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ABSTRACT 
Simulator-based training platforms have become increasingly popular on the grounds 

of their potential to facilitate skill acquisition within safe and controlled 

environments. However, current technology is limited in its ability to adapt to 

individual trainees. Tailoring is in fact typically based on recorded simulation inputs 

and outputs, or relies on costly and time-consuming trainer-driven interventions, as 

opposed to direct monitoring of trainee state. This research explores whether 

automated detection of trainee emotional state can be used to drive real-time changes 

to the simulator control. The present paper reports on preliminary work to establish 

the technical viability of such an intervention using current emotion detection 

technology within a state-of-the-art fixed-base driving simulator environment. Data 

on the accuracy of the emotion detection software supports the feasibility of the 

approach, thereby suggesting the possibility of implementing emotion-driven training 

trajectories bespoke to the needs of individual trainees. 
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Introduction 

The adoption of simulator-based platforms for training purposes has played a key role 

in enhancing skill acquisition within controlled environments capable of delivering 

reproducible training workflows (Goldberg et al., 2012). However, the choice of 

simulator technology has typically been driven by the capabilities available on the 

market, sometimes resulting in training systems that are not in line with the needs of 

the trainees, because of a mismatch between platform capabilities and trainee 

characteristics (Farmer et al., 2017).  

The importance of optimising training workflows for individual trainees has been 

recognised as key to achieving training effectiveness (Goldberg et al., 2015), where 

training effectiveness has been considered to be a function of the degree of skill 

proficiency and of the time and cost of reaching it. Existing protocols rely on trainer-

driven, computer-tutored or adaptive simulation interventions. In particular, a 

significant body of research has focused on computer-based tutoring systems and 

adaptive learning environments (Sottilare & Goldberg, 2012). However, current 

automated adaptive training protocols are normally based on recorded simulator 

inputs and outputs as well as on post-activity estimates of the trainee’s proficiency 

(Ministry of Defence, 1989), as opposed to direct real-time estimation of trainee state.  



 

One technology that has the potential to facilitate automated training activities is that 

of automated emotion detection. Automated emotion detection has been a subject of 

extensive research over the past few decades (D’mello & Kory, 2015), including 

studies performed in conjunction with the development of computer-based learning 

platforms (Shen et al., 2009). However, there is still a significant knowledge gap 

relating to the integration of emotion detection technology within simulator-based 

training environments. In particular, the authors are not aware of any state-of-the-art 

simulator training system featuring closed-loop feedback capabilities for reshaping 

the training workflows based on real-time detection of trainee emotional state.  

The potential synergies between simulator-based training and automated emotion 

detection are underpinned by studies supporting the existence of a link between 

emotion and performance in learning environments (e.g. Shen et al., 2009). Moreover, 

the hypothesis that feedback based on emotional valence, i.e. on an emotional 

dimension relating to a “pleasure-displeasure continuum” (Posner et al., 2005), can 

lead to improved training performance is supported by the observation that (i) positive 

and negative emotions have been shown to affect cognitive function (e.g. Pekrun, 

2011), and that (ii) a link has been established between cognitive function and the 

acquisition of new skills (Fischer, 1980). This underlies the assumption that emotional 

valence can be used to drive simulator feedback control, thereby translating emotional 

states into relevant training points, where the term ‘training point’ is taken to refer to 

the dynamic selection of subsequent simulated scenarios based on real-time detection 

of trainee emotional state. Whereas real-time control is a well-studied topic in control 

engineering (Ng, 2016), the technical requirements for the implementation of real-

time feedback within simulator-based environments are a subject of current research, 

and specifications are usually difficult to extrapolate from the original contexts (e.g. 

Sottilare et al., 2015). 

The current investigation is part of a research effort that is evaluating the use of real-

time emotion detection as a means of optimising training workflows. At its most 

elementary level, the concept is to adjust the difficulty or nature of training scenarios 

in real time, based on the emotional state of the trainee. For example, positive-valence 

emotions can be taken to indicate comfort and confidence about the requested skills 

and workload, while negative-valence emotions can be taken to indicate discomfort, 

lack of confidence or confusion. A number of steps are necessary in order to explore 

the utility of this approach in practice.  

This paper addresses the first step, which is an assessment of emotion detection 

accuracy in open loop, i.e. in the absence of real-time emotion-driven simulator 

feedback control. Assessing emotion detection performance, although not sufficient 

for feedback control validation, is in fact a necessary requirement for the further 

development of this line of research. This study was carried out with a view to 

confirming the performance of the emotion detection technology employed, as well as 

to investigating different emotion signals in order to guide the future implementation 

of closed-loop simulator control. The assessment was performed within the context of 

a state-of-the-art fixed-base driving simulator. While it is recognised that driving 

simulators are not currently used for standard training purposes, they share many 

characteristics with simulators adopted for other training applications, and can 

therefore be used as a testbed. The approach discussed in this paper required the 

implementation of a dedicated control system architecture, a high-level representation 



 

of which is provided in Figure 1 with reference to the driving simulator used for this 

study.  

 
Figure 1 – Emotion-augmented driving simulator high-level architecture. 

Specifically, the research objectives of the current investigation were the following: 

O1 To compare the trainee’s facial expression signals to the outcome of an 

emotion self-assessment stage at the end of each driving simulator task; 

O2 To test whether data collected from a limited number of participants could be 

sufficient to estimate the accuracy of the emotion detection technology; 

O3 To assess the appropriateness of emotional valence to drive the simulator 

control feedback loop; 

O4 To compile a list of candidate real-time emotion signals of potential interest 

for further investigation. 

Methods  

An emotion-augmented simulator platform was set up whereby automated emotion 

detection technology was embedded within a state-of-the-art fixed-base driving 

simulator (XPI). 

Emotion sensor technology 

The choice of emotion detection equipment was driven by the need to (i) maximise 

the information content of the data in terms of emotion detection, and (ii) minimise 

interference with the execution of the simulator driving tasks. The underlying 

requirements relating to the high-definition webcam employed for facial expression 

detection were (i) low degree of intrusiveness, (ii) sensitivity at relatively-low 

ambient illumination with a view to exploring different ephemeral settings within the 

simulation, and (iii) availability of autofocus functionalities. The corresponding 

selection criteria for the data acquisition system and application software, which were 

based on a commercial facial expression analysis module (AFFDEX) and biometric 

research platform (iMotions), were (i) the availability of facial expression signals 

associated with ‘valence’, ‘engagement’ and the six basic emotions of ‘anger’, 

‘sadness’, ‘disgust’, ‘happiness’, ‘surprise’ and ‘fear’ (Ekman, 1992), (ii) the 

inclusion of real-time emotion signal visualisation functionalities, and (iii) scalability 

with reference to future integration of multiple sensor data channels. Dedicated 



 

software was used in conjunction with the iMotions platform for purposes of data 

exchange, data visualisation, and simulation control. A summary of the emotion 

detection equipment employed is provided in Table 1. 

Table 1 – Outline of the relevant emotion detection technology. 

 Hardware 
Sampling 

rates 
Resolution Software 

Facial expression 

detection 

Logitech C525 

HD Webcam 

5-30 

frames/s 
640x480 

Affectiva 

AFFDEX SDK 

3.4.0.1308 

System 

integration 

In-house 

platform 
N/A N/A 

iMotions 6.3 

API and in-

house software 

Driving simulator 

The driving simulator was selected to meet a set of key requirements, namely (i) 

flexibility of the software with a view to implementing the emotion-driven feedback 

control at a later stage, and (ii) the possibility of implementing a range of driving 

scenarios and environmental conditions in order to elicit a sufficiently-broad spectrum 

of emotional responses in the driver.  

A fixed-base driving simulator was used. The experimental setup consisted of a BMW 

Mini bodywork, supplemented with 10 rack-mounted desktop computers dedicated to 

the execution of the driving simulation software and to management of the operator 

station computing infrastructure in a separate control room. Image rendering was 

achieved by means of a 270° wraparound screen of 2 m in height and five WUX4000 

projectors (resolution 1920x1200 with a 60 Hz refresh rate). This setup was 

supplemented with a rear window liquid crystal display (LCD) screen and two LCD 

wing mirrors. Pedal resistance was supplied by tension springs and pick-ups, and gear 

selector pick-ups were interfaced with the in-car embedded computer while retaining 

the original gearbox. Working speedometer and revolution counter were also 

included, and steering was connected to a shock-resistant force feedback unit. Sound 

effect reproduction relied on in-car front speakers as well as rear radio speakers. 

Communication between the control room and the car was enabled via an intercom 

system combined with an in-car closed-circuit television (CCTV) camera.  

A list of relevant simulated driving scenarios was compiled, incorporating 

recommendations from the academic literature and motor press, as well as input from 

senior researchers at the UK Transport Research Laboratory (TRL) (Kinnear, 2017) 

and from UK driver training managers (Born, 2017). The simulated driving scenarios 

were selected based on the desire to induce a broad range of emotional responses and 

realistic levels of perceptual workload in the driver, as well as in order to implement 

realistic training environments. Table 2 lists the scenarios employed. Preliminary pilot 

testing and experimentation with the simulator suggested the viability of these driving 

scenario specifications with reference to the objectives of the present study. 

Table 2 – Summary of the simulated driving scenarios, along with the emotional 

states that were expected to be elicited in the driver.  

DRIVING SCENARIOS EMOTIONAL STATES 
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Pedestrian crossings ✓ ✓    ✓ 

Unanticipated events ✓    ✓ ✓ 

Other cars, larger vehicles ✓      ✓ 

Road obstructions ✓ ✓ ✓    

Vulnerable road users ✓  ✓   ✓ 

Cornering    ✓  ✓ 

Table 3 – Summary of simulated scenario settings 

Road geometry Town centre, rural 

Weather conditions Snow, fog 

Visibility 10 to 30 m in daylight 

Average road segment duration 600 s 

Average number of vehicles 10 within 300 m 

Average car velocity 20 mph 

Maximum car velocity 60 mph 

The simulator settings relating to the activated environmental conditions are presented 

in Table 3. Weather conditions, visibility, and traffic density were selected with a 

view to increasing the perceptual workload on the trainee. The approach adopted was 

to achieve relatively-high perceptual workloads so as to increase the probability of 

triggering emotional responses to the context. Simulated events included (i) 

unexpected road obstructions, e.g. parked vehicles and barriers, (ii) pedestrians 

unexpectedly crossing the road, e.g. from behind an obstacle, and (iii) other vehicles 

not abiding by right-of-way rules, e.g. at junctions and roundabouts. Average and 

maximum car velocity as reported in the table were not enforced on the drivers as a 

requirement, but were instead the values observed during the simulator driving 

sessions as a result of the scenario configurations implemented.  

At the end of each driving task, which ranged from 2 minutes to about 15 minutes in 

duration depending on the specific scenario, participants were asked to watch a 

recording of the events that took place within the simulation. A set of reference 

simulated events was selected by the researcher based on the emotional responses 

elicited in the driver, and the researcher asked the participant to rate his or her 

response to each reference event using a Self-Assessment Manikin (SAM) (Bradley & 

Lang, 1994). Participants were asked to assess their emotional state using all three 

SAM dimensions of ‘valence’, ‘arousal’ and ‘dominance’ (Mehrabian, 1980). Valence 

was defined as relating to a “pleasure-displeasure continuum” (Posner et al., 2005). 

Arousal was defined as “a mental activity describing the state of feeling along a single 

dimension ranging from sleep to frantic excitement” (Bakker et al., 2014), and 

dominance was defined as relating to “feelings of control and the extent to which an 

individual feels restricted in his behaviour” (Bakker et al., 2014). 

Results  

Data was collected from two participants, one male and one female, in the 25-30 age 

range, with 5-10 years of driving experience. The data corresponded to a total of 28 



 

emotion-eliciting events collected over the four scenarios driven by each participant. 

This investigation was performed without using real-time detection of the driver’s 

emotional state for the purpose of simulated scenario selection. The accuracy of the 

emotion detection technology was assessed (Objectives O1 and O2), and different 

emotion signals were investigated with a view to guiding future closed-loop simulator 

feedback control design (Objectives O3 and O4).  

The AFFDEX facial expression analysis module provides output along different 

dimensions relevant to emotional response, including ‘valence’, ‘engagement’, and 

the six basic emotional states of ‘anger’, ‘sadness’, ‘disgust’, ‘happiness’, ‘surprise’ 

and ‘fear’ (Ekman, 1992), in addition to ‘contempt’. With a view to estimating 

detection accuracy, the AFFDEX signals were compared to the outcome of self-

assessment using the SAM with reference to the two participants from whom data was 

collected within this study (Objective O1). Each of the emotional states considered 

was defined as ‘detected’ if the corresponding signal either exceeded 30% of the 

maximum range allowed or was sustained over at least 5 s, whereby the trigger points 

were selected heuristically based on preliminary experimentation. ‘Correct detection’ 

related to the given emotional state being either observed or not observed based on 

both SAM and AFFDEX, whereas ‘incorrect detection’ corresponded to a mismatch 

between the two.  

The results are summarised in Table 4 (Objectives O1 and O2), where the legend is as 

follows: ‘engagement’ (E); ‘anger’ (A); ‘sadness’ (Sa); ‘disgust’ (D); ‘happiness’ (H); 

‘surprise’ (Su); ‘fear’ (F); ‘contempt’ (C), V+ (positive valence); V- (negative 

valence); V0 (null valence). The numbers in the table are counts of simulated events. 

The performance of the eventual emotion-monitoring training system is expected to 

improve as a function of emotion detection accuracy, with a minimum target being 

some value greater than 50% probability of correct detection, i.e. better than random 

chance. This is particularly important regarding emotional valence, which the 

literature suggests as suitable for driving scenario selection at a later stage on account 

of observed links between valence and cognitive function (Pekrun, 2011), as well as 

between cognitive function and skill acquisition (Fischer, 1980). Table 4 reports a 

preliminary value of valence-related detection accuracy of 74% within the simulator-

based platform employed, which suggests the feasibility of using the ‘valence’ signal 

to drive the simulator feedback control (Objective O3). The table also points to 

additional AFFDEX signals worth investigating in more detail (Objective O4), as 

discussed below. 

Table 4 – Summary statistics from the preliminary data presented in this article. 

Additional information is provided in the text. 

 E A Sa D H Su F C V+ V- V0 

Correct detection 

(number of events) 
24 26 26 20 27 21 25 26 2 10 8 

Incorrect detection 

(number of events) 
4 2 2 8 1 7 3 2 1 6 0 

Discussion 

This paper has reported on a preliminary investigation of emotion detection accuracy 

within the context of a state-of-the-art fixed-base driving simulator. The study is a 

first step towards developing training scenarios the difficulty and nature of which can 

be adapted based on the trainee’s emotional state detected in real time. Data from two 



 

participants was collected in open loop, i.e. without real-time simulator feedback 

control, corresponding to a total of 28 emotion-eliciting simulated events. 

The output of a commercial facial expression analysis module was compared to the 

outcome of emotion self-assessment at the end of the simulator driving tasks 

(Objective O1). Based on the rates of agreement between emotion detection output 

and self-assessment results, detection accuracy was estimated (Objective O2). The 

results are in line with performance figures reported in the literature relating to similar 

facial expression software (McDuff, 2016; McDuff & Soleymani, 2017; Senechal et 

al., 2015, Tobin & Hedgcock), although the difference in context makes a comparison 

difficult. The data confirms known features, e.g. erroneous detection of ‘disgust’ 

signals in the absence of the corresponding emotion. Such instances of incorrectly-

detected emotional states are documented by the vendor, and are generally attributed 

to the sensitivity of the software to individual muscle movement patterns, particularly 

relating to eyes and mouth. The observed rate of correct detection associated with the 

‘valence’ signal also suggests the feasibility of using emotional valence to drive future 

closed-loop simulation feedback control, thereby justifying further research in this 

direction (Objective O3). Finally, regarding the identification of candidate real-time 

emotion signals of potential interest for further investigation, the data has pointed to 

‘engagement’, ‘anger’, ‘sadness’, ‘happiness’, ‘fear’ and ‘contempt’ as worth 

pursuing, on account of the lower incorrect detection rates reported (Objective O4).  

The results, albeit preliminary at this stage, suggest the viability of this line of 

research and encourage further development. The data showed that emotional 

expressions naturally occurring in the simulator environment could be detected with a 

degree of accuracy in line with the performance figures reported by the software 

vendors. Future work will focus on (i) analysing data from a larger number of 

participants and on (ii) assessing the impact of the emotion-driven simulation 

feedback control in terms of training effectiveness.  
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