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Abstract. We consider wave propagation in a complex structure coupled to a finite number
N of scattering channels, such as chaotic cavities or quantum dots with external leads.
Temporal aspects of the scattering process are analysed through the concept of time delays,
related to the energy (or frequency) derivative of the scattering matrix S. We develop a random
matrix approach to study the statistical properties of the symmetrised Wigner-Smith time-delay
matrix Qs = −i~S−1/2

(
∂εS

)
S−1/2, and obtain the joint distribution of S and Qs for the

system with non-ideal contacts, characterised by a finite transmission probability (per channel)
0 < T 6 1. We derive two representations of the distribution ofQs in terms of matrix integrals
specified by the Dyson symmetry index β = 1, 2, 4 (the general case of unequally coupled
channels is also discussed). We apply this to the Wigner time delay τW = (1/N) tr

{
Qs
}

,
which is an important quantity providing the density of states of the open system. Using the
obtained results, we determine the distribution PN,β(τ) of the Wigner time delay in the weak
coupling limit NT � 1 and identify the following three regimes. (i) The large deviations
at small times (measured in units of the Heisenberg time) are characterised by the limiting
behaviour PN,β(τ) ∼ τ−βN

2/2−3/2 exp
{
− βNT/(8τ)

}
for τ . T . (ii) The distribution

shows the universal τ−3/2 behaviour in some intermediate range T . τ . 1/(TN2). (iii) It
has a power law decay PN,β(τ) ∼ T 2N3(TN2τ)−2−βN/2 for large τ & 1/(TN2).
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1. Introduction

Scattering of waves in complex systems has been a subject of intensive studies, with
motivations ranging from compound-nucleus reactions [1, 2], coherent electronic transport
[3] to propagation of electromagnetic waves in random media [4] and chaotic billiards
[5]. In a scattering setting, the central object is the on-shell scattering matrix S(ε) whose
matrix elements provide the probability amplitudes of transitions (reflection and transmission)
between scattering channels open at the given energy ε [6]. The total number N of open
channels is typically finite (for example, N is fixed by transverse quantisation for the modes
propagating in the electronic wave guides attached to a quantum dot). For an energy and flux
conserving system (i.e. without losses or gain), the S-matrix is unitary and can therefore be
diagonalised as follows

S(ε) = U(ε) eiΘ(ε) U †(ε) , Θ = diag(θ1, · · · , θN) . (1)

The diagonal matrix Θ gathers the scattering phase shifts (eigenphases) and U is a N × N

unitary matrix of the corresponding eigenvectors (associated with a specific basis of solutions
of the wave equation known as the partial scattering waves). For systems invariant under time
reversal, the reciprocity principle dictates S to be also symmetric, implying that U becomes
an orthogonal matrix in this case.

Complementary to such a stationary description, the temporal aspects of the scattering
process may also be characterised in terms of the S-matrix by several means. The most well-
known concept is probably that of resonance widths, which are related to finite lifetimes
of resonance states formed at the intermediate stage of the scattering event [7, 8]. Such
resonances are formally defined through the analytical structure of S(ε) in the complex ε

plane, corresponding to the poles En = En − i
2
Γn, where En and Γn > 0 are the energy and

width of the nth resonance, respectively. Practically, they are accessible by performing the
spectroscopy analysis of relevant decay spectra [9, 10, 11].

The time delay is another important notion used to quantify the duration of the scattering
event. Following Wigner [12] and Smith [13], the time spent by an incident wave in the
scattering region can be characterized in terms of the following matrix:

Q(ε) = −i~S†(ε)∂S(ε)

∂ε
. (2)

Below we set ~ = 1. The Wigner-Smith matrix (2) is Hermitian by construction (for unitary
S) and thus has all real eigenvalues {τ1, · · · , τN} that are commonly referred to as proper
time delays. They provide the lifetimes of metastable states. On the other hand, the diagonal
elements {Q11, · · · ,QNN} of (2) are also real and serve to characterise the time delay in
a given entrance channel [13, 14]. Taking the trace, one arrives at the simple averaged
characteristic, the so-called Wigner time delay [14, 15, 16, 17]

τW(ε) ≡ 1

N
tr {Q} = − i

N

∂ ln detS(ε)

∂ε
. (3)

This quantity plays an important role in practical applications [18, 19, 20]. In particular, it
provides a measure of the density of states of the open system, thus being essential for the
description of electronic and transport properties of coherent conductors [20].
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In view of representations (1) and (3), it is also instructive to consider the so-called
partial time delays {τ̃a = ∂θa/∂ε, a = 1, · · · , N} that are defined by the energy derivative
of the scattering eigenphases [17]. They may be treated as the time delay of a “narrow”
wave packet (with a weak energy dispersion around ε) prepared with respect to a given
scattering eigenchannel. Although there is a connection between those three time delay sets
[21], they generally characterise different aspects of the problem [20]. Other characteristic
times can also be introduced using certain derivatives of the S-matrix elements, see reviews
[18, 19, 20, 22, 23, 24, 25] for relevant studies.

Generally, time delays are known to satisfy certain inequalities (essentially imposed by
causality); in particular, they cannot take arbitrary large negative values [18, 19]. In the
resonance approximation, however, one can neglect a smooth energy dependence associated
with potential scattering and direct reactions. The whole dependence of S(ε) on the energy
is then due to its complex poles (resonances). Under such assumptions, the Wigner-Smith
matrix becomes strictly positive [26]. The Wigner time delay is then determined entirely by
the resonance spectrum of the open system [14, 16]

τW(ε) =
1

N

∑
n

Γn
(ε− En)2 + Γ2

n/4
. (4)

This important expression is valid at arbitrary degree of the resonance overlap, leading to
an interpretation of the Wigner time delay (4) as the density of states in open systems, see
[17, 18, 20] for further discussion. The spectral average of τW over a narrow energy window
is given by τW = 2π/(N∆), where ∆ is the mean level spacing (which carries a smooth
ε-dependence in general). This relates the mean time delay τW = τH/N to the fundamental
timescale of quantum systems, the Heisenberg time τH = 2π/∆.

When these concepts are applied to complex quantum or wave systems, such as quantum
dots or microwave billiards with classically chaotic dynamics, a statistical analysis is required
in order to characterise strong fluctuations that arise in scattering. There are two main
approaches to describe such fluctuations: the semiclassical method (see [27] for recent
advances and further references) and random matrix theory (RMT). The latter proved to be
extremely successful in describing universal patterns of chaotic wave phenomena [5], being
also the most suitable in order to provide the full statistical information in terms of both
correlations and distributions.

There are two possible variants of the RMT formulation of chaotic scattering. The
stochastic approach (see [3, 6] for reviews) treats the S-matrix as the prime statistical object
without any reference to the system Hamiltonian. The probability distribution of S = S(ε)

(at the fixed energy ε) is deduced from a maximum entropy principle subject to the global
constraints imposed on S by its symmetry and analyticity. It is given by the so-called Poisson
kernel [28, 29, 6]

PS(S) ∝ | det(1N − S
∗S)|−2−β(N−1) , (5)

which is parameterised by the mean (“optical”) scattering matrix S. In the absence of direct
reactions, S can always be chosen as a constant diagonal matrix [30]. The symmetry index
β = 1 (β = 2) corresponds to the systems with preserved (broken) time-reversal symmetry
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(β = 4 is to be taken when spin rotational symmetry is broken). The approach proved to be
very useful, in particular, for studying coherent electronic transport in mesoscopic systems
[3]. However, correlations at different energies as well as other spectral properties of open
systems related to the resonances turn out to be inaccessible in such an approach because
of its fixed-energy nature (in this respect, see [31] for an extension to address the energy
dependence).

The Hamiltonian approach [32, 1] is the other and more general formulation that is well
adapted to treat both scattering and spectral characteristics on equal footing [33, 8]. Within
the resonance approximation considered, the starting point is the following representation of
the S-matrix in terms of the Wigner’s reaction matrix K:

S(ε) =
1N − iK(ε)

1N + iK(ε)
, K(ε) =W†(ε−H)−1W . (6)

Here, the Hermitian matrix H of size Nint represents the internal Hamiltonian of the closed
system, whereas the rectangular Nint × N matrix W consists of the constant coupling
amplitudes between Nint internal and N channel states. In the chaotic regime, H is modelled
by an RMT ensemble of appropriate symmetry [5]. In the RMT limit Nint � 1, spectral
fluctuations become universal (model-independent) on the local scale of the mean level
spacing ∆. Similarly, the results turn out to be insensitive to particular statistical assumptions
on the amplitudes {Wna} provided that N � Nint [16, 34]. These amplitudes appear in the
final expressions only through the transmission coefficients

Ta ≡ 1− |Saa|2 =
4κa

(1 + κa)2
, κa =

2π‖Wa‖2

Nint∆
. (7)

Ta describes the probability of entering the system through channel a (thus characterizing the
contact quality), with Ta � 1 (Ta = 1) corresponding to weak (perfect) coupling.

The Hamiltonian approach, especially when combined with the supersymmetry
technique to perform statistical averages [1], offers the powerful method to derive exact non-
perturbative results for various correlation and distribution functions at any channel coupling,
see [2, 8, 35] for details. It was actually possible to derive the Poisson kernel (5) starting
from representation (6), thus proving equivalence of the two approaches for the S-matrix
distribution [29]. As to the Wigner-Smith matrix, a number of exact results are already known
for various time delays at any Ta 6 1, which we will briefly overview below. However, the
distribution of the whole Q matrix (in its symmetrised form) is only known for the special
case of perfect coupling (all Ta = 1) [36, 37]. It is the aim of this work to fill in this gap
and to provide the corresponding distribution at arbitrary coupling. We derive the exact result
in terms of certain matrix integrals and further analyse the relevant marginal densities in the
weak coupling limit.

The outline of the paper is as follows. In the next section we state the main results of this
work. In Section 3, we first provide a heuristic analysis of the Wigner time delay distribution
in the weak coupling limit, providing some physical intuition on the nature of the results; then
we give an overview of the known exact results at arbitrary T (this overview is complemented
by Appendix C). Section 4 develops a resonance representation of the Wigner-Smith matrix.
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The mapping between the perfect and arbitrary coupling is established and used in Section 5 to
derive a general representation for the Wigner-Smith matrix distribution at arbitrary coupling
in terms of a matrix integral over Hermitian matrices. In Section 6, we work out an alternative
form of the distribution in terms of a matrix integral over the unitary group, which turns out
to be more useful for numerics. Based on these results, we study the characteristic function
of the Wigner time delay in the weak coupling limit in Section 7 and deduce the limiting
behaviours of its distribution. Some numerical analysis is presented in Section 8. Finally, we
provide several appendices with more technical details of our calculations, which we believe
may be helpful for further developments and applications.

2. Statement of the main results

We consider the symmetrised Wigner-Smith matrix defined by

Qs = S1/2QS−1/2 = −iS−1/2∂εS S−1/2 , (8)

which clearly has the same spectrum asQ. Our first main result is the joint matrix distribution
for the scattering matrix S and the inverse matrix Γ = Q−1

s at arbitrary transmission of N
channels. To this end, we develop a resonance representation for the Wigner-Smith matrix to
establish a relation between this matrix at arbitrary and perfect coupling. This enables us to
apply the known joint distribution at perfect coupling [36, 37] to that at arbitrary coupling.
When all channels have the same transmission coefficient T = 1− |S|2, our result reads

DS DΓPS,Γ(S,Γ) = DS DΓ cN,β Θ(Γ)
∣∣∣det (1N − S

∗S)
∣∣∣βN (9)

× ( det Γ)βN/2 exp

[
− β

2(1− |S|2)
tr
{

(1N − S
∗S)(1N − SS†)Γ

}]
,

where cN,β is a normalisation constant. DS is the Haar measure (uniform measure over unitary
matrices) and DΓ the Lebesgue measure over the set of Hermitian matrices. The matrix theta
function is Θ(Γ) = 1 when all eigenvalues of Γ are positive and zero otherwise. The result (9)
has relied on the following conservation of the measure when mapping the S and Γ matrices
for the ideal and non-ideal contacts:

DS0 DΓ0 = DS DΓ .

The representation (9) may be regarded as an extension of the Poisson kernel (5) for the
time-delay problem. One can then deduce the distribution of the matrix Γ in terms of a matrix
integral over the unitary group. We have prefered a more convenient form, induced by (6), in
terms of a matrix integral over Hermitian matrices

PΓ(Γ) = bN,βΘ(Γ) (det Γ)βN/2 (10)

×
∫

DK det(1N +K2)βN/2

det(1N + κ2K2)1−β
2

+βN
exp

[
−β

2
κ tr

{
1N +K2

1N + κ2K2
Γ

}]
where bN,β is a normalisation constant and the coupling constant κ > 0 is related to the
transmission coefficient (7). For κ = 1 (S = 0), Eq. (10) reduces to the Laguerre ensemble
corresponding to the known result at prefect coupling [36, 37]. We have also generalised this
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expression to the most general case when channels are not equally coupled, see equation (54)
below in the text.

The matrix distribution (10) is further used to study the distribution PN,β(τ) of the
Wigner time delay τW = (1/N) tr {Γ−1}. Defining the characteristic function (Laplace
transform of the distribution) as ZN,β(p) ∝ 〈exp { − (2p/βκ) tr {Γ−1} }〉, which involves in
principle two matrix integrals (over Γ and K), we have finally obtained a ratio of two N ×N
determinants integrated over the eigenvalues of one matrix only

ZN,2(p) =

∫
RN

dk1 · · · dkN ∆N(k)2∏
n(1 + k2

n)N

det

[(
p

1+κ2k2j
1+k2j

)N+i
2

KN+i

(
2

√
p

1+k2j
1+κ2k2j

)]
det

[(
1+k2j

1+κ2k2j

)−N−i] . (11)

The result holds in the unitary (β = 2) case. Here ∆N(k) =
∏

i<j(ki − kj) denotes the
Vandermonde determinant and Kν(x) is the MacDonald function (modified Bessel function
of 3rd kind). Because (11) has a finite limit when κ→ 0, this result shows, in particular, that
when rescaled by the factor κ ' T/4 → 0, the Wigner time delay distribution has a limit
limκ→0 κPN,2(κ t) = QN,2(t) independent of κ. We have also verified numerically that this
holds for all β.

Finally we have obtained the limiting behaviours of the distribution PN,β(τ) in the weak
coupling limit, NT � 1. The large deviations τ → 0 are characterised by

PN,β(τ) ∼ τ−
βN2

2
− 3

2 e−βNT/(8τ) for τ � T , (12)

which is obtained by extending the steepest descent method to the matrix integrals (for
arbitrary symmetry class). For β = 2, we have also deduced this behaviour from (11). Then,
analysing in detail the limit first κ→ 0 and then p→ 0 of the characteristic function (11), we
have obtained the power law

PN,β(τ) ∼ 1

T
(T/τ)3/2 for T � τ � 1/(N2T ) , (13)

which holds independently of β. Finally, we have provided a simple argument in terms of
isolated resonances to get the large time asymptotic as follows

PN,β(τ) ∼ T 2N3
(
TN2 τ

)−2−βN/2 (14)

All these limiting behaviours have been verified numerically.

3. Background and motivations

3.1. Heuristic analysis (single resonance approximation)

Before entering into the detailed analysis, it is instructive to give a qualitative discussion
of the typical behaviour of time delay distributions when all Ta = T � 1. The channel
coupling can be treated perturbatively in such a case, enabling us to estimate the mean width
(decay rate) by the Fermi’s golden rule as Γ = NT ∆

2π
= NT/τH. (This is known as the

Weisskopf estimate in nuclear physics and as the inverse of the dwell time in mesoscopics.)
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The distribution of the resonance widths (rescaled in units of Γ) is then given by the well
known χ2 distribution with βN degrees of freedom,

p(y) =
(βN/2)βN/2

Γ(βN/2)
y
βN
2
−1e−βNy/2 , y ≡ Γ/Γ = ΓτH/(NT ) . (15)

The related moments are 〈yk〉 = ( 2
βN

)k(βN
2

)k, where 〈· · ·〉 denotes the statistical averaging
and (a)k is the Pochhammer symbol. Expression (15) is a many-channel generalisation of
the famous Porter-Thomas result at N = 1 and β = 1 [38]. It must be emphasised that this
distribution arises from a perturbative treatment of the channel coupling, resulting essentially
from Gaussian statistics of the chaotic wave functions of the closed system. Thus it is valid in
the weak coupling limit only. (Notably at perfect coupling, the exact distribution of resonance
widths is known [17] to develop the power law decay p(y) ∝ y−2 at y � 1. See Ref. [39] for
further discussion of the weak coupling limit beyond the perturbative regime.)

We now consider the important case of isolated (well-separated) resonances when typical
widths Γn � |En − En+1| ∼ ∆, corresponding to 2πΓ/∆ = NT � 1. Scattering
patterns in such a regime are dominated by a single resonance with energy En ≈ ε closest
to the scattering energy. Accordingly, we may approximate the Wigner time delay (4) as
τW(ε) ' (1/N) Γn/[(ε−En)2 + Γ2

n/4] and assume the statistically uncorrelated energies and
widths [17]. This leads to the following form of the time delay distribution:

PN,β (τ) ≈
∫ ∞

0

dΓ

Γ
p

(
Γ

Γ

)∫ ∆/2

−∆/2

dE

∆
δ

(
τ − 1

N

Γ

E2 + Γ2/4

)
. (16)

Since such a Lorentzian profile is the most natural shape of the energy dependence in
the vicinity of the resonance, one may generally expect that approximation (16) describes
adequately the other types of time delays in the limit considered as well.

In the regime τ > 2/(N∆) = τH/(Nπ), the cutoff of the integration over E at ∆/2

plays no role and can be replaced by infinity. We obtain the useful representation

PN,β (τ) ≈ 1

∆
√
N τ 3/2

∫ 4/(Nτ)

0

dΓ

Γ
p

(
Γ

Γ

) √
Γ√

1− ΓNτ/4
. (17)

In the intermediate regime τH/N � τ � 1/(NΓ) = τH/(N
2T ), the main contribution comes

from the most probable (typical) resonances of width Γ ∼ Γ, resulting in

PN,β(τ) ∼ 1

TτH

(
T τH

τ

)3/2

(18)

independently of the symmetry index β. Such a behaviour was already observed in previous
studies of both partial [17, 40] and proper time delays [41]. It is believed that this τ−3/2 law is
the most robust feature of the distribution in the regime of isolated resonances. Finally, the far
tail of the distribution at τ � 1/(NΓ) = τH/(N

2T ) is controlled by rare narrow resonances
of width Γ� Γ, yielding the asymptotic behaviour

PN,β(τ) ∼ T 2N3

τH

( τH

TN2 τ

)2+βN/2

. (19)

The universal exponent 2 + βN/2 can be simply understood from the limiting behaviour of
the resonance width distribution (15) at Γ→ 0, as explained in Ref. [17].
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As a check, we can estimate the moments from this distribution. The (positive) moments
are controlled by the upper cutoff τ∗ ∼ τH/(N

2T ) of the power law (18). Thus we obtain〈
τ kW
〉
∼
√
TτH τ

k−1/2
∗ i.e.〈
τ kW
〉
∼ τ kH/(T

k−1N2k−1), for k < 1 + βN/2 , (20)

whereas all moments of higher order k > 1 + βN/2 diverge because of Eq. (19). In the
NT � 1 limit, this reproduces the known exact results (for k = 1, 2) discussed below.

One of our aims will be to settle these results and analysis on rigorous grounds and in
particular to characterise the large deviations for τ → 0.

3.2. Known exact results

As mentioned in the Introduction, the three time-delay sets in question do not coincide
in general and have different statistical properties. We note that the formal order of the two
operations, the diagonalisation and taking the energy derivative of the scattering matrix, is
reversed when dealing with the proper or partial time delays. The connection between the two
sets can in principle be found from the general expression [21]

Q = U ∂εΘU † + iS†
[
U ∂εU †, S

]
, (21)

where ∂ε ≡ ∂
∂ε

and [ , ] stands for a commutator. This clearly shows that the differences
between the proper and partial time delays are due to the second term in (21), which essentially
accounts for the different bases chosen to express the S-matrix [20]. Clearly, the time delays
satisfy the following sum rule:

1

N

N∑
a=1

τa =
1

N

N∑
a=1

τ̃a =
1

N

N∑
a=1

Qaa =
1

N
tr {Q} = τW . (22)

In the case of the equivalent channels, this sum rule implies the following equality for the
mean time delays: 〈τa〉 = 〈τ̃a〉 = 〈Qaa〉 = 〈τW〉 = τH

N
. It is therefore useful to measure all

times in units of the Heisenberg time, and simply set τH = 1 below.

3.2.1. Perfect coupling, T = 1. In the special case of one open channel, N = 1, all
time delays reduce to a single quantity, the energy derivative of the scattering phase. Its
distribution was first derived for β = 2 (but any T ) in Ref. [42] and independently for
any β (but T = 1) in Ref. [43]. The matrix generalisation of the latter approach to
arbitrary N > 1 was presented in the influential work [36, 37] by Brouwer, Frahm, and
Beenakker (BFB) who showed that the proper time delays (more precisely, their inverses)
are distributed according to the Laguerre ensemble of random matrices. This provided a
route for applying powerful RMT techniques (like orthogonal polynomials and the Coulomb
gas method) to study various densities, moments and correlators built on the Wigner-Smith
matrix [21, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. We refer to Ref. [20] for the most recent
review and briefly discuss below the qualitative differences in the behaviour of the relevant
distribution functions (more details on the marginal distributions of both proper and partial
time delays can be found in Appendix C).
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The many-channel distribution of the Wigner time delay is explicitly known only for
N = 2 [21] or N � 1 [47]. However, its variance can be found exactly at any N and is
represented by the following form (valid for arbitrary β considered) [46]:

var(τW) =
4

N2(N + 1)(βN − 2)
' 4

βN4
. (23)

Here and below the symbol ' is used to show the leading asymptotic at N � 1. For the
partial time delays, the variances and covariances can be derived from the exactly known
marginal [42, 17, 40] and joint (two-point) [21] densities and read as follows [27] :

var(τ̃a) =
2

N2(βN − 2)
' 2

βN3
, (24)

cov(τ̃a, τ̃b) = +
var(τ̃a)

N + 1
' +

2

βN4
' +

1

N
var(τ̃a) . (25)

The corresponding expressions are also available for the proper time delays [44, 48],

var(τa) =
N [β(N − 1) + 2] + 2

N2(N + 1)(βN − 2)
' 1

N2
, (26)

cov(τa, τb) = − 1

N2(N + 1)
' − 1

N3
' − 1

N
var(τ̃a) . (27)

As to the diagonal elementsQaa, less is known about their statistical properties except for the
β = 2 case (unitary symmetry), when it can be shown that the distributions of Qaa and τ̃a
coincide [21]. This follows from the general relation τ̃a = [U †QU ]aa, implied by (21), and
from the statistical independence of U and Q in that case. For the β = 1 case (orthogonal
symmetry), these two matrices become statistically correlated, resulting in different statistics,
in particular, var(τ̃a) 6= var(Qaa). The latter variance was recently computed at any N in
[27] using semiclassical methods, yielding var(Qaa) ' 1/N3 unlike the 2/N3 dependence of
(24) (but the exact RMT result is still lacking). It is also worth mentioning the recent study of
the distribution of

∑K
a=1Qaa, where the sum is restricted to a fraction of terms K < N (cf.

Appendix of Ref. [54]).
The time delays in question clearly show the different scaling with N , dependence in

β and sign of the correlations at perfect coupling. This leads to the profound differences
between the corresponding distributions, which are schematically illustrated in Fig. 1.

3.2.2. Non-ideal contacts, T < 1. The general case of arbitrary transmission is more
challenging for rigorous analysis, with studies being restricted to certain correlation
functions and marginal distributions only. Most of the results have been derived within a
nonperturbative approach developed in [16, 17, 41], which can be also extended to include
effects of finite absorption [55] and disorder [35, 56]. In particular, the variance of the Wigner
time delay follows from the autocorrelation function of τW(ε) which is known exactly for
both orthogonal (β = 1) [16] and unitary (β = 2) symmetry [42] as well as in the whole
crossover region between the two cases [40]. The variance is found to take a simple explicit
form only in the β = 2 case [42, 17], being given then by

var(τW) =
2
[
1− (1− T )N+1

]
T 2N2(N2 − 1)

. (28)
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Figure 1. Sketch of the time delay distributions for N � 1 equivalent channels at perfect
(left) or weak coupling (right), where T is the channel transmission coefficient. Shown are the
distributions of the proper (continuous red line) and partial time delays (dashed green line)
as well as the Wigner time delay distribution (dotted blue line), with all times being measured
in units of the Heisenberg time. For perfect coupling, the proper time delay distribution is
close to the Marčenko-Pastur law (with additional large deviation tails out of the interval
[(
√
2 − 1)2/N, (

√
2 + 1)2/N ]; cf. [20]). For weak coupling, the distribution of the Wigner

time delay is not shown, as it is still unknown and will be determined in the present paper.

Considering the limit of weak transmission per channel T � 1, we get from (28) two different
possible behaviours, which depend on the product NT describing the degree of the resonance
overlap (thus controlling the overall coupling to the continuum) :

var(τW)

〈τW〉2
'
T�1


4

β(NT )2
� 1 for NT � 1

2

NT
� 1 for NT � 1

. (29)

Here we have reintroduced β to match the known β = 1 result [16]. The marginal distribution
of the partial time delays is known exactly at any β [17, 40]. The corresponding variance is
also given by a simple explicit expression for β = 2 [17] :

var(τ̃a) =
2N(T−1 − 1) + 1

N2(N − 1)
'
T�1

2

T N2
. (30)

By combining (28) and (30), we readily deduce an exact result for the covariance :

cov(τ̃a, τ̃b) =
1

T 2N(N − 1)2

[
2
[
1− (1− T )N+1

]
N + 1

− 2T (1− T )− T 2

N

]
(31)

'
T�1
− 1

N2
×


2

TN
for NT � 1

1 for NT � 1
(32)

It is worth noting that when compared to Eq. (25), the covariances change both in sign and
scaling with N as transmission crosses over from perfect to weak coupling. Finally, the
marginal distribution of the proper time delays at arbitrary T was obtained in [41]. As will be
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shown in Appendix C, the distributions of the proper and partial time delays become almost
identical to each other in the weak coupling limit.

To close this brief overview, we emphasize an important difference between the partial
(or proper) time delays and the Wigner time delay. As is clear from the above expressions
(for β = 2, but the conclusion holds for any symmetry), the relative fluctuations of the
partial/proper time delays are always large at weak transmission T � 1,

var(τa)

〈τa〉2
' var(τ̃a)

〈τ̃a〉2
' 2

T
� 1. (33)

Thus one expects a broad distribution in this limit independently of the channel numberN (see
Fig. 1), as was indeed shown for the exact distributions [17, 41] (see also Appendix C below).
On the other hand, the relative fluctuations of the Wigner time delay are not necessarily
large because of the specific N dependence according to (29). This can be understood from
Eq. (22) defining the Wigner time delay as a linear statistics on {τa} and by noting that their
correlations diminish rapidly when the parameter NT grows, see (32). Although the full
distribution of the Wigner time delay is still unknown at arbitrary T , this discussion and (29)
suggest that it converges to the Gaussian distribution in the strong coupling limit NT � 1. In
the opposite case of weak coupling, NT � 1, the distribution becomes broad with nontrivial
behaviour. One of our purposes here is to study in much detail this broad distribution.

4. Resonance representation for the Wigner-Smith matrix

4.1. General considerations

Our starting point is the following well-known representation for the S-matrix in terms
of an effective (non-Hermitian) HamiltonianHeff of the open system [33, 1]:

S(ε) = 1N − 2iW† (ε−Heff)−1 W , Heff = H− iWW† . (34)

This expression follows from (6) by simple algebra, but it has an advantage in making explicit
the resonance energy dependence associated with the S-matrix poles. Indeed, the latter are
just given by the eigenvalue problem on Heff , Heff |Rn 〉 = En|Rn 〉 and 〈Ln |Heff = En〈Ln |,
which can be further used to construct a pole expansion over the biorthogonal set of the (left
and right) eigenfunctions corresponding to the same eigenvalue En = En − i

2
Γn. Since in

the resonance approximation consideredW is assumed to be energy independent, the energy
derivative of S(ε) can be easily taken, leading to the following convenient representation for
the Wigner-Smith matrix [26]

Q(ε) = 2πΨ†(ε) Ψ(ε) , Ψ(ε) =
1√
π

(ε−Heff)−1W . (35)

The ath column Ψa of the Nint×N matrix Ψ(ε) may be treated [26] as the internal part of
the scattering wave function initiated in channel a at the scattering energy ε. The norm of
Ψa gives the diagonal element Qaa, thus providing their interpretation as the average time
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delay of a wave packet in a given channel [13]. Using the eigenbasis of Heff and noting its
completeness, we find a pole expansion of Q as follows

Qab(ε) = 2
∑
n,m

UmnW̃∗maW̃nb

(ε− E∗m)(ε− En)
, (36)

where W̃na = 〈Ln |Wa and Umn = 〈Rm|Rn〉 is the so-called Bell-Steinberger matrix.
Note that Umn 6= δmn in general, so this matrix serves as a sensitive indicator of the
nonorthogonality of the resonance states [57].

It is worth discussing the physical meaning of the matrix Ψ on an example of a quantum
dot modelled by a potential. For simplicity, we assume a discrete model and write the
Hamiltonian as Hx,x′ = −∆x,x′ + Vx δx,x′ , where ∆ is the discretised Laplacian matrix.
Following the same steps which have led to (35), we get

i

(
S† ∂S
∂Vx

)
a,b

= 2π
(
Ψ†
)
a,x

Ψx,b (37)

for the derivative with respect to the potential. Summation over x inside the quantum dot gives
(35). Actually, such a formula was derived in other contexts [58, 59, 60] within a continuum
model, where it was shown that −(2iπ)−1

(
S† δS/δV (x)

)
a,b

= ψ
(a)
ε (x)∗ψ

(b)
ε (x), with ψ(a)

ε (x)

being the stationary scattering state incoming in channel a. This leads to the correspondence
Ψx,a = 1√

π
[(ε − Heff)−1W ]xa ≡ ψ

(a)
ε (x) between the two models. We note, however, that

taking the derivative with respect to the energy or the potential does not necessarily lead to the
same result. In particular, the continuum model is known [59, 60] to have the exact relation∫

QD
dxS† δS/δV (x) = S† ∂εS + (S − S†)/(4ε), where integration is over the scattering

region (the quantum dot). We conclude that an exact representation of Q should not only
involve Ψ†Ψ like in (35), but also the contribution (S−S†)/(4ε), which is due to non-resonant
effects neglected here.

Finally, it is convenient to express the Wigner-Smith matrix in terms of the reaction
matrix K. Some algebra gives Ψ = 1√

π
(ε−H)−1W (1N + iK)−1, resulting in [26]

Q = −2 (1N − iK)−1 ∂K
∂ε

(1N + iK)−1 . (38)

This representation will prove to be useful for the RMT analysis developed below.

4.2. RMT for perfect coupling

The case of perfect coupling corresponds to the situation when the mean 〈S〉 = 0. The S
matrix is then distributed in one of the circular ensembles, CβE, of random orthogonal (COE,
β = 1), unitary (CUE ≡ U(N), β = 2) or symplectic (CSE, β = 4) unitary matrices [3]:

P
(0)
S (S) DS = CN DS , (39)

where DS is the Haar measure and CN a normalisation constant (the superscript “(0)” stands
for perfect coupling). Correspondingly, the reaction matrix belongs to one of the three Cauchy
ensembles (orthogonal, unitary or symplectic) in this case [28, 29]

P
(0)
K (K) ∝ [ det(1N +K2)]−1−β(N−1)/2 . (40)
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This follows from the relation (6) and noting that the associated Jacobian is given by

DS = DK 2N(1+β(N−1)/2)

[det(1N +K2)]1+β(N−1)/2
, (41)

where DK is the Lebesgue measure over the set of Hermitian matrices.
In order to derive the distribution of the Wigner-Smith matrix, we also require the

statistics of the energy derivative ∂K/∂ε. Following BFB [36, 37], it is convenient to
symmetrize the Wigner-Smith matrix according to (8), which can be written as

Qs = −2 (1N +K2)−1/2 ∂K
∂ε

(1N +K2)−1/2 . (42)

which clearly has the same spectrum as Q. BFB’s approach has shown the statistical
independence of K and ∂K/∂ε and, hence, that of S and Qs, with the joint distribution

P
(0)
S,Qs(S,Qs) = P

(0)
S (S)P

(0)
Qs (Qs) . (43)

The distribution P
(0)
Qs (Qs) turns out to correspond to a specific instance of the so-called

inverse-Wishart matrices (Laguerre ensemble) for Γ = Q−1
s ,

P
(0)
Γ (Γ) ∝ Θ(Γ) (det Γ)βN/2 e−(β/2) tr{Γ} . (44)

An explicit form provided by BFB for the distribution P (0)
Qs (Qs) of Qs then follows from the

above by making use of DΓ = (detQs)−2−β(N−1) DQs.

5. Wigner-Smith matrix distribution for non-ideal contacts

5.1. Uniform couplings

We consider first a simple model of tunable contacts where all the channels are equally
coupled and characterised by the same transmission coefficient T = 4κ/(1 + κ)2, where the
coupling constant κ > 0 is defined in (7). The case of perfect coupling hence corresponds
to κ = 1. In view of the resonance representation (34), it is clear that the model with
arbitrary coupling can be mapped to that with perfect one by performing the substitution
W −→

√
κW . Note that the results should depend on κ only through the transmission

coefficient T , thus implying a symmetry κ↔ 1/κ. Such a symmetry can be understood from
representation (6) and the known invariance of the Cauchy distribution (40) under K ↔ K−1.
Therefore, it will be sufficient to consider 0 < κ 6 1.

Keeping the notation K for the reaction matrix at perfect coupling, distributed according
to the Cauchy distribution (40), we rewrite (38) as follows

Q = −2κ (1N − iκK)−1 ∂K
∂ε

(1N + iκK)−1 . (45)

Denoting the symmetrised Wigner-Smith matrix at perfect coupling by Qs0, we have

Qs = AQs0A , A =
√
κ (1N + κ2K2)−1/2 (1N +K2)1/2 , (46)
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and note also that A = A†. The matrix Qs0 is distributed according to (44). Therefore, the
required distribution of Γ = Q−1

s = A−1Γ0A
−1 can then be rewritten in terms of two integrals

over Hermitian matrices from the Cauchy and Laguerre ensembles:

PΓ(Γ) =
〈
δ
(
Γ− A−1Γ0A

−1
)〉
K,Γ0

(47)

∝
∫

DK det(1N +K2)−1−β(N−1)/2

∫
Γ0>0

DΓ0 (det Γ0)βN/2 e−(β/2) tr{Γ0}δ
(
Γ− A−1Γ0A

−1
)
,

where the second integral runs over Hermitian matrices with positive eigenvalues. We can
eliminate one matrix integral by using the general expression of the Jacobian [61]

DΓ0 = DY [ det(A†A)]1+β(N−1)/2 for Γ0 = A†Y A , (48)

where A must be real for β = 1. We finally obtain the representation

PΓ(Γ) ∝ Θ(Γ) (det Γ)βN/2
∫

DK det(1N +K2)βN/2

det(1N + κ2K2)1−β
2

+βN
exp

(
−β

2
κ tr

{
1N +K2

1N + κ2K2
Γ

})
(49)

where the integration is over the set of Hermitian matrices with real (β = 1), complex (β = 2)
or quaternionic (β = 4) entries. Setting κ = 1 (perfect coupling) we obviously recover the
Laguerre distribution (44).

We note that in the unitary case (β = 2) one can use the invariance under unitary
transformations to show that the distribution of the Wigner-Smith matrixQ is the same as the
distribution of the symmetrised matrixQs [37]. However, this is not the case in the orthogonal
and symplectic cases. It is tempting to perform a similar calculation as above for theQmatrix,
starting fromQ = BQs0B† with B =

√
κ (1N − iκK)−1 (1N +K2)1/2. This shows that the

analysis done for Qs cannot be reproduced for Q in the orthogonal case (β = 1) because it is
not clear that the change of variable Γ0 = B†Y B is compatible with the constraints Γ0 = ΓT

0

and Γ = ΓT, since K = KT (besides, B is not real for β = 1, hence (48) cannot be used).

5.2. Joint distribution of the eigenvalues in the unitary case (β = 2)

In the unitary case, the joint distribution of eigenvalues can be deduced from (49) by
an integration over the unitary group. We decompose the matrices as Γ = V AV † and
κ 1+K2

1+κ2K2 = W BW † where V and W are two unitary matrices and A = diag(γ1, · · · , γN)

and B = κ diag(
1+k21

1+κ2k21
, · · · , 1+k2N

1+κ2k2N
). We have

DΓPΓ(Γ) = DV dγ1 · · · dγN P (γ1, · · · , γN) ∆N(γ)2 (50)

where ∆N(γ) =
∏

i<j(γi − γj) is the Vandermonde and DV the Haar measure. A similar
decomposition holds for DK, thus

P (γ1, · · · , γN) ∝ ∆N(γ)2
∏
n

θH(γn) γNn

∫
RN

dk1 · · · dkN ∆N(k)2
∏
n

(1 + k2
n)N

(1 + κ2k2
n)2N

×
∫

U(N)

DV

∫
U(N)

DW e− tr{AV †W BW †V } (51)
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where θH(γ) is the usual Heaviside function. Using Harish-Chandra-Itzykson-Zuber integral
(see Appendix A.1), we obtain

P (γ1, · · · , γN) ∝ ∆N(γ)
∏
n

θH(γn) γNn

∫
RN

dk1 · · · dkN
∆N(k)2

∆N

(
κ 1+k2

1+κ2k2

) ∏
n

(1 + k2
n)N

(1 + κ2k2
n)2N

× det

[
exp

(
−κ 1 + k2

i

1 + κ2k2
i

γj

)]
(52)

which will be used in Section 7.

5.3. Channels with different coupling parameters

It is clear from the above discussion how to extend the obtained results to a general case
of arbitrary and nonequal channel couplings. Exploiting representation (6) again, we can now
substitute the reaction matrix K at perfect couplings by

K −→ U †C C KC UC , C = diag(
√
κ1, · · · ,

√
κN) ,

where UC is a unitary matrix and κa correspond to different transmission coefficients (7).
Following the same lines as in Subsection 5.1, we have Qs = AQs0A† with

A = U †C
(
1N + C2K2C2

)−1/2
C
(
1N +K2

)1/2
. (53)

(We have used [U †CMUC ]−1/2 = U †CM−1/2UC , but note that (AB)−1/2 6= B−1/2A−1/2 in
general.) This leads to the following generalization of Eq. (49):

PΓ(Γ) ∝ Θ(Γ) (det Γ)βN/2
∫

DK det(1N +K2)βN/2

det(1N + C4K2)1−β
2

+βN
(54)

× exp

(
−β

2
tr
{(

1N + C2K2C2
)−1/2

C
(
1N +K2

)
C
(
1N + C2K2C2

)−1/2 UC ΓU †C
})

One obviously recovers (49) at UC = 1N and C =
√
κ1N .

6. Joint distribution of S and Qs (uniform couplings)

We now derive another instructive integral representation for the distribution PΓ(Γ) in
terms of an integral over the unitary group. Our purpose here is not simply technical but
aiming to shed new light on the derivation of Eq. (49). This second formulation will allow
us to obtain more straightforwardly the joint distribution P (S,Γ) of the matrices S and Γ. It
will also be useful for the numerical calculations presented in Section 8. The starting point is
to reformulate the model introduced above, according to Brouwer’s construction [29] of the
distribution of the S matrix for tunable couplings. We introduce the N ×N scattering matrix
S0 belonging to one of the circular ensembles CβE, describing the quantum dot for perfect
contacts. The non-ideal nature of the contact is then accounted for through the 2N × 2N

scattering matrix (see Fig. 2)

Sbarrier =

(
rb t′b
tb r′b

)
(55)

gathering the transmission/reflection through the region between the lead and the dot.
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coupling
finite

S0S

t

b

r
b

t’

b

r’
bSbarrier :

probability
transmission

T

Figure 2. Quantum dots coupled to contacts through which the electronic wave is injected.
The scattering matrix S0 describes the dynamics of the perfectly coupled quantum dots and
the scattering matric Sbarrier the scattering through each barrier.

6.1. The scattering matrix

The matrix S0 is such that 〈S0〉 = 0 by construction, while the matrix Sbarrier is supposed
fixed. The scattering matrix describing the quantum dot with arbitrary couplings is

S = rb + t′b

(
S†0 − r′b

)−1

tb . (56)

Because 〈Sn0 〉 = 0 for any positive integer n, we have 〈S〉 = rb. We still consider the case of
uniform couplings, when the average 〈S〉 ≡ 1N S is proportional to the identity matrix,

rb = − (r′b)
†

= 1N S and tb = t′b = 1N

√
1− |S|2 , (57)

leading to the simpler representation

S =
(
S 1N + S0

)(
1N + S∗ S0

)−1

. (58)

Introducing the transmission probability T = 1− |S|2 of the barrier, we note that the case of
perfect couplings, T = 1, corresponds to S = S0 with 〈S〉 ≡ S = 0.

Given these results, we can now obtain the distribution of S at arbitrary coupling by
evaluating the Jacobian of transformation (58). Note that the two scattering matrices have the
same eigenvectors. Then establishing a relation between the two measures only requires to
relate the Vandermonde determinants constructed from their eigenvalues. Using

S0 =
(
S − S 1N

)(
1N − S

∗ S
)−1

, (59)

we deduce the following relation between eigenvalues

eiθ
(0)
a − eiθ

(0)
b =

1− |S|2

(1− S∗ eiθa)(1− S∗ eiθb)
[eiθb − eiθa ] . (60)

As a consequence, the Vandermondes built from the two sets of eigenvalues are related by

∆N(eiθ
(0)
1 , · · · , eiθ

(0)
N ) = (1− |S|2)N(N−1)/2

∏
a

(1− S eiθa)−N+1 ∆N(eiθ1 , · · · , eiθN ) . (61)

Using dθ
(0)
a = dθa (1− |S|2)/|1− S∗ eiθa |2, we finally relate the two measures as follows

DS0 = (1− |S|2)N+βN(N−1)/2 DS | det(1N − S
∗S)|−2−β(N−1) (62)
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from which we can read out the distribution PS(S) of S, as P (0)
S (S) is just uniform. We have

thus recovered the Poisson kernel (5) (reproducing the proof of Ref. [29]).
We now consider the Wigner-Smith time matrix. Assuming as before ∂εS = 0, we have

∂εS =
(
1− |S|2

)
(1N + S∗S0)−1 ∂εS0 (1N + S∗S0)−1, thus yielding

Q =
(
1− |S|2

) (
1N + SS†0

)−1

Q0

(
1N + S∗S0

)−1

. (63)

The symmetrised Wigner-Smith matrix can be again written as Qs = AQs0A, where

A =

√
1− |S|2

(
1N + S∗S0

)−1/2 (
1N + SS†0

)−1/2

(64)

is Hermitian. One can easily check that this expression is equivalent to (46).
It will be useful in what follows to also determine the Jacobian of the transformation

Γ0 → Γ = A−1Γ0(A†)−1. Using (48) we obtain

DΓ0 = (1− |S|2)N+βN(N−1)/2
∣∣∣det

(
1N + S∗S0)

)∣∣∣−2−β(N−1)

DΓ (65)

which can be re-expressed in terms of S, leading to

DΓ0 = (1− |S|2)−N−βN(N−1)/2
∣∣∣det

(
1N − S

∗S
)∣∣∣2+β(N−1)

DΓ . (66)

Remarkably, this shows that the measure is invariant,

DS0 DΓ0 = DS DΓ (67)

It is tempting to regard this equation as a matrix extension of Liouville’s theorem, although
further study would be needed to support this statement (e.g., by investigating parametric
evolution of the associated matrix flow with regard to coupling changes).

6.2. Joint distribution of S and Γ = Q−1
s

Our starting point is again the BFB result for ideal contacts (43), rewritten with the
inverse Wigner-Smith matrix

P
(0)
S,Γ(S0,Γ0) ∝ Θ(Γ0) (det Γ0)βN/2 e−(β/2) tr{Γ0} (68)

Using the two transformations (58) and (64), and the conservation of the measure (67), we
finally obtain the joint distribution

PS,Γ(S,Γ) ∝ Θ(Γ)
∣∣∣det (1N − S

∗S)
∣∣∣βN (69)

× ( det Γ)βN/2 exp

[
− β

2(1− |S|2)
tr
{

(1N − S
∗S)(1N − SS†)Γ

}]
A similar structure was given in a recent paper [62], including the other four (“BdG”)
symmetry classes relevant for scattering in an Andreev billiard. The case of the three chiral
symmetry classes remains an open problem.
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6.3. Distribution of the inverse of the Wigner-Smith matrix

The distribution of the matrix Γ = Q−1
s can be deduced by integrating (69) over S. In

order to make the connection with the representation (49) more clear, we prefer to write a
matrix integral over the scattering matrix of the cavity with perfect contacts:

PΓ(Γ) =
〈
δ
(
Γ− (A−1)†Γ0A

−1
)〉
S0,Γ0

, (70)

where S0 belongs to the circular ensemble and Γ0 = Q−1
s0 is uncorrelated from the scattering

matrix and distributed according to (44). Using (48), we finally obtain

PΓ(Γ) ∝ Θ(Γ) (det Γ)βN/2
∫

CβE

DS0

∣∣∣det
(
1N + S∗S0

)∣∣∣β−2−2βN

(71)

× exp

[
−β

2
(1− |S|2) tr

{
(1N + S∗S0)−1(1N + SS†0)−1Γ

}]
,

where the integral runs over the circular ensemble. Note that it is also possible to go more
directly from (49) to (71) by using (6) and (41).

The generalisation of this result to the case of channels with different couplings, as it has
been done in Section 5.3, is also possible.

7. Characteristic function of the Wigner time delay

As is already mentioned in the introduction, the trace of the Wigner-Smith matrix

τW =
1

N

∑
a

τa =
1

N
tr
{

Γ−1
}
, (72)

i.e. the Wigner time delay, is of special interest due to its practical applications. The
distribution and moments of τW were studied in much detail for perfect coupling T = 1

[43, 17, 21, 46, 47]. Our aim now is to determine the distribution PN,β(τ) of the Wigner time
delay in the weak coupling limit T ≈ 4κ→ 0. We find it convenient to introduce the rescaled
variable t = 2τW/(βκ), with the rescaled distribution being

QN,β(t) = (βκ/2) PN,β(τ = (βκ/2) t) (73)

(we will see in Section 8 and Appendix C that a more natural scaling variable is |1/κ − κ| τ
rather than τ/κ, however this makes no difference in the weak coupling limit). We introduce
the characteristic function for the Wigner time delay

ZN,β(p) = ZN,β(0)
〈

e−(2p/βκ) tr{Γ−1}
〉

(74)

(the normalisationZN,β(0) will be chosen for convenience below). The characteristic function
is related to the distribution of the rescaled time delay as

ZN,β(p)

ZN,β(0)
=

∫ ∞
0

dtQN,β(t) e−Npt . (75)

In the following, we mostly consider the unitary case β = 2. The last subsection will
discuss the large deviation for arbitrary symmetry class. The characteristic function can be
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written as a matrix integral with (49). Using expression (52) for the joint distribution of the
eigenvalues {γ1, · · · , γN}, we get

ZN,2(p) ∝
∫
RN+

dγ1 · · · dγN ∆N(γ)
∏
n

γNn e−p/(κγn)

∫
RN

dk1 · · · dkN
∆N(k)2

∆N

(
κ 1+k2

1+κ2k2

)
×
∏
n

(1 + k2
n)N

(1 + κ2k2
n)2N

det

[
exp

(
−κ 1 + k2

i

1 + κ2k2
i

γj

)]
(76)

Integrals over γk can be performed thanks to the Andreief formula (see Appendix B)∫
RN+

∏
k

(
dγk γ

N
k e−p/(κγk)

)
det
[
γi−1
k

]
det

[
exp

(
−κ γk

1 + k2
j

1 + κ2k2
j

)]
= N ! det

[∫ ∞
0

dγ γN e−p/(κγ)γi−1 e−κ γ (1+k2j )/(1+κ2k2j )

]
(77)

leading to

ZN,2(p) =

∫
RN

dk1 · · · dkN
∆N(k)2

∆N( 1+k2

1+κ2k2
)

∏
n

(1 + k2
n)N

(1 + κ2k2
n)2N

× det

(p 1 + κ2k2
j

1 + k2
j

)N+i
2

KN+i

(
2

√
p

1 + k2
j

1 + κ2k2
j

) . (78)

This expression can be simplified further by noticing the obvious relation∏
j

ξ2N
j det

[
ξ−N−ij

]
= ∆N(ξ) , ξj ≡

1 + k2
j

1 + κ2k2
j

. (79)

Collecting everything, we arrive at the final result

ZN,2(p) =

∫
RN

dk1 · · · dkN
∆N(k)2∏
n(1 + k2

n)N

det

[(
p

1+κ2k2j
1+k2j

)N+i
2

KN+i

(
2

√
p

1+k2j
1+κ2k2j

)]
det

[(
1+k2j

1+κ2k2j

)−N−i] (80)

Normalisation constant. Using the asymptotics of the MacDonald function, Kν(x) '
[Γ(ν)/2] (2/x)ν for x→ 0, we get the normalisation constant under the form

ZN,2(0) = 2−N
N∏
n=1

Γ(N + n)

∫
RN

dk1 · · · dkN ∆N(k)2
∏
n

(1 + k2
n)−N , (81)

which is surprisingly independent of κ. We recognize the normalisation of the Cauchy
ensemble, Eq. (A.3) of Appendix A.2, hence we get

ZN,2(0) = πN2−N
2

N !
N∏
n=1

Γ(N + n) . (82)
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7.1. Perfect coupling

Eq. (80) shows that the limit of perfect coupling, κ → 1, is singular as the determinant
in the denominator vanishes. For this reason it is more easy to start from the definition (74)
with (44) and apply the Andreief formula with

ZN,2(p) ∝
∫
RN+

dγ1 · · · dγN ∆N(γ)2
∏
k

(
γNk e−γk−p/γk

)
(83)

leading to

ZN,2(p) ∝ det
[
p
N+i+j−1

2 KN+i+j−1(2
√
p)
]

for κ = 1 . (84)

For two other symmetry classes (β = 1, 4), one can also obtain certain Pfaffian representation
(analogous to the one derived in a different context in Ref. [63], cf. supplementary material
to this paper as well as [64]).

7.2. Limiting behaviours of the characteristic function in the weak coupling limit

The form (80) is appropriate to consider the weak coupling limit κ → 0 : the
characteristic function (80) simplifies as

ZN,2(p) =

∫
RN

dk1 · · · dkN ∆N(k)2

det

[(
p

1+k2j

)N+i
2
KN+i

(
2
√
p(1 + k2

j )
)]

det
[
(1 + k2

j )
−i
] . (85)

The existence of a finite limit for κ → 0 shows that the distribution PN,β(τ) admits a
universal form (independent of the coupling) after proper rescaling τ ∼ κ, i.e. the rescaled
distribution QN,β(t) has a limit. A similar observation is made for the marginal distributions
of both partial and proper time delays in Appendix C.2 for arbitrary symmetry class.

7.2.1. Limit p→∞. In the limit p→∞, the determinant (80) simplifies to

ZN,2(p) '
(π

4

)N/2
p

3N2

4

∫
dk1 · · · dkN ∆N(k)2

∏
n

[
e−2
√
p(1+k2n)

(1 + k2
n)

N
2

+ 1
4

]
det
[
(1 + k2

j )
−i/2]

det
[
(1 + k2

j )
−i
] .(86)

The exponentials constraint the variables to be kn . 1/
√
p → 0, thus we can write

e−2
√
p(1+k2n) ' e−2

√
p−√pk2n and expand the remaining functions.

We now analyse the ratio of the two determinants in the limit kj → 0. For this purpose,
we use the following convenient relation

det [φi(kj)]16i, j6N '
kj→0

∆N(k) det
[
φ

(n−1)
i (0)/(n− 1)!

]
16i, n6N

(87)

where {φi(k)} is a set of regular functions (differentiable at least N times). The proof of the
relation is simple: replacing the functions by a Taylor expansion, we notice that the lowest
order in kj’s is provided by the first N terms of the series

det

[
N−1∑
n=1

φ
(n−1)
i (0)

(n− 1)!
kn−1
j

]
16i, j6N

.
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This is readily recognized as the determinant of a product of matrices, yielding (87).
We apply (87) to the ratio of determinants in (86). The corresponding Taylor expansion

is given by (1 + x)−α =
∑∞

n=0
(α)n
n!

(−x)n, where (α)n = Γ(α+ n)/Γ(α) is the Pochhammer
symbol. Thus the ratio of the two determinants has a finite limit

det
[
(1 + k2

j )
−i/2]

det
[
(1 + k2

j )
−i
] −→

kj→0
BN =

det
[
(−1)j−1 Γ(i/2+j−1)

Γ(i/2)Γ(j)

]
det
[
(−1)j−1 Γ(i+j−1)

Γ(i)Γ(j)

] , (88)

which after further simplifications reduces to

BN =
det [Γ(i/2 + j − 1)]

det [Γ(i+ j − 1)]

N∏
n=1

Γ(n)

Γ(n/2)
. (89)

We can now write

ZN,2(p) '
(π

4

)N/2
BN p

3N2

4 e−2N
√
p

∫
dk1 · · · dkN ∆N(k)2

∏
n

e−
√
pk2n . (90)

Using ∆N(αx) = αN(N−1)/2 ∆N(x) and the integral (A.5), we finally obtain

ZN,2(p) '
p→∞

AN p
N2

2 e−2N
√
p , (91)

where AN = 2−
N2

2

(
π
4

)N/2
BN

∫
dx1 · · · dxN ∆N(x)2

∏
n e−x

2
n/2 can be also written as

AN = 2−
N
2

(N+1)πN G(N + 2) BN (92)

in terms of the Barnes G-function.
Correspondingly, the (rescaled) Wigner time delay distribution reads

QN,2(t) '
t→0

CN t
−N2−3/2 e−N/t , CN =

√
N

π

AN

ZN,2(0)
, (93)

thus yielding the asymptotic behaviour

PN,2(τ) ∼ T−1 (T/τ)N
2+3/2 e−NT/(4τ) for τ � T . (94)

7.2.2. Limit p → 0. The limit of small p is more tricky. First, it must be recognised that
the dominant contribution to the multiple integral (85) comes from the expansion of the
MacDonald functions within a window |kn| . 1/

√
p :

ZN,2(p) =

∏
n Γ(N + n)

2N

∫
dk1 · · · dkN

∆N(k)2∏
n(1 + k2

n)N

det
[

1
(1+k2j )i

(
1− p 1+k2j

N+i−1
+O(p2)

)]
det
[
(1 + k2

j )
−i
]

Now we use that the p-dependent determinant here can be further written as

det(A− pB) '
p→0

det(A)
(
1− p tr

{
A−1B

})
, (95)

where the matrices A and B are defined by

Aij = (1 + k2
j )
−i ≡ (Xj)

i and Bij =
(1 + k2

j )
−i+1

N + i− 1
≡ (Xj)

i−1

N + i− 1
. (96)
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Making use of the relation

tr
{
A−1B

}
=

1

N

∑
n

X−1
n =

1

N

∑
n

(1 + k2
n) , (97)

the leading order term of the characteristic function is then found as follows

ZN,2(0)−ZN,2(p) ∼ p

∫
|ki|.1/

√
p

dk1 · · · dkN ∆N(k)2
∏
n

(1 + k2
n)−N

1

N

∑
n

(1 + k2
n) (98)

where we have used once again det [(1 + k2
j )
−i] = ∆N(k2)

∏
n(1 + k2

n)−N . By symmetry we
can perform (1/N)

∑
n(1 + k2

n)→ 1 + k2
N . As p→ 0, the dominant contribution comes from

the term

∆N(k)2 ' k
2(N−1)
N ∆N−1(k)2 +O(k2N−3

N ) . (99)

By inspecting the integral, we can write

ZN,2(0)−ZN,2(p) ∼ p

∫
|ki|.1/

√
p

dk1 · · · dkN−1
∆N−1(k)2∏N−1
n=1 (1 + k2

n)N︸ ︷︷ ︸
→const. as p→0

∫
|kN |.1/

√
p

dkN
k

2(N−1)
N (1 + k2

N)

(1 + k2
N)N︸ ︷︷ ︸

∼1/
√
p as p→0

and, therefore, conclude that
ZN,2(p)

ZN,2(0)
'
p→0

1−BN
√
p , (100)

where BN is some constant. This behaviour can now be related to the distribution by using a
Tauberian theorem. Assuming the tail QN,2(t) ' c t−3/2, we have∫ ∞

0

dtQN,2(t) e−Npt = 1−
∫ ∞

0

dtQN,2(t) (1− e−Npt) (101)

'
p→0

1− c
∫ ∞

0

dt

t3/2
(1− e−Npt) = 1− 2 cN p

∫ ∞
0

dt t−1/2 e−Npt = 1− 2 c
√
π N p

Thus c = BN/(2
√
πN). A precise determination of BN would be interesting, in particular

in order to clarify the precise scaling with N of the typical values of the random variable τW,
however it goes beyond the present analysis.

We conclude that in the limit of small transmission, T � 1, the Wigner time delay
distribution shows the universal τ−3/2 behaviour

PN,2(τ) ∼ T−1 (T/τ)3/2 for T � τ � 1/T . (102)

In the next section, we will see that the upper cutoff also carries a N -dependence. This
behaviour coincides with the one obtained by a heuristic argument, see Eq. (18), which is
based on the picture of isolated resonances.

It is worth stressing that the order of the limits p → 0 and κ → 0 is important.
For finite coupling the first moments are finite. Using that the second moment is [16, 17]
〈τ 2

W〉 ' 1/(2κN3), cf. Eq. (28), one expects

ZN,β(p)

ZN,β(0)
'
p→0

1− 2p

βκ
+

p2

β2κ3N
+ · · · (103)
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for small but finite κ (and large N ). The behaviour (100) is obtained by sending first κ → 0

and then p → 0. For finite κ the non-analyticity of the characteristic function appears at
higher order in p, corresponding to the divergence of the moments of high order, 〈τ kW〉 = ∞
for k > 1 + βN/2.

For finite T , the distribution PN,β(τ) should be in correspondence with the marginal
distribution of the proper (or partial) times in the limit τ → ∞, with wN,β(τ) ∼ τ−2−βN/2,
as we expect that one proper time dominates the sum τW = (1/N)

∑
a τa. Inspection

of the matrix distribution (49) shows that if one resonance is much more narrow than all
others, γ1 → 0, we expect the vanishing of the density as PΓ(Γ) ∼ (det Γ)βN/2 ∼ γ

βN/2
1 .

Correspondingly the distribution of τW = (1/N)
∑

a γ
−1
a ' 1/(N γ1) presents the tail

PN,β(τ) ∼ τ−2−βN/2. We can reintroduce the dependence in T by matching the behaviour
with (102) :

PN,β(τ) ∼
τ�1/T

T 2 (Tτ)−2−βN/2 , (104)

for τ & 1/T . A similar decoupling of the eigenvalues was demonstrated for perfect contacts
in Ref. [47]. Note that the N -dependence has not been included above. This will be discussed
in the Section 8 (see also Subsection 3.1, where such a behaviour has been related to isolated
resonances with atypically narrow width).

7.3. Large deviations for τ → 0 for arbitrary symmetry class

In this last subsection, we study the limiting behaviour of the distribution PN,β(τ) for
τ � κ/N by a steepest descent analysis of the matrix integral, which allows to consider any
symmetry class. Our starting point is

ZN,β(p) ∝
∫

Γ>0

DΓ (det Γ)βN/2
∫

DK det(1N +K2)βN/2

det(1N + κ2K2)βN+1−β/2 (105)

× exp

(
−β

2
κ tr

{
1N +K2

1N + κ2K2
Γ

}
− 2p

βκ
tr
{

Γ−1
})

.

The integral over the matrix Γ is of the form of the Bessel function with matrix argument
introduced in Ref. [65], generalising the MacDonald function as

Bν,β(Z) =

∫
X>0

DX (detX)−ν−1−β(N−1)/2 e− tr{X+Z X−1} , (106)

where Z is a Hermitian matrix. The relation with the characteristic function reads explicitly

ZN,β(p) ∝
∫

DK det(1N +K2)βN/2

det(1N + κ2K2)βN+1−β/2 B1+βN
2
,β

(
p

1N +K2

1N + κ2K2

)
. (107)

The limiting behaviour of integrals such as (106) was recently studied by the Laplace
method in [66] for real symmetric matrices. Here we generalise this analysis to the unitary
class, which allows us to compute easily the remaining matrix integral (over K). Using the
invariance under unitary transformations, we can always choose one of the two matrices under
a diagonal form. We choose K = diag(k1, · · · , kN). Next we perform the change of variable

Γ −→
2
√
p

βκ

(
1N +K2

1N + κ2K2

)−1/4

X

(
1N +K2

1N + κ2K2

)−1/4
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Thus

ZN,β(p) ∝ p
βN2

2
+N

2
(1−β/2)

∫
dk1 · · · dkN |∆N(k)|β

∏
n

(1 + k2
n)(β/2−1)/2

(1 + κ2k2
n)βN/2−β/4+1/2

×
∫
X>0

DX (detX)βN/2 exp

(
−√p tr

{√
1N +K2

1N + κ2K2

(
X +X−1

)})
.(108)

Then, we introduce R = (1N + K2)1/2(1N + κ2K2)−1/2. The integral is dominated by the
position of the saddle point, minimum of tr {R (X +X−1)}, which is found to be X∗ = 1N .
The Hessian matrix has the form H(i,j),(k,l) = 2(Rjlδik +Rikδjl), so that we obtain the form∫

X>0

DX (detX)βN/2e−Λ tr{R (X+X−1)}

'
Λ→∞

(π
Λ

)N(1+β(N−1)/2)

(detR)−1/2
∏
i<j

(Rii +Rjj)
−β/2 e−2Λ tr{R} (109)

After some algebra we eventually get the limiting behaviour (assuming κ→ 0)

ZN,β(p) ∝ pβN
2/4 e−2N

√
p for p→∞ (110)

which agrees with (91) for β = 2. Correspondingly, we obtain the limiting behaviour for the
distribution of the Wigner time delay

PN,β(τ) ∼ τ−
βN2

2
− 3

2 e−βNκ/(2τ) for τ → 0 and κ� 1 . (111)

As a check, we can compare this behaviour with the limiting behaviour of the marginal
distribution for proper times and partial times as the three distributions coincide for
one channel, P1,β(τ) = w1,β(τ) = w̃1,β(τ). From Eq. (C.46) we have w̃N,β(τ) ∼
τ−βN/2−3/2 exp { − βκ/(2τ)} and from Eq. (C.50), wN,2(τ) ∼ τ−2N−1/2 exp { − κ/τ}. The
three limiting behaviours indeed coincide when N = 1, as it should.

For reference, we can compare this behaviour to the corresponding one for ideal
couplings (see Ref. [47] and Section 5 of Ref. [67], and also [64])

P(0)
N,β(τ) ∼ τ−

3βN2

4
−N

2
(1−β

2
)− 3

2 e−βN/(2τ) for τ → 0 and κ = 1 . (112)

Although the leading exponential terms in (111) and (112) coincide, the pre-exponential
factors there have different power law dependencies.

8. Numerical analysis

We have performed numerical simulations in order to study the weak coupling limit. For
this purpose we use the formulation presented in Section 6 : we generate the matrix S0 in the
circular ensemble and the matrix Γ0 = Q−1

s0 in the Laguerre ensemble. The Wigner-Smith
matrix is then constructed making use of the expression

Q =
(
1− |S|2

) (
1N + SS†0

)−1

S−1/2
0 Qs0 S1/2

0

(
1N + S∗S0

)−1

. (113)
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Figure 3. Cumulative distribution of the proper time delays in the unitary case (β = 2) for
different channel number N and coupling κ (the latter controls the transmission probability
through the contact, T ' 4κ at small κ� 1). The dashed black line corresponds to the exact
analytical expression (C.22).

8.1. Check: marginal distribution of the proper times

As a first check, we have computed the cumulative (marginal) distribution of the proper
time for different N and κ. This distribution is shown in Fig. 3, where it is plotted in terms of
the scaling variable s = N |1/κ − κ| τ , which is a natural choice describing the full range of
couplings (see Appendix C). We have generated 105 matrices each time. For weak coupling
κ→ 0, the main behaviours of the distribution are

κ

N
wN,β

(
τ =

κ

N
s
)
∼

 s−3/2 for 1 . s . 1/κ2

κ3 (κ2s)
−2−βN/2 for s & 1/κ2

, (114)

which are deduced in Appendix C from the known exact result [41]. We can see that in the
limit κ→ 0 all curves collapse onto each other (after proper rescaling). Changing κ then only
shifts the upper cutoff of the s−3/2 tail. The positions of the lower and upper cutoffs of this
power law perfectly coincide with the two cutoffs τupper and τlower defined by Eqs. (C.43)
and (C.45). We have also compared the numerics with the exact distribution (C.22) for
N = 2 (in practice, this is only possible for small N . 5 and not too small κ & 0.01,
otherwise (C.22) appears to be too involved for being plotted with a conventional software
like Mathematica): the agreement is excellent.

8.2. Distribution of the Wigner time delay

Next, we have considered the distribution of the Wigner time delay in the weakly coupled
regime, NT � 1. We draw several conclusions from such a numerical analysis.

• Taking again s = |1/κ − κ| τ as the scaling variable, we see that the different
distributions collapse onto each other and show the intermediate s−3/2 behaviour for
different N and κ (Fig. 4).
• The lower cutoff of the s−3/2 law is almost independent of N .
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Figure 4. Cumulative distribution of the Wigner time delay in the unitary case (β = 2) for
different channel numbers and different couplings. The dashed black lines are τ−1/2 and
τ−1−N . The distributions for different channel numbers are plotted for κ = 0.01 on the
bottom part of the figure.

• The upper cutoff depends on both κ and N , with numerics supporting the scaling
τ∗ ∼ 1/(κN2). (This can be clearly seen, e.g., by comparing the two curves for
N = 5 and N = 50 in Fig. 4 for the same value of κ.)
• The power law τ−3/2 is observed both in the unitary and orthogonal case (Fig. 5).

(This is consistent with the earlier study [40] of the crossover regime).
• For τ & τ∗, the distribution exhibits a power law tail with the universal exponent

2 + βN/2, which is anticipated theoretically and confirmed here numerically.
These findings together with the outcome of Section 7 can be summarised as follows :

κPN,β (τ = κ s) ∼

 s−3/2 for 1 . s . 1/(κN)2

(Nκ)3 (N2κ2s)
−2−βN/2 for s & 1/(κN)2

(115)

Furthremore, we have argued in Section 7.2 that limκ→0 κPN,β (τ = κ s) is a universal
function, although we have not been able to determine its precise form.

Finally, we have also studied the transition from strong coupling (NT � 1) to weak
coupling (NT � 1), for large N , and shown that the distribution crosses over from a narrow
distribution to a broad distribution when NT ∼ 1 (Fig. 6).
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Figure 5. Comparison of the cumulative distribution of the Wigner time delay in the
orthogonal and unitary case.
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Figure 6. Distribution of the Wigner time delay for N = 50 channels : from strong coupling
regime (NT � 1) to weak coupling (NT � 1).

9. Conclusion

In this article, we have considered the scattering of waves by a chaotic cavity coupled
to N channels characterised by arbitrary transmission coefficients T . Within a random
matrix approach, we have derived the joint distribution of the scattering matrix S and the
symmetrised time-delay matrix Qs at arbitrary channel couplings. This extends the result
obtained by Brouwer, Frahm and Beenakker [36, 37] at T = 1 to the general case of non-
ideal coupling, T < 1. This has allowed us to obtain two representations for the distribution
of Qs (or more precisely, its inverse) in terms of certain matrix integrals.

Then we have applied our results to study the statistical properties of the Wigner time
delay τW = 1

N
tr {Qs}. Specifically, we have derived the exact representation (107) of
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the characteristic function of τW as a multiple integral involving Bessel functions of matrix
argument. This expression has been further used to obtain, after inverse Laplace transform,
the asymptotic behaviours of the Wigner time delay distribution in the limit T → 0 (weak
coupling per channel), keeping NT � 1. Physically, this corresponds to the regime of
isolated resonances (the system weakly coupled to the external). In such a case, the Wigner
time delay distribution becomes broad with an intermediate behaviour described by the
universal τ−3/2 law. We have also established the left and right tails of the distribution up
to the constant prefactors that have not been computed. The knowledge of these constants
would however be needed for determining the precise positions of the crossovers between the
limiting behaviours. These cutoffs are of interest, as they control the positive and negative
moments, but they have only been deduced here from a numerical analysis. We have also
compared such a behaviour with the one derived from the known marginal distributions of the
partial and proper time delays, which become almost identical to each other in the weak
coupling limit (see Appendix C). In particular, the distribution of the partial time delays
(rescaled properly by T ) is found to have a simple universal form (C.19) in the limit T → 0

at any N . We have argued that the distribution of the Wigner time delay should be described
by a universal function in the limit T → 0 as well. The analysis of the other regime with
NT � 1 (the strongly coupled system with overlapping resonances) suggests that the Wigner
time delay distribution becomes narrow, with a Gaussian-like bulk behaviour. The crossover
between the two limiting forms occurs quite sharply at NT ∼ 1 (cf. Fig. 6). Determining the
precise universal function describing such a crossover is still an outstanding problem and a
challenging one to consider in future study.
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Appendix A. Some matrix integrals

Appendix A.1. Harish-Chandra - Itzykson - Zuber Integrals

Consider two Hermitian matrices A and B with spectra {ai} and {bi}. Then [68, 69]∫
U(N)

DU exp
(
t tr

{
AUBU †

})
= G(N + 1) t−N(N−1)/2

det
(
et aibj

)
16i, j6N

∆N(a) ∆N(b)
(A.1)

where

∆N(a) = det(aj−1
i )16i, j6N =

∏
i<j

(ai − aj) (A.2)

is the Vandermonde and G(z) is the Barnes’ G function (double gamma function) [70, §5.17]
defined by G(z + 1) = Γ(z)G(z), i.e. G(N + 1) = (N − 1)!(N − 2)! · · · 3!2!1!.
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Appendix A.2. Two normalisation constants

We state two matrix integrals provided in Forrester’s book [71], which are used in the
article. The normalisation for the Cauchy ensemble is given by Eqs. (4.4) and (4.145) of [71]:∫

dx1 · · · dxN |∆N(x)|β
∏
n

(1 + x2
n)−α = 2βN(N−1)/2−2(α−1)NπN MN(a, a, β/2) (A.3)

where a = α− 1− β(N − 1)/2 and

MN(a, b, λ) =
1

Γ(1 + λ)N

N−1∏
j=0

Γ(λj + a+ b+ 1)Γ(λ(j + 1) + 1)

Γ(λj + a+ 1)Γ(λj + b+ 1)
. (A.4)

The normalisation for the Gaussian ensemble is given on p. 173 of [71]:∫
dx1 · · · dxN |∆N(x)|β

∏
n

e−x
2
n/2 =

(2π)N/2

Γ(1 + β/2)N

N∏
j=1

Γ(1 + jβ/2) . (A.5)

Appendix B. Andréief formula

A formula due to Andréief [72] (see also the recent historical note [73]) is∫ ( N∏
n=1

dµ(xn)

)
det(Ai(xj)) det(Bk(xl)) = N ! det

[∫
dµ(x)Ai(x)Bj(x)

]
. (B.1)

For β = 2, writing the Vandermonde as

∆N(λ)2 =
∏
i<j

(λi − λj)2 = det(λk−1
i )︸ ︷︷ ︸∏

i<j(λi−λj)

det(λk−1
j ) (B.2)

we deduce the representation of the matrix integral as a Hankel determinant∫ ( N∏
i=1

dµ(λi)

)∏
i<j

(λi − λj)2 = N ! det (aij)16i, j6N , (B.3)

where the matrix elements are

aij =

∫
dµ(λ)λi+j−2 for 1 6 i, j 6 N . (B.4)

Appendix C. Partial and proper time delays

The marginal distributions of the partial and proper time delays were obtained in several
papers by Fyodorov, Sommers and collaborators [42, 17, 40, 21] (partial times) and [41]
(proper times). These explicit results are however expressed in complicated forms, with the
transmission coefficient entering through the following parameter :

g =
2

T
− 1 =

1

2

(
κ+

1

κ

)
> 1 . (C.1)
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It is the purpose of this appendix to derive the precise limiting behaviours of these distributions
in the weak coupling limit T ≈ 2/g → 0. It will be convenient to rescale the time delays and
relevant distributions as follows

τ ' β

4g
t ' βκ

2
t ' βT

8
t and qN,β(t) '

g�1

β

4g
wN,β

(
τ ' β

4g
t

)
, (C.2)

with a similar form for q̃N,β(τ).

Appendix C.1. Marginal distribution of the partial time delays in the unitary case

The marginal distribution of partial time delays was first derived by Fyodorov and
Sommers [42, 17] in the unitary case:

w̃N,2(τ) =
1

τ 2
p̃

(2)
N (1/τ) , where p̃N(γ) =

γN

N !
(−∂γ)N

[
I0(
√
g2 − 1 γ)e−gγ

]
.(C.3)

In order to find limiting behaviours we rescale the distribution by introducing t = 2gτ or
z = γ/(2g).

We first consider the domain z � 1 (i.e. τ � g). Using that

I0(
√
g2 − 1 γ)e−gγ ' 1

2g
φ

(
z =

γ

2g

)
with φ(z)

def
=

1√
πz

e−z (C.4)

we write

π̃N(z) = lim
g→∞

2g p̃N(γ = 2g z) =
zN

N !
(−∂z)N [φ(z)] (C.5)

Using (−∂z)n(1/
√
z) = (1/2)nz

−1/2−n = 2−n(2n − 1)!! z−1/2−n, where (a)n = a(a +

1) · · · (a+ n− 1) = Γ(a+ n)/Γ(a) is the Pochhammer symbol, we deduce

π̃N(z) =
1

N !

(
N∑
n=0

Cn
N

(2n− 1)!!

2n
zN−n

)
φ(z) . (C.6)

We obtain

lim
κ→0

q̃N,2(t) =
e−1/t

√
π t3/2

1

N !

N∑
n=0

Cn
N(2N − 2n− 1)!!

2N−n
t−n (C.7)

In particular, for t� 1, we get

lim
κ→0

q̃N,2(t) ' (2N − 1)!!√
π 2N N !

t−3/2 . (C.8)

We now turn to the study of the far tail (τ � 1/κ). We expand I0(
√
g2 − 1γ)e−gγ in

powers of γ and identify the coefficient of the term γN . Some algebra gives the form

q̃N,2(t) ' aN
g3

(t/g)−2−N (C.9)

where

aN = 2

bN/2c∑
m=0

2N−2m

(m!)2(N − 2m)!
=

21+2N Γ(1
2

+N)
√
π (N !)2

=
21+N (2N − 1)!!

(N !)2
(C.10)

(C.8) and (C.9) match exactly the limiting forms derived in Eqs. 165 and 166 of Ref. [17].
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Appendix C.2. Marginal distribution of the partial time delays for arbitrary symmetry class

We now consider the marginal distribution of the partial time delays for arbitrary
symmetry class and show that it takes a rather simple form in the weak coupling limit. We
follow the formulation introduced by Gopar and Mello [74] forN = 1 and further generalised
in [21] for arbitrary N > 1, although these papers did not consider specifically the weak
coupling limit.

When all channels are equally coupled, Eq. (58) implies a relation between the
eigenvalues of the two scattering matrices eiθa = (S + eiθ

(0)
a )(1 + S∗ eiθ

(0)
a )−1. This leads

to the following relation between the partial times τ̃a = ∂εθa and τ̃ (0)
a = ∂εθ

(0)
a [74, 21]:

τ̃a = f(θ(0)
a ) τ̃ (0)

a (C.11)

where

f(θ) =
1− |S|2

|1 + S∗eiθ|2
=

2κ
1−κ2

1+κ2

1−κ2 + cos θ
=

1

g +
√
g2 − 1 cos θ

. (C.12)

(We have used S = (1 − κ)/(1 + κ), choosing κ ∈ [0, 1]). We can therefore write the
distribution as w̃N,β(τ) = 〈δ(τ − f(θ

(0)
a ) τ̃

(0)
a 〉θ(0)a ,τ̃

(0)
a

. Now we use the fact that for perfect
coupling, the phase shifts are uniformly distributed and uncorrelated from the partial time
delays. As a consequence :

w̃N,β(τ) =

∫ 2π

0

dθ

2π

1

f(θ)
w̃

(0)
N,β(τ/f(θ)) , (C.13)

where [21] :

w̃
(0)
N,β(τ) =

1

N

N∑
a=1

〈
δ(τ − τ̃ (0)

a )
〉

=
(β/2)1+βN/2

Γ(1 + βN/2)

e−β/(2τ)

τ 2+βN/2
(C.14)

The representation (C.13), written under a slightly different form in [21], generalizes the one
obtained by Gopar and Mello for N = 1 [74]. We can make this integral representation more
explicit through the rescaling

q̃N,β(t) =
β

4
√
g2 − 1

w̃N,β

(
τ =

β t

4
√
g2 − 1

)
(C.15)

with 2
√
g2 − 1 = 1/κ− κ. Some algebra gives the form

q̃N,β(t) =
1

Γ(1 + βN
2

)
t−2−βN/2 (C.16)

×
∫ π

0

dθ

π

(
2
√
g2 − 1

g +
√
g2 − 1 cos θ

)1+βN/2

exp

{
− 2

√
g2 − 1

t (g +
√
g2 − 1 cos θ)

}
.

Before taking the limit of weak coupling (g → ∞), we find more convenient to change the
variable as u = tan2(θ/2), leading to the exact expression

q̃N,β(t) =
1

π Γ(1 + βN
2

)
t−2−βN/2 (C.17)

×
∫ ∞

0

du√
u

(1 + u)βN/2
(

1− κ2

1 + κ2 u

)1+βN/2

exp

{
−1 + u

t

1− κ2

1 + κ2 u

}
.
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It will be also convenient to express the cumulative distribution∫ ∞
t

dy q̃N,β(y) =
1

π

∫ ∞
0

du√
u(1 + u)

γ
(

1 + βN
2
, 1+u

t
1−κ2

1+κ2 u

)
Γ(1 + βN

2
)

(C.18)

where γ(a, z) is the incomplete Gamma function [75].

Appendix C.2.1. Limit κ → 0. The integral representation (C.17) is the most appropriate in
order to study the limit of weak coupling κ→ 0. It makes clear that the distribution takes the
simple form in this limit :

lim
κ→0

q̃N,β(t) =
1√

π Γ(1 + βN/2)

e−1/t

t2+βN/2
U

(
1

2
,
βN + 3

2
,
1

t

)
. (C.19)

where U(a, c, z) is the Kummer function [76]. It is quite remarkable to obtain a universal
form describing the full distribution in this limit.

The expression further simplifies in the unitary case (β = 2) as the Kummer function can
be expressed as a sum

U

(
1

2
, N +

3

2
,
1

t

)
=

1√
π

∫ ∞
0

du√
u

(1 + u)Ne−u/t =
1√
π

N∑
n=0

Cn
N Γ(n+ 1/2) tn+1/2 . (C.20)

Using Γ(n+ 1/2) = 2−n(2n− 1)!!
√
π, we get

lim
κ→0

q̃N,2(t) =
e−1/t

√
π t3/2

N∑
n=0

(2n− 1)!!

n! (N − n)! 2n
t−N+n . (C.21)

which is in exact correspondence with (C.7), as it should, although the two derivations are
quite different.

Appendix C.2.2. Far tail (t � 1/κ2). A more careful analysis of the integral (C.17) shows
that for small but finite κ, the distribution presents a different behaviour for t � 1/κ2. In
this case, noticing that (1− κ2)(1 + u)/[t (1 + κ2u)]� 1, we can replace the exponential in
(C.17) by unity, which shows that the distribution has a power law tail with large exponent
q̃N,β(t) ' (aN/g

3)(t/g2)−2−βN/2, with 2κ ' 1/g and where the coefficient aN can be easily
found and is given below.

Appendix C.3. Marginal distribution of the proper time delays in the unitary case

The exact explicit form for the marginal distribution of the proper time delays was only
found for the unitary case in Ref. [41] :

wN,2(τ) =
1

Nτ

N−1∑
n=0

(
Fn
∂Bn

∂τ
−Bn

∂Fn
∂τ

)
(C.22)

where

Bn =
1

n!

(
− ∂

∂g

)n [
I0(
√
g2 − 1/τ) e−g/τ

]
(C.23)

Fn =
n∑

m=0

1

(2m+ 1)!

(
∂2

∂g2
− 2

τ

∂

∂g

)m
gn . (C.24)
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This analytic solution is still quite complicate. Already for N = 5, the plot with the software
Mathematica shows some irregularities (cf. Fig. C1). The above explicit expressions
become of limited use for plotting the distribution at larger N . (Note, however, that one
can alternatively use an integral representation of the exact distribution that can be inferred
from the analysis of [41]). Hence it is instructive to extract limiting behaviours directly from
Eq. (C.22). Let us now study this point.
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Figure C1. Comparison between the marginal distributions for proper times (continuous blue
line) and partial times (dashed red line) for N = 2 and N = 5. Coupling parameter is
g = 2/T − 1 = 10. The dotted lines are the two power laws with exponents 3/2 and 2 +N .

The expression (C.22) can be rewritten in terms of the scaling variable as

qN,2(t) =
2g

Nt

N−1∑
n=0

(
Fn
∂Bn

∂t
−Bn

∂Fn
∂t

)
. (C.25)

We now discuss the structure of the functions Bn and Fn. The functions Fn can be computed
systematically from (C.24) :

F0 = 1 (C.26)

F1 = g

(
1− 2

3t

)
(C.27)

F2 = g2

(
1− 4

3t
+

4

15t2

)
+

1

3
(C.28)

F3 = g3

(
1− 2

t
+

4

5t2
− 8

105t3

)
+ g

(
1− 2

5t

)
(C.29)

...
... (C.30)

For the following, it is sufficient to identify the first and last terms in the contribution of order
gn :

Fn = gn
(

1− (· · ·)
t

+ · · ·+ (−1)n
22nn!

(2n+ 1)! tn

)
+ gn−2 (· · ·) + · · · (C.31)

Note that the term t−n corresponds to (−2/τ)n∂ng g
n.

We now focus on the functions Bn’s in the large g limit and restrict ourselves to the
regime τ � g, i.e. t� g2. In this case we can write

B0 '
1

2g
ψ(t = 2gτ) , with ψ(t)

def
=

√
t

π
e−1/t (C.32)
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which considerably simplifies Eq. (C.23)

Bn '
1

2gn+1

n∑
m=0

(−t)m

m!
ψ(m)(t) . (C.33)

We now remark that the calculation of the derivatives ψ(m)(t) can be simplified in the two
limiting cases t� 1 or t� 1.

Limit t � 1 (and t � g2). For large t, the derivatives of ψ(t) are dominated by derivation
of the power law

√
t in ψ(t), hence

Bn ' αn
ψ(t)

2gn+1
with αn

def
=

n∑
m=0

(−1)m(1
2
−m+ 1)m

m!
(C.34)

Then the distribution is dominated by the term

qN,2(t) ' 2g

Nt

N−1∑
n=0

Fn
∂Bn

∂t
' ψ(t)

2Nt2

N−1∑
n=0

αn . (C.35)

Finally we can write

qN,2(t) ' bN t
−3/2 (C.36)

where

bN =
1

2
√
π N

N−1∑
n=0

(N − n)
(−1)n(1

2
− n+ 1)n

n!
=

(2N − 1)!!√
π N !2N

. (C.37)

This is precisely the coefficient of the marginal for partial times, Eq. (C.48) for β = 2. We
have also checked that it coincides with the precise behaviour given in Ref. [41] for large N

wN,β(τ) ' 1

π
√

2Ng
τ−3/2 for 1/g � τ � g . (C.38)

Limit t� 1. The derivatives of ψ(t) are dominated by derivation of the exponential, hence

Bn '
ψ(t)

2gn+1

n∑
m=0

(−1)m

m!tm
' ψ(t)

2gn+1

(−1)n

n!tn
(C.39)

Using the expansion of Fn, we get

qN,2(t) ' 2g

Nt
FN−1

∂BN−1

∂t
' 22(N−1)

√
π N(2N − 1)!

e−1/t

t2N+1/2
. (C.40)

This behaviour is different from the one obtained for partial times, cf. Eq. (C.7).
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Appendix C.4. Comparison of the two marginal distributions

Although the two distributions w̃N,2(τ) and wN,2(τ) look at first sight quite different (see
plots in linear scale in Fig. C1), we have showed that they precisely coincide as soon as t� 1 :
not only the power law t−3/2 coincide, but also the precise coefficient. We interpret this as
a manifestation of the fact that, for t � 1, the two distributions are dominated by isolated
resonances. Although we have not extracted from (C.22,C.23,C.24) the behaviour for t� g2,
based on the isolated resonance picture, we assume that the distributions also coincide in this
regime as well. We write qN,β(t) ' q̃N,β(t) for t� 1, i.e.

wN,β(τ) ' w̃N,β(τ) for τ & τlower (C.41)

where τlower ∼ 1/g ∼ κ, as long as resonances can be considered as isolated, according to
the discussion of the introduction (see Fig. C1). The dependence of the cutoff in the channel
number is determined below. Hence this is a strong difference between the weak coupling
and perfect coupling regimes: while the two marginals strongly differ in the latter, the almost
coincide in the former (See Fig. 1).

Appendix C.4.1. Crossovers. Before summarizing the different limiting behaviours, we
determine the precise value where the distribution crosses over from one limiting behaviour
to another in the limit of large N .

The asymptotic form of the coefficients will be useful (we only consider the unitary
case) :

aN '
√

2

(
4

N

)N
eN

πN
, bN '

1

π
√
N
, cN '

e2N

4π N2N+1/2
. (C.42)

Let us denote τupper the crossover position between the two last limiting behaviours :
we write bN (g/τupper)

3/2 = aN (g/τupper)
2+N . Using the asymptotics of the coefficients, one

gets the upper cutoff (in unit of τH)

τupper ' 4 e
g

N
(C.43)

Similarly, we determine the position where the distribuition crosses over between the
universal τ−3/2 power law and the τ → 0 behaviour. As the two distributions qN,2(t) and
q̃N,2(t) differ in this regime, we have to discuss separately the cases of partial and proper
times. We consider first the case of partial times : we write c̃N t−N−3/2 e−1/t = bN t

−3/2

leading to the equation 1/t + N ln t = N − N lnN − (1/2) ln 2. Thus we obtain the lower
cutoff t̃lower ' 1/N , i.e.

τ̃lower '
1

Ng
. (C.44)

For the proper time we write cN t−2N−1/2 e−1/t = bN t
−3/2, leading to the equation 1/t +

2N ln t = 2N − 2N lnN − 2 ln 2, i.e. tlower ' 1/(2N). The cutoff for the proper time is half
the cutoff for the partial times

τlower '
1

2Ng
' 1

2
τ̃lower . (C.45)
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Appendix C.4.2. Summary of the limiting behaviours. In conclusion, we have seen that the
marginal distribution presents three limiting behaviours :

q̃N,β(t) ' 1

2g
w̃N,β

(
τ ' t

2g

)
'

g→∞



c̃N t
−βN/2−3/2 e−1/t for t . 1/N

bN t
−3/2 for 1/N . t . g2/N

aN
g3

(
g2

t

)2+βN/2

for t & g2/N

(C.46)

where the three coefficients are

c̃N =
1√

π Γ(1 + βN/2)
, (C.47)

bN =
1

π

Γ(1/2 + βN/2)

Γ(1 + βN/2)
, (C.48)

aN =
21+βN

√
π

Γ(1/2 + βN/2)

Γ(1 + βN/2)2
. (C.49)

The marginal distribution of the proper times is only known in the unitary case :

qN,2(t) ' 1

2g
wN,2

(
τ ' t

2g

)
'

g→∞



cN t
−2N−1/2 e−1/t for t . 1/N

bN t
−3/2 for 1/N . t . g2/N

aN
g3

(
g2

t

)N+2

for t & g2/N

(C.50)

where the coefficient obtained above is

cN =
22(N−1)

√
π N(2N − 1)!

. (C.51)

Appendix C.4.3. Moments of partial times and proper times. We have recalled in the
introduction the variance of the partial and proper times. In particular, in the unitary case,
we have seen that the second moment is 〈τ̃ 2

a 〉 ' g/N2 for weak coupling g � 1 (compared
to ' 1/N3 for perfect coupling g = 1). We now analyse more into detail the moments of the
partial times and of the proper times in the weak coupling limit in the unitary case.

Positive moments. In the weak coupling regime, the disributions wN,β(τ) and w̃N,β(τ)

coincide for τ � 1/g, i.e. the part of the distributions which controls the positive moments :

〈τ ka 〉 ' 〈τ̃ ka 〉 for k < 1 + βN/2 (C.52)

(〈τ̃ ka 〉 = 〈τ ka 〉 =∞ for k > 1 + βN/2).
The calculation of the moments is dominated by the τ−3/2 tail, cutoff by the faster decay

τ−2−βN/2 above τupper, where the cutoff was determined above. We can estimate the positive
moments as 〈

τ ka
〉
'
∫ τupper

dτ
bN√
g
τ k−3/2 ∼ bN√

g
τ k−1/2

upper (C.53)
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leading to the typical scale〈
τ ka
〉1/k ∼ 1

N1/k
τ 1−1/k

upper ∼
g1−1/k

N
∼ 1

N T 1−1/k
(C.54)

for k < 1 + βN/2.

Negative moments. The negative moments are controlled by the lower cutoff introduced
above. We can write〈

τ−ka
〉
'
∫
τlower

dτ
bN√
g
τ−k−3/2 ∼ bN√

g
τ
−k−1/2
lower ∼ (Ng)k (C.55)

i.e. 〈
τ−ka
〉−1/k ' 2−1−1/(2k)

〈
τ̃−ka
〉−1/k ∼ τlower ∼

1

Ng
∼ T

N
. (C.56)
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