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Abstract - This paper describes a novel method of rotodynamic 
machine condition monitoring using a wavelet transform and a 
neural network. A continuous wavelet transform is applied to the 
signals coUected from accelerometer. The transformed images are 
then extracted as unique characteristic features relating to the 
various types of machine conditions. In the experiment, four types 
of machine operating conditions have been investigated: a bal- 
anced shaft, an unbalanced shaft, a misaligned shaft and a defec- 
tive bearing. The back propagation neural network (BPNN) is used 
as a tool to evaluate the pegormance of the proposed method. The 
experimental results result in a recognition rate of 90percent. 

Kevwords - Wavelet transform, neural network, rotodynamic ma- 
chinery. 

I. INTRODUCTION 

With ever growing competition in industry, the need for ma- 
chine condition monitoring has become more important. A 
reliable condition monitoring system will significantly reduce 
failure and unplanned maintenance, and hence the huge atten- 
dant cost due to machine downtime. Often, the system is 
used with an operator who assists in the interpretation of the 
machine signals for early failure detection and fault diagnosis. 

Nowadays there are two kinds of methods available for bear- 
ing maintenance: statistical bearing life estimation and bear- 
ing condition monitoring and diagnostics [ 11. Statistical 
bearing life estimation predicts the fatigue life of a bearing. 
However, its application has many limitations, since unusual 
operating conditions can severely decrease a bearing’s life. 
Bearing life estimates become unreliable leading to unex- 
pected breakdown. On the other hand, bearing condition and 
diagnostics can be a very reliable method because it gives up- 
to-date information about the condition of a bearing. The 
more popular techniques used for bearing condition monitor- 
ing are vibration and acoustic emission analyses. 

11. PREVIOUS WORK 

Currently, there are many conventional methods for identify- 
ing and diagnosing bearing faults. Based on the representation 
of a signal during its processing, a method can be referred to 
as time-domain or frequency-domain. 

Time domain methods are usually sensitive to impulsive os- 
cillations. Characteristics arising fiom the defects being 
monitored, also known as features, of the raw time signal can 
be extracted from a machine. Typical features are the r.m.s. 
value, peak value [2], crest factor, kurtosis [3] and the shape, 
size and orientation of a bearing locus derived from orbital 
analysis. These features, once established to be related to the 
defect being monitored, often yield satisfactory results. 
However, if the signal generation mechanism is complex, 
time-domain methods are often not refined enough. 

Frequency domain methods assume that the signal being 
analyzed has components that are periodic. Thus, a defect 
produces a periodic signal at the characteristic defect fre- 
quency. Examples of the frequency-domain methods include 
spectrum analysis, cepstrum analysis, high frequency reso- 
nance technique (HFRT) [4] and holospectrum [SI. Among 
them, spectrum analysis seems to dominate the fault diagnosis 
scene. The main limitation of spectrum analysis is that al- 
though a local transient will contribute towards the overall 
frequency spectrum, its location on the time axis is lost. 
There is no way of knowing whether a particular frequency 
component exists throughout the life of the time signal or 
during just one or a few selected periods. Unfortunately, 
many monitoring situations demand knowledge of not just the 
frequency composition of a transient but also its time of oc- 
currence. For instance, when a rolling element passes a lo- 
calized defect in a bearing, it generates a transient in the 
measured signal, as does the contact of a damaged tooth with 
other teeth in a gearbox. A machine with rapidly varying 
speed is another example of transient events. 

The continuous wavelet transform (CWT), a joint time- and 
frequency-domain technique, is proposed in this paper. CWT 
is capable of indicating abrupt changes in machine conditions 
[6].  In addition, it can give a better representation of the sig- 
nal than conventional methods, providing fuller information 
on the machine operating condition. CWT is used here to 
produce a 3-D image from the measured signal. Features are 
then extracted from the image to be used as inputs to a back 
propagation neural network, the tool used for assessing the 
discriminatory power of CWT. 
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Fig. 1. The proposed condition monitoring of 
rotodynamic machinery block diagram. 

111. METHODOLOGY 

The proposed method of machine bearing faults recognit 
(Fig. l), using continuous wavelet transform and ba 
propagation neural network consists of three steps. 

Step 1 Applying continuous wavelet transform 

Continuous wavelet transform of a time-signal f(t) is defined 
by [71 

The quantity yab ( t )  = - y t-b given in the definition is 

referred to as the wavelet function. The position variable b 
shifts the wavelet function along the time axis t off(t) while 
the scale variable a expands or compresses the wavelet func- 
tion !&b(t). Compared to Fourier transform, the scale variable 
a is equivalent to the inverse of the frequency. The definition 
also suggests that Fda,b) is the correlation coefficient be- 
tween the wavelet function !f&(t) and the time-signdf(t) at 
the scale a and position b of K,b(t). 

h ( a )  

The continuous wavelet transform was applied to the accel- 
eration signals from the four machine conditions: (a) balanced 
shaft, (b) unbalanced shaft, (c) misaligned shaft and (d) de- 
fective bearing. Samples of these signal are as shown in Fig. 
2. CWT was applied to these signals to calculate the coeffi- 
cients Fda,b), which were then displayed as a grey-scale 
map with the vertical and horizontal axes denoting respec- 
tively the scale a and position b, which is equivalent to time t, 
as shown in Fig. 3 for the four different conditions. Although 
there is general similarity between them, subtle differences 
are clearly visible. 
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Fig. 2. Acceleration signals from the four bearing 
conditions 

Step 2 Preprocessing 

Image preprocessing was performed using the method of 
thresholding or binarising [8]. It was applied to the grey- 
scale CWT image to convert the colour of each pixel into 
either black or white. 

(4 
Fig. 3. Transformed images of (a) Balanced shaft, 

(b) Unbalanced shaft, (c) Misaligned shaft 
and (d) Defective bearing 
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(b) 
Fig. 4. The original image (a) and its binary image (b) 

A binary image has the obvious advantage that when 
classification using neural networks is done, the computation 
time will be much shorter, as multiplication involving a 0 or 1 
is much easier to perform. Fig. 4a and 4b show a sample 
image before and after binarising. 

Step 3 Classifying 

The back-propagation neural network (BPNN) [9], with the 
architecture as shown in Fig. 5 ,  was used to classify bearing 
faults. The network has an input layer, a hidden layer and an 
output layer. The values of the pixels composing the CWT 
binary image provided the inputs to the neural network; and 4 
nodes, representing the bearing conditions of normal, 
unbalanced, misaligned and defective bearing were available 
as outputs. 

Through a process of trial and error based on minimizing the 
mean square error (MSE), the choice of 12 nodes in the first 
hidden layer and 18 nodes in the second hidden layer were 
determined to be optimal. 

1 1 1 1 1  1 

Fig. 5. BPNN architecture 
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Fig. 6. Schematic process of BPNN 

The value NET appearing at a node in a layer is computed by 
summing the products of all inputs leading to that node with 
their corresponding weights plus a bias. This value then 
forms the argument of a transfer function f that produces an 
output for the node. In vector notation, given the input vector 
Xi, the weight vector Wi, and the bias vector 6, the output is 
given by 

The transfer function f is the commonly used sigmoid func- 
tion defined as 

1 
f = 1 + 

(3) 

The sigmoid function acts as an output gate that can be 
opened (0) or closed (1). The computing process as described 
is schematically shown in Fig. 6. 

The Back-propagation algorithm is used to obtain the correct 
weights and biases in a training process. A set of training data 
with known outputs is fed into the network. The weights are 
initially set to random values; the biases are fixed at unity. 
The input data are presented to the network; outputs are cal- 
culated and compared with the desired outputs. The normal- 
ized mean square error (MSE) is then calculated and propa- 
gated back to adjust the weights on the neural connection. 
This process is repeated for a large number of epochs until the 
error is relatively low and acceptable, which allows the net- 
work to classify the test set correctly. 

IV. EXPERIMENTAL, VERIFICATION OF THE 
PROPOSED METHOD 

Experiments were conducted on a rotodynamic test rig, Fig. 
7, consisting of a rotating shaft driven by a DC motor at 20 
revhec. The shaft, supported in two bearings, carried 4 discs 
with attachable masses in order to produce rotating unbal- 
ance. The two bearings were a FAG 20205K.T.C3 self- 
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Table I 
Correlation coefficient results 

Balance 
shaft Test sets 

Fig. 7. Test rig set-up 

Unbalanced Misaligned Defective 
shaft shaft bearing 

aligning single row taper-bore bearing and an FAG 6304 ball 
bearing. Radial vibration at the two bearings was measured 
using two PCB 333A12 accelerometers, one on top of the 
non-drive end housing while the other on top of the drive-end 
housing labeled as #1 and #2 respectively in Fig. 7. The ac- 
celeration signals, having been low-pass filtered at 1 kHz for 
anti-aliasing, were sampled into a Labview data acquisition 
system. 

Measurements were obtained fkom four different machine 
conditions: balanced shaft, unbalanced shaft, misaligned shaft 
and defective bearing. For each condition, twenty signals 
were collected which were divided into two equal sets of ten 
each. The first set was used for training the neural network 
while the second set was used for testing it. 

As mentioned in Step 2, it was the binarised CWT image of a 
signal that was being used in training and testing. The image 
consisted of 64 scales and 250 time intervals giving a resolu- 
tion of 64x250=16000 pixels. 

V. RESULTS AND DISCUSSION 

Classification results of 40 events fi-om the accelerometer 
signals of all four types of machine conditions are given in 
Table I. It shows the output value from the back propagation 
neural network after the network has been trained. For the 
similar pattern, the output value is around unity, rather than 
zero. In contrast, for a poor match, the value returned is 
around zero. 

To examine the results, the maximum output is used to iden- 
tify the bearing condition. The symbols in the second column 
from the left indicate the following: 

I w 1 0.221 -0.011 0.001 0.791 

-0.08 

-0.02 

Defective -0.02 

bearing -0.05 0.00 0.42 
0.24 -0.02 0.00 0.78 

R = classified correctly 
W = misclassified 
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The signals were classified correctly 36 times out of 40 with a 
recognition rate of 90 percent. However, due to the fact that 
an intensity pixel being less than the threshold value had to be 
omitted, this brought down the recognition rate. Therefore, if 
an extracted image consists of many light intensity pixels, it 
may not find enough significant intensity pixels to represent 
the characteristic features efficiently. In other words, the 
shape of the extracted image is distorted by the lack of pixels 
which contain the unique pattern for each bearing condition. 
Therefore, this may lead to incorrect results. 

VI. CONCLUSIONS 

Condition monitoring of rotodynamic machinery has been 
investigated by using the continuous wavelet transformed 
image as a characteristic feature of each signal condition and 
the back propagation neural network as a classification tool. 
Results are summarised below: 

1) A major contribution of this work is the introduction of a 
new feature extraction method and feature representation for 
condition monitoring using continuous wavelet transform. 
Image processing techniques have been employed to remove 
the broadband noise from the signal before the final stage of 
classification is performed using a back-propagation neural 
network. 

2) The wavelet transform has the main advantage that it prc- 
vides information of the signal on scale (frequency) as well as 
on time. The transformed image therefore contains informa- 
tion in both time and frequency which enhances the ability to 
discriminate properly between the four types of bearing con- 
dition. 

3) The classification error is due to the omission of some pix- 
els by binarising and it is dependent on the threshold value. It 
is believed that if the setting of the threshold level is opti- 
m i s e d ,  a possible higher recognition rate would be achieved. 
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