiple methyl groups does not change the electrostatic charges of histones but allows 

conformational changes due to hydrophobic alterations. Therefore, the outcome of some 

methylation sites on transcription could be either activation (adopting euchromatin 

structure) or repression (inducing heterochromatin structure) (Bannister and Kouzarides, 

2011). For instance, H3K27me3 and H3K9me2/3 states are associated with silencing, 

whereas the H3K4me1/2/3 and H3K36me3 states are typically transcriptionally permissive 

modifications (Figure 3.1) (Handy et al., 2011, Black et al., 2012).  

Histone methylation is catalysed by various HMTases which utilise SAM (S-adenosyl 

methionine) as the methyl-group donor. So far, several families of HMTase have been 

identified, with most having a SET homology domain and a high specificity for a particular 

lysine residues and the degree of methylation (Volkel and Angrand, 2007). In constitutive 

heterochromatin, the HMTase Drosophila suppressor of variegation 3-9 (human homologue) 
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(SUV39H) catalyses H3K9me3, which is recognised by HP1 (Yandim et al., 2013). HP1 

self-dimerises and is therefore thought to create a ‘glue effect’ on chromatin by holding 

adjacent nucleosomes together. Importantly, HP1 was shown to also recruit and interact 

with SUV39H methyltransferase, to further methylate H3K9. This creates a positive 

feedback loop and is thought to be the basis of the spreading behaviour of heterochromatin. 

In addition to SUV39H, other HMTase such as G9a and SETDB1 are known to act mostly 

on inactivated gene promoters (Kouzarides, 2007). 

Furthermore, H3K27me3 is another vital methylated residue associated with facultative 

heterochromatin formation. The activity of H3K27 methylation has been tightly linked to 

polycomb system, where one polycomb repressive complex (PRC2) catalyses the 

methylation of H3K27 and another one (PRC1) recognises methylated residues. PRC1 

mono-ubiquitinates the globular H2AK119, which prohibits chromatin remodelling and 

hence successive elongation of RNAPII. Intramolecular interactions of PRC2 complex are 

thought to be responsible for a low-level chromatin compaction and its spreading (Francis et 

al., 2004, Grau et al., 2011, Yandim et al., 2013). 

Moreover, various studies have confirm the presence of multiple HDMs capable of 

reversing the HMTase efforts by demethylating histones in a gene specific manner 

(Kouzarides, 2007). HDMs are classified into two distinct enzyme families: the nuclear 

amine oxidase homologues (e.g. LSD1) and the JmjC-domain proteins (e.g. JHDM1) (Shi et 

al., 2004, Sandi et al., 2014). The opposite functions of between HMTases and HDMs act to 

maintain the balanced histone methylation levels that are required for gene transcription 

regulation (Figure 3.1). 
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Figure 3. 1 - Schematic illustration of histone lysine methylation and demethylation regulated by 
HMTases and HDMs for gene transcription. Presently known histone H3 and H4 lysine HMTases 
(green arrows) and HDMs (red arrows). In general, methylation of H3K4, H3K36, and H3K79 is 
associated with euchromatin and transcriptional activation, whereas methylation of H3K9, H3K27, 
H4K20 and H3K36 is related to heterochromatin and transcriptional repression (Black et al., 2012). 
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3.1.2 Histone modification in FRDA 
 
As previously discussed in Chapter I, in FRDA high levels of heterochromatin marks were 

reported in the first intron of the pathologically silenced FXN, particularly in the immediate 

flanking region of GAA repeats (Figure 3.2). Histone modifications in the mutated FXN locus 

were first observed in FRDA lymphoblastoid cell lines, where an elevation in di- and tri-

methylation of H3K9 (H3K9me2/3) and decrease in acetylation of H3 and H4 was reported 

in the upstream region of the expanded GAA repeat tract  (Herman et al., 2006, Greene et al., 

2007).  

 

Figure 3. 2 - A schematic illustration of the FXN chromatin organization in normal individuals and 
FRDA patients. (A) In normal individuals, H3K9ac is seen in all regions which induces an active 
open chromatin. Histone marks involved in the transcription initiation and elongation is seen in the 
promoter (H3K4me3 and H3K36me3) and downstream regions (H3K79me2 and H3K36me3). 
Additionally, normal CTCF binding is found at the 5’UTR. (B) In FRDA, repressive histone marks 
H3K27me3, H3K9me3 and H4K20me3, are observed throughout the gene, but most prominently at 
the upstream GAA repeat region, along with an increased DNA methylation. The levels of 
H3K36me3 and H3K79me2 at the upstream GAA region are significantly reduced, whereas 
H3K4me3 and H3K36me3 levels are not substantially changed in the promoter region. This suggests 
a defect of transcription elongation rather than initiation in FRDA. Depletion of CTCF may trigger the 
FAST-1 antisense transcription that may lead to the deacetylation of histones and the increase of 
H3K9me3 at the promoter and other regions of the gene (Sandi et al., 2013). 

A) Normal  

A) FRDA  
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Subsequently, Al-Mahdawi et al. (2008) described various histone modifications in the FXN 

promoter, upstream and downstream GAA regions, in autopsy brain tissues from two FRDA 

patients (Figure 3.3). An overall decreased acetylation of H3 and H4 was confirmed, 

particularly in the downstream GAA regions, with a consistent increased levels of di- and 

trimethylation of H3K9 in all three of the FXN regions. De Biase et al. (2009) then reported a 

significant increase in heterochromatin HP1 levels in the silenced FXN locus of FRDA 

derived fibroblasts, alongside an elevation on the classical heterochromatin marks, H3K9me3 

and H3K27me3 levels at the FXN 5’ UTR promoter region (Figure 3.4).  

 

 

 

Figure 3. 3 - Analysis of histone modification in human brain tissues. ChIP quantitative PCR results 
for the FXN promoter/exon1 (Pro), upstream GAA (Up) and downstream (Down) amplified regions 
are represented as the relative amount of immunoprecipitated DNA compared with input DNA, 
having taken negligible –Ab control values into account. FXN values were normalized with human 
GAPDH and all values have been adjusted so that all of the upstream GAA mean values from the 
unaffected individuals are 100%. The means and SEMs of these values are shown (Al-Mahdawi et al., 
2008). 
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Moreover, ChIP analysis have also revealed decreases in H3K36me3 and H3K79me3 levels 

flanking the GAA repeat regions in FRDA cells. These latter histone methylation marks are 

contrastingly associated with a more open chromatin state and elongation of gene 

transcriptions, suggesting that a transcription elongation defect is possibly at fault in FRDA. 

Additionally, a decrease in H3K4me3 levels, a transcription initiation mark, has been 

reported at the upstream GAA repeat region, but not at the promoter region. This indicates a 

more pronounced defect of the post-initiation elongation stage of FXN gene expression, 

rather than an early transcription initiation defect (reviewed in Sandi et al. (2014)).  

Nonetheless, although the exact mechanism remains elusive, there is good evidence that the 

reduction of frataxin protein levels in FRDA is primarily caused by GAA repeat expansion 

induced transcriptional silencing, which is associated with specific post-translational 

heterochromatin modifications. 

 

 

 
 

 
 
 
Figure 3. 4 - Heterochromatin formation in 
the FXN 5′UTR in FRDA patients. ChIP 
assays showing enrichment of (A) 
H3K9me3, (B) H3K27me3, and (C, D) 
heterochromatin protein 1 subunits HP-1α 
and HP-1γ, specifically in FRDA fibroblast 
cell lines versus non-FRDA controls 
(CNTR). All bars represent cumulative 
data from two fibroblast cell lines (FRDA 
or non-FRDA control), ChIP performed in 
triplicate, on two independent chromatin 
preparations. The means and SEMs of 
these values are shown (*P<0.05, 
**P<0.01) (De Biase et al., 2009). 
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3.1.3 Use of HMTase inhibitors as a therapy for FRDA  
 
Due to the identification of several associated epigenetic marks, FRDA can now be 

considered as an epigenetic disease, and drug treatments are being developed to target these 

epigenetic changes in attempts to ameliorate the disease phenotype. 

So far, a number of studies have demonstrated that specific HDAC inhibitors are capable of 

enhancing histone acetylation and thus increase the FXN expression in FRDA cells (Herman 

et al., 2006, Rai et al., 2008, Sandi et al., 2011). However, the repressive histone mark, 

H3K9me3, observed in the proximity of long GAA repeats is sustained during HDAC 

inhibitor treatment (Herman et al., 2006, Rai et al., 2008). Therefore, as an additional 

epigenetic-based therapeutic approach for FRDA, HMTase inhibitors are now also being 

considered to counteract the repressive histone marks and induce a more open chromatin 

structure at the FXN locus (Sandi et al., 2014). Recently, several studies have reported that 

G9a methyltransferase is responsible for H3K9 methylation by forming a heterodimeric 

complex with a G9a-like protein (GLP) (Tachibana et al., 2005, Black et al., 2012). The G9a-

GLP complex is believed to play an important role in various biological processes including 

embryo development, immune response and tumour growth (Feldman et al., 2006, Chen et 

al., 2006, Thomas et al., 2008, Lehnertz et al., 2010, Huang et al., 2010, Antignano et al., 

2014). Therefore, as a potential therapeutic target for various human pathophysiology, 

several compounds have been developed that can inhibit the G9a catalytic activity and its 

epigenetic machinery. The first disclosed potent and selective inhibitor of G9a-GLP complex 

was BIX01294 (adiazepin-quinazolin-amine derivative), which was discovered in a 

combined virtual and high-throughput screen approach (Kubicek et al., 2007). BIX-01294 

binds to the SET domain of GLP in the same grove at which the target lysine (H3K9) binds. 

This prevents the binding of the peptide substrate and consequently, the deposition of 

methylation marks at H3K9 (Chang et al., 2009, Sandi et al., 2014).  Cultured cells treated 
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with BIX01294 showed to decrease global H3K9me2, induce apoptosis and inhibit the 

proliferation, migration, and invasion of cancer cells (Varier and Timmers, 2011, Kim et al., 

2013, Ke et al., 2014, Oh et al., 2015). Additionally, the efficacy of BIX01294 has previously 

been tested in FRDA lymphoblastoid cells. Although H3K9me2 was erased from the 

expanded GAA repeats by BIX-01294 treatment, FXN mRNA levels remained unaffected. 

However, lymphoblastoid cells are known to develop different epigenetic patterns compared 

to primary cells and they may respond to epigenetic-based drugs differently (Punga and 

Buhler, 2010).  

Furthermore, enhancer of zeste homologue 2 (EZH2) is the methyltransferase responsible for 

H3K27 trimethylation. As the catalytic subunit of PRC2, EZH2 plays a key role in 

transcriptional repression and its overexpression is associated with several human cancers 

(Morera et al., 2016). Therefore, identifying potential compounds which can inhibit its 

catalytic activity may have a beneficial therapeutic outcome. In 2012, McCabe et al 

performed a high throughput biochemical screening and identified GSK126 as a potent, 

highly specific inhibitor of EZH2. Lymphoma cells treated with GSK126 display genome-

wide loss of H3K27 methylation and reactivates silenced PRC2 target genes with minimal 

off-target effects (McCabe et al., 2012). Furthermore, myeloma cells treated with GSK126 

showed effective abrogation of H3K27me3 levels, and this inhibition was concomitant with 

enhanced cellular apoptosis (Zeng et al., 2017). The growth inhibitory effects of GSK126 

were also observed in several other malignant tissues, including small cell lung cancers and 

prostate cancers (Takeshima et al., 2015). Moreover, GSK126 treatment in combination with 

a DNA demethylating agent has significantly decreased H3K27me3 and increased the levels 

of FMR1 transcripts in fragile X syndrome (FXS) cells (Kumari and Usdin, 2016). Therefore, 

as hypermethylated H3K9me3 and H3K27me3 is associated with FXN gene repression in 
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FRDA, inhibition of G9a and EZH2 activity by small molecule inhibitors, may have a 

beneficial therapeutic effect by reactivating FXN gene transcription.  

3.2 Therapeutic testing of BIX01294 and GSK126 
 
At present, there are limited FRDA studies which have investigated the use of HMTase 

inhibitors to induce an open chromatin structure and alleviate FXN gene silencing. Therefore, 

with aims to reduce the repressive histone marks H3K9me2/3 and H3K27me3, I decided to 

investigate the efficacy and tolerability of BIX01294 and GSK126, respectively, as a therapy 

for FRDA (Figure 3.5).  

As sensory neurons are challenging to obtain from FRDA patients and may not survive long-

term in culture, in this study, we have used FRDA human fibroblasts (GMO3816, 330 and 

380 GAA repeats) and fibroblasts established from FRDA YAC transgenic mouse models 

(YG8sR, YG8LR and Y47R) to unravel any frataxin-increasing capabilities following 

BIX01294 and GSK126 treatment. The three FRDA mouse models all express human FXN in 

a mouse-Fxn-null background. YG8sR and YG8LR carry 220 and 450 units of GAA repeats 

respectively, whereas Y47R contain normal-sized (GAA)9 repeat in intron 1 of a human FXN 

transgene (Pook et al., 2001, Anjomani Virmouni et al., 2015). In line with FRDA-like 

phenotype, YG8sR and YG8LR, both exhibit GAA repeat-mediated FXN gene silencing 

associated with decreased H3K9 acetylation and increased H3K9 tri-methylation at FXN 

5’UTR promoter region, compared to Y47R controls (unpublished data). Therefore, cells 

derived from YG8sR and YG8LR are considered to be suitable systems in which to 

investigate the efficacy of BIX01294 and GSK126 as a potential epigenetic-based FRDA 

therapy. 

 
Figure 3. 5 - Chemical structure of BIX01294 and 
GSK126. 
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3.3 Results 
 

3.3.1 Cell viability assessment 
 
To investigate the safety and cellular tolerability of BIX01294 and GSK126 treatment, 

PrestoBlue cell viability assay was carried out (as described in Chapter 2, section 2.5.5), to 

quantitatively measure the proliferation of cells. Human and mouse primary cell lines were 

treated with BIX01294 (1nM - 10µM) and GSK126 (1nM - 10µM) in triplicates for 72hrs. 

Subsequently, the reducing environment of the viable cells modified the PrestoBlue reagent 

which released a highly fluorescent colour. This was detected by spectrophotometer at an 

absorbance filter 570nm and 600nm reference. A mean value of vehicle and drug treated 

triplicates were used for calibration, where the untreated normal / control cells were set 

arbitrarily as 100%. 

Both human and mouse fibroblasts revealed to safely tolerate BIX01294 treatment with 

concentrations ranging from 1nM to 100nM, whereas, higher concentrations significantly 

decreased the cellular viability (Figure 3.6 A-B). Furthermore, in comparison to BIX01294 

treatment, cells were generally less sensitive to GSK126 treatment (Figure 3.6 C-D). Both 

normal and FRDA human fibroblasts indicated no significant change in viability with 1nM to 

2µM GSK126 treatment (Figure 3.6 C). However, cellular treatment with 10µM GSK126 

indicated to be lethal, as the cell viability was significantly reduced. A similar pattern was 

also observed in mouse fibroblasts treated with GSK126, however, YG8sR and YG8LR cells 

showed reduced tolerance with 2µM GSK126 (P<0.05) (Figure 3.6 D). These results gave a 

valuable indication of the optimal compound dosing required for subsequent molecular 

analysis to determine the efficacy of BIX01294 and GSK125 for FRDA therapy.  

 



CHAPTER III - HMTASE INHIBITORS IN VITRO THERAPEUTIC STUDIES 

91  

 
 
 
 
 

 

0

20

40

60

80

100

120

Vehicle  1nM 10nM 100nM  1µM 5µM 10µM

Normal
FRDA

Pr
es

to
Bl

ue
Re

du
ct

io
n 

(%
)

Human fibroblast treated with BIX01294 

**
**** **

**
*

A

0

20

40

60

80

100

120

Vehicle 1nM 10nM 100nM 1µM 2µM 10µM

Y47R - Control
YG8sR - FRDA
YG8LR - FRDA

Pr
es

to
Bl

ue
Re

du
ct

io
n 

(%
)

Mouse fibroblats treated with  BIX01294

*

**

***

***
***

***

** **

**

B



CHAPTER III - HMTASE INHIBITORS IN VITRO THERAPEUTIC STUDIES 

92  

 
 
 

 
 
Figure 3. 6 - PrestoBlue cell viability analysis following 72hr HMTase inhibitor treatment. BIX01294 
treatment analysis in A) human FRDA and B) mouse FRDA fibroblasts. GSK126 treatment analysis 
in C) human FRDA and D) mouse FRDA fibroblasts. The mean value of all data was normalised to 
the PrestoBlue reduction of vehicle treated cells (set at 100%). Error bars indicate SEM and values 
represent mean ±SEM (n=3). Asterisks indicate significant differences between drug and vehicle 
treated cell lines, assessed by Student’s t-test (*P<0.05, **P<0.01, ***P<0.001). 
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3.3.2 Quantification of FXN mRNA levels in human primary fibroblast 

In order to test the effects of BIX01294 and GSK126 on FXN gene reactivation, normal and 

FRDA human primary fibroblasts were treated with 100nM, 500nM and 1µM of BIX01294, 

and 1µM and 2µM of GSK126. The drug concentrations were prepared in DMEM medium 

and the cells were treated with the drug(s) either individually or in combination over a period 

of 72hrs. The FXN mRNA levels were measured by performing qRT-PCR analysis (as 

described in Chapter 2, section 2.12). Briefly, RNA was extracted from about 1 million cells 

by the Trizol® method (as described in section 2.7) and converted into cDNA, followed by 

qRT-PCR using primers designed to detect FXN human frataxin cDNA (Table 2.2). In order 

to account for possible differences in gene expression efficiency, at the mRNA levels, the Ct 

values obtained for FXN were normalised to the HPRT gene as an endogenous control. Each 

sample was run in triplicates and each experiment was performed at least twice. The mean 

value of each triplets was used for further analysis, using 2-∆∆Ct method to obtain relative 

quantification (RQ) values. The relative levels of mRNA expression in FRDA and normal 

fibroblasts were then calibrated by calculating the means of the RQ values, where the mean 

values of vehicle treated normal fibroblasts was set arbitrarily at 100%. The passage numbers 

of all primary fibroblasts were closely matched, throughout all the mRNA quantification 

experiments to avoid any possible cell culture variabilities.  

Treatment of cells with BIX01294 did not significantly increase FXN gene expression levels, 

except for 500nM concentrations, where an increase of 19% (P< 0.05) is seen in FRDA cell 

lines (Figure 3.7). Similarly, individual treatments of GSK126 did not have a great effect in 

FXN mRNA expression levels in FRDA cells, where in fact a significant decrease is seen 

with 1µM (22%, P<0.05) and 2µM (38%, p<0.01) concentrations.  
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Interestingly, all combination treatments of BIX01294 and GSK126 in FRDA cell lines were 

shown to significantly increase the FXN gene levels. The highest significant increase of 88% 

(P<0.01) was observed with 100nM BIX01294 + 2µM GSK126 treatment, followed by 34% 

(P<0.01) increase with 1µM BIX01294 + 1µM GSK126 treatment, then 26% (P<0.01) 

increase with 500nM BIX01294 + 1µM GSK126 treatment. This suggests that simultaneous 

inhibition of both H3K9me2/3 and H3K27me3 with BIX01294 and GSK126, respectively, is 

beneficial in reversing the histone modifications and in activating the FXN gene. However, 

none of the synergistic treatment in FRDA fibroblasts increased the FXN gene expression to 

the same level as in the normal fibroblasts. Nevertheless, normal fibroblasts were generally 

unaffected, except for a combination treatment of 500nM BIX01294 + 1µM GSK126, where 

a significant decrease  of 18% (P<0.01) in FXN gene expression is seen.  

Furthermore, after determining the synergistic effect with 100nM BIX01294 + 2µM GSK126 

as the optimum drug dosing, we then investigated the effect of this combination treatment on 

FXN gene expression levels with different time points (2, 3, 6 and 9-day) in FRDA cell lines 

(Figure 3.8). In this experiment, the cell culture medium was replaced with fresh drug 

containing medium every 3 days. The results indicated a gradual significant increase in FXN 

transcription in FRDA cell lines after 2 and 3-day treatments by 15% (P<0.01) and 88% 

(P<0.01). However, the significant increase in FXN gene expression then reduced to 30% by 

9-day treatment, with no change seen with 6-day treatment. This indicates that 3-day was the 

optimum treating course in enhancing FXN gene levels in FRDA cell lines.  

 



  

 
Figure 3. 7 – qRT-PCR analysis indicating the relative FXN mRNA levels following treatment with BIX01294 and GSK126 individually and synergistically 
in human primary fibroblasts. Each result displayed is the mean of two independent experiments and the FXN mRNA levels of each sample were normalised 
to HPRT mRNA levels. The values were expressed as a ratio to the vehicle treated samples of normal fibroblasts. Error bars indicate SEM and values 
represent mean ±SEM. Asterisks indicate significant differences between drug and vehicle treated cell lines, assessed by Student’s t-test (*P<0.05, **P<0.01, 
***P<0.001). 

0

20

40

60

80

100

120

Vehicle 100nM BIX 500nM BIX 1µM BIX 1µM GSK 2µM GSK 100nM BIX +
2µM GSK

500nM BIX +
1µM GSK

1µM BIX +
1µM GSK

Normal
FRDA

Re
la

tiv
e 

FX
N

m
RN

A 
 le

ve
l (

%
)

Human fibroblasts treated with BIX01294 and GSK126

***

*

*

*
**

**

**

**

**



  

 
 
Figure 3. 8 - qRT-PCR analysis indicating the relative FXN mRNA levels following BIX01294 + 
GSK126 combination treatment in human primary fibroblasts for different time points. For this 
treatment, the cell culture medium was replaced with fresh drug containing medium every 3 days. The 
mean FXN mRNA levels of each sample were normalised to HPRT mRNA levels. The values were 
expressed as a ratio to the vehicle treated samples of normal fibroblasts at the corresponding time 
point. Error bars indicate SEM and values represent mean ±SEM (n=3). Asterisks indicate significant 
differences between drug and vehicle treated cell lines, assessed by Student’s t-test (**P<0.01, 
***P<0.001). 
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3.3.3 Quantification of FXN mRNA levels in mouse primary fibroblasts 
 
Similar to human fibroblasts, the mouse primary fibroblasts were treated with 1nM and 

100nM of BIX01294,  and, 100nM and 1µM of GSK126. The cells were treated with the 

drug(s) either individually or in combination for 72hrs, followed by FXN mRNA expression 

quantification, tested by qRT-PCR. The vehicle treated Y47R-control values were used as a 

calibrator for the YG8sR and YG8LR FXN gene expression values, relatively.  

Generally, no significant changes in FXN gene expression levels were observed in YG8sR 

cells after individual treatments with BIX01294 and GSK126 (Figure 3.9). However, similar 

to human FRDA fibroblasts, 1µM GSK126 treatment significantly reduced FXN mRNA 

expression levels in YG8sR cells (39%, P<0.01). A similar pattern was also seen in YG8LR 

cell lines, except for 100nM BIX01294 treatment where a significant increase of 51% 

(P<0.01) in FXN transcription was seen. Interestingly, combination treatments of 100nM 

BIX01294 + 100nM GSK126 and 100nM BIX01294 + 1µM GSK126, both have 

significantly increased the FXN mRNA expression levels in YG8sR cells by 16% (P<0.01) 

and 37% (P<0.01), respectively. Whereas, YG8LR cell lines indicated a significant increase 

of 78% with synergistic treatment of 1nM BIX01294 + 1µM GSK126. This correlates well 

with the results obtained from the human fibroblasts, where simultaneously targeting 

H3K9me2/3 and H3K27me3 histone repressive marks, with combination treatment of 

BIX01294 and GSK126, indicated to have a beneficial therapeutic effect in FRDA. However, 

some combination treatment seems to have a non-cell type specific effect, as significant 

increases in FXN gene levels are also observed in Y47R- control cells. Moreover, since a 

combination treatment of BIX01294 and GSK126 induced the highest change in FXN gene 

expression (in YG8sR fibroblasts), we then decided to investigate the effect of 100nM 

BIX01294 + 2µM GSK126 synergistic treatment at different time points (2, 3, 6 and 9 days) 

(Figure 3.10). In this experiment the cell culture medium was replaced with fresh drug 
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containing medium every 3 days. Overall, the results indicated that 3-day treatment induced 

the best change in FXN gene expression, where an increase was seen in both the YG8sR and 

YG8LR cell lines. However, increases were statistically non-significant in YG8LR cells 

(P=0.1).  

 

 

 

 



  

 
Figure 3. 9 – qRT-PCR analysis indicating the relative FXN mRNA levels following treatment with BIX01294 and GSK126 individually and synergistically 
in mouse primary fibroblasts. Each result displayed is the mean of two independent experiments and the FXN mRNA levels of each sample were normalised 
to Hprt mRNA levels. The values were expressed as a ratio to the vehicle treated samples of normal fibroblasts. Error bars indicate SEM and values represent 
mean ±SEM. Asterisks indicate significant differences between drug and vehicle treated cell lines, assessed by Student’s t-test (*P<0.05, **P<0.01, 
***P<0.001). 
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Figure 3. 10 – qRT-PCR analysis indicating the relative FXN mRNA levels following BIX01294 + 
GSK126 combination treatment in mouse primary fibroblasts for different time points. For this 
treatment, the cell culture medium was replaced with fresh drug containing medium every 3 days. The 
mean FXN mRNA levels of each sample were normalised to Hprt mRNA levels. The values were 
expressed as a ratio to the vehicle treated samples of normal fibroblasts at the corresponding time 
point. Error bars indicate SEM and values represent mean ±SEM (n=3). Asterisks indicate significant 
differences between drug and vehicle treated cell lines, assessed by Students t-test (**P<0.01, 
***P<0.001). 
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3.3.4 Frataxin protein quantification  
 
To determine the change in frataxin protein expression in human and mouse fibroblasts, 

combination treatments were carried out with 100nM BIX01294 + 2μM GSK126 and 100nM 

BIX01294 + 1μM GSK126, respectively, for different time points (2-9 days). Total protein 

was extracted and the protein concentration was measured using a Pierce™ BCA Protein 

Assay Kit (Thermo Scientific), as described in Chapter 2, section 2.17-18. Subsequently, the 

protein samples were subjected to frataxin protein quantity dipstick assay kit (MitoSciences) 

and the levels of frataxin protein expression was determined by lateral flow immunoassay (as 

described in Chapter 2, section 2.20). Although a significant reduction in frataxin protein 

levels are observed in both human and mouse FRDA fibroblasts as compared to normal 

fibroblasts; generally, no significant change was observed after drug treatment at any time 

point (Figure 3.11 A-B). This suggests that perhaps the FXN mRNA expression did not reach 

the level where it would have a significant impact on the frataxin protein expression levels. 

Furthermore, there may also be other post-translational mechanisms which may play a role in 

frataxin protein regulation.  

 

 

 

 

 

 

 

 



CHAPTER III - HMTASE INHIBITORS IN VITRO THERAPEUTIC STUDIES 

102  

 
 

 

Figure 3. 11 – qRT-PCR analysis indicating the relative frataxin protein expression levels in human 
and mouse primary fibroblasts following BIX01294 + GSK126 combination treatment for different 
time points. The change in frataxin levels in A) human and B) mouse fibroblasts were determined by 
the dipstick immunoassay. The values were expressed as a ratio to the vehicle treated samples of 
normal fibroblasts at the corresponding time point. Error bars indicate SEM and values represent 
mean ±SEM (n=3). Asterisks indicate significant differences between drug and vehicle treated cell 
lines, assessed by Student’s t-test (**P<0.01, ***P<0.001). 
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3.3.5 HMTase enzymatic assessment  

To assess the inhibitory effects of BIX01294 and GSK126, I investigated the enzymatic 

activity levels of EZH2 and G9a, respectively, following treatment in human primary 

fibroblasts. As compared to the mouse FRDA cellular models, human primary fibroblasts are 

derived from actual FRDA patients. Therefore, it is a better cellular-model system for drug 

treatment.  For this study, we treated the cells with 100nM BIX01294 and 2μM GSK126 

either individually or in combination for 72 hours, followed by nuclear extract preparations 

(as described in Chapter 2, section 2.14). Subsequently, HMTase enzymatic assay kits 

(EpiQuik™) were used to measure the levels of methylated H3K9 and H3K27 by a high-

affinity primary antibody and an HRP conjugated secondary antibody-colour developing 

system, as described in Chapter 2, section 2.15. Each of the samples were run in triplicates, 

and the mean values of HMTase activity in FRDA and normal fibroblasts were calibrated to 

vehicle-treated normal fibroblasts subjectively set as 100%. Curiously, the EZH2 activity is 

significantly higher by 53% (P<0.01) in vehicle treated FRDA fibroblasts as compared to 

normal fibroblasts (Figure 3.12 A). However, 2μM GSK and a combination treatment of 2μM 

GSK126 + 100nM BIX01294 in FRDA fibroblasts have shown to significantly reduce the 

EZH2 levels by 28% (P<0.05) and 20% (P<0.05), respectively. Similarly, FRDA fibroblasts 

were shown to have a 59% significantly higher G9a enzymatic activity as compared to 

normal fibroblasts (Figure 3.12 B). This activity was significantly reduced by 25% (P<0.01) 

and 20% (P<0.01) with 100nM BIX01294 and combination treatment of 2μM GSK126 + 

100nM BIX01294, respectively. There was no significant change in EZH2 and G9a activity 

levels between individual and synergistic drug treatment in FRDA cells. This suggest that the 

combination treatment of BIX01294 and GSK126 does not interfere with each of the drugs 

specific inhibitory effects. However, a similar change in EZH2 and G9a enzymatic activity 
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was also observed in normal fibroblasts after treatment. This indicates that BIX01294 and 

GSK126 have a non-cell type specific inhibitory effect. 

 
 

 
 
Figure 3. 12 - HMTase enzymatic activity analysis in human fibroblasts treated individually and in 
combination with BIX01294 and GSK126. A) EZH2 activity levels and B) G9a activity levels. The 
values were expressed as a ratio to the vehicle treated samples of normal fibroblasts. Error bars 
indicate SEM and values represent mean ±SEM (n=3). Asterisks indicate significant differences 
between drug and vehicle treated cell lines, assessed by Student’s t-test (*P<0.05, **P<0.01, 
***P<0.001). 
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3.3.6 Histone modification assessment  
 
To examine the effects of BIX01294 and GSK126 on histone modifications, human primary 

fibroblasts were treated with a combination of 100nM BIX01294 + 2μM GSK126 for 72hrs, 

followed by performing ChIP assay, to determine the histone modification changes in the 

FXN 5’UTR promoter region (as discussed in Chapter 2, section 2.13). The histone 

modification levels in each sample were normalised to input and minus antibody samples and 

finally determined to the vehicle treated normal fibroblasts, which was arbitrarily set as 

100%.  

Immunoprecipitation with anti-H3K9ac antibody revealed a significant reduction of 81% 

(P<0.001) in FRDA fibroblasts treated with vehicle as compared to normal fibroblasts.  

However, this was increased by 242% (P<0.001) with BIX01294 and GSK126 combination 

treatment (Figure 3.13). Moreover, FRDA cell lines indicated a significant increase of 231% 

(P<0.001) and 168% (P<0.001) in H3K9me3 and H3K27me3 levels, respectively. However, 

after drug treatment, the methylation levels significantly decreased by 42% (P<0.01) and 

51% (P<0.01), respectively. Nonetheless, an increase in H3K9ac and decrease in H3K9me3 

and H3K27me3 levels is also observed in normal fibroblasts after drug treatment, indicating 

that BIX01294 and GSK126 have non-cell type specific drug effect. These results correlate 

well with the change in EZH2 and G9a enzymatic activity after combination treatment with 

BIX01294 and GSK126. Overall, the change in histone modification after drug treatment in 

FRDA fibroblasts did not reach the regular levels as seen in normal fibroblasts.  

  



  

 
 
Figure 3. 13 - Histone modification changes in the FXN 5’UTR promoter region, after 72hr combination treatment with BIX01294 + GSK126 in normal and 
FRDA fibroblasts. The values were expressed as a ratio to the vehicle treated samples of normal fibroblasts. Error bars indicate SEM and values represent 
mean ±SEM (technical repeats, n=3). Asterisks indicate significant differences between drug and vehicle treated cell lines, assessed by Student’s t-test 
(**P<0.01, ***P<0.001). 
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3.3.7 General gene quantification  
 
Like any epigenetic-based therapies, HMTase inhibitors are expected to induce a widespread 

effect on gene expression by altering global histone modification levels, and thus have a 

potential off-target effects. Therefore, to evaluate the possibility of BIX01294 and GSK126 

off-target effects in FRDA, we treated human and mouse fibroblasts with a combination 

treatment of the two drugs (100nM BIX01293 + 1uM/2uM GSK126), which had exerted a 

change in FXN gene expression levels (Figure 3.7), for 72hrs. We then quantitatively 

measured changes in a panel of endogenous control gene expression by qRT-PCR using 

specific primer sets (TATAA Biocenter) for human and mouse.  

The results obtained show that there is no significant change in any of the genes explored in 

either the mouse or human fibroblasts after treatment (Figure 3.14 A-B). This suggests that 

BIX01294 and GSK126 exerts minimal off-target effects outside of FXN gene regulation.  
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Figure 3. 14 -  Relative change in endogenous control gene expression levels in A) human and B) 
mouse primary fibroblasts following BIX01294 + GSK126 combination treatment. The values were 
expressed as a ratio to the vehicle treated samples of normal fibroblasts. Error bars indicate SEM and 
values represent mean ±SEM (n=3).  
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3.4 Discussion  
 
It has been reported that 98% of FRDA patients have a homozygous GAA trinucleotide 

repeat expansion within the first intron of the FXN gene, leading to reduced expression of 

frataxin (Campuzano et al., 1996). Although the mechanism by which the GAA repeat 

expansion leads to decreased levels of frataxin are currently unknown, it is generally 

accepted that FRDA may be caused by a heterochromatin-mediated silencing effect of the 

FXN gene (Saveliev et al., 2003, Festenstein, 2006). In support of this hypothesis, differential 

DNA methylation in FRDA patients accompanied by various histone modifications have 

been identified in FRDA patients within the vicinity of the expanded GAA repeats and near 

the promoter region of the FXN gene. This includes elevated methylation of histone residues, 

such as H3K9me2/3 and H3K27me3, with hypoacetylation of H3K9 (Herman et al., 2006, 

Greene et al., 2007, Al-Mahdawi et al., 2008, De Biase et al., 2009). Such DNA and histone 

modifications can be reversed, representing a suitable target for epigenetic-based therapy. 

Moreover, since the expanded GAA repeat in FRDA does not alter the amino acid sequence 

of frataxin, gene reactivation would be of therapeutic benefit (Sandi et al., 2014). 

In the present study, we have demonstrated the in vitro feasibility of two HMTase inhibitors, 

BIX01294 (G9a-inhibitor) and GSK126 (EZH2-inhibitor), to potentially increase frataxin 

expression, by reducing histone methylation levels at the FXN locus, and improve the disease 

phenotype in FRDA patient-derived fibroblasts and also fibroblasts established from YG8sR 

and YG8LR FRDA mouse models.  

Notably, 72hr treatment with BIX01294 or GSK126 did not induce a great effect on the FXN 

gene expression in either the human or mouse FRDA fibroblasts. In fact, a dose-dependent 

significant decrease in FXN gene expression level is seen with GSK126 treatments. 

Previously, it was reported that chemical inhibition of G9a with BIX01294 treatment showed 

to decrease H3K9 methylation at the FXN locus but failed to up-regulate FXN to a significant 
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high level (Punga and Buhler, 2010). A possible explanation for this could be that H3K9 

methylation may have a redundant role or it may cooperate with another heterochromatin 

mark in silencing the FXN gene. It is interesting to note, that on the silenced FXN locus there 

is presence of both H3K9 and H3K27 methylation at high levels. As explained above, H3K9 

methylation is associated with HP1 mediated silencing of highly heterochromatinised satellite 

repeats whereas H3K27 is linked to polycomb-mediated silencing of formerly euchromatin 

genes. Typically, these two marks do not overlap in the mammalian genome (Yandim et al., 

2013). Therefore, one could hypothesis that there is a cooperation between the H3K9 and 

H3K27 methylation marks on the FXN locus. In fact, a study in 2003 reported an 

accumulation of H3K27me3 in SUV39H double null cells may partially substitute for lack 

H3K9me3 histone marks (Peters et al., 2003).  

Therefore, carrying out a combination treatment with BIX01294 and GSK126 showed to 

promote a safe induction of FXN mRNA expression levels in both the human and mouse 

FRDA fibroblasts, predominantly after a 3-day treatment period. This indicates that 

simultaneous inhibition of G9a and EZH2, which targets H3K9me2/3 and H3K27me3 

repressive histone marks, may have beneficial effect, to some extent, in increasing FXN gene 

expression levels in FRDA. However, frataxin dipstick analysis revealed that frataxin protein 

expression levels remained unaffected after combined treatment with BIX01294 and 

GSK126, in both the human and mouse FRDA fibroblasts. This suggests that there may be 

other post-translational mechanisms at play, affecting either the FXN mRNA stability or 

frataxin protein translation, stability or degradation, that will require further investigation. 

Moreover, it would be interesting to assess the changes in frataxin precursor and intermediate 

forms after drug treatment. Therefore, future western blot analysis is a consideration.  

Interestingly, we also identified significantly increased levels of EZH2 and G9a activity in 

FRDA human fibroblasts as compared to normal fibroblasts. This agrees with previous 
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proposals that stalled RNAPII, during RNA:DNA hybrid formation, may be recruiting high 

levels of HMTases to methylate histones locally and reducing FXN gene transcription, as a 

defence mechanism (Yandim et al., 2013). Furthermore, following individual and 

combination treatment of BIX01294 and GSK126, the G9a and EZH2 levels were 

significantly reduced, respectively, in both the normal and FRDA human fibroblasts. This 

suggests that the drugs target and inhibit their corresponding HMTase activities in a non-cell 

type specific manner.  

Moreover, significantly increased H3K9me3 and H3K27me3 levels, alongside decreased 

H3K9ac levels, were seen in the FXN 5’UTR promoter region in human FRDA fibroblasts, as 

previously reported (De Biase et al., 2009, Sandi et al., 2014). However, after combined 

treatment of BIX01294 and GSK126, a non-cell type specific reduction in H3K9me3 and 

H3K27me3, and an increase in H3K9ac was seen, which correlated well with the changes in 

G9a and EZH2 levels. For future studies, it would be interesting to measure the changes of 

these histone modifications in the flanking regions of GAA repeats, in addition to individual 

treatments of BIX01294 and GSK126. Furthermore, no off-target effects were observed with 

combined treatment of BIX01294 and GSK126. However, this was only assessed in a limited 

panel of endogenous control genes for both human and mouse, which did not contain any 

cancer-related genes. From the selection of genes investigated, TBP, USB1 and HPRT1 are 

known to have lower expression levels. ChIP-sequencing signals from ENCODE/SYDH in 

UCSE Genome Browser (genome.ucsc.edu) (Kent et al., 2002) reveal that generally these 

genes have higher histone acetylation marks near the promoter region, with elevated 

H3K36me3 enrichment alongside lower H3K9me3 and H3K27me3 enrichments throughout 

the gene. However, thus far no studies have reported that these genes can be affected by 

HMTase inhibitors.  



CHAPTER III - HMTASE INHIBITORS IN VITRO THERAPEUTIC STUDIES 

112  

Overall, our results indicated that a combination treatment of BIX01294 and GSK126 may be 

effective in increasing the FXN gene expression levels in FRDA, by simultaneously targeting 

H3K9me3 and H3K27m3 repressive marks. However, based on our findings of frataxin 

expression levels after drug treatment, in vivo animal studies are not proposed at this stage.  

Compared to other epigenetic-based therapies, the use of HMTase inhibitors is still highly 

underexplored in FRDA. Since larger expanded GAA repeats are highly associated with 

heterochromatin mediated FXN gene silencing, it is crucial to carry out future in vitro studies 

using patient-derived cells with higher GAA repeats, and possibly different cell culture 

systems. Furthermore, it would be interesting to also investigate the synergistic effect of 

HMTase inhibitors with other epigenetic-based drugs, such as HDAC inhibitor or DNMT 

inhibitors, in the activation of FXN gene transcription. Recent FXS studies revealed positive 

results using a combination treatment with both GSK126 and 5-azadC, which significantly 

increased FMR1 gene expression in FXS cells (Kumari and Usdin, 2016). Moreover, since 

HDAC inhibitors have been shown to increase frataxin expression levels previously in 

cellular and animal models (reviewed in Nageshwaran and Festenstein (2015)), simultaneous 

administration of both HDAC inhibitors and HMTase inhibitors may produce beneficial 

therapeutic effects in FRDA. Overall, our study encourages the use of simultaneous 

administration of two or more epigenetic-based drugs for further preliminary studies to 

improve disease phenotype in FRDA. 
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4.1 Introduction   
 

4.1.1 Proteasomal degradation of proteins 
 
Nearly all proteins in mammalian cells are continually being degraded and replaced by de 

novo synthesis. Protein turnover is crucial for the cell fate and is predominantly regulated by 

the ubiquitin proteasome pathway (UPP), a highly conserved system from yeast to mammals 

(Bochtler et al., 1999). The UPP plays a pivotal role in the degradation of regulatory proteins 

involved in essential cellular pathways, including cell cycle progression, DNA repair, 

apoptosis, transcription and immune response (Table 4.1). The orderly degradation of cellular 

proteins by UPP is critical to maintain cellular homeostasis (Glickman and Ciechanover, 

2002, Nawaz and O'Malley, 2004).  The UPP consists of enzymes that link substrate proteins 

with an ubiquitin chain, in an ATP-dependent process, to tag them for their subsequent 

recognition and degradation by the 26S proteasome (Baumeister et al., 1998, Glickman and 

Ciechanover, 2002, Pickart and Eddins, 2004) (Figure 4.1). The process begins with the E1 

ubiquitin activating enzyme, which first adenylates the C terminus of ubiquitin (via ATP 

hydrolysis) to form a reactive thioester bond with a surface cysteine residue. E1 then transfers 

the activated ubiquitin to an E2 ubiquitin-conjugating enzyme to form a new thioester. One of 

the over 600 E3 ligases then acts as an adaptor which promote the formation of a third 

thioester intermediate to bring the E2–ubiquitin complex into proximity with the target 

protein, and thus facilitate the transfer of ubiquitin to a surface lysine residue to form an 

isopeptide bond. Once the first ubiquitin is bound to its target, E2 and E3 enzymes repeat the 

addition of ubiquitin units to the N terminus or lysine residues of ubiquitin to form a poly-

ubiquitin chain. This is then sufficient to transfer the target protein for degradation by the 26S 

proteasome (Hershko et al., 1983, Lecker et al., 2006, Bedford et al., 2011). Notably, 

ubiquitination is dynamic and can be reversed by the action of various deubiquitinating 

enzymes (DUBs) (Amerik and Hochstrasser, 2004). 
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Eukaryotic proteasomes are often found as large 26S holoenzymes complexes, consisting of a 

catalytic 20S core particle and a 19S regulatory particle at either or both of its ends (Nickell 

et al., 2009, Bedford et al., 2011). In the cylindrical central core, the 20S particle is 

composed of four stacked rings formed by two outer heptameric α-subunits (α1-7) and two 

inner heptameric ß-subunits (ß1-7). The interior face of the cylinder, the ß-rings, contain up 

to three catalytic residues that are responsible for protein cleavages: ß1 (caspase-like), ß2 

(trypsin-like) and ß5 (chymotrypsin-like) subunits. The two outer α-rings, serve as a docking 

domain for the 19S regulatory particle and form a gated channel leading to the inner 

proteolytic chamber (Groll et al., 1999). The 19S regulatory particle, which is made up of a 

‘base’ and a ‘lid’ is responsible for the recognition of the ubiquitin signal and directing the 

substrate into the 20S core particle. The outer lid contains a subunit which recognizes the 

polyubiquitin chain, cleaves it from the substrate and recycles the ubiquitin (Glickman and 

Ciechanover, 2002). Whereas, the inner base contains six ATPases, which uses ATP 

hydrolysis to encourage unfolding and translocation of the substrate into the 20S catalytic 

chamber, where they are degraded to oligopeptides (Benaroudj et al., 2003).  

This highly complex and tightly regulated ubiquitin-proteasome system also acts as a protein 

quality control, where it selectively eliminates misfolded or mutant proteins with abnormal 

conformations, before they build up and produce harm to the cell (Goldberg, 2003). For this 

reason, any aberration in this pathway has been implicated in various pathological conditions, 

from cancer to neurodegenerative diseases (Mani and Gelmann, 2005, Chen and Dou, 2010, 

Zheng et al., 2016).  
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Figure 4. 1- Summary of the ubiquitin-proteasome pathway. 1) Ubiquitin (Ub) activation by the E1 
ubiquitin activating enzyme; and (2) transferred to an E2 ubiquitin conjugating enzyme; (3) The E2 
enzyme then transfers ubiquitin to a target protein with the assistance of an E3 ubiquitin ligase. This 
process is then repeated to form polyubiquitin chains, (4) that are recognized by 26S proteasome 
leading to degradation of the target protein and the recycling of the ubiquitin units (Image annotated 
from Erales and Coffino (2014). 
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4.1.2 Proteasome-mediated degradation of frataxin protein 
 
Rufini et al. (2011), investigated whether the ubiquitin-proteasome system plays a role in 

modulating frataxin protein stability and its physiological turnover. By treating HEK-293 

cells, which stably expresses frataxin, with an effective proteasome inhibitor, they revealed a 

remarkable accumulation of frataxin precursor and mature levels (Figure 4.2). This suggests 

that a significant fraction of frataxin (especially the precursor form) is constitutively targeted 

to the UPP for degradation. Moreover, by co-immunoprecipitation approaches, they also 

showed that frataxin can be mono- and poly-ubiquitinated in culture following proteasome 

inhibition. This verified that frataxin precursor is targeted to proteasomal degradation by 

ubiquitin labelling. Subsequent analysis then identified a single lysine residue, K147, within 

frataxin as the ubiquitination targeting site for degradation. The substitution of this single 

K147 residue with arginine has shown to prolong the frataxin half-life and abrogat virtually all 

the mono-ubiquitination signal. This effect was then shown to be corrected with the 

reintroduction of K147 (Rufini et al., 2011). These findings were also confirmed in human 

lung adenocarcinoma (Calu-6) cells stably expressing frataxin (Lavecchia et al., 2013). 

 
Figure 4. 2 - Frataxin abundance is controlled by the proteasome. A) HEK-293 Flp-In cells stably 
transfected with frataxin1-210 were treated for the indicated times with 10 mM MG132. Total cell 
extracts were analyzed by SDS–PAGE and revealed by immunoblotting with anti-frataxin antibody 
(upper panel) or anti-tubulin (lower panel). One representative experiment out of four performed with 
similar results is shown. MG - MG132; Pre - precursor; int - intermediate; mat - mature; tub - tubulin. 
B and C) Quantitative analysis of frataxin precursor and mature accumulation upon MG132 treatment 
of HEK-293 Flp-In cells, as shown in (A) (Rufini et al., 2011).  



CHAPTER IV - PROTEASOME INHIBITOR IN VITRO THERAPEUTIC STUDIES 

118  

4.1.3 Preventing frataxin ubiquitin-proteasome degradation 

The recognition that frataxin stability is regulated by the UPP has opened up a new avenue to 

the possibility of using small molecule compounds to prevent its ubiquitination. This can be 

achieved by directly docking at the ubiquitin-binding site K147, and subsequently rescuing 

intracellular frataxin deficiency. Currently, ubiquitin competing molecules (UCM) are in the 

discovery phase of development and have been proposed as a potential promise in FRDA 

treatment. Thus far, treatments of FRDA patient cells with NSC620301 and the newly 

developed second-generation UCMs, UCM53, UCM108 and UCM71, have been shown to 

inhibit ubiquitination on K147 and to significantly increase frataxin expression. Additionally, 

no modifications in frataxin protein function were observed with the treatments, and the  

aconitase and ATP defects were restored (Rufini et al., 2011, Rufini et al., 2015). Moreover, 

as a complementary approach to prevent frataxin degradation, Benini et al. (2017) identified 

the RING-type E3 ubiquitin ligase, RNF126, as the specific enzyme responsible for frataxin 

recognition and ubiquitination targeting. These findings may encourage the design of small 

molecules to inhibit the specific interaction between frataxin and RNF126, without disturbing 

its catalytic activity, as a novel FRDA therapy (Benini et al., 2017).  
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4.2 Use of proteasome inhibitors as a therapy for FRDA  
 
As an additional therapeutic strategy for FRDA, small molecule inhibitors have been 

developed, which are especially designed to target different steps of the UPP. These include 

proteasome inhibitors (PI), some of which are now approved for cancer treatments and have 

been shown to modulate frataxin turnover in FRDA (Richardson et al., 2006, Rufini et al., 

2011, Kisselev et al., 2012, Rentsch et al., 2013, Rufini et al., 2015). Therefore, in 

collaboration with the pharmaceutical company, Takeda Cambridge limited, we have carried 

out an extensive investigation on the efficacy of various PIs (MG132, Bortezomib, 

Salinosporamide A and Ixazomib) in preventing frataxin degradation, using human FRDA 

fibroblasts (GMO3816 with 330 and 380 GAA repeats, and FA1 with 416 and 590 GAA 

repeats). Cells derived from FRDA patients constitute the most relevant frataxin-deficient 

cell model as they carry the complete frataxin locus together with GAA repeat expansions 

and all the regulatory sequences. Moreover, as sensory neurons and cardiomyocytes (which 

are particularly affected in FRDA) are hard to obtain from patients, primary fibroblasts are 

easily accessible and offer an alternative source of cell material to study therapeutic 

candidates in modulating frataxin levels. 
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4.2.1 Results 

4.2.2 Therapeutic testing of MG132 
 
The peptide aldehyde, MG132 (Z-Leu-Leu-Leu-CHO), constructed by Roc et al in 1994, was 

the first discovered inhibitor of the 20S proteasomes (Vinitsky et al., 1992, Rock et al., 1994) 

(Figure 4.3). Chemically, MG132 reacts with the hydroxyl group of the N-terminal threonine 

of the active site β5-subunit, to form a reversible hemiacetal, which blocks the chymotrypsin 

like activity of the 26S proteasomes (Zhang et al., 2013).  Although, MG132 has never been 

tested clinically due to its rapid oxidation, it has proved to be a valuable research tool for in 

vitro investigation (Pellom and Shanker, 2012). In culture, MG132 has been shown to inhibit 

the growth of tumour cells by inducing the cell cycle arrest, as well as triggering apoptosis 

(Guo and Peng, 2013). Moreover, HEK-293 Flip-In cells stably expressing frataxin1-210 

treated with MG132 have also shown a 15-fold and 2.5-fold accumulation of frataxin 

precursor and mature forms, respectively (Figure 4.2) (Rufini et al., 2011).  Therefore, in an 

effort to overcome impaired frataxin processing, we have investigated MG132 as a potential 

therapy for FRDA. 

 

 

 

 

 

 

 
Figure 4. 3 - Molecular structure of MG132 
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4.2.2.1 Cell viability assessment  
 
To assess the cellular toxicity of MG132, human fibroblasts were treated for 72hrs in 

triplicates with 1nM to 10μM MG132, followed by PrestoBlue (Invitrogen) cell viability 

assay to quantitatively measure the proliferation of cells. The mean value of the triplicates 

was normalised to the corresponding vehicle treated fibroblasts, which was set as 100% 

arbitrarily. Surprisingly, all MG132 treatments with up to 10μM concentration were 

considerably safe and tolerable, where no significant reduction in cell viability was observed 

after treatment, in both the normal and FRDA human fibroblasts (Figure 4.4). Therefore, to 

understand the therapeutic efficacy of MG132 in FRDA, subsequent molecular analysis was 

carried out using 100nM and 10μM concentrations as the optimal dosing. 

 

 
 

 
Figure 4. 4 - PrestoBlue cell viability analysis of human primary fibroblasts following 72hr MG132 
treatment. All data was normalised to the mean average PrestoBlue reduction of the corresponding 
vehicle treated cell lines (set at 100%). Error bars indicate SEM and values represent mean ±SEM 
(n=3). Asterisks indicate significant differences between drug and vehicle treated cell lines, assessed 
by Student’s t-test (*P<0.01). 
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4.2.2.2 Protein quantification assessment  
 
In order to understand the effectiveness of MG132 treatment in FRDA, comparative protein 

expression levels of c-Jun (a UPP substrate), p27 Kip1 (a key cell cycle regulator controlled by 

UPP), PSMB5 (20S proteasome subunit ß-5) and mature frataxin forms were identified by 

western blotting. Human primary fibroblasts were treated with 100nM and 10μM MG132 for 

72hrs, followed by protein extraction and protein concentration determination using the 

Pierce™ BCA protein assay kit (Thermo Scientific), as described in Chapter 2, section 2.17-

18. Western analysis was then carried out to identify protein expression levels using specific 

primary antibodies and secondary-HRP conjugated antibodies, as described in Chapter 2, 

section 2.19. Densitometry was carried out using ImageJ software and the values were 

normalised to those of actin.  MG132 treatment in FRDA fibroblasts revealed a dose 

dependent increase of 32% and 39% in frataxin expression with 100nM and 10μM treatment, 

respectively, compared to vehicle treated cells. However, the increases were statistically not 

significant (Figure 4.5 A-B). To confirm these results, similar frataxin expression changes 

were also obtained in FRDA cells after MG132 treatment by lateral flow immunoassay 

dipstick analysis (MitoSciences) (Figure 4.6). Moreover, to assess the proteasome inhibitory 

effect of MG132, c-Jun expression levels were determined following treatment. FRDA 

fibroblasts show a significant increase in c-Jun levels as compared to normal fibroblasts, as 

previously described by Pianese et al (2002) (Figure 4.5 A and C). However, after MG132 

treatment, no significant changes in c-Jun levels were detected in FRDA cells. Comparably, 

MG132 treatment did not induce any significant changes in the cellular stress marker levels, 

p27Kip1, and in the proteasome complex activity, PSMB5, in either the normal or FRDA 

fibroblast cells (Figure 4.5 A, D-E). This suggest, that the proteasomal inhibitory activity of 

MG132 at 100nM and 10μM is considerably ineffective in FRDA primary fibroblasts.  
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Figure 4. 5 - Dose-response western analysis of human FRDA and normal fibroblast cells treated 
with MG132 for 72hrs. A) Total cell extracts were analysed by SDS-PAGE and revealed by 
immunoblotting with anti-frataxin, anti-cJun, anti-p27Kip1 and anti-PSMB5, and anti-actin as a control. 
One representative experiment out of three performed with similar results is shown. V- vehicle 
(DMSO). B-E) Densitometry analysis of frataxin, c-Jun, p27Kip1, PSMB5 upon MG132 treatment of 
human fibroblasts as shown in (A).  The values were expressed as a ratio to the vehicle treated 
samples of normal fibroblasts. (*P<0.05, **P<0.01, error bars ±SEM). 
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Figure 4. 6 - Relative frataxin protein expression levels in human normal and FRDA primary 
fibroblasts following MG132 treatment for 72hrs. The change in frataxin levels were determined by 
the dipstick immunoassay. The values were expressed as a ratio to the vehicle treated samples of 
normal fibroblasts. Error bars indicate SEM and values represent mean ±SEM (n=3). Asterisks 
indicate significant differences between drug and vehicle treated cell lines, assessed by Student’s t-
test (*P<0.01). 
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4.2.2.3 Proteasomal activity analysis  
 
The inhibitory effect of MG132 was also analysed by determining the proteasome 

chymotrypsin-like activity in normal and FRDA fibroblasts. Cells were treated with 100nM 

and 10μM MG132 for 72hrs, followed by proteasome-Glo cell based assay assessment 

(Promega). When added to cultured cells, proteasomes cleave off luciferin from the specific 

luminogenic proteasome substrates in buffers. This is consumed by luciferin, and a rapid 

luminescent signal is generated that correlates directly to the chymotrypsin-like protease 

activity.  The mean value of the vehicle and drug treated triplicates were used for calibration 

to untreated normal cells, which was set as 100% arbitrarily. Results obtained indicated that 

MG132 does not induce any changes to the chymotrypsin-like activity of the proteasome at 

100nM and 10μM concentrations, in both the normal and FRDA primary fibroblasts (Figure 

4.7). Although a decrease in chymotrypsin-like activity is seen in normal fibroblast cells after 

10μM treatment, the difference was statistically insignificant.  

 
 
Figure 4. 7 - Relative change in chymotrypsin-like activity in FRDA and normal fibroblasts after 
72hrs of MG132 treatment. The values were expressed as a ratio to the vehicle treated samples of 
normal fibroblasts. Error bars indicate SEM and values represent mean ±SEM (n=3).  
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4.2.3 Therapeutic testing of bortezomib 

Bortezomib (Velcade®) is a PIs approved by the FDA for the treatment of multiple myeloma 

by targeting the proteasome (Kane et al., 2003, Kane et al., 2006, Richardson et al., 2009) 

(Figure 4.8). Similar to MG132, bortezomib is chemically a dipeptidyl boronic acid 

derivative, which forms a reversible complex with the active site of threonine hydroxyl group 

in the β5-subunit, blocking the chymotrypsin-like activity of the proteasome. It also binds the 

β1 subunit with lower affinity, inhibiting its caspase-like activity (Adams and Kauffman, 

2004, Crawford et al., 2006, Chen et al., 2011). This is then responsible for the disruption of 

various signalling pathways, resulting in cell cycle arrest and apoptotic induction in tumour 

cells (Chen et al., 2011). Moreover, previous FRDA studies using His-frataxin transfected 

Calu-6 cells, revealed a 2.6-fold increase in frataxin levels after bortezomib treatment 

(Lavecchia et al., 2013). Therefore, based on these encouraging reports, we decided to 

investigate whether bortezomib will rescue the impaired frataxin expression in human FRDA 

fibroblasts.  

 

 

 
 

Figure 4. 8 - Molecular structure of bortezomib  
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4.2.3.1 Cell viability assessment  
 
The safety and cellular tolerability of bortezomib was investigated by the PrestoBlue cell 

viability assay. The human primary fibroblasts (normal and FRDA) were treated in triplicates 

with 0.5nM to 1μM bortezomib for 72hrs, followed by PrestoBlue analysis. Bortezomib 

treatment at concentrations ranging from 0.5nM to 5nM revealed to be considerably safe for 

administration in both the normal and FRDA human fibroblasts, as no significant change in 

cell viability was seen when compared to vehicle treated cells (Figure 4.9). However, 

treatment with higher bortezomib concentrations showed to be significantly harmful to the 

cell lines, where a reduction in cell viability is observed in a dose-dependently. Therefore, for 

subsequent molecular analysis we decided to use 0.5nM and 2nM of bortezomib as the 

optimal compound dosing in the human fibroblast treatment.  

 

 
 
Figure 4. 9 - PrestoBlue cell viability analysis of human primary fibroblasts following 72hr 
bortezomib treatment. All data was normalised to the mean average of PrestoBlue reduction of the 
corresponding vehicle treated cell line (set at 100%). Error bars indicate SEM and values represent 
mean ±SEM (n=3). Asterisks indicate significant differences between drug and vehicle treated cell 
lines, assessed by Student’s t-test (**P<0.01). 
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4.2.3.2 Protein quantification assessment  
 
In order to assess the effectiveness of bortezomib in FRDA, human fibroblasts were treated 

with 0.5nM and 2nM concentration for 72hrs. Subsequently, cells were collected and protein 

expression levels of mature frataxin, c-Jun, p27Kip1 and PSMB5 were assessed by western 

analysis with specific primary antibodies.  

Bortezomib treatment revealed no significant change in frataxin expression levels in both the 

normal and FRDA human primary fibroblasts, compared to vehicle treatment (Figure 4.10 A-

B). Additionally, comparable frataxin expression levels were also obtained following 

bortezomib treatment by the lateral flow immunoassay dipstick kit (Figure 4.11). This 

suggests that bortezomib, at concentrations of 0.5nM and 2nM, does not prevent frataxin 

degradation via the UPP in FRDA fibroblasts. Moreover, no significant change in the 

proteasome substrate level, c-Jun, was seen after treatment in both the normal and FRDA 

fibroblasts (Figure 4.10 A and C). Similarly, no significant change in the cellular stress 

marker, p27Kip1, and the proteasome activity, PSMB5 levels, were observed after treatment 

(Figure 4.10 A, D-E). Although, FRDA cells indicated 30% increase in p27Kip1 levels after 

2nM bortezomib treatment, it was statistically insignificant (P=0.08). This suggests that the 

proteasomal inhibitory activity of 0.5nM and 2nM bortezomib is considerably ineffective in 

human primary fibroblasts.  
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Figure 4. 10 - Dose-response western analysis of human FRDA and normal fibroblast cells treated 
with bortezomib for 72hrs. A) Total cell extracts were analysed by SDS-PAGE and revealed by 
immunoblotting with anti-frataxin, anti-cJun, anti-p27Kip1 and anti-PSMB5, and anti-tubulin as a 
control. One representative experiment out of three performed with similar results is shown. V- 
vehicle (DMSO). B-E) Densitometry analysis of frataxin, c-Jun, p27Kip1, PSMB5 upon bortezomib 
treatment of human fibroblasts as shown in (A).  The values were expressed as a ratio to the vehicle 
treated samples of normal fibroblasts. (*P<0.05, **P<0.01, error bars ±SEM). 
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Figure 4. 11 - Relative frataxin protein expression levels in human normal and FRDA primary 
fibroblasts following bortezomib treatment for 72hrs. The change in frataxin levels were determined 
by the dipstick immunoassay. The values were expressed as a ratio to the vehicle treated samples of 
normal fibroblasts. Error bars indicate SEM and values represent mean ±SEM (n=3). Asterisks 
indicate significant differences between drug and vehicle treated cell lines, assessed by Student’s t-
test (**P<0.01). 
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4.2.3.3 Proteasomal activity analysis  
 
In order to understand the proteasomal inhibitory effect of bortezomib treatment, the trypsin-

like and chymotrypsin-like activity were analysed in the human FRDA primary fibroblasts. 

Cells were treated with 0.5nM and 2nM bortezomib for 72hrs, followed by assessment with 

specific proteasome-Glo cell based assay. As expected, bortezomib treatment has 

significantly reduced the proteasomes chymotrypsin-like activity in FRDA primary 

fibroblasts with 1nM (by 71%, P<0.001) and 10nM (by 45%, P<0.05) (Figure 4.12). 

However, a similar effect is also seen in normal cells after bortezomib treatment, suggesting 

that bortezomib may have a non-cell type specific effect in reducing the chymotrypsin-like 

activity. Moreover, it is interesting to note that the trypsin-like activity was found to be 

significantly higher by 95% (P<0.001) in FRDA cells, compared to normal cells. 

Nonetheless, this activity was reduced dose-dependently after bortezomib treatment, but the 

changes were statistically non-significant. No changes were observed in trypsin-like activity 

levels in the normal fibroblasts after treatment. 

 

Figure 4. 12 - Relative change in trypsin-like and chymotrypsin-like activity in FRDA and normal 
fibroblasts after 72hrs of bortezomib treatment. The values were expressed as a ratio to the vehicle 
treated samples of normal fibroblasts. Error bars indicate SEM and values represent mean ±SEM 
(n=3).  
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4.2.4 Therapeutic testing of Ixazomib 
 
The second generation PI, Ixazomib (trade name Ninlaro), is the first orally-administered PI 

to be approved by FDA for patients with multiple myeloma (Muz et al., 2016).  Ixazomib 

was initially developed as MLN9708, a stable citrate ester that of boranic acid. When 

exposed to aqueous solution or plasma, MLN9708 immediately hydrolyses to the free boric 

acid metabolite, MLN2238, which is the biologically active form (Figure 4.13). Similar to 

bortezomib and MG132, MLN2238 is a selective, potent and reversible PI that preferentially 

binds to and inhibits the β5 (chymotrypsin-like) proteolytic site of the 20S proteasome. At 

higher concentrations, the inhibition of β1 (caspase-like) and β2 (trypsin-like) proteolytic 

sites are also seen (Kupperman et al., 2010).  

 

 

Figure 4. 13 - Chemical structure of the two forms of ixazomib (MLN9708 and MLN2238). 
MLN9708 administered orally as a capsule, is rapidly absorbed and hydrolyzed to the biologically 
active form, MLN2238, when it comes in contact with aqueous plasma. 
 

Although the potency and selectivity of MLN2238 were generally similar to bortezomib, the 

proteasome dissociation half-life is approximately sixfold faster for ixazomib than 

bortezomib, which is believed to contribute to its superior tissue penetration and wider 

distribution (Al-Salama et al., 2017). In vitro, MLN2238 reduces tumour progression in 

several human multiple myeloma cell lines by inducing apoptosis, and disrupts the interaction 

of MM cells with the BM microenvironment resulting in decreased angiogenesis and 

osteolytic lesions (Muz et al., 2016). These results were consistent with in vivo findings 
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where oral doses of MLN2238 induced a significant anti-tumour activity and increase in 

survival, in tumour xenograft models (Kupperman et al., 2010) and multiple myeloma 

models (Chauhan et al., 2011).  

Since, bortezomib and MG132 have been reported previously to rescue frataxin from UPP 

degradation, we decided to also investigate the potential therapeutic effect of ixazomib in 

FRDA, using human FRDA fibroblasts. 
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4.2.4.1 Cell viability assessment after drug treatment  
 
To investigate the safety and cellular tolerability of ixazomib, both normal and FRDA human 

fibroblasts were treated in triplicates with 1nM to 10µM ixazomib for 72hrs. This was 

followed by PrestoBlue cell viability analysis, to quantitatively measure the proliferation of 

cells after treatment. The mean value of the triplicates was normalised to vehicle treated 

normal fibroblasts, which was set as 100% arbitrarily. The results obtained indicated that 

ixazomib treatment was significantly toxic to human fibroblasts with 100nM to 10µM 

concentrations, where a dose-dependent reduction in cell viability was seen (Figure 4.14). 

However, lower concentrations (1nM and 10nM) of ixazomib were considered safe to human 

fibroblasts, as no significant changes in cell viability was observed. Therefore, 1nM and 

10nM were then chosen as the optimum ixazomib concentrations for further analysis. 

 

Figure 4. 14 - PrestoBlue cell viability analysis of human primary fibroblasts following 72hr 
ixazomib treatment. All data was normalised to the mean average of PrestoBlue reduction of control 
cells (set at 100%). Error bars indicate SEM and values represent mean ±SEM (n=3). Asterisks 
indicate significant differences between drug and vehicle treated cell lines, assessed by Student’s t-
test (***P<0.001). 
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4.2.4.2 Protein quantification assessment  

The efficacy of ixazomib in FRDA was subsequently investigated by treating normal and 

FRDA human primary fibroblasts with 1nM and 10nM concentrations for 72hrs. This was 

followed by cell collection and protein expression analysis of frataxin, c-Jun, p27Kip1 and 

PSMB5, by western analysis using specific primary antibodies. Densitometry was carried out 

using ImageJ software, where the values were normalised to those of tubulin as an 

endogenous control. Western blot analysis revealed an increase in frataxin expression levels 

after 1nM and 10nM ixazomib treatment in FRDA fibroblasts by 23% and 27%, respectively 

(Figure 4.15 A-B). However, the changes were statistically not significant. These changes in 

frataxin were also confirmed by the lateral flow immunoassay dipstick kit (MitoSciences), 

where a statistically significant increase of 76% (P<0.05) and 69% (0.05) was noted in 

frataxin expression levels with 1nM and 10nM treatment, respectively (Figure 4.16). 

Moreover, a dose-dependent increase was seen in c-Jun and p27Kip1 levels, with 33% 

significant increase (P<0.05) in p27Kip1 levels after 10nM ixazomib treatment in FRDA 

fibroblast (Figure 4.15 A, C-D). However, no significant changes were seen in PSMB5 levels 

after treatment in both normal and FRDA fibroblasts (Figure 4.15 A, E). This suggests that 

ixazomib may have some therapeutic effects in preventing frataxin proteasomal degradation.  
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Figure 4. 15 - Dose-response western analysis of human FRDA and normal fibroblast cells treated 
with ixazomib for 72hrs. A) Total cell extracts were analysed by SDS-PAGE and revealed by 
immunoblotting with anti-frataxin, anti-cJun, anti-p27Kip1 and anti-PSMB5, and anti-tubulin as a 
control. One representative experiment out of three performed with similar results shown. V- Vehicle 
(DMSO). B-E) Densitometry analysis of frataxin, c-Jun, p27Kip1, PSMB5 upon ixazomib treatment of 
human fibroblasts as shown in (A).  The values were expressed as a ratio to the vehicle treated 
samples of normal fibroblasts. (*P<0.05, **P<0.01, error bars ±SEM). 
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Figure 4. 16 - Relative frataxin protein expression levels in human normal and FRDA primary 
fibroblasts following ixazomib treatment for 72hrs. The change in frataxin levels were determined by 
the dipstick immunoassay. The values were expressed as a ratio to the vehicle treated samples of 
normal fibroblasts. Error bars indicate SEM and values represent mean ±SEM (n=3). Asterisks 
indicate significant differences between drug and vehicle treated cell lines, assessed by Student’s t-
test (*P<0.05, **P<0.01). 
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4.2.4.3 Proteasomal activity analysis 
 
The proteasomal inhibitory effect of ixazomib in FRDA was analysed by determining the 

trypsin-like and the chymotrypsin-like activity in normal and FRDA fibroblasts. Cells were 

treated with 1nM and 10nM ixazomib for 72hrs, followed by specific proteasome-Glo cell 

based assay assessment. The mean value of the vehicle and drug treated triplicates were used 

for calibration to untreated normal cells, which was set as 100% arbitrarily. As expected, 

ixazomib treatment reduced the chymotrypsin-like activity with 1nM (48%, P<0.05) and 

10nM (35%, P=0.02) treatment in FRDA cell line (Figure 4.17). However, no significant 

change in trypsin-like activity was seen after ixazomib treatment in FRDA cells. Ixazomib 

had no significant effect, on either the trypsin-like or chymotrypsin-like activity, in normal 

fibroblasts.  

 
Figure 4. 17 - Relative change in trypsin-like and chymotrypsin-like activity in FRDA and normal 
fibroblasts after 72hrs of ixazomib treatment. The values were expressed as a ratio to the vehicle 
treated samples of normal fibroblasts. Error bars indicate SEM and values represent mean ±SEM 
(n=3).  
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4.2.4.4 Biochemical analysis following ixazomib treatment 
 
Aconitase is an Fe-S cluster protein involved in iron homeostasis that is defective in FRDA 

cells. Aconitase activity can undergo reversible citrate-dependent modulation in response to 

pro-oxidants. Frataxin is an iron chaperone protein that protects the aconitase iron sulphur 

cluster from disassembly and promotes enzyme reactivation. Loss of aconitase activity in 

cells or other biological samples treated with pro-oxidants has been interpreted as a measure 

of oxidative damage. Therefore, we have investigated whether ixazomib treatment is able to 

ameliorate the impaired aconitase enzymatic activity in FRDA human fibroblasts, using the 

aconitase assay kit (Cayman Chemicals). In this assay, citrate is converted by aconitase into 

isocitrate, which is further processed resulting in a product that converts a nearly colourless 

probe into an intensely coloured form with MAX 450nm (Chapter 2, section 2.21). The mean 

values of the vehicle and drug-treated triplicates were calibrated to vehicle treated normal 

fibroblasts, which was arbitrarily set as 100%. As expected, the aconitase activity of human 

FRDA fibroblast was significantly lower (65%, P<0.001), as compared to normal fibroblasts 

(Figure 4.18). However, after 1nM and 10nM ixazomib treatment, a significant increase in 

aconitase activity was seen in both cell lines. This may suggest that ixazomib has non-cell 

type specific effects in increasing aconitase activity. 
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Figure 4. 18 - Relative aconitase activity levels in normal and FRDA human fibroblasts after 
ixazomib treatment for 72hrs. The mean aconitase activity of each sample was first normalised to the 
activity of the activity of vehicle treated normal fibroblasts (set to 100%). After 1nM and 10nM 
ixazomib treatment, the aconitase activity increased from 65% to 165% and 162%, respectively, in 
FRDA fibroblasts and an increase of 63% and 62%, is seen in normal fibroblasts, respectively. Error 
bars indicate SEM and values represent mean ±SEM (n=3). Asterisks indicate significant differences 
between drug and vehicle treated cell lines, assessed by Student’s t-test (**P<0.01, ***P<0.001). 
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4.2.5 Therapeutic testing of salinosporamide A 
 
Salinosporamide A (also known as marizomib or NPI-0052) (Figure 4.19) is a second-

generation PI isolated from marine bacterium, Salinispora tropica. It was the first natural PI 

to be used in clinical trials for the treatment of myeloma (Fenical and Jensen, 2006). 

Chemically, salinosporamide A is bicycle ß-lactone-γ-lactam, and is structurally distinct from 

bortezomib, MG132 and ixazomib, due to its lack of peptide chain.  Additionally, unlike 

other PIs, salinosporamide A has a unique ability to effectively inhibit all three proteolytic 

activities of the proteasome, by irreversibly binding with high affinity to the chymotrypsin-

like (ß5), trypsin-like (ß2), and with lower affinity to the caspase-like (ß1) catalytic sites 

(Chauhan et al., 2005). Studies have shown, that the irreversible proteasome binding of the 

ligand is responsible for the slower efflux, longer duration and greater potency of action of 

salinosporamide A, relative to other PIs (Obaidat et al., 2011). Therefore, due to the 

encouraging reports on the proteasomal inhibitory effects of salinoporamide A, we decided to 

assess its potential therapeutic effects in FRDA. 

 

 

 
 
Figure 4. 19 - Molecular structure of salinosporamide A 
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4.2.5.1 Cell viability assessment after drug treatment  
 
In order to evaluate the safety and cellular tolerability of salinosporamide A, both normal and 

FRDA primary fibroblasts were treated with 1nM to 1µM salinosporamide A for 72hrs, 

followed by PrestoBlue cell viability analysis. Interestingly, 1nM to 100nM salinosporamide 

A treatments did not produce cellular toxicity in either normal and FRDA cell lines, as no 

significant changes in PrestoBlue cell viability were observed (Figure 4.20). However, 1µM 

salinosporamide A treatment significantly reduced the cell viability by 15% (P<0.01) in 

normal fibroblasts, compared to vehicle treated cells. Therefore, as cellular tolerability was 

observed with 1nM to 100nM salinosporamide A treatment in both normal and FRDA 

fibroblasts, we continued the subsequent molecular analysis with 1nM and 100nM 

concentrations to investigate the efficacy of salinosporamide A.  

 

 
 
Figure 4. 20 - PrestoBlue cell viability analysis of human primary fibroblasts following 72hr 
salinosporamide A treatment. All data was normalised to the mean average of PrestoBlue reduction of 
the corresponding vehicle treated cell line (set at 100%). Error bars indicate SEM and values represent 
mean ±SEM (n=3). Asterisks indicate significant differences between drug and vehicle treated cell 
lines, assessed by Student’s t-test (**P<0.001). 
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4.2.5.2 Protein quantification assessment  
 
The effect of salinosporamide A on FRDA was subsequently investigated by treating normal 

and FRDA human primary fibroblasts with 1nM and 100nM concentrations for 72hrs. This 

was followed by cell collection and protein expression assessment of frataxin, c-Jun, p27Kip1 

and PSMB5 by western analysis with specific primary antibodies. 1nM salinosporamide A 

treatment of FRDA fibroblasts revealed an increase of 35% in frataxin expression levels, 

compared to vehicle treated cells, but the increase was statistically insignificant (Figure 4.21 

A-B). No significant change in frataxin expression was seen with 100nM salinosporamide A 

treatment in either normal or the FRDA fibroblasts. Furthermore, western analysis indicated 

an increase of 5% in c-Jun expression levels with 1nM drug treatment, in FRDA cells (Figure 

4.21 A, C), whereas in normal fibroblasts, a decrease of 42% was seen. However, these 

changes in c-Jun expression levels were statistically insignificant. Comparably, 1nM 

salinosporamide A treatment increased the p27Kip1 cellular stress marker levels by 18% and 

46% in normal and FRDA fibroblasts, respectively (Figure 4.21 A, D). Nevertheless, this was 

reduced with 100nM treatment. No significant changes in the PSMB5 proteasome complex 

activity levels were observed after treatment (Figure 4.21 A,E).  
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Figure 4. 21 - Dose-response western analysis of human FRDA and normal fibroblast cells treated 
with salinosporamide A for 72hrs. A) Total cell extracts were analysed by SDS-PAGE and revealed 
by immunoblotting with anti-frataxin, anti-cJun, anti-p27Kip1 and anti-PSMB5, and anti-tubulin as a 
control. One representative experiment out of three performed with similar results shown. V- Vehicle 
(DMSO). B-E) Densitometry analysis of frataxin, c-Jun, p27Kip1, PSMB5 upon salinosporamide A 
treatment of human fibroblasts as shown in (A).  The values were expressed as a ratio to the vehicle 
treated samples of normal fibroblasts. (*P<0.05, **P<0.01, error bars ±SEM). 
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4.2.5.3 Proteasomal activity analysis  
 
In order to assess proteasomal inhibitory effect of salinosporamide A in FRDA, the trypsin-

like and chymotrypsin-like catalytic activity of the proteasomes were determined. The human 

primary fibroblasts were treated with 1nM and 100nM of salinosporamide A for 72hrs, 

followed by specific proteasome-Glo cell based assay assessment. A mean value of the 

vehicle and drug treated triplicates were used, compared to untreated normal cells, which 

were set as 100% arbitrarily. A significant reduction of 59% (P<0.01) in chymotrypsin-like 

activity was observed in FRDA cells treated with 100nM salinosporamide A, whereas no 

changes were seen with 1Nm (Figure 4.22). Moreover, a dose-dependent reduction in 

chymotrypsin-like activity was also seen in normal fibroblasts, whereas 100nM 

salinosporamide A treatment instigated a 47% (P<0.05) reduction. No changes were observed 

in the trypsin-like activity of either cell lines after treatments. 

 
 
Figure 4. 22 - Relative change in trypsin-like and chymotrypsin-like activity in FRDA and normal 
fibroblasts after 72hrs of salinosporamide A treatment. The values were expressed as a ratio to the 
vehicle treated samples of normal fibroblasts. Error bars indicate SEM and values represent mean 
±SEM (n=3). 
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4.3 Discussion  
 
FRDA is an inherited progressive neurodegenerative disorder caused by an unstable GAA 

repeat expansion mutation within intron 1 of the FXN gene, which partly silences de novo 

transcription, leading to reduction in intracellular frataxin protein levels. Frataxin is an 

essential mitochondrial protein, and is involved in iron metabolism and oxidative stress 

control (Babcock et al., 1997, Foury and Cazzalini, 1997). Decreased residual frataxin results 

in mitochondrial dysfunction and ultimately causs pathology in affected tissues, where the 

severity of the disease is directly correlated to the extent of the reduction (Chutake et al, 

2014b). Therefore, strategies which aim to restore physiological frataxin levels are desirable, 

and are likely to be therapeutically beneficial for FRDA patients (Wilson, 2012, Soragni et 

al., 2014, Nabhan et al., 2015). Most current therapeutic approaches aim to induce frataxin 

expression from the pathogenic FXN locus (Strawser et al, 2014), or to intervene in the 

pathogenic cascade downstream of frataxin deficiency. In contrast, frataxin post-translation 

modulation has not been explored extensively. Recent advances in FRDA research have 

reported that the UPP pathway degrades precursor frataxin (Rufini et al., 2011, 2015), and 

that UPP inhibition can prevent frataxin precursor degradation to ultimately upsurge mature 

frataxin levels. 

Thereby, in this study we have reported the in vitro efficacy of four 26S proteasome 

inhibitors (MG132, bortezomib, salinosporamide A and ixazomib) using FRDA patient-

derived fibroblasts, to potentially increase frataxin protein expression and ameliorate the 

disease phenotype.  

Western analysis of human FRDA fibroblasts confirmed to be significant reduction in 

frataxin, as compared to normal fibroblasts. Subsequently treatment with MG132 or 

bortezomib, at non-toxic concentrations, produced no significant change in frataxin levels. 

Additionally, no significant change was observed in the UPP substrate, c-Jun, and the cell 
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cycle stress control modulator, P27Kip1. Moreover, while no change was seen in the PSMB5 

levels by western analysis, the proteasome-Glo luciferase assay revealed a slight decrease in 

chymotrypsin-like activity in normal fibroblasts with 10μM MG132 treatment. On the other 

hand, bortezomib treatment induced a non-cell specific significant decrease in the 

chymotrypsin-like activity. This suggests that although these treatments inhibit the 

chymotrypsin-like activity of the 26S proteasomes to some extent, no downstream effects can 

be observed of increasing frataxin protein expression levels in FRDA fibroblasts. 

Although it was previously reported that MG132 treatment increased precursor and mature 

frataxin levels, this experiment was performed in HEK-293 cells which stably expressed 

frataxin at more physiological level (Rufini et al., 2011, 2015), and not in cells derived from 

FRDA patients. Furthermore, in agreement with our findings, Nabhan et al. (2015) 

demonstrated that UPP-inhibition with MG132 or bortezomib treatment did not increase 

mature frataxin levels in 293T cells, with a decrease in mature frataxin levels in FRDA 

patient-derived lymphoblastoid cells after bortezomib treatment. 

Similarly, our results showed no significant change in frataxin protein expression levels with 

salinosporamide A treatment. Although a small increase in P27Kip1 was seen with 1nM drug 

concentration in FRDA fibroblasts, the chymotrypsin-like activity was significantly reduced 

at 100nM treatment in both normal and FRDA fibroblasts. This suggests that higher 

concentrations of salinosporamide A have a non-cell specific effect on the chymotrypsin-like 

activity of the proteasomes; but have no effect on frataxin expression levels. 

Furthermore, ixazomib treatment at non-toxic concentrations resulted in a slight increase in 

frataxin protein expression in FRDA fibroblasts, and this increase was statistically significant 

with frataxin dipstick assay. Although western analysis revealed no significant changes in c-

Jun and PSMB5 levels, the chymotrypsin-like activity of the 26S proteasome was 

significantly reduced with ixazomib treatment in FRDA fibroblasts, alongside a dose-
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dependent increase in p27Kip1 levels. This indicates that ixazomib has a specific FRDA effect. 

However, since the cell cycle stress control modulators were triggered, it may produce some 

detrimental effects, to some extent. Moreover, since reduced frataxin in FRDA is associated 

with impaired mitochondrial activity and cytosolic aconitase, we then investigated the effect 

of ixazomib on aconitase activity in FRDA firboblasts. Interestingly, our results indicated a 

non-cell specific significant increase in the aconitase activity, where the increase was above 

normal, suggesting that ixazomib may have an indirect effect on the aconitase activity.  

Interestingly, c-Jun expression levels were found to be significantly higher in FRDA 

fibroblasts as compared to normal cells. This was reported previously by Pianese et al. (2002) 

in FRDA fibroblasts, where they proposed that lack of frataxin in FRDA may trigger 

increased c-Jun phosphorylation and hyperactive stress signalling pathway, probably due to 

increased ROS levels. Moreover, it is important to note that no change was seen in the 

chymotrypsin-like activity levels between the normal and FRDA fibroblasts, but a significant 

increase in trypsin-like activity was seen in FRDA fibroblast (P<0.001). This suggests that 

perhaps the increased frataxin UPP-mediated degradation in FRDA may be related to the 

increased trypsin-like activity, as supposed to chymotrypsin-like activity of the 20S 

proteasome. This has not been reported before, and requires further investigations.  

Overall, out of the four proteasome inhibitors investigated, only ixazomib treatment increased 

frataxin protein expression levels. However, the significance of these results is unclear since 

an increase in cellular stress marker, p27Kip1, is also seen. Therefore, at this stage we do not 

propose in vivo animal studies, and our results do not support the use of proteasome 

inhibitors as a therapeutic approach for FRDA. However, it would be interesting to 

investigate the precursor and intermediate frataxin protein forms, alongside a broad range of 

UPP substrates, after proteasome inhibitor treatment in FRDA patient-derived cells. 

Therefore, further western analysis is a consideration. 
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5.1 Introduction   

Synaptic transmission is essential for the nervous system to process and store information. 

Synapses are specialised contacts between neurons, where the release of neurotransmitters by 

the presynaptic neurons activates neurotransmitter receptors on the membrane of the 

postsynaptic neuron (Vyklicky et al., 2014). One of the key excitatory neurotransmitter 

receptors in the brain are the N-methyl D-aspartate receptors (NMDARs), which are involved 

in many physiological processes, including memory formation, synaptic plasticity and 

development of the central nervous system (CNS) (Danysz and Parsons, 1998). 

Consequently, abnormal NMDAR function have been implicated in numerous neurological 

disorders and pathological conditions, including cerebellar ataxia (Zhou and Sheng, 2013). 

NMDARs are a class of ionotropic glutamate receptors, whose functional activation requires 

the binding of two ligands and membrane depolarization, removing a magnesium ion from 

the binding site within the ion conduction pore (Danysz and Parsons, 1998). The main 

NMDAR agonist, glutamate, does not activate the receptor unless a co-agonist is bound 

simultaneously (Johnson and Ascher, 1987). Studies have reported that D-serine may be the 

dominant co-agonist of NMDARs, mediating several NMDAR-dependent processes (Mothet 

et al., 2000). Endogenous D-serine is synthesized from L-serine by serine racemase (SRR) 

(De Miranda et al., 2002), an enzyme that is expressed in both glia and the neurons in the 

brain (Takayasu et al., 2008). Upon synaptic transduction, glial cells detect changes in their 

environment, which induces the release of D-serine from these cells in culture, where it plays 

a critical role in long-term potentiation (Figure 5.1) (Mothet et al., 2005). Degradation of 

mammalian D-serine is mediated by the peroxisomal flavoprotein, D-amino acid oxidase 

(DAO), an enzyme highly present in astrocytes of the hindbrain and cerebellum (Sacchi, 

2013). 
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DAO catalyses D-serine oxidation to form the corresponding keto acid, ammonia and 

hydrogen peroxide (Pollegioni et al., 2007, Verrall et al., 2007).  

 

 

Figure 5. 1 - Synaptic regulation and D-serine catabolism. 1) Glial SRR synthesizes D-serine (green 
triangles) from L-serine. 2) D-serine is released at tripartite synapses to facilitate the action of 
synaptic glutamate (yellow circles) at NMDARs. 3) Synaptic D-serine is then taken up into glia and 
broken down within glia by peroxisomal DAO, forming the alpha keto acid (Aka), ammonia and 
hydrogen peroxide (Verrall et al., 2010). 
 
 

Studies have reported that impaired glutamate-mediated signalling may be associated in the 

pathogenesis and progression of cerebellar ataxia both in humans and animal models (Ogawa 

et al., 2003). For instance, gene disruption of the NMDAR subunits in mice resulted in lack 

of motor coordination and ataxia (Kadotani et al., 1996), suggesting that NMDA-type 

glutamate receptor functioning is vital for correct motor coordination. Successively, ataxia 

symptoms induced by NMDAR uncompetitive antagonists such as PCP (1-phenylcyclohexyl 

piperidine) and MK-801 (di-zocilpine) in rodents, were reduced when the animals were given 
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injections of D-serine (Tanii et al., 1994). This suggests that D-serine is vital in modulating 

normal NMDAR functioning and improves ataxia produced by cerebellar dysfunction. 

Furthermore, Hashimoto et al. (2005) later reported that mice lacking DAO activity displayed 

significant attenuation of stereotypy, as well as ataxia induced by PCP and MK-801, due to 

increased levels of D-serine in the brain and enhancement of NMDAR-mediated synaptic 

transmission. This indicates that overexpression and hyperactivity of brain DAO may be 

associated to excessive D-serine degradation and NMDAR hypofunction in cerebellar 

degeneration (Verrall et al., 2010). Therefore, as a potential neuromodulation therapy for 

cerebellar ataxia, small molecule inhibitors of DAO could be used to prevent D-serine 

degradation and alleviate ataxic symptoms. 

 

5.2 Therapeutic testing of TAK-831 

It has been hypothesised that excessive degradation of D-serine by DAO may lead to low 

NMDAR functioning and impaired neural signalling in the cerebellum, resulting in ataxia. 

Therefore, as a potential therapeutic approach, in collaboration with the pharmaceutical 

company Takeda Cambridge Limited, we decided to investigate the efficacy of a small 

molecule inhibitor of DAO, TAK-831, in our FRDA YAC transgenic mice, YG8sR (220 

GAA repeats). Similar to FRDA patients, the YG8sR mice demonstrate progressive 

behavioural deficits, together with significant decreases of FXN and frataxin protein 

expression compared with control mice (Anjomani Virmouni et al., 2015), thus, making them 

an excellent model to investigate potential FRDA therapies. 
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5.3 Study design and drug administration  
 
In order to observe the therapeutic efficacy of TAK-831 in FRDA, two dosing experiments 

were performed on the same YG8sR and C57B6/J (WT) mice.  The first dosing experiment 

was carried out when the mice were on average 4 months of age (T1), then the mice were left 

to age normally to reach 8 months, followed by the second dosing experiment (T2). Mice 

were either administered vehicle or 3mg/kg TAK-831 by daily oral gavage for 14 days. In 

each group, 10 age- and sex-matched mice were used, where the YG8sR mice were treated 

with vehicle or 3mg/kg TAK-831, and WT mice were treated with vehicle (Table 5.1).  

 

Table 5. 1- Study design of TAK-831 in WT and YG8sR mice 
 

Genotype Male Female Dose 
WT 5 5 Vehicle 

YG8sR 5 5 Vehicle 
YG8sR 5 5 TAK-831 3mg/kg 

 

Weight and beam walk measurements were taken before and after treatment in both of the 

dosing experiments (T1 and T2), whereas locomotor activity was measured in the first dosing 

(T1), and rotarod performance was measured in the second dosing experiment (T2). At the 

completion of the drug treatment all of the mice were appropriately culled and samples were 

collected (as described in Chapter 2, section 2.23) for molecular analysis.  
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5.4 Results 
 

5.4.1 Weight analysis 
 
Mouse weight analysis was carried out during both T1 and T2 experiments, before and after 

drug treatment. Within respective groups, the mean weight of mice at each time point was 

normalised to the average weight at T1-day 0, which was set to 100%. At the start of T1 drug 

treatment, all mouse groups showed similar weight distribution. However, a considerable 

increase in weight was seen after 3 months of no treatment, with YG8sR mice having a 

higher body weight as compared to WT mice. Two-way analysis of variance (ANOVA) 

conducted across both T1 and T2 experiments (Table 5.2) confirmed that there was no 

significant difference in overall average body weight between YG8sR mice as compared to 

WT mice treated with vehicle, or YG8sR TAK-831-treated mice as compared to YG8sR 

vehicle-treated mice (Figure 5.2), suggesting that TAK-831 was well tolerated and the 

treatment did not have any significant effect on the FRDA mouse body weight. This was also 

true for female values analysed separately (Figure 5.2 B). However, male YG8sR mice 

treated with the vehicle had a higher average body weight as compared to WT vehicle-treated 

mice (P<0.0001) (Figure 5.2 B). Moreover, a significant reduction in body weight was seen 

in male YG8sR TAK-831-treated mice compared to male YG8sR vehicle-treated mice over 

time (P<0.001). 

 

Table 5. 2 - Two-way ANOVA analysis of body weight in YG8sR or WT mice throughout treatment  
 

Groups P value Sex P value 
Vehicle 

YG8sR Vs WT 0.1505 
Male <0.0001 

Female 0.6782 

YG8sR TAK-831 Vs YG8sR Vehicle 0.9395 Male 0.0011 
Female 0.3023 
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Figure 5. 2 - Mouse body weight analysis during treatment with TAK-831. Relative weight analysis 
of YG8sR mice treated with vehicle and TAK-831, compared to WT vehicle treated mice, when A) 
both male and female values were taken together (n=10 mice per group), B) male and female values 
analysed separately (n=5 mice per group). Error bars indicate SEM and values represent mean ±SEM. 
 
 

B 
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5.4.2 Beam-walk assessment  

Beam-walk performances were assessed to investigate the coordination ability of YG8sR 

FRDA mice before and after oral TAK-831 or vehicle treatment, while B6 mice treated with 

vehicle were used as WT controls. 10 mice, 5 males and 5 females, were assessed for each 

group and the average beam crossing time of 4 trials on 22x900mm and 12x900mm beams 

were recorded. The data obtained within each group were normalised to baseline (T1- Day 0), 

which was arbitrarily set as 100%. The significance of these observation was confirmed by 

two-way ANOVA (Table 5.3) and Student’s t test (Table 5.4). 

As shown in Figure 5.3 A, in the first dosing treatment (T1-day 0 to T1-day 14), no specific 

TAK-831 drug-induced effect was observed, as the YG8sR TAK-31-treated mice showed no 

significant change in the time taken to cross either the 22mm and 12mm beam when 

compared to controls groups. However, after 3 months without treatment, we observed a 

progressive FRDA-like disease effect in YG8sR mice when compared to WT mice. YG8sR 

mice took significantly longer to cross both the 22mm and 12mm beams (Table 5.4). 

Nevertheless, after the second dose of TAK-831 treatment (T2-day 14), a clear drug-induced 

effect was seen in YG8sR mice, as the time taken to cross the 22mm beam was significantly 

reduced in comparison to vehicle-treated YG8sR mice. This indicates that TAK-831 

significantly improved the balance and motor coordination ability of YG8sR mice at 8 

months of age when the disease effect was prominent. The same trend was also observed 

when female values were considered alone (Figure 5.3 B). YG8sR female mice took 

significantly longer than WT female mice to cross the 22mm and 12mm beam at an older 

age, but this effect was improved significantly with TAK-831 treatment. Similar results were 

also obtained when analysing YG8sR male mice crossing the 22mm beam (Figure 5.3 C). 

However, detailed analysis of YG8sR and WT male values crossing the 12mm beam showed 

variabilities throughout the time points. This could be attributed to the differences in male 
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and female average body weight, which could affect their balance and performance on the 

narrow beam. This could have also contributed to the lack of drug-induced changes observed 

with the 12mm beam.  

 

 

 

 

 

 

 

A 

B 
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Figure 5. 3 - Mouse beam walk analysis during TAK-831 treatment. Relative time taken to cross the 
22mm and 12mm beam in A) male and female B) male and C) female WT and YG8sR mice. Error 
bars indicate SEM and values represent mean ±SEM. 
 
 
 
 
Table 5. 3 - Two-way ANOVA analysis of beam-walk performance in YG8sR or WT mice 
throughout treatment 

 
Beam 
size Groups P value Sex P value 

22mm 

Vehicle 
YG8sR versus WT <0.0001 

Male 0.0003 

Female <0.0001 

YG8sR TAK-831 versus YG8sR Vehicle <0.0001 Male 0.0009 
Female <0.0001 

12mm 

Vehicle 
YG8sR versus WT <0.0001 Male 0.0003 

Female <0.0001 

YG8sR TAK-831 versus YG8sR Vehicle <0.0001 Male <0.0001 

Female 0.0007 
 
 
 
 
 

C 
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Table 5. 4 - Student’s t test analysis of beam-walk performance in YG8sR or WT mice throughout 
treatment 
 

T1  T2 

Beam 
Size 

FRDA 
mouse Gender Versus Day 0 Day 

13 
Day 
14 

3 months 
no 

treatment 
Day 0 Day 14 

22mm 

YG8sR 
- 

Vehicle 

Male 
and 

female 

B6 - 
Vehicle >0.9999 0.1488 0.5281 <0.0001 <0.000

1 <0.0001 

YG8sR- 
TAK831 >0.9999 0.1247 0.4754 0.6248 0.1364 <0.0001 

YG8sR 
- 

Vehicle 
Male 

B6 - 
Vehicle >0.9999 0.1351 0.9280 0.0004 0.6903 0.0007 

YG8sR- 
TAK831 >0.9999 0.1351 0.9280 0.8531 0.0329 0.0006 

YG8sR 
- 

Vehicle 
Female 

B6 - 
Vehicle >0.9999 0.8268 0.0453 <0.0001 <0.000

1 <0.0001 

YG8sR- 
TAK831 >0.9999 0.7415 0.0306 0.6625 0.9840 <0.0001 

12mm 

YG8sR 
- 

Vehicle 

Male 
and 

female 

B6 - 
Vehicle >0.9999 0.1570 0.0028 <0.0001 0.0172 0.0046 

YG8sR- 
TAK831 >0.9999 0.9946 0.0019 0.6087 <0.000

1 0.6103 

YG8sR 
- 

Vehicle 
Male 

B6 - 
Vehicle >0.9999 0.0253 0.0002 0.7026 0.6880 0.8211 

YG8sR- 
TAK831 >0.9999 0.4379 0.0016 0.1327 <0.000

1 0.1339 

YG8sR 
- 

Vehicle 
Female 

B6 - 
Vehicle >0.9999 0.9989 0.6790 <0.0001 <0.000

1 <0.0001 

YG8sR- 
TAK831 >0.9999 0.3094 0.1904 0.7032 0.3814 <0.0001 
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5.4.3 Rotarod assessment  

Since YG8sR mice revealed a progressive FRDA-like disease effect at an older age, we then 

additionally decided to investigate the motor coordination performance of YG8sR mice in the 

second TAK-831 dosing experiment (T2) using a rotarod treadmill. As shown in Figure 5.4, 

the coordination ability of vehicle-treated YG8sR mice was significantly reduced compared 

to vehicle-treated WT mice after 3 months without treatment when analysed by Student’s t 

test (Table 5.5). However, the YG8sR mice that had previously been dosed with TAK-831 at 

4 months of age where found to stay on the rotarod treadmill for significantly longer than the 

vehicle-treated YG8sR mice. After the second dosing treatment (T2- Day 14), the time on the 

rotarod for YG8sR mice treated with TAK-831 continued to show significant improvement 

compared to YG8sR mice treated with the vehicle (P<0.001), suggesting a drug-induced 

effect. No significant changes were observed in TAK-831 treated YG8sR and vehicle treated 

WT mice throughout the T2 time points. This trend was observed when both male and female 

values were taken together (Figure 5.4 A), or when male and females were considered alone 

(Figure 5.4 B). In general, male YG8sR mice were shown to stay on the rotarod for a shorter 

period of time as compared to female YG8sR mice. A possible explanation for this could be 

due to difference in mice body weight.  

 

Table 5. 5 - Student’s t test analysis of rotarod performance in YG8sR or WT mice throughout 
treatment 

T2 

FRDA mouse Gender Versus 3 months no treatment Day 0 Day 14 

YG8sR - 
Vehicle 

Male and 
female 

B6 - Vehicle <0.0001 <0.0001 <0.0001 

YG8sR- TAK831 0.0027 <0.0001 <0.0001 

YG8sR - 
Vehicle Male 

B6 - Vehicle <0.0001 <0.0001 <0.0001 

YG8sR- TAK831 0.0029 <0.0001 <0.0001 

YG8sR - 
Vehicle Female 

B6 - Vehicle <0.0001 <0.0001 <0.0001 

YG8sR- TAK831 0.0368 0.0005 <0.0001 
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Figure 5. 4 - Mouse rotarod analysis during TAK-831 treatment. The average time on the rotarod in 
A) male and female together, and B) male and female WT and YG8sR mice separately. Error bars 
indicate SEM and values represent mean ±SEM. 
 
 
 
 
 
 
 

A 
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5.4.4 Beam-breaker locomotor activity assessment 

The locomotor activity of the mice, including average velocity, jump counts and stereotypic 

counts were monitored in all groups during the first dosing experiment and after 3 months 

without treatment. The functional measurements were recorded over a 5-minute period and 

repeated four times for each mouse using a beam-breaker activity monitor. For all 

experimental results, statistical analysis was performed by two-way ANOVA (Table 5.6). 

As shown in Figure 5.5 A, no significant change in the average velocity (total distance 

covered divided by the total time elapsed) was observed in YG8sR mice compared to WT 

vehicle treated mice, and when TAK-831-treated YG8sR mice were compared to vehicle-

treated YG8sR mice throughout the time points. Although, a drop in average velocity is seen 

in all mouse groups at T1-Day 14 (post-treatment), this could be due to the mice becoming 

familiar with their environment and lessening in explorative behaviour.  A similar trend was 

observed when males and females were analysed separately (Figure 5.5 B). 

 

 

A 
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Figure 5. 5 - Average velocity analysis during TAK-831 treatment in YG8sR in A) male and female 
together, and B) male and female mice separately. Error bars indicate SEM and values represent mean 
±SEM. 
 
 
The jump count (total number of times that the mouse jumps) were also recorded. As shown 

in Figure 5.6 A, overtime the YG8sR mice showed a significant decrease in jump counts 

compared to WT mice, when analysing males and females together. This could have been 

influenced by the male values, where YG8sR mice jump count was significantly lower than 

the WT mice (P<0.004) (Figure 5.6 B). However, female YG8sR mice showed to have a 

higher jump count compared to WT mice. This difference in male and female jump count 

could be due to their weight differences. Moreover, no significant difference in jump counts 

was observed in YG8sR TAK-831-treated mice compared to YG8sR vehicle-treated overt the 

time-points.  

 

B 
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Figure 5. 6 - Average jump count analysis during TAK-831 treatment in YG8sR in A) male and 
female together, and B) male and female mice separately. Error bars indicate SEM and values 
represent mean ±SEM. 
 

The stereotypic count assesses the total number of mouse motor responses, that are repetitive, 

invariant and seemingly without purpose (such as grooming). YG8sR mice showed to have a 

significantly lower stereotypic count as compared to WT mice, when both male and female 

values were taken together, throughout the time points, with an emerging FRDA-like disease 

phenotype of reduced stereotypic activity after 3 months without treatment (Figure 5.7 A). 

A 
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However, there is no significant difference in the stereotypic count of TAK-831 treated 

YG8sR mice as compared to the vehicle treated group, indicating no specific drug-induced 

effect is seen. Moreover, female YG8sR mice treated with TAK-831 showed a higher 

stereotypic count compared to YG8sR mice treated with vehicle at the 3 months without 

treatment time point, an effect that was not observed in the male YG8sR mice (Figure 5.7 B).  

 

 

Figure 5. 7 - Average stereotypic count analysis during TAK-831 treatment in YG8sR in A) male and 
female together, and B) male and female mice separately. Error bars indicate SEM and values 
represent mean ±SEM. 
 

 

A 

B 
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Table 5. 6 - Two-way ANOVA analysis of locomotor activity in YG8sR and WT mice throughout 
treatment 

 
Groups P value Sex P value 

A
ve

ra
ge

 
ve

lo
ci

ty
 Vehicle 

YG8sR Vs WT 
0.5587 

 
Male 0.4154 

Female 0.1767 

YG8sR TAK-831 Vs YG8sR Vehicle 
0.7896 

 
Male 0.7506 

Female 0.8693 

Ju
m

p 
co

un
t Vehicle 

YG8sR Vs WT 
0.0096 

 
Male 0.0038 

Female 0.0102 

YG8sR TAK-831 Vs YG8sR Vehicle 
0.5548 

 

Male 0.0779 

Female 0.1650 

St
er

eo
ty

pi
c 

co
un

t 

Vehicle 
YG8sR Vs WT 

0.0038 
 

Male 0.6582 
Female <0.0001 

YG8sR TAK-831 Vs YG8sR Vehicle 
0.5548 

 

Male 0.1254 

Female 0.0570 
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5.4.5 Quantification of FXN mRNA levels following TAK-831 treatment 

Investigation of FXN mRNA 

Following the second dose period of TAK-831 treatment (T2), the levels of FXN mRNA 

expression were measured in the cerebellum and heart of the drug-treated and vehicle-treated 

mice by qRT-PCR analysis. The relative FXN mRNA expression level was quantified using 

mRNA specific primers for FXN, and mouse Hprt was used as an endogenous control. 

Relative quantification values were determined by the 2-∆∆ method using the SDS 2.1 

software (Applied Biosystems). Six mice from each group were used for the analysis (Table 

5.7) and qRT-PCRs were performed in triplicates for each sample.  

 

Table 5. 7 -  Number of mice investigated for the FXN mRNA quantification 
 

Group Genotype Cerebellum Heart 

Vehicle 
WT 6 6 

YG8sR 6 6 
TAK-831 YG8sR 6 6 

 

As expected, qRT-PCR analysis revealed a significant decrease in FXN mRNA expression in 

both the cerebellum (P<0.001) (Figure 5.8 A) and heart samples (P<0.001) (Figure 5.8 B) of 

the YG8sR mice, compared to WT mice. However, no significant changes in FXN mRNA 

expression were identified in YG8sR mice following treatment with TAK-831 in either 

tissue, compared to vehicle-treated YG8sR mice. This suggests that TAK-831 had no effect 

on FXN gene expression, indicating that the beneficial behavioural effects were not likely to 

be due in any way to increased FXN expression.  
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Figure 5. 8 – qRT-PCR analysis indicating the relative FXN mRNA levels in YG8s rescue mice 
following treatment with TAK-831 in A) cerebellum and B) heart tissues. Error bars indicate SEM 
and values represent mean ±SEM (n=3). 
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5.5 Discussion  
 
The neurodegenerative disorder, FRDA, is the most common form of autosomal recessive 

cerebellar ataxia, with pathological features of peripheral sensory neuropathy, spinal 

degeneration and progressive cerebellar dysfunction. Recently, it has been reported that 

excessive degradation of D-serine by DAO overexpression, may lead to low NMDAR 

functioning and impair neural signalling in the cerebellum, resulting in ataxia. Therefore, 

regulation of the D-serine function via pharmacological manipulation of DAO represents 

currently an important research and development target. 

In this study we have demonstrated the in vivo feasibility of a small molecule compound 

inhibitor of DAO, TAK-831, in our FRDA YAC transgenic mouse model to ameliorate the 

disease phenotype. Two dosing experiments were performed on the same FRDA mice by 

administering either vehicle or 3mg/kg TAK-831 compound by oral gavage daily for 14 days, 

first when the mice were at 4 months of age and then again at 8 months of age. Throughout 

the dosing regime, no apparent toxicity was observed in any of the mice, indicating a safe 

administration of compound. 

We previously reported that YG8sR mice have a higher average body weight as compared to 

the C57BL6/J (WT) mice (Anjomani Virmouni et al., 2015). This was also observed in this 

study with 8 months old YG8sR mice; along with no significant change in mouse body 

weight with TAK-831-treatment. However, a significant reduction was seen in male YG8sR 

mice average body weight with TAK-831 treatment, which were generally overweight as 

compared to the female YG8sR mice. Therefore, TAK-831 may have a specific effect on 

obese FRDA mice by increasing body metabolism. 

The balance and motor coordination performance as determined by beam-walk analysis 

revealed no specific FRDA-like disease phenotype in YG8sR mice aged 4 months and no 

specific TAK-831 drug effect. However, as the mice aged to 8 months, YG8sR mice took a 
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significant longer time to cross both the 22mm and 12mm beams compared to WT mice 

(P<0.001), indicating a progressive FRDA-like disease effect. This progressive FRDA-like 

pathology of YG8sR mice has been previously reported by Anjomani Virmouni et al. (2015), 

when characterising this mouse model. Furthermore, as the disease effect became prominent 

in YG8sR mice, the second dosing of TAK-831 revealed promising results, due to the finding 

that TAK-831-treated YG8sR mice displayed a significant improvement in balance and 

coordination ability compared to the vehicle-treated group (P<0.0001). To elaborate on these 

results, the accelerated rotarod analysis carried out in second dosing experiment, also 

confirmed a progressive FRDA-like disease effect in YG8sR mice, as the mice took 

significantly lower time on the rotarod as compared to WT mice (P<0.0001). Moreover, after 

TAK-831 treatment, a significant improvement in rotarod performance was observed in 

YG8sR mice compared to vehicle-treated group (P<0.0001). Interestingly, after 3 months 

without treatment, TAK-831-treated YG8sR mice (in the first dosing experiment) were 

performing better on the rotarod than the vehicle-treated group (P<0.003). This suggests that 

treating FRDA with TAK-831 at an early age (before disease prominence) may be beneficial 

in reducing the progressive disease effect later in life. Therefore, taking together the beam 

walk and the rotarod results, treatment with TAK-831 may prove beneficial to improve ataxia 

motor coordination deficits, which are associated with FRDA. 

In contrast, no-specific TAK-831 drug effect was observed when analysing the average 

velocity, jump count, stereotypic count in YG8sR mice aged 4 months, compared to control 

groups. Furthermore, the qRT-PCR results revealed no significant changes in FXN gene 

expression levels in the cerebellum and heart samples of TAK-831-treated YG8sR mice, 

indicating that the beneficial effect of the TAK-831 was not due to increased FXN gene 

expression levels.  

Presently, the therapeutic potential of DAO inhibitors are still relatively unexplored and 
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preclinical studies have primarily addressed the relevance of these compounds mainly for the 

neuropsychiatric disorder, schizophrenia. Similar to cerebellar ataxia, studies have revealed a 

reduction in D-serine levels in the plasma and cerebrospinal fluid of schizophrenia patients, 

which is explained by the excessive D-serine oxidation due to elevated DAO activity (Verrall 

et al., 2007, Sacchi et al., 2008, Madeira et al., 2008). Collectively, the small number of 

structurally diverse DAO inhibitors tested have been shown, when given systemically, to 

increase D-serine concentrations in the brain and plasma. However, the efficacy of these 

compounds in behavioral assays, that measure antipsychotic potential and pro-cognitive 

effects in animal models, has been fairly modest and inconsistent (Smith et al., 2010, Sacchi 

et al., 2013).  

As a result, several authors then investigated the effects of co-administering DAO inhibitors 

in conjunction with systemic D-serine on brain neurochemistry and behavioural assays.  

Ferraris et al. (2008) reported that oral administration of a potent DAO inhibitor, 6-chloro-

benzo[d]isoxazol-3-ol (CBIO), in conjunction with 30mg/kg D-serine significantly enhanced 

plasma and brain D-serine, relative to either CBIO or D-serine administered alone. 

Hashimoto et al. (2009) extended this finding by showing effects on cortical D-serine levels, 

and the reversal of MK-801-induced deficit in prepulse inhibition (PPI) in mice with co-

administration of CBIO and D-serine, whereas D-serine had no effect on its own. Similar 

results were also reported by Smith et al. (2010) with co-administering another potent DAO 

inhibitor, compound 4 (pyrrole carboxylic acid) with D-serine in rodents. 

However, as yet there have been no studies that have reported the use DAO inhibitors in 

FRDA. Our study is the first and reveal that TAK-831 is well tolerated and elicits improved 

balance and motor coordination in mice with prominent FRDA-like disease effect. Very 

recently, TAK-831 has entered a randomized Phase 2 clinical trials in USA, sponsored by 

Takeda Cambridge Limited. This study will assess the safety, tolerability, pharmacokinetics 
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and efficacy of multiple doses of the compound in adult FRDA patients.  

Furthermore, it is of paramount importance to assess the correlation between the DAO 

activity and DAO inhibitor drug concentration with D-serine accumulation in the plasma and 

cerebellum after TAK-831 treatment. Additionally, since the co-administration of DAO 

inhibitors and D-serine have revealed promising results in treating schizophrenia, it might be 

worth to investigate TAK-831 co-administration with D –serine or D-serine ethylester (D-

cycloserine) a partial NMDA allosteric agonist. Previous studies have reported that systemic 

administration of D-cycloserine diminishes ataxia in mice carrying inherited or chemically 

induced cerebellar degeneration. Subsequently, D-cycloserine was then given to patients and 

ataxia was reduced after 14-day treatment  (Ogawa et al., 2003). Moreover, the co-

administration of TAK-831 with D-serine may reduce the potential side effects associated 

with high D-serine dose administration, such as nephrotoxicity.  

Overall, our preliminary findings support the use of TAK-831, as a small molecule DAO 

inhibitor, in clinical development as a novel therapeutic approach for FRDA. 
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FRDA is a rare autosomal recessive neurodegenerative disease caused by GAA repeat 

expansion within the first intron of the FXN gene encoding ‘frataxin’, an essential 

mitochondrial protein (Campuzano et al., 1996). Lack of frataxin expression in FRDA leads 

to oxidative stress, mitochondrial iron accumulation and ultimately causes pathology in 

affected tissues (Chutake et al., 2014). Recent in vitro and in vivo investigations have 

indicated that the GAA hyperexpansion interferes with FXN transcription by inducing 

heterochromatin-mediated silencing in FRDA (Saveliev et al., 2003, Festenstein, 2006).  

Currently, there is no effective therapy for FRDA (Delatycki, 2009). However, research on 

prospective pharmacological treatments has significantly advanced over the last two decades. 

Potential therapeutic strategies that aim to delay disease progression by intervening in the 

pathogenetic cascade downstream of frataxin, are currently undergoing clinical trial 

evaluations (Aranca et al., 2016, Burk, 2017). However, there is still a high unmet clinical 

need to develop a therapy for this devastating disorder.  

 

The identification of abnormal histone modifications in FRDA encouraged us to investigate 

the efficacy of two HMTase inhibitor compounds, BIX01294 and GSK126, as a potential 

epigenetic-based therapy for FRDA, with aims of reversing the FXN gene silencing in human 

and mouse FRDA-derived fibroblasts. Notably, the combination treatment of BIX01294 and 

GSK126 has been shown to induce a safe induction of FXN mRNA expression levels, in both 

human and mouse FRDA fibroblasts. Alongside this, a significant reduction was also seen in 

G9a and EZH2 levels, which was initially found to be higher in human FRDA fibroblasts. 

Moreover, a significant reduction in H3K9me3 and H3K27me3 levels and an increase in 

H3K9ac levels were seen in the FXN 5’UTR promoter region after BIX01294 and GSK126 

combination treatment. Therefore, simultaneous inhibition of G9a and EZH2, which target 

H3K9me2/3 and H3K27m3 repressive histone marks, may be favourable in inducing FXN 
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gene expression levels in FRDA. However, the change in HMTases and histone 

modifications levels were non-cell specific, which falls into the general non-specificity of 

epigenetic based therapies. Therefore, the development of drugs that preferentially target the 

FXN locus in FRDA may require further consideration. Furthermore, no changes in frataxin 

expression levels were identified following synergistic HMTase inhibitor treatments, which 

may be due to other post-translational mechanisms taking place that require further 

investigation. Nevertheless, HMTase inhibitors should still be pursued for further preclinical 

studies, perhaps with other synergistic epigenetic-based compounds, such as HDAC 

inhibitors and DNMT inhibitors. 

Similar to HMTase inhibitors, HDAC inhibitors could potentially reduce epigenetic silencing 

of an affected gene by targeting the heterochromatin state. In FRDA, the HDAC inhibitors 

109/RG2833 and nicotinamide (vitamin B3) have shown the most promising results in 

restoring frataxin to normal levels by increasing histone acetylation at the FXN locus (Burk, 

2017). Moreover, alongside abnormal histone modification, numerous studies have reported 

an increase in DNA methylation levels in the pathogenic FXN alleles. Thus far, no studies 

have reported the effects of DNA demethylation agents in treating FRDA. However recent 

reports investigating the TNR disorder FXS, have shown promising results using the DNMT 

inhibitor, 5-aza-CdR, either alone or in combination with HDAC inhibitors (Chiurazzi et al., 

1999) or with HMTase inhibitors (Kumari and Usdin, 2016) to effectively reduce the FMR1 

promoter hypermethylation and reinstating mRNA and protein levels to normal in FXS 

patient cells.  Therefore, it would be interesting to investigate the synergistic effects of 

HMTase inhibitors with HDAC inhibitor compounds and/or DNMT inhibitors in the 

reactivation of FXN gene transcription. 
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At present, therapeutic approaches predominantly aim to induce frataxin expression from the 

pathogenic FXN locus (Strawser et al., 2014), or to intrude in the pathogenic cascade 

downstream of frataxin deficiency. However, recent studies have reported that UPP pathway 

controls frataxin stability (Rufini et al., 2011, 2015), thus leading to the development of new 

therapeutic approaches aimed at preventing the degradation of frataxin.  

Therefore, we investigated the efficacy of a number of proteasome inhibitors in human 

FRDA fibroblasts to ameliorate the disease phenotype by increasing frataxin levels. The 

proteasome inhibitors, MG132, bortezomib and salinosporamide A affected the 

chymotrypsin-like activity of the 26S proteasomes to some extent in FRDA fibroblasts. 

However, no downstream effects were observed in increasing frataxin expression levels. 

Conversely, treatments using ixazomib displayed an upregulation in frataxin levels, alongside 

a dose-dependent reduction in the chymotrypsin-like activity in FRDA fibroblasts. Yet, the 

significance of these results are unclear since an increase in the cell cycle stress modulator, 

p27Kip1, was also seen. Therefore, taking together the findings from this study and previous 

studies, which reported no significant increase in frataxin levels by general proteasomal 

inhibition (Nabhan et al., 2015), the use of these proteasome inhibitors as a therapy for 

FRDA is not recommended at this stage.  

Previously, Rufini et al. (2011) identified K147 as the critical lysine residue on frataxin 

which is targeted for ubiquitination, alongside identifying a set of UCM molecules predicted 

to increase frataxin stability by inhibiting ubiquitination on K147. Therefore, due to their 

specificity, UCMs may offer a novel therapeutic approach to treat FRDA and are currently 

being explored for further studies (Rufini et al., 2011, 2015). Subsequently, Benini et al. 

(2017) identified RNF126 as the specific frataxin E3 ligase that causes frataxin ubiquitination 

and degradation. E3 ligase enzymes are responsible for substrate recognition and confer 

specificity to the ubiquitination process. Therefore, inhibition of RNF126 may further 
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represent an attractive and more selective pharmacological target for potential FRDA 

therapy.  

Overall, and also based on our results, targeting the proteasomes, as a whole, is a highly 

unspecific approach and may result in an undesired outcome. Therefore, the need for a more 

specific therapeutic target among UPP components is crucial for the design of more selective 

therapies.  

 

A different FRDA therapeutic approach to target ataxia, more generally, was instigated by 

reports that increased degradation of D-serine by DAO overexpression results in ataxia, 

possibly due to low NMDAR functioning and impaired neural signalling in the cerebellum 

(Hashimoto et al. (2005). Therefore, in collaboration with Takeda Cambridge Limited, we 

carried out an in vivo investigation to test the efficacy of a newly developed DAO inhibitor, 

TAK-831, using our YG8sR FRDA mouse model. Functional studies, such as beam walk and 

rotarod testing, revealed that YG8sR mice developed a progressive FRDA-like disease effect 

at older age, which was significantly reduced following TAK-831 treatment. Furthermore, 

our results also suggested that treating FRDA with TAK-831 at an early stage of the disease, 

may be beneficial in improving the progressive disease phenotype later in life.  

Our study, which is the first to report the use of DAO inhibitors in a FRDA model, revealed 

that TAK-831 was well tolerated and helped in ameliorating ataxia motor coordination 

deficits. This indicated that TAK-831 should be pursued further as a potential therapy for 

FRDA, and indeed FARA have recently announced enrolment for a Phase 2 study of TAK-

831, sponsored by Takeda (http://www.curefa.org/clinical-trials/clinical-trials-active-

enrolling/phase-2-study-of-tak-831-takeda). However, it would be also interesting to assess 

the association of DAO activity and D-serine levels following TAK-831 treatment of FRDA 
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mice. Additionally, co-administration of TAK-831 with D-serine is also proposed to have 

beneficial effects.  

 

Other promising therapeutic approaches which are currently being developed as a treatment 

for FRDA include gene replacement and protein replacement therapies. Vyas and colleagues 

constructed an innovative delivery system known as trans-activator of transcription (TAT) to 

transport human frataxin protein to mitochondria in patient-derived cells and in conditional 

FRDA mouse models. TAT-frataxin fusion proteins improved growth, increased lifespan by 

53%, increased cardiac functions, and improved aconitase activity (Vyas et al., 2012). On the 

other hand, there are a number of strategies currently being explored for gene replacement 

therapy with aims of correcting frataxin loss in FRDA (as discussed in chapter 1). Although, 

experimental data predominantly demonstrate effectiveness of gene replacement approaches, 

the challenges of targeted delivery, genotoxicity and controlled expression are yet unsolved 

(Evans-Galea et al., 2014b). Nonetheless, a recent gene replacement therapy, using CRISPR-

Cas9 system has been shown to successfully excise the GAA repeat and restore frataxin 

levels in YG8R and YG8sR-derived fibroblasts and YG8R mouse models (Ouellet et al., 

2017). 

 

In conclusion, the evaluation of therapeutic agents for FRDA has rapidly advanced in the last 

few decades, with the finding of numerous pharmacological agents at different stages of 

development. To add to this list, our studies have also shown encouraging results with the use 

of HMTase inhibitors and TAK-831 as potential FRDA therapeutic approaches.   
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