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A model for the turbulent Hartmann layer
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(Received 25 March 1999; accepted 9 February 2000

Here we study the Hartmann layer, which forms at the boundary of any electrically-conducting fluid
flow under a steady magnetic field at high Hartmann number provided the magnetic field is not
parallel to the wall. The Hartmann layer has a well-known form when laminar. In this paper we
develop a model for theurbulentHartmann layer based on Prandtl’'s mixing-length model without
adding arbitrary parameters, other than those already included in the log-law. We find an exact
expression for the displacement thickness of the turbulent Hartmann[&gergiven by Tennekes,
Phys. Fluids9, 1876 (1966], which supports our assertion that a fully-developed turbulent
Hartmann layer of finite extent exists. Leading from this expression, we show that the interaction
parameter is small compared with unity and that therefore the Lorentz force is negligible compared
with inertia. Hence, we suggest that the turbulence present in the Hartmann layer is of classical type
and not affected by the imposed magnetic field, so justifying use of a Prandtl model. A major result
is a simple implicit relationship between the Reynolds number and the friction coefficient for the
turbulent Hartmann layer in the limit of large Reynolds number. By considering the distance over
which the stress decays, we find a condition for the two opposite Hartmann layers in duct flows to
be isolatednonoverlapping © 2000 American Institute of PhysidsS1070-663(00)00906-3

I. INTRODUCTION second. In such cases, the state of the Hartmann layers may

The Hartmann layer is a fundamental element of magne?e of primary importance in determining the global damping

. . “effect of the magnetic field. In fusion-reactor projects, a so-
tohydrodynamicsMHD). It develops along any boundary in called liquid-metal blanket surrounds the plasma and is sub-

an electrically-conducting fluid where the magnetic field is. tod t int tic field of | Tesla. Th ¢
not tangential to the boundary, and it is where most of thd©C1ed T0 an Intense magnetic 1ield ot several tesia. The natu-

shear stress is concentrated. The Hartmann layer |orovides,r3I convection, which develops due to the large heat flux

path for electrical currents that close within the core of thereceived, produces large velocities and possibly leads to tur-

flow; thus controlling the whole flow. The statice., whether ~Pulent Hartmann layers. The state of Hartmann layers are
laminar or turbulentof the Hartmann layer is important be- also gf relevance to the liquid metal flows within sliding
cause it affects the transfer of heat or mass through the lay&€ctric power contacts; see Ref. 6 where the Reynolds num-
and affects the global electric circulation. The experimentalP€r (see Sec. Il for the definition dR) ranges from about
results reported in the literaturée.g., Hartmann and 0-18 to 1.4 10°. Finally, the case of MHD- generated two-
Lazarus: Murgatroyd? Lykoudis® and Branoveh are gen- dimensional turbulence is linked to the state of the Hartmann
erally dedicated to determining the friction coefficient for layer. It is generally assumed that the layer is laminar and
duct flows in the presence of a transverse magnetic fieldherefore simply provides a “frictional” linear damping
from which the state of the flow may be determined. In ourforce (proportional to the velocity in the coren the two-
recent papérwe consider the stability of the laminar Hart- dimensional core turbulence. If, however, the Hartmann
mann layer to both infinitesimal and finite-amplitude distur-layer is turbulent, this linear term should be replaced by an-
bances. Here, we are concerned with the profiles of botlether model. It is therefore important that the turbulent form
velocity and mean stress for an isolated Hartmann layeef the Hartmann layer is well understood so that a turbulent
when it is turbulent. We consider the simplest configurationmodel of the damping can be developed.
which consists of uniform free-stream velocity above a plane  The structure of the paper is as follows: In Sec. Il we
boundary with an imposed nonparallel uniform magneticdefine the configuration. Section Ill gives an exact descrip-
field. tion of the displacement thickness, which confirms that
An example of an application in which the state of thefound by Tenneke§and Sec. IV is devoted to application of
Hartmann layers may be of importance is metallurgy and, irPrandtl’'s model, which results in a relationship between the
particular, steel casting, where steady magnetic fields ariction coefficient and the Reynolds number. In Sec. V we
used. In this application, the nature of the flow is not welldevelop an asymptotic expression for the friction coefficient
known but the velocities are large, of the order of a meter pein terms of a simple implicit formula, and in Sec. VI we
compare our model with experimental results. These results
dAuthor to whom correspondence should be addressed (4411223 332 are followed by a discussion and conclusions in Sec. VIl and
645; fax:(44) 1223 332 662; electronic mail: ta209@eng.cam.ac.uk VIII, respectively.
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Uco (denoted with primg u=u+u’, j=3+j’, p=p+p’, and
$= ¢+ ¢'. The mean part of the-component of the dimen-
sionless Navier—Stokes equation and of yh@omponent of

B g Ohm’s Law can be written as

y . . —
ap  dt
§ i —__ T, Iy
I 7 0 X * 9z - R’ @
t:{::f_;iﬁ" — &g — (5)
Jy=— &__ Uy,
y

FIG. 1. The studied configuration. -
wherer= —uju,+ (du,/dz)/R is the mean stress composed
of Reynolds and viscous stresses. Substituting the expression
II. CONEIGURATION for the elect_ric—current densitgs) into the momentum Egq.
(4), we obtain

A similar configuration to that considered in Ref. 5 is o —
examined here under the same assumption of the small mag- g— _ 0_p ‘?_T_ i %_ ﬂ_ (6)
netic Reynolds number. A plane boundary is perpendicular gx dz Ry R

to a uniform magnetic fielde, (wheree, is the unit vector f far from the boundary a uniform velocity is reache®)
along thez-axis). Sufficiently far above the boundary the pecomes
flow is uniform and parallel to the boundary and is denoted _
by U..e, (see Fig. 1 This free-stream flow is also charac- _ dp. 1dg. 1
terized by a uniform electric-current density that, combined T x Ry R’ @
with the magnetic field, opposes any free-stream pressure _ — ] ) )
gradient. Therefore, as discussed in Ref. 5 and as will b&/herep.. and¢., are the dimensionless pressure and electric
proved in this section, for the Hartmann layer the pressuré’Otent'al in the free-stream. Under the assumption of invari-
gradient and free-stream electric-current density can be takexnce along andy, the gradients op and ¢ parallel to the
as zero without loss of generality. The length-scale boundary cannot depend om (therefore, for example,
=1/B\/vp/o can be formed from the kinematic viscosity ~ Jp/dx=dp../dx), so subtracting7) from (6) leads to the
density p, electric conductivityo, and magnetic-field inten- following simple expression for the momentum equation in
sity B. The same dimensional scales as those in Ref. 5 arfée Hartmann layer:
chosen for velocity, time, pressure, magnetic field, electric- - 1
current density, and electric field potential, namely, , —=—=(u,—1). (8)
5IU.., pU2, B, oU..B, andU..B&, respectively. The mo- 7z R
mentum equation, mass continuity, Ohm’s Law and electric-This equation simply expresses the balance between stress
charge conservation take the following dimensionless formsand the Lorentz force. The magnetic field has been consid-
ered to be strictly perpendicular to the boundary. However, it
Ju 1 1 N
—+(u-V)u=—-Vp+=jle,+=V2?, V-u=0, (1) can be shown that the above equation is unchanged for an
at R R inclined magnetic field(provided it is not parallel to the
j=—Ve¢+ule,, V=0, ) boundary so long as the normal component of the magnetic
) _ _ ) field is used as the dimensional scale instead of the global
whereu, p, j, and ¢ are the dimensionless velocity, pres- magnitude of the magnetic field. Note th&) was also de-
sure, electric-current density, and electric potential fieldsjed by Tennekedwho used it to find an expression for the

and where the Reynolds numbBr=U..5/v is the single  gisplacement thickness in a similar way to that described in
dimensionless parameter. This number is the ratio Ofne following section.

the Reynolds number ReJ.H/v to Hartmann number

Ha=\o/(pv)BH; whatever length scaléd is chosenR Ill. AN EXACT RESULT FOR THE DISPLACEMENT
=Re/Ha. THICKNESS

The laminar solution to this problem has exponential  |ntegrating(8) along z between 0 ande leads to the

form decaying over the length-scadewhich is also the dis-  fo|lowing expression for the dimensionless mean stress at the
placement thickness. In dimensionless form, this solution is, | T

u=[u(2),0,0]=[1~e"*,0,0], 1 (=
j=[0j(2),01=[0e 0]. @ gl
In the turbulent regime, provided that a finite-thickness fully- Alternatively, 7, can be written as the square of the dimen-
developed solution exists, the mean velocity is assumed to k&onless classical friction velocity, or, equivalently, as half
in the direction ofe, and to depend oz only. Reynolds the friction coefficient;. The integral on the right-hand side

decomposition is introduced to separate each quantity into af (9) is the dimensionless displacement thicknéssand so
mean part(denoted with an overbpiand a fluctuating part (9) can be written as

1-U, dz 9
0
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R
6*:R7W:Rui ZTCf (10) 1.2 ; ; : 1.2

This result supports our assumption that a fully-developed '
turbulent Hartmann layer of finite thickness exists. This sig-
nificant result appears, to our knowledge, in only one other®®} -
papef and seems to have been ignored since then. It is ar
exact expression and is independent of the state of the laye™[! . :
(i.e., whether laminar or turbulentin the laminar regime, W\ T
becauses* =1 (the displacement thicknegds made dimen- R . : 5 _
sionless using itself the expression leads to the well-known | . .  © | S A SR S
result;c;=2/R=2Ha/Re. N j ‘ : °
More importantly,(10) can be used as follows to show Dl . ol - T
that the turbulence present in the Hartmann layer must be ot ° e ®s " ° v
classical type and not affected by the magnetic field. WeFIG. 2. The mean velocity and mean stress profiles in the turbulent Hart-
wish to define a Stuart numbar (or interaction paramet}ar mann layeri) in linear coordinateslji) in semilogarithmic coordinates.
It may seem natural to base this th,, in which case we
find thatN=c;/2 which is small at the scale of the turbulent
Hartmann layer because the friction coefficient is expected t@lso using the fact that=7,), under the usual assumption
be, and indeed is found to be, much smaller than unity. Smathat the viscous sublayer is so thin that it does not signifi-
Stuart number implies that the Lorentz force is negligiblecantly contribute to the global momentum in the layer, and
compared with inertia. However, to study the structure of theconsequently does not significantly affect the stress. In our
turbulence, it is more sensible to base the Stuart number offimensionless variables, the initial conditions for the integra-

0.4t

the turbulent velocity fluctuations, which are of ordiégu,, . tion of the Prandtl mode(12) together with the momentum
This (turbuleny Stuart number is given by equation(8) are
Nzcmz—aa*zu (1D at z=£'3 U=11.2u, and 7=u?
oULU, % LR W A, T=Uj. (14
which is still small compared with unity. These equations have been integrated numerically using

Based on this analysis, and contrary to previous investiMATLAB. The parameterR is known, whereasu, (or,
gators who tried to introduce an effect of the magnetic fieldequivalently, the friction at the walls unknowna priori and
on the structure of turbulence, we are justified in applying ahas to be determined. The condition used to determjnes
simple conventional model for shear boundary layers, thehat in the limit of largez the mean dimensionless velocity

Prandtl model. converges towards unity and that the mean stress converges
towards zergwhich are equivalent conditiondNumerically,
IV. APPLICATION OF PRANDTL'S MODEL the latter condition of vanishing stress at infinity proves more

useful. For largeu, , the stressr never goes to zero; for
smallu, , 7 goes to negative values, which are not physical.
At the correct value fou, , 7 decays monotonically towards
Uy, N zero at infinity. After 30 iterations of a bisection method, an
oz -5?- (12) accurate value ofl, is fgund. In_Fig. 2, the profiles of the
converged solutions fou, and = are given, in linear and
The factor of 2.5 is traditionally used in the literature as it issemilogarithmic coordinates, for the particular valie
thought to provide the best agreement between the log-law: 10%. It can be seen from the semilogarithmic plot that the
and experimental results. Note that this relationsi®) be- initial point is z~3.41x 10 2 (corresponding to the end of
tween stress and mean velocity must be replaced by a linegfie viscous sublaygrwhich corresponds to 11.8( u,, ) for
relationship in the viscous sublayer. The link between thehe converged value af, ~3.31x10 2. It is interesting to
classicalu™ andz" variables that are usually used in wall- compare the velocity curve with the classical log-law ob-
bounded turbulence and our dimensionlegsandz is tained under the condition of a uniform stress,
2t =2.5Inz"+5.238. (The numerical constant 5.238 results
= . (13y  from the choice that the viscous sublayer should end*at
UR =11.3, so that the mean velocity profile is continuous from
Classically, the boundary of the viscous sublayer is taken tthis layer to the log-law region, 11=32.5In11.3+5.238.)
bez"=11.3, whereu" =11.3 (see Ref. 8 (More precisely These profiles are shown in Fig. 3.
this distancez* =11.3 lies within the intermediate zone be- This integration process has been performed for a range
tween the viscous sublayer and the log-law region anaf values ofR, betweenR=300 andR=10’. It is then pos-
should be considered as the virtual intersection of these twsible to plot the friction coefficient; as a function oR. For
regions) This will constitute an initial condition from which small values ofR (typically less than 250 the Hartmann
to integrate the coupled differential Eq®) and (12) (and layer is thought to be entirely lamindsee Ref. 5, and the

In our dimensionless variables, Prandtl’'s mixing-length
model takes the form

u=u,ut, z
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it is convenient and enlightening to derive a simple formula

— 4 : : . : for the friction coefficient. In this section, we obtain such a
: ’ 5 formula, which converges asymptotically towards the results

B given by the full Prandtl’'s model for large.

- During the numerical integrations, we observed that the

SO functioani converged towards a single asymptotic func-

' tion when the parameteR was increased, provided the

R - z-coordinate was stretched in an appropriate way. This can

be proved as follows. Differentiatin¢8) with respect toz

o and substituting fosu, / 9z using(12), we obtain the follow-

ing equation inr only:

Pr 2547
- 22" R z°

N

!
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08k

04k
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Introducing the new variables= \/r7u*2 andZ=7/(u,R),
07 107 i0° 10’ 10° 2 this equation can be written as a differential equatiohas

FIG. 3. The mean velocity profile &=10" for the turbulent Hartmann 9°f? f
layer u, (—) in semilogarithmic coordinates compared with the log-law &ZZ :2-521 (16)
(---). The definition ofz,, is given by(26).

for which the initial condition is derived fromil4) and the

) ) - ~final condition is thatf vanishes wherZ goes to infinity.
references therein, for details of the stability of the laminarrhese conditions are given by

Hartmann layerand the friction coefficient is simply given
by the viscous stress induced by the exponential mean veloc- at 7— E
ity profile, i.e., by c;=2/R. The friction coefficient ¢; ui R?’
EZUi) is plotted in Fig. 4 in logarithmic coordinates for a
range of Reynolds numbers including both the laminar and When Z—o, f—0. (18)

turbulent regimes. Although our model .is probably less reli--l-he parameteR appears only in the initial condition fdr In
able at low values oR because the viscous sublayer be-¢,. \yhenu? R?>1, the initial condition can be assumed to

comes non-negligible in thickness, it is nonetheless intereshold atz=0. This is possible becausean be extrapolated
ing to find the intersection of our curve with the laminar - _ g Indéed integratingl6) twice in the neighborhood

f=1, (17)

friction cqeffigieqt. It occurs aR~279, a value_very closeto ¢-_q wheref~1, we obtain
the “laminarization” value observed experimentally, see
Ref. 5. f2(2)=2.52InZ—2.5Z+KZ+L, (19

whereK andL are constants. So wheis large, and there-
V. ASYMPTOTIC-FRICTION EXPRESSION fore the viscous sublayer is thin, we can consider that the

Although the integration presented in the previous seclnitial condition applies aZ=0, and since the only depen-

tion are not demanding in terms of computational resourcegience orR then disappears, the functiéibecomes universal
(and independent dR). Thus the stress is expressed as

AN ‘ ! ! ! - f2<i) (20)
N : : : uz u, R/’

N : ‘ ’ wheref is the unique solution of the differential E¢L6)

N : - with boundary condition$(0)=1 andf(Z—x)—0.

‘ Now, (12) can be integrated. Note that the integration for
\ f _ velocity must start at the edge of the viscous subldget at
102 ISR NSRS SN ST : . zero because close to the wall the velocity in the turbulent
o ' region has approximately logarithmic form and physically
cannot be extrapolated to zero. Thus, integration(1),
with initial velocity given by the velocity at the edge of the
viscous sublayer, gives

z u, f(z //(u* R)) dz. 21

U,=11.2u, + 2.5f
o R 1130, R z
FIG. 4. The friction coefficient for the Hartmann layey in logarithmic When z goes towards Infmlty’ the VeIOCIty approaCheS the

coordinates in the laminar and turbulent regimes; laminar model ¢; f_ree-s_tream velocityu,— 1). In this limit the previous equa-
=2/R); —, application of Prandtl's model; ---, asymptotic mod28). tion gives
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! —113+25foo f(Z)dZ (22
U 7 T nar Z ’ 1
where the integration variable has been changedZto

=z/(u,R). It is interesting to split the integral into three
terms such that

1 * f(Z) 1 f(2)—1

—:11.3+2.5f —dZ+2.5] ——dZz

Uy 1 Z 1302R2 2 11.3u. N

J2r=13 Z=zaw 0.1938\_\ A+ = R
1 1 2! / 1 P e . {z
+2'5f11.3u2R22dZ' (23 e r=1 721 7 =4
The first integral is a constammdependent oR and Cf). EIG. 5 Sketqh of the structure of the turbulent Hartmann layer in semiloga-
. rithmic coordinates.

The second integral converges towards a constant value
when ui R? approaches infinity; to prove this, we just need
to show that {(Z)—1)/Z can be integrated at zero. From Integration of Prandt’s model, with the condition of
(19) nearZ=0, f can be written ad(2)=y1+2.82InZ,  vanishing stress at infinity, has resulted in the structure
which yields sketched in Fig. 5. The position of the intersection of the

f(Z)-1 25 tangent log-velocity profile with the free-stream velocity,

o= ?In Z, (24) i.e., atZ=2z,~0.1938 seems to contradict the necessity that

5* =u2R(<u,R). This can be resolved by proving that 1

in the neighborhood oZ=0, which can be integrated. The —Ux~U, at Z=2,~0.1938. From(21), becauseu, con-
third integral can be readily calculated. In the limit of large Verges to 1 whem goes to infinity,

u2R?, (23) takes the form = u,f(z/(uR))
5 1—UX=2.5f ——dz, (29
1 r(u*Rz) ZmUy R z
—=A+25] , 25 .
u, 11.3 @9 which leads to
whereA is a constant. Including partially in the logarithm, _ » f(Z
ap y g 1-u,=2.5u, —( )dZ. (30

this can equivalently be written as , Z
m

This integral is a constant, so the velocity defect-U,) is

proportional tou, at the intersection position. A practical

i o . consequence is that whéhincreases, the velocity profile is
wherez,, is a constant, which is shown in Fig. 3. The value given by its asymptotes more and more closely.

of z at the intersection of the log-law curvéor the same If the interaction parameter is calculated basedugR
friction velocity as the computed profjlavith the line U, (the distance over which the stress degasather than based

=1, is seen numerically to converge towards 0.1838,  op the displacement thickness, thidr-1: this results from
whenR increases towards infinity. Hence, the cons@nts 5y “non-MHD turbulence” analysis. This shows that the

1 _ 22
u——2.5|n(zmu*R )+5.238, (26)

*

close to 0.1938 an(6) can be written as limit of our assumption that the interaction parameter is
1 small is reached at the edge of the layer. This should not
—=25 In(0.19381,2c R?)+5.238, (27 significantly affect our conclusions.
Us To summarize, the asymptotic treatment not only pro-

which constitutes a simple implicit equation relatingto R.  vides a simple relationship in good agreement with the de-
If u, is replaced by its counterpad;, this equation be- tailed model, but it also tells us that the typical distance over

comes which the stress decays 1§ R (in the zscale or, equiva-
lently, unity in theZ-scal§ and notu? R, which is the dis-
placement thickness as expressedlfi. The stress-decay
scale will become important when assessing the domain of

. , o N validity of our model when comparing with experiments in
This simple relationship is plotted in Fig. 4. &=300, the 4 o following section.

discrepancy between this relationship and the result of our
application of Prandtl’'s moddkee Sec. IYis about 14%. It
drops quickly with increasingR [due to the increase of
u2 R?, which constitutes the condition of asymptotic validity From the start of experimental MHD using liquid metals,

of (28)]: whenR=500 the relative discrepancy is 8%, Rt the effect of applying a magnetic field to duct flows has been
=1000 it is 3.4%, aR=2000 it is 1.4%, and aR=5000 it  characterized by the measurement of pressure losses. Many
is only 0.4%. At large values OR, the asymptotic curve experiments have been carried out essentially in the 60 e.g.,
merges perfectly with the result of the full Prandtl's model. Refs. 1, 2, 4, 9, 10, 11, on the pressure drop in circular and

2
\E=2.5Ir\(0.0963:fR2)+5.238. (29)
f

VI. COMPARISON WITH EXPERIMENTS
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Cf 107 .

0,015 y .

O.(;OS 0.01 0.015

R
FIG. 6. The friction coefficient for the Hartmann layer vs R in logarith-
mic coordinates in both the lamin&r-) and turbulent—, application of
Prandtl’s model; ---, asymptotic modeiegimes. See Fig. 8 for the key to
the symbols representing the experimental data.

FIG. 7. The friction coefficient of a Hartmann layey vs 2R in laminar
(---) and turbulent(—, application of Prandtl's model; ---, asymptotic
mode) regimes(same points as in Fig.)6

i whereu, is a function ofR=Re/Ha. Using our asymptotic
rectangular cross-sectional duct flows under transverse magsction law (27), this condition can be plotted in the Re—Ha
netic fields. In addition to the aspect rafifor rectangular plane (Fig. 8 and is replaced by the curve ReHa50 at
dUCt_S)’ two dimensionless numbers characterize a giveljg,, Reynolds numbers. All the experimental points below
flow: the Reynolds number Rela/v, wherea denotes the i houndary cannot be compared with our analysis because
half-width in the direction of the magnetic field and whére o Hartmann layers then overlap. In fact, our turbulent

is an_average velocity, and the Hartmann number Hanqgel s restricted to the region between the two curves; i.e.,
=\ol(pv)Ba. If the velocity profile is relatively flat due t0 \yhere the Hartmann layers do not overlap and where the
the presence of the magnetic field or due to its turbuleniysrtmann layers are turbuleftielow Re/Ha=250 turbulent

nature, the average velocity is close to the velocity in the  g,ct flows are observed experimentally to laminarize; see
middle of the cavity. We are particularly interested in the ges. 5.

case of rectangular ducts with the magnetic field aligned with Figure 9 is obtained from Fig. 7 after removing the

the short dimension because then the friction characteristic&oims that do not satisfy our conditi@81) or for which the
are likely to come only from the two Hartmann layers on thep5tmann number is too small (Hal0). (When the Hart-

two opposite walls, with the parallel layers playing an insig-mann number is less than 10, the laminar friction formula
nificant role. In this case, the friction coefficient has the Sam& - 2/R is not valid because then the laminar Hartmann lay-

value whether it is defined as we have defirgdor as g5 gverlap. All the points fall on a single curve(R),
—adplaxl(pU?/2), which is the definition used in the ex-

perimental literature. The results obtained by Hartmann and
Lazarus' Murgatroyd? Brouillette and Lykoudi$ and Bra-
noveret al**%**are shown in Fig. 6 in logarithmic coordi- ~ ; g
natesli.e., Inc; vs In(Re/HaEInR] and in Fig. 7 asc; in : ;
terms of 2Ha/Re2/R, whereR is the Reynolds number

based on displacement thickness that we have used thus f:

in our study of the Hartmann layer. Note that the laminar ,
friction law derived by Hartmann and Lazatus;=2/R) is

Lykoudis

Branover and

BROOSHF X+ QDGO

[

included in these figures. Lielausis -
Our analysis can be applied only to the case when the § Hartmann and

two Hartmann layers on opposite walls of the duct do not o Lazarus

overlap. As seen in Sec. V, the dimensionless decay distanc ' "% Murgatroyd ‘fg“ﬁ B

for the stress in the turbulent Hartmann layer scales, d. > as :’1 $

From our numerical solutions we notice that the distance b ,g‘%ﬁ §

u, R/2 corresponds to significant decay. We adopt this dis- A

tance and thus we take the condition for the Hartmann layers . ; ; .

not to overlap to be o ¢ o “ Re
Re FIG. 8. Boundary in the Re—Ha plane above_which the Hartmann layers do
EZ u, <1, (31) ?u?'tbﬂ\llsr:ltaq_) and Re/Ha 250(---) below which the Hartmann layers are
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0.005

: ; ; L z
0 0.005 0.01 0.015 2
R FIG. 10. Comparison of our theory with an experimental velocity profile

- . from Ref. 9 corresponding to nonoverlapping turbulent Hartmann layers
FIG. 9. The friction coefficient for the Hartmann layer vs 1R for the J_Re=43 000, Ha=62.5).

experimental data corresponding to isolated nonoverlapping Hartmann la
ers.

of the single parameté®=Re/Ha, and not a function of the

conform to the laminar friction at low values Bfand are in  two independent parameters Re and Ha. This criterion will
good agreement with our model at large valuesof be used to assess the different models proposed. A second
We conclude this section by assessing our model versugonsequence ofL0) is that we have defined a turbulent in-
local experimental measurements. There have been very fefgraction parametefl1), based on this displacement thick-
experimental studies taking velocity profiles or velocity- Ness, that is small. We are thus justified in our use of a
fluctuation measurements in MHD duct flows. However, weclassical Prandtl model for wall-bounded turbulence, with no
note that Branoveet al® mention briefly that when the Re additional assumptions. _ _
is increasedor Hartmann number decreased, i.e., with in- A number of theories have been proposed in the litera-
creasingR) the fluctuationgof electric potentialappear first ~ ture for the effect of turbulence in Hartmann layers, although
close to the walls and then spread inwards affecting th@ften these are presented as theories for turbulence in duct
whole cavity. This feature suggests that the Hartmann layer#0ws rather than the Hartmann layers themselves. The major
become turbulent before the core flow and determine th&Xisting theories are listed below along with a short descrip-
global pressure drop in the duct, which qualitatively supportdion and assessment.

our model. This suggestion is contrary to the accepted view(,l) Hartmann and Lazaru®ef. 1. At the end of this pio-
which is that the global flow controls the transition process. neering paper, the authors propose a simplified model for
Some mean velocity profiles can be found in Brouillette and  he effect of a transverse magnetic field on turbulence in
Lykoudis? where a standard Pitot-tube method was used. duct flows. They consider the drag and attribute two op-
The reported accuracy is of order 5%. We have selected the posite effects to the presence of the magnetic field; a
two profiles among theirs that satisfy our condition of non- | oquction in drag due to the damping of turbulent fluc-
overlapping [see (31)] turbulent Hartmann layerdi.e.,

Re/Ha>250) and plotted them in Figs. 10 and 11 together

with our model prediction. Therange in these figures cor- ' ' ! ! ! { N ‘ ? ?
responds to the half-width of the duct but, rather than non- ' S :
dimensionalizing with the duct dimension, we have used our -
dimensionlesg-coordinate. The experimental measurements
shown in Figs. 10 and 11 start at some distance from they
wall, which means that there is limited comparison with our
model in the near-wall region, however the agreement over [} =
the remaining ranges afis good.

VIl. COMPARISON WITH OTHER THEORIES °*

Our model is based on a finite-thickness assumption for,,|.. . %.....
the fully-developed turbulent Hartmann layer, which in fact
is proved by relatior{10) (initially published by Tennekés , ‘ : ‘
A primary consequence of this is that there is only one di- °© *© 2 % 4 5 e 7 8 0 10
men_smnless parameter gov_er_nlng the fldvv; Re/Ha' AC- FIG. 11. Comparison of our theory with another experimental velocity pro-
cording to Tennekes, Sherclifffirst expressed this condition fie from Ref. 9 corresponding to nonoverlapping turbulent Hartmann layers
in the form that the friction coefficient should be a function (Re=115 000, Ha=212).
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tuations and an increase in the drag due to the directhe state of the turbulent Hartmann layer is entirely depen-
Lorentz braking force. This model is rather qualitative dent on the control paramet®= Re/Ha only. It should also
and considers the global flow; the paramd®t Re/Ha be noted that the most important property of the laminar
is not identified as important. Hartmann layer, namely, that the electric current flowing in-
(2) Maciulaitis and LoefflefRef. 13. An integral momen- side the layer is proportional to the velocity in the neighbour-
tum equation for a Hartmann layer growing from a lead-ing core, is lost in the turbulent state.
ing edge is considered. The model contains arbitrary pa- Possible extensions of the work presented here, include
rameters and relationshid0) is not satisfied. application of a similar methodology to other fully-
(3) Branover(Ref. 4. A Prandtl model is considered, with developed boundary layers of uniform thickness, e.g., the
an added assumption to account for effects of the magekman layer and the wall-bounded layer with uniform suc-
netic field on the structure of the turbulen@eso-called tion at the wall. The Ekman layer, although it is three-
“semiempirical theory’). The exact relationshiglO) is  dimensional, seems to correspond closely to the Hartmann
not taken into account. layer, because the dominant Coriolis force is lin@iée the
(4) Lykoudis (Ref. 3, 8. A similar theory to that developed electromagnetic Lorentz force in the present sjudy the
by Branover, but with a different added assumption tocase of suction, the laminar mean-flow solution is identical
account for the influence of the magnetic field on theto that for the laminar Hartmann layer, and the results of
Reynolds stress. Lykoudis admits that this phenomenolinear stability analysis are close to that of the Hartmann
logical additional term cannot be justified rigorousbge layer. Nevertheless, differences must exist in the turbulent
footnote 20 of Ref. B states, if only because for suction the global momentum
(5) Nihoul (Ref. 14. A completely independent approach equation leads t@yU.,= —uiui (whereuvg is the dimen-
based on Malkus’' ideas on turbulence. An extremumsional suction velocity This relatesi, to U.,, rather than to
principle on the shear-gradient distribution is invoked. §* as in(10) for the Hartmann layer; sée
Included in this model is the effect of an averaged Lor- In conclusion, we should say that MHD turbulence has
entz force and adjustable parameters to ensure continuitifferent characteristics. According to our model, MHD tur-
with results from the laminar regime. The results lead tobulence in the turbulent Hartmann layer is of the classical
an estimate for the turbulent Hartmann-layer thicknessype; the magnetic field simply playing the role of establish-
[not satisfying(10)] and to a relationship between, Re  ing the average electromagnetic Lorentz force. It is possible,
and Ha; agairR=Re/Ha is not identified as important. likely even, that some turbulence with a tendency towards
(6) Tennekes(Ref. 7). In a short paper, Tennekes derives two-dimensionality exists in the core flow between the two
equations equivalent t@®) and (10). In the rest of the opposite Hartmann layersee the experimental evidence in
paper, approximations are made. The dimensionless fricRefs. 18 and 1P This quasi-two-dimensional turbulence,
tion velocityu, is taken arbitrarily to be 1/20. A analogy characterized by large interaction parameter, contributes very
with no rigorous justification is made with the case of little to the stress, and exists because the mean electromag-
the boundary-layer flow with uniform suction at the netic Lorentz force is inefficient at damping (bote that
boundary(and no magnetic fie)d and a relationship be- there is no electric current in purely two-dimensional turbu-
tweenc; and R=Re/Ha is proposed in which they are lence.
inversely proportional at higlR. This relationship does
g)ot seem to compare well with experimental res(iRsf. ACKNOWLEDGMENT
R.J.L. acknowledges the support provided by a Dorothy
In addition to these theories, some numerical computaHodgkin Royal Society Fellowship.
tions have been performed and compared with experimental
results; see, for example, R,efs' 6, 15,’ 16. The numer|c§ haVeJ. Hartmann and F. Lazarus, “Experimental investigations on the flow of
shown that the turbulence is essentially concentrated in themercury in a homogeneous magnetic field,” K. Dan. Vidensk. Selsk. Mat.
Hartmann layers and that these regions grow in size when therys. Medd.15, 1 (1937.
Reynolds number is increased for a constant Hartmann nuUM2W. Murgatroyd, “Experiments on magnetohydrodynamic channel flow,”

. . . . Philos. Mag.44, 1348(1953.
ber. This feature is also found in experiments. 3p. S. Lykoudis, “Transition from laminar to turbulent flow in magneto-

fluid mechanic channels,” Rev. Mod. Phy&2, 797 (1960.

4G. G. Branover, “Resistance of magnetohydrodynamic channels,” Mag-
VIll. CONCLUDING REMARKS netohydrodynamic8, 1 (1967.

L . . 5R. J. Lingwood and T. Alboussie, “On the stability of the Hartmann
We are of the opinion that our model is not just one |layer,” Phys. Fluidsl1, 2058(1999.

more model for the turbulent Hartmann layer to be added toGG-dTglrr;a?(e,_J- Sl-(Wall_ker,dS- H. Elirffwn, N. IAd Soncliergaarld, H. Branovsn
; ; ; ; ; and S. Sukoriansky, “Liquid-metal flows in sliding electrical contacts witl

the list glvgn .m the previous .Secuor.]' It has the gdvantage arbitrary magnetic-field orientations,” Phys. Fluids3A1657(1991).
over the existing models that it requires no unjustifiable as-7, “rennekes, “Turbulent magnetohydrodynamic channel flow,” Phys.
sumptions; only Prandtl’'s model with the usual coefficients Fluids9, 1876(1966.
|eading to the Iog-law is considered. In that sense it is thesP. S. Lykoudis and E. C. Brouillette, “Magneto-fluid-mechanics channel
simplest possible model for the turbulent Hartmann layer., oW !: Theory,” Phys. Fluids10, 1002(1967.

. ‘°E. C. Brouillette and P. S. Lykoudis, “Magneto-fluid-mechanics channel
Our model shows that the electrical conductance of the wall fio, | Experiment,” Phys. Fluid€0, 995 (1967.

is irrelevant, as is the global electric circulation in the flow. °G. G. Branover, Y. M. Gelfgat, and A. B. Tsinober, “Turbulent magne-



Phys. Fluids, Vol. 12, No. 6, June 2000 A model for the turbulent Hartmann layer 1543

tohydrodynamic flows in prismatic and cylindrical ducts,” Magnetohydro- lent channel flows under a uniform magnetic field,” Phys. Fluid8,A
dynamics2, 1 (1966. 3098(199)).

G, G. Branover, A. S. Vasilev, Y. M. Gelfgat, and E. V. Shcherbinin, 1°S. Cuevas, B. F. Picologlou, J. S. Walker, G. Talmage, and T. Q. Hua,
“Turbulent flow in a plane perpendicular to a magnetic field,” Magneto- ‘“Heat transfer in laminar and turbulent liquid-metal MHD flows in square

hydrodynamic2, 46 (1966. ducts with thin conducting or insulating walls,” Int. J. Eng. S8%, 505
123, A. Shercliff, The Theory of Electromagnetic Flow Measuremg@am- (1997).

bridge University Press, New York, 1962 1H. Tennekes, “Similarity laws for turbulent boundary layers with suction
1A, Maciulaitis and A. L. Loeffler Jr., “A theoretical investigation of MHD or injection,” J. Fluid Mech.21, 689 (1965.

entrance flows,” AIAA J.2, 2100(1964). yu. B. Kolesnikov and A. B. Tsinober, “Two-dimensional turbulence
143, C. J. Nihoul, “The Malkus theory applied to magnetohydrodynamic flow behind a circular cylinder,” Magnetohydrodynami@s300 (1972.

turbulent channel flow,” J. Fluid Mect25, 1 (1966. 193, Sommeria, “Experimental study of the two-dimensional inverse energy

15y, Shimomura, “Large eddy simulation of magnetohydrodynamic turbu- cascade in a square box,” J. Fluid Medv.0, 139 (1986.



