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Abstract 

A key prediction of the Capital Asset Pricing Model (CAPM) is that idiosyncratic risk 

is not priced by investors because in the absence of frictions it can be fully diversified away. 

In the presence of constraints on diversification, refinements of the CAPM conclude that the 

part of idiosyncratic risk that is not diversified should be priced. Recent empirical studies 

yielded mixed evidence with some studies finding positive correlation between idiosyncratic 

risk and stock returns, while other studies reported none or even negative correlation. In this 

thesis we revisit the problem whether idiosyncratic risk is priced by the stock market and what 

the probable causes for the mixed evidence produced by other studies, using monthly data for 

the US market covering the period from 1980 until 2013. 

We find that one-period volatility forecasts are not significantly correlated with stock 

returns. On the other hand, the mean-reverting unconditional volatility is a robust predictor of 

returns. Consistent with economic theory, the size of the premium depends on the degree of 

‘knowledge’ of the security among market participants. In particular, the premium for 

Nasdaq-traded stocks is higher than that for NYSE and Amex stocks. We also find stronger 

correlation between idiosyncratic risk and returns during recessions, which may suggest 

interaction of risk premium with decreased risk tolerance or other investment considerations 

like flight to safety or liquidity requirements. The difference between the correlations between 

the idiosyncratic volatility estimators used by other studies and the true risk metric – the 

mean-reverting volatility – is the likely cause for the mixed evidence produced by other 

studies. Our results are robust with respect to liquidity, momentum, return reversals, 

unadjusted price, liquidity, credit quality, omitted factors, and hold at daily frequency. 
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1. Introduction 

1.1. Background to the work 

Modern portfolio theory was developed in the middle of 20th century and over time 

became one of the thriving fields of economic research. In the span of less than ten years 

between the works of Markowitz and Lintner, it offered a new formulation of the 

decision-making problem in portfolio optimisation, which served as a basis for many 

subsequent theoretical enquiries and practical applications.1 

Markowitz (1952) proposed that rational investors in stocks should prefer higher 

expected return and lower variability of returns. This proposition was formalised in the 

concept of the efficient frontier, which was defined as the set portfolios offering lowest 

variance of returns for a given level of expected return.  

The next significant step to solving the portfolio optimisation problem was made by 

Tobin (1956). He assumed that there existed one risk-free asset, usually referred to as cash. 

He demonstrated that investors could improve their expected return if they invested in a mix 

between the risk-free asset and some diversified portfolio on the efficient frontier. The returns 

obtainable through such a mix between risky and risk-free assets formed a straight line in the 

expected return/portfolio variance space, passing through the risk-free rate point and the 

selected efficient portfolio, and the steeper the line, the better the risk-return trade-off. Hence, 

the optimal solution was choosing a portfolio in which the line connecting the portfolio and 

the risk-free rate was tangent to the efficient frontier. In that setting all investors invested in a 

fraction of that super-efficient portfolio, irrespective of their risk appetite. The composition of 

that super-efficient portfolio still had to be estimated through the full Markowitz optimisation. 

Sharpe (1964) and Lintner (1965b) developed the mean-variance reasoning further by 

formulating the Capital Asset Pricing Model, or “CAPM”. The CAPM demonstrated that 

                                                 

1 Harry Markowitz shared the 1990 Sveriges Riksbank Prize in Economic Sciences in 

Memory of Alfred Nobel with William Sharpe and Merton Miller. He was praised in the 

award press release for “developing a rigorously formulated, operational theory for portfolio 

selection under uncertainty - a theory which evolved into a foundation for further research in 

financial economics”. Nobelprize.org, ‘“The Prize in Economics 1990 - Press Release”’, 

Nobel Media AB 2014, 1990  

<http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1990/press.html> 

[accessed 19 July 2016]. 
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asset risk could be decomposed into two components – systematic risk and idiosyncratic risk. 

In their approach systematic risk referred to changes in asset prices that were due to common, 

market-wide changes that affected all securities, albeit to different extent, while idiosyncratic 

risk was the risk of change of individual asset prices due to reasons specific for the asset and 

uncorrelated with the overall market movements. Investors could diversify away all 

idiosyncratic risks by holding the market portfolio, defined as the value-weighted index of all 

financial instruments. Therefore, the CAPM predicted that asset returns in excess of the 

risk-free rate should be proportionate to the market excess return, and the coefficient of 

proportionality (referred to as asset’s beta) should be determined by the covariance of the 

asset’s excess returns with the market excess returns. In that context the idiosyncratic risk was 

the residual change of the values of individual assets that was uncorrelated with changes of 

the excess returns on the market portfolio, and that was assumed to be driven by random 

events concerning the individual issuer that did not have a broad market impact. The 

interpretation of the core CAPM proposition was then straightforward – only systemic risk 

was priced, idiosyncratic risk was not. 

The conclusions of Sharpe and Lintner were surprising, yet intuitive and deceptively 

testable. However, the predicted optimal investor behaviour – holding a diversified portfolio 

of assets – was in stark contrast with surveys of the composition of individual portfolios. For 

example, Blume and Friend (1975) found that contrary to the predictions of CAPM, investors 

held rather concentrated portfolios. They examined a sample of tax returns from the 1971 tax 

year, and found as many as 34.1% of the tax returns listed only one dividend-paying stock2, 

and 50.9% listed up to two dividend-paying shares.  

Such apparently suboptimal behaviour could be at least explained by the restrictive 

assumptions of the CAPM, and economists were quick to explore the implications of the 

relaxation of some of these assumptions on equilibrium prices and returns. In particular, the 

CAPM assumed that there were no market frictions like transaction costs and asset 

indivisibility. Levy (1978) and Merton (1987) developed theoretical extensions of the CAPM 

that assumed that market imperfections prevented investors from investing in the entire 

available investment universe, and concluded that optimal investors would be seeking reward 

for the undiversified idiosyncratic risk.  

Empirical studies to date, however, produced no conclusive evidence on the pricing of 

                                                 

2  For tax purposes households were required to disclose only the dividend-paying 

stockholdings; information on the ownership of non-dividend-paying shares was not available 

in that sample.  
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idiosyncratic risk. The first tests of the CAPM performed by Lintner (1965a) confirmed that 

beta was a significant predictor of average asset returns, and the slope was positive, consistent 

with the theory. However, the coefficient for idiosyncratic risk turned out to be positive and 

statistically significant, contrary to the prediction of CAPM. Miller and Scholes (1972) also 

confirmed the findings of Lintner over an extended period and noted that idiosyncratic 

variance alone had higher correlation with average returns compared to beta alone. They also 

pointed out that the specification of the cross-sectional regression of realised returns on betas 

required the use of the true betas but in fact used the estimated ones, introducing 

error-in-variable problem. 

The first tests of CAPM that addressed that error-in-variable problem where 

performed by Black et al. (1972) and by Fama and MacBeth (1973). Black et al. (1972) 

pooled securities into portfolios of similar securities in order to overcome the problem of the 

correlations between the pricing errors of individual securities. Fama and MacBeth (1973) 

further refined the method for testing the CAPM, and found that the idiosyncratic volatility 

was not a significant predictor of the cross-section of returns, which was consistent with the 

predictions of the CAPM and suggested that the previous positive results were the likely 

result of limitations of the testing methodology. 

Since 2000, interest in the empirical investigation of significance of idiosyncratic risk 

in explaining the cross-section of stock returns rebounded. Such an interest was spurred by a 

variety of motivations. For example, the significance of beta as the sole, or at least a 

significant factor in explaining the cross-section of returns, has declined and some studies 

found it insignificant, while other market factors3 or characteristics of the issuer4 were added 

to empirical asset pricing models. The growing interest in behavioural asset pricing also 

contributed to the increasing interest in re-examining the assumptions of classical finance 

theory. Finally, the surge of studies in a related field – the correlation between idiosyncratic 

risk and aggregate market returns – also spilled over to the renewed interest in its contribution 

to explaining the cross-section of returns. Whichever the cause, in the past fifteen years a 

number of interesting studies were published that reported contradictory results concerning 

the significance of idiosyncratic risk as a predictor of expected returns.5 

Malkiel and Xu (2004) found that CAPM beta was an important factor in explaining 

                                                 

3 e.g. the small-minus-big factor and the high- minus-low factors in Fama and French (1993) 
4 e.g. size, price/earning ratio, dividend yield, past returns – see Daniel and Titman (1997, 

1998) 
5 Ang et al. (2006); Bali and Cakici (2008); Fu (2009); Huang, Liu, Rhee and Zhang (2012) 
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cross-sectional differences of returns but that its effect declined over time, but also confirmed 

that idiosyncratic risk was also a significant factor – both statistically and economically. 

Spiegel and Wang (2005) noted that there was a significant negative correlation between 

liquidity and idiosyncratic volatility, and that expected stock returns were positively 

correlated to idiosyncratic risk and negatively correlated to liquidity. They found that 

idiosyncratic risk was consistently positively correlated to expected stock returns, but the 

impact of one standard deviation change in idiosyncratic risk was on average between 2.5 and 

8 times stronger than the impact of a corresponding one standard deviation increase in 

liquidity. 

The debates were stirred by the surprising results of Ang et al. (2006) who reported 

that portfolios ranked on idiosyncratic volatility exhibited a consistently negative correlation 

to expected returns after controlling for various factors, across sub-samples, and for various 

portfolio formation strategies. Their results were puzzling because they contradicted both the 

CAPM (idiosyncratic volatility should not be priced at all), and the Levy and Merton models 

(idiosyncratic risk should earn positive risk premium). Ang et al. (2009) reviewed evidence 

from the G7 countries and other developed markets and found that the spread between the 

first and fifth quintiles of portfolios sorted on idiosyncratic risk was again negative, standing 

at −1.31 per cent per month after controlling for world market, and size and value factors. 

Bali and Cakici (2008) also examined how idiosyncratic risk was priced using 

NYSE/AMEX/NADAQ data over the period July 1963 – December 2004 and found that the 

results of Ang et al. (2006) were not robust with respect to weighting scheme, time frequency, 

portfolio formation, and screening for size, price, and liquidity.  

In a significant contribution to the debate, Fu (2009) observed that the theoretically 

correct variable to explain expected returns was the expected idiosyncratic risk in the current 

period, rather than the actual idiosyncratic risk in the preceding period, which was used by the 

studies of Ang et al. (2006) and Ang et al. (2009). He proposed to use the Exponential 

Generalised Autoregressive Conditional Heteroscedasticity (EGARCH) model in order to 

forecast next-period expected idiosyncratic volatility while allowing an asymmetric response 

to shocks. He used Fama and MacBeth (1973) with individual securities as assets and found 

that cross-sectional returns were statistically and economically significant and positively 

correlated with idiosyncratic risk. He found that reversals of returns were a significant factor 

for the puzzling results obtained by Ang et al., (2006). Brockman et al. (2009) reached similar 

conclusions using an international data set and employing Fu’s methodology. However, Guo 

et al. (2014) who argued that the way it was implemented involved a look-ahead bias that was 
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aggravated by the particular type of GARCH model used in the estimation (EGARCH(𝑝,𝑞) 

with 𝑝, 𝑞 = 1…3). When they controlled for that bias they found that idiosyncratic risk was 

no longer significantly correlated with returns. In a similar vein, Huang, Liu, Rhee and Zhang 

(2012) argued that the omission of last-period return resulted in omitted variable bias, which 

could impact the significance of the idiosyncratic risk proxies.  

Thus, the studies in the last fifteen years produced mixed evidence on the correlation 

between idiosyncratic risk and market returns. That topic, however, is of great importance 

from both a practical and a theoretical perspective. Finding the root cause for the mixed 

evidence produced by existing studies would allow improved portfolio construction and 

would optimise the risk-return trade-off for both individual and professional investors. For 

example, if idiosyncratic risk is correlated with returns, a failure to recognise it as a 

characteristic in portfolio construction could result in apparent over-performance of portfolios 

loaded on securities with higher idiosyncratic risk over portfolios with lower idiosyncratic 

risk; thus, hedge portfolios loaded on idiosyncratic risk could mislead investors into believing 

superior forecasting performance of their asset managers (high alpha) when in fact they are 

bearing higher idiosyncratic risk. On the other hand, if idiosyncratic risk is not priced by the 

market, then investment funds marketing portfolios constructed to exploit exposure to 

idiosyncratic risk could be overcharging investors and reducing their risk-adjusted 

performance after trading costs. Therefore, irrespective of the direction of the correlation, 

understanding its sign, magnitude of underlying cause should benefit investment managers.  

The issue is also important from a theoretical perspective. Academic research has 

identified a number of stock market anomalies, as well as factors that seem to explain stock 

returns, but which lack a solid theoretical understanding. Understanding of the true role of 

idiosyncratic risk could allow improved return attribution and ultimately – improved 

identification of the underlying economic factors. For example, smaller stocks are known to 

have higher volatility; if idiosyncratic risk is priced by the market, then some of the 

documented variation of the small-minus-big factor could be due to changes of idiosyncratic 

volatility of small companies due to aggregate economic shock. Therefore, resolving the 

idiosyncratic volatility puzzle should benefit both practitioners and theorists and would 

further the cause of wealth management.  
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1.2. Research motivation, aims and objectives 

In our view there are two important and closely interrelated aspects of this debate that 

deserve careful attention, and which are in the centre of this study: firstly, an analysis of the 

differences and similarities of the employed measures of idiosyncratic risk; secondly, analysis 

of the correlation between idiosyncratic risk and the cross-section of returns. 

The first aspect concerns the use of different definitions of idiosyncratic volatility 

across studies. Thus, Malkiel and Xu (2004) measure idiosyncratic volatility as the standard 

deviation of residuals from the one-factor CAPM model or the three-factor Fama–French 

model. Ang et al. (2006) and Ang et al. (2009) use a similar approach but instead of applying 

it on a rolling window of monthly data, they use daily returns from the previous month in 

order to split volatility into systematic and idiosyncratic components and to calculate the 

mean daily variance in the respective month. Bali and Cakici (2008) employ two measures of 

idiosyncratic risk: the one used by Ang et al. (2006), and another version calculated for 

monthly data over the preceding 24 to 60 months, as available. Cao (2010) and Cao and 

Xu (2010) measure idiosyncratic volatility in terms of the exponentially-weighted moving 

average of the residuals from OLS regression (24 to 60 months) with weights of 0. 9𝑘. Fu 

(2009), emphasising the importance of using forward-looking models in order to obtain ex 

ante risk measures, employs EGARCH(p,q) to produce forecasts from monthly data; a similar 

approach is followed by Spiegel and Wang (2005). Finally, Huang, Liu, Rhee and Zhang 

(2012) use forecasts from an ARIMA model fitted on realised monthly volatilities.  

There is limited information on how these measures compare with one another in 

terms of forecasting the unobservable true volatility. Some of the studies that address the issue 

employ loss functions to compare idiosyncratic volatility estimates. However, loss functions 

could be of limited use when one compares estimates based on different frequencies (monthly 

vs daily). Bali and Cakici (2008), on the other hand, use Mincer and Zarnowitz (1969) 

regressions to compare predictive performance of monthly-based vs daily-based forecasts. 

Spiegel and Wang (2005) also perform a comparison of prediction accuracy but use only 

monthly data and loss-function approach to the test. Nonetheless, the choice of measure of 

true volatility may pre-determine the ‘winner’ in those forecasts. 

Therefore, the first gap that this study aims to address is to compare the types of 

idiosyncratic volatility proxies employed by previous studies and to analyse how conclusions 

depend on the quality of source data. 
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Addressing the first gap would allow us to examine empirically whether idiosyncratic 

variance explains the cross-section of returns. Indeed, one should expect that if idiosyncratic 

risk explains the cross-section of returns, then the better forecasts would result in more robust 

prediction of returns. Furthermore, we can then analyse the role of other characteristics, e.g. 

the mean-reverting level of idiosyncratic volatility, in explaining the cross-section of returns. 

Such an analysis is warranted by the finding of Fu (2009) that idiosyncratic volatility is 

stationary for 90 per cent of all securities.  

Another gap for our empirical study is to address some of the methodological 

challenges to the inspiring contribution of Fu (2009) – the alleged presence of look-ahead bias 

and the omitted-variable bias. Indeed, Huang, Liu, Rhee and Zhang (2012) report that 

introducing the lagged return as a control variable, which is omitted in other studies, including 

that of Fu (2009), renders idiosyncratic volatility statistically insignificant. Another criticism 

came from Guo et al. (2014) who argue that there might be look-ahead bias inherent in the 

studies employing EGARCH models, which explains the predictive performance of those 

forecasts. 

In this study we aim to address those research gaps by addressing two interrelated 

research questions: firstly, to compare alternative volatility forecasts in terms of their 

accuracy, in order to understand if such differences explain the mixed empirical evidence in 

existing literature; secondly, to re-examine the relevance of under-diversification for asset 

prices by testing whether idiosyncratic risk is priced by investors in stock markets.  

Therefore, the objectives of this research are as follows:   

1. To compare the predictive performance of the main classes of estimators of monthly 

idiosyncratic volatility using Mincer-Zarnowitz regressions;  

2. To test statistically whether the different estimates of idiosyncratic volatility explain 

the cross-section of monthly stock returns using the Fama-Macbeth methodology;  

3. To test statistically whether other characteristics of the idiosyncratic volatility 

process, especially the mean-reverting level of volatility, explain the cross-section of stock 

returns using the Fama-Macbeth methodology. 

The statistical tests use public domain secondary data on securities traded on stock 

markets in the United States of America over the period from January 1972 until March 2013. 

The source data is from the Thomson Reuters Datastream service. Most existing studies 

employ the dataset of the Center for Research in Security Prices (CERP), and in that respect 

the validation of the results from previous studies, in particular that of Fu (2009), against the 

Thomson Reuters dataset can be also construed as a test of whether previous results are 
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exposed to the data snooping problem. 

The scope of this study is limited only to US stocks listed at the largest American 

stock exchanges during the period of study: the New York Stock Exchange (NYSE), the 

American Stock Exchange (AMEX), and the NASDAQ Stock Market (NASDAQ). The 

choice of market (the US) is aimed to facilitate comparisons with other existing studies in the 

field, while international (non-US) evidence is deferred for further study.  

The underlying economic theory – the CAPM and its extensions by Levy (1978) and 

Merton (1987) – is not bound to a specific time frequency, and the results in principle should 

hold at all frequencies, e.g. daily, weekly, monthly, quarterly, or annual. Existing evidence on 

the significance of idiosyncratic risk is somewhat stronger with respect to daily frequency. 

However, there might be market microstructure effects that affect those findings. This is 

especially true for smaller stocks that have a narrower investor base and should earn higher 

return in equilibrium, according to the underlying economic model. Therefore, in this study 

we focus on the monthly frequency and leave the further cross-frequency validation for 

further studies. 

In this dissertation we contribute to the debate in three ways. Firstly, we analyse how 

the different forecasts of the idiosyncratic variance perform in predicting next-period 

variance. The evidence available in that respect is scarce, and either compares only estimates 

from monthly data with one another, or uses proxies of true idiosyncratic variance that might 

be suspected to pre-determine the result of the comparison. Secondly, we re-examine the 

existing evidence concerning the link between idiosyncratic variances and the cross-section of 

stock return and we address the recent methodological objections concerning studies 

documenting the existence of a positive correlation. In that way we are able to bridge the gap 

between the quality of forecasts and the resulting explanations of the cross-section. We also 

address the criticisms (omitted variable and look-ahead biases) of the (E)GARCH 

methodology employed in some of the studies that find positive correlation between 

idiosyncratic risk and the cross-section of returns. Thirdly, we identify the mean-reverting 

level of volatility as a key variable in explaining the cross-section of returns. The outcome of 

our tests puts into perspective and reconciles the existing evidence by identifying the 

components of idiosyncratic volatility that explain the cross-section of returns. 

Our results shall be useful from both a theoretical and a practical perspective. From 

the theoretical perspective evidence on the significance of idiosyncratic volatility would 

provide support to the Merton model. Furthermore, it would shed light on how significant that 

premium is, and indirectly – on whether under-diversification is widespread enough to affect 
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observed prices significantly. From a practical perspective the results could be used to 

construct investor portfolios and to assess their performance after taking into account their 

exposure to idiosyncratic risk. 

 

1.3. Structure of the thesis 

In Chapter 2 we review the findings of related studies. These studies fall into three 

broad categories, and we dedicate a section to each of those. In Section 2.2 we review the 

milestones of the modern portfolio theory until the formulation of the Capital Asset Pricing 

Model (CAPM). The CAPM predicts that idiosyncratic risk can be diversified away by 

investors completely, and therefore it is not priced. In particular, we see that there are at least 

two lines of extension, from which possible deviations from the predicted CAPM equilibrium 

could emerge. Firstly, this is the axiomatic basis of the Expected Utility theory. Criticisms 

from that direction are the basis of the behavioural asset pricing theory; such behavioural 

explanations resulting in aversion to idiosyncratic risk could be due to behavioural biases or 

regulatory requirements concerning the disclosure of significant individual loss-making 

positions. However, in this study we focus on concerns about the limits on portfolio 

diversification due to transaction costs, asset imperfect divisibility, or other motives that result 

in investors holding undiversified portfolios. In those cases the CAPM extensions of Levy 

(1978), Merton (1987) and Malkiel and Xu (2004) predict that idiosyncratic risk could be 

priced in equilibrium, if under-diversification is pervasive. In Section 2.3 we review the 

principal empirical findings concerning the idiosyncratic risk and the cross-section of returns.  

Chapter 3 explains the principal methodological tools employed in this study. The 

reviews are fairly brief because we employ existing methods, so the chapter is more 

concerned with explaining the use of those methods in this study. In particular, Section 3.2 

motivates the positivist philosophy that underpins the testing methodology of this study. 

Section 3.3 then explains how we split the observed excess return into a systematic 

component and an unexpected idiosyncratic return. The excess return is the variable that we 

aim to explain. It comprises of two components – systematic and idiosyncratic returns, and 

the latter are used to estimate idiosyncratic volatilities. Section 3.4 then explains how the 

idiosyncratic returns can be used to estimate idiosyncratic volatilities. In particular, we 

employ four such alternative estimators, and we dedicate a subsection to each of those. 
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Section 3.5 then explains our approach to comparing the predictive performance of these 

alternative volatility estimators. This comparison allows us to check how well each of the four 

estimators predicts returns, and which should shed light on whether it is indeed idiosyncratic 

risk that explains returns, and not some other factor or characteristic which correlates with 

some of the measure. Thus, if the superior estimators of volatility are significant predictors of 

the cross-section, then we could conclude that the noise in the inferior estimators is the reason 

for the mixed empirical performance. As it happens, it turns out that the opposite is the case, 

which suggests that there is another characteristic, that is more important than next-period 

expected volatility.  

Section 3.6 lays out the Fama–Macbeth methodology that is used throughout Section 4 

to perform the empirical tests. Section 3.7 then explains what data sources were employed in 

the empirical analysis, what transformations of those data were implemented, as well as how 

we classify the volatility states of the market, which is used in some of the robustness tests in 

Chapter 4.  

Chapter 4 presents our empirical findings concerning idiosyncratic risk and stock 

returns. The structure of the chapter mirrors much of the structure of Chapter 3. In particular, 

Section 4.2 compares the volatility forecasts using the methodology of Section 3.5. Section 

4.3 presents the results of the empirical tests concerning the correlation between idiosyncratic 

risk and returns using the Fama–Macbeth methodology described in Section 3.6. Section 4.4 

presents further tests using the mean-reverting level of volatility as an explanatory variable 

instead of next-period volatility. The section also provides a first set of confirmatory 

robustness checks. These checks were further extended in Section 4.5, using additional tests 

that were not described in Chapter 3; the relevant methods are explained in each of the 

respective sub-sections.  

Chapter 5 discusses the results from our analysis, providing further motivations for the 

significance of the mean-reverting level of volatility, as well as the difficulties in interpreting 

the idiosyncratic volatility premium due to its inseparability from other characteristics, 

especially liquidity. The chapter also highlights the risk in practical implementation of trading 

strategies aiming to exploit the higher returns on high-volatility stocks. Chapter 6 concludes 

the thesis.  
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2. Related studies 

2.1. Introduction 

In this chapter we shall explore the theoretical foundations underpinning our study and 

the available empirical evidence. The body of related literature is quite vast, and this is related 

to the fact that the proposition that idiosyncratic risk is irrelevant for equilibrium prices is a 

core proposition of the classical finance theory. Therefore, in order to keep this chapter 

reasonably short and focused, we need to be very selective in our choice of related studies. 

Nevertheless, we also aimed to provide the readers with just enough context to enable them to 

relate our results not only with the results of classical finance theory, but also with the 

associated field of behavioural finance. Therefore, in Section 2.2 we shall outline the 

historical development of the Capital Asset Pricing Model and its refinements aimed to relax 

some of its assumptions. For convenience, we outline the structure of this chapter in Figure 1. 

Figure 1: Structure of Chapter 2 

 

Source: the author 

The review of the CAPM serves two purposes: on the one hand, it outlines the key 
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model that predicts that idiosyncratic risk should not be priced by investors. On the other 

hand, the approach highlights the key assumptions underpinning that result. The key 

assumptions of the CAPM that are relevant for our topic are that investors’ preferences can be 

represented by a quadratic utility function, and that there are no frictions. The simple 

statement of the first assumption partially conceals the true underlying assumptions, and we 

aim to highlight those by placing them in the appropriate historical context. In particular, we 

first need to assume that investor’s preferences can be expressed in terms of a utility function, 

and then that function can be reasonably represented as a quadratic one. Furthermore, there 

should be no frictions like transaction costs or asset indivisibility.6 Relaxation of any of these 

assumptions could be relevant for our study. For example, relaxation of the expected utility 

theory axioms could give rise to a behavioural explanation of idiosyncratic risk.7 Absence of 

quadratic approximation to the utility function could imply significance of the higher 

moments of the utility function.8 Finally, in the presence of frictions that prevent full 

diversification, investors may require a risk premium for idiosyncratic risk.9 Therefore, we 

believe it is important to highlight how the predictions of the CAPM depend on those 

assumptions.  

There are various relaxations that may give rise to deviations from the CAPM 

predictions. These can be broadly classified into behavioural extensions, which embed 

specific investor behaviours into the models in order to accomplish more realistic models of 

asset pricing. However, as we shall explain in somewhat greater detail in Chapter 3, these 

assumptions could be too ad hoc, which motivates our preference for the approach of classical 

finance to our problem. Therefore, we shall not explore behavioural asset pricing theories 

here; instead, in Section 2.2 we explore how the introduction of market frictions to the CAPM 

affects the predictions of that model. We review the models of Levy (1978), Merton (1987), 

and Malkiel and Xu (2004) in order to elucidate their assumptions and highlight their key 

predictions concerning the sign and the magnitude of such idiosyncratic risk premium. 

Then, in Section 2.3 we review the available empirical evidence on the sign and 

significance of the link between idiosyncratic variance and stock returns. Such evidence 

broadly comprises two types of studies. Some studies observe investor behaviours (portfolio 

                                                 

6 See DeGenarro and Robotti (2007) for a discussion of financial market frictions. 
7 For example, preference for own skewness, as proposed by Barberis and Huang (2008). 
8 For example, Kraus et al. (1976) use a higher-order Taylor approximation of investor’s 

utility function and conclude that there should be preference for co-skewness with the market. 
9 Levy (1978); Merton (1987); Malkiel and Xu (2004) 
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compositions) directly, while most of the reviewed studies explore factors and characteristics 

that explain stock returns. Our review of those results has two goals: on the one hand, to 

understand the empirical support for the two competing theories (the CAPM and its 

extensions), and on the other hand to identify control variables that should be included in our 

study in order to avoid inasmuch as possible omitted variable bias. Finally, Section 2.4 sums 

up the arguments presented in this chapter. 

2.2. Underlying economic theories  

“Investing should be more like watching paint dry or 

watching grass grow. If you want excitement, take 

$800 and go to Las Vegas.”  

Paul Samuelson 

 

“Wide diversification is only required when 

investors do not understand what they are doing.”  

Warren Buffett 

 

In 1713, Nicolas Bernoulli, brother of the famous mathematician Daniel Bernoulli, 

posed a problem in a letter to Pierre Raymond de Montmort. The problem later became 

known as the St Petersburg paradox and is stated as follows. Suppose that we are offered to 

bid in a lottery, the pay-off of which is determined by tossing a fair coin. The pay-off for the 

lottery starts at 1 ducat and is doubled every time heads appear. The first time tails appear, the 

lottery ends with the gambler winning the accumulated pay-off. So, if tails appear at the first 

toss, the gambler receives one ducat; if heads appear, the pay-off is doubled to two ducats. If 

at the second toss heads appear once more, the pay-off is doubled to four ducats and so forth. 

So, if 𝑘 is the number of consecutive heads that appear, the pay-off of the bet equals 2𝑘 

ducats. The expected value of the bet would then be ∑∞𝑘=1 (
1

2
)
𝑘

2𝑘 = ∑∞𝑘=1 1 = ∞. Hence the 

expected pay-off from playing this game is infinite. In contrast to the infinite expected 

pay-off, people are actually willing to pay a very modest entrance fee to bet on this game. 

This discrepancy between the finite (and in fact rather low) entrance fee people are willing to 

pay to play the game, and its infinite expected pay-off became known as the St Petersburg 

paradox. 
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Daniel Bernouli published his solution to the puzzle in 1738 in the Commentaries of 

the Imperial Academy of Science of Saint Petersburg, where he argued that the price people 

are willing to pay to enter that lottery is determined by their evaluation of the likelihood of 

various outcomes and the utility those outcomes yield to them: “The determination of the 

value of an item must not be based on the price, but rather on the utility it yields. There is no 

doubt that a gain of one thousand ducats is more significant to the pauper than to a rich man 

though both gain the same amount” (quoted by Stewart, 2010: 26). 

Bernoulli did not develop his thoughts on the St Petersburg paradox into a consistent 

theory. This was done by von Neumann and Morgenstern (1944) who developed the first 

coherent axiomatic theory of preferences under uncertainty. In their approach, economic 

agents chose between lotteries, where lottery 𝑢 is defined as a list of possible states of the 

world, each occurring with a non-negative probability 𝑝𝑘 ≥ 0 and yielding a win of 𝑢𝑘 at 

each state of the world; clearly ∑𝑁𝑘=1 𝑝𝑘 = 1, 𝑝𝑘 ≥ 0, ∀𝑘. They demonstrate that if there 

exists a preference relation that is complete, transitive, continuous, and independent, then 

there exists a utility function that represents these preferences. Thus, decision-making under 

uncertainty is reduced to the optimisation problem of maximising the expected utility subject 

to resource constraints. This result is known as the Expected Utility Theorem and bridges 

preference ordering to numerical utility values. 

It is usually assumed that utility functions in money are continuous and monotonously 

increasing; the rationale is that more wealth is preferred to less wealth. The attitude towards 

risk is summarised by the sign of the second derivative of the utility function. Conventionally, 

a decision-maker is defined to be (strictly) risk-averse if receiving the expected value of a 

lottery is (strictly) preferred to partaking in the uncertain lottery. If he is indifferent between 

receiving the expected value of a lottery and the lottery itself, he is defined to be risk-neutral. 

It is known that an investor is strictly risk averse if and only if the utility function that 

represents their preferences is strictly concave and risk-neutral if the utility function is 

linear.10 

There is an infinite number of utility functions that would satisfy the expected utility 

framework. Convenience and tractability, however, dictate the use of just a few utility 

functions that allow analytical tractability (ideally, closed-form solutions) of the implications 

of choosing a particular utility form. The three most commonly used utility functions are11:   

                                                 

10 See proposition 6.C.1 in Mas-Colell, Whinston and Green, 1995: 187 
11 see Levy, 2012 
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1. Constant Absolute Risk Aversion (CARA) exponential utility function: 𝑢(𝑤) =

−𝑒−𝛼𝑤;  

2. Constant Relative Risk Aversion (CRRA) utility 𝑢(𝑤) =
𝑤1−𝛼

1−𝛼
 for 𝛼 ≠ 1, with 

limiting case the logarithmic utility 𝑢(𝑤) = ln𝑤 ;  

3. Quadratic utility function 𝑢(𝑤) = 𝑤 −
𝛼

2
𝑤2.  

The CARA utility function owes its name to the fact that it is the only function for 

which the Arrow-Pratt risk aversion function is constant.12 Normally one expects the absolute 

risk aversion 𝑟𝐴(𝑤)  to be a decreasing function of wealth. This translates into 

decision-maker becoming more risk-tolerant, requiring smaller risk premium, with increase of 

wealth.  

CRRA, on the other hand, represents the class of utility functions, for which relative 

risk aversion is constant.13 

The third type of utility function listed above, the quadratic utility function, is 

straightforward to work with, and is the one that links the mean-variance optimisation 

framework with the expected utility theory. The downside of the quadratic utility is that it 

exhibits increasing absolute risk aversion, thus implying that decision makers should require a 

higher risk premium for identical lotteries with the increase of their wealth, which is a 

counter-intuitive prediction as wealthier investors should be more able to take risk and thus 

require a lower risk premium.14  

                                                 

12 The Arrow-Pratt absolute risk aversion function (𝑟𝐴) is given by 𝑟𝐴 = −
𝑢′′

𝑢′
= −(ln(𝑢′))

′
. 

The intuition behind that ratio is that it describes the curvature of the utility function around 

point 𝑤, while the metric remains invariant under linear transformations. Through Taylor 

expansion of the utility function it can be shown that the value of the risk premium that a 

utility maximiser would expect for taking part in a small lottery is given by 𝜋 ≈ −
1

2
𝜎2

𝑢′′(𝑤)

𝑢′(𝑤)
 

(Arrow, 1984: 151).  

13 The relative risk aversion function (𝑟𝑅 ) is defined as 𝑟𝑅 = −𝑤
𝑢′′

𝑢′
.  It measures the 

curvature of the utility function with respect to percentage changes of its argument, while the 

absolute risk aversion function quantifies that curvature with respect to absolute (dollar) 

changes of wealth. To see this consider the function 𝑢̃(𝑡) = 𝑢(𝑡𝑥) which links the utility of 

the initial wealth (at 𝑡 = 1) to the utility of wealth increased by (𝑡 − 1)% to become 𝑡𝑥. For 

fixed 𝑥, 𝑢̃′ = 𝑥𝑢′(𝑡𝑥) and 𝑢̃′′ = 𝑥2𝑢′′(𝑡𝑥), so that for 𝑡 = 1 (the initial value of wealth) 

the absolute risk aversion becomes 𝑢̃′′(1)/𝑢̃′(1) = 𝑥𝑢′′(𝑥)/𝑢′(𝑥) (Arrow, 1984: 152). The 

requirement of decreasing absolute risk aversion of plausible utility functions is sometimes 

complemented by a requirement for non-increasing relative risk aversion.  

14 Indeed, for the quadratic utility function, 𝑟𝐴 = −
𝑢′′(𝑤)

𝑢′(𝑤)
= −

𝛼

1−α𝑤
 and 𝑟𝐴

′ =
𝛼2

(1−𝛼𝑤)2
> 0. 
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In an important contribution to the modern portfolio theory, Markowitz (1952) 

introduced the concept of mean-variance efficiency. He considers an investment universe of 

𝑛 assets. The returns on those assets are random variables; for convenience, returns here are 

defined as the ratio of the uncertain future price of the risky asset to the known (certain) 

current price of the asset. Let 𝜇𝑖 denote the expected return on asset 𝑖 and let 𝜎𝑖𝑗 denote 

the covariance between the returns on assets 𝑖  and 𝑗 . These portfolio returns can be 

summarised as a column vector 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛)
′, and a square covariance matrix 𝑉 =

[𝜎𝑖𝑗]. It is also assumed that there are no redundant assets, i.e. assets the returns of which were 

a linear combination of the returns from other assets under any state of the world; i.e. the 

model excludes the possibility of rows (columns) in 𝑉 that are linear combinations of other 

rows (columns). Also, the model assumes that there is no risk-free asset, i.e. there is no row 

(column) of zeros in 𝑉. By construction, 𝑉 is square and symmetric, and the model assumes 

that it is also positive definite.15 

Using the notation above, Markowitz defines variance-efficient portfolios as those 

having minimum variance of returns among those attaining certain minimum return, i.e.  

 Min
𝑥
{
1

2
𝑉𝑥  |  𝜇′𝑥 ≥ 𝜇𝑝, 1′𝑥 = 1}, 

where 𝑥 is the vector of portfolio weights (allocations) to each of the 𝑛 available assets, and 

1 is a vector of ones. Thus, an efficient portfolio allocation 𝑥 minimises portfolio variance 

for some fixed expected return 𝜇𝑝 subject to investment of the entire wealth, i.e. 1′𝑥 =

∑𝑛𝑖=1 𝑥𝑖 = 1. A dual formulation is also possible, where investors chose weights 𝑥 that 

maximise the expected return subject to the constraint that the variance of portfolio returns 

does not exceed the desired fixed threshold, i.e.  

 max
𝑥
{𝑥 |   

1

2
𝑥′𝑉𝑥 ≤ 𝜎𝑝

2, 1′𝑥 = 1}. 

Solving the variance-efficient portfolio allocation is thus reduced to solving a standard 

problem of quadratic programming. The Lagrangian for the problem is:16  

 ℒ =
1

2
𝑥′𝑉𝑥 − 𝜆1(𝜇′𝑥 − 𝜇𝑝) − 𝜆2(1′𝑥 − 1), 

                                                 

15 A matrix 𝑉 is positive semi-definite if for every non-zero real column vector 𝜇, 𝜇′𝑉𝜇 ≥
0. If 𝜇′𝑉𝜇 > 0, the matrix is positive definite. By construction, covariance matrices are 

positive semi-definite. Portfolio optimisation, however, requires the assumption of positive 

definitiveness, which rules out perfectly correlated efficient portfolios. A positive-definite 

covariance matrix can be inverted, and that would allow unique determination of equilibrium 

prices. 
16  The derivation outlined here follows the modern presentation of the mean-variance 

optimization problem rather than the original solution strategy of Markowitz. 
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and the corresponding first-order conditions (FOC) are 

 𝑉𝑥 = 𝜆1𝜇 + 𝜆21, 

together with the two original budget constraints. Hence the optimum weights are  

 𝑥 = 𝜆1𝑉
−1𝜇 + 𝜆2𝑉

−11, 

which could be substituted in in the two budget constraints, resulting in a system of two 

equations in two unknowns (the Lagrange multipliers); as long as 𝑉 is positive definite, the 

system can be solved and so an optimal 𝑥 exists. The system for the Lagrange multipliers 

has the form  

 𝜇𝑝 = 𝜆1𝑥′𝑉
−1𝑥 + 𝜆2𝑥′𝑉

−11, 

 1 = 𝜆11′𝑉
−1𝑥 + 𝜆21′𝑉

−11. 

 Since 𝑉 is symmetric by construction, 𝑥′𝑉−11 = 1′𝑉−1𝑥 and the system can be written as  

 (
𝐴 𝐵
𝐵′ 𝐶

) (
𝜆1
𝜆2
) = (

𝜇𝑝
1
), 

where 𝐴 = 𝑥′𝑉−1𝑥, 𝐵 = 𝑥′𝑉−11, and 𝐶 = 1′𝑉−11, so  

 (
𝜆1
𝜆2
) =

1

𝐴𝐶−𝐵2
(
𝐵 −𝐶
−𝐶 𝐴

) (
𝜇𝑝
1
). 

Substituting the solution for the Lagrange multipliers in the variance of the variance-efficient 

portfolio weights produces the formula for the efficient frontier:  

 𝜎𝑝
2 =

𝐴−2𝐵𝜇𝑝+𝐶𝜇𝑝
2

𝐴𝐶−𝐵2
, 

which shows that the efficient portfolio is a parabola in the (𝜇𝑝, 𝜎𝑝
2) space and hyperbola in 

the (𝜇𝑝, 𝜎𝑝) (standard deviation) space.17 

The mean-variance formulation of optimal investment could be interpreted as utility 

maximization with a quadratic utility function. That approach assumes that investors have 

quadratic utility function, i.e. 𝑢(𝑤) = 𝑤 −
𝛼

2
𝑤2. A rational investor seeks to maximise the 

expected utility, so  

 𝔼𝑢(𝜇) = 𝔼(𝜇 −
𝛼

2
𝜇2) 

 = (𝔼𝜇 −
𝛼

2
𝔼(𝜇2)) 

 = (𝔼𝜇 −
𝛼

2
(𝔼𝜇)2 −

𝛼

2
𝑣𝑎𝑟(𝜇)), 

                                                 

17 Another useful result for variance-efficient portfolios is the two-fund spanning of the 

efficient frontier. It can be demonstrated that every variance-efficient portfolio can be 

constructed as a linear combination of two other efficient portfolios (‘mutual funds’) and thus 

the linear combination of any two efficient portfolios is also an efficient portfolio.  
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where 𝑣𝑎𝑟(𝜇) denotes the variance of expected returns. This shows that for an investor with 

quadratic preferences, for fixed variance of returns, the expected utility is maximised when 

the expected return is maximised.18 Alternatively, for a fixed level of expected return, the 

expected utility is maximised when the variance of the portfolio is minimised. Markowitz 

justifies the mean-variance optimisation framework as assuming a quadratic utility function 

(Markowitz, 1959, Chapter 13). He does not argue that investors’ preferences are indeed 

quadratic but rather that the quadratic function could be a good local approximation to various 

plausible utility functions. He specifically considers logarithmic utility ln(1 + 𝑅), as well as 

quadratic approximation to (1 + 𝑅)1/2 and (1 + 𝑅)1/3. 

Tobin (1956) and Tobin (1958) extend the portfolio model by adding a risk-free asset 

to the investment set, assuming that asset return distribution is a two-parameter distribution of 

the location-scale family. Under those assumptions Tobin shows that the problem of asset 

allocation is separate from the decision of risk tolerance. In particular, by definition the 

risk-free asset has no covariance with any of the risky assets, and since the covariance matrix 

for the risky assets is assumed to be positive definite, a risk-free asset could not be created 

through a combination (portfolio) of risky assets. Thus a portfolio comprising of the risk-free 

asset is variance-efficient among the portfolios with zero variance so it must belong to the 

efficient frontier. On the other hand, there must be another (risky) portfolio, also on the 

efficient frontier. Since all investors would be splitting their wealth between the risky asset 

and the risky fund, there would exist a risky portfolio that is efficient and all investors would 

be holding a share of it, hence by market clearance it must be simply the market portfolio 

comprising all risky assets in the economy. Just as in the case of the variance-efficient 

portfolio, the combination of the two efficient portfolios – the risk-free one and the market 

portfolio – spans the efficient frontier (two-fund spanning), and because the risk-free asset has 

no covariance with any of the risky assets, the efficient frontier transforms into a straight line 

through the market portfolio and the risk-free portfolio. In particular, the Sharpe ratio on any 

efficient portfolio 𝑐 would equal the ratio for the market portfolio 𝑚, a result that became 

known as the capital asset market line, i.e. (𝔼𝜇𝑐 − 𝑟𝑓)/𝜎𝑐 = (𝔼𝜇𝑝 − 𝑟𝑓)/𝜎𝑝, where 𝑟𝑓 is the 

known (non-random) risk-free rate.  

The work of Sharpe (1964) and the subsequent contribution by Lintner (1965b) 

formulate the Capital Asset Pricing Model (CAPM). Sharpe takes off from the observation of 

                                                 

18 Quadratic utility preferences make sense only in the increasing section of the function, 

hence higher 𝔼𝜇 guarantees higher 𝔼𝜇 −
𝛼

2
(𝔼𝜇)2. 
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Markowitz (1959) that share prices tend to co-vary with the market, and demonstrated that 

what really matters for pricing is the systematic risk. The presentation of CAPM, as we know 

it presently, is formulated by Lintner (1965b), who shows that an investor’s excess expected 

rate of return is related linearly to the risk of his total investment as measured by the standard 

deviation of his return. 

An informal derivation of CAPM could follow the same variance-minimisation steps 

as above, but subject to a slightly modified budget constraint that adds a risk-free asset to the 

investment universe that yields a risk-free rate of return of 𝑟𝑓:  

 min
𝑥
{
1

2
𝑥′𝑉𝑥 | (𝜇 − 𝑟𝑓1)

′𝑥 ≥ 𝜇𝑝 − 𝑟𝑓}, 

where (𝜇 − 𝑟𝑓1) is the vector of excess returns. As before, one can form the Lagrangian and 

differentiate it with respect to portfolio weights 𝑥 to obtain the first-order condition (FOC):  

 𝑉𝑥 = 𝜆(𝜇 − 𝑟𝑓1). 

Let 𝜎𝑖𝑒 be the covariance between some asset 𝑖 (this could also be a portfolio of assets), and 

some efficient portfolio 𝑒, i.e. a portfolio that satisfies the FOC above. Then by definition 

𝜎𝑖𝑒 = 𝑥𝑖
′𝑉𝑥𝑒, and upon substitution of the FOC, 𝜎𝑖𝑒 = 𝜆𝑥𝑖

′(𝜇𝑒 − 𝑟𝑓1). This relation should 

hold for any efficient portfolio, and since the market portfolio 𝑚 is an efficient one19, it 

follows that 𝜎𝑚
2 = 𝜎𝑚𝑚 = 𝜆(𝜇𝑚 − 𝑟𝑓). This gives the solution for the Lagrange multiplier 𝜆 

and one can then eliminate it from the FOC formula above, giving the following link between 

the expected return of any asset 𝑖 in relation to its risk as captured by 𝜎𝑖 and its covariance 

with the expected return on the market portfolio:  

 𝜇𝑖 − 𝑟𝑓 = 𝛽𝑖(𝜇𝑚 − 𝑟𝑓), (1) 

where 𝛽𝑖 =
𝜎𝑖𝑚

𝜎𝑚
2 . Therefore, in equilibrium the excess return on each asset would be 

                                                 

19 The market portfolio would be an efficient portfolio if the portfolios of the individual 

investors are on the efficient frontier. This follows because a combination of portfolios on the 

efficient frontier is also on the efficient frontier, and the market portfolio is the sum of 

individual investors’ portfolios, which are assumed to be on the efficient frontier. In this 

informal outline we do not reproduce the proof of market clearance, but the issue of what 

happens when the portfolios of the individual investors are not on the efficient frontier is 

studied by Levy (1978), which we discuss in the following section. However, one should note 

that this general equilibrium solution is what sets out CAPM from all other models of asset 

returns: whereas other models simply presume the existence of some observed or unobserved 

factors driving returns and identify the arbitrage-free values of assets implied by exposures to 

those factors, the CAPM actually predicts what the sole factor of asset return is (the excess 

return on the market portfolio). Hence the special place of CAPM among the asset pricing 

models.  
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proportionate to the excess return of the market portfolio, and the coefficient of 

proportionality 𝛽𝑖 equals the ratio of the covariance between the asset 𝑖 and the market 

portfolio, divided by the variance of the market portfolio.  

The predictions of CAPM are quite unequivocal in mathematical terms, yet the 

model’s prediction might seem counter-intuitive. The CAPM denies the existence of 

abnormal returns. No matter how experienced the investment manager is, or what his 

cherished model for forecasting future returns is – technical, statistical, or a fundamental 

model – CAPM predicts that the expected return on his portfolio would depend solely on the 

betas of the assets in his portfolio and the share of investment in the risk-free asset. 

Concerning the composition of portfolios of rational investors, CAPM makes two 

claims: firstly, all investors shall invest in identical portfolios of risky assets, with each 

portfolio having the same weights as the market portfolio. Differences in risk-tolerance of the 

different investors would be accommodated through changes in the share of investment in the 

risk-free asset. Risk-shy investors would invest heavily in risk-free assets, while investors 

seeking higher return would invest a larger share of their wealth in risky assets, and those 

seeking even higher returns could leverage their position by borrowing at the risk-free rate 

and investing in the market portfolio. 

The important implication of CAPM that in equilibrium only the covariance of the 

stock with the market portfolio (systematic risk) is priced, while the idiosyncratic risk of the 

individual securities is not priced, is dependent on a number of explicit or implicit 

assumptions that are made in the derivation of the model: (i) investor preferences satisfy the 

axioms of von Neumann and Morgenstern and thus can be represented in terms of a utility 

function; (ii) investors have homogeneous beliefs; (iii) the utility function can be well 

approximated by a quadratic utility function; (iv) investors are price-takers; (v) the markets 

are frictionless and investor decisions are not affected by other concerns like taxes, 

transaction costs, asset indivisibility, asset liquidity; (vi) investors can borrow and lend in 

unlimited amounts at the market risk-free rate; (vii) all relevant information is available to all 

investors; (viii) markets are complete. This is indeed a long list of assumptions, and invited 

many subsequent studies. Some of these examine whether investor portfolios are sufficiently 

diversified, as the CAPM predicted that rational investors should seek a broad diversification 

of their asset holdings. Other studies seek to relax some of the assumptions and examine the 

impact of those relaxations on the market equilibrium. In the following paragraphs we briefly 

review the most relevant results for our study, while in a subsequent section we shall examine 

whether the CAPM performs well empirically despite the long list of restrictive assumptions. 
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The early presentations of the CAPM considered quadratic utility as a local 

approximation of some well-behaved utility function. That assumption is explored in more 

detail by Kraus et al. (1976), who employ a third-order approximation of the investor utility 

function, i.e.: 

𝑢(𝑤) =  𝑢(𝑤̅) +
𝑢′′(𝑤̅)

2!
𝜎(𝑤) +

𝑢′′′(𝑤̅)

3!
𝑚3(𝑤) + 𝑂(𝑤

4), 

where 𝑚3(𝑤)  is the third moment of the random return process. Somewhat similar 

conclusions could be reached based on the prospect theory of decision-making under 

uncertainty, developed by Kahneman and Tversky (1979), which assigns an important role on 

the perceptions of potential gains and losses, rather than on expected return and standard 

deviation, and which could give rise to preference for lottery-like investments, characterised 

by higher skewness or kurtosis, and possibly – also higher idiosyncratic risk. Thus, Barberis 

and Huang (2008) build on the cumulative prospect theory and argue that the demand for 

lottery-like stocks (i.e. ones with significant positive skewness that have large growth 

potential) gives rise to the own skewness of the stocks being priced and stocks with high 

positive skew being overpriced.20  

The mean-variance framework underpinning the CAPM assumes that investors’ 

preferences are fully captured in terms of their expected return and the variance of returns, so 

that the effects of higher-order terms of the Taylor expansion of the utility function, capturing 

skewness, kurtosis and higher moments could be ignored. This raises the problem in what 

cases could such an assumption be justified. This problem could be approached by asking 

what should be the joint distribution of stock returns that would allow investor preferences to 

be expressed only in terms of expected return and variance, irrespective of her utility function. 

The prime example of this situation is the case of normal returns because the Gaussian 

distribution is stable under addition21 and the distribution is entirely defined by its mean and 

standard deviation. In such a situation, the expected utility of an investor would be a function 

of the mean and standard deviation of the return distribution, irrespective of the functional 

                                                 

20 Special care should be taken to distinguish the skewness preference in Barberis and Huang 

(2008) from that of Kraus et al. (1976), who predict preference for positive (co-)skewness 

based on Taylor approximation of the utility function of investors. The difference between the 

predictions of the two models is that Barberis and Huang (2008) predict significance of own 

skewness of the stocks, i.e. 𝛾(𝑥) =
𝔼(𝑥−𝔼𝑥)3

𝜎𝑥
3 , whereas Kraus et al. (1976) predict significance 

of the co-skewness with the market, i.e. 𝛾(𝑥,𝑚) =
𝔼(𝑚−𝔼𝑚)2𝔼(𝑥−𝔼𝑥)

𝜎𝑚
3 . 

21 The sum of two normal variables is also normally distributed 
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form of the utility function. As long as the investor is risk-averse, for a fixed expected return 

she would choose the portfolio with the lowest variance; hence, if asset returns are jointly 

normally distributed, the optimal portfolio for the utility-maximising risk-averse investor 

would necessarily be a variance-efficient one. 

Chamberlain (1983) and Owen and Rabinovitch (1983) examine formally the 

circumstances in which investor’s preferences could be formulated in terms of the mean and 

variance of portfolio returns alone. Chamberlain (1983) starts from the observation that if two 

portfolios yield the same expected utility under arbitrary utility function, then they should 

have the same distribution of returns and have coinciding mean and variance. Hence he 

establishes the conditions for the joint distribution of asset returns which would ensure that if 

the mean and variance of two portfolios coincide, then the portfolio return distributions are 

the same, i.e. the two portfolios would yield identical expected utility, irrespective of the 

utility function. Chamberlain demonstrates that an investor’s utility function can be 

formulated in terms of mean and variance of returns if and only if returns are jointly 

elliptically distributed. Elliptic distributions are generalisation of the multivariate normal 

distribution. Formally they are defined in terms of the form of the distribution characteristic 

function. A multivariate distribution is said to be elliptical if its characteristic function is of 

the form 𝑒𝑖𝑡
′𝜇 Ψ(𝑡′Σ𝑡), where Σ is a positive semi-definite matrix, and 𝜇 is a vector of 

parameters. In the case of multivariate normal distribution, Ψ(𝑢) = 𝑒−𝑢/2, and 𝜇 and Σ are 

the vector of means and the covariance matrix respectively. Linear combinations of elliptical 

distributions are elliptical too; the marginal distributions of a multivariate elliptical 

distribution are also elliptical. The class of elliptical distributions includes various symmetric 

distributions; in particular, it includes the normal distribution, Student’s t, the logistic 

distribution, Laplace distribution, and symmetric stable distributions. While these 

distributions allow for a very broad set of return distributions that are characterised with 

varying tail fatness, all elliptical distributions have the limitation of being symmetric. The 

evidence concerning the joint distribution of returns is inconclusive. Levy (2012) surveys 

existing research and concludes that logistic distribution could not be rejected (as measured 

by the Kolmogorov-Smirnov test statistic) for daily, weekly and monthly returns for Dow 

Jones constituent stocks; other distributions that are reported as not rejected for certain stocks 

were beta, normal and log-normal distributions for monthly data, and Levy-stable 

distributions for the daily returns of some companies (Levy, 2012, Chapter 8). He also reports 

that at portfolio level and horizons up to nine months, logistic distribution cannot be rejected 
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at 10% confidence level, while on a 10- to 12-month horizon suitable distributions are beta, 

logistic, and Weibull. The evidence of Levy provides solid ground to consider the 

mean-variance framework as the baseline case of modern finance theory. It is clear that such 

evidence depends on the set of investigated distributions, the list of considered assets, as well 

as the employed goodness of fit statistic, However, there are other studies, e.g. Chicheportiche 

and Bouchaud (2012), that reject the joint elliptical distribution of returns. 

The CAPM assumes a frictionless market where assets are perfectly divisible, there 

are no transaction costs for selling, buying of holding securities, and no liquidity differences. 

These are strong assumptions, and both researchers and practitioners alike have sought to 

relax those assumptions and to shed light on the structure of the resulting market equilibrium. 

Thus, Levy (1978) poses an identical variance-minimisation problem as that solved by 

Markowitz and CAPM. However, he assumes that for some reason each investor invests in 

some subset of the investment universe. The number of securities for the 𝑘-th investor was 

𝑛𝑘, while the total number of shares in the market was 𝑛, 𝑛𝑘 ≤ 𝑛. Levy assumes that each 

investor can invest in some 𝑛𝑘  pre-determined securities and the risk-free asset.22 This 

means that in mathematical terms, the optimisation is identical to CAPM, except that the 

investment decision for investor 𝑘 involves not the market efficiency frontier (the efficiency 

frontier that was feasible when each of the all 𝑛 assets were used in portfolio), but the 

efficiency frontier spanned by using the 𝑛𝑘 assets, in which investor 𝑘 could invest. Thus 

the efficiency frontier attainable by investor 𝑘 is in the interior of the market efficiency 

frontier, and the capital allocation line for investor 𝑘 is below the capital allocation line for 

the unconstrained investors (those who could invest in all assets). 

 

                                                 

22 Selecting an optimal portfolio subject to cardinality constraint, i.e. selecting 𝑛𝑘 shares out 

of 𝑛 available shares, is a hard problem of combinatorial optimisation. 
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Figure 2: Efficient frontier with 30 stocks as of December 31, 2013, and a subset of 7 

stocks 

  

Source: author’s calculations 

 

This point is illustrated on Error! Reference source not found. above. There we use 3

0 large stocks (approximately those of Dow Jones Industrial Average) to calculate the 

efficiency frontier as at the end of 2013. The risk-free portfolio almost coincides with the 

origin, as the risk-free rate of return (in that case: one-month constant maturity US treasury 

bills) is just 0.02% p.a. The higher curve on that plot shows the efficiency frontier that could 

be reached by investing in all of the 30 assets. For the purposes of the example, we consider 

that these 30 DJIA stocks are all the available securities in the market. Then the tangency 

portfolio is given by the point 𝑀. According to CAPM, each investor in this economy would 

hold some combination of the risk-free asset 𝑅 and the market portfolio 𝑀. Thus, the 

optimal allocations for investors (the capital market line) would be the line 𝑅𝑀. Should some 

investors be willing to earn higher return than 𝑀, they should leverage their position, i.e. 

borrow money at the risk-free rate 𝑟𝑓 and invest in the market portfolio 𝑀. Thus, 𝑅𝑀 is the 

capital market line to the unconstrained investors. 

Then we consider an investor who prefers another investment strategy: the ABC 

strategy. This strategy reasons as follows: holding all 30 stocks is impractical because of costs 

for maintaining and rebalancing the portfolio. Instead, that investor choses to invest only in 

stocks with tickers starting with letters A, B, or C. This could be a practical strategy in its 

idiosyncratic way because one could find the price quotes in the newspaper easily – they 
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would be on the first page of market data. So in this particular case our investor is limited to 

investing only in the following stocks: AA (Alcoa Inc), AXP (American Express), BA 

(Boeing), BAC (Bank of America), CAT (Caterpillar), CSCO (Cisco Systems), and CVX 

(Chevron). This is not too bad a strategy as the stocks are from quite diverse sectors of the 

economy. Also, the expected return upon investment only in the ABC-stocks (portfolio 𝐾) 

even slightly outperforms portfolio M in terms of expected return. Unfortunately, the risk 

taken by the ABC investors is 2.6 times higher compared to the market risk as measured by 

the standard deviations of returns for portfolio 𝑀. 

Solving the same problem as the CAPM in the previous section, the ABC investor 

would be in equilibrium if  

 𝜇𝑖 − 𝑟𝑓 = (𝜇𝑘 − 𝑟𝑓)
𝜎𝑖𝑘

𝜎𝑘
2 .  

Levy points out that this equilibrium condition is very different from that implied by CAPM: 

the market price of risk (= (𝜇𝑘 − 𝑟𝑓)/𝜎𝑘
2, i.e. the slope of the capital market line) is measured 

relative to the co-variation of asset 𝑖 with the constrained portfolio 𝐾 instead with the 

unconstrained portfolio 𝑀. The covariance of asset 𝑖 is also measured relative to portfolio 

𝐾 rather than the market portfolio 𝑀. Thus, investors in the same security 𝑖 face different 

prices of risk and covariance with the constrained portfolio that depended on what other assets 

the investor has selected for his portfolio. For example, the securities of Alcoa are included in 

both portfolio 𝐾 and portfolio 𝑀, yet for portfolio 𝐾 the Sharpe ratio (the price of risk) was 

0.4 compared to 1.0 for portfolio 𝑀. This plurality of individual variance-efficient frontiers 

obscures its implications for the equilibrium prices. However, Levy (1978) demonstrates that 

if investors hold very undiversified portfolios, then expected returns in equilibrium would 

depend on idiosyncratic risk. At the same time, betas with the whole market could be 

irrelevant because they would include many covariance terms with other securities, which 

investors actually may not hold in their portfolios. One way to look at this could be to note 

that the covariance of returns of a portfolio with 𝑛  assets and returns 𝜇𝑛  would by 

definition equal the sum of 𝑛 individual variance terms plus (𝑛2 − 𝑛) covariances between 

individual assets. When 𝑛 is large, the variance of the market portfolio would depend on the 

covariance terms and the impact of individual variances on portfolio variance would be 

smaller; with a smaller number of assets in the portfolio, the impact of individual variances on 

portfolio variance could not be neglected. Upon aggregation of the individual equilibrium 

conditions, Levy demonstrates that in his model the market price of risk from the CAPM 



 

 34 

model (𝛾)23 is not applicable. Instead, he finds that the market price in the constrained model 

(𝛾1) equals 𝛾1 = 𝛾
𝜎𝑚
2

∑𝑘 𝑡𝑘𝜎𝑘
2, where the sum in the denominator runs over the optimal portfolios 

for each investor 𝑘, and 𝑡𝑘 is the share of the risky portfolio of investor 𝑘 in the total 

market. This leads him to conclude that “the classic CAPM may be the approximate 

equilibrium model for stocks of firms which are held by many investors (for example, 

AT&T), but not for small firms whose stocks are held by a relatively small group of 

investors.” (Levy, 1978: 650). 

In terms of its implications for empirical testing, the model developed by Levy (1978) 

highlights the difficulties involved in such tests. In particular, allocation decisions are based 

on betas with some unobservable portfolios that are different from the market portfolio. 

Therefore, beta with market portfolio needed not be a good measure of the risk faced by the 

under-diversified investors. In fact he shows that the betas for constrained investors would be 

higher than those in the unconstrained CAPM world, and hence the average beta across all 

investors would also be strictly higher than the CAPM beta. In the absence of a good proxy of 

true betas, Levy (1978) reasons that idiosyncratic variances could be expected to be superior 

predictors of the price behaviour than the traditional beta. (p. 654) 

Merton (1987) develops a similar model but due to the somewhat different structure of 

the model, he is able to draw more specific conclusions about the size of the premium 

attributable to idiosyncratic risk. His model is again one of a two-period economy where some 

of the investors ‘know’24 only a proper subset25 of the universe of available securities. In the 

complete information case where all investors know all securities, the model reduces to the 

CAPM. In Merton’s model some investors may know all securities, but at least some of the 

investors are assumed to ‘know’ only some of the securities. The ‘knowledge’ of a security in 

that model is perfect – if an investor was ‘informed’ of a security, he or she knows the return 

generation process for that security and agrees with all other investors who know that security 

on the parameter values for that security (conditional homogeneous beliefs). The key 

behavioural assumption in the model is that investor would include a certain security 𝑘 in his 

                                                 

23 𝛾, also called Sharpe ratio, equals to excess return on the market portfolio divided by the 

standard deviation of the market portfolio, i.e. 𝛾 = (𝜇𝑚 − 𝑟𝑓)/𝜎𝑚. 
24 ‘Knowing’ here has essentially the same meaning as in the work of Levy (1978), i.e. if an 

investor ‘knows’ a security, it means that he has somehow pre-selected that security for his 

portfolio. The model makes no assumptions as to how investors came to know or chose to 

know some security.  
25 A subset is said to be proper if there are elements of the superset that are not in the subset. 
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portfolio optimisation only if the investor ‘knows’ that security. Merton (1987) motivates that 

assumption as follows (op. cit., p. 488):  

 “The prime motivation for this assumption is the plain fact that the 

portfolios held by actual investors (both individual and institutional) contain only 

a small fraction of the thousands of traded securities available. There are, of 

course, a number of other factors (e.g., market segmentation and institutional 

restrictions including limitations on short sales, taxes, transactions costs, 

liquidity, imperfect divisibility of securities) in addition to incomplete 

information that in varying degrees, could contribute to this observed behavior. 

Because this behavior can be derived from a variety of underlying structural 

assumptions, the formally-derived equilibrium-pricing results are the theoretical 

analog to reduced-form equations.”  

 

The model assumes a two-period economy comprising 𝑛 firms. The shares of those 

firms are traded at the beginning of the period. The cash flows generated from investing in 

those firms consist of three components – an expected return on the investment, an 

economy-wide shock, the exposure (loading) to which is company-specific, and idiosyncratic 

shock for each company. The economy-wide shock in this model specifies the correlation 

structure between the returns of the different companies.26 If the starting investment for 

company 𝑘 is 𝐼𝑘, then the end-of-period cash flows (𝐶̃𝑘) are given by  

 𝐶̃𝑘 = 𝐼𝑘[𝜇𝑘 + 𝑎𝑘𝑌̃ + 𝑠𝑘𝜀𝑘̃], (2) 

where 𝜇𝑘 , 𝑎𝑘  and 𝑠𝑘  are fixed company-specific parameters describing the production 

technology of company 𝑘. 𝑌̃ is assumed to be a random variable, describing the state of the 

world at the terminal period. It is a common factor reflecting the uncertainty in the model and 

is the common factor underlying the cash flows of all companies 𝑘 = 1…𝑛. It is assumed 

that it has zero mean and unit variance, i.e. 𝔼(𝑌) = 0 and 𝔼(𝑌2) = 1 (in order to avoid 

adding indices 0 and 1 to starting and end-of-period values we follow the notation of 

Merton (1987) and use tilde to mark realised, end-of-period values, and bar to mark the 

expected values). 𝜀𝑘̃  represents the idiosyncratic risk in the model, i.e. shocks to the 

                                                 

26  Let two random variables 𝑋  and 𝑌  depend on a common random variable 𝑍  and 

independent shocks 𝜀𝑥  and 𝜀𝑦 , i.e. 𝑋 = 𝛽𝑥𝑍 + 𝜀𝑥 , and 𝑌 = 𝛽𝑦𝑍 + 𝜀𝑦 . Then, (𝑋 − 𝛽𝑥𝑍) 

and (𝑌 − 𝛽𝑦𝑍)  are independent, i.e. 𝔼(𝑋 − 𝛽𝑥𝑍)(𝑌 − 𝛽𝑦𝑍) = 0 , so that 𝑐𝑜𝑣(𝑋, 𝑌) =

𝛽𝑥𝛽𝑦𝜎𝑧
2. 
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end-of-period cash flows that are specific to firm 𝑘  and do not depend on either the 

idiosyncratic shocks to the rest of to firms, or on the state of the world ( 𝑌̃ ), i.e. 

𝔼(𝜀𝑘̃|𝜀1̃, 𝜀2̃, … , 𝜀𝑘̃−1, 𝜀𝑘̃+1, … , 𝜀𝑛̃, 𝑌) = 0, ∀𝑘. 

Let 𝑉𝑘 denote the equilibrium value of company 𝑘 at the initial point, and let 𝑅̃𝑘 be 

the realised return per dollar from investing in company 𝑘. Since this is a two-period model, 

all of the cash flows of company 𝑘 are distributed to shareholders at the end of the period. 

Hence, 𝑅̃𝑘 ≡ 𝐶̃𝑘/𝑉𝑘 = 𝑅̅𝑘 + 𝑏𝑘𝑌̃ + 𝜎𝑘𝜀𝑘̃ , where 𝑅̅𝑘 = E(𝑅̃𝑘) = 𝐼𝑘𝜇𝑘/𝑉𝑘 , 𝑏𝑘 = 𝑎𝑘𝐼𝑘/𝑉𝑘 , 

and 𝜎𝑘 = 𝑠𝑘𝐼𝑘/𝑉𝑘. Besides the 𝑛 shares, the economy also has a risk-free asset, the return 

on which is denoted by 𝑅 (note that 𝑅 denotes one plus the risk-free rate 𝑟𝑓, 𝑅 ≡ 1 + 𝑟), 

and one other composite asset that combines the risk-free asset with a forward contract on the 

state of the world 𝑌,27 the return on which is given by 𝑅̃𝑛+1 = 𝑅̅𝑛+1 + 𝑌̃ (the index 𝑛 + 1 

shall be used to denote that composite security). The risk-free and the composite securities are 

assumed to be interior to the efficient frontier so that investment in these securities is zero. 

Investors are assumed to be risk-averse. Each investor 𝑗 is endowed with an initial 

endowment 𝑊𝑗  that he invests in a portfolio composed of some or all of the (𝑛 + 2) 

securities traded in the market at the initial date. The return on that portfolio is 𝑅̃𝑗, so the 

wealth at the terminal period is 𝑊̃𝑗 = 𝑅̃𝑗𝑊𝑗. The investor preferences are assumed to be 

quadratic and specified as 𝑈𝑗 = 𝔼(𝑊̃
𝑗) −

𝛿𝑗

2𝑊𝑗 𝑉𝑎𝑟(𝑊̃
𝑗). For the latter parts of the derivation 

it is also assumed that investors have identical risk preferences (i.e., 𝛿𝑗 = 𝛿, ∀𝑗) and initial 

endowments (𝑊𝑗 = 𝑊, ∀𝑗). 

In this setting Merton demonstrates that the resulting equilibrium value 𝑉̃𝑘 of firm 𝑘 

equals the equilibrium value 𝑉𝑘
∗ when all investors are informed of security 𝑘, discounted by 

a factor 1/[1 + 𝜆𝑘/𝑅], where 𝑅 = 1 + 𝑟𝑓  is the risk-free return, and 𝜆𝑘 = (1 − 𝑞𝑘)Δ𝑘 

measures the information diffusion about security (company) 𝑘, with 𝑞𝑘 being the share of 

investors ‘knowing’ security 𝑘 and Δ𝑘  being the shadow cost (Lagrange multiplier) of 

‘knowing’ security 𝑘. If all investors are informed of security 𝑘, then 𝑞𝑘 = 1, ∀𝑘, and so 

𝑉𝑘 = 𝑉𝑘
∗. However, when there are investors who were not informed of that company, then 

𝑞𝑘 < 1 and the value of the company would be below the equilibrium with complete 

knowledge (the CAPM equilibrium). From there Merton deduces that the spread between the 

expected return on security 𝑘 under incomplete (𝑅̅𝑘) and complete (𝑅̅𝑘
∗) information would 

be proportionate to its shadow cost:  

                                                 

27 Hence the market is complete. 
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 𝑅̅𝑘 − 𝑅̅𝑘
∗ = 𝜆𝑘(𝑅̅𝑘/𝑅). 

Aggregating across securities he arrives at the following Security Market Line (SML) 

equation under incomplete information  

 𝑅̅𝑘 − 𝑅 = (𝜆𝑘 − 𝛽𝑘𝜆𝑀)⏟        
𝛼𝑘

+ 𝛽𝑘(𝑅̅𝑀 − 𝑅), (3) 

where 𝑅𝑀  equals (one plus) the return on the market and 𝜆𝑀  is the weighted average 

shadow cost of incomplete information over all securities. Again, in case of complete 

information where 𝜆𝑘 = 0 for all 𝑘 (and so 𝜆𝑀 = 0), the SML reduces to the well-known 

CAPM case. Hence the prediction of the model is that the less known securities should earn a 

spread over securities which were well known to the market. 

The model comparative statistics (op. cit., p. 494-499) examines the cross-sectional 

differences implied by the model. In particular, if 𝜓(𝑌) denotes the elasticity of the expected 

excess return for security 𝑘 (|𝑅̅𝑘 − 𝑅|) with respect to some parameter 𝑌 of the model, i.e. 

𝜓(𝑌) = 𝑑log|𝑅̅𝑘 − 𝑅|/𝑑log(𝑌) , Merton (1987) deduces that 𝜓(𝑏𝑘) > 0 , 𝜓(𝑥𝑘) > 0 , 

𝜓(𝜎𝑘
2) > 0, and 𝜓(𝑞𝑘) < 0 , where 𝑏𝑘  is the loading of returns on security 𝑘  on the 

common factor 𝑌, 𝑥𝑘 is the share of company 𝑘 in the total market, 𝜎𝑘
2 is the idiosyncratic 

variance of company 𝑘, and 𝑞𝑘 is the share of investors ‘knowing’ security 𝑘. 

Thus the model predicts that the expected excess returns are higher for companies of 

larger size (higher 𝑥𝑘) and higher exposure to the common factor (higher 𝑏𝑘). Since 𝛽𝑘 is 

an increasing function of 𝑏𝑘,28, the latter implies that companies with higher beta should also 

earn higher expected return. On the other hand, more obscure companies (low 𝑞𝑘) should 

earn higher expected returns over the well-known ones. For our study, an important prediction 

of the model is that the positive elasticity of expected excess returns with respect of 

idiosyncratic variance (𝜎𝑘
2) means that idiosyncratic risk is priced and investors in companies 

with higher idiosyncratic risk earn a premium for assuming idiosyncratic risk. This relation is 

not without qualifications: the amount of the premium is not constant but dependent on how 

widely followed the security is. In equation (3) above the excess return depends on the 

magnitude of the shadow cost of knowing security 𝑘 (𝜆𝑘) net of the average shadow cost of 

knowing the securities on the market (𝜆𝑀). Merton (1987) shows that 𝜆𝑘 = (1 − 𝑞𝑘)Δ𝑘, 

where Δ𝑘 = 𝑅̅𝑘 − 𝑅 − 𝑏𝑘(𝑅̅𝑛+1 − 𝑅)  is the excess return on asset 𝑘  relative to the 

predicted return from exposure on the market factor as captured in the forward asset 

dependent on the state of 𝑌. For a given delta, the amount of the premium on holding security 

                                                 

28 𝛽𝑘 = (𝑏𝑘𝑏 + 𝑥𝑘𝜎𝑘
2)/𝑣𝑎𝑟(𝑅̃𝑚), eq. 22 on p. 493 in Merton (1987) 
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𝑘 depends on the share of investors aware of the asset. In particular, we should not expect to 

find a constant premium for idiosyncratic risk in the cross-sectional regressions. If we restrict 

ourselves to widely followed securities, we should expect 𝛼𝑘 close to zero. Thus, depending 

on the types of shares that we have in the test sample, failure to reject the null hypothesis that 

𝐻0: 𝛼𝑘 = 0 could in fact be a finding consistent with Merton’s rather than a contradicting 

one.  

Empirical tests of the proposition that idiosyncratic risk should be priced are hindered 

by the complex interplay between idiosyncratic risk and the rest of the variables in the 

estimation of equilibrium returns. Much of the empirical literature focuses on single point 

estimates of the idiosyncratic risk premium. Furthermore, the aggregation in portfolios using 

equal capitalisation of NYSE breakpoints could reduce the share of smaller, less known 

securities and could apparently reject the predictions of Levy (1978) and Merton (1987), 

whereas in fact the results could be interpreted as non-contradicting the two extensions of 

CAPM. In view of that, it seems particularly important to be cautious about discarding stocks 

from the sample, or aggregating in portfolios biased towards larger and presumably better 

known stocks, for which the idiosyncratic risk premium is predicted to be small or 

non-existent. 

More recently, Malkiel and Xu (2004) revisited the problem of market equilibrium 

when investors are constrained from holding all securities. In their model the covariance 

matrix includes three (groups of) assets, hence the matrix has the form  

 𝑉 = (

𝜎𝑎
2 𝜎𝑎𝑏 𝜎𝑎𝑐

𝜎𝑎𝑏 𝜎𝑏
2 𝜎𝑏𝑐

𝜎𝑎𝑐 𝜎𝑏𝑐 𝜎𝑐
2

). 

There are three investors in the economy. The second investor could invest in all three assets 

(𝑎, 𝑏, and 𝑐), while the first and the third investor are constrained from investing in assets 𝑎 

and 𝑐, respectively. Thus the variance matrices perceived by the constrained investors, 𝑉𝑏𝑐 

and 𝑉𝑎𝑏, are obtained from the original matrix 𝑉 where the row and column corresponding 

to the prohibited assets are replaced by zeros. The covariance function perceived by the 

constrained investor then has the form  

 𝑉∗ = (
𝑛1

𝑛1+𝑛3
(
0 0
0 𝑉𝑏𝑐

−1) +
𝑛3

𝑛1+𝑛3
(𝑉𝑎𝑏

−1 0
0 0

))

−1

, 

where 𝑛1 and 𝑛3 were the number of constrained investors in the first and the third group, 

respectively. All investors maximise quadratic utility function with risk-tolerance parameter 

𝜏, i.e. 𝑢(𝑊) = 𝔼(𝑊) −
1

2𝜏
𝑣𝑎𝑟(𝑊). In that setting Malkiel and Xu (2004) demonstrate that 
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instead of the usual CAPM equilibrium ((𝜇 − 𝑟𝑓1) =
1

𝑛𝜏
𝑉𝑆), where 𝑆 is the supply vector for 

each security, the equilibrium relationship would instead has the form  

 (𝜇 − 𝑟𝑓1) =
1

𝑛𝜏
𝑉𝑆 +

𝜂1.3

𝑛𝜏
𝑉𝜔, 

where 𝜂1.3 = (𝑛1 + 𝑛3)/𝑛 is the share of constrained investors, 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 is the 

total number of investors, and 𝜔 = [(𝐈 − 𝑉∗
−1𝑉)−1 − 𝜂1.3𝐈]

−1𝑆 is a supply adjustment. In 

particular, Xu and Malkiel (ibid., eq. 13) show that under the assumption of uncorrelated 

idiosyncratic innovations, the idiosyncratic risk premium for security 𝑖  has the form 

(𝑘𝛾𝜔∗,𝑖𝜎𝑖
2), where 𝑘 is a constant, 𝛾 is the Sharpe ratio (market price of risk) that translates 

the idiosyncratic variance into risk premium,29 𝜎𝑖
2 is the usual measure of idiosyncratic 

variance, and 𝜔∗,𝑖 was the 𝑖-th element of 𝜔 vector. The presence of the product (𝜔∗,𝑖𝜎𝑖
2) 

in the formula for the premium, rather than just the idiosyncratic variance, suggests that the 

risk premium for assuming idiosyncratic risk depends on the ‘supply adjustment’ for the 

particular security (they term this undiversified idiosyncratic risk), rather than the simple 

(total) idiosyncratic risk. As with the models of Levy and Merton, a principal problem in 

testing the model is estimating the price adjustment due to the unobservability of the reference 

portfolios against which investors measure risk and return. In addition to the cross-sectional 

tests of idiosyncratic risk, Malkiel and Xu (2004) propose to perform also time-series tests 

and to employ a work-around for testing the significance of idiosyncratic risk: to estimate the 

return on an idiosyncratic risk hedging portfolio. To that end they sort stocks into three size 

buckets and two volatility buckets in the spirit of Fama and French (1993) and Fama and 

French (1996) and find evidence for significant positive return on idiosyncratic risk portfolios. 

A subtle implicit assumption of the CAPM and its extensions is the composition and 

observability of the market portfolio. That assumption was identified by Roll (1977), who 

pointed out that in any sample of assets there exist infinitely many mean-variance efficient 

portfolios, and the relation between returns and the betas with any of these portfolios would 

be linear, irrespective whether or not the market portfolio is mean-variance efficient. 

Moreover, the market portfolio must include not only the assets traded at stock markets, but 

also all other assets available to investors, including real estate, precious metals, commodities, 

and human capital. Building on that critique, Eiling (2013) suggested an extension of the 

CAPM pricing model to a multifactor pricing model that explicitly distinguished tradable and 

                                                 

29 Normally the denominator of the Sharpe ratio is the standard deviation of the market 

portfolio; in this case, however, Xu and Malkiel defined the ratio as having the variance of the 

market portfolio in the denominator, i.e. 𝛾 = (𝜇𝑚 − 𝑟𝑓)/𝜎𝑚
2 .  



 

 40 

K non-tradable assets: 

𝔼𝑟𝑡𝑟,𝑖 = 𝛽𝑚𝑘𝑡,𝑖 (𝔼𝑟𝑚𝑘𝑡 − 𝛾̅∑𝐶𝑜𝑣(𝑟𝑚𝑘𝑡, 𝑅𝑛𝑡,𝑘)𝑞𝑛𝑡,𝑘

𝐾

𝑘=1

) +∑𝛽𝑛𝑡,𝑘,𝑖(𝑉𝑎𝑟(𝑅𝑛𝑡,𝑘)𝑞𝑛𝑡,𝑘)

𝐾

𝑘=1

, 

where 𝔼𝑟𝑡𝑟,𝑖  is the expected return on tradable asset i, 𝛾̅ is the market aggregate risk 

aversion coefficient, 𝑞𝑛𝑡 is the K × 1 vector of aggregate wealth due to the nontradable 

assets divided by the total value of tradable assets, and 𝛽𝑚𝑘𝑡,𝑖 and 𝛽𝑛𝑡,𝑘,𝑖 are betas with the 

traded market and each of the K non-traded assets. This shows that if idiosyncratic risk 

correlates with some non-traded asset, then idiosyncratic risk could be priced by the market, 

but the reason for that premium is not idiosyncratic risk per se, but rather the correlation with 

the non-traded asset. In particular, Eiling (2013) finds that the non-tradable assets model with 

(orthogonalized) industry-specific human capital can reduce the premium for idiosyncratic 

risk by 36%.  

In Table 1 we have summarised the principal theoretical models as they relate to this 

study. The predictions of the CAPM should be considered as a baseline case, upon which the 

remaining models extend. We have not covered the Arbitrage Pricing Theory developed by 

Ross (1976) because the theory as such does not identify the factors that drive the stock 

returns and thus would be of limited use for the present debate. Nonetheless, the structure of 

that model requires that the explanatory factors should not be diversifiable, and thus the 

predictions of that theory would overlap with those of the CAPM extensions, viz in absence 

of limits to diversification idiosyncratic risk would be diversified away.  

 

Table 1: Summary of selected theoretical models and their predicted correlation 

between idiosyncratic risk and stock returns 

Study Predicted 

correlation 

Comment 

Sharpe (1964); 

Lintner 

(1965b) 

None The studies formulate the Capital Asset Pricing Model (CAPM) 

that predicts that in equilibrium idiosyncratic risk will be 

diversified away and stocks with higher idiosyncratic risk will not 

earn higher returns. 
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Study Predicted 

correlation 

Comment 

Kahneman and 

Tversky (1979) 

Unspecified The authors develop the prospect theory of decision-making, which 

places higher value on extreme gains or losses rather than on 

expected lottery outcomes. Such a setting could allow higher 

returns on skewed outcomes, e.g. higher prices (lower returns) on 

securities with small probability of high gains, as in Barberis and 

Huang (2008). 

Chamberlain 

(1983); Owen 

and 

Rabinovitch 

(1983) 

Unspecified The studies suggest that if returns are jointly elliptically distributed 

then investor preferences could be expressed as a function solely of 

expected return and variance, lending indirect support on the 

mean-variance optimisation approach of Markowitz (1952). 

Levy (1978) Positive The model predicts that if transaction costs, taxes, or other market 

frictions prevent the full diversification of idiosyncratic risk, then 

in equilibrium the market should price idiosyncratic risk and stocks 

with higher idiosyncratic risk should earn, ceteris paribus, higher 

returns.  

Merton (1987) Positive The model extends the results of Levy (1978) and derives 

comparative statics of the model, predicting the direction of 

correlation between idiosyncratic premium and security parameters 

(share of investors, size, beta with market, and share of investors 

following the security). 

Malkiel and 

Xu (2004) 

Positive The study extends the results obtained by Levy (1978) and Merton 

(1987) and predicts that the premium on idiosyncratic risk would 

depend on the total idiosyncratic risk scaled with a supply 

adjustment.  

Eiling (2013) Unspecified / 

spurious 

The author extends the pricing model of the CAPM with 

non-tradable assets, as suggested by Roll (1977) and finds that 

about a third of the premium to idiosyncratic risk is in fact due to 

exposure to industry-specific human capital.  

Source: the author 
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In this section we explored the principal theoretical models that explore the pricing of 

idiosyncratic risk in frictionless and frictional markets. The development followed the 

historical evolution of the debate in order to reveal in context the implicit and explicit 

assumptions that underlie the CAPM. This enabled us to see the range of situations that could 

invalidate the key prediction of the model, namely – the irrelevance of idiosyncratic risk for 

the pricing of individual assets, namely: alternative decision-making rules than those assumed 

by von Neumann and Morgenstern (1944), e.g. the behavioural finance theories; inadequacy 

of the quadratic approximation to investor’s utility function that could ascribe some role to 

higher moments like skewness and kurtosis; asset returns that are not jointly elliptically 

distributed so that investor utility function may not be specified in terms of expected return 

and variance alone. Special emphasis was placed on three studies that relate most directly 

with the topic of our enquiry – Levy (1978), Merton (1987), and Malkiel and Xu (2004). The 

three models offered alternative formulations of the portfolio-construction problem when 

investors are constrained from holding the market portfolio and from diversifying entirely 

their idiosyncratic risk. Those models provide some insight into how investor constraints and 

asset characteristics jointly determine the equilibrium prices and returns of the risky assets. 

Admittedly, unlike the CAPM which allowed analytical solutions, the idiosyncratic risk 

premia of those models depend on characteristics that we are unable to observe directly, like 

the limits on number of securities, the investment universe used by each investor in his 

portfolio formation, and ultimately – the true distribution of idiosyncratic shocks. 

Nevertheless, the models yield insight into the factors that could affect the correlation of the 

idiosyncratic risk premium with other asset characteristics. In the following section we shall 

review the findings of some key empirical studies on the correlation between idiosyncratic 

risk and stock returns.  

 

2.3. Empirical findings concerning idiosyncratic volatility 

and the cross-section of stock returns  

Empirical evidence on the composition of portfolios of investors diverges from the 

predictions of CAPM. Blume and Friend (1975) are among the first to document that contrary 

to the predictions of CAPM, investors hold rather concentrated portfolios. They examine a 

sample of 17,056 tax returns from the 1971 tax year, as well as the distribution of assets in the 
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Federal Reserve Board’s 1962 Survey of the Financial Characteristics of Consumers, and find 

that many portfolios are highly undiversified. They report that as much as 34.1% of the tax 

returns list only one dividend-paying stock30, and 50.9% list up to two dividend-paying 

shares. The results of the examination of the 1962 survey are similar: 50% of households 

holding at least 63% in one asset, excluding holdings in mutual funds; if investment in mutual 

funds is added as well, the concentration increases to 90% held in one asset. 

Kelly (1995) studies portfolio diversification of a sample of 3665 households (the 

‘regular sample’) from 1983 Survey of Consumer Finances, and another sample of 438 

households from the top two percentiles of the income distribution. Of the 635 stockholders in 

the regular sample he finds that only 35 (i.e., 5.5%) hold 10 or more shares, and only 11 of 

these – 20 or more shares. In a regression analysis of the likelihood of holding more than 10 

shares on a set of explanatory variables31 he finds that only the portfolio value and the 

number of trades are significant in all specifications, and the share of stocks in a household’s 

financial assets is statistically significant only in some specifications. 

In the high-income sample, Kelly (1995) finds that the median number of shares held 

(excluding shares in companies where household members works) is 10. With the increase of 

portfolio values, diversification improves and for the highest bucket in that study ($1.3 

million to $52.5 million) the share of portfolios with over 20 stocks increases to 61%. Many 

more variables are found to be significant in the explanatory regressions, however the 

explanatory power of those regressions (as measured by the pseudo-𝑅2) is significantly lower. 

Goetzmann and Kumar (2001) examine 79,995 equity investment accounts in a large 

(unnamed) discount brokerage house held by individual investors during a six-year period 

from 1991 to 1996. In order to exclude dormant accounts, the study focuses on 41,039 

accounts that have at least five trades over the surveyed period. The aggregate value of the 

examined portfolios exceeds $2.5 billion. The median portfolio in the database is $13,869, 

and the average portfolio is worth $35,629. The authors report that the average number of 

stocks in a portfolio is just 4, and the median number is 3. More than a quarter of the 

portfolios contain just 1 share, and less than 5% are reported to include 10 or more shares. 

                                                 

30  For tax purposes households were required to disclose only the dividend-paying 

stockholdings; information on the ownership of non-dividend-paying shares was not available 

in that sample.  
31 Portfolio value, number of trades, share of portfolio, age, college education, management 

job, self-employed, advice from broker, attitude to risk, term life insurance, whole life 

insurance, investment in mutual funds, defined contribution pension plan, IRA (as % of 

household financial assets), trust fund (as % of household financial assets) 
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The authors discuss whether those portfolios might be used for gambling on the stock market, 

but dismiss that as unlikely in view of the material balances on the accounts in absolute and in 

relative terms, compared to the annual household income. The authors find that the degree of 

diversification increases with the increase of age, possibly reflecting increasing risk aversion. 

They also find that the number of shares held increases with the value of the portfolio. 

However, investors are not found to use correlations when structuring their portfolios, which 

is found to result in suboptimal allocations. They report that just 15% of portfolio values are 

invested in mutual funds and do not find evidence that less diversified investors compensate 

the under-diversification by investing more in mutual funds. They conclude that the 

insufficient diversification observed in their sample could result in pricing of idiosyncratic 

risk, as suggested by the works of Goyal and Santa-Clara (2003) and Malkiel and Xu (2004). 

Such findings are in stark contrast to the recommendations of various empirical 

analyses of required levels of diversification. Statman (1987) examines the diversification 

benefits of increasing the number of shares, assuming randomly constructed portfolios, and 

finds that a minimum of 30 stocks for borrowing investors and 40 stocks for lending investors 

are required for sufficient diversification.32 Other studies, however, suggest other thresholds. 

For example, an earlier study by Elton and Gruber (1977) indicates that the benefits of 

diversification are largely exhausted with a portfolio of just 10 to 15 securities. They observe 

that increasing the number of securities from 1 to 10 eliminates about 50% of variance, and 

increasing the number of assets to 20 improves that by just 5 percentage points. 

Levy (1978) points out that the evidence on the composition of individual portfolios 

need not imply a rejection of CAPM itself, and that the model could be still valid on 

normative grounds as producing results that are consistent with the observed equilibrium 

expected returns. However, since the empirical evidence in favour of CAPM is mixed too, he 

examines the equilibrium expected returns when the number of assets, in which the investor 

could invest, was limited. Such a cap on the number of assets is consistent with the empirical 

evidence on the number of assets in portfolios, but could also reflect transaction costs or 

imperfect divisibility of assets. 

Following the introduction of CAPM, a number of papers investigated whether the 

model held in practice, i.e. whether the expected market excess return was the sole factor 

                                                 

32 The numbers for borrowing and lending investors were different because the borrowing 

investors were assumed to borrow at the risk-free rate plus a marking of 2 percentage points 

while the lending investors were assumed to lend at the risk-free rate. 
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predicting asset returns. The first tests of the model were performed by Lintner (1965a)33, 

who introduced a two-step procedure for testing the CAPM, which was further refined by 

subsequent studies. The first step uses cross-sectional regression of realised returns on an 

intercept and market returns: 𝑅𝑖,𝑡 = 𝑎𝑖 + 𝑏𝑖𝑅𝑚,𝑡 + 𝑒𝑖,𝑡. At the second step, returns 𝑅𝑖,𝑡 are 

averaged to obtain average asset returns 𝑅̅𝑖, 𝑅̅𝑖 =
1

𝑇
∑𝑡 𝑅𝑖,𝑡, and average returns are regressed 

on betas: 𝑅̅𝑖 = 𝑎1 + 𝑎2𝑏𝑖 + 𝑒𝑖. Taking into account that CAPM is formulated in terms of 

excess returns, the expected values of 𝑎1 and 𝑎2 if CAPM holds are 𝑎1 = 𝑟𝑓, 𝑎2 = 𝑅𝑚 −

𝑟𝑓 . Lintner runs that two-step procedure using 301  stocks and returns for the period 

1954-1963. In order to test if idiosyncratic risk is a priced by investors, at the second step 

Lintner (1965a) includes not only intercept and asset betas, but also the variance of the error 

term from the first-step regressions, 𝑆𝑒𝑖
2 ; if CAPM holds, one expects the variance term to be 

redundant and its coefficient to be insignificant. Lintner (1965a) obtains the following 

estimates:  

 

𝑅̅𝑖 = 0.108 + 0.063𝑏 + 0.237𝑆𝑒𝑖
2

(0.009) (0.035)

𝑡 = 6.9 𝑡 = 7.8

. 

These results provide partial support for CAPM. Indeed, they confirm that beta is a significant 

predictor of average asset returns, and the coefficient is positive, consistent with the theory. 

The slope of the regression equation (0.063) is significantly below the spread between market 

returns and the risk-free rate, which over the examined period is about 0.165. The intercept 

(0.108) is significantly higher than the risk-free rate. Finally, the coefficient of idiosyncratic 

risk turns out positive and statistically significant, contrary to the prediction of CAPM. 

Miller and Scholes (1972) confirm the findings of Lintner (1965a) over an extended 

period. Furthermore, comparing the coefficient of multiple correlation they note that 

idiosyncratic variance alone has higher correlation with average returns compared to beta 

alone, with corresponding coefficients of multiple correlation of 0.28  and 0.19 , 

respectively. When both beta and idiosyncratic variance are used in the second-stage 

regression, the coefficients of the two are positive and significant, and the coefficient of 

multiple correlation stands at 0.33. The estimated model, however, shows the same deficits 

as in Lintner’s study – the value of the intercept is significantly higher than the risk-free rate, 

and the coefficient of beta is significantly below the spread between the market return and the 

risk-free rate:  

                                                 

33 Reported on p. 192-95 in Levy (2012) 
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𝑅̅𝑖 = 0.127 + 0.042𝑏 + 0.310𝑆𝑒𝑖
2

(0.006) (0.026)

𝑡 = 7.40 𝑡 = 11.76

. 

 

More importantly, Miller and Scholes (1972) point out that the specification of the 

second-stage regression requires the use of the true betas but in fact uses the estimates from 

the first-stage regression, and therefore the betas are measured with some error and are in fact 

random. They show that this issue results in downward bias of the coefficient of beta. The 

first tests of CAPM that addresses this error-in-variable problem are performed by Black et al. 

(1972) and Fama and MacBeth (1973). Black et al. (1972) argue that correlations between the 

pricing errors of individual securities prevent the existing methodologies from testing the 

market model. To address these correlations, they propose to pool securities into portfolios of 

similar securities. Then the pricing errors for the individual assets would cancel one another, 

while any non-independence effect would be absorbed into the intercept; furthermore, the 

error in the estimation of betas should also diminish as a result of the aggregation, and the 

standard regression techniques and tests could be employed. In order to test the CAPM one 

needs observations for returns for various values of beta, hence Black et al. (1972) propose to 

form these portfolios based on values of beta, thus ensuring that the variance of beta will be 

the highest possible. They observe that creating portfolios using estimates of beta obtained 

from the tested sample would introduce sample selection bias; indeed, the portfolio containing 

the securities with highest betas would likely also be exposed to the highest positive pricing 

errors; similarly, the portfolio with the lowest betas would also be exposed to the securities 

with the lowest negative pricing errors. Therefore, they propose to use estimated beta from a 

previous time period as an instrument variable to construct portfolios, and then test portfolio 

returns using their subsequent returns, which were not used to estimate portfolio betas. They 

use monthly returns from the five years preceding the examined period to estimate betas that 

are then used for portfolio formation for the following one year. For example, for all securities 

that were traded as of January 1, 1931, and were traded for at least two of the preceding five 

years, they estimate security beta using the available history from January 1926 until 

December 1930. Then they form 10 portfolios based on the deciles of beta, and track the 

monthly returns for each portfolio for each of the next 12 months of 1931. Then the 

procedure is repeated with all securities traded as of January 1, 1932, with new betas 

estimated using data from 1927–1931, and formation of 10 new portfolios. In that way they 

obtain 35 years of monthly returns on ten portfolios from the 1,952 securities available to 
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them. For the second stage – the cross-sectional regression – they average returns over time 

periods and test the model with average returns on averaged betas. 

Black et al. (1972) estimate the coefficients of the market model for each of the 10 

decile portfolios for each of the 35 years, obtaining coefficients separately for each portfolio. 

They find that portfolio average return is indeed commensurate with portfolio beta. While 

most of the intercepts are insignificant, the authors warn that due to non-stationarity of the 

estimated coefficients, as well as some limitations of aggregations, the values of 𝑡-statistics 

might materially understate the significance of the results. Using the data for all portfolios 

they obtain the following pricing relationship:  

 

𝑅̅𝑖 = 0.00359 + 0.01080𝑏

(0.00055) (0.00052)

𝑡 = 6.52 𝑡 = 6.53

. 

The equation shows that market excess return is confirmed as a priced factor. The intercept 

(𝛾0) in the above cross-sectional equation is significantly positive and different from zero, 

which contradicts CAPM. Black et al. (1972) hypothesise that this suggests the existence of a 

second factor. The time series regressions suggest that the intercept from time-series 

regressions decreases with beta, as noted by Black et al. (1972), and these results also hold, 

albeit in a weaker form, for the four sub-periods, except for the sub-period January, 1931 – 

September, 1939, when the relationship is inverted. 

Fama and MacBeth (1973) further refined the method for testing CAPM, and their 

procedure became one of the most widely used methods for testing factor pricing models. The 

first step in their procedure is similar to the method used by Black et al. (1972). Fama and 

MacBeth (1973) firstly use seven years of data to form portfolios. Then for the next five years 

they re-estimate the time series regressions in order to re-evaluate the betas of individual 

securities. Finally, the last four years are used to fit the cross-sectional regressions. The end of 

the period formation and initial estimation windows are then recalculated, so that the next 

testing four-year period follows the preceding one without leaving gaps or intersecting it. In 

the second step they run a cross-sectional regression of returns on intercept, beta, squared 

beta, and idiosyncratic standard deviation (the standard deviation of the error term of the 

time-series regression). The last two terms are intended to test for non-linearity in beta and for 

the significance of idiosyncratic volatility as a pricing factor. Unlike Black et al. (1972), Fama 

and MacBeth (1973) estimate that regression separately for each month rather than averaging 

returns and betas in the testing period:  

 𝑅𝑖,𝑡 = 𝛾0,𝑡 + 𝛾1,𝑡𝛽𝑖,𝑡−1 + 𝛾2,𝑡𝛽𝑖,𝑡−1
2 + 𝛾3,𝑡𝑆𝑖,𝑡−1. 
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The significance of the hypothesised factor loadings (𝛾𝑖, 𝑖 = 1,2,3) is tested using the standard 

𝑡-statistic:  

 𝑡(𝛾̅𝑖) =
𝛾̅̂𝑖

𝑠(𝛾̂𝑖)/√𝑛
, 

where 𝑛 is the number of cross-sectional regressions, 𝑠(𝛾𝑖) is the standard error of the 

regression coefficient, and 𝛾̅𝑖 is the mean value of the respective factors loading, averaged 

across all monthly cross-sectional regressions. Fama and MacBeth (1973) find that the factors 

for idiosyncratic volatility and the non-linearity term are not significantly different from zero. 

On the other hand, as pointed out by Levy (2012), the Fama and MacBeth (1973) 

methodology “employs portfolios rather than individual assets; therefore, it has the advantage 

of minimising the measurement errors in beta and the disadvantage of not testing asset pricing 

of individual assets. Thus, in the case of supporting the CAPM, one cannot generalise it to 

individual risky assets.” (p. 200) 

Roll (1977) questions the previous tests of CAPM pointing out that the market 

portfolio to which CAPM refers is the portfolio of all assets in the economy, including human 

capital, real estate, privately held businesses, overseas assets. Clearly that portfolio is not 

observable by econometricians, and its replacement by equity index introduces an 

error-in-variable problem, which could account for observed anomalies detected by some of 

the empirical tests. Furthermore, within the limited number of assets traded at stock markets 

there is always a mean-variance efficient portfolio, and finding that a portfolio is or is not 

mean-variance efficient has no bearings on the validity of CAPM. 

The recent resurgence of the interest in idiosyncratic risk is triggered by Campbell et 

al. (2000) who decompose individual stock returns into market, industry and idiosyncratic 

components under the assumption of constant betas equal to 1. Using data from the Center 

for Research on Security Prices (the CRSP data set) spanning the period from July 1962 to 

December 1997 they calculate the monthly volatility series constructed from daily data. They 

reject the unit root hypothesis at 5% confidence level for average market, industry, and 

idiosyncratic volatilities. They also find a positive and statistically significant trend in average 

idiosyncratic risk. Similar results are obtained using various frequencies (daily, weekly, 

monthly) and according to the authors are not attributable to outliers. The implications of the 

results of Campbell et al. (2000) are intriguing. They document that idiosyncratic risk 

increased from 65% of total risk to 72% of total risk over the period from 1962 to 1997. This 

increase suggests that correlations between individual assets should be declining, a 

phenomenon also documented by their study, implying increasing benefits from 
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diversification. Furthermore, the authors document cyclicality of all volatility components, 

with market, industry, and idiosyncratic volatilities all increasing during economic downturn. 

Following the publication of Campbell et al. (2000), a number of authors published 

studies concerning idiosyncratic risk, raising the questions whether idiosyncratic risk is 

increasing over time, whether average idiosyncratic risk predicts market return, and whether 

idiosyncratic risk predicts the cross-section of returns, which is the question also pursued by 

this study. 

In an important contribution to the debate Malkiel and Xu (2004) examine if 

idiosyncratic risk is a significant predictor of expected returns. In their study they find that in 

portfolio context (using the Fama–Macbeth methodology), CAPM beta is an important factor 

in explaining cross-sectional differences of returns, but its effect declines over time. They find 

that idiosyncratic risk is significant, irrespective of whether it is measured as volatility of 

residuals from CAPM regressions, or Fama–French three-factor regressions. They 

furthermore report that the size factor is dominated by the idiosyncratic risk as an explanatory 

variable, and while the two of them are significant predictors when used individually, when 

used jointly in multiple regression only the idiosyncratic risk variable remains significant (at 

94% level). Running cross-sectional regressions with individual securities, they again find 

that idiosyncratic volatility is a significant predictor that outweighs the size factor. 

Spiegel and Wang (2005) note that there is a significant negative correlation between 

liquidity and idiosyncratic volatility, and that expected stock returns are positively correlated 

with idiosyncratic risk and negatively correlated with liquidity. They estimate idiosyncratic 

risk using an Exponential Generalised Autoregressive Conditional Heteroscedasticity model 

(EGARCH) with the three Fama–French factors as predictors of excess returns using monthly 

data and employing two types of liquidity measures – “cost based” measures (Gibbs, Gamma, 

Amihud, and Amivest) and “reflective” measures like traded volume or number of investors 

holding a security. They find that when one controls for idiosyncratic risk, only the 

dollar-traded volume has some predictive power over the cross-section of stock returns, while 

idiosyncratic risk is consistently positively correlated to expected stock returns. Their results 

suggest that the impact of a one standard deviation change in idiosyncratic risk is on average 

between 2.5 and 8 times stronger than the impact of a corresponding one standard deviation 

difference in liquidity. 

In an important contribution to the field, Ang et al. (2006) investigate whether 

idiosyncratic volatility explains the cross-section of market returns. They fit the Fama–French 
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three-factor model 34  to the daily excess returns on individual stocks and calculate 

idiosyncratic volatility as standard deviation of the error term over the preceding month. They 

use a ‘1/0/1’ portfolio formation strategy35 in order to examine whether portfolios formed on 

total volatility and idiosyncratic volatility have significantly different yields. They find that 

stocks ranked on idiosyncratic volatility exhibit a consistently negative correlation with 

expected returns after controlling for various factors (size, book-to-market, leverage, liquidity, 

volume, turnover, bid-ask spreads, co-skewness, dispersion of analyst forecasts), across 

sub-samples (NYSE stocks only, NBER recessions and expansions, high and low volatility 

episodes, and sub-periods), and for various ‘L/M/N’ strategies. Their findings are puzzling as 

they contradict both CAPM (idiosyncratic volatility should not be priced at all) and Levy 

(1978) and Merton (1987) (idiosyncratic risk should earn positive risk premium). 

In a follow-up contribution, Ang et al. (2009) provide further evidence from the G7 

countries and other developed markets that the spread between the first and fifth quintiles of 

portfolio sorts based on idiosyncratic volatility is again negative, standing at −1.31 per cent 

per month after controlling for world market, and size and value factors. 

The findings of the two studies of Ang et al. (2006, 2009) caused significant 

controversy and prompted many authors to re-examine their findings. Bali and Cakici (2008) 

investigate how idiosyncratic risk is priced using NYSE/AMEX/NADAQ data over the period 

July 1963 – December 2004 and find that the results of Ang et al. (2006) are not robust with 

respect to weighting scheme, time frequency, portfolio formation, and screening for size, 

price, and liquidity. Using equally-weighted instead of value-weighted portfolio returns, they 

find that the spread between the highest-risk portfolio and the lowest-risk portfolio averaged 

insignificant positive +0.02 percentage points. Similar small positive spread (+0.08) is also 

obtained using reciprocal idiosyncratic volatilities as weights for averaging. Furthermore, they 

point out that the capitalisation of the high-risk and low-risk quintile portfolios used by Ang et 

al. (2006) are quite different: the high-risk portfolio contains 20% of all stocks but accounts 

on average for just 2%  of market capitalisation; in contrast, the low-risk portfolio 

comprising of 20% of the stocks with the lowest idiosyncratic risk accounts for 54% of 

market capitalisation. Using the NYSE quintile breakpoints results in more balanced portfolio 

                                                 

34 The model is briefly discussed in the next chapter. 
35 The ‘L/M/N’ notation means that at moment 𝑡 the idiosyncratic volatilities were estimated 

using ‘L’ months of daily data from month (𝑡 − L − M) to month (𝑡 − M); then at time 𝑡 
portfolios are formed based on the quantiles of the distribution of idiosyncratic volatility, and 

these portfolios were held for ‘N’ months. 
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capitalisations; with those NYSE breakpoints they find that all weighting schemes (value, 

equal, inverse of idiosyncratic risk) yield statistically insignificant spreads between high-risk 

and low-risk portfolios. The spread is also insignificant when the breakpoints are selected 

based on market capitalisations so that each portfolio has approximately equal market value. 

Bali and Cakici (2008) also observe that the results appear sensitive to calculation 

frequencies. For all breakpoints and weighting schemes, they find no significantly positive or 

negative average return spread for the NYSE/AMEX/NASDAQ stocks. Finally, they also 

argue that the results of Ang et al. (2006) are not robust with respect to price, size and 

liquidity factors. In the three sub-samples of large/liquid stocks, large/high priced stocks, 

liquid/high priced stocks they find no evidence for a significant link between idiosyncratic 

volatility and the cross section of expected returns. However, it should be noted that in Bali 

and Cakici (2008) idiosyncratic risk tends to lose its predictive significance when re-assigning 

stocks with high capitalisation, and with presumably higher visibility, to high-volatility 

portfolios. Such re-assignment should reduce the spread of yields between the portfolios, 

consistent with the comparative statics of Merton (1987), and hence make more difficult the 

rejection of the null hypothesis of no difference in smaller samples. 

In an important contribution, Fu (2009) commented that the theoretically correct 

variable to explain expected returns is the expected idiosyncratic risk rather than the past 

idiosyncratic risk. He points out that in his sample the first-order autocorrelation of 

idiosyncratic volatilities is just 0.33 , which according to him renders previous-month 

idiosyncratic volatility an unsatisfactory proxy for current-month idiosyncratic volatility. The 

same conclusion is reached when Fu (2009) tests the series of realised idiosyncratic 

volatilities for unit roots. The null hypothesis of unit root is rejected for 90% of the series in 

his sample36, which implies that previous-month volatility is not an unbiased predictor of 

current-month volatility. In order to overcome the limitations of the approach of Ang et al. 

(2006), he proposes to use the Exponential Generalised Autoregressive Conditional 

Heteroscedasticity (EGARCH) model to forecast next-period expected idiosyncratic volatility. 

He addresses concerns raised by other authors that the pooling of securities in quantile 

                                                 

36 Fu (2009) uses Dickey-Fuller test (see Dickey and Fuller (1979)) with drift using levels 

and logs, i.e.  

 𝐼𝑉𝑂𝐿𝑡+1 − 𝐼𝑉𝑂𝐿𝑡 = 𝛾0 + 𝛾1𝐼𝑉𝑂𝐿𝑡 + 𝜂𝑡 , 
 ln𝐼𝑉𝑂𝐿𝑡+1 − ln𝐼𝑉𝑂𝐿𝑡 = 𝛾0 + 𝛾1ln𝐼𝑉𝑂𝐿𝑡 + 𝜂𝑡 . 
Fu required at least 30 volatilities to perform the test. The null hypothesis that 𝛾1 = 1 was 

rejected at 1% confidence level for 89.97% of the tested securities in levels (𝐼𝑉𝑂𝐿𝑡) and 

for 87.81% of the tested log-volatilities (ln𝐼𝑉𝑂𝐿𝑡). 
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portfolios is one of the reasons of the puzzling results of the studies of Ang et al. (2006, 2009) 

by using Fama–French regressions with individual securities as assets. He finds that 

cross-sectional returns are significantly (in both statistical and economic sense) positively 

correlated with idiosyncratic returns, with stocks with idiosyncratic volatility of one standard 

deviation higher than the average, earning a risk premium of approximately 1 percentage 

point, and a zero-investment portfolio that is long in the 10% of the stocks with the highest 

idiosyncratic volatility and short in the 10% with the lowest idiosyncratic volatility earns on 

average a premium of 1.75  percentage points per month. He argues that reversals of 

idiosyncratic volatilities are a significant contributing factor for the puzzling results obtained 

by Ang et al. (2006). The findings of Fu (2009) are qualitatively similar to the results of Bali 

et al. (2011) who report that once they control for the maximum positive return in the 

previous month, the anomalous regression slopes reported by Ang et al. (2006) are reversed.  

One limitation of the study of Fu (2009) that is identified by Huang, Liu, Rhee and 

Zhang (2012) is the omission of lagged return as an explanatory variable in the cross-sectional 

regression, which could result in omitted-variable bias. Furthermore, the study design did not 

allow for explicit analysis of how idiosyncratic risk premium changes with the profile of 

investors holding the security. In a follow-up study, Fu and Schutte (2010) revisit these 

issues. Idiosyncratic risk is confirmed as a significant factor of the cross-section even in the 

presence of the lagged return. Consistent with the underlying economic theory, the slope for 

idiosyncratic risk in the cross-sectional regressions is found to be higher in samples involving 

securities with higher individual ownership and small size of orders (an indication of 

individual investing). On the other hand, for stocks with significant institutional ownership 

there is no robust link between idiosyncratic risk and returns. 

Brockman et al. (2009) extend the study of Fu (2009) by examining a set of 44 

international markets including 58,000  shares and spanning 27  years. Using Fama–

Macbeth cross-sectional regressions and individual securities as assets, they find that 

idiosyncratic risk (measured in terms of a monthly EGARCH model fitted on the full series 

rather than on expanding windows), correlates positively with expected returns. Furthermore, 

they estimate the link between the idiosyncratic risk premium and various explanatory 

variables like turnover, breadth of analysts’ forecasts, trading costs, errors of earnings 

forecasts. 

The use EGARCH models to predict volatilities in the methodology of Fu (2009) is 

questioned by Guo et al. (2014); they argue that Fu uses month-𝑡 data to estimate the 

parameters of EGARCH. This in their view introduces a look-ahead bias, which may have 
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impact on the observations with higher return (as the likelihood of significant deviation is 

small, it implies material change in the parameters of the EGARCH model). Once this 

look-ahead bias is controlled, Guo et al. (2014) find no significant relation between 

idiosyncratic risk and the cross-section of returns.37 The authors also point out that their 

criticism also extends to the use of EGARCH with full sample. 

Brooks et al. (2011) examine how the benefit of diversification increases with the 

number of securities in an investor’s portfolio. They construct portfolios with a number of 

securities ranging from 15  to 70  with an increment of 5  and run Fama–Macbeth 

cross-sectional regressions (with only beta and idiosyncratic risk as dependent variables). 

They find that idiosyncratic risk is priced in portfolios of up to 50 securities; after that 

threshold idiosyncratic risk becomes insignificant. However, one should note that these 

cross-sectional tests seem to confirm that the idiosyncratic risk premium is concentrated in a 

relatively small number of smaller securities with limited investor base and that construction 

of portfolios with a large number of securities blurs the risk-return relationship along the lines 

suggested by Ang et al. (2010). A better understanding of the implications of 

under-diversification on equilibrium prices might be achievable via simulations. Relative to 

the three-factor model of Fama and French (1993), the study finds that idiosyncratic risk 

pricing is detectable only for portfolios containing less than 20 shares. Overall, these results 

may suggest that using a constant number of portfolios in studies of the cross-section would 

result in an increasing number of assets in each cell and might result in loss of explanatory 

power of some variables over time. 

Eiling (2013) explores one possible explanation for the significance of idiosyncratic 

volatility. She builds on the observation of Roll (1977) that the true market portfolio in 

CAPM includes all available assets, and in particular – human capital. She develops a model 

that suggests that systematic risk related to industry-specific human capital is omitted as a 

source of risk and ends up in the idiosyncratic residuals. She suggests that this mechanism 

might explain the predictive performance of idiosyncratic risk in the cross-section of returns. 

She calculates the monthly human capital returns in terms of per-worker labour income 

growth using two-month averages. She finds that industry-specific human capital explains 

between 10% and 36% of the idiosyncratic risk premium. 

Cao (2010) and Cao and Xu (2010) argue that a distinction should be made between 

                                                 

37 We shall deal with this criticism and how our approach avoids this look-ahead bias in the 

methodology section. 
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long-term and short-term risk. They suggest that it is the long-term idiosyncratic risk that 

actually explains the cross-section of returns. However, the interpretation of their results is 

obscured by the use of a Hodrick–Prescot filter to extract the cyclical component of volatility 

using parameters applicable to quarterly macroeconomic series. Furthermore, the long-term 

volatilities from the Hodrick-Prescot filter are obtained using the full series and are thus 

exposed to look-ahead bias (cf. the critique of Huang et al on the approach of Fu above), with 

different horizons of application of the filter resulting in a different split of the overlapping 

volatilities into long-term and short-term components.38 More importantly, the outcome of 

the application of an HP filter may be very closely related to the residuals from the simple 

OLS regression. Indeed, observe that squared idiosyncratic returns are an estimator of 

idiosyncratic volatility, and therefore the variance of the residuals from the OLS regression 

could be interpreted as a moving average filter of the trailing series of volatilities. In the 

absence of a strong trend in volatilities39, the output of the HP filter would likely be close to 

the moving average, and thus while the arguments of Cao (2010) and Cao and Xu (2010) are 

valuable, their evidence cannot be seen as conclusive.  

A related study by Ruan et al. (2010) explores the idea that the contradictory empirical 

results are due to noise in the estimated volatilities by applying a dual predictor approach to 

estimating the unobservable aggregate idiosyncratic risk from the volatilities of 

equally-weighted and value-weighted portfolios of different sizes. In that setting the authors 

find that aggregate idiosyncratic risk is a significant predictor of market excess returns.40 

Huang, Liu, Rhee and Zhang (2012) base their forecasts on an ARIMA model fitted 

using realised monthly volatilities calculated by the method employed by Ang et al. (2006). 

They test the hypothesis with four estimators of idiosyncratic volatility and find that 

                                                 

38 To clarify this point, consider a security X over the periods 2000-2008 and 2000-2016. If 

we use the HP filter over the longer period (2000-2016), the resulting split of volatilities into 

short-term and long-term components over the sub-period 2000-2008 would be different from 

what would be obtained using data only from the period 2000-2008. Furthermore, the values 

from the sub-period 2009-2016 would have affected the split in the first sub-period, 

2000-2008, potentially introducing look-ahead bias. Even when the method is applied on 

expanding window designs, the current split into long-term trend and noise or cyclical 

component depends on the future. 
39 If there was a significant trend, this would have manifested in a difference in the 

Augmented Dickey Fuller tests with and without trend, but our analysis did not indicate such 

a problem.  
40 Note that this study explores a related but still distinctly different problem from ours, i.e. 

whether aggregate volatility predicts aggregate returns, which was pioneered by Goyal and 

Santa-Clara (2003) 
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introducing the lagged return (𝑅𝑖,𝑡−1) as a control variable, omitted in other studies, renders 

idiosyncratic volatility (lagged or predicted by the ARIMA model) statistically insignificant. 

In contrast, they report a significant positive correlation between the predicted volatility from 

the EGARCH model and the expected return. 

Li et al. (2014) investigate whether there are significant trading gains from holding a 

portfolio that is long in low-risk securities and short in high-risk securities. They find that the 

composition of the high-risk portfolio changes quickly and the associated trading costs, as 

well as the small capitalisation and low liquidity of the high-risk stocks, wipes out most, if not 

all, gains from trading strategies aimed at exploiting the low-volatility anomaly.41 Their 

portfolios are formed based on the estimator of Ang et al. (2006), and the criticism that there 

are significant return reversals of high-volatility stocks cast doubt on the empirical 

significance of their results.  

In a recent contribution, Fan et al. (2015) explore whether idiosyncratic volatilities are 

related to a range of asset pricing anomalies, including asset growth42, book-to-market 

value43, investment-to-assets44, short-term return momentum45, new stock issues46, size47, and 

total accruals effects48. Using five-by-five quintile portfolios constructed on idiosyncratic 

volatility and each of the anomaly dimensions, the study finds a significant link between 

idiosyncratic risk and the analysed stock anomalies, and that the impact of idiosyncratic risk 

on stock anomalies in developed countries is significantly weaker than its impact in 

developing markets. 

                                                 

41 In their view it was the securities with low volatility that earn abnormally low return, hence 

the reference to low-volatility anomaly. 
42 The anomaly concerns the finding that companies experiencing higher asset growth earned 

lower returns; see Cooper et al. (2008) 
43  The book-to-market value anomaly concerns the finding that companies with high 

book/market ratio earn higher returns than companies with low book/market ratio; see Fama 

and French (1992), 1993), 2007) 
44 The anomaly concerns the finding that companies with a high investment-to-assets ratio 

earn lower returns than ones with a low investment-to-asset ratio; see Lyandres et al. (2008) 
45 The anomaly concerns the finding that securities with higher cumulative past returns (e.g. 

over six months) were likely to continue to perform better; see Jegadeesh and Titman (1993) 
46 Concerns the finding that companies with newly issued stocks underperformed otherwise 

comparable securities; see Fama and French (2008) 
47 Concerns the finding that companies with smaller market capitalization earned higher 

returns than those with larger market capitalization; see Fama and French (1992), 1993), 

2007) 
48 Concerns the finding that cash flows and accruals are not fully reflected in prices until they 

impact prices, and thus companies with high total accruals earning lower returns than 

companies with lower total accruals; see Sloan (1996) 
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Table 2: Summary of selected empirical studies of the link between idiosyncratic 

volatility and stock returns 

Study Correlation Comment 

Fama and 

MacBeth 

(1973) 

None  The study introduces the cross-sectional methodology for asset 

pricing tests. Using portfolios as assets, no significant correlation 

between idiosyncratic volatility and expected returns is found  

Malkiel and 

Xu (2004) 

Positive  The authors propose an extension of the Merton model and using 

monthly data on individual US equities and a sample of Japanese 

equities find positive correlation between undiversified 

idiosyncratic risk and expected returns. Idiosyncratic risk is 

reported to be more reliable a predictor than beta or size  

Ang et al. 

(2006, 2009) 

Negative  The study uses portfolios formed on daily idiosyncratic volatility in 

the preceding month. The authors find that for US & G7 countries, 

high-volatility securities have abnormally low expected returns 

compared to low-volatility equities. They report strong 

co-movement of negative returns for high-volatility stocks. 

Fu (2009); Fu 

and Schutte 

(2010) 

Positive  The studies use the EGARCH model to estimate expected returns. 

The papers use the methodology of Fama and French (1992) with 

monthly data and individual securities as assets and find robust 

positive correlation between expected idiosyncratic volatility and 

realised returns. The study of Fu also examines the stationarity of 

the volatility series and finds that the unit root null hypothesis is 

rejected for 90% of all securities. The study attributes the negative 

spread obtained by the studies of Ang et al. (2006) to return 

reversals.  

Spiegel and 

Wang (2005) 

Positive  The paper uses EGARCH model to forecast volatility and 

documents negative correlation between liquidity and idiosyncratic 

volatility. However, the impact of idiosyncratic volatility is 2.5 to 8 

times stronger than the impact of the liquidity characteristic. 
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Study Correlation Comment 

Bali and 

Cakici (2008) 

Mixed  The study finds that data frequency, breakpoints, weighting 

schemes, and data filters all affect the significance and sign of 

correlation and concludes that the evidence is mixed and not 

convincing.  

Cao (2010); 

Cao and Xu 

(2010) 

Positive with 

the long-term 

component. 

The dissertation and the working paper propose that long-term 

volatility as estimated from a digital filter explains the 

cross-section of returns, while the link between short-term 

volatility and returns is negative. The estimated split is, however, 

not forward-looking and is exposed by construction to look-ahead 

bias. 

Li et al. (2014) Economically 

insignificant  

The authors find that the gains obtainable from holding low-risk 

minus high-risk portfolios are small and likely to be wiped out by 

frequent rebalancing and trading costs for small, low-liquidity 

securities.  

Source: the author 

 

2.4. Conclusions 

In this chapter we covered two complementary aspects of our study. Firstly, we 

surveyed the theoretical models concerning our research problem. We found that these fall 

into two related strands: firstly, the Capital Asset Pricing Model (CAPM), which predicted 

that in a frictionless market investors solving the mean-variance portfolio optimisation 

problem would invest in the market portfolio, and that individual equilibrium returns would 

be determined solely by the beta of the asset with the market, and not by idiosyncratic risk, 

which investors can diversify completely. Secondly, when transaction costs, asset 

indivisibility or other frictions prevent investors from completely diversifying away 

idiosyncratic risk, idiosyncratic risk should be priced by the markets and the lower the number 

of assets in investors’ portfolios, the higher the equilibrium return. These models are 

refinements of the CAPM resulting from relaxation of its assumption that markets are 

frictionless.  

The theoretical models alone are unable to resolve the problem whether idiosyncratic 
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risk is priced by markets. There are a couple of reasons for that: firstly, there is a trade-off 

between model tractability and realistic assumptions, e.g. assuming a two-period economy 

with deterministic volatility that is known to all investors; secondly, the premium for 

idiosyncratic risk is a non-linear function of the limits on diversification imposed by market 

frictions; thirdly, idiosyncratic risk is unobservable. Thus, we see that while the theoretical 

models provide a solid framework for analysis of equilibrium prices and returns, the problem 

of the correlation between idiosyncratic risk and returns is ultimately an empirical one.  

The survey of the empirical evidence concerning the predictability of the cross-section 

of stock returns by idiosyncratic risk reveals that although significant contributions have been 

made towards understanding the patterns of market returns. Nonetheless, the existing 

empirical evidence is mixed, with some studies finding no robust correlation between 

idiosyncratic risk and returns, other reporting economically and statistically significant 

positive correlation, yet other studies finding a negative correlation. Therefore, some 

important questions concerning the link between idiosyncratic risk and returns remain 

unanswered. 

The first of these questions is how the various idiosyncratic volatility estimators 

compare to one another. Indeed, few studies employ comparable estimators of idiosyncratic 

volatility, which invites the question how these different measures correlate with each other 

and with the unobservable true volatility. The answer to that question would elucidate 

whether the explanatory power of the different estimators lies in their correlation with the 

expected volatility or with other characteristics of the volatility dynamics. The second 

question is how the recent critiques on previous studies on methodological grounds (e.g. 

omitted-variable and look-ahead biases) impact the findings of (in)significance of 

idiosyncratic volatility in explaining the cross-section of returns.  

In the following chapter we shall formulate our methodology for answering those 

empirical questions and we shall elaborate on how it relates to existing studies.  
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3. Research Methodology and Data Sources 

3.1. Introduction 

“I often say that when you can measure 

what you are speaking about, and express it 

in numbers, you know something about it; 

but when you cannot measure it, when you 

cannot express it in numbers, your 

knowledge is of a meagre and 

unsatisfactory kind; it may be the beginning 

of knowledge, but you have scarcely in 

your thoughts advanced to the state of 

Science, whatever the matter may be.” 

Lord Kelvin, 1883 

 

The preceding chapter suggested that both nil and positive correlation between returns 

and idiosyncratic risk would be compatible with underlying economic models. However, 

empirical evidence thus far did not provide unequivocal guidance on the direction or strength 

of that correlation. We saw that while existing studies employed the same data set (the series 

of the Center for Research in Security Prices, augmented with Compustat data), the studies 

diverged greatly in terms of how to measure idiosyncratic risk and how to test thepropositions 

of the underlying theoretical models. In this chapter we develop the methodological aspects of 

our empirical examination. We start with Section 3.2 that discusses and motivates the choice 

of our research methodology, which can be described as positivist, deductive statistical study. 

In that section we also highlight the strength and sacrifices that this choice imposed upon our 

study. Section 3.3 then discusses the choice of factor model and its estimation, as well as the 

selection of control variables for the cross-sectional regressions. Section 3.4. elaborates on the 

sources of data, as well as the calculation procedures for the calculated covariates. Section 

3.5. outlines the Markov chain methodology for classification of volatility regimes, and 

provides an overview of the volatility episodes in the surveyed period. Section 3.6 concludes 

the chapter. 
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3.2. Methodological notes 

3.2.1. Research philosophy: positivism and its limitations  

The rise of positivism in economic research dates from at least the early 20th century. 

Inspired by the success of natural sciences, positivist ideas became increasingly adopted in 

economics, which eventually lead to the separation of economics from its precursor – the 

political economy. Economic research became increasingly concerned with the search for 

objective laws governing the economy, which were not particular to a given economic or 

political system, but prevailed universally in every economic system, irrespective of space, 

time, and politics.  

Asset pricing theory, as a branch of finance theory, followed a similar pattern of 

development. Ryan et al. (2002) note that most of finance studies adopt a capital market 

perspective, which is reflected in the treatment of transactions and agents and investments and 

investors, while relatively few studies adopted a managerial or intercompany perspective 

(p. 51-52). They highlight three core propositions of finance: firstly, individual economic 

agents are formally rational; secondly, financial markets are perfectly competitive; and 

thirdly, information is freely available to agents. (ibid, p. 51) 

The positivist approach to analysis of the social phenomena, however, is open to 

certain criticisms pointing out that social reality is constructed by humans and cannot be 

modelled with the deterministic certainty characteristic of most of physics. Salmon et al. 

(1999) highlight three alternative approaches to positivism in the context of social research: 

“Contemporary critics of the view that studies of human behavior are or can be scientific fall 

into three categories. The first group, called interpretivists, claim that explanations of human 

behavior are structured entirely differently from explanations of the behavior of physical 

objects since human behavior, they say, consists of actions done for reasons rather than events 

resulting from causes. The second group, called here nomological skeptics, do not deny that 

human behavior is subject to causal laws, but doubt that it will ever be possible to find laws of 

human behavior that are similar in power and scope to those in physical science. The third 

group, called critical theorists, claim that it is inappropriate even to try to explain human 

behavior in terms of the laws of cause and effect because to do so denies the value of human 

autonomy (free will). In addition, they say, any attempt to construct a social science on the 

model of physical sciences promotes unethical manipulation of humans and discourages any 

attempts to improve the conditions of social life.” (p. 407-408) 
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The positivist approach to economics (and finance) is not free of criticisms. For 

example, Caldwell (1980) outlines three criticisms to positivist economics. His first critique 

concerns the confirmability of such propositions. He points out that a rigorous test of a 

positive deductive argument requires clear specification of all assumptions and auxiliary 

hypotheses, but that is difficult to achieve, especially in social sciences, as there might be 

many control variables and assumptions. Secondly, Caldwell (1980) points out the distinction 

between theoretical terms in the positivist axiomatic-deductive models and the real world. 

Theoretical models work with theoretical terms, which may not exist in the real world, or may 

be unobservable. In our case the CAPM and Merton (1987) models work with abstract, 

theoretical concepts like the return-generating process, idiosyncratic risk, conditional 

homogeneous beliefs, two-period economy, or complete markets. Some of these are 

convenient assumptions that allow us to solve the model and produce testable predictions, 

while others are theoretical constructs with no direct match in the real world. Therefore, even 

in the core term of this study – idiosyncratic risk – we need to find a way to operationalize the 

term and find some way to measure it. However, there is no unique or correct way to do that – 

all studies in the field employ equally valid measures of idiosyncratic risk, yet they reach 

starkly different conclusions. This requires understanding how these alternatives relate to one 

another and to the underlying model, in order to interpret the results. Nevertheless, such 

interpretation is necessarily subjective and could be rejected by other researches, leading to 

different conclusions regarding the validity of the underlying positivist model. Finally, 

Caldwell (1980) notes that the role of scientific explanations may not fit nicely into the two 

models – the deductive-nomological or the inductive-probabilistic explanations.49 

We recognise the validity of the criticisms of positivism reviewed by Salmon et al. 

(1999) and Caldwell (1980), and we concur that economic ‘laws’ are qualitatively different 

from those of classical mechanics. Nevertheless, it should also be recognised that a number of 

results in economics can be found to be statistically valid, and although the next state of the 

social system cannot be predicted in the mechanical sense, some states are more likely than 

other. In a context akin to ours – a study of evidence in favour of technical analysis – Aronson 

(2007) points out that scientifically valid predictions should pass the discernable-difference 

test, so that they are either true or false, and the scientist should be able to discern between the 

predicted outcomes. Such a test requires two ingredients: the ability to reproduce objectively 

the assertion and the ability to distinguish between the ex-post events. In particular, theories 

                                                 

49 For a more recent review of the explanatory schemes, see Woodward (2014) 
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that rely on subjective interpretation of information (e.g. stock prices) are not reproducible 

and may be consistent with conflicting outcomes; such theories might be true but would not 

be scientifically testable.  

In some studies such a situation may be difficult to avoid, but in the present study the 

predicted outcomes (prices and returns) are readily observable, which might suggest that 

positivist philosophy might be a more useful context for our exploration. However, adoption 

of the positivist approach would also require that not only the outcome (returns) be objective, 

but also the risks that affect returns. One approach could be interpretivist and seek to elucidate 

how investors perceive risk and how they assess the risk of their holdings. Such assessment is 

likely to be a multicriterial one and could include how prices change in normal conditions 

(e.g. stock volatility), under stress (e.g. tail losses), soft facts about the company and its 

management, market strategy of the management team, transparency and reliability of 

reporting, and many more. Such an approach could uncover how investors assess risk much 

more reliably and realistically than simple standard deviation of returns. On the other hand, it 

would be difficult to extend those findings on the link between risk and returns, because that 

link is a statistical one and its validation would require a large sample of both high-risk and 

low-risk securities.  

Summing up, we recognise that in the present context the positivist analysis has its 

limitations. These relate to its objective to ensure that the uncovered principals are universally 

valid across issuers and in time. Therefore, in our study we aim to ensure maximal size of our 

studies sample. Furthermore, we need to ensure that all our conclusions are reproducible, so 

we cannot rely on soft facts that might have different interpretation by other researchers.  

Despite these limitations, we shall nevertheless employ the positivist approach in order to 

pursue the external validity of our conclusions and to facilitate comparison with the existing 

body of literature surveyed in Chapter 2. This necessitates that we limit the basis of risk 

assessment in this study to objectively reproducible measures of risk that can be estimated for 

significant part of the market, and hence is based only on public-domain information that was 

available to all market participants (e.g. stock prices or publicly available financial reports). 

Moreover, we will focus on single measure of risk – the idiosyncratic volatility - and we shall 

not explore how investors ‘weigh’ the different measures in order to reach their overall risk 

assessment of the available securities.  

 



 

 63 

3.2.2. Deductive and inductive research  

The scientific arguments are broadly classified into two streams, depending on their 

approach: inductive and deductive ones. Inductive reasoning starts with analysis of individual 

instances and seeks to generalise the observations from individual instances into fundamental 

principles or regularities. Deductive reasoning, on the other hand, starts with some 

fundamental law and seeks to operationalise or confirm it for some specific instances.  

Inductive reasoning starts with the observations of the world and notes patterns in it. 

These observations are then combined to build a theory of the explored phenomenon. This 

theory can be confirmed and refined by exploring its implications in other settings and 

examining whether the predicted outcomes are consistent with the actual data.  

Deductive reasoning builds knowledge in the opposite way. It builds a theory of the 

world that produces some falsifiable predictions. Then the researcher performs tests in order 

to test if the general theory can be rejected. An example of that approach could be the 

development of the Expected Utility Theory, which started with a set of axioms concerning 

the behaviour of rational decision-makers under uncertainty, and produced a set of predictions 

that could be tested, as well as deduced implications from those axioms – the possibility to 

represent preferences in terms of utility functions.50  

Both inductive and deductive reasoning have their strengths and weaknesses. The 

principal characteristics of the inductive approach, as summarised by Salmon et al. (1999), are 

that it is ampliative51, but not necessarily truth-preserving52 and erosion-proof53, and its 

arguments come with varying degrees of strength (p. 11). On the other hand, deductive 

reasoning has the advantages of being truth-preserving and erosion-proof, but non-ampliative 

and absolute in the sense that the deduction is either completely valid, or completely invalid.  

Aronson (2007) notes that the most common type of inductive reasoning is induction 

by enumeration, which enumerates the evidence from some set of data and generalises it to 

some principle. For example, we may observe that in a sample of securities, those with higher 

idiosyncratic risk earned on average higher return, and therefore we could conclude that 

securities with higher idiosyncratic risk earn higher returns. Such generalisations should be 

made with care in order to ensure that they are not based on a non-representative sample (e.g. 

                                                 

50 See Chapter 3, pp 57–62 in Ryan et al. (2002) for an exposition of the methodological 

tradition underpinning the modern theories of asset pricing. 
51 i.e., the conclusions of the inductive reasoning go beyond the content of its premises 
52 i.e., correct premises may lead us to wrong conclusions 
53 i.e., new premises may completely undermine a valid inductive conclusion 
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encompassing only periods of economic growth, or one including only large companies). 

Furthermore, the analysis should also take into account other characteristics and 

considerations that may have affected the observations, e.g. liquidity. Aronson (2007) points 

out that the most common error in inductive research is the hasty generalisation due to a small 

sample or low quality of evidence.   

A problem with inductive financial market research is the data mining bias (or data 

snooping). Data mining is the name of a group of techniques that aim to uncover patterns in 

large data sets. Those methods have extensive applications in machine learning and artificial 

intelligence studies. However, such algorithms may also “overfit” the data, e.g. by using a too 

complex neural network; the outcome would be that the in-sample performance could be 

good, but that performance would not be sustained out of sample.  

Due to the standardisation of stock market contracts and the available public 

information on prices, it has grown to be probably the most scrutinised market. Nevertheless, 

complete information is available for only a limited number of years and stocks. As a result, 

Black (1993) warned that the growing research in finance using the common data set (the data 

of the Center for Research in Security Price and the Compustat data on financial ratios) is 

likely to uncover patterns in the data where none exist. The ‘data mining bias’ therefore refers 

to the risk of finding spurious patters in data that do not generalise out of sample. The 

sample-splitting approach used in the field of machine learning could be applied in finance as 

well, in order to mitigate that problem. However, McLean and Pontiff (2016) find that the 

abnormal returns to many of the stock market “anomalies” discovered by academic research 

shrink rapidly after publication, although they do not disappear entirely. This suggests that 

either the anomalies were due to data snooping54, or patterns lose their predictive powers as 

investors attempt to exploit the anomaly.  

The latter explanation of the shrinking of market anomalies after publications is 

particularly important in terms of choosing between inductive and deductive research. If 

investors change their investment behaviour over time, then the results of many techniques 

used in inductive research might not generalise well in time.  

Deductive research starts from a theory explaining some phenomenon and 

operationalises it to specific instances in order to explain a certain phenomenon or validate the 

                                                 

54 Researchers in finance rarely employ splits of the full sample into training, test, and 

validation subsets. Instead, they control for spurious results through robustness check using 

subsamples of the original sample in various dimensions or through reporting data for 

sub-periods.  



 

 65 

theory. Deductive research is less concerned with social context compared to inductive studies 

and does not create new knowledge (non-ampliative), but its results are, in principle, 

erosion-proof and therefore it generalises well. It is the approach that we select for this study, 

which is motivated by the fact that it generalises and it is less exposed to data mining 

problem. Inductive research is more sensitive to social context and thus able to accommodate 

soft facts like attitudes and perceptions, but in view of the evidence of McLean and Pontiff 

(2016) it would be difficult to generalise the findings both in the past and in the future. 

Likewise, the small sizes implied by some research methods (e.g. interviews and 

questionnaires) mean that the conclusions may not generalize over the entire markets over the 

studied decades, and therefore the study would not be able to convincingly resolve the 

puzzling conflicting evidence on the correlation between idiosyncratic risk and returns. On the 

other hand, inductive use of techniques like regressions or neural networks could result in data 

mining, which may uncover patterns in the past, but those patterns could perish in the future, 

as documented by McLean and Pontiff (2016), unless there is some fundamental reason 

underpinning the pattern.  

Another benefit of deductive research in that setting is the ability to make 

generalisations about the future developments on the market. For example, in recent years we 

observe various trends in the market that could affect the magnitude of the risk premium 

accruing to investors. The advances in information technology result in gradual reduction of 

transaction costs, which should encourage broader diversification and hence reduce 

undiversified idiosyncratic risk. On the back of automated trade execution, the recent years 

see increasing use of trading algorithms that shorten investment horizons and could be more 

able to trade on volatility changes. Another recent trend closely intertwined with the former 

two (reduction of trading costs and algorithmic trading) is robo-advising, which could 

increase the share of investment universe followed by smaller investors and promote their 

diversification, thus reducing idiosyncratic risk premium. Thus, the guidance of the 

theoretical model allows not only an exploration of the status quo, but also anticipates how 

technological and institutional advances on the marketplace could impact idiosyncratic risk 

premia. 

We demonstrate the deductive research workflow using the present study as an 

example in Table 3. The table shows the key decisions that need to be made at each phase of 

the research: choosing a theory that could explain the link between idiosyncratic risk and 

returns; formulating the research hypotheses; operationalizing the theory; performing the 

tests; drawing conclusions and refining the theory.  
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Following the context phase, which in our case was concerned mostly with literature 

research and fact-finding, the first important decision in the deductive research workflow was 

choosing a theoretical model. As a baseline case we considered the Capital Asset Pricing 

Model (CAPM), which made a positive prediction of what determines stock returns. The 

CAPM extensions of Levy (1978) and Merton (1987) incorporate the assumption of 

incomplete diversification, while incorporating CAPM as a particular case. Thus, they appear 

as a natural choice for a theoretical model. Nevertheless, it should be recognised that there 

were other possibilities. Thus, Iwasawa and Uchiyama (2013) explore a behavioural finance 

explanation of the volatility anomaly in the Japanese market. Their behavioural exploration is 

based on the noise trader approach to finance in De Long et al. (1990), which proposes that a 

deviation of market prices from fundamental values may persist in markets where there are 

traders who trade without reference to the fundamental value of the traded assets (‘noise 

traders’) and the capacity or willingness of the arbitrageurs to take sufficiently large risky bets 

to close the gap between current price and fundamental value is limited.55 In that setting 

Iwasawa and Uchiyama (2013) note that “[a]pplying this logic to interpret the “volatility 

anomaly,” we can view that investors who like to buy stocks with high beta and/or high 

idiosyncratic volatility, even if they are overvalued, cause overpricing of these stocks on 

average, and low long-run average return of them.” (p. 465) That market prices are more 

volatile than price fundamentals is a known fact, and the noise trader approach could 

accommodate such stylized facts. However, such an explanation is too ad hoc and 

non-specific, in the sense that a hypothetical proposition that investors like big companies or 

ones with stable cash flows and are buying them even when they are overvalued could be 

equally consistent with the noise trader approach. Therefore, we recognise that behavioural 

finance is motivated by actual behaviours and imperfections observed on the markets, 

although it is still not sufficiently mature to match the rigour of the traditional approach. The 

debate between the proponents of the two approaches goes well outside the scope of this 

discussion56 and we are willing to agree that in cases where a theoretical model is not 

                                                 

55 E.g. because trading involves assuming risk and the market price could go against the 

traders, causing significant loss to the arbitrageurs. 
56 The following quote from Subrahmanyam (2007) offers a fair summary of the points of the 

two sides: “Traditional finance academics often offer a few common objections to 

behavioural finance. First, it is often said that theoretical behavioural models are somewhat ad 

hoc and designed to explain specific stylised facts. The response is that behavioural models 

are based on how people actually behave based on extensive experimental evidence, and 

explain evidence better than traditional ones. Another common objection is that the empirical 



 

 67 

consistent with empirical evidence, a new or refined model should be developed. However, 

we also believe that valid scientific models should produce testable non-trivial (non-obvious) 

predictions and in this instance the present author is more convinced by the arguments of 

classical finance. The concept of noise-trading may be consistent with some behaviours 

observed in the markets, but the limits to arbitrage do not seem consistent with the evidence 

of McLean and Pontiff (2016) of a significant decrease of anomalous gains after publication. 

Another relevant prediction could be based on the theory of Barberis and Huang (2008) who 

build on the cumulative prospect theory and argue that in the presence of demand for 

lottery-like stocks (i.e. ones with significant positive skewness that have large growth 

potential) gives rise to the own skewness of the stocks being priced and stocks with high 

positive skew being overpriced. Nevertheless, from the perspective of traditional finance it is 

not immediately clear what is the non-trivial insight from that theory, in the sense that if a 

model assumes preference for a certain type of assets, it will predict that that preference 

would be priced. Therefore, evaluating the arguments of both sides we prefer to base our 

deductive research on classical finance model, while recognising that behavioural models 

could also offer an alternative view on the matter.  

The next step in the deductive workflow was the formulation of a research hypothesis. 

It was treated in the previous chapter and we shall not reproduce it here, but in summary we 

shall only note that since the theoretical model predicts that idiosyncratic risk is priced in the 

presence of under-diversification, this was naturally our principal research hypothesis. Its 

validation and reconciliation with the conflicting evidence of previous studies requires a 

comparison of volatility forecasts in order to find that the inconclusive results are due to 

discrepancies in predictive accuracies, which thus became a secondary hypothesis of this 

study.  

                                                                                                                                                         

work is plagued by data-mining (that is, if researchers set out to find deviations from rational 

pricing by running numerous regressions, ultimately they will be successful). However, much 

empirical work has confirmed the evidence out-of-sample, both in terms of time-periods as 

well as cross-sectionally across different countries. Finally, it is often claimed that 

behavioural finance presents no unified theory unlike expected utility maximisation using 

rational beliefs. This critique may well be true at this point, but traditional risk-based theories 

do not appear to be strongly supported by the data. Thus, it appears that there is a strong case 

to build upon some theories that are consistent with evidence, than theories based on rational 

economics whose empirical support appears quite limited. Indeed, a ‘normative’ theory based 

on rational utility maximizers cannot be construed as a superior alternative to behavioural 

approaches merely because it discusses how people should behave. If people do not behave in 

this way, this approach has limitations in helping us understanding financial phenomena.” 

(p. 13) 



 

 68 

As a next step the tests have to be operationalized. Indeed, the model of Merton (1987) 

assumes a two-period setting with deterministic and known volatilities and homogeneous 

beliefs on the parameters of the model. In this way the model concentrated on predicting 

equilibrium prices (and therefore, in the two-period setting, returns) and abstracted the 

parameters that were easier to estimate like variances. The model also did not make any 

suggestions about what the investment horizon for the decision-makers is. Therefore, the 

operationalization of the theoretical model requires making decisions on how to apply the 

model to the empirical setting. The first choice is the horizon of the tests. The model of 

Merton (1987) is set up as a two-period economy where at time 𝑡 = 0 investors make 

allocation decisions, and at the end of the period, time 𝑡 = 𝑇, investors collect the uncertain 

dividend (positive or negative) on their investments. Thus, the predictions of the model should 

be valid at any frequency – daily, weekly, monthly, quarterly, yearly, or any other frequency. 

In practice daily, weekly and monthly frequencies tend to be the most common ones. Tests 

involving all time frequencies would increase significantly the scope of this research, 

especially given that different frequencies are associated with different amounts of data and 

face different challenges. For example, five years of data at a monthly frequency imply 60 

realisations, which limits the types of models that can be estimated with reasonable accuracy. 

On the other hand, five years of daily data translate into over 1250 realisations, which allows 

estimation of much more complex models. High frequencies (daily and intra-daily), however, 

are exposed to market microstructure effects that may affect tests trying to match daily returns 

to risk. Market microstructure noise refers to short-term deviations between reported prices 

and the actual fundamental or equilibrium prices due to the way stock markets operate, e.g. 

bid-ask spreads, depth of the order book, rounding errors, screen fighting or other 

considerations. Whatever the cause, that noise obscures the ‘true’ market prices and returns; 

for example, a large buy bid may not be executed in one transaction but may take a couple of 

trades with increasing prices, which could result in reporting higher daily return, whereas in 

fact the prices subsequently revert to the equilibrium value. Therefore, the estimation 

methodologies suitable for monthly data may not be well suited for drawing conclusions with 

daily data. In our problem most of the controversial findings are based on tests using monthly 

data, and therefore we decide to concentrate on that frequency as well, and at that frequency 

the support for the prediction of the Merton model is weaker.  

Another decision in the operationalization of the model concerns the selection of 

measures of idiosyncratic risk. The models of Levy (1978) and Merton (1987) associate 

idiosyncratic risk more or less directly with the distribution of the company-specific shocks, 
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and more specifically, with the standard deviation of that distribution. The model of Levy 

(1978) considers investors’ individual portfolio optimisation problems in the mean-variance 

efficient optimisation framework where idiosyncratic risk is naturally associated with the 

standard deviation of idiosyncratic shocks in the linear factor model. In the model of Merton 

(1987) idiosyncratic risk is introduced as a random shock on company cash flows in an 

economy characterised with quadratic utility function, so that again the standard deviation of 

the shock distribution is the natural measure of idiosyncratic risk. Nevertheless, we should 

also recognise that those models are an abstraction, and individual risks may not be linear, 

while utility functions need not be well approximated by quadratic utility function. 

Concerning the first objection we shall note here that in practice exposures to risks are not 

known to investors accurately, but are learned from many factors. This process of learning 

and mixing market data with soft information and individual perceptions to reach an 

assessment of the riskiness of an investment may suggest that qualitative factors may be 

important in that respect, a consideration that we discuss in somewhat greater detail in the 

following subsection.  

Concerning the second objection – that investor utility may not be approximated well 

by quadratic utility, we note that such considerations may give rise to significance of other 

idiosyncratic risk characteristics like skewness, as suggested by Barberis and Huang (2008), 

or tail risk, as reported by Huang, Liu, Rhee and Wu (2012). The options to pursue these 

directions were limited by the choice of the monthly frequency for the tests. We have 

nevertheless attempted to estimate tail risk from the parameters of the distribution of 

idiosyncratic innovations from GARCH models, as well as sample own skewness, 

co-skewness, and co-kurtosis, but we found that in view of the short series these analyses 

were not conclusive and are not reported here. Therefore, we concentrate on idiosyncratic 

volatility (standard deviation) as a principal idiosyncratic risk measure in this study, while 

recognising that other qualitative and quantitative risk characteristics could be added in the 

analysis to improve accuracy.  

We will defer the discussion of the tests employed in this study to the subsequent 

subsection on statistical tests. At this juncture we can only note that the step involved 

selecting methods to compare predictive accuracy from different models, e.g. though 

loss-functions, Mincer and Zarnowitz (1969) regressions, or other tests. Similarly, the choice 

of test of the link between idiosyncratic risk and returns allowed the use of portfolio spreads, 

Fama and MacBeth (1973) regressions, Generalised Least Squares (GLS), or Generalised 

Method of Moments (GMM). We will motivate our choices in the subsection dedicated to that 



 

 70 

topic. 

Finally, in view of the evidence contradicting the theoretical model we were invited to 

either revisit our operationalization of the model, or reject the model altogether. We found 

that the introduction of the mean-reverting level of volatility was in fact a plausible 

rationalisation in the context of dynamic, stationary volatilities and it resulted in overall 

confirmation of the theoretical models.  

Wrapping up the discussion, we find that the research problem can be approached by 

an array of inductive and deductive research strategies, each having its advantages and 

limitations. Our first reason to prefer deductive over inductive research is the material risk of 

data mining, which could result in a discovery of spurious correlations that do not generalise 

outside of our sample. The second driver for our preference for the deductive approach is the 

goal to reach conclusions the generalise outside of the studied sample, e.g. in other time 

periods or other marketplaces, institutional arrangements, market segments, as well as to 

anticipate the effects of market infrastructure changes that could result in lower transaction 

costs (technological advances), shorter planning horizons (e.g. algorithmic trading), or 

improved transparency (e.g. robo-advisors). We see these as attractive aspects of deductive 

research, and therefore we choose for our research a deductive approach, though we do adapt 

our operationalisation of the theoretical models if required by the available evidence. 
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Table 3: Deductive research workflow 

Stages in the 

deduction 

process 

Actions taken Example: application to the present research 

Context Read and consider Review of the factors affecting stock returns 

revealed contradictory evidence, e.g. Ang et al. 

(2006); Bali and Cakici (2008); Fu (2009), as well 

as the evidence of wide under-diversification of 

investor portfolios. 

Theory Select a theory or set 

of theories most 

appropriate to the 

subject under 

investigation. 

Review of the theories purporting to predict the 

phenomenon, e.g. CAPM, the models of Levy 

(1978) and Merton (1987), and select between 

those and alternative explanations, e.g. 

behavioural models. 

Hypothesis Produce a hypothesis 

(a testable proposition 

about the relationship 

between two or more 

concepts). 

We hypothesise that there is sufficient 

under-diversification in the market to produce 

positive correlation between idiosyncratic risk and 

stock returns. We hypothesise that the conflicting 

evidence in previous research is due to 

discrepancies in the operationalization of the tests.  

Operationalize Specify what the 

researcher must do to 

measure a concept. 

The theoretical model is an abstraction (two 

period, homogeneous beliefs) and can be 

employed in various horizons (daily, monthly, 

etc), different measures of idiosyncratic risk (e.g. 

volatilities, tail risk, dispersion of analysts’ 

forecasts, etc). 

Testing by 

corroboration or 

attempted 

falsification 

Compare observable 

data with the theory. If 

corroborated, the 

theory is assumed to 

have been established. 

Test the differences in forecast accuracy through 

Mincer and Zarnowitz (1969) regressions. 

Test the correlation between volatilities and 

returns using different tests (portfolios vs 

individual securities, portfolio spreads vs 

Fama-Macbeth vs Generalized Method of 

Moments). 

Examine 

outcomes 

Accept or reject the 

hypothesis from the 

outcomes. 

Analyse the results from the tests above. 

Modify theory 

(if necessary) 

Modify theory if the 

hypothesis is rejected. 

Adapt the operationalization of the theory, e.g. 

exclude idiosyncratic tail risk as insignificant and 

introduce the mean-reverting level. 

Source: adapted by the author from Table 2.1, p. 17 in Gray (2014) 
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3.2.3. Quantitative and qualitative research 

Research approaches can be broadly classified into quantitative and qualitative, 

depending on the type of interpreted information. Examples of problems of qualitative nature 

are the analysis of meanings expressed in words, images or sounds, analysis of 

non-standardised data requiring classification into categories, or analyses conducted through 

the use of conceptualisation; see Table 13.1, p. 482 in Saunders et al. (2009). Quantitative 

research, on the other hand, applies to cases where meaning is extracted from numerical, 

standardised data and analysis is conducted through the use of diagrams and statistical 

methods.  

It is difficult to give a precise definition of what qualitative research means because 

the scope of research approaches is quite wide. Instead, Yin (2011) identifies five key traits of 

qualitative research:  

“1. Studying the meaning of people’s lives, under real-world conditions; 

2. Representing the views and perspectives of the people [...] in a study; 

3. Covering the contextual conditions within which people live; 

4. Contributing insights into existing or emerging concepts that may help to explain 

human social behavior; and 

5. Striving to use multiple sources of evidence rather than relying on a single source 

alone.” (p. 7-8) 

Qualitative research methods are often beneficially used in studies that interpret social 

phenomena in order to reveal their causes and effects. Such interpretative studies recognise 

that unlike the natural world, the social world is constructed by humans and has valid 

subjective description. Qualitative studies often use inductive57 reasoning in order to uncover 

the causes and effects of the studied phenomena using tools like case studies, interviews, 

focus group discussions, in-depth interviews, observations and field trips. In contrast, 

quantitative studies interpret numerical, standardised data; quantitative methods are preferred 

for confirmation of positive theories and deductive arguments that extract meaning from 

                                                 

57 The use of the deductive approach in qualitative research is subject to some debate. Some 

authors support its application, but there are also arguments against that. For example, 

Bryman (1988:81) (quoted in Saunders et al. (2009), section 13.4) argues as follows: “The 

prior specification of a theory tends to be disfavoured because of the possibility of introducing 

a premature closure on the issues to be investigated, as well as the possibility of the 

theoretical constructs departing excessively from the views of participants in a social setting.” 
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numbers through measurement, statistical analyses and test of hypotheses.  

An empirical analysis of the link between idiosyncratic risk and returns could be 

tackled with both qualitative and quantitative methods. For example, in-depth interviews with 

decision-makers could be conducted in order to understand how they form their portfolios in 

terms of balancing the various criteria – some of which qualitative – and making allocation 

decisions. Similarly, how decision-makers perceive of risks could also be fruitfully examined 

through such qualitative methods. In business research one often deals with notions like 

corporate image or social responsibility, which may not have a standardised quantitative 

measurement. Even if those concepts could be quantified, it is often impossible to collect such 

data in order to perform a quantitative confirmation of the developed theory, which could 

limit the generality of the developed model and its confirmability.  

Another difficulty in implementing qualitative research in the field of asset pricing is 

the large number of biases found in investors. This problem is not unique to finance, but 

nevertheless seems more acute in the field of asset pricing, possibly because the financial 

impact of decisions is easier to quantify ex post and asset managers need to make routinely 

predictive decisions in a random environment, which incites the activation of psychological 

defence mechanisms to handle disappointments. Therefore, while overconfidence may be a 

common trait in humans, it is likely to be more pronounced in the financial decision-making 

process. For example, Aronson (2007), Chapter 2, considers eleven psychological biases and 

mechanisms that give investors illusory confidence over the validity of their statements: (i) 

overconfidence, optimism bias; (ii) self-attribution bias; (iii) illusion of control; (iv) 

knowledge illusion; (v) biased second-hand knowledge; (vi) representativeness heuristic bias; 

(vii) sample size neglect; (viii) illusory trends and patterns; (ix) hindsight bias; (x) 

confirmation bias; (xii) illusory correlation. Other classifications also exist, and their findings 

are similar. Such behavioural biases are also recognised by industry practitioners and 

associations. For example, Pompian (2016) recognises a total of 20 behavioural biases 

affecting investors, grouped into behavioural persistence, information processing, and 

emotional biases. The presence of significant behavioural biases in investors would make very 

difficult the separation of actual behaviours from biased rationalisations, and would be a 

formidable obstacle in generalising text-based qualitative information into a test of an asset 

pricing relation.  

In view of the interpretative difficulties of verbal information and limitations on result 

generalisation, we opt not to pursue a grounded theory study where methods like depth 

interviews are employed to collect data on how investors assess stock risk and whether and 
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how they incorporate idiosyncratic risk into their decision-making process, and the collected 

information is then generalised into a theory of the link between idiosyncratic risk and 

investment allocation. In the data collection step, the interviewees may tend to demonstrate 

overconfidence and may produce misleading results. In the theory-development step, we 

should recognise that the stock market needs to clear so that the prevailing prices should 

equate supply and demand, so that our theory would need to take into account how aggregate 

demand for all assets is affected by the developed model.58 Furthermore, a small number of 

interviewees would limit the ability to generalise the results to the whole market and sample 

period, and could undermine the goal of this research to uncover the causes for the mixed 

evidence on the correlation between idiosyncratic risk and returns.  

Returns and portfolio allocations are essentially quantified in terms of continuous 

measures, which suggests that quantitative research might be well-suited in explaining the 

phenomena at hand. Moreover, the field of asset pricing has been extensively researched in 

the past sixty years, which, combined with the extensive availability of data on stock returns, 

could allow conducting tests of existing theories on the entire population, rather than just on a 

small sample. This is an important consideration because those theories predict a stochastic 

causal relation between risk taken and return earned. The probabilistic nature of the causality 

suggests that there is substantial probability that a flawless decision-making process could 

nevertheless result in loss-making investments purely by chance, and therefore general 

conclusions about the link between idiosyncratic risk and returns require confirmation in a 

large sample.  

Overall, in this study we choose to use quantitative methods. Our first argument for 

that is that the predicted phenomenon (market returns) is inherently quantitative in nature and 

can be evaluated with high precision. Secondly, we are concerned about the reliability of 

many qualitative methods in view the evidence of a number of psychological biases of 

investors, documented in existing research. A decision to choose quantitative over qualitative 

research approach, however, comes at the cost of loss of detail. Considerations about the 

specific decision-making process and multiplicity of investor objectives that could be 

uncovered or examined through qualitative research are sacrificed. We recognise those 

                                                 

58 If investors chose to reduce their investment in, say, stock A, they still need to invest the 

remaining amount into other stocks, say stock B, and the risk-free asset. This illustrates a core 

proposition of general equilibrium models where changes in the demand for one asset (stock 

A) impacts all the prices of all other assets (stock B and the risk-free rate, in this simple 

example).  
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limitations of our research design, but having in mind our objective to revisit the empirical 

support of existing theories and reconcile the conflicting evidence in previous research, we 

have opt for the use of quantitative research design.  

 

3.2.4. Statistical methods 

In the last subsection we reasoned that quantitative methods are better suited to the 

intended deductive approach in a manner that could allow reaching general conclusions about 

the validity of the theoretical model. There is an array of methods that can be used in 

quantitative research, and in this section we shall motivate the use of the quantitative methods 

employed in our study.  

There are various classifications of quantitative methods, e.g. descriptive, exploratory, 

experimental, or statistical. Descriptive research aims to identify the characteristics of the 

explored phenomenon. For example, it could employ surveys and questionnaires to gather 

information about how investors assess the risk of their holdings and make allocation 

decisions. A study of this type could mix both quantitative and qualitative information in 

order to answer such a question. Information on risk assessment methodologies and the 

incorporation of idiosyncratic risk into portfolio allocation decisions could be collected 

through questionnaires. That method also has the advantage that the questionnaire could be 

structured to collect both qualitative information (e.g. through open questions) and 

quantitative data. However, the method is exposed to problems similar to those of depth 

interviews and qualitative research: the presence of behavioural biases would suggest the use 

of long questionnaires that could detect inconsistencies and behavioural biases, which would 

limit the response rate and representativeness of results. Furthermore, in view of the evidence 

of changing investment patterns presented by McLean and Pontiff (2016) it would be difficult 

to generalise the results of that study to explain patterns in the past. Finally, it would be 

difficult to reconcile the conflicting evidence from previous studies in that approach, 

inasmuch as their differences are only indirectly related to information that could be gathered 

in such a manner, e.g. number of assets in portfolios and attitudes towards portfolio 

diversification. The dependent characteristic that needs explanation is return, and descriptive 

methods would not be able to estimate reliably what premia investors require for assuming 

different exposures to idiosyncratic risk. 

Exploratory research could also be employed in a related context to classify 

investments by risk and return. For example, we could collect or estimate various 
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characteristics associated with idiosyncratic risk, e.g. frequency and quality of disclosures, 

variability of cash flows or stock prices, co-movement with market, sector, indebtedness, 

company age (life cycle), or any other characteristic. We can then seek to classify companies 

in various categories, seeking to explore how each category differs from the others in terms of 

characteristics and returns. For example, we could explore whether NYSE-listed companies 

on average earn more than Nasdaq-listed companies. Various methods could be employed in 

such a study, e.g. clustering (for unsupervised grouping of companies into clusters for the 

purposes of exploring how those clusters differ in terms of average returns), neural networks 

(for predicting growing companies from a set of characteristics), analysis of variance 

(ANOVA, for comparison of returns for various categorical dimensions, e.g. sector or market. 

Such an approach could be useful to develop new hypotheses for the factors affecting returns. 

On the other hand, such an approach could be questioned in terms of its external validity on 

the same grounds as data mining that we discussed in the inductive research section. 

Experimental designs offer another possible approach for addressing the research 

question. In the present context a number of experimental settings could be envisaged. For 

example, one can devise various lotteries and offer them to participants in the experiment in 

order to confirm whether choices are consistent with those of the expected utility theory and 

identify behavioural patterns, e.g. preference for positive skewness. Alternatively, one may 

set up a virtual trading platform and explore how participants form their portfolios in a 

controlled setting. Yet another possibility could be to perform simulations that re-create the 

theoretical setting of the different models and explore how premia change with a number of 

securities in individual portfolios, with the relaxation of some of the assumptions, with 

inclusion of parameter uncertainty (e.g. via Bayesian learning), etc. For example, Allais 

(1953) demonstrates in experimental setting a violation of the independence axiom.59 Smith 

                                                 

59 The Allais (1953) paradox is a well-documented violation of the independence axiom. In 

his experiment individuals are asked to select between two pairs of lotteries. The first lottery 

𝑣1  promises a certain payoff of 100 million francs, whereas the alternative lottery 𝑣2 offers 

payoffs of 500mn, 100mn and 0 with respective probabilities 0.1, 0.89, and 0.01. He finds that 

most people prefer 𝑣1 over 𝑣2, 𝑣1 ≽ 𝑣2. The other pair of lotteries are 𝑢1, paying 100 mn 

and 0 with probabilities 0.11 and 0.89, and 𝑢2, paying 500mn and 0 with probabilities 0.10 

and 0.90. He finds that most people prefer 𝑢2 over 𝑢1, 𝑢1 ≼ 𝑢2. The paradox was that there 

is no utility function 𝑈(∙) that would satisfy these choices.  The first pair implies that 

𝑈(100) > 0.10 𝑈(500) +  0.89 𝑈(100) + 0.01 𝑈(0), so rearranging the terms we obtain 

that 0.11 𝑈(100) > 0.10 𝑈(500) + 0.01 𝑈(0).  On the other hand, the second pair of 

lotteries suggested that 0.11 𝑈(100) + 0.89 𝑈(0) < 0.10 𝑈(500) +  0.90 𝑈(0), and thus 

after a rearrangement yields 0.11 𝑈(100)  <  0.10 𝑈(500) + 0.01 𝑈(0), contradicting the 

inequality from the first pair. This shows that the independence axiom may be violated in 
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et al. (1988) observe trades in a series of simulated asset markets and document the 

emergence of bubbles in most of them, although the probability of bubbles decreases with 

trader experience. Asparouhova et al. (2016) simulate the equilibrium in an extension of the 

Lucas tree economy60 and find that trading substantially improves intertemporal consumption 

smoothing, but prices remain volatile, similarly to real markets. Such studies could provide 

valuable information on the topic, but also come with a set of challenges. Experimental 

designs that elucidate deviations of the axioms of the expected utility theory are questioned as 

concentrating on deviations that emerge in contrived settings or small lotteries and do not 

necessarily translate into similar behaviour in larger, real-life behaviours. At any rate 

deviations from the assumptions of decision-making under uncertainty would have 

implications far beyond the problem at hand, and such deviations would need to be confirmed 

in a range of other settings, that go well outside the scope of this study.  

Similarly, simulations from the model economy would ultimately be determined by 

the quality of the underlying model and its operationalisation, and assessment of their validity 

would necessitate development of new approaches for their validation, e.g. in terms of 

response to changes of volatility in a simulated economy and in actual markets. Such 

exploration could be a useful contribution to experimental designs, but again goes beyond the 

goals of this thesis and its scope.  

In the same vein, the effect of parameter uncertainty could be significantly 

contributing to the actual outcomes, and in fact we find evidence in favour of the hypothesis. 

We find that whereas one-month idiosyncratic volatility forecasts are not useful predictors of 

returns, the mean-reverting ones are. This could be consistent with investor uncertainty over 

future volatility, augmented with longer holding periods or trading costs that make portfolio 

rebalancing costly. This highlights the difficulties in employing simulation designs and 

generalising their results for the whole market: the outcomes would depend on many 

                                                                                                                                                         

practice, and the choice between lotteries could depend on their context; in particular, the first 

pair offers the choice between a certain win and a speculative bet, and most people tend to go 

for the certain sum. The second pair offers the choice between two speculative lotteries and 

most people tend to go for the one with the larger payoff in the unlikely event of winning. 

Following Allais (1953), many more tests were conducted and these confirmed that in various 

combinations of lotterys people tend to make choices that violate the independence axiom, 

like certainty and isolation  effects (Kahneman and Tversky, 1979) and the context (framing) 

effect (Hershey and Schoemaker, 1980). 
60 Lucas (1978) proposes a model of exchange economy populated by an infinite number of 

identical individuals, each of which is endowed with a never-perishing tree that yields a 

random crop of apples (dividends) each year. In that setting he demonstrates that the price of 

the trees equals the present value of future crops discounted with a stochastic discount factor.  
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assumptions that are incorporated in the simulation – e.g. holding period, transaction costs, 

parameter learning – and the external validity of the results is therefore difficult to ascertain.  

In this study we employ statistical methods in order to address the research questions 

at hand. Such methods can be used with any type of numerical data, but are particularly well 

suited for studies that investigate continuous data in terms of correlation and stochastic 

(probabilistic) causation. Returns are in practice a continuous random variable, therefore such 

methods allow the estimation of expected mean returns or return quantiles conditional on a set 

of categorical, ordinal, or numerical variables. This could allow the estimation of spreads in 

returns between different clusters of companies in a manner that recognises the correlation of 

the explanatory factors and estimates the contribution of each independent variable on the 

conditional return moments and quantiles. For example, idiosyncratic risk could be associated 

with higher beta, lower liquidity, younger company age, smaller size, or smaller book value of 

equity. Some of the simple descriptive or exploratory methods do not allow control for such a 

correlation and consequently it is difficult to attribute observed differences in returns to each 

of the correlated factors. Other methods (e.g. neural networks or some non-parametric 

methods) may be better suited to handle non-linear dependencies,61 but the cost is obscuring 

the contribution of each independent variable on stock returns, making the model behave like 

a “black box”. Instead, we choose to conduct our analyses using linear regression models, 

where dependent variables are hypothesised to be linear functions of a set of explanatory 

variables. That approach offers transparent interpretation of regression parameters and 

directions of co-movement, and still could accommodate complicated models, including 

polynomial ones. 

Therefore, in our study we chose to use regression models to infer the relationship 

between returns and risk characteristics like beta, size, liquidity, and idiosyncratic risk. The 

choice is closely related with the choice of deductive approach, and in particular our concerns 

about external validity, generalizability and truth-preservation. In this way we can expect that 

our conclusions will be stable in time, markets, institutional settings, market infrastructures, 

and our conclusions would not be overturned or be significantly amended from new evidence. 

Similarly, our objective to prevent data mining and model overfitting compelled us to use 

regression analysis instead of non-linear or non-parametric models.  

 

                                                 

61 The correlation is essentially a measure of linear dependence. It is possible for two 

variables to be dependent in a non-linear fashion, and yet their correlation could be zero.  
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3.2.5. Regression models  

3.2.5.1. Correlation and causation 

The use of statistical models requires a set of explanatory variables (categorical, 

ordinal, or numerical) that are hypothesised to be affecting the conditional distribution of the 

dependent variable. The concerns about external validity and how well the results generalise 

out of our sample require the use of as large a sample as possible. This consideration forced 

us to leave out characteristics, which could predict the risk profile of the company, but were 

not publicly available or were available for only a fraction of all companies or subsets of 

years. Therefore, we had to give up on use of some measures of idiosyncratic risk and make 

do with what could be readily obtained for a sufficient number of companies. For example, 

the variability of net income or sales could be a better proxy of idiosyncratic risk that is not 

affected by “noise trading”, but due to the absence of such information for a representative 

sample of companies (especially for the smaller ones), we could not implement such an 

approach. Similar considerations do not allow the use of option-implied volatilities, because 

these are available only for recent years and for parts of the market (e.g. larger companies) 

that may not be representative for the entire cross-section. Similarly, availability of 

information on individual transactions could provide better measure of breadth of the investor 

base, and hence better measure of undiversified idiosyncratic risk, but such information was 

not available to us. Information on other characteristics that could affect the conditional mean 

returns like investor profile (e.g., the share of institutional ownership) could be useful in 

clarifying whether those investors were likely holding undiversified portfolios and would be 

seeking a risk premium for idiosyncratic risk, but again such information was not available.  

Therefore, the operationalisation of the theoretical model for statistical testing requires 

the estimation of risk characteristics using mostly publicly available data: stock prices, 

capitalisation, book value of equity, traded volume. Other characteristics had to be estimated 

from this limited set of data, which is clearly one of the limitations of the approach. 

Idiosyncratic risk is estimated from the limited available information on the total stock returns 

(daily and monthly) and the available information of market excess returns, the Fama–French 

factors, and, in some cases, market momentum. Thus, idiosyncratic risk is reduced to just the 

changes of prices that were not attributable to some market trend (market return, Fama–

French factors, or momentum). This definition of idiosyncratic risk is much narrower that 

what could be considered in other designs, but has the advantage that it can be estimated for 

almost all securities and thus enhances the external validity (generalisability) of our results.  
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Statistical analyses can be performed in terms of correlation, but our context requires 

more – establishing the causation from risk to returns. For example, we can note that if some 

characteristic (e.g., size) is correlated with higher average return, this does no imply that 

necessarily size is a characteristic that is valued by investors. Instead, it might be the case that 

smaller companies have less mature business models and diversified cash flows, which makes 

them more vulnerable to economic shocks. In that case, the correlation between size and 

returns would not imply that size is ‘causing’ higher returns, only that they are correlated. In 

general, causality is a concept that is difficult to implement in statistical studies. Probably the 

most popular statistical test of causation is the Granger (1969) causality test. In his approach, 

one time series (𝑋𝑡) Granger-causes another one (𝑌𝑡), if past history of the first series (𝑋𝑖, 𝑖 =

0… (𝑡 − 1)) together with the past series of the predicted series itself (𝑌𝑖 , 𝑖 = 0… (𝑡 − 1)) 

predicts 𝑌𝑡. Nevertheless, it does not follow that 𝑋𝑡 truly causes 𝑌𝑡.
62 Therefore, our design 

has certain limitations in establishing causality per se, without the context provided by the 

theoretical models, from which the relationship is developed – Levy (1978) and Merton 

(1987). To address these concerns, as well as look-ahead bias, we use not the realised returns 

in a given month, but the expected values based on the past history. Nevertheless, it does not 

follow that those statistical analyses necessarily establish causality between idiosyncratic risk 

and volatilities. Instead, they establish correlation in a setting that aims to reduce look-ahead 

bias. The causation is only inferred from the fact that this correlation pattern is predicted by 

the theoretical model; it is still possible, however, that idiosyncratic volatilities serve as a 

proxy for company exposure to some other risk factor, and the underlying model is overall not 

valid. We aim to mitigate those concerns by implementing a host of robustness checks, but the 

risk cannot be eliminated altogether.  

 

3.2.5.2. Factor model estimation 

The choice of specific statistical methods depends on a number of factors, like the 

types of variables available, the types of hypotheses tested, assumptions and powers of the 

various tests. Most of the explanatory variables available to us in this study (either retrieved 

from external data sources, or calculated by us) were continuous, which allowed significant 

flexibility in selecting statistical methods. In this phase we have to make three principal 

choices. The first one is the selection of methods to estimate idiosyncratic returns (also 

interchangeably referred to as shocks or innovations) and methods to forecast the expected 

                                                 

62 “Post hoc ergo propter hoc” fallacy (Lat. “after this, therefore because of this”). 
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idiosyncratic risk. The second one is selecting methods to compare the predictive accuracy of 

the alternative forecasts. The last one is a method to measure the impact of idiosyncratic 

volatilities on realised excess returns. In this subsection we shall explain the principal options 

available to us, while the details of their implementation are provided in the remaining 

sections of this chapter.  

The first part of the decision concerned what sort of model could be used to forecast 

returns. Idiosyncratic risk is an abstract concept that is difficult to define. In the model of 

Merton (1987) it is simply a random deviation of end-of-period production of each firm that is 

uncorrelated with the rest of the investees. In our setting this concept requires an 

operationalisation, where idiosyncratic risk is the difference between the observed actual 

return on the stocks and the expected return on the stock, estimated from some model, the 

parameters of which are estimated from past periods. It is possible to select some non-linear 

model for stock selection, e.g. Levin (1995), and use its forecasts to separate actual returns 

into expected and unexpected components, we acknowledged that such an approach is rarely 

pursued in literature and would obscure comparability of our results with other research in the 

field. At any rate it should be emphasized that linear asset pricing models can accommodate 

many non-linear situations63 and that assumption should not be considered a substantial 

limitation.  

Ross (1976) proposes an alternative to the CAPM reviewed previously – the Arbitrage 

Pricing Theory (APT). He assumes that 𝑁 factors drive returns in linear fashion, i.e.  

 𝑟𝑖,𝑡 = 𝛼 + ∑
𝑁
𝑛=1 𝛽𝑛,𝑖𝑓𝑛,𝑡 + 𝜀𝑖,𝑡, 

where 𝜀𝑖,𝑡 are mutually uncorrelated and have expected value zero and finite variance, i.e. 

𝔼𝜀𝑖,𝑡 = 0, 𝔼 < ∞, 𝔼𝜀𝑖,𝑡𝜀𝑗,𝑡 = 0. Furthermore, it is assumed that the expected values of 

factors equals zero (𝔼𝑓𝑛,𝑡 = 0), so that prices are affected only by the unexpected factor 

realisations. Notably, the model does not assume that the factors are mutually independent 

(𝔼𝑓𝑛,𝑡𝑓𝑚,𝑡 need not be zero), and even does not require factors to be independent with the 

errors (𝔼𝑓𝑛,𝑡𝜀𝑖,𝑡 need not be zero) or have finite variances. Ross argues that in an efficient 

market one should not be able to construct an arbitrage zero-investment portfolio.64 In 

                                                 

63 E.g. it is allowed that one factor is a square of another one or product of two others. 
64 To prove the existence of an arbitrage-free equilibrium he assumes the following: 1) There 

is at least one asset with bounded losses; 2) There exists at least one investor who is uniformly 

less risk-averse than some constant relative risk-averse agents, and who believes that the 

assets are generated by the linear model stated above, and who is not asymptotically 

negligible; 3) All agents are risk-averse and hold the same expectations; 4) the aggregate 
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empirical applications the factor model takes the form  

 𝐸𝑖 − 𝜌 ≈ 𝛽1,𝑖𝛾1 + 𝛽2,𝑖𝛾2 +⋯+ 𝛽𝑁,𝑖𝛾𝑁, 

where 𝛾𝑗 is the risk premium on a portfolio that has unit exposure only to factor 𝑗; if 𝐸𝑗 is 

the expected return on a portfolio with unit loading only to factor 𝑗 and zero loadings on all 

other factors 𝑓𝑖,𝑖≠𝑗, then 𝛾𝑗 = 𝐸𝑗 − 𝜌. 

The APT does not stipulate a list of factors; it is therefore useful to identify the criteria 

that should be met by candidate factors. The structure of the model presents immediately two 

eligibility criteria: firstly, the assumption of zero expected factor value implies that factors 

affect prices through their unexpected realisations. Secondly, the factor should be pervasive in 

the sense of affecting sufficiently many securities through the linear relationship above, or 

else randomly constructed portfolios would tend to diversify it away, producing portfolios 

with no exposure to that factor. Many macroeconomic factors appear suitable candidates, and 

Chen et al. (1986) investigate how various macroeconomic factors could explain asset returns. 

They conclude that the following factors significantly affect stock returns: industrial 

production (led by one period to make it contemporaneous with asset prices); changes in risk 

premium (the spread between the yield on portfolio of ‘Baa’ and lower grade bonds, and 

long-term government bonds); twists of the yield curve (the spread between a short and a long 

point of government yield curve); unanticipated inflation (the difference between actual 

inflation and expected inflation estimated by macro-econometric model); changes in expected 

inflation; the last two inflation-related factors were reported to be more significant in more 

turbulent periods characterised with volatile inflation. 

Macroeconomic models are useful for modelling macroeconomic influences on 

portfolio values, and various hybrid models (combining macroeconomic series with other 

data) are implemented in the financial industry. For example, Northfield (2013) combines the 

macroeconomic factors of Chen et al. (1986) with other series like oil prices, housing starts, 

exchange rates, and five statistical factors in order to model portfolio macroeconomic risks. 

Macroeconomic factor models are occasionally criticised for poor explanatory 

power65. Furthermore, the classic model of Chen et al. (1986) highlights the implementation 

difficulties. Thus, while stock prices are available at intra-day frequencies, many economic 

series (e.g. industrial production, inflation, gross national product) are available only at 

                                                                                                                                                         

demand for all assets is non-negative; 5) expectations are uniformly bounded. Under those 

assumptions he proves that there exist 𝜌 and 𝛽𝑖 such that ∑∞𝑖=1 (𝐸𝑖 − 𝜌 − 𝛽𝑖𝛾) <∞, with 

𝜌 equal to the risk-free rate, if a risk-free asset exists in the market. 
65 See, for example, Connor (1995) 
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monthly or even quarterly frequencies. The flow series may entail a lag (hence industrial 

production needs to lead one period or more); moreover, information when the values of the 

macroeconomic indicators are released to the public and incorporated in asset prices as well 

as any subsequent revisions of the indicator are usually hard to obtain. What matters for APT 

are unanticipated factor realisations, hence one needs to implement a model of the rationally 

expected values (like the expected inflation, in order to derive surprise inflation), which 

inherently entails model risk. Furthermore, part of the information of the economic 

environment would be acquired by investors either by direct observation, or through other 

proxy variables, so it is unclear what part of the effect of the economic datum should be 

realised during the period of the slowdown and what part should be realised upon the release 

of the economic data. Finally, the impact of macroeconomic releases need not be flat, and 

large surprises may trigger more than proportional response relative to small surprises. 

Because of these limitations, arbitrage models with trading factors are often preferred over 

macroeconomic models. 

Therefore, in our study we employ a linear factor model with traded factors in order to 

separate the observed returns into systematic and idiosyncratic components. In different 

contexts we use a varying number of factors, depending on the context. The exact list of 

factors used is discussed in the next section.  

Estimation of the parameters of the linear factor models is deceptively straightforward. 

The common practice in the literature is to use the Ordinary Least Squares (‘OLS’) estimator 

that minimises the sum of the squared errors. The OLS estimator has the desired property of 

being the best linear unbiased estimator of model parameters, however, since the objective 

norm is squared error, differences between the observed and fitted values are squared and thus 

outliers could significantly affect the estimates. Another possible approach is to employ a 

robust estimator of regression coefficients. Such estimators are, for example, the Least 

Absolute Deviation (‘LAD’)66, the M-estimator67, or the Trimmed Regression Quantile68, to 

                                                 

66 The LAD estimator minimises the sum of the absolute values of the errors, i.e. solves 

min𝛽𝑖 ∑𝑡 |𝜀𝑖𝑡| 
67 The M-estimators minimise the sum of errors scaled by some factor 𝜎 and weighted 

through some function 𝜌, i.e. they solve min𝛽𝑖 ∑𝑡 𝜌(𝜀𝑖𝑡/𝜎). There are many choices for 𝜌, 

for example the function for the Huber’s M-estimator is  

 𝜌(𝑥) = {

1

2
𝑥2 if|x| < 𝑐

𝑐|𝑥| −
1

2
𝑐2 if|x| ≥ c

. 
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name just a few of the options.69 In practice, however, non-OLS estimators for factor models 

of asset returns are exceptions rather than the rule, possibly because the asymptotic theory for 

these estimators is less developed compared to estimators like OLS and Maximum 

Likelihood, which hinders hypothesis testing. Concerning unbiasedness of the LAD estimator, 

Gray et al. (2013) observe that LAD beta estimates are systematically below the 

corresponding OLS estimates. They estimate the CAPM regression for all securities in the 

Australian market from January 1976 to May 2012 using both the OLS and the LAD 

estimator. They observe that if an estimator of beta is unbiased, then the value-weighted 

average of individual betas with respect to a specially constructed index with constant weights 

should equal 1 when average is taken for all constituents of the index. They find that while 

that was indeed the case for the OLS estimator, the LAD averages below 1, thus suggesting 

possible downward bias of the LAD estimator. 

Having regard for concerns that robust estimators might be biased and in order to 

facilitate comparisons with the existing literature, we opted for using the OLS estimator to 

calculate the parameters of the linear factor models. Nevertheless, we believe that the topic of 

the estimation method could be a worthwhile direction for future research. We note that in 

some cases the betas estimated through OLS are well outside the corridor 0 to 3, which in 

itself is already quite wide. This indicates that in some cases there may exist larger 

idiosyncratic shocks in one single month, which then result in the factor model attempting to 

reconcile the factor loadings with the extreme return. In the case of simple OLS idiosyncratic 

volatility70, that could result in OLS volatility being lower than the volatility when a robust 

model was being used.  

Wrapping up the discussion in this subsection, we choose to use traded factor models 

for asset returns in order to split returns into systematic and idiosyncratic components. The 

models shall be fitted using Ordinary Least Squares (OLS) estimator.  

 

3.2.5.3. Selection of volatility models 

The estimation of volatilities was a principal methodological decision in our research. 

                                                                                                                                                         

68 The TRQ estimator is a weighted average of different beta quantiles. In general, 𝛽𝛼 =
1

1−2𝛼
∫
1−𝛼

𝛼
𝛽(θ)d𝜃. In practice this works by fitting some finite number of quantile regressions 

and then calculating a weighted average of the estimates.  
69 See Chan and Lakonishok (1992) 
70 We define the idiosyncratic volatility measures later in the chapter. In this case the OLS 

volatility is simply the standard deviation of the error term from the fitted factor model.  
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We hypothesise that differences in precision across alternative forecasts of volatilities result 

in the conflicting findings in the literature. Therefore, we aim to use forecasts that meet three 

criteria. Firstly, we want our forecasts to be consistent with existing research, so that our 

study could reconcile the conflicting evidence, rather than contribute to the confusion by 

offering yet another estimator. Secondly, we aim our estimators to be transparent inasmuch as 

possible, so that the obtained results could be intuitively interpreted. We want to avoid a 

situation where the models operate as black boxes and the results can be interpreted 

principally in terms of statistical significance. Finally, we want our estimators to be 

sufficiently representative for the available forecasting methods, rather than compare variants 

of the same or very similar methods. 

The simplest estimator of idiosyncratic risk variance is the OLS estimator, which is 

simply the standard deviation of the residuals from some factor model:  

 𝜎𝑜𝑙𝑠,𝑡
2 = ∑𝑇𝑘=1

(𝜀𝑖,𝑡−𝑘)
2

𝑇−𝑑𝑓
,  

where 𝜀𝑖,𝑡−𝑘 denotes the idiosyncratic residual from the factor model for stock 𝑖 in month 

(𝑡 − 𝑘) obtained from a regression estimated over the period (𝑡 − T) until (𝑡 − 1). 𝑇 is 

the actual number of months for which information is available; thus 𝑇 is between 60 and 

30 (the minimum number of months required for estimation); 𝑑𝑓 was the residual degrees 

of freedom for the estimated model and equals the number of estimated parameters. The 

underlying assumption is that OLS variances do not change much from period to period as the 

estimates of month 𝑡 volatility differs from month (𝑡 + 1) by just one return as one return 

exiting the rolling window and being replaced by a new one as the window rolls forward. 

Thus, the realisation at period 𝑡 does not affect the estimated expected volatility, i.e. the 

expected value is that as at the end of period 𝑡 − 1, or equivalently, at the start of period 𝑡. 

The benefit of that approach is the simplicity of the estimator and the filtering of random 

idiosyncratic innovations. On the other hand, in cases where idiosyncratic volatility 

permanently changed to a different value, that change would filter quite slowly in the 

volatility forecast.  

Variances may change significantly from month to month. In that respect, it is useful 

to note another interpretation of the OLS variances and their relation to idiosyncratic returns. 

Observe that squared idiosyncratic return is in fact an estimator of the unobserved 

idiosyncratic variance.71 From that perspective, if idiosyncratic volatility consists of some 

                                                 

71 By construction (as residuals from OLS regression), the idiosyncratic residuals have mean 
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long-term, constant volatility and random deviations from the long-term volatility, then the 

moving average of the squared monthly idiosyncratic returns could be interpreted as a filter 

that removes the random deviations and extracts the long-term level. 

However, the moving average filter also has a drawback – if idiosyncratic volatility is 

permanently increased at some point (a step increase), it would take five years (60 months) 

for that increase to filter entirely through the moving average filter. Therefore, a more 

sophisticated method for estimating idiosyncratic volatility could yield better results. 

The OLS estimator was used in the early studies (in the 1960s and 1970s). Since then 

it has fallen out of favour as too unresponsive to changes. Nevertheless, we shall use it as one 

of our estimators for two reasons. Firstly, it serves as a benchmark that could provide 

perspective on how other models perform and give some intuitive feeling of how rigid the 

forecasts produced by alternative methodologies are. Secondly, in the foregoing paragraphs 

we interpreted the estimator as a filter, and in that sense it can be viewed as similar to other 

methods that can operate as filter as well. For example, the “exponentially weighted moving 

average”, which is a type of Integrated GARCH(1,1) and was used in the RiskMetrics 

methodology of J.P.Morgan/Reuters (1996), can be seen as an exponential filter, and thus an 

incremental improvement over the OLS filter. In our case it is useful to have the OLS 

benchmark, because it gives empirical perspective on the performance of GARCH(1,1) 

model. 

The works of Engle (1982) and Bollerslev (1986) brought significant improvement of 

flexibility in terms of modelling of volatility evolution. Engle (1982) introduced the 

Autoregressive Conditional Heteroscedasticity (ARCH) model, and his formulation was 

subsequently generalised by Bollerslev (1986), who formulated the Generalised 

Autoregressive Conditional Heteroscedasticity (GARCH(𝑝, 𝑞) model). The simplest, but also 

remarkably successful version, is the GARCH(1,1) model:  

 𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2 . (4) 

The model always yields positive predicted variance when the three parameters are positive 

(𝜔) or non-negative (𝛼, 𝛽), i.e. 𝜔 > 0, 𝛼, 𝛽 ≥ 0. When 𝛼 + 𝛽 < 1, the model is covariance 

stationary72 and its unconditional73 volatility is 𝜎2 = 𝜔/(1 − 𝛼 − 𝛽). When 𝛼 + 𝛽 = 1, the 

                                                                                                                                                         

zero. Then 𝑉𝑎𝑟(𝜀) = 𝔼(𝜀2) − (𝔼(𝜀))2 = 𝔼(𝜀2).  
72 A real-valued stochastic process {𝑋𝑡} is covariance-stationary if its expectation 𝔼𝑋𝑡 does 

not depend on 𝑡, and its 𝑘-th order autocovariance 𝔼[(𝑋𝑡 − 𝑋̅)(𝑋𝑡+𝑘 − 𝑋̅)] is finite and 

depends only on 𝑘, but not on 𝑡. 
73  The unconditional volatility is simply the variance of the process, 𝑣𝑎𝑟(𝑋𝑡) . The 
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model reduces to the Integrated GARCH(1,1) model of Nelson (1990). The motivation for 

that model is the observation that for financial time series, the sum of the two parameters (𝛼 +

𝛽) is often quite close to 1. The unconditional variance of IGARCH is infinite, and implies a 

random walk of variances (i.e. every shock on volatility has permanent impact and never 

decays). IGARCH has the benefit of being a parsimonious specification and one that ensured 

that the estimated parameters are close to reality – certainly an asset if data is scarce. For this 

reason it is also the model that underlies the volatility modelling (exponentially-weighted 

moving average) of the successful RiskMetrics risk quantification specification of 

J.P.Morgan/Reuters (1996). However, the evidence of Fu (2009) of stationarity of variances 

for about 90% of all series convinces us to abstain from employing IGARCH as the principal 

specification of our study.74 

Since the introduction of the original GARCH(𝑝, 𝑞 ), a number of alternative 

specifications were proposed, although GARCH(1,1) specification proved to be difficult to 

outperform out of the sample for one-step-ahead forecasts, as documented by Hansen and 

Lunde (2005). However, the model that actually gained traction in idiosyncratic risk tests is 

the Exponential GARCH model introduced by Nelson (1991). The model allows an 

asymmetric response to positive and negative innovations. Such asymmetric reactions are 

common in financial time series, hence the preference for that model in recent literature on 

idiosyncratic risk; it is also the forecasting model used in the studies of Fu (2009) and Malkiel 

and Xu (2004). A couple of slightly different specifications for the model exist. Using one of 

the specifications and changing the mean equation with the FFC gives:  

 (𝑟𝑖,𝑡 − 𝑟𝑓,𝑡) = 𝛽0 + 𝛽1(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽2𝑟𝑆𝑀𝐵,𝑡 + 𝛽3𝑟𝐻𝑀𝐿,𝑡 + 𝛽4𝑟𝑀𝑂𝑀,𝑡 + 𝜀𝑖,𝑡, (5) 

 𝜀𝑖,𝑡 = √𝜎𝑖,𝑡
2 𝜈𝑖,𝑡, (6) 

 log(𝜎𝑖,𝑡
2 ) = 𝜔𝑖 + ∑

𝑝
𝑘=1 𝛿𝑘log(𝜎𝑡−𝑘

2 ) + ∑𝑞𝑚=1 𝛼𝑚{𝜃𝜈𝑖,𝑡−𝑚 + [|𝜈𝑖,𝑡−𝑚| − E|𝜈𝑖,𝑡−𝑚|]}, (7) 

where 𝜔𝑖, 𝛿𝑘, 𝛼𝑚, 𝜃, 𝛾 are the parameters of the EGARCH(𝑝, 𝑞) model, 𝜈𝑖,𝑡−𝑚 is an 

i.i.d. random variable with mean zero and unit variance. 

Fu preferred to employ the Exponential GARCH (EGARCH) model for modelling 

volatilities. The advantages of EGARCH over GARCH were that it ensured positive 

                                                                                                                                                         

unconditional variance at time 𝑡 does not depend in the variance at time 𝑡 − 1. 
74 We also calculated the expected forecasts from IGARCH but we found that GARCH(1,1) 

produced slightly more accurate results, which was an additional consideration in favour of 

GARCH(1,1) even through scarcity of data was an argument in favour of IGARCH. 
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variance75 and allowed asymmetric response to shocks.  

One downside of EGARCH models is that they have lighter tails compared to regular 

GARCH. If the GARCH(1,1) process is stationary, Mikosch and Starica (2000) showed that 

for distributions in the Frechet domain of attraction (Paretian tails),76 the extremes of the 

GARCH process are heavy-tailed with extremal index 𝜃 ∈ (0,1), with expected length of 

clusters of high volatility in the normalised sequence equal to 1/𝜃.77 Thus, Mikosch and 

Starica demonstrate that GARCH models allow for volatility clusters to exist and derive the 

corresponding conditions. In contrast, Lindner and Meyer (2003) study the extremal 

behaviour of EGARCH processes and prove the extrema of ln(𝜎𝑡
2) were light-tailed (in the 

Weibul domain of attraction), which includes distributions it exponential tails like the 

Gaussian distribution, and consequently that ln(𝜎𝑡
2) would not show cluster behaviour. A 

further downside of the EGARCH specification for us is that it depends on more parameters, 

the estimation of which could be more problematic at low frequencies like monthly data, and 

that the parameter uncertainty problem could be exacerbated by the exponentiation of the 

variance in EGARCH specification, which could be especially problematic given the use of 

individual securities as assets in the cross-sectional tests. 

                                                 

75 The GARCH model ensures that by posing non-negative coefficients, but in practice in 

some situation an unconstrained optimisation suggests that negative parameter estimates 

result in better in-sample fit. EGARCH model would yield positive volatility even if some of 

the parameters are negative. 
76 Let 𝑀𝑛 be the maximum of a sample of 𝑛 draws from some distribution 𝑃(𝑋 ≤ 𝑥) =
𝐹(𝑥). As the sample grows large 𝑛 →∞, the distribution of maxima becomes degenerate as 

𝑃(𝑀𝑛 ≤ 𝑥) = [𝐹(𝑥)]
𝑛 . However, the Fisher-Tippet theorem proves that if there exist 

normalising series of constants 𝑎𝑛, 𝑏𝑛 such that the distribution of the normalised (scaled) 

maxima 𝑃 (
𝑀𝑛−𝑎𝑛

𝑏𝑛
≤ 𝑥) is non-degenerate, then the limiting distribution of extremes can be 

either a Gumbel distribution (for light-tailed distributions), a Weibul distribution (for 

distributions with finite support), or a Frechet distribution (for medium and heavy-tailed 

distributions) (Embrechts et al. (2003)). If a distribution belongs to a Frechet domain of 

attraction, then the probability of exceeding a certain threshold P(X > 𝑥) would have the 

form 𝑥−𝛼L(𝑥), where 𝛼 is a positive constant and L(𝑥) is some slowly varying function, 

i.e. lim
𝑥→∞

L(t 𝑥)

L(𝑥)
= 1, ∀𝑡 > 0 , and so the tail of the distribution decays approximately like 

Pareto distribution (Gnedenko (1943)). A number of known distributions do not belong to any 

of these domains of attraction (i.e. they are not max-stable); two important examples are the 

Gaussian and the exponential distribution. 
77 The standard tail index results from the previous note were derived under assumption of 

independent draws, which is clearly not the case with GARCH models, and so the 𝜃 referred 

here is the tail index of the extremes of the volatility series, {𝜎𝑖} The link between the 

extremes of the process {𝑋𝑖} and the related process {𝜎𝑖} are given by Theorem 4.1 on p. 

1437 in Mikosch and Starica (2000) 
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Overall, each approach has its advantages and disadvantages. The EGARCH removes 

the difficulties associated with corner solutions to the GARCH optimisation and allows for an 

asymmetric volatility response to shocks, but it also limits the ability of the model to produce 

volatility clustering and at monthly frequency could increase parameter uncertainty risk on 

account of the larger number of parameters to be estimated. Tests with IGARCH and GARCH 

suggested that IGARCH model did not result in more stable estimates but the accuracy of 

GARCH was somewhat better. Together with the counter-factual assumption of permanent 

shocks on variance, we opted for GARCH(1,1) as the baseline model of volatility in this 

study. We impose the stationarity assumption and specifically constrain the domain for the 

model parameters to 𝛼 + 𝛽 < 1 and 𝛼, 𝛽 > 0. 

The distribution of the innovations – 𝜈 in the EGARCH model (6)-(7) – is another 

significant choice. Often in related studies 𝜈 is assumed to be distributed either as standard 

normal distribution78 or as generalised error distribution.79 Both Fu (2009) and Spiegel and 

Wang (2005) use normal distribution for 𝜈 in their EGARCH specifications. Furthermore, 

Fu allows variable lags for 𝑝 and 𝑞 between 1 and 3; among the nine resulting models for 

each stock and date he selects the one with highest value of Akaike Information Criterion 

(AIC).80 In the GARCH specification the choice of distribution might be a more crucial 

choice because by design that model reacts symmetrically to innovations and the imposition 

of a symmetric distribution like the standard normal in the presence of asymmetric 

innovations81 might impact the predictive performance of the model. Therefore, we opted for 

a non-symmetric distribution of shocks. There are a couple of different specifications of the 

Skew Generalised Error Distribution (SGED). In our study we implemented  

                                                 

78  The standard normal (Gaussian) distribution with zero mean and unit variance has density  

 𝑓(𝑥) =
1

√2𝜋
𝑒
1

2
𝑥2 . 

 
79  The Generalised Error Distribution has the following three-parameter density:  

 𝑓(𝑥) =
𝜅𝑒

−
1
2
|
𝑥−𝛼
𝛽
|
𝜅

21+1/𝜅𝛽Γ(1/𝜅)
, 

where 𝛼  is location parameter, 𝛽  is scale parameter, and 𝜅  is shape parameter. This 

specification needs to be additionally standardised to zero mean and unit variance. When 𝜅 =
2, the distribution reduces to normal.  
80 The Akaike’s Information Criterion (AIC) is an heuristic derived from information theory 

that compares competing models in terms of their likelihood (𝐿) on a specific data set and the 

number of parameters (𝑘), with 𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿). 
81 For the full sample skewness of idiosyncratic shocks (arithmetic returns) was positive at 

about 2.3. 
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 𝑓(𝑧) =
𝜅exp{−

1

2
|√2−2/𝜅

Γ(1/𝜅)

Γ(3/𝜅)
𝑧|}

√2−2/𝜅
Γ(1/𝜅)

Γ(3/𝜅)
21+1/𝑘Γ(1/𝜅)

 (8) 

 𝑓(𝑧|𝜉) =
2

𝜉+𝜉−1
[𝑓(𝜉𝑧)𝐻(−𝑧) + 𝑓(𝜉−1𝑧)𝐻(𝑧)], (9) 

where 𝐻(𝑧) is the Heaviside step function82, 𝜉 is the parameter controlling skewness, and 

𝜅 is the shape parameter (when 𝜅 increases, the distribution gets flatter). 

Additional distributions for the innovations were also considered, in particular the 

Negative Inverse Gaussian, Skew Hyperbolic distribution, Generalised Hyperbolic 

Skew-Student distribution, and Skew Student-𝑡 distribution. We found that SGED tended to 

produce more robust and accurate forecasts. An intuitive reason could be that the SGED has 

lighter (exponential) tails; consequently, a strong innovation was less likely compared to the 

fatter-tailed alternatives, which resulted in quicker adjustment of volatility forecasts upon 

stronger shock while nevertheless allowing medium tails83 and asymmetric shocks.  

Wrapping up the discussion, we use GARCH-family as one of our selected models 

because it is used in many volatility studies, and by some of the related studies that lend 

support to the research hypothesis. We chose GARCH(1,1) for one-step forecasts in view of 

the evidence of its good empirical performance, the scarcity of data at monthly frequency, and 

the intuitive interpretation of its parameters. We compensate some of the loss of flexibility 

relative to the EGARCH(p,q) model with varying order by employing a more flexible 

distribution for the error term (the SGED distribution). 

The simple random walk without drift has the form 

ℎ𝑡 = ℎ𝑡−1 + 𝜖𝑡, 𝜖𝑡~𝑁(0, 𝜎
2),  

                                                 

82 For practical purposes,  

 𝐻(𝑧) = {
1  𝑖𝑓   𝑧 > 0
0  𝑖𝑓   𝑧 < 0

. 

83 It might be appropriate to note that there are at least three different approaches to 

discussing tail fatness (heaviness): one approach is to consider the kurtosis of the distribution 

and to label distributions with kurtosis over 3 as heavy-tailed (3 is the kurtosis of the Gaussian 

distribution); another approach is based on the previously mentioned concept of max-domains 

of attraction, with distributions in the Frechet domain being labelled as fat-tailed; finally, 

heavy-tails could also describe sub exponential distributions, for which the distribution of a 

sum of sub exponential random variables being asymptotically equal to the distribution of the 

maximum of the individual variables (i.e. the probability that sum would exceed some 

threshold is asymptotically distributed as the probability that any single summand would 

exceed that threshold). The concept of fat tails is discussed in Haas and Pigorsch (2009); in 

that connection one should note that for example GARCH(1,1) with Normal innovations 

produces fat-tailed stochastic process in the sense that its kurtosis is over 3. Thus light tails of 

the shocks do not necessarily mean light tails of the fitted series.  
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where ℎ𝑡 denotes the stochastic process and 𝜖𝑡 is the random shock at time 𝑡, which is 

assumed to be independently and identically distributed (i.i.d.) with mean 0. A recursive 

substitution shows that ℎ𝑡 = ℎ0 +∑ 𝜖𝑖
𝑡
𝑖=1  and that past shocks never die out but have 

permanent effect on the level of ℎ𝑡. If the volatility process is a random walk, then the 

expected value of ℎ𝑡 conditional on the information at time (𝑡 − 1) is just ℎ𝑡−1, which is 

the known last realisation of the process and reflects all past shocks 𝜖𝑖, 𝑖 = 1… (𝑡 − 1), i.e. 

𝔼𝑡−1ℎ𝑡 = 𝔼𝑡−1ℎ𝑡−1 + 𝔼𝑡−1𝜖𝑡 = ℎ𝑡−1. Since the impact of shocks never fades, the variance of 

the process increases unboundedly as 𝑡 increases. 

Therefore, if volatilities follow random walk, then we could use the volatility in the 

last month as the expectation of the volatility for the next month. This approach of using 

(𝑡 − 1) volatility ℎ𝑡−1 in place of expected volatility 𝔼𝑡−1ℎ𝑡 is employed by Ang et al. 

(2009, 2006). Even if volatilities are stationary, this does not invalidate entirely the approach 

of Ang et al.84 because persistence of volatilities is a well documented phenomenon. For 

example, Engle and Patton (2001) recognise volatility persistence as one of the stylised facts 

of asset returns. Similarly, it is consistent with the approach of Integrated GARCH (Nelson, 

1990), which assumes that 𝛼 + 𝛽 = 1 in equation (4). Therefore, if monthly volatility is 

sufficiently persistent, or if the estimated parameters values of the GARCH(1,1) model are 

such that 𝛼 + 𝛽 is sufficiently close to 1, then the approach of Ang et al could result in 

superior forecasts for ℎ𝑡
85. Therefore, ℎ𝑡−1 cannot be discarded as a predictor of 𝔼𝑡−1ℎ𝑡 

even in the face of the evidence rejecting the unit root of volatilities. 

We include this measure in our study also because it is the one that produced the 

prediction of a negative correlation between risk and returns, and therefore it is crucial that 

the evidence is revisited and the finding is confirmed or rejected. 

One of the problems with the methodology of Ang et al was that it did not recognise 

that in the presence of mean reversion, ℎ𝑡−1 is not an unbiased predictor of 𝔼𝑡−1(ℎ𝑡). Fu 

suggests that GARCH offers a superior solution on the problem. However, there is a subtle 

difference between the GARCH model and the approach of Ang et al.: the GARCH model 

uses squared idiosyncratic residuals as a proxy for the realised volatility, whereas the 

approach of Ang et al. (2006) estimates the volatility in month (t − 1)  from 

higher-frequency data (daily returns). The approach of estimating lower-frequency volatilities 

                                                 

84 In their study of 2006 they never claimed that volatilities followed random walk. Instead, 

they defined their volatility measure to equal the volatility of the previous month. 
85 Such superiority could be the result from lower noise in the volatility estimates from daily 

data compared to the squared residuals used in the standard GARCH(1,1). 
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from higher-frequency data is theoretically justified by Merton (1980), who demonstrates that 

volatility could be estimated with arbitrary precision using sufficiently high-frequency data. 

Therefore, the estimation of monthly volatility from daily data could be a completely sound 

approach and in fact could outperform squared monthly return as a proxy. 

Therefore, instead of abandoning the history of monthly volatilities estimated from 

daily data altogether in favour of GARCH, it might be more justified to attempt to forecast 

𝔼𝑡−1(ℎ𝑡) from the available history. One such approach was pursued by Huang, Liu, Rhee 

and Zhang (2012) who use ARIMA model fitted on the series of ℎ𝑡−𝑖, 𝑖 = 1,… ,24 (i.e. a 

rolling window design using the last 24 months of data) in order to forecast 𝔼𝑡−1(ℎ𝑡). 

One representation of the Autoregressive Moving Average (ARMA) process with lags 

1, ARMA (1,1), is as follows: 

 ℎ𝑡 −𝑚 = 𝜙(ℎ𝑡−1 −𝑚) + 𝜃𝜀𝑡−1 + 𝜀𝑡, 

where 𝑚 , 𝜙  and 𝜃  are the parameters of mode. Parameter 𝑚  is also called the 

mean-revering level of volatility because when 𝜙 ∈ (0,1), the forecasted values of ℎ would 

converge to 𝑚, given enough time. In general, the values of 𝜙, 𝜃 ∈ (−1,1) ensure that the 

ARMA process is invertible.86 The unconditional expected value of the process equals 𝑚, 

𝔼(ℎ𝑡) = 𝑚, and 𝜙 controls the speed of mean-reversion. An alternative parametrisation for 

the process uses 𝜇 = 𝑚(1 − 𝜙)  instead of 𝑚 , giving the alternative form ℎ𝑡 = 𝜇 +

𝜙ℎ𝑡−1 + 𝜃𝜀𝑡−1 + 𝜀𝑡. 

Thus a principal difference between using the ARMA(1,1) and GARCH(1,1) in the 

present context is the proxy they use for the realised volatilities in past months. Indeed, 

substituting 𝜈𝑡
2 = 𝜀𝑡

2 − 𝜎𝑡
2 in 𝜎𝑡

2 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽𝜎𝑡−1

2  we obtain 𝜀𝑡
2 − 𝜈𝑡

2 = 𝜔 + 𝛼𝜀𝑡−1
2 +

𝛽(𝜀𝑡−1
2 − 𝜈𝑡−1

2 ), which after re-arrangement yields  

𝜀𝑡
2 = 𝜔 + (𝛼 + 𝛽)𝜀𝑡−1

2 + 𝜈𝑡
2 − 𝛽𝜈𝑡−1

2 , 

which is an ARMA(1,1) process in squared shocks (idiosyncratic returns). 

Therefore, we include ARMA(1,1) in our study in order to allow the controversial 

measure of Ang et al. (2006) to be refined in a forward-looking manner, so as to explore how 

the introduction of forward-looking expectations amends the conclusions reached by Ang et 

al. (2006) and Ang et al. (2009). 

A principal limitation of historical volatilities is that they incorporate only historical 

                                                 

86 The formulation of the ARMA process means that all observed values of ℎ𝑡 are function 

of the history of unobserved errors. If the process is invertible, then these errors can be 

represented as weighted sums of the observed realisations.  
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information and are not, in fact, truly forward-looking. It could be expected that the use of 

implied volatilities should be producing more a conclusive test of the models of Levy (1978) 

and Merton (1987). However, derivatives are written only on some of the larger stocks, so 

that approach could not be pursued.  

 

3.2.5.4. Comparison of volatility forecasts 

There are many methods that can be used to evaluate alternative volatility forecasts. 

These differ in terms of the forecasting scheme, the measure of forecast quality, the estimator 

of the true latent volatility, and the approach for testing the significance of differences of 

accuracy among the alternative forecasts.  

Concerning the forecasting schemes, Violante and Laurent (2012) highlight three 

principal schemes: fixed, rolling, and recursive. In the fixed scheme, parameters of the model 

are estimated using a set of fixed length, and then all future forecasts are made without 

re-estimation of parameters. The rolling scheme is implemented using a rolling window of 

fixed length. Finally, a recursive scheme is implemented using all past information to make 

each forecast, with parameters being re-estimated for each period. In our situation we are in 

fact unable to pick one of these, because the different forecasts used in the studies are 

essentially estimated with different approaches. Thus, the OLS estimator and the estimator of 

Ang et al. (2006) are estimated using rolling windows (in the latter case – of length just one), 

while GARCH and ARMA forecast are based on expanding windows (recursive scheme). In 

general, Violante and Laurent (2012) note that the fixed and the rolling schemes have certain 

advantages over the rolling one when comparing nested models. Firstly, the fixed scheme 

could be useful in situations where parameter estimation is difficult. Secondly, the rolling 

scheme could accommodate situations where the estimated parameters change over time. 

Finally, there are difficulties in implementing statistical tests in the recursive scheme due to 

the complex asymptotic distribution of the test statistics as sample size grows with each 

recursive estimation. In our case, however, the use of non-linear models requires larger 

samples, and therefore the rolling scheme cannot be implemented for some of the volatility 

estimators (GARCH and ARMA). Furthermore, such an implementation, if possible, would 

render the produced forecasts incompatible with those in other studies.  

The second problem which we face in the tests is that variances are latent 

(unobservable), and therefore need to be estimated. Violante and Laurent (2012) note that 

there are three typical estimators: the squared returns, the realised volatility, and the realised 

kernel. The squared returns are an unbiased estimator when expected return is zero, as from 
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probability theory we have 𝑣𝑎𝑟(𝑋) =  𝔼(𝑋2) − (𝔼𝑋)2, so when 𝔼𝑋 = 0, the variance of 𝑋 

equals the expected value of 𝑋2. The realised variance can also be calculated from the returns 

of higher frequency. For example, the monthly variance can be estimated from daily returns 

as 𝑣𝑎𝑟(𝑋𝑀) = ∑ 𝑋𝑑
2

𝑑∈𝑀 . Even with unchanged daily variance, monthly variances will change 

depending on the number of days in the month. In cases where such changes were a concern, 

we averaged volatilities by the number of days in month to calculate the daily variance, and 

then scaled to a standardised month of 21 trading days. The last estimator of true volatility – 

the realised kernel, developed by Barndorff-Nielsen et al. (2008) – is used mostly in 

high-frequency trading where microstructure noise is a significant problem. The method 

essentially employs kernel smoothing of the higher-frequency volatilities in order to smooth 

out microstructure noise. The method is rarely used for estimation of monthly volatilities. 

Moreover, the parameters of the smoother would need to be tuned, which would increase the 

complexity of estimates with unclear benefit. Instead, studies like Bali and Cakici (2008) and 

Spiegel and Wang (2005) filter the daily volatility series through a GARCH model which 

smooths out noise from daily returns and then calculate the monthly realised volatility from 

the daily filter volatilities. We follow that approach as well.  

We consider three estimators of the true variance. The first is the traditional but noisy 

squared idiosyncratic shock, i.e. ℎ𝑡 = 𝐼𝑅𝑒𝑡𝑡
2. In order to obtain a more accurate estimate we 

also estimate an EGARCH(1,1) model using all available daily data. The in-sample estimates 

for idiosyncratic variance are averaged by months (we require estimated variances for at least 

10 days in each month). Thus ℎ𝑡 =
1

𝜏𝑡
∑𝜏𝑡𝑖=1 𝜎𝑖

2, where 𝜏𝑡 is the number of days in month 𝑡. 

EGARCH(𝑝, 𝑞) is defined by the following volatility equation:  

 log(𝜎𝑡
2) = 𝜔 + ∑𝑝𝑘=1 𝛽𝑖log(𝜎𝑡−𝑘

2 ) + 

 ∑𝑞𝑚=1 𝛼𝑚 {𝜃 (
𝜀𝑡−1

𝜎𝑡−1
) + 𝛾 [|

𝜀𝑡−1

𝜎𝑡−1
| − E (

𝜀𝑡−1

𝜎𝑡−1
)]}. (10) 

The distribution of 𝜀𝑡−1/𝜎𝑡−1  is assumed to be standard Gaussian, so 𝔼(𝜀𝑡−1/𝜎𝑡−1) =

(2/𝜋)1/2. The specification allows an asymmetric response of volatility, a phenomenon 

observed in equity index returns. When 𝛾 < 0 in the above model, a negative shock 𝜀𝑡−1 

increases volatility more than a positive shock of equal magnitude would have done. The 

mean equation for the volatility model is again the Fama–French–Carhart four-factor model 

estimated using OLS. Finally, as a control version we also filter monthly volatilities from the 

GARCH(1,1) model with SGED innovations, estimated on all available monthly idiosyncratic 

returns. 
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There are two principal methodologies for comparison of volatility forecast that were 

employed in existing studies: the loss function approach, and the Mincer-Zarnowitz 

regressions. The former (loss function approach) is useful in comparison of alternative 

volatility estimators estimated from identical target frequencies, i.e. not requiring scaling from 

one frequency to another. An example could be alternative GARCH specifications, e.g. the 

implications of different distributions of errors on the produced GARCH(1,1) forecasts. 

Mincer and Zarnowitz (1969) regressions, however, can be employed to compare forecasts 

that come from different frequencies, in order to avoid the problem of data scaling. 

The loss function approach compares forecasts based on cost functions that assign 

weight on the distance between the volatility forecast and the estimate of the true (ex post) 

volatility. Spiegel and Wang (2005) utilise that approach to compare the predictive 

performance of EGARCH and OLS idiosyncratic variance estimators.87 Hansen and Lunde 

(2005) analyse the performance of various cost functions and recommend two of the options: 

the mean squared error (‘MSE’) and the quasi-likelihood cost function (‘QLIKE’):  

 𝑀𝑆𝐸𝑖 =
1

𝑇
∑𝑇𝑡=1 (ℎ𝑖,𝑡 − 𝜎̂𝑖,𝑡

2 )
2
  

 𝑄𝐿𝐼𝐾𝐸𝑖 =
1

𝑇
∑𝑇𝑡=1 (ln(𝜎̂𝑖,𝑡

2 ) +
ℎ𝑖,𝑡

𝜎̂𝑖,𝑡
2 )

2

,  

where ℎ𝑖,𝑡 is the observed true (ex post) variance and 𝜎̂𝑖,𝑡
2  is the ex ante conditional expected 

variance. In the baseline case the true variance is inferred from squared returns, ℎ𝑖,𝑡 = 𝑟𝑖,𝑡
2 . 

Another possible measure used in the field is the mean absolute error (‘MAE’)88:  

 𝑀𝐴𝐸𝑖 =
1

𝑇
∑𝑇𝑡=1 |ℎ𝑖,𝑡 − 𝜎̂𝑖,𝑡

2 |.  

The estimated values for the cost functions depend on the noisy estimate for the true 

variance (the squared idiosyncratic shocks, ℎ𝑖,𝑡 = 𝑟𝑖,𝑡
2 ). Differences in MSE or QLIKE do not 

necessarily imply that one forecasting method outperforms another. Various parametric and 

non-parametric tests can be employed to test forecast performance, e.g. Diebold and Mariano 

(1995), Meese and Rogoff (1988), or Granger and Newbold (1986) tests. Inference based on 

those tests relies on an asymptotic distribution of the test statistics, which could be 

                                                 

87 Spiegel and Wang (ibid.) report that EGARCH halves the mean absolute error of the 

estimated variance compared to the variance of the residuals (OLS) from the mean equation, 

although we were unable to confirm such an improvement in the full sample. 
88 An advantage of the MAE metric is that it does not assume that the second moment 

(variance) of the tested series exists (point on p. 12 in Meese and Rogoff (1983)), which 

would be the case if variances follow random walk. We do not think this would be the case 

here, as the unit root hypothesis is rejected by Fu (2009) for 90% of the series using the 

Dickey-Fuller test, and our calculations yield very similar results.  
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unreasonable in cases where we have few observations. Therefore, we follow the suggestion 

of Diebold and Mariano (1995) to employ the sign test or the Wilcoxon’s signed rank test 

when a comparison of loss functions or other measures of prediction accuracy is required.  

The sign test is based on the observation that if the difference between two estimators 

is not systematic, then the median difference between the two series would zero. One could 

then test if that is the case by performing binomial test with probability equal to 0.5. We can 

calculate those differences, for example, using the differences between squared or absolute 

values: 

𝑑𝑖,𝑡 = (ℎ𝑖,𝑡 − 𝜎̂1,𝑖,𝑡
2 )

2
− (ℎ𝑖,𝑡 − 𝜎̂2,𝑖,𝑡

2 )
2
, 

or 

𝑑𝑖,𝑡 = |ℎ𝑖,𝑡 − 𝜎̂1,𝑖,𝑡
2 | − |ℎ𝑖,𝑡 − 𝜎̂2,𝑖,𝑡

2 |. 

Therefore, for a given security, the median of the two series above should equal zero.89 The 

same idea could be applied also if we compare loss functions (MSE, QLIKE, MAE) across 

securities by calculating the differences 𝑑𝑖 = LF(ℎ𝑖, 𝜎̂1,𝑖
2 ) − LF(ℎ𝑖, 𝜎̂2,𝑖

2 ),  where 

LF(ℎ𝑖, 𝜎̂k,𝑖
2 ), 𝑘 = 1,2 is the loss function for security 𝑖 calculated using its available history. 

The test statistic then becomes simply 

𝑆𝑠𝑟 =∑1𝑑𝑖>0 

𝑁

𝑖=1

~𝐵𝑖𝑛𝑜𝑚(𝑁, 1 2⁄ ), 

where 1𝑑𝑖>0 denotes the indicator function. In large samples the normal approximation could 

be employed.90 

The same idea of differences could be employed to calculate the Wilcoxon’s signed 

rank test statistic, which equals the sum of the ranks of the absolute differences for the cases 

where the difference is positive:91 

𝑆𝑤 =∑1𝑑𝑖>0 𝑅𝑎𝑛𝑘(|𝑑𝑖|)

𝑁

𝑖=1

. 

Besides the tabulated critical values for the test, normalised approximation could also be 

                                                 

89 This imposes the implicit assumption of pairwise complete forecasts, so that cases where 

an estimate from one estimator was available while for the other series was unavailable would 

not participate in the joint test. 
90 i.e. for 𝑁 large, 

𝑆𝑠𝑟−0.5𝑁

√0.25𝑁
~𝑁(0,1). 

91 Since ∑ 𝑖𝑁
𝑖=1 =

𝑁(𝑁+1)

2
, we expect that the sum of the ranks of the positive differences 

would be one half of the amount. 
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employed.92 

Another approach to assess goodness of fit relies on estimating Mincer and Zarnowitz 

(1969) regressions of the type  

 ℎ𝑖,𝑡 = 𝑎𝑖 + 𝑏𝑖𝜎̂𝑖,𝑡
2 + 𝑒𝑖,𝑡, (11) 

where ℎ𝑖,𝑡 is the estimate for the true (realised) idiosyncratic variance for security 𝑖 at 

month 𝑡, and 𝜎̂𝑖,𝑡
2  is the ex ante estimate for that variance. If one model predicts volatilities 

correctly, we should expect to fail to reject the joint null hypothesis that 𝑎𝑖 = 0, 𝑏𝑖 = 1, so in 

practice we test whether (ℎ𝑖,𝑡 − 𝜎̂𝑖,𝑡
2 ) has mean 0. When applied to GARCH models, a 

common finding is that the Mincer-Zarnowitz regressions have quite low explanatory power 

as measured by their 𝑅2’s. Andersen and Bollerslev (1998) prove that the reason for the low 

𝑅2’s is not a failure of the GARCH models, but rather the fact that squared returns are a noisy 

estimator of volatility. In particular they show that the 𝑅2’s for GARCH(1,1) models are 

bounded above by 1/𝜅 , where 𝜅  is the kurtosis of the underlying noise distribution; 

therefore, for normally-distributed noise, 𝑅2 < 1/3, and for heavy-tailed distributions the 

bound is even lower. 

Running the Mincer-Zarnowitz regressions in variances is sometimes criticised as 

placing undue weight on high volatilities episodes, or being affected by the skewness of the 

volatility distribution. Thus Bali and Cakici (2008) use 𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

 and a rolling average of 

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

 but instead of running the regression in variance, they run it into volatilities (standard 

deviations), while Pagan and Schwert (1990) also report the regressions for the logs of 

variances. Therefore we address such concerns by employing all three regression models, in 

order to examine the predictive performance of volatility forecasts:  

 ℎ𝑖,𝑡 = 𝑎𝑖 + 𝑏𝑖𝜎̂𝑖,𝑡
2 + 𝑒𝑖,𝑡, 

 √ℎ𝑖,𝑡 = 𝑎𝑖 + 𝑏𝑖𝜎̂𝑖,𝑡 + 𝑒𝑖,𝑡, 

 ln(ℎ𝑖,𝑡
2 ) = 𝑎𝑖 + 𝑏𝑖ln(𝜎̂𝑖,𝑡

2 ) + 𝑒𝑖,𝑡, 

where ℎ𝑡 is the realised variance and 𝜎̂2 is the forecast variance. 

The usual OLS estimator is sensitive to extremes. In order to mitigate possible 

concerns that differences in the average 𝑅2statistic are driven by few larger outliers, we also 

                                                 

92 i.e. for 𝑁 large, 
𝑆𝑤−

𝑁(𝑁+1)

2

√
𝑁(𝑁+1)(2𝑁+1)

24

~𝑁(0,1). 
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estimate the parameters of the three models specified above using quantile regression93. 

Unlike the OLS regression, which minimised the sum of squared errors and estimated the 

conditional mean of the explained variable, the quantile regression estimates some conditional 

quantile 𝜏 of the explained variable. In this case we aim to predict the conditional median 

(𝜏 = 0.5), which we accomplish by minimising the sum of the absolute differences, i.e. 𝑉𝜏 =

min𝛽 ∑𝑖 𝜌𝜏(𝑦𝑖 − 𝑥𝑖′𝛽), where 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼𝑢<0). In the case of forecasting of the median 

(𝜏 = 0.5), the problem reduces to 𝑉0.5 = min𝛽 ∑𝑖 |𝑦𝑖 − 𝑥𝑖′𝛽|. An obvious constraint would 

be that 𝑅2 is not directly applicable to this model. Instead, following Koenker and Machado 

(1999) we compute its analogue for quantile regression – 𝑅𝜏
1, which is defined as 𝑅𝜏

1 = 1 −

𝑉𝜏/𝑉𝜏
𝑐, where 𝑉𝜏 is the optimal cost function for the evaluated model, and 𝑉𝜏

𝑐 is the optimal 

cost function for a constrained model where all predictors (other than the intercept) are 

constrained to equal zero. In this way 𝑅𝜏
1 measures how much the model improves the 

prediction of the conditional median relative to the model of constant median. Thus, 𝑅𝜏
1 is a 

direct analogue of 𝑅2 in the domain of quantile regression, and we use it to evaluate how the 

competing predictors of the volatility perform. 

Overall, we compare volatility forecasts in terms of Mincer and Zarnowitz (1969) 

regressions run in variances, standard deviations, and logarithms. Forecast accuracy is 

compared using Wilcoxon’s signed rank test for the pairwise 𝑅2  from each predictive 

regression ran on security by security basis. 

 

3.2.5.5. Assessing the correlation between expected idiosyncratic volatility and 

returns 

There are at least three types of tests of asset pricing models which are based on 

somewhat different formulations of the asset prices. The stochastic discount factor (SDF) 

approach proposes that prices equal present values of the end-of-period prices and dividends, 

discounted by SDF (𝑚𝑡+1), so that 𝑝𝑡 = 𝔼𝑡(𝑚𝑡+1𝑥𝑡+1) (the pricing equation), and hence 

𝔼𝑡(𝑚𝑡+1(1 + 𝑅𝑡+1) − 1) = 0, where 𝑅𝑡+1 =
𝑥𝑡+1

𝑝𝑡
− 1 =

𝑝𝑡+1+𝑑𝑡+1

𝑝𝑡
− 1 denotes the return on 

the asset, 𝑝𝑡+1 is the future price, and 𝑑𝑡+1 is the future dividend. Thus, in this framework, 

the valuation of prices requires estimation of the stochastic discount factor, 𝑚𝑡+1. There 

could be different ways to impose structure on the SDF. One approach, e.g. used in the 

Consumption CAPM (CCAPM) and the Lucas exchange economy, assumes utility function of 

                                                 

93 See Koenker and Gilbert Bassett (1978) 
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specific type to deduce the structure of the SDF. For example, assuming additive lifetime 

utility function in consumption of the form 𝑈 = ∑ 𝛽𝑡𝔼0[𝑢(𝑐𝑡)]
∞
𝑡=0 , so that the utility is 

time-separable and lifetime utility equals the present value of the utility of the future 

consumption stream, CCAPM concludes that 𝑚𝑡+1 =
𝛽𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
, where 𝛽 is the intertemporal 

discount factor, and 𝑢′(𝑐𝑡) is the marginal utility of consumption. Another approach assumes 

that 𝑚𝑡+1 can be approximated linearly by a set of factors, so that 𝑚𝑡+1 = 𝑎 + 𝑏
′𝑓𝑡+1, 

where 𝑎 is parameter vector, 𝑏 is parameter matrix, and 𝑓𝑡+1 is the vector of factors. 

The beta representation of the pricing equation follows from the transformation 

𝔼𝑡(𝑚𝑡+1(1 + 𝑅𝑡+1)) = 1 , so that 𝔼𝑡(𝑚𝑡+1)𝔼𝑡(1 + 𝑅𝑡+1) + 𝑐𝑜𝑣(𝑚𝑡+1, (1 + 𝑅𝑡+1)) = 1 . 

Dividing by 𝔼𝑡(𝑚𝑡+1) > 0, the approach yields 𝔼𝑡(𝑅𝑡+1) =
1

𝔼𝑡(𝑚𝑡+1)
  

+ 
𝑐𝑜𝑣(𝑚𝑡+1,𝑅𝑡+1)

𝑣𝑎𝑟(𝑚𝑡+1)
(−

𝑣𝑎𝑟(𝑚𝑡+1)

𝔼𝑡(𝑚𝑡+1)
). The term 𝛽 =

𝑐𝑜𝑣(𝑚𝑡+1,𝑅𝑡+1)

𝑣𝑎𝑟(𝑚𝑡+1)
 is the slope of the regression of 

returns on the SDF (and thus by the linear approximation of SDF in terms of factors, betas are 

related to factors), while 𝜆 = −
𝑣𝑎𝑟(𝑚𝑡+1)

𝔼𝑡(𝑚𝑡+1)
 is the price of risk. Extensive treatment of these 

derivations and the relationships between SDF, factor models, and beta representations is 

available in Gospodinov and Robotti (2013), as well as Chapters 5 and 6 in Cochrane (2005). 

For the purposes of the present discussion it is important to note that these relationships can 

be tested in alternative forms, and these forms are related by the alternative specifications 

above. In particular, time-series tests can be implemented by regressing excess returns on the 

factor realizations, i.e. (𝑅𝑡 − 𝑅) = 𝛼 + 𝛽1𝑓1,𝑡 + 𝛽2𝑓2,𝑡 +⋯+ 𝛽𝑘𝑓𝑘,𝑡 . This approach is 

essentially employed by us to split total returns into systematic and idiosyncratic returns using 

three (Fama–French) or four (Fama–French–Carhart) factors. However, that approach is not 

useful to perform the test whether idiosyncratic volatility predicts returns because volatilities 

are not factors; furthermore, as we shall see in the chapter on results, some of the forecasts are 

non-stationary, which also prevents running the time-series regressions in volatilities. 

Another approach that is much more widely used in finance tests asset pricing models 

using the Generalised Method of Moments (GMM). There is significant body of literature on 

the use of those methods, but the principal idea is to find parameter values that would 

minimize the distances between the moments of the left-hand side and the right-hand side of 

the pricing equation 𝑝𝑡 = 𝔼𝑡(𝑚𝑡+1𝑥𝑡+1). The mean pricing error in a sample of size 𝑇 then 

has the form 𝑔𝑇 =
1

𝑇
∑ (𝑚𝑡+1𝑥𝑡+1 − 𝑝𝑡)
𝑇
𝑡=1 = 𝔼(𝑚𝑡+1𝑥𝑡+1 − 𝑝𝑡), and the GMM parameters 

are estimated by minimizing the weighted errors, 𝑔𝑇
′𝑊𝑔𝑇, where 𝑊 is the matrix of weights 
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(in case of equal weights, 𝑊 = 𝐼, where 𝐼 is the identity matrix). The method allows the 

estimation of general non-linear, arbitrage-free asset pricing models. Nevertheless, it also has 

the disadvantage that the choice of base instruments or parameterization could result in 

unstable estimates. Compounded with the greater complexity of estimation, the method is not 

often used in the related literature.94  

The third method used in literature is based on cross-sectional regressions, and it is the 

method used in this study. A principal advantage over the time-series estimation is that the 

cross-sectional methodology can easily accommodate the addition of characteristics or factors 

that are not returns.  

The original methodology for the cross-sectional tests is proposed by Fama and 

MacBeth (1973). They treat the coefficients from the cross-section regressions as random 

variables and employ the 𝑡-test to examine the statistical significance of the different 

characteristics. Thus, Fama and Macbeth estimate the cross-sectional regression separately for 

each month, instead of averaging returns and betas in the testing period. The cross-sectional 

regressions has the form:  

 𝑅𝑖,𝑡 = 𝛾0,𝑡 + 𝛾1,𝑡𝛽𝑖,𝑡 + 𝛾2,𝑡𝐼𝑉𝑂𝐿𝑖,𝑡 +⋯+ 𝜀𝑖,𝑡, (12) 

where 𝐼𝑉𝑂𝐿 is some of the measures of idiosyncratic volatility employed in this study, and 

𝐵𝑒𝑡𝑎 is the beta for security 𝑖.95 Many more characteristics could be added to the regression 

as required for hypothesis testing, e.g. size, liquidity, lagged return, momentum, etc. The 

significance of the hypothesised factor loadings (𝛾𝑖) could be tested using the 𝑡-statistic:  

 𝑡(𝛾̅𝑖) =
𝛾̅̂𝑖

𝑠(𝛾̂𝑖)/√𝑛
,  

where 𝑛 is the number of cross-sectional regressions, 𝑠(𝛾𝑖) is the standard error of the 

regression coefficient, and 𝛾̅𝑖 is the mean value of the respective factor loadings, averaged 

across all monthly cross-sectional regressions. Essentially, the test treats the coefficients of 

the cross-sectional regression as independent random variables and performs a standard test 

whether the mean realisation is statistically different from zero. Newey and West (1987) 

propose a refinement of the 𝑡-test that allows to incorporate the autocorrelation of the 

coefficients from the individual cross-sectional regressions. Following the prevailing practice 

in the related literature, in this thesis we report the Newey–West standard errors with four 

lags. 

 

                                                 

94 A notable exception is Khovansky and Zhylyevskyy (2013) 
95 We discuss the estimation of beta later in this chapter. 
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3.2.5.6. Securities as assets  

The literature on testing whether higher idiosyncratic returns are associated with 

higher return usually employs two strategies: cross-sectional regressions, and portfolio 

formation. In this study we employ the former strategy. In our view there are two advantages 

of that strategy over the latter one: firstly, it allows tests based on individual securities as 

assets (as opposed to portfolios as assets), which is suggested to result in superior efficiency 

of the performed tests96. Secondly, portfolios are created in two dimensions, one of which was 

the hypothesised dimension (idiosyncratic risk) and the other was the control dimension (beta, 

size, liquidity, etc). In the tests of idiosyncratic risk, however, there are at least four 

significantly correlated characteristics, each with its own set of theoretical justifications. 

Those characteristics are: beta with market, size, liquidity, and idiosyncratic risk. Larger 

companies empirically tend to have lower beta, higher liquidity, and lower idiosyncratic risk. 

The tests based on portfolio formation aim to demonstrate that higher-idiosyncratic-risk 

portfolios would earn higher expected return irrespective of the control variable used for the 

other dimension. Nevertheless, one could not eliminate the risk that the observed positive 

returns were due to some of the other two non-controlled characteristics. This is supported for 

example by the study of Fan et al. (2015) who demonstrate a significant link between market 

anomalies and idiosyncratic risk. Therefore, in this study we opt to test the link between 

idiosyncratic risk and return principally in the cross-section of returns rather than through 

portfolio formation. 

The cross-sectional regressions, however, can also be implemented using portfolio 

returns and volatilities as assets, rather than individual securities. In this study we have chosen 

the second option (individual securities as assets). There are a couple of motivations for this 

choice. Firstly, the use of portfolios as assets could result in loss of efficiency of the tests. The 

portfolio strategy was originally conceived to address errors in variables in the estimation of 

betas, which can be estimated with significant errors. However, most controls can be 

estimated with high precision, including size, price/book values, return momentum, lagged 

return, and idiosyncratic volatility. Therefore, Fama and French (1992) argue that the use of 

portfolios is not justified, apart from the case of beta. The conjecture that use of portfolios 

leads to loss of efficiency is confirmed by Ang et al. (2010), who point out that even betas 

should not be averaged by portfolios. Secondly, as pointed out by Levy (2012), the Fama and 

MacBeth (1973) methodology “employs portfolios rather than individual assets; therefore, it 

                                                 

96 Ang et al. (2010) 
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has the advantage of minimising the measurement errors in beta and the disadvantage of not 

testing asset pricing of individual assets. Thus, in the case of supporting the CAPM, one 

cannot generalise it to individual risky assets.” (p. 200). In our study we aim to evaluate 

whether idiosyncratic volatilities are priced, and therefore averaging volatilities by portfolios 

would likely result in loss of efficiency. Nevertheless, we also run robustness checks using 

portfolios as assets to confirm our principal findings.  

 

3.3. Control variables 

The statistical tests for the cross-sectional correlation between idiosyncratic risk and 

returns necessitate the identification of a set of variables that are hypothesized to explain the 

stock returns both as time series and as cross-section. Thefore, we need to identify firstly the 

variables that we shall employ to split the time series of actual returns into systematic and 

idiosyncratic components. Then we shall identify control variables for the cross-sectional 

regressions. At first sight the two lists could be hypothesised to be identical, i.e. we use a list 

of factors to split returns into systematic and cross-sectional components, and then use the 

loading on those factors in the cross-sectional regression, e.g. estimate asset betas with market 

excess returns, and then use the betas as explanatory variables in the cross-section. In such a 

setting, the time series tests and the cross-sectional tests would be testing the same hypothesis, 

so arguably there would not even be any need for two steps. However, we noted previously 

that the time-series regressions require the use of factors as explanatory variables, so some of 

the variables that we aim to use in our test, including idiosyncratic volatility, cannot be used 

in the time series regression. Therefore, we consider a list of factors in order to split returns 

into systematic and non-systematic (idiosyncratic) components, and then we use the beta 

together with characteristics that measure the individual asset’s exposure to the hypothesised 

factors, as well as other characteristics considered relevant. 

 

3.3.1. Splitting total return into systematic and idiosyncratic returns 

The Capital Asset Pricing Model of Sharpe (1964) and Lintner (1965b) predicts that 

there is a single factor that explains the mean excess returns of individual stocks, and that 

factor is the excess return on the market portfolio, i.e.  

 𝜇𝑖,𝑡 = 𝑟𝑓 + 𝛽𝑖(𝜇𝑚,𝑡 − 𝑟𝑓). 
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The deviation of the actual return from the expected value is due to idiosyncratic factors, 

𝜀𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝜇𝑖,𝑡, but those idiosyncratic innovations are diversified away and are not priced by 

the investors. The tests of CAPM are challenged by Roll (1977), who shows that the market 

portfolio to which CAPM is referring is the portfolio of all assets in the economy, including 

human capital, real estate, privately held businesses, overseas assets. That portfolio is not 

observable, and its replacement by equity index introduces an error-in-variable problem, 

which could account for observed anomalies detected by some of the empirical tests. 

Fama and French (1992, 1993, 1996) isolate three factors that explain a significant 

part of cross-sectional returns: market excess returns (from the CAPM), a size factor and a 

value factor. The size (SMB) and value factors (HML) are estimated by splitting the stocks 

into six sub-portfolios in two dimensions by ranking the portfolios in terms of size (three 

groups) and in terms of book-to-market value (two groups). The realisation of the SMB factor 

is estimated by considering a portfolio that is long in small shares and short in large shares. 

Similarly, the realisation of the HML factor is estimated by using the returns to a no-cost 

portfolio that is long in value stocks (those with high book-to-market ratio) and short in 

growth shares (those with low book-to-market ratio). The approach of Fama and French is 

justified in terms of construction of the predictive indices, but it is criticised for not providing 

theoretical motivations as to why investors should value these factors. The SMB factor is 

sometimes interpreted as a measure of probability of distress – smaller companies are less 

diversified and with more limited access to funding, which increases their probability of 

distress, which is priced by the market. The reasoning behind the value factor, however, is 

less conclusive. 

More recently, Fama and French (2007) investigate the contribution of the 

sub-components of returns for value and for growth stocks. In the case of value stocks they 

find that the positive returns stem from increases of price-to-book value ratio, while the 

amount of equity is broadly stable. In the case of growth companies, returns came from the 

strong increase of equity that is enough to outpace the corresponding decline of the 

price-to-book value ratios. They suggest that eventually after the stocks are allocated to the 

corresponding portfolio, the market causes the differences in performance of value and 

growth portfolio to blur. In the case of growth stocks this is due to the gradual exhaustion of 

the high-profit opportunities and strengthening competition, while in the case of value 

companies it comes on the back of the urge to improve profitability, which for value 

companies is below that of growth companies. Consequently some of the growth stocks 

migrate to the value group and some of the value stocks migrate to the growth portfolio. 
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One stock market anomaly that the Fama–French specification does not account for is 

stock momentum. Jegadeesh and Titman (1993) document a tendency for portfolio that buys 

past winners and sells past losers to outperform the market over the sample period 1965 to 

1989. To examine that effect, they calculate the return on each share over the past 𝐽 months. 

Then they allocate shares in ten decile portfolios ranked by their past performance, and track 

those portfolios 𝐾 months ahead. They call ‘winners’ the top decile portfolio (the one that 

contains 10% of shares with the highest performance in the preceding 𝐽 months), and ‘losers’ 

– the bottom decile portfolio (the shares with poorest performance in the past 𝐽 months). 

Examining various buy/sell strategies for various values of the past return calculation window 

𝐽 and holding period 𝐾, they find that strategies that buy past winners and sell past losers 

earn significant premium. For example, the strategy which selects stocks based on their 

performance in the past 𝐽 = 6 months and holds them for 𝐾 = 6 on average earns a 

compounded excess return of 12.01% p.a. The results are also found to hold when portfolios 

are created from sub-samples formed on rankings on systemic risk (beta) and size 

(capitalisation), so momentum effect is not due to systemic risk or size factor. Furthermore, 

the buy-winners/sell-losers strategy earns abnormal return for horizons up to 36 months after 

buying, although the last 24 months tend to reverse the gains from the first 12 months. 

They find that the observed momentum could not be explained by lagged response to 

common factors but is consistent with lagged response to firm-specific information, with 

performance systematically strong in the first year following buying, except in the first month. 

Scowcroft and Sefton (2005) investigate the sources of momentum and decompose it into 

country momentum, sector (industry) momentum and the residual idiosyncratic momentum. 

They find that for small-capitalisation companies momentum is primarily idiosyncratic, while 

for large-capitalisation companies it is mostly industry specific. 

Bondt and Thaler (1985) report that portfolios of past ‘losers’ 97  significantly 

outperform the portfolio of past ‘winners’98 and find that the over-performance lasts for up to 

36 months after portfolio formation. They attribute the observed differences to market 

over-reaction that is reversed subsequently, albeit very slowly, as evidenced by the horizon 

over which the discrepancies persist. 

In general, there is no constraint on what factor model is selected for the calculation of 

                                                 

97 The top 35 securities/top 50 securities/the top decile with lowest cumulative abnormal 

(residual) return over the 36 months preceding portfolio formation 
98 The same number of securities with the highest cumulative abnormal return over the same 

period as for the identification of past ‘losers’ 
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idiosyncratic return, as long as we remain alert that different models result in different 

residuals. Thus idiosyncratic residuals need not necessarily reflect pure idiosyncratic risk but 

could reflect return on omitted factors99, e.g. return on human capital100. The early tests of 

CAPM define idiosyncratic risk relative to the single-factor CAPM model. Among the recent 

studies, Malkiel and Xu (2004) report results for idiosyncratic risk from the CAPM (they also 

report results from the three-factor model). The one-factor specification is also used by Bali 

and Cakici (2008) in their sorts by idiosyncratic volatility, although performance is assessed 

based on alphas from the Fama–French specification discussed below. 

More recent studies tend to base their calculation of idiosyncratic return on the CAPM 

extended with the two additional Fama–French factors (this specification we shall abbreviate 

as ‘FF-3’). The preference for FF-3 in recent finance literature is driven by the good empirical 

performance of that specification. Most of the reviewed studies on the link between 

idiosyncratic risk and the cross-section of returns define idiosyncratic risk relative to the FF-3 

specification, e.g. Spiegel and Wang (2005), Fu (2009), Brockman et al. (2009), Guo et al. 

(2014), Fu and Schutte (2010). More recently, Huang, Liu, Rhee and Wu (2012) add 

momentum (‘MOM’) factor when calculating idiosyncratic returns. This four-factor 

specification is usually referred as the Fama–French–Carhart (‘FFC’) specification by the 

name of Carhart (1997), who originally added the momentum factor. 

In this study we shall employ the four-factor FFC specification to separate monthly 

returns into systematic and idiosyncratic components, i.e.:  

 (𝑟𝑖,𝑡 − 𝑟𝑓,𝑡) = 𝛽0 + 𝛽1(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽2𝑟𝑆𝑀𝐵,𝑡 + 𝛽3𝑟𝐻𝑀𝐿,𝑡 + 𝛽4𝑟𝑀𝑂𝑀,𝑡 + 𝜀𝑖,𝑡, (13) 

where (𝑟𝑖,𝑡 − 𝑟𝑓,𝑡) is the excess return of asset 𝑖 over the risk-free rate101, (𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) is 

the excess return on the market value-weighted portfolio, and 𝑟𝑆𝑀𝐵,𝑡 and 𝑟𝐻𝑀𝐿,𝑡 are the 

returns on the Fama–French factors, and 𝑟𝑀𝑂𝑀,𝑡 is the return on the momentum factors. Note 

that 𝜀𝑖,𝑡 are the errors of the regression, but are not the idiosyncratic innovations used in this 

study. The equation above is used to forecast next period systematic returns from the factor 

                                                 

99 “Since volatilities, especially idiosyncratic volatilities, are unobservable, most empirical 

studies estimate them using residuals from fitting a market model. Empirically, however, it is 

very difficult to interpret the residuals from the CAPM or even a multi-factor model as solely 

reflecting idiosyncratic risk. One can always argue that these residuals simply represent 

omitted factors. Therefore, we can only assert that the residuals from a market model measure 

idiosyncratic risk in the context of that model.” (p. 19 in Malkiel and Xu (2004)) 
100 As proposed in Eiling (2013)  
101 We use the yield on the three-month constant maturity government bonds as a measure of 

the risk-free rate. 
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realisations, and then the difference to the total return would be the idiosyncratic risk. 

The choice of FFC over FF-3 is motivated by two considerations. Firstly, the evidence 

in favour of the momentum factor is now reasonably well established, and we have previously 

referred to some of the papers documenting that finding. Secondly, as documented by Fan et 

al. (2015), idiosyncratic volatility significantly correlates with return momentum, and 

therefore it may be argued that its omission results in idiosyncratic residuals containing 

momentum information. On the other hand, the impact of one factor specification over 

another should not be overstated. For example, the reviewed study by Malkiel and Xu uses 

both CAPM and FF-3 specifications but does not find significant differences in their results. 

There Malkiel and Xu (2004) commented that “we use idiosyncratic volatility estimates both 

from a market model and from the above Fama-French three-factor model. Since residual 

volatility is a second moment, we view this approach as an indirect control for other factors.” 

(p. 19). Inasmuch as the two-factor model specifications did not provide qualitatively 

different results, the study can be viewed as offering evidence that the addition of extra 

factors is not a driver of the obtained results. At any rate the pass-through from omitted factor 

variable to idiosyncratic volatility would be limited, as pointed out by Malkiel and Xu (2004) 

in connection with the impact of omitted liquidity factor: “If liquidity is indeed priced, 

residuals from any asset pricing model that excludes liquidity factor will reflect it. However, 

since idiosyncratic volatility is a second moment, it can only indirectly capture some of the 

liquidity effect.”(p. 32)  

We recognise that there may be arguments to include even more factors in the 

time-series regression above. For example, Fama and French (2015) propose a five-factor 

model that besides size and value, also adds profitability and investment patterns. However, 

Kan and Zhang (1999b) point out that the inclusion of an irrelevant factor in the model makes 

the covarionce matrix non-invertible, and the asymptotic properties of the two-step regression 

tests are adversely affected.102 In view of the risks in adding extra factors to the regressions, 

the fairly small history used for model estimation, as well as the limited accounting 

information, we decided against adding more factors in the time-series regressions. We 

nevertheless include a specific robustness test with statistical factor in order to verify our 

findings.  

 

                                                 

102 Kan and Zhang (1999a) find a similar situation with the use of the generalized method of 

moments. 
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3.3.2. Control variables in the cross-section regressions 

We now turn to the problem of selection of control variables for the cross-sectional 

regression. At first glance the most direct approach could seem to use the estimated loadings 

on the four factors as regressors in the cross-sectional regressions, together with other control 

variables, in particular – idiosyncratic volatilities. Such an approach would be consistent from 

a theoretical perspective but is not actually pursued in the literature because of the uncertainty 

of the estimation of betas. Therefore, betas of individual securities are usually replaced by 

betas of portfolios;103 imposing such a contraint on the value of beta that is different from that 

estimated from the time-series regression means that the other factor loadings are no longer 

guaranteed to be unbiased, and therefore necessitates the use of other measures of size, value 

and momentum, other than the slopes from the time-series regressions. 

The CAPM justifies the use of asset’s beta with the market as an explanatory variable. 

However, in view of the measurement error problem in its estimation, we shall follow the 

process proposed in Fama and French (1992), and we shall form size-beta portfolios, and 

replace individual betas with those of the portfolio, to which the asset is assigned in the given 

period. Likewise, the exposures to size and value factors shall be measured more directly in 

terms of (the logs of) capitalisation for the given security and the market/book value ratios. 

Exposure to the momentum factor can be estimated using the cumulative return over a 

six-month period. However, the value of the last return would have a specific significance, 

because of a mild negative autocorrelation in the data (negative returns are more likely to be 

followed by a positive return), and therefore the six-month period ends at the penultimate 

month, rather than at the last month. Finally, we also include a liquidity variable as it tends to 

be correlated with idiosyncratic volatilities (Spiegel and Wang, 2005) and could be 

hypothesized to be the cause of the predictive significance of idiosyncratic volatilities.  

Additional control variables were also considered, e.g. measures of tail fatness or 

return skewness, but proved insignificant predictors of the cross-section. In view of the 

aforementioned risk of confirming spuriously significant premium for insignificant factors, 

explored by Kan and Zhang (1999b), throughout this study we shall emphasise not only 

statistical significance, but also the stability of the estimates across difference specifications 

and subsamples. If a certain variable is a significant predictor, we would expect that its point 

                                                 

103 This is considered as inefficient by Ang et al. (2010), but thus far the prevailing practice 

has been to use portfolio betas, and we follow the other studies in that respect. 
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estimate remains fairly stable, and changes in its direction can be reconciled with economic 

intuition.  

 

 

3.4. Data sources, transformations, and summary statistics 

3.4.1. Data sources 

In this section we describe the data set that we use for our empirical analysis, as well 

as the precautions and procedures taken to ensure the quality and integrity of the data set. 

The primary data source for the stock prices and the economic time series used in this 

study is Thompson Reuters Datastream and save for the Fama–French factors, all other data 

items are sourced from there. 

The data set covers all shares (Datastream instrument type = “equities”). Studies in the 

field, e.g. Campbell et al. (2000), Ang et al. (2006), use stocks listed on NYSE, AMEX and 

NASDAQ, and we have followed suit and included all of them in our sample. Specifically we 

require that the included equities have a primary listing on the New York Stock Exchange 

(henceforth “NYSE”), the NASDAQ Stock Market104  (henceforth “NASDAQ”), or the 

NYSE MKT exchange (henceforth “NYSE MKT” or “AMEX”105). NYSE, NASDAQ and 

NYSE MKT were respectively the first, the second and the third largest American stock 

exchanges.  

For all securities we require that the market should be the United States of America 

and the currency of the issue should be the United States Dollar. The limitation of the scope to 

the United States is intended to facilitate comparison with our reference studies, and also to 

alleviate problems with country-specific factors of assets returns stemming from 

country-specific policy and industry developments, as well as in recognition of the lower 

penetration of stock exchanges in the economies of the European countries. 

In terms of sectors we allow all sectors to our sample except the Nonequity Investment 

Instruments, which are a separate sector in Datastream, and Financials, which in such tests are 

usually excluded as a sector that pools together the risks of other sectors. 

                                                 

104 "NASDAQ" originally stood for National Association of Securities Dealers Automated 

Quotations 
105 The former name of NYSE MKT was the American Exchange (AMEX) 
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To recapitulate, the filters employed in Datastream to construct the list of companies 

used in this study where as follows: “Market” = United States; “Currency” = US dollar; 

“Exchange” = New York or NASDAQ or NYSE MKT; “Instrument Type” = equity; “Sector” 

= all sectors except “Nonequity Investment Instruments” and “Financials”. 

Available price data start from the beginning of 1973. Values for many of the features 

are missing, and roughly three quarters of the data is lost due to lack of information on one of 

the following items: unadjusted price (UP), number of shares (NOSH), price to book value 

(PTBV). In particular, series for price-to-book value start from January 1980. 

Market capitalisation for each security is calculated as the product of unadjusted price 

(UP) and number of shares issued (NOSH). 

A number of securities in Datastream have reported prices but apparently are not 

traded actively. Their presence in the dataset could affect the estimated return distributions. In 

order to mitigate the problem of presence of non-traded securities and bearing in mind that the 

likelihood the price of a traded share to be exactly the same as at the beginning of the period 

is very close to nil106, we excluded all monthly returns where the price at the end of the period 

equals exactly the price at the start of the period unless there is reported positive traded 

volume of that security (Datastream code ’VO’) in that month, i.e. 𝑉𝑂 > 0 (cases where VO 

is missing were treated as zero volume). 

                                                 

106 For a random variable with continuous distribution function the probability of some 

specific value occurring is exactly zero. Stock prices are discrete, but the step is very small so 

they are close to continuous, hence the probability of exactly the same price occurring at the 

end of month is rather small (even if the expected return for the month is zero), albeit not zero 

as in the continuous variable case. However, as long as such incidences of removal of returns 

are few and can be assumed to occur at random, they should not affect our conclusions, and so 

this procedure seems reasonable in order to ensure quality of the data set.  



 

 110 

 

  

Table 4: Average sector weights, Pearson correlations of sectors with the market, and cross-sector correlations 

The table shows average weights (“Avg. Weight”), Pearson correlation with overall market (“Corr. with market”) and correlation matrix between the sectors of the stock issuers. 

The data set includes securities from NYSE, AMEX and NASDAQ. The sub-indices are value-weighted. 

 

  Avg. 

Weight 
Corr. with 

market 
Basic 

Materials 
Consumer 

Goods 
Consumer 

Services 
Financials Healthcare Industrials Oil and 

Gas 
Other and 

Unclassi-

fied 

Techno-

logy 
Telecom-

munications 
Utilities 

Basic 

Materials  
0.057 0.824 1 0.723 0.731 0.733 0.572 0.859 0.655 0.61 0.595 0.451 0.447 

Consumer 

Goods  
0.079 0.851  1 0.831 0.819 0.782 0.816 0.496 0.631 0.548 0.535 0.594 

Consumer 

Services  
0.083 0.892   1 0.822 0.69 0.872 0.424 0.69 0.703 0.592 0.453 

Financials  0.057 0.875    1 0.7 0.839 0.522 0.615 0.58 0.56 0.568 

Healthcare  0.1 0.788     1 0.715 0.442 0.479 0.588 0.487 0.472 

Industrials  0.047 0.95      1 0.612 0.711 0.765 0.562 0.503 

Oil and Gas  0.125 0.664       1 0.373 0.42 0.34 0.513 

Other and 

Unclassified  
0.006 0.676        1 0.495 0.407 0.414 

Technology  0.119 0.81         1 0.498 0.234 

Telecommu

nications  
0.252 0.648          1 0.468 

Utilities  0.076 0.561           1 

Source: author’s calculations 
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3.4.2. Calculated covariates 

 

Excess returns (𝐸𝑅𝑖,𝑡 ) for security 𝑖  at time 𝑡  are calculated as the difference 

between the arithmetic return for the month and the interest on 3-month Treasury bills – 

middle rate (Datastream code FRTBS3M). The 3-month series is preferred to 1-month T-bills 

on practical grounds – the latter is available only for dates starting July 31, 2001. The formula 

for calculation of excess returns therefore is:  

 𝐸𝑅𝑖,𝑡 =
𝑃𝑖,𝑡+1−𝑃𝑖,𝑡

𝑃𝑖,𝑡
− 𝑟𝑓𝑡, 

where 𝑃𝑖,𝑡 is the adjusted price at time 𝑡 for asset 𝑖, and 𝑟𝑓𝑡 is the risk-free rate from 

Kenneth French’s data library. 

Return indices are calculated using value-weights for all securities in our sample for 

which there is information about market capitalisation. Table 4 lists the Pearson pairwise 

correlations across constituent sectors, and the average weight of each sectors. Because of the 

inclusion of NASDAQ in our sample, the weight of telecommunications and technology is 

high, with a quarter of all companies in the telecommunications business and more than 11% 

in technology stocks. 

As should be expected, the calculated value-weighted market excess return co-varied 

closely with the excess returns on the commonly used market indices. The correlation with 

S&P 500 is 0.9900, with Dow Jones Industrials – 0.9318, with NASDAQ Composite – 

0.9035, with NYSE Composite – 0.9793, and with MSCI USA – 0.9876. These values are 

consistent with expectations: the highest correlation was obtained for S&P 500, which is a 

value-weighted index of 500 leading stocks, and sometimes used as a proxy for the market 

index as a whole; similarly, the correlation with MSCI USA is also very high, consistent with 

the fact that it is a free float adjusted market capitalisation index, geared towards large and 

mid-cap US equities. The correlation with the Dow Jones Industrial Average, on the other 

hand, is somewhat lower, consistent with the significant differences in coverage and 

calculation (Dow Jones is a price-weighted index of 30 leading stocks). The correlation with 

NASDAQ Composite is lower as that index includes both US and non-US stocks (and 

equity-like instruments like ADRs, REITs, limited partnership interests, etc.) listed at the 

NASDAQ market.107 The correlation between the value-weighted excess returns calculated 

by us and those in Kenneth R. French Data Library2015) is 0.9981. 

                                                 

107 We discarded NASDAQ non-US equities from our sample. 
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Most studies in the field employ the CRSP prices augmented with Compustat financial 

data. The use of a single data set is known to introduce risk of data mining (data snooping). In 

that respect, the use of an alternative data source adds value to this study. On the other hand, 

the data coverage of the Datastream database raised some concerns in terms of poorer 

coverage in the earlier period as well as data errors. Ince and Porter (2006) investigate such 

differences between Datastream and CRSP/Compustat, identifying the strengths and 

weaknesses of Datastream data. They also propose filters in order to improve the quality of 

the estimates. In line with their suggestions, we implement those and some further measures 

in our sample. With appropriate filtering, Ince and Porter (2006) demonstrate that returns and 

moments based on Datastream close prices are very similar in magnitude to, and correlate 

highly with, those based on CRSP data. Nonetheless, we use market excess returns from 

Kenneth French’s online data library in order to limit differences caused by different coverage 

in the initial sample period. In our study we include only equities; all non-equity instruments 

like American depository receipts (ADRs), non-equity investment instruments, real estate 

investment trusts (REITs), shares of beneficial interest, preferred shares, and other non-equity 

instrument types are excluded. To limit the impact of data errors we have discarded from our 

sample returns exceeding 300%. 

Market capitalisation for each security is calculated as the product of unadjusted price 

(UP Datastream series) and number of shares issued (NOSH series). ln(𝐵/𝑀) is the natural 

logarithm of the ratio of book value of equity (M/B) at the end of the preceding month to the 

market price of equity108 , and is calculated from the price-to-book value series from 

Datastream (PTBV) where book values of equity are taken at a lag of six months to ensure 

that they are known to investors. 

𝑅𝑒𝑡𝑡 is the raw month-on-month return for each security at month 𝑡, and 𝑋𝑅𝑒𝑡𝑡 is 

the excess return for each security, calculated as the difference between 𝑅𝑒𝑡 and the risk-free 

rate for the respective month as retrieved from Kenneth French’s data library. 𝐼𝑅𝑒𝑡𝑡 is the 

idiosyncratic return calculated as the residual corresponding to month 𝑡 from the four-factor 

Fama–French–Carhart model estimated with monthly data from (𝑡 − 60) to (𝑡 − 1). 

                                                 

108 Practitioners usually use the reciprocal ratio of market capitalization to book value 

(price-to-book value). Since book value could be very close to zero, we follow to custom in 

academic literature to place book value in the numerator. We have also excluded cases with 

negative book value of equity, because for them the logarithm is not defined. 
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Table 5: Descriptive statistics, 1/1980–3/2013 

The table summarises the descriptive statistics for the sample used in the tests. ‘Ret (%)’ is the arithmetic return on the stock; ‘XRet (%)’ is the excess return on the stocks over 

the risk-free rate for the respective month as retrieved from Kenneth French’s data library; ‘IRet (%)’ is the idiosyncratic return calculated as the residual corresponding to 

month t from the four-factor Fama–French–Carhart model estimated with monthly data from (t-60) to (t-1). 

‘Beta’ is the stock beta calculated by portfolios constructed as in Fama and French (1992). ‘ln(Cap)’ is the natural logarithm of market capitalisation calculated as number of 

shares times the unadjusted price. ‘ln(B/M)’ is the natural logarithm of book value of equity as available at the end of the preceding month to market price of equity (B/M), and 

is calculated from the price-to-book value series from Datastream (PTBV) where book values of equity are taken at a lag of six months to ensure that they are known to 

investors. ‘Ret(-2, -7)’ is the cummulative return for the six months from (t-7) to (t-2); (t-1) is not included in order to control for return reversals. ‘Roll’ is the bid-ask spread 

calculated Roll’s model; Roll (1984).  

‘Mean (EW)’ and ‘Mean (VW)’ are the equally-weighted and the value-weighted values of the respective indicators. ‘St.dev.’ is the standard deviation; ‘Median’, ‘Q1’ and ‘Q3’ 

are the median and the first and third quartiles of the sample. ‘Skewness’ is the skewness coefficient for the sample. ‘Obs’ is the number of rows for which data is available.  

 

Variables   Mean (EW)   Mean (VW)   St.dev.   Median   Q1   Q3   Skewness   Obs  

Ret (%)   1.39   0.58   14.54   0.51   -5.79   7.34   1.75   863,999  

XRet (%)   1.05   0.32   14.54   0.19   -6.15   7.01   1.75   863,999  

IRet (%)   -0.18   -0.64   12.32   -0.64   -6.29   5.07   1.51   863,993  

Beta   1.20   1.00   0.31   1.18   0.98   1.44   0.08   863,999  

ln(𝐶𝑎𝑝)   5.87   9.81   1.91   5.76   4.45   7.15   0.31   863,999  

ln(𝐵/𝑀)   -0.71   -1.25   0.77   -0.63   -1.12   -0.22   -0.78   863,999  

Ret(-2, -7)   1.09   1.09   0.41   1.04   0.88   1.23   3.23   862,210  

Roll   6.88   4.28   4.24   5.81   4.08   8.4   2.74   863,970  

Source: author’s calculations 
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The CAPM proposes that the only factor explaining the cross-section of market 

returns is the market beta. The estimation of beta, however, is fraught with problems, and a 

principal one among those is the measurement errors in betas. In this study we measure 

systemic risk (𝐵𝑒𝑡𝑎) following the procedure proposed by Fama and French (1992) with 

minor modifications. In each month we calculate the betas using the previous 60 months 

(but no less than 30 months) of data, not including the current month. Stocks are then 

assigned to five quintile-size portfolios. Within each quintile-size portfolio, ten decile beta 

portfolios are formed. For calculation of the quintile breakpoints for size sorting and the 

decile breakpoints for beta sorting we exclude the NASDAQ and NYSE MKT shares (i.e., 

NYSE breakpoints). The beta for each of the 50 size-beta portfolios is calculated running 

full-period regression of the equally-weighted average monthly excess returns on the current 

and previous period market excess returns. Then 𝐵𝑒𝑡𝑎 was calculated as the sum of the 

slopes of the two market returns, which is intended to correct for non-synchronous trading, 

and that beta is assigned to all securities in those portfolios. 

Jegadeesh and Titman (1993) report that past returns are predictors of current 

performance (momentum effect), and following Fu (2009) we construct a return proxy equal 

to the cumulative gross return from months 𝑡 − 7 till 𝑡 − 2 inclusive, i.e. 𝑅𝑒𝑡(−2,−7) =

∏7𝑖=2 (1 + 𝑅𝑡−𝑖), where 𝑅 is the gross return; thus a cumulative decline of 20 per cent over 

the six-month period is recorded as 𝑅𝑒𝑡(−2,−7) = 0.8. Return in 𝑡 − 1 is not included, in 

order to ensure that the variable significance is not due to return reversals. Instead, return in 

month 𝑡 − 1 is used as a separate independent variable. 

Asset liquidity is discussed in the context of the cross-section of stock returns. Spiegel 

and Wang (2005) demonstrate that liquidity is inversely correlated with idiosyncratic risk. 

There is no single measure of volatility, and a number of measures are used in the literature. 

For example, Amihud and Mendelson (1986) propose that liquidity measured in terms of the 

bid-ask spread is desired by investors and therefore the less liquid shares should earn a 

premium. Fu (2009) measures idiosyncratic risk in terms of rolling average trading volume, as 

well as the coefficient of variation of traded volume. We estimate liquidity using Roll (1984) 

model-based estimator (𝑅o𝑙𝑙) of the spread, because the spread between the buy and sell sides 

of the market might be a less ambiguous measure of liquidity compared to traded volume, 

where arguably the free float instead of the total number of shares should be in the 

denominator. Roll (1984) proposes that the spread (𝑆 ) could be estimated from the 
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auto-covariance of prices as they bounced back and forth between the sell side and the buy 

side of the market:  

 𝑆 = {2√−𝐶𝑜𝑣(Δ𝑃𝑡, Δ𝑃𝑡−1) 𝑖𝑓 𝐶𝑜𝑣(Δ𝑃𝑡, Δ𝑃𝑡−1) < 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where 𝐶𝑜𝑣(. ) is the first order return covariance. The estimator is biased when the sample 

size is small and the frequency is low (less frequent than daily); therefore we estimate the 

spread using the daily returns from the past year. 

The descriptive statistics reported in Table 4 overall are similar to those reported in 

other studies like Fama and French (1992) and Fu (2009), which confirms that our sample is 

representative for the market. 

Earlier studies such as that of Fama and MacBeth (1973) identify idiosyncratic risk as 

the standard deviation of the residuals from the fitted market models:  

𝜎𝑜𝑙𝑠,𝑡
2 =∑

𝑇

𝑘=1

(𝜀𝑖,𝑡−𝑘)
2

𝑇 − 𝑑𝑓
, 

where 𝜀𝑖,𝑡−𝑘 denotes the idiosyncratic residual from the FFC model for stock 𝑖 in month 

(𝑡 − 𝑘) obtained from a regression estimated over the period (𝑡 − 60) until (𝑡 − 1). 𝑇 is 

the actual number of months for which information is available; thus 𝑇 is between 60 and 

30 (the minimum number of months required for estimation); 𝑑𝑓 was the residual degrees 

of freedom for the estimated model and equals the number of estimated parameters, so that 

𝑑𝑓 = 5 (four factors and an intercept). It is immediately clear from the specification that the 

return for period 𝑡  plays no role in the estimation of OLS idiosyncratic variance, 

𝜎𝑜𝑙𝑠,𝑡
2 .Clearly, the resulting estimates are strongly autocorrelated as the estimates are obtained 

using nearly-identical data sets – in two consecutive months there would be one month 

leaving the sample and one month entering the sample (rolling window design), or one period 

added to the sample (expanding window design). In our study idiosyncratic volatility 

(standard deviation) is obtained from the residuals of the rolling regressions with data ending 

at period (𝑡 − 1) and including 60 to 30 months of return (as available). These volatility 

estimates are denoted by 𝐼𝑉𝑡−1
𝑂𝐿𝑆; to avoid unnecessarily cluttering the notation we sometimes 

omit the time subscript, which is set to (𝑡 − 1) to remind us that the return at period 𝑡 was 

not incorporated in that estimate. 

The second measure of expected idiosyncratic volatility is estimated using 

GARCH(1,1) model with SGED innovations. The forecasts from that model are denoted by 

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

. The GARCH model is fitted using an expanding window containing all available 
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data up to the beginning of the month (i.e. end of 𝑡 − 1); similarly to Fu (2009), at least 60 

months of data109 were required in order to estimate the model and yield a forecast for 

month-𝑡 idiosyncratic volatility. No information from month-𝑡 is used in the estimation of 

any parameters of the model. Variance forecasts are obtained from the model fitted until (𝑡 −

1). Essentially this means that if idiosyncratic volatility is above its mean-reverting level, the 

model forecasts for month 𝑡 would be lower compared to the fitted variance for month (𝑡 −

1); the opposite would hold if month-(𝑡 − 1) variance is below the mean-reverting level. The 

existence of the mean-reverting level is ensured by the parameter constraints on the GARCH 

model (𝛼 + 𝛽 < 1, 𝛼 > 0, 𝛽 > 0). Thus our model is specified as follows:  

 (𝑟𝑖,𝑡 − 𝑟𝑓,𝑡) = 𝛽0 + 𝛽1(𝑟𝑀,𝑡 − 𝑟𝑓,𝑡) + 𝛽2𝑟𝑆𝑀𝐵,𝑡 + β3𝑟𝐻𝑀𝐿,𝑡 + 𝛽4𝑟𝑀𝑂𝑀,𝑡 + 𝜀𝑖,𝑡, 

 𝜀𝑖,𝑡 = √𝜎𝑖,𝑡
2 𝜈𝑖,𝑡, 

 𝜈𝑖,𝑡~𝑆𝐺𝐸𝐷, 𝔼𝜈𝑖,𝑡 = 0, 𝔼𝜈𝑖,𝑡
2 = 1 

 𝜎𝑖,𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑖,𝑡−1
2 , 

 𝛼 > 0, 𝛽 > 0, 𝛼 + 𝛽 < 1. 

The estimation of the parameters of the above model proceeds sequentially. First, the 

mean equation is estimated using OLS over the period from month 1 to month (𝑡 − 1), if at 

least 60  months of continuous data were available (expanding window design). The 

estimated series of residuals ( 𝜀𝑖,𝑡 , 𝑡 = 1… (𝑡 − 1) ) is then used to estimate the 

maximum-likelihood parameters of the volatility model. The fitted model produces the 

forecasts for month 𝑡 using the last idiosyncratic innovation for month (𝑡 − 1) and the 

fitted variance for month (𝑡 − 1). 

 

                                                 

109 In cases where a stock was not traded in a particular month, identified by either trading 

volume equal to zero or by zero change of the price in the month. Such deletions resulted in 

gaps of the series, and thus some infrequently traded securities were excluded from the 

criterion of 60 months of contiguous trading. This alleviates concerns that the finding of 

significance of idiosyncratic risk was driven by few securities with thin trading and are not 

representative for the market.  
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Table 6: Descriptive statistics for idiosyncratic volatility forecasts, 1/1980–3/2013 

The table reports the descriptive statistics for the calculated volatility forecasts. ‘𝐼𝑉𝑂𝐿𝑆’ is the volatility of the residual of rolling monthly regressions using thirty to sixty months 

of data, as available. ‘𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

’ is the idiosyncratic volatility from the daily data in the preceding month calculated using the residuals from Fama-French regressions with the 

daily data for the preceding month; for convenience the estimates are scaled to monthly frequency using √𝑇. ‘𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

’ is the forecasts from GARCH(1,1) model with SGED 

innovations estimated using expanding window comprising of at least sixty months of continuous data. ‘𝐼𝑉̂𝑎𝑟𝑚𝑎’ is expected volatility from ARMA(1,1) model fitted on the 

available series of 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

. ‘𝑚’ is the mean-reverting level of volatility implied by the fitted ARMA model. 

‘Mean (EW)’ and ‘Mean (VW)’ are the equally-weighted and the value-weighted values of the respective indicators. ‘St.dev.’ is the standard deviation; ‘Median’, ‘Q1’ and ‘Q3’ 

are the median and the first and third quartiles of the sample. ‘Skewness’ is the skewness coefficient for the sample. ‘Obs’ is the number of rows for which estimates are 

available. 

 

 Variables   Mean (EW)   Mean (VW)   St.dev.   Median   Q1   Q3   Skewness   Obs  

𝐼𝑉𝑂𝐿𝑆 (%)   12.22   7.64   6.72   10.54   7.51   15.19   1.63   863,993  

ln(𝐼𝑉𝑂𝐿𝑆)   2.37   1.94   0.50   2.36   2.02   2.72   0.18   863,993  

𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

 (%)   10.98   6.41   7.81   8.82   5.84   13.63   2.39   729,628  

ln(𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

)   2.20   1.70   0.62   2.18   1.76   2.61   0.15   729,628  

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 (%)   11.39   7.56   5.67   10.08   7.34   14.08   1.57   746,953  

ln(𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

)   2.32   1.94   0.46   2.31   1.99   2.64   0.16   746,953  

𝐼𝑉̂𝑎𝑟𝑚𝑎 (%)   11.61   6.58   6.45   9.97   7.00   14.52   1.64   812,920  

ln(𝐼𝑉̂𝑎𝑟𝑚𝑎)   2.32   1.79   0.51   2.30   1.95   2.68   0.17   812,920  

𝑚 (%)   13.41   7.68   6.93   11.84   8.25   16.90   1.43   812,793  

ln(𝑚)   2.48   1.95   0.49   2.47   2.11   2.83   0.13   812,793  

Spread   -0.20   -0.21   0.49   -0.24   -0.56   0.02   1.12   812,732  

Source: author’s calculations 
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𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

 is the previous month idiosyncratic volatility, calculated as the standard 

deviation of daily idiosyncratic residuals from the three-factor Fama–French model110 fitted 

on daily data in the previous calendar month (𝑡 − 1). We require at least 15 non-zero 

returns in the calculation month, save for September 2001, where only 12 trading days are 

required. Zero-return days are discarded in order to reduce the impact of infrequent trading on 

the volatility measure. 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

 is scaled to monthly frequency by multiplying by square root 

of the number of trading days in the respective month in order to ease comparison of 

regression slopes across volatility measures. 

The last measure of expected idiosyncratic volatility are the forecasts from the history 

of 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

 produced using ARMA(1,1) model: 

 ℎ𝑡 −𝑚 = 𝜙(ℎ𝑡−1 −𝑚) + 𝜃𝜀𝑡−1 + 𝜀𝑡, 

where 𝑚 , 𝜙  and 𝜃  are the parameters of mode. Parameter 𝑚  is also called the 

mean-revering level of volatility because when 𝜙 ∈ (0,1), the forecasted values of ℎ would 

converge to 𝑚, given enough time. In general, the values of 𝜙, 𝜃 ∈ (−1,1) ensure that the 

ARMA process is invertible.111 The unconditional expected value of the process equals 𝑚, 

𝔼(ℎ𝑡) = 𝑚, and 𝜙 controls the speed of mean-reversion. An alternative parametrisation for 

the process uses 𝜇 = 𝑚(1 − 𝜙)  instead of 𝑚 , giving the alternative form ℎ𝑡 = 𝜇 +

𝜙ℎ𝑡−1 + 𝜃𝜀𝑡−1 + 𝜀𝑡.  

As particular cases the specification admits constant expected volatility (𝜙 = 0, 𝜃 =

0) and random-walk volatility (𝜙 = 1, 𝜃 = 0). Stationarity requires that the parameters 𝜙, 𝜃 

of ARMA(1,1) be in the interval (−1,+1) . However, a negative value of 𝜙  (the 

mean-reversion parameter) implies that expected volatility oscillates around the 

mean-reverting level. Therefore we enforce the stricter limit for the mean-reversion 

parameter: 𝜙 ∈ [0,1) . A downside of the ARMA(1,1) approach is that the forecasted 

volatility may become negative. We discard from our sample those forecasts where volatility 

is non-positive (109 records) or exceeds 200% on a monthly basis (8 records), which is 

0.01% of the sample total of 812,920 forecasts. 

                                                 

110 The preference to the three-factor model was based on two considerations. Firstly, to be 

consistent with the approach of Ang et al. Secondly, in each month we have at most 23 daily 

returns, which warrants more parsimonious specification.  
111 The formulation of the ARMA process means that all observed values of ℎ𝑡 are function 

of the history of unobserved errors. If the process is invertible, then these errors can be 

represented as weighted sums of the observed realisations.  
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Overall, the measures of idiosyncratic risk that we considered in this study are fairly 

representative of the prevailing practice. Thus 𝐼𝑉𝑂𝐿𝑆 represents the filter-based measures; 

other examples of this class could be the Hodrick-Prescott filter used by Cao (2010) and Cao 

and Xu (2010), or 𝐼𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦 – the moving average of 𝐼𝑉𝑑𝑎𝑖𝑙𝑦, employed by Bali and Cakici 

(2008). GARCH(1,1) could be construed as representative of the GARCH-based models. 

𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

, the measure used by Ang et al. (2009, 2006) is a measure based on assumption of 

random-walk volatility, and in that respect also related to the Integrated GARCH model. 

Finally, 𝐼𝑉̂𝑎𝑟𝑚𝑎  is representative of the mean-reversion volatility hypothesis (stationary 

GARCH also falls in this category). We consider these four measures as forecasts for period-𝑡 

idiosyncratic variance. Table 5 provides summary statistics for the idiosyncratic volatility 

measures. 

The covariates employed in the studies of the cross-section of returns tend to be 

correlated. Such correlation is not only empirical regularity, but is also predicted from various 

theories. In Table 6 we provide summary statistics for the key idiosyncratic risk covariates 

broken down by the ten decile beta portfolios and the five quintile capitalisation portfolios. 

The table confirms that stocks with higher capitalisation have lower betas and lower 

idiosyncratic risk, and indeed the mean idiosyncratic risk of the high-capitalisation stocks was 

roughly half that of the low-capitalisation stocks. 
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Table 7: Mean volatilities by portfolios sorted by beta and capitalisation, 1980/7–2013/3 

The table reports the average volatilities of ten decile portfolios sorted by market beta (Panel A) and five quintile portfolios formed by market capitalisation (Panel B). ‘𝐼𝑉𝑂𝐿𝑆’ 

is the volatility of the residual of rolling monthly regressions using 30 to 60 months of data, as available. ‘𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

’ is the idiosyncratic volatility from the daily data in the 

preceding month calculated using the residuals from Fama-French regressions with the daily data for the preceding month. ‘𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

’ is the forecasts from GARCH(1,1) model 

with SGED innovations estimated using expanding window comprising of at least sixty months of continuous data. ‘𝐼𝑉̂𝑎𝑟𝑚𝑎’ is expected volatility from ARMA(1,1) model 

fitted on the available series of 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

. 

The table demonstrates the significant correlation between market capitalisation, beta and the various volatility forecasts. Thus, the volatility of the stocks in the highest-beta 

decile portfolio is between 5.45 and 7.77 percentage points higher compared to the lowest-beta portfolio. Similarly, the volatility of the lowest-capitalisation quintile portfolio is 

between 7.08 and 9.08 percentage points higher than the volatility of the highest-capitalisation stocks. 

 

Portfolio 𝑋𝑅𝑒𝑡  𝐵𝑒𝑡𝑎  ln(𝐶𝑎𝑝) 𝐼𝑉𝑂𝐿𝑆  𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 𝐼𝑉𝑡−1
𝐴𝑛𝑔

 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 

 Panel A: Portfolios sorted by Beta 

Low-beta 0.69  0.77  12.72  10.42  9.60  9.52  9.98  

2  0.86  0.82  12.78  9.46  9.14  9.21  9.65  

3  0.94  0.97  12.88  9.51  9.18  9.45  9.75  

4 0.95  1.03  12.89  9.94  9.48  9.80  10.12  

5 0.92  1.10  12.81  10.59  10.10  10.38  10.74  

6 1.14  1.17  12.83  11.11  10.15  10.77  10.88  

7  1.18  1.26  12.83  11.72  10.71  11.32  11.36  

8 1.02  1.33  12.82  12.43  11.30  11.85  11.92  

9  1.20  1.44  12.77  13.83  12.06  13.01  12.80  

High-beta  1.36  1.70  12.61  18.19  14.42  16.00  15.43  
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Portfolio 𝑋𝑅𝑒𝑡  𝐵𝑒𝑡𝑎  ln(𝐶𝑎𝑝) 𝐼𝑉𝑂𝐿𝑆  𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 𝐼𝑉𝑡−1
𝐴𝑛𝑔

 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 

 Panel B: Portfolios sorted by capitalisation 

Low-cap  1.46  1.29  11.19  15.60  14.81  14.46  15.74  

2  0.92  1.22  12.68  11.82  10.40  11.14  10.78  

3  0.79  1.18  13.46  10.19  9.00  9.78  9.21  

4  0.71  1.11  14.36  8.85  7.91  8.71  8.03  

High-cap  0.52  0.99  15.90  7.27  6.62  7.38  6.66  

Source: author’s calculations 
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3.5. Classification of volatility regimes 

The last methodological aspect that we would like to explore in this chapter is the 

identification of high-volatility episodes. The purpose of such classification of time periods is 

to examine the robustness of our results. For example, some of the relationships could hold 

only in low-volatility state, or the significance of some results could be due to outliers 

occurring in a high-volatility environment. 

The approach we take to identify such episodes is based on Fink et al. (2010), who 

identify high-volatility episodes in their sample by using a Markov chain with two states, 

where volatility in each state is assumed to be normally distributed with unknown mean and 

variance. 

Formally, let Π be a right stochastic112 matrix of transition probabilities whose 

element 𝜋𝑖,𝑗 is the probability of transition from state 𝑖 to state 𝑗 conditional on the system 

being in state 𝑖. The list of states is complete, i.e. there is no other state in which the system 

might be, hence the rows of the transition matrix should sum to 1. They assume that when the 

market volatility is in state 𝑖, market volatility is independently and identically normally 

distributed with some unknown parameters (that are to be estimated), i.e. 𝜎𝑚𝑎𝑟𝑘𝑒𝑡𝑁(𝜇𝑖, 𝜎𝑖). 

The parameters of that system (the matrix Π and the pairs (𝜇𝑖, 𝜎𝑖), ∀𝑖) could be estimated 

using the Baum–Welch algorithm (Baum et al.,1970), and the sequence of states of the market 

(the Viterbi path) at any point in time could be estimated using the Viterbi (1967) algorithm.  

Firstly, we estimate the above model with 2  states. 113  We calculate monthly 

volatilities of the DataStream Return Index (all sectors) from daily data as 𝜎𝑚,𝑡
2 =

21

𝑁
∑𝑖∈𝑡 𝑅𝑖

2, 

where 𝑖 ran over the days in month 𝑡, and 𝑁 was the number of days in month 𝑡. The 

calculated volatility of the index is displayed in Figure 2; the mean volatility is 0.04267, 

while the first, second and the third quartiles respectively equal 0.02868, 0.03637, and 

0.04809 . The maximum volatility of 0.2419  is observed in October 1987, and the 

second-highest volatility of 0.2259 occurred in October 2008. 

 

                                                 

112 A square matrix is right stochastic matrix if all its elements are non-negative real numbers, 

with each row summing to 1 
113 We implemented these calculations using the ‘RHmm’ package of R (Taramasco and 

Bauer (2013)) 
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Figure 3: Realised volatility of the market and volatility of the Hidden Markov Model 

with Three States 

  

Source: author’s calculations 

   

The estimates from the Hidden Markov Model with 2 states and normal distribution 

of volatilities are given in Table 8. The results suggest that the mean volatility in the 

high-volatility state (state 1) is more than twice the market volatility in the low-volatility 

state (state 2 ). Furthermore, the dispersion in the high-volatility state is in order of 

magnitudes higher than in the low volatility state. This result is consistent with the observed 

high peaks in the volatility chart, which imply that either higher number of states might be 

appropriate, or conditional distributions with heavier tails might be justified.  

We further note that out of 484 months used in the estimation (from January 1973 

until April 2013), the market is in the high-volatility state for 125 months, which constitutes 

more than a quarter of that period. Therefore, to further narrow down the list of highly volatile 

episodes, we estimate the same model with three states. The results are presented in Table 8; 

the high-volatility state prevails in 41 of the months, and the medium-volatility state – in 

another 181 months. The mean volatility in the high-volatility state is more than thrice the 

mean volatility in the low-volatility state and nearly twice as high as the volatility in the 

medium state. Interestingly, the transition matrix suggests that one should not expect 

transitions directly from state 1 to state 3, or from state 3 to state 1; such transitions can 

occur over the course of at least two months. 
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Table 8: Parameter estimates for Hidden Markov Model with two states and Normal 

distribution of volatilities in each state 

The table reports the parameters of a Hidden Markov Model fitted on the series of total market returns. The 

models assumed the existence of two volatility regimes – high-volatility (regime 1) and low-volatility (regime 

2). In each regime volatility is assumed to be independently and identically normally distributed with mean and 

variance of 𝜇i and 𝜎i
2. The transition matrix is Π = [𝜋i,j], where 𝜋i,j is the probability of transition from state 

i to state j. 

‘Estimate’ is the point estimate of the respective parameter, while ‘Std. Error’, ‘t value’ and ‘𝑃𝑟(> |𝑡|)’ are the 

standard error, the t-statistic and the p-value of the estimate. Parameters are estimated using the Baum–Welch 

algorithm.  

The result shows the existence of at least two clearly separated volatility regimes, as evidenced by the significant 

difference between 𝜇1 and 𝜇2 compared to the standard errors of the two estimates, and with significant 

volatility persistence as measured by 𝜋i,i, which range between 89.71% and 92.26%. 

 

   Estimate   Std. Error   t value   𝑃𝑟(> |𝑡|)  

𝜋1,1   0.8971   0.0345   26.012   0.0000  

𝜋1,2   0.1029   0.0345   2.985   0.0028  

𝜋2,1   0.0374   0.0119   3.146   0.0017  

𝜋2,2   0.9626   0.0119   81.059   0.0000  

𝜇1   0.0686   0.0033   20.514   0.0000  

𝜎1
2   0.0011   0.0000   238.109   0.0000  

𝜇2   0.0333   0.0006   59.535   0.0000  

𝜎2
2   0.0001   0.0000   92.141   0.0000  

Log Likelihood:   1363.13        

BIC Criterion:   -2682.98        

AIC Criterion:   -2712.26        

Source: author’s calculations 
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Table 9: Parameter estimates for Hidden Markov Model with three states and Normal 

distribution of volatilities in each state 

The table reports the parameters of a Hidden Markov Model fitted on the series of total market returns. The 

models assumed the existence of three volatility regimes – high-volatility (regime 1) and low-volatility (regime 

3). In each regime volatility is assumed to be independently and identically normally distributed with mean and 

variance of 𝜇i and 𝜎i
2. The transition matrix is Π = [𝜋i,j], where 𝜋i,j is the probability of transition from state 

i to state j. 

‘Estimate’ is the point estimate of the respective parameter, while ‘Std. Error’, ‘t value’ and ‘𝑃𝑟(> |𝑡|)’ are the 

standard error, the t-statistic and the p-value of the estimate. Parameters are estimated using the Baum–Welch 

algorithm.  

The result shows the existence of three clearly separated volatility regimes, as evidenced by the significant 

difference between 𝜇1, 𝜇2 and 𝜇3 compared to the standard errors of the estimates, and with significant 

volatility persistence as measured by 𝜋i,i, which range between 72.80% for the high-volatility regime and 

93.03% in the low-volatility regime. 

  Estimate   Std. Error   t value   𝑃𝑟(> |𝑡|)  

𝜋1,1   0.7280   0.1185   6.144   0.0000  

𝜋1,2   0.2720   0.0897   3.032   0.0024  

𝜋1,3   0.0000   0.1495   0.000   1.0000  

𝜋2,1   0.0798   0.0244   3.270   0.0011  

𝜋2,2   0.8228   0.0364   22.602   0.0000  

𝜋2,3   0.0975   0.0279   3.498   0.0005  

𝜋3,1   0.0000   0.0150   0.000   0.9998  

𝜋3,2   0.0697   0.0193   3.611   0.0003  

𝜋3,3   0.9303   0.0199   46.659   0.0000  

𝜇1   0.0919   0.0074   12.404   0.0000  

𝜎1
2   0.0015   0.0000   86.926   0.0000  

𝜇2   0.0466   0.0008   59.801   0.0000  

𝜎2
2   0.0001   0.0000   71.917   0.0000  

𝜇3   0.0297   0.0005   56.319   0.0000  

𝜎3
2   0.0000   0.0000   70.808   0.0000  

Log- Likelihood:   1440.51        

BIC Criterion:   -2794.47        

AIC Criterion:   -2853.02        

Source: author’s calculations 
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Table 10: Periods with high market volatility 

The table summarises the episodes of high market volatility as identified by the three-state hidden Markov chain 

model. The model is estimated with the Baum–Welch algorithm, and the sequence of states is estimated using 

the Viterbi algorithm. Months with high volatility have estimated mean volatility of 9.19% with standard 

deviation of 3.87%. Brief comments on the market events that were associated with the market turbulence are 

added for clarity.  

 

 Start   End   Comments  

July 1974   October 1974  The crisis of 1973-1974 followed shortly after the termination of 

the convertibility of US dollars to gold, one of the tenets of the 

Bretton Woods system, and the start of the first oil crisis in 

October 1973. The stock market crash started in November 1973 

with DJIA losing 14% in that month and S&P 500 losing 7%; the 

fall lasted 12 month ending October 1974, with DJIA and S&P 500 

losing 30.4% and 36.8%.114  

October 1987   January 1988  On October 19, 1987, the Dow Jones recorded the largest fall in a 

single day, falling 22.6%. S&P 500 fell 12.1% in October and 

12.5% in November. The fall resulted in brokers extending 

significant credits to their customers to finance margin calls. The 

Fed stepped in to support the financial system by lending to banks, 

expanding the monetary base. Throughout the remainder of the 

year stock prices remained volatile.115  

October 1997   October 1997  A short volatility episode related to the Asian financial crisis. 

Consequently, on October 27, 1997, DJIA fell 7.18%, scoring its 

twelfth biggest daily percentage loss. The shock was short-lived, 

however, and on the next day DJIA recovered more than 60% of 

the previous day loss.  

August 1998   October 1998  On August 17, 1998 the government of the Russian Federation 

devalued the Ruble, defaulted on domestic debt, and declared a 

90-day moratorium on external debt repayment. At the end of 

August, DJIA fell 11.5% in three days, and the market remained 

depressed until being stimulated by a series of interest rate cuts in 

October  

                                                 

114 Mishkin and White (2002) 
115 Ibid. 
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 Start   End   Comments  

January 2000   May 2000  The dot-com bubble of 1997–2000 reached its peak on March 10, 

when NASDAQ Composite peaked at more than twice its value a 

year earlier. The rapid decrease in value of dot-com shares 

continued until 2001 as many tech companies that had spent their 

cash but were failing to make a profit found it difficult to raise 

more funds on the stock exchange.  

October 2000   April 2001  The period was marked by continued decline of tech stocks 

coupled with a slowing economy that moved into recession in 

March 2001  

September 

2001  

 September 

2001  

A short-term volatility following the terrorist attacks on September 

1, 2001  

July 2002   October 2002  The episode was a continuation of the bear market that started in 

2000, with both NASDAQ and DJ scoring three consecutive years 

of losses. In July 2002 volatility surged when DJ fell for 11 of 12 

consecutive days, and then slid to 7700, then recovered to just 

above 9000 in August, and then fell back to below 7300 in 

October.  

September 

2008  

 May 2009  In September 2008 the subprime financial crisis intensified; in 

early September the US federal government had to bail out Fannie 

Mae and Freddie Mac, guarantors for many sub-prime mortgages. 

On September 15, Lehman Brothers, an investment bank with large 

exposure to subprime assets, filed for bankruptcy, prompting 

worldwide financial panic. By the end of the month, two more 

American banks collapsed – Washington Mutual and Wachovia.116  

May 2010   June 2010  Continuing problems of Greece prompted its downgrade by 

Moody’s (to ’A3’) and Standard & Poor’s (to ’BB-’); at the start of 

May the Eurozone agreed on a large bailout package for Greece in 

return for structural reforms and austerity measures  

                                                 

116 Kingsley (2012) 
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 Start   End   Comments  

August 2011   November 

2011  

Continuing problems in the Eurozone (bailout of Portugal in May, 

second bailout of Greece in July, concerns over risks for contagion 

to Spain and Italy) and the US (downgrade of the sovereign rating)  

Source: the author 

 

The transition probabilities reported in Table 9 provide a good illustration of two of 

the stylised facts on volatility forecasting formulated by Engle and Patton (2001). For 

example, the largest entries in the transition matrix are located along the main diagonal (𝜋1,1, 

𝜋2,2, 𝜋3,3). Therefore, the current state is likely to persist into the following period. At the 

same time, the probability of extreme transitions (from high volatility to low volatility, 𝜋1,3, 

or from low volatility to high volatility regime, 𝜋3,1) is negligibly low. This structure of the 

transition matrix provides a demonstration of the persistence property of volatilities. 

Similarly, volatilities are said to be mean-reverting, and that can be seen in the transition 

matrix as well. Indeed, if we identify the medium state as the mean level of volatility (and it is 

the closest of the three states to the unconditional mean), then we see that the second highest 

transition probabilities of the high- and low- states are those for transition towards the 

medium state (𝜋1,2 , 𝜋3,2). Another common observation concerning typical patterns of 

volatility dynamics is also evident in the transition matrix: the periods of low volatility are 

more persistent than higher volatility states, which in our case results in 𝜋3,3 > 𝜋2,2 > 𝜋1,1. 

Such a finding is consistent with the observations of Friedman and Liabson (1989), who argue 

that price movements comprise of ordinary and extraordinary movements, and that their 

evidence concerning volatility persistence suggests that it is due to the ordinary component of 

returns.  

Table 10 lists the high-volatility periods identified by the hidden Markov model with 

three states, together with short comments on market events that unfolded in the respective 

periods and could explain the triggers for the respective turbulence episode. 

3.6. Conclusions 

In this chapter we motivated our choice of methodology and we described the 

methodology for performing the tests implemented for this study. The research problem could 

be tackled by various approaches using a wide range of available methods. We motivated our 
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choice of a deductive, quantitative, statistical methodology. The choice of a deductive method 

was motivated by the significant risk of data mining is a larger set of companies were 

involved in the study, as well as concerns of the external validity of our results in case of a 

deeper focus on a small set of companies. The focus on external validity, combined with the 

continuous nature of the explained variable (stock returns), motivated also our choice of 

statistical methods; the limitation of that approach was the loss of detailed information of the 

diverse aspects of risk and the risk assessment workflow of institutional and individual 

investors. On the other hand, that allowed our study to cover a substantial part of the 

investment universe and to span a period of over three decades.  

As a primary data source we use Thomson Reuters Datastream, augmented with factor 

returns from Kenneth French’s database. Idiosyncratic returns are measured relative to the 

four-factor Fama–French–Carhart model estimated on a rolling window of length 60 months 

(but not less than 30 months), ending at month (𝑡 − 1) in order to avoid look-ahead bias. 

Idiosyncratic volatilities are calculated in four different methods, based on the prevailing 

practice, with certain refinements that were motivated in this chapter. In particular, we use the 

following volatility estimators: (i) idiosyncratic return from monthly OLS regressions; (ii) 

GARCH(1,1) with Skew Generalised Error Distribution estimated on an expanding window 

of length at least 60 months and ending at month (𝑡 − 1); (iii) daily idiosyncratic volatility 

from the previous month (Ang et al); (iv) forward-looking estimates of future daily volatility 

using the past history of estimator (iii). 

The predictive accuracy of idiosyncratic volatility measures is evaluated primarily 

through Mincer-Zarnowitz regressions to avoid scaling between different time frequencies 

impacting the ranking of predictive accuracy. As true volatilities we use the squared monthly 

returns and the sum of daily squared returns filtered from a daily EGARCH model fitted on 

the entire available series for each security. 

The Fama–Macbeth methodology is selected to test whether idiosyncratic volatilities 

predict the cross-section of returns. We use individual securities as assets in the Fama and 

MacBeth (1973) regressions. Standard errors are calculated using the Newey and West (1987) 

adjustment with four lags. 

Overall, in this chapter we set out our methodology to quantify idiosyncratic risk and 

to measure its correlation with market returns. The next chapter presents the results from the 

tests described in this chapter. In particular, it will compare alternative volatility forecasts in 

terms of their predictive accuracy, the correlation between idiosyncratic risk and stock 

returns, and robustness tests.  
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4. Idiosyncratic Risk and the Cross-Section of 

Stock Returns: Empirical Findings 

 

4.1. Introduction 

In this chapter we present our empirical finding concerning the link between 

idiosyncratic risk and stock returns using the methods presented in Chapter 3. Firstly, we shall 

examine which of the four idiosyncratic risk estimators from Section 3.4 is the best predictor 

of future (next-period) idiosyncratic volatility. In the last chapter we suggested that the 

estimators using measurements from daily returns should offer superior performance, a 

hypothesis that we test in Section 4.2. Additionally, we shall also test the stationarity of 

volatility processes. This was previously tested by Fu (2009); our goal in this section is to 

confirm his findings, and more importantly, to compare qualitatively the forecasting methods. 

If volatilities are overwhelmingly stationary, we should expect that good future forecasts 

should share that property. If they do not, then it would seem that the forecasts do not follow 

faithfully changes in volatilities over time.  

In Section 4.3 we shall examine how the various volatility estimators perform as 

predictors of the cross-section of returns. If expected idiosyncratic risk truly predicts returns, 

then we should expect that the better predictors of future volatility should result in more 

reliable forecasting of returns. On the other hand, the empirical tests need to operationalize 

the concept of idiosyncratic risk from the model economy to the actual financial markets. In 

the model economy idiosyncratic volatility is fixed and known to all participants. In the 

financial markets, it is neither constant, nor known. We abstract from the problem how 

investors learn the volatilities of securities and what the impact of differences in forecasts 

(non-homogeneous beliefs) is on equilibrium returns. Instead, we focus on how the 

stationarity of volatilities and their reversion to their means might be incorporated in the 

investor decision-making and, hence, in returns. In Section 4.3 we shall test if expected 

volatility for the month predicts the cross-section. From a certain perspective, those tests 

could be based on the counterfactual assumption that volatilities have unit root and our best 

forecast of all future volatilities is the next-period volatility, i.e. these tests do not incorporate 

any information on future volatility other than the one-step forecast.  
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In Section 4.4 we build on the conflicting evidence from the different models (reported 

in Section 4.3) and explore how the mean-reverting level of volatility explains the 

cross-section of returns. In the simple autoregressive context the expected future path of 

volatilities could be summarised in terms of just three parameters: the starting value of 

volatility, the mean-reverting level, and the speed of mean-reversion. In Section 4.3 we 

examine how next-period volatility (which is essentially the starting point of the expected 

volatility path) predicts the cross-section of returns, and in Section 4.4 we examine the 

significance of the mean level. It might be supposed that the speed of mean-reversion could 

also play some part in explaining the cross-section, but our exploratory analysis (not reported 

here) did not support that hypothesis. Therefore, in Section 4.4 we report how the 

mean-reverting level of volatility explains the cross-section of returns. In the section we also 

report various robustness tests for our result. Indeed, an argument could be made that the 

predictive performance of the mean-reverting level is due solely to some particular subsection 

of the population, which experiences some short-lived positive or negative momentum. 

Therefore, we examine whether our results are robust across various subsections of the 

population, thereby eliminating some hypothesised explanations of our results. Section 4.5 

extends those tests further by performing additional tests for omitted factor, using portfolio 

alphas, as well as daily data. These tests are somewhat different from the other tests reported 

in this study in terms of methodology. Therefore, they do not rely solely on the methodology 

laid out in Chapter 3, but also employ additional models relevant only for those sections (e.g. 

statistical factor analysis and Component GARCH); the specific information on these tests is 

developed in the section where the test is performed.  

Finally, Section 4.6 concludes the presentation of empirical findings.  

4.2. Comparison of volatility forecasts 

The first question that we address is the quality of forecasts yielded by the selected 

methods for volatility forecasting in the domain of idiosyncratic risk. Such an analysis 

requires two inputs: estimates of the ex ante expected returns, and measurements of the ex 

post realised volatility. 

The rationale and the methodology for calculation of the four selected volatility 

forecasts is described in the preceding chapter. Let 𝐼𝑉𝑜𝑙𝑠 denote the standard deviation of the 

residuals from the Fama–French–Carhart model fitted on a rolling window of 60 (but no less 
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than 30) months ending at (𝑡 − 1). Let 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 denote the expected volatility estimated 

using GARCH(1,1) with SGED (skewed generalised error distribution), where parameters are 

estimated on expanding windows containing all available data up to the beginning of the 

month; at least 60 months of data are required. Let 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

 denote the previous month 

idiosyncratic volatility, calculated as the standard deviation of daily returns in the previous 

calendar month, requiring at least 15 non-zero returns in the preceding month.117  Let 

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 denote the forecast from the ARMA(1,1) model calculated using the available history 

of 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

; the corresponding mean-reverting level implied by the ARMA model is denoted 

by 𝑚. The summary statistics for 𝐼𝑉𝑂𝐿𝑆, 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

, 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

, 𝐼𝑉̂𝑎𝑟𝑚𝑎 and 𝑚, together with 

their less-skewed log-transforms, are provided in Table 6 on p. 117. 

As an initial exploratory analysis we calculate the cross-sectional correlation between 

the idiosyncratic volatility forecasts and the proxies for the realised (ex post) variance. As 

proxies for the unobservable true variance we use: (i) the squared idiosyncratic return 

(𝐼𝑅𝑒𝑡𝑖,𝑡
2 ); (ii)  the in-sample volatility (𝐼𝑉𝑖,𝑡

𝑔𝑎𝑟𝑐ℎ
) filtered from the full-sample GARCH(1,1) 

model with SGED shocks, estimated with monthly data; and (3) the mean idiosyncratic 

volatility filtered in-sample from daily data (𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

) and averaged by months.118 For each 

month we calculate the Spearman’s rank-correlation coefficient between each pair of proxies 

of true (ex post) volatility and expected (ex ante) volatility.119  The preference to the 

Spearman’s rank-correlation over the standard Pearson’s coefficient120 is driven by a desire to 

mitigate the possible impact of outliers on the estimated correlation coefficients. 

  

                                                 

117 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

 is scaled to monthly frequency by multiplying by square root of the number of 

trading days in the respective month in order to ease the comparison of coefficients across 

volatility measures. 
118 Expected (forecasted) values are marked by a hat, e.g. 𝐼𝑉̂, while the true (ex post) realised 

volatilities have no hat, i.e. 𝐼𝑉. To avoid cluttering the notation, sometimes we omit the hats 

as well as security- and time-subscripts if there is no risk of misunderstanding.  
119 The Spearman’s rank-correlation coefficient equals the Pearson’s correlation coefficient 

calculated in the ranks instead of the values. In case of no ties, the co-efficient can also be 

written as: 

 𝜌 = 1 −
6∑𝑛𝑖=1𝑑𝑖

2

𝑛(𝑛2−1)
, 

where 𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖 is the difference between the ranks of the two variables. The coefficient 

measures the degree of linear dependence between the variables and the coefficient ranged 

between −1 and +1.  
120 𝜌 =

𝑐𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
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Table 11: Average cross-sectional Spearman rank correlations of idiosyncratic 

volatilities 

The table reports the correlation coefficients between three measures of true volatility and five estimates of 

expected volatility. |𝐼𝑅𝑒𝑡𝑖,𝑡| measures realised volatility as the absolute value of idiosyncratic returns. 𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

 

infers realised volatility from filtered values from GARCH(1,1) using the full series of monthly returns for each 

stock. 𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

 infers realised volatility from filtered values from EGARCH(1,1) using the full series of daily 

returns for each stock.  

‘𝐼𝑉𝑂𝐿𝑆’ is the volatility of the residual of rolling monthly regressions using 30 to 60 months of data, as available. 

‘𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

’ is the idiosyncratic volatility from the daily data in the preceding month calculated using the residuals 

from Fama-French regressions with the daily data for the preceding month. ‘𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

’ is the forecasts from 

GARCH(1,1) model with SGED innovations estimated using expanding window comprising of at least sixty 

months of continuous data. ‘𝐼𝑉̂𝑎𝑟𝑚𝑎’ is expected volatility from ARMA(1,1) model fitted on the available series 

of 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

. 

The table suggests that both ex ante (expected) and ex post (realised) volatility tend to cluster together based on 

their calculation frequency. Thus, 𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

 calculated from monthly data correlates more closely with 𝐼𝑉̂𝑡
𝑜𝑙𝑠 

and 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 than with the other estimator of realised volatility - 𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

. Likewise, 𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

, calculated 

from daily returns, correlates more closely with 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 and  𝐼𝑉̂𝑡−1

𝑑𝑎𝑖𝑙𝑦
. 

 

   𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

   𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

   𝐼𝑉̂𝑡
𝑜𝑙𝑠   𝐼𝑉̂𝑡

𝑔𝑎𝑟𝑐ℎ
   𝐼𝑉̂𝑡−1

𝑑𝑎𝑖𝑙𝑦
   𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎   𝑚  

|𝐼𝑅𝑒𝑡𝑖,𝑡|   0.35   0.37   0.34   0.33   0.27   0.32   0.29  

𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

     0.81   0.86   0.90   0.67   0.81   0.76  

𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

       0.78   0.79   0.83   0.91   0.81  

𝐼𝑉̂𝑡
𝑜𝑙𝑠         0.92   0.65   0.81   0.81  

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

           0.66   0.82   0.81  

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

             0.85   0.66  

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎               0.85  

Source: author’s calculations 

  

Spearman’s rank correlations for the proxies of the true volatility and the volatility 

forecasts are reported in Table 11. Consistent with the assertion that squared monthly 

idiosyncratic returns are a noisy proxy of monthly variance121, we find that they correlate 

poorly with the rest of the proxies of true volatility. We find that |𝐼𝑅𝑒𝑡𝑖,𝑡| correlation with 

the other two measures of true (ex post) volatility – 𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

 and 𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

 – is consequently 

low and stood at just over 1/3. 𝐼𝑉̂𝑡
𝑜𝑙𝑠, 𝐼𝑉̂𝑡

𝑔𝑎𝑟𝑐ℎ
 and 𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎 all have fairly close correlation 

coefficients with monthly returns (correlations in the range 0.32  - 0.34 ), while the 

                                                 

121 Since 𝐼𝑅𝑒𝑡𝑖,𝑡
2  is an estimator of variance, |𝐼𝑅𝑒𝑡𝑖,𝑡| is an estimator of volatility (standard 

deviation).  
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correlation with lagged volatility (𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

, the estimator of Ang et al. (2006)) scores worst 

(0.27). 

The other two estimators of true ex post volatility tend to be more tightly correlated 

(average correlation of 0.81) – certainly a high correlation as such, but an even higher 

correlation could be expected for two ex post estimates of the same unobservable variable – 

the idiosyncratic volatility. 𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

, the ex post volatility from GARCH(1,1), in fact 

correlates more closely with the historical OLS volatility and forecasts from GARCH(1,1) 

models (mean cross-sectional correlations of 0.86 and 0.90 respectively) than with the 

other EGARCH(1,1) ex post measurement (0.81). One possible explanation could point to the 

persistence of GARCH volatilities, especially when series lengths are below 10 years – 120 

monthly observations, which is reflected in the long half-life122 of many of the estimates. The 

median half-life for the shares in our sample123 is 35.25 months, i.e. almost 3 years. This 

shows that for many companies GARCH(1,1) with monthly data produces persistent volatility 

forecasts. This is in contract with the typical range of persistence of daily volatility series. 

This latter point is also demonstrated by the wider interquartile distance for EGARCH(1,1) 

with daily data (7.79 percentage points) compared to the interquartile distance for the true 

volatilities estimated from GARCH(1,1) with monthly data ( 6.24  p.p.). Against that 

backdrop, it should not come as a surprise that the correlation of the EGARCH-measure of 

true volatilities correlates more closely with the forecasts from ARMA(1,1) and 𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

, for 

the two of which monthly volatilities are inferred from higher-frequency (daily) returns 

(correlations of 0.91 and 0.83 respectively), than with the other GARCH measure of true 

volatility that employed only monthly returns (correlation 0.81). Overall, while the two 

measures of true ex post volatilities yield high average cross-sectional correlations, each of 

these measures tends to favour a forecasting method that was estimated from data with the 

same frequency as the data underlying the measure of true volatility. A similar pattern is 

observed for the correlations of volatility forecasts. The forecasts that are based on monthly 

returns (the OLS historical estimator, and the GARCH(1,1) forecasts) tend to correlate more 

closely with each other than with the forecasts based on estimates from daily data (𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

 

                                                 

122 The half-life (the number of months necessary for volatility to close one half of the spread 

between current volatility and the unconditional mean of the process) for the GARCH(1,1) 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  , where 𝛼 + 𝛽 < 1 and 𝛼, 𝛽 > 0 equals 

ln (1 2⁄ )

ln(𝛼+𝛽)
. 

123 All companies having the same weight irrespective of the number of monthly returns 

available 
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and the ARMA(1,1) forecasts). The correlation pattern for the mean-reverting level of 

volatility is also interesting. Mean-reverting volatility correlates most closely with 

ARMA(1,1) forecasts. This reflects a material time-variation of the mean-reverting 

volatilities, which are updated with arrival of new information. Yet mean-reverting volatility 

correlates much closer with the monthly-frequency volatility forecasts (0.81) than with Ang’s 

historical volatility (0.66), consistent with the hypothesis that the mean-reverting level 

estimates the equilibrium to which volatility would revert, provided that there was no change 

in the scale of the distribution of idiosyncratic innovations. 

Spearman’s rank-correlation coefficient provides an insight into the degree of 

similarity of the ranking of shares by the different estimators of volatility. However, they 

provide limited insight into how accurately the ex ante forecasts predicted the ex post realised 

returns. In order to avoid the complications of scaling volatilities estimated from 

higher-frequencies to lower-frequencies, we choose to employ Mincer-Zarnowitz regressions 

of the form  

 ℎ𝑖,𝑡 = 𝑎𝑖 + 𝑏𝑖𝜎̂𝑖,𝑡
2 + 𝑒𝑖,𝑡, (14) 

where ℎ𝑖,𝑡 was some of the measures of realised variance (squared volatility), and 𝜎̂𝑖,𝑡
2  is the 

tested variance forecasting method. A valid test of the model above pre-supposes that ℎ𝑖,𝑡 

and 𝜎̂𝑖,𝑡
2  are stationary.  
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Table 12: Dickey–Fuller tests for ex ante and ex post volatility estimates 

The table reports the results from Dickey-Fuller test statistics for estimators of realised (ex post) volatility - 

𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

 and 𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

 - and expected (ex ante) volatilities - 𝐼𝑉̂𝑡
𝑜𝑙𝑠, 𝐼𝑉̂𝑡

𝑔𝑎𝑟𝑐ℎ
, 𝐼𝑉̂𝑡−1

𝑑𝑎𝑖𝑙𝑦
, 𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎, and 𝑚. The 

tests are performed separately for each security, for which there are at least 24 months of data for the respective 

indicator. Both stationarity of the volatilities (Panel A) and natural logarithm of volatilities (Panel B) are tested. 

For each series, we have calculated the estimate of the coefficient of the autoregressive term (𝛾(∙)) and the 

Dickey-Fuller test statistic (𝑡(𝛾)). For each set of tests we report the number of stocks that were tested (N), as 

well as the mean (‘Mean’), median (‘Median’), and first and third quartiles (‘Q1’ and ‘Q3’) for all calculated 

values of 𝛾(∙) and 𝑡(𝛾). The share of series for which the unit root null hypothesis is rejected at 1% confidence 

level is reported in ‘UR reject (%)’. 

The table demonstrates that the unit root hypothesis is rejected for about half of all realised volatilities 𝐼𝑉𝑖,𝑡
𝑔𝑎𝑟𝑐ℎ

 

and 𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

. A likely reason is that these estimates are filtered from actual data series and some of the 

volatility is smoothed out. The most direct measure of volatility that does not involve such smoothing - 𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

 

– shows that the unit root hypothesis is rejected for 95.37% of all stocks in Panel A and 93.96% of all stocks in 

Panel B. The forecasts obtained from monthly data - 𝐼𝑉̂𝑡
𝑜𝑙𝑠 and  𝐼𝑉̂𝑡

𝑔𝑎𝑟𝑐ℎ
 - demonstrate persistence of volatility 

forecasts and for these estimators the unit root hypothesis is rejected for a low share of series. Such a mismatch 

with the persistence properties of the true series also suggests that these forecasts could be inferior predictors of 

true volatility and may smooth month-on-month changes in volatility.  

 

 Variable   𝑵   Mean   Median   Q1   Q3   UR reject (%)  

Panel A: 𝐼𝑉𝑡+1 − 𝐼𝑉𝑡 = 𝛾0 + 𝛾𝐼𝑉𝑡 + 𝜀𝑡 

𝛾(𝐼𝑉𝑡
𝑔𝑎𝑟𝑐ℎ

)   4489   -0.06   -0.03   -0.08   -0.00   54.24  

𝑡(𝛾)     < −10   -3.94   < −10   -2.10    

𝛾(𝐼𝑉𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

)   5507   -0.28   -0.19   -0.40   -0.09   53.50  

𝑡(𝛾)     -4.12   -3.65   -5.18   -2.55    

𝛾(𝐼𝑉̂𝑡
𝑂𝐿𝑆)   5556   -0.03   -0.01   -0.04   -0.00   1.82  

𝑡(𝛾)     -1.11   -1.13   -1.74   -0.49    

𝛾(𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

)   4735   -0.14   -0.10   -0.19   -0.05   27.79  

𝑡(𝛾)     -2.86   -2.55   -3.65   -1.79    

𝛾(𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

)   5294   -0.65   -0.64   -0.79   -0.51   95.37  

𝑡(𝛾)     -7.35   -7.05   -8.97   -5.51    

𝛾(𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎)   5398   -0.24   -0.15   -0.31   -0.08   43.53  

𝑡(𝛾)     -3.60   -3.25   -4.42   -2.38    

𝛾(𝑚̂𝑡
𝑎𝑟𝑚𝑎)   5398   -0.09   -0.03   -0.09   -0.01   14.80  

𝑡(𝛾)     -2.16   -1.80   -2.76   -1.03    



 

 

 

 

137 

 Variable   𝑵   Mean   Median   Q1   Q3   UR reject (%)  

Panel B: ln(𝐼𝑉𝑡+1) − ln(𝐼𝑉𝑡) = 𝛾0 + 𝛾ln(𝐼𝑉𝑡) + 𝜀𝑡 

𝛾(𝐼𝑉𝑡
𝑔𝑎𝑟𝑐ℎ

)   4489   -0.06   -0.02   -0.07   -0.00   41.68  

𝑡(𝛾)     < −10   -2.75   < −10   -1.27    

𝛾(𝐼𝑉𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

)   5507   -0.26   -0.18   -0.36   -0.09   48.25  

𝑡(𝛾)     -3.82   -3.41   -4.90   -2.35    

𝛾(𝐼𝑉̂𝑡
𝑂𝐿𝑆)   5556   -0.03   -0.01   -0.04   -0.01   1.48  

𝑡(𝛾)     -1.07   -1.12   -1.69   -0.48    

𝛾(𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

)   4735   -0.13   -0.08   -0.16   -0.04   22.94  

𝑡(𝛾)     -2.61   -2.39   -3.35   -1.67    

𝛾(𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

)   5294   -0.61   -0.59   -0.73   -0.46   93.96  

𝑡(𝛾)     -6.84   -6.59   -8.32   -5.12    

𝛾(𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎)   5398   -0.22   -0.13   -0.28   -0.06   35.61  

𝑡(𝛾)     -3.32   -2.94   -4.08   -2.12    

𝛾(𝑚̂𝑡
𝑎𝑟𝑚𝑎)   5398   -0.08   -0.03   -0.09   -0.01   12.88  

𝑡(𝛾)     -2.01   -1.70   -2.56   -0.93    

Source: author’s calculations 

  

In Table 12 we provide results from the Dickey and Fuller (1979) test for unit root.124 

The null hypothesis is presence of unit root (i.e., 𝛾 = 0). If the process has unit root, then the 

errors have permanent impact on idiosyncratic volatilities, i.e. they did not die out over time. 

The table highlights some salient features of the various estimators of ex ante and ex post 

volatilities. 

We find values of 𝛾(𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

) that are quite similar to those reported by Fu (2009). In 

our sample we reject the null hypothesis in 95% of all shares, compared to approx. 90% in Fu, 

which may be due to the different composition and time-span of the two samples. On the 

other hand, the other two measures of ex post volatility – the one based on GARCH with 

monthly data and the other using EGARCH with daily data estimated for the full length of the 

data series – resulted in volatility measures that reject the unit root hypothesis for only 

53-54% of all stocks. At first glance these numbers are surprising as due to the constraints 

                                                 

124 The null hypothesis of the test is that 𝜌 = 0 in the autoregressive model 𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝜖. 
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on the parameters of the GARCH model (𝛼 + 𝛽 < 1), the GARCH estimates are always with 

finite variance and mean-reverting. However, if the sum of the two parameters 125  is 

sufficiently close to unity, the half-life of the model could increase without bound as the sum 

approaches one. Indeed, this is consistent with our observations in our sample, where the 

median half-life is 35.25 months, and the third quartile is 377.8 months. Hence, while in 

theory the associated model is stationary, in a finite sample of monthly data such 

mean-reversion could be difficult to estimate and ultimately dependent not on the true 

properties of the underlying process but rather on the constraints imposed on the parameter 

estimation. Another possible explanation could be the great parameter uncertainty in the 

estimation of GARCH parameters due to the scarcity of monthly data. However, such an 

explanation is contradicted by the similar results obtained by using the EGARCH(1,1) model 

with aggregated daily data. Or one might hypothesise that there is a volatility trend, e.g. due 

to the decline of volatility of each security as the company matures and its cash flows become 

more stable and predictable. However, this does not appear to be the case, as the 

Dickey-Fuller test with a drift term and trend rejects the unit root hypothesis for an even 

lower share of companies. 

The OLS estimator is at the opposite extreme – for it, the null hypothesis is rejected 

for less than 2% of all shares. Such behaviour is in line with the interpretation of the OLS 

estimator as a moving average filter of idiosyncratic shocks. In that case, a unit impulse at the 

entry of the 60-month moving average filter would be dampened by the filter, but the impulse 

would have lasting impact on filtered volatility during the 60 months until the shock exits the 

rolling window. Hence, in short samples we could expect that the unit root null hypothesis 

would be difficult to reject, which is consistent with what we find in the present sample. 

The impact of shocks on the other three volatility forecasts (GARCH forecasts, 

ARMA forecasts, and ARMA mean-reverting level of volatility) are more difficult to 

interpret. The GARCH forecasts shared a similar issue as the full-sample ex post volatility 

estimation, namely – the long half-life of the forecasts. However, similarly to the other two 

measures, significant shocks on volatility could have dual impact: on the one hand, they could 

result in an increased volatility expectation for the next period (keeping the model parameters 

fixed). On the other hand, new information also updates the parameter estimates. This latter 

effect is probably more pronounced for the mean-reverting level of volatility, where the unit 

                                                 

125 The bound on the sum of the two parameter, 𝛼 + 𝛽 < 1, refers only to GARCH(1,1) 

model. 
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root hypothesis is rejected for less than 15% of all securities. 

Overall, we note that the various volatility estimates have markedly different 

time-series properties, even though they all tended to produce not too dissimilar rankings of 

securities in the cross-section. At the one end is the quite static OLS estimator, where large 

shocks produced long-lasting impact on volatility estimates. On the other extreme is the 

measure used by Ang et al. (2006) (𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

), where the volatility in each month is determined 

solely by the returns in that period. Somewhere in the middle is the (E)GARCH estimator 

where month-𝑡 volatilities are also affected by prior-months’ returns, so that the variability of 

filtered or predicted volatilities is somewhat smoothed at the cost of more durable impact of 

volatility shocks on estimated volatilities. 

We now move to the question of which idiosyncratic risk estimators produce more 

accurate estimates of future (one-period ahead) volatilities. As discussed in the methodology 

chapter, that approach could not be properly addressed using the loss function approach 

because some of the ex ante and ex post measures are based on daily data that are 

subsequently scaled to monthly frequency, and the scaling method could obscure comparisons 

with those measures that are estimated directly from monthly data. Thus, the loss function 

approach that is used, for example, by Spiegel and Wang (2005) cannot be applied in our 

setting. Instead, as discussed in the chapter on methodology, we follow Mincer and Zarnowitz 

(1969) and Pagan and Schwert (1990) and we compare volatility forecasts using the standard 

predictive regressions.  
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Table 13: Predictive accuracy from Mincer-Zarnowitz regressions 

The table reports aggregated results from comparison of the accuracy of volatility forecasts using Mincer-Zarnowitz regressions, where ℎ𝑖,𝑡 is some measure of realised 

variance (either monthly volatility filtered from EGARCH(1,1) with daily returns, or squared monthly idiosyncratic return), and 𝜎̂𝑖,𝑡
2  is the tested variance forecasting method 

- 𝐼𝑉̂𝑡
𝑜𝑙𝑠, 𝐼𝑉̂𝑡

𝑔𝑎𝑟𝑐ℎ
, 𝐼𝑉̂𝑡−1

𝑑𝑎𝑖𝑙𝑦
, 𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎. Panels A, B and C test three alternative specifications that are run for each available security with more than 24 months of data. Parameter 

estimates for each specification are obtained using two methods – ordinary least squares (OLS), or the more robust median regression. For each regression we calculate a 

measure of goodness of fit - either 𝑅2 (for OLS regressions), or its analogue for quantile regression - 𝑅1(0.5), proposed by Koenker and Machado (1999). For each 

specification we report the mean (‘mean’) and median (‘median’) values of the set of goodness-of-fit measures (𝑅2 or 𝑅1(0.5)). ‘# of firms’ reports the number of firms, for 

which the respective Mincer-Zarnowitz regression was estimated. ‘% of pos.’ reports the share of cases where the goodness-of-fit measure for the respective case was superior 

compared to the corresponding goodness-of-fit measure with 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 as predictor variable. The results show that 𝐼𝑉̂𝑎𝑟𝑚𝑎 is vastly superior to the other volatility forecasts, 

especially when true volatility is filtered from EGARCH, followed by 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

. 𝐼𝑉̂𝑡
𝑜𝑙𝑠 and 𝐼𝑉̂𝑡

𝑔𝑎𝑟𝑐ℎ
 on the other hand outperformed 𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎 is less than 13% of all cases, 

when realised volatility was based on EGARCH. Thus, a simple binomial test implies that 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 is a superior predictor of volatility against all other tested estimators and in 

all specifications.  

 

Variance  ℎ𝑡 from EGARCH ℎ𝑡 = 𝐼𝑅𝑒𝑡𝑡
2 

forecast  mean median # of firms % of pos. mean median # of firms % of pos. 

 Panel A: ℎ𝑖,𝑡 = 𝑎𝑖 + 𝑏𝑖𝜎̂𝑖,𝑡
2  

 OLS regression – 𝑅2 

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  41.07   42.96   5562   –   4.70   2.34   5591   –  

𝐼𝑉̂𝑡
𝑜𝑙𝑠  12.38   6.14   5562   13.90   2.60   1.00   5591   36.02  

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

  37.87   39.71   5374   32.71   4.17   1.38   5394   33.30  

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

   16.49   10.50   4833   11.75   2.50   1.12   4857   34.90  



 

 

 

 

141 

Variance  ℎ𝑡 from EGARCH ℎ𝑡 = 𝐼𝑅𝑒𝑡𝑡
2 

forecast  mean median # of firms % of pos. mean median # of firms % of pos. 

 Median regression – 𝑅1(0.5) 

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  29.09   29.06   5564   –   1.67   0.88   5591   –  

𝐼𝑉̂𝑡
𝑜𝑙𝑠  8.09   4.23   5564   10.73   1.09   0.48   5591   36.56 

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

  25.15   25.68   5376   29.63   1.64   0.77   5394   40.01 

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

   10.68   7.20   4835   9.06   1.12   0.56   4857   38.07  

 Panel B: √ℎ𝑖,𝑡 = 𝑎𝑖 + 𝑏𝑖𝜎̂𝑖,𝑡 

 OLS regression – 𝑅2 

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  45.06   48.40   5564   –   5.43   3.24   5591   –  

𝐼𝑉̂𝑡
𝑜𝑙𝑠  13.77   7.17   5564   12.29   3.13   1.41   5591   33.11  

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

  44.82   48.90   5376   39.55   4.73   2.66   5394   34.80  

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

   18.24   12.71   4835   9.82   3.25   1.63   4857   32.55  

 Median regression – 𝑅1(0.5) 

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  31.06   31.41   5564   –   2.55   1.53   5591   –  

𝐼𝑉̂𝑡
𝑜𝑙𝑠  8.84   4.79   5564   10.32   1.82   0.85   5591   36.38  

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

  29.48   30.97   5376   37.07   2.30   1.38   5394   37.91  

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

   11.47   7.83   4835   8.17   1.82   0.95   4857   36.52  
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Variance  ℎ𝑡 from EGARCH ℎ𝑡 = 𝐼𝑅𝑒𝑡𝑡
2 

forecast  mean median # of firms % of pos. mean median # of firms % of pos. 

 Panel C: ln(ℎ𝑖,𝑡
2 ) = 𝑎𝑖 + 𝑏𝑖ln(𝜎̂𝑖,𝑡

2 ) 

 OLS regression – 𝑅2 

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  47.02   50.85   5539   –   3.63   2.13   5564   –  

𝐼𝑉̂𝑡
𝑜𝑙𝑠  14.63   7.96   5564   11.36   2.57   1.13   5591   35.83  

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

  47.72   52.20   5376   42.06   3.28   1.93   5394   37.60  

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

   19.00   13.46   4835   9.02   2.58   1.26   4857   36.11  

 Median regression – 𝑅1(0.5) 

𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  31.89   32.23   5539   –   2.42   1.47   5564   –  

𝐼𝑉̂𝑡
𝑜𝑙𝑠  9.24   5.06   5564   10.26   1.79   0.83   5591   36.04  

𝐼𝑉̂𝑡−1
𝑑𝑎𝑖𝑙𝑦

  30.75   32.25   5376   39.58   2.18   1.32   5394   37.30  

𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

   11.78   7.97   4835   8.31   1.77   0.91   4857   36.09  

Source: author’s calculations 
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The Mincer-Zarnowitz regressions are estimated individually for each security. We 

require at least 24 months of pairwise-complete data. The mean and median 𝑅2’s are reported 

in Table 13. The first important result from that exercise is the poor performance of the 

forecasts from GARCH(1,1) in explaining either of the two proxies of the true volatility. With 

either of the two measures of true volatility employed in this study, the results for 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 

are closer to that of the variance of the residual from the OLS regression (𝐼𝑉𝑂𝐿𝑆) than to the 

forecasts from ARMA(1,1) (𝐼𝑉̂𝑎𝑟𝑚𝑎) or the estimator used by Ang et al. (2006) and Ang et al. 

(2009) (𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

). Under either of the two proxies of true volatility, the estimator used by Ang 

et al for period-𝑡 volatility in fact outperforms the forecast from GARCH(1,1). 

The magnitude of the differences found in the comparison is indicative of the 

significance of the difference. At each row we provide the percentage share of securities for 

each the 𝑅2 (for OLS regression) or 𝑅1 (for median regression) that have outperformed the 

respective measure (𝑅2 or 𝑅1) for ARMA(1,1); that percentage is provided in column “% of 

pos.”. In case the respective measure outperforms ARMA(1,1) we would see that share 

exceeding 50%. The table does not include results from statistical tests of the observed 

differences, however the significance of the results can be gauged from the small number of 

positive differences. Indeed, we could consider the numbers of positive and negative 

differences as the outcome of Bernoulli trials and calculate the significance using binomial 

test.126 For an average of about 5,000 securities, the two-sided 99% confidence interval 

would be between 0.4817  and 0.5183 . In all cases in Table 13 the percentages are 

materially outside that interval, hence we should conclude that with high confidence the 

observed under-performance of all models relative to ARMA(1,1) is not mere happenstance. 

The second important feature is the low values of 𝑅2’s when squared idiosyncratic 

returns are used as dependent variable. The low value of 𝑅2 in Mincer-Zarnowtz regressions 

is well documented. The previously referred study of Andersen and Bollerslev (1998) proves 

that the reason for the low 𝑅2s is not a failure of the GARCH models but rather the fact that 

squared returns are a noisy estimator of volatility. In particular they show that the 𝑅2s for 

GARCH(1,1) models are bounded above by 1/𝜅, where 𝜅 is the kurtosis of the underlying 

                                                 

126 If two competing models have the same predictive performance as measured by 𝑅2, then 

we would expect that the difference of the 𝑅2s from the competing Mincer-Zarnowitz 

regressions would be positive in half of the cases, with a number of positive or negative 

differences following binomial distribution. The benefit of that test is that it is exact and does 

not require knowledge of the distribution of the differences of 𝑅2, including no assumption of 

symmetry of the distribution of the differences. 
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noise distribution. In this case, however, the 𝑅2s are particularly low. A plausible reason is 

that the four factors in the mean equation account for much of the predictable variability, and 

the remaining idiosyncratic component is unpredictable and not persistent (so that past values 

are not useful for forecasting). Alternatively, it is possible that EGARCH significantly 

improves forecasts compared to the simpler GARCH(1,1) model. However, the sharp contrast 

with the results where true volatility is proxied by the average volatility from the 

EGARCH(1,1) model suggested that GARCH forecasts in the present context are 

under-performing materially the estimates from the ARMA(1,1) and the lagged volatility 

𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

. 

Considering the previous observation that the parameters of a typical GARCH model 

in our sample implies a half-life of about 3 years, and observing the very similar predictive 

performance of GARCH(1,1) with the 24-60 months rolling average (𝐼𝑉𝑂𝐿𝑆 ), a likely 

explanation of the results emerges: the low number of months available for GARCH 

estimation and the inherent noise contained in monthly idiosyncratic returns results in 

GARCH models with monthly data forecasting some mean, longer-term component of 

volatility and failing to track with satisfactory accuracy the month-on-month variation of 

volatilities. 

Overall, the results in Table 13 suggested that forecasts of monthly volatilities from 

ARMA(1,1) outperforms the remaining estimators studied here. Moreover, the historical 

measure of Ang et al (𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

) outperforms GARCH estimates obtained from monthly 

returns; in fact, for many series the latter are closely correlated to the simple OLS volatilities. 

This suggests that the significance of GARCH forecasts in explaining the cross-section of 

returns that is observed by Fu might be misleading and in fact the direction of correlation 

could be negative, as argued by Ang et al. In the following section we shall examine this issue 

and compare and contrast the power of the alternative volatility forecasts to explain the 

cross-section of returns. 

 

4.3. Idiosyncratic volatility and the cross-section of stock 

returns: results from Fama–Macbeth cross-sectional regressions 

We evaluate the significance of idiosyncratic volatility in explaining the cross-section 

of market returns using the Fama and MacBeth (1973) cross-sectional regressions. At each 
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calendar date in our sample for which there is available information on capitalisation (𝐶𝑎𝑝), 

CAPM beta (𝐵𝑒𝑡𝑎), and positive book-to-market ratio (𝐵/𝑀), we estimate the following 

cross-sectional regressions  

 𝑅𝑖𝑡 = 𝛾0𝑡 + 𝛾1𝑡𝛽1𝑖𝑡 +⋯+ 𝛾𝑚𝑡𝛽𝑚𝑖𝑡 + 𝜀𝑖𝑡,  

where 𝛽𝑘𝑖𝑡 is the loading of stock 𝑖 = 1…𝑁 on factor 𝑘 = 1…𝐾 at time 𝑡 = 1…𝑇, and 

𝛾𝑘𝑡 are the parameters to be estimated. The estimates 𝛾𝑘𝑡 are treated as random variables 

and the mean of the estimates from the individual cross-sectional regressions is used as an 

estimator of the true value (𝛾𝑘), i.e. 𝛾𝑘 =
1

𝑇
∑𝑇𝑡=1 𝛾𝑘𝑡. The standard error of the estimates is 

calculated using the Newey and West (1987) autocorrelation-corrected coefficients with a lag 

of 4. 

The method of Fama–Macbeth could be employed using portfolios or individual 

securities as base assets in the test. Apart from market betas, the explanatory factors in our 

sample, including capitalisation, B/M, idiosyncratic volatility (a second moment), and to a 

somewhat lesser extent, the liquidity spread based on auto-covariances, could be estimated 

with reasonable accuracy. Nevertheless, in order to mitigate the impact of extreme values of 

the explanatory factors on the cross-sectional regressions, each month the explanatory 

variables are censored at the 0.005 and 0.995 quantiles. 

Securities with low prices often have greater noise in their returns, which is related to 

the minimum step by which prices move, causing abrupt discrete changes in share prices. To 

mitigate this concern, studies usually remove from the sample securities with an unadjusted 

price below some selected threshold value. We opt for a low threshold of $1 for most 

regressions. Some studies127 opt for a higher threshold of $10. The choice of threshold could 

affect conclusions. For example, Brandt et al. (2010: 881) document that the level of 

institutional ownership and market capitalisation are significantly lower for low-priced stocks 

(defined as those in price deciles 1 through 3). The low-priced stocks typically have a price 

below $10, market capitalisation below $100 million, and institutional ownership below 10 

per cent. Therefore, setting a threshold of $10 would discard proportionately more securities 

with high retail ownership, where investors are typically less diversified and thus more 

sensitive to idiosyncratic risk. Hence, we employ a baseline threshold of $1, but key 

relationships were also tested for robustness against higher thresholds. The threshold (filter) 

applied to each regression model is reported in the tables. 

There are a number of control variables in the Fama-Macbeth cross-sectional 

                                                 

127 e.g. Bali and Cakici (2008) 
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regressions. In order to facilitate presentation, we split the results into two tables: one 

containing the results for OLS and GARCH volatilities (Table 14), and another one – for Ang 

et al and ARMA(1,1) (Table 15). 

The results from the Fama–MacBeth regressions with OLS and GARCH volatilities 

are presented in Table 14 on p. 148. Models 1 through 5 list the cross-sectional estimates for 

the CAPM specification as well as the CAPM augmented with the three characteristics used 

as a baseline explanation of the cross-section of returns. In particular, model 1 corresponds to 

the standard CAPM model. The significance of the CAPM beta varies in the different 

specifications, but in view of its strong theoretical justification, we keep it in all specifications 

even when insignificant, in order to avoid omitted variable bias in our results. Model 2 

corresponds to the CAPM with the two Fama and French factors. Model 3 adds to the 

three-factor Fama–French specification the return momentum, calculated as the return 

between (𝑡 − 7) and (𝑡 − 2). Model 4 further adds the liquidity spread, and model 5 adds 

previous month return in order to account for return reversal. The results for models 1 through 

5 are consistent with the existing body of literature and confirmed that the two Fama–French 

factors, liquidity, momentum, and lagged return are all significant predictors of the 

cross-section, while beta is an unreliable predictor of the cross-section of returns. 

Specifications 6 through 8 introduce the monthly idiosyncratic volatility from the OLS 

regressions. In all three specifications we find that 𝐼𝑉𝑜𝑙𝑠 is a significant predictor of the 

cross-section. Moreover, its magnitude and significance do not change substantially between 

the three compared models, suggesting that the significance of 𝐼𝑉𝑜𝑙𝑠 is not a result of its 

correlation with another predictor. 

Idiosyncratic volatilities usually exhibit significant skewness (cf Table 6 on p. 117). In 

order to examine whether the significance of idiosyncratic volatilities is a result of their 

skewness, in models 9 through 11 we also add the natural logarithm of the idiosyncratic 

volatility, ln(𝐼𝑉𝑜𝑙𝑠), to the model specification. As seen in Table 6, the log-transform of 

volatilities substantially reduces the skewness of the variable and thus mitigates the concerns 

that the significance of the regression coefficient is an artefact purely of few high-volatility 

securities. The results support the significance of 𝐼𝑉𝑜𝑙𝑠 as a predictor of the cross-section, as 

the magnitude of the log of volatilities remains numerically stable and significant in the tested 

specifications. 

In specifications 12 through 17 we repeat the same exercise, but instead of the OLS 

volatilities, we employ the one-month-ahead forecasts from the GARCH(1,1) model. We 
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previously observed that these forecasts have long half-lives and correlated with the OLS 

volatilities. The long half-lives suggest that shocks on volatilities have long-lasting, 

nearly-permanent effect, i.e. in finite samples volatilities could behave similarly to random 

walk. On the other hand, the high correlation with the OLS volatilities suggests that such 

shocks that result in material quasi-permanent change of volatility are infrequent and 

volatility of each share tends to remain in a narrow band for relatively longer periods. This is 

consistent with the experience of the present author from the inspection of individual series of 

some high-profile stocks when volatility forecasts are obtained from GARCH(1,1) models 

estimated with monthly data. The latter qualification (‘with monthly data’) suggests that for 

short periods (less than a month up to a couple of months) the volatility of individual shares 

may vary materially but quickly reverts to some average level, and hence there are not enough 

months of exceptionally high- or low-magnitude shocks that would result in the upward or 

downward revision of the volatility forecasts from GARCH(1,1). 

Having regard for the foregoing discussion, we should expect that 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 would be 

a significant predictor of the cross-section, and that its sign and magnitude would be similar to 

that of 𝐼𝑉𝑜𝑙𝑠. Indeed, in general the results in Table 14 are consistent with that expectation. 

Both volatilities and their log-transform remain significant predictors of the cross-section, 

although the 𝑡  statistics are palpably lower compared with the significance of the 

corresponding specifications involving 𝐼𝑉𝑜𝑙𝑠. Increasing the threshold of small-value stocks 

from US$ 1 to US$ 10 decreases the significance of the idiosyncratic volatilities; in some 

specifications, esp. 13a–15a, idiosyncratic volatilities are no longer significant predictors of 

the cross-section. The change of significance depending on the threshold is consistent with the 

explanation of different investor profiles for securities with smaller prices, which are 

preferred by individual investors, who are also known for being less diversified, and hence 

those securities earn a higher risk-premium for idiosyncratic volatility. On the other hand, our 

results are consistent with those obtained by Bali and Cakici (2008) who find that the 

correlation between idiosyncratic volatility and returns is not robust and changes across 

specifications. 

Finally, we note that even when idiosyncratic volatility is an insignificant predictor, 

the point estimate does not change sign, suggesting that longer series or higher frequencies 

through the associated larger sample sizes might offer more conclusive evidence on 

idiosyncratic volatility significance. 
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Table 14: Fama–Macbeth cross-sectional regressions with OLS and GARCH forecasts  

The table reports results from Fama-Macbeth cross-sectional regressions. Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation 

(‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month 

(‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables are the OLS measure of idiosyncratic volatility (‘𝐼𝑉𝑜𝑙𝑠’) and from GARCH(1,1) 

(‘𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

’), and the natural logarithms of these measures. ‘𝑅2’ reports the averaged R-squared statistics from the cross-sectional regressions. Column ‘Filter’ indicates the 

subsample used for estimating the cross-sectional regressions: ‘all’ in case the entire sample is used; ‘UP>10’ indicates specifications estimated using only securities with 

unadjusted price of over USD 10. Newey-West t-statistics are reported in parenthesis. The results suggest that 𝐼𝑉𝑜𝑙𝑠 and 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 are robust statistically significant predictors 

of the cross-section of returns, with sign and magnitude stable across specifications. The regression coefficient tends to be somewhat lower in the specifications that involve 

only stocks with unadjusted price above USD 10, suggesting that idiosyncratic risk premium is likely higher among stocks with lower unadjusted price – a segment preferred by 

individuals due to lower transaction costs. 

 

# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝐼𝑉𝑜𝑙𝑠 ln (𝐼𝑉𝑜𝑙𝑠) 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 ln (𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

) 𝑅2 

1  all  0.84                   1.81 

    (-2.37)                       

2  all  0.69 -0.10 0.79               3.45 

    (2.21)  (-2.50)  (7.16)                  

3  all  0.63 -0.09 0.90 0.01             4.16 

    (2.08)  (-2.48)  (9.51) (4.83)                  

4  all  0.48 -0.01 0.93 0.01 0.05           4.66 

     (1.83)  (-0.45)  (10.83) (4.68) (2.42)              

5  all  0.42 0.00 0.85 0.01 0.06 -0.04         5.26 

     (1.57)  (-0.13)  (10.23) (4.05) (2.57) (-8.94)             

6  all  0.41           0.05       2.65 

     (1.62)           (2.90)         
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝐼𝑉𝑜𝑙𝑠 ln (𝐼𝑉𝑜𝑙𝑠) 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 ln (𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

) 𝑅2 

6a   UP>10  0.31           0.02       3.48 

     (1.41)           (1.12)         

7  all  0.30 -0.02 0.90       0.06       4.02 

     (1.24)  (-0.51)  (9.28)       (3.98)         

7a   UP>10 0.27 -0.01 0.58       0.04       4.82 

     (1.24)  (-0.24)  (6.59)       (2.19)         

8  all  0.24 0.02 0.9 0.01 0.04 -0.04 0.04       5.52 

     (1.05) (0.53) (11.27) (4.01) (1.87) (-9.15)  (3.45)         

8a   UP>10  0.24 -0.02 0.62 0.01 -0.03 -0.03 0.03       6.62 

     (1.13)  (-0.49)  (8.18) (3.96) (-1.17)  (-6.36)  (2.66)         

9  all  0.24             0.67     2.71 

    (1.06)             (3.05)       

9a   UP>10 0.19             0.31     3.49 

    (0.95)             (1.45)       

10  all  0.16 0.00 0.90         0.81     4.12 

     (0.75)  (-0.06)  (9.19)         (3.82)       

10a   UP>10  0.15 0.01 0.59         0.51     4.88 

     (0.74) (0.16) (6.46)         (2.51)       

11  all  0.14 0.03 0.9 0.01 0.03 -0.04   0.56     5.62 

     (0.66) (0.80) (11.21) (4.14) (1.75) (-9.18)    (3.44)       
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝐼𝑉𝑜𝑙𝑠 ln (𝐼𝑉𝑜𝑙𝑠) 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 ln (𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

) 𝑅2 

11a   UP>10  0.14 -0.01 0.63 0.01 -0.04 -0.03   0.5     6.68 

     (0.68)  (-0.23)  (8.14) (3.98) (-1.66)  (-6.33)    (3.47)       

11b   UP>10 0.18 -0.01 0.68 0.01 -0.06     0.50     6.08 

     (0.93)  (-0.17)  (8.61) (4.78) (-2.38)      (3.42)       

12  all  0.46               0.03   2.79 

     (1.83)               (2.01)     

12a   UP>10 0.40               0.00   3.51 

     (1.79)               (0.22)     

13  all  0.39 -0.02 0.84           0.04   4.21 

     (1.60)  (-0.74)  (8.73)           (2.34)     

13a   UP>10  0.38 -0.02 0.53           0.01   4.92 

     (1.66)  (-0.56)  (5.96)           (0.81)     

14  all  0.30 0.01 0.85 0.01 0.04 -0.04     0.02   5.74 

     (1.27) (0.43) (10.66) (3.61) (2.10) (-9.82)      (1.47)     

14a   UP>10  0.33 -0.02 0.58 0.01 -0.03 -0.03     0.01   6.76 

     (1.55)  (-0.63)  (7.79) (3.38) (-0.94)  (-6.70)      (1.01)     

15  all  0.32                 0.56 2.83 

     (1.37)                 (2.57)   

15a   UP>10  0.30                 0.17 3.5 

     (1.42)                 (0.83)   
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝐼𝑉𝑜𝑙𝑠 ln (𝐼𝑉𝑜𝑙𝑠) 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 ln (𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

) 𝑅2 

16  all  0.29 -0.01 0.84             0.59 4.28 

     (1.28)  (-0.31)  (8.71)             (2.80)   

16a   UP>10  0.28 -0.01 0.55             0.30 4.93 

     (1.30)  (-0.20)  (6.02)             (1.52)   

17  all  0.24 0.02 0.85 0.01 0.04 -0.04       0.36 5.81 

     (1.09) (0.57) (10.62) (3.70) (1.83) (-9.84)        (2.17)   

17a   UP>10  0.26 -0.01 0.59 0.01 -0.04 -0.03       0.32 6.79 

     (1.30)  (-0.46)  (7.84) (3.42) (-1.55)  (-6.74)        (2.20)   

17b   UP>10 0.31 -0.01 0.63 0.01 -0.05         0.28 6.18 

     (1.51)  (-0.46)  (8.26) (4.14) (-2.00)          (1.94)   

Source: author’s calculations



 

 

 

 

152 

 

The results in Table 14 provide some support for the hypothesis that idiosyncratic 

volatility is a significant predictor of the cross-section. Nevertheless, we should also recall 

that in a preceding section we argued that 𝐼𝑉𝑜𝑙𝑠 and 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 are inferior predictors of 

expected volatility compared to 𝐼𝑉𝑡−1 and 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎. Against that backdrop it is important to 

examine how those arguably more accurate predictors of next-period volatility predict the 

cross-section of returns. If next-period idiosyncratic volatility is a true explanatory 

characteristic, then we should expect superior significance of those superior estimators. The 

results from those tests are presented in Table 15. 

The results in Table 15 come as a surprise in view of the encouraging results obtained 

with 𝐼𝑉𝑜𝑙𝑠 and 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

. Specifications 1 through 3 explore the correlation between the 

last-period idiosyncratic volatility and returns. Consistent with the findings of Ang et al. 

(2009, 2006), in specifications 2 and 3 we find a statistically-significant negative correlation 

between returns and past-month idiosyncratic volatility, 𝐼𝑉𝑡−1. The result remains true when 

we control for the unadjusted price of the securities in our portfolio, i.e. when we allow only 

securities with unadjusted price above US$ 10 in the test sample. In specifications 4, 5 and 6 

we employ log-transform of idiosyncratic volatility in order to reduce the skewness of the 

explanatory variable. This also allows us to reduce the impact on the regression coefficient of 

the high-volatility securities in each month; Fu (2009) argues that the reversals of returns of 

the highest-quintile stocks are a probable reason for the significant negative correlation 

observed in the data. We find that the negative correlation documented by Ang et al. is not 

robust in our sample. Only specification 6 offers a strong negative correlation, yet that 

evidence is substantially weakened by the results reported in 6a, which documents no 

significant correlation. Thus, the evidence appears to be consistent with the results of Fu and 

suggests that much of the explanatory power of 𝐼𝑉𝑡−1  is placed in the right tail of 

cross-sectional volatility distribution and that the negative correlation is detected primarily 

among high-volatility, low-price stocks. 

Fu points out that last-period volatility is not a forward-looking estimator of 

next-period volatility, unless volatilities follow random walk, a hypothesis that he rejects for 

the overwhelming majority of his sample, and which we confirm in our sample as well. We 

address this deficiency of 𝐼𝑉𝑡−1  by using 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  to estimate next-period expected 

volatility. Furthermore, in the preceding section we reasoned that that measure (𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎) 

offered the highest predictive accuracy among the four estimators studied in this chapter. 
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Therefore, we should expect that 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 would offer the most relevant evidence on the 

correlation between next-month volatility and returns. In specifications 7 through 12 we 

explore whether idiosyncratic volatilities from our best predictor of next-period monthly 

volatility explain the cross-section of next-month realised returns. In those specifications we 

find that idiosyncratic volatilities are not significantly correlated with returns. This is 

evidenced both by the small values of the 𝑡-statistic in most regressions, as well as the 

changes of sign of the point estimates across specifications. 
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Table 15: Fama–Macbeth cross-sectional regressions with historical and ARMA forecasts 

The table reports results from Fama-Macbeth cross-sectional regressions. Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation 

(‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month 

(‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables are Ang’s previous-month idiosyncratic volatility (‘𝐼𝑉̂𝑡−1’) and ARMA(1,1) (‘𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎’), 

and the natural logarithms of these measures. ‘𝑅2’ reports the averaged R-squared statistics from the cross-sectional regressions. Column ‘Filter’ indicates the subsample used 

for estimating the cross-sectional regressions: ‘all’ in case the entire sample is used; ‘UP>10’ indicates specifications estimated using only securities with unadjusted price of 

over USD 10. Newey-West t-statistics are reported in parenthesis.  

The results suggest that 𝐼𝑉̂𝑡−1 and 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 are not robust predictors of the cross-section of returns. Cross-sectional regressions involving 𝐼𝑉̂𝑡−1 confirm the findings of 

previous studies of negation correlation with returns. However, using log-transformed volatility shows that the negative coefficients are result principally to the skewness of the 

explanatory variable and the negative correlations does not generalise to the whole sample. 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  is not significant predictor either and its coefficient changes sign and 

significance between specifications even though previous analyses suggest that it is the best predictor of volatility among the examined ones.  

 

# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝐼𝑉̂𝑡−1 ln (𝐼𝑉̂𝑡−1) 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 ln (𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎) 𝑅2 

1  all  0.64           0.00       2.75 

    (2.12)           (0.12)         

1a   UP>10  0.46           -0.01       3.17 

    (1.68)            (-1.27)          

2  all  0.58 -0.13 0.73       -0.02       4.20 

    (2.03)  (-3.45)  (6.49)        (-1.98)          

2a   UP>10  0.46 -0.07 0.5       -0.02       4.64 

    (1.71)  (-2.17)  (4.66)        (-1.82)          

3  all  0.33 -0.05 0.81 0.01 0.09 -0.03 -0.04       5.93 

    (1.35)  (-1.37)  (9.10) (3.91) (3.18)  (-7.23)   (-5.35)          

3a   UP>10  0.33 -0.05 0.58 0.01 0.01 -0.02 -0.02       6.77 

    (1.50)  (-1.56)  (7.09) (3.85) (0.25)  (-5.18)   (-2.32)          
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝐼𝑉̂𝑡−1 ln (𝐼𝑉̂𝑡−1) 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 ln (𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎) 𝑅2 

4  all  0.53             0.22     2.76 

    (1.88)             (1.49)       

4a   UP>10  0.41             -0.01     3.18 

    (1.56)              (-0.12)         

5  all  0.53 -0.11 0.74         0.00     4.22 

    (1.95)  (-2.93)  (6.52)         (0.00)       

5a   UP>10  0.42 -0.07 0.51         -0.05     4.66 

    (1.64)  (-1.91)  (4.73)          (-0.43)        

6  all  0.35 -0.05 0.80 0.01 0.06 -0.03   -0.2     5.93 

    (1.46)  (-1.34)  (9.03) (4.19) (2.32) (7.51)    (-2.58)        

6a   UP>10  0.33 -0.05 0.58 0.01 -0.01 -0.02   -0.04     6.75 

    (1.51)  (-1.53)  (7.07) (3.98)  (-0.25)   (-5.34)     (-0.51)        

7  all  0.40               0.03   2.91 

    (1.46)               (2.21)     

7a   UP>10  0.39               0.00   3.55 

    (1.64)                (-0.23)      

8  all  0.51 -0.01 0.83           0.02   4.26 

    (1.94)  (-0.20)  (8.17)           (1.22)     

8a   UP>10  0.44 -0.03 0.54           -0.01   4.99 

    (1.88)  (-0.85)  (5.81)            (-0.34)      
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝐼𝑉̂𝑡−1 ln (𝐼𝑉̂𝑡−1) 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 ln (𝐼𝑉̂𝑡

𝑎𝑟𝑚𝑎) 𝑅2 

9  all  0.40 0.01 0.85 0.01 0.05 -0.04     -0.01   5.75 

    (1.60) (0.22) (10.10) (3.69) (2.19)  (-8.83)       (-0.63)      

9a   UP>10  0.37 -0.03 0.59 0.01 -0.02 -0.03     0.00   6.77 

    (1.69)  (-0.83)  (7.59) (3.68)  (-0.68)   (-6.03)       (-0.08)      

10  all  0.30                 0.54 2.90 

 

  (1.21)                 (2.53)   

10a   UP>10  0.33                 0.09 3.51 

 

  (1.44)                 (0.41)   

11  all  0.44 0.00 0.83             0.39 4.32 

    (1.85) (0.00) (8.15)             (1.69)   

11a   UP>10  0.39 -0.02 0.55             0.09 4.99 

    (1.74)  (-0.54)  (5.73)             (0.43)   

12  all  0.39 0.01 0.85 0.01 0.05 -0.04       0.07 5.83 

    (1.65) (0.29) (10.09) (3.89) (2.00)  (-8.87)        (0.45)   

12a   UP>10  0.33 -0.02 0.60 0.01 -0.05 -0.03       0.28 6.80 

    (1.55)  (-0.47)  (7.62) (3.75)  (-1.69)   (-6.07)        (1.83)   

Source: author’s calculations 
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In this section we confirmed the conflicting evidence concerning the sign of the 

correlation between idiosyncratic volatilities and returns. We found that the correlation was 

fairly robust when we forecast idiosyncratic volatility through the residual of monthly OLS 

regressions or through GARCH(1,1) forecasts, yet the sign turned to negative or became 

insignificant when we employed last-month volatility or volatility forecasts from ARMA 

model. This result was puzzling given the results from the previous section, where we found 

that the latter two estimators of volatility were better forecasts for the unobservable true 

volatility compared to the former two. If the more accurate forecasts of volatilities were not 

significantly linked to returns, then there was some other information in the former estimators 

(𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 and 𝐼𝑉̂𝑡
𝑜𝑙𝑠) that was helpful in explaining the cross-section and improving the 

accuracy of predicting volatility would offer limited contribution to explaining the 

cross-section of returns. We dedicate the next section to exploring this problem. 

 

4.4. Mean-reverting level of volatility  

The last section posed an interesting problem: we found that the more accurate 

prediction of next-period volatilities did not result in better forecasts of cross-sectional returns 

as ARMA forecasts generally were not significantly correlated with returns. The standard 

CAPM model is of limited help in this case, as it assumes that volatilities are fixed. Fixed 

volatilities are a reasonable assumption that allows examination of equilibrium prices and 

returns in the CAPM model, which emphasises the more elusive beta, whereas variance could 

be estimated with higher precisions; in reality, however, volatilities do vary from period to 

period.128 Furthermore, our ability to predict changes in future volatilities is inherently 

limited: the GARCH models essentially assume that next-month volatility can be predicted 

from its values in the preceding months, but rarely and with limited success are able to 

incorporate any fundamental explanatory variables, be that macroeconomic indicators or 

security characteristics. The simple GARCH(1,1) model offered the most transparent 

                                                 

128 A particular difficulty in incorporating stochastic volatility in the CAPM model is that the 

model assumes complete markets. If volatility of stocks changes randomly, then there may not 

exist an unique risk-neutral measure, and the same contingent claim would have different 

values under different risk-neutral measures; for example of conditions for market 

completeness under stochastic volatility see Davis (2004). 
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demonstration of this fact as next-period volatility is just the weighted sum of the 

previous-period forecast and the previous-period squared return (a measure of the realised 

volatility). Thus volatility forecasts are formed from past forecasts that are continuously 

updated with a proxy of the last-period realised volatility. The update rule could be symmetric 

as in the simple GARCH model, but could also be asymmetric, as is the case with the 

EGARCH model. Nonetheless, fundamental variables (e.g. interest rates, economic growth, 

credit risk spreads, etc) are rarely present in such specifications; essentially, volatility 

forecasts are function solely of the past history of volatility forecasts and the distribution of 

realised returns, especially its variance and skewness. Therefore, if the GARCH forecasts and 

the OLS forecasts contain information about expected returns that is not present in the ARMA 

forecasts or lagged ( 𝐼𝑉𝑡−1 ) volatilities, it is reasonable to conjecture that such useful 

information was contained in some other characteristic of the volatility process. Such a 

characteristic could be the mean-reverting level of volatility from the ARMA model. Indeed, 

if volatility was random walk, then such mean reversion would not exist. However, as we 

confirmed in the previous section, the unit root hypothesis for 𝐼𝑉𝑡−1 was rejected for the 

overwhelming majority of securities. The ARMA model produced best forecasts among the 

examined models, and these forecasts were based on the history of 𝐼𝑉𝑡−1, which was found to 

be stationary. We argued that the superior predictive power of ARMA was due to its reliance 

on a less noisy proxy of realised volatility (average daily volatility scaled up to monthly 

frequency) to update the next period forecast compared to the GARCH model with monthly 

data that used squared monthly return as a proxy of realised volatility in the respective month. 

Therefore, we also examined the predictive performance of the mean-reverting level of 

volatility estimated from the ARMA model for explaining the cross-section of returns.129 In 

the case of ARMA(1,1) model, 𝑋𝑡 = 𝜇 + 𝜙𝑋𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1, and the mean-reverting level 

was the natural explanatory variable. Indeed, we estimated 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 using the history of 

𝐼𝑉𝑡−1  and neither 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎  (the conditional expectation), nor 𝐼𝑉𝑡−1  offered a significant 

prediction of the cross-section, which leaves the unconditional mean of the process as the 

natural alternative explanatory variable (𝐸(𝑋𝑡) =
𝜇

1−𝜙
= 𝑚).  

                                                 

129  Let 𝑋𝑡 be a stationary stochastic process that has ARMA(1,1) representation, 𝑋𝑡 = 𝜇 +
𝜙𝑋𝑡−1 + 𝜀𝑡 + 𝜃𝜀𝑡−1. Then:  

 𝐸(𝑋𝑡) =
𝜇

1−𝜙
= 𝑚, 

 𝑣𝑎𝑟(𝑋𝑡)) =
1+2𝜙𝜃+𝜃2

1−𝜙2
𝜎𝜀
2, 

 𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡−1)) =
(𝜙+𝜃)(1+𝜙𝜃)

1−𝜙2
𝜎𝜀
2.  
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The results from those tests are summarised in Table 16. The table shows that the 

mean-reverting level of volatility is indeed a robust predictor of the cross-section. The point 

estimates remained stable and significant when both the mean-reverting level and its log are 

used as explanatory variables. Moreover, the estimated slopes are very similar to those found 

in OLS and GARCH(1,1) tests reported previously, which supports the explanation that those 

measures had significant predictive performance due to their correlation with the 

mean-reverting level, rather than next-period volatility. Filtering only securities with 

unadjusted price over 10 US dollars did not materially affect either the slopes, or their level of 

significance (except in specifications 1a and 4a, which include only beta as control variable). 
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Table 16: Fama–Macbeth cross-sectional regressions with mean-reverting volatility 

The table reports results from Fama-Macbeth cross-sectional regressions. Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation 

(‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month 

(‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables is the mean-reverting level of volatility (‘𝑚’) and its natural logarithm. ‘𝑅2’ reports the 

averaged R-squared statistics from the cross-sectional regressions. Column ‘Filter’ indicates the subsample used for estimating the cross-sectional regressions: ‘all’ in case the 

entire sample is used; ‘UP>10’ indicates specifications estimated using only securities with unadjusted price of over USD 10. Newey-West t-statistics are reported in 

parenthesis.  

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns. Sign, coefficient estimates and significance levels remain stable between across 

alternative specifications.  

 

# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

1   all   0.36  

     

 0.04  

 

2.76 

  

 (1.26)  

     

 (3.06)  

 

  

1a   UP>10   0.24  

     

 0.02  

 

3.37 

  

 (0.97)  

     

 (1.48)  

 

  

2   all   0.41   0.03   0.88  

   

 0.05  

 

4.07 

  

 (1.50)   (0.90)   (8.97)  

   

 (3.62)  

 

  

2a   UP>10  0.29 0.03 0.6 

   

0.04 

 

4.75 

  

(1.19) (0.92) (6.73) 

   

(2.57) 

 

  

3  all  0.31 0.04 0.88 0.01 0.02 -0.04 0.03 

 

5.78 

  

(1.25) (1.25) (11.05) (3.61) (0.71)  (-8.91)  (2.89) 

 

  

3a   UP>10  0.28 0.01 0.63 0.01 -0.06 -0.03 0.04 

 

6.78 

  

(1.27) (0.33) (8.53) (3.63)  (-1.79)   (-6.15)  (3.63) 
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

4  all  0.26 

      

0.62 2.78 

  

(0.94) 

      

(3.27)   

4a   UP>10  0.16 

      

0.34 3.40 

  

(0.66) 

      

(1.81)   

5  all  0.30 0.06 0.90 

    

0.76 4.14 

  

(1.16) (1.64) (9.26) 

    

(3.76)   

5a   UP>10 0.19 0.06 0.63 

    

0.60 4.81 

  

(0.80) (1.70) (6.95) 

    

(3.02)   

6  all  0.23 0.07 0.9 0.01 0.01 -0.04 

 

0.53 5.84 

  

(0.97) (1.93) (11.44) (3.63) (0.55)  (-8.94)  

 

(3.61)   

6a   UP>10  0.19 0.04 0.65 0.01 -0.08 -0.03 

 

0.67 6.82 

  

(0.90) (1.24) (8.79) (3.64)  (-2.34)   (-6.14)  

 

(4.77)   

Source: author’s calculations 
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We also examine the robustness of our results in various subsamples of the original 

data set; these results are reported in Table 18 on p. 170. As a first test we compare the 

significance of idiosyncratic volatility in different market environments (volatility regimes). 

We calculate the mean monthly volatility of the Thomson Reuters’ DataStream Total Market 

Return Index from daily data. Following Fink et al. (2010), we classify the volatility regimes 

in the market using a Markov chain with three states, where volatility in each state is assumed 

to be normally distributed with unknown mean and variance. The transition matrix and the 

parameters of each volatility state are estimated using the Baum–Welch algorithm (Baum et 

al., 1970), and the sequence of states of the market (the Viterbi path) is estimated using the 

Viterbi (1967) algorithm. The model identified three states with mean volatilities of 9.25 

(the high-volatility state), 4.68 (the medium-volatility state), and 2.97 (the low-volatility 

state). The high-volatility state includes only 40  months, while the medium- and 

low-volatility states include 150  and 210  months, respectively (starting from January 

1980).130 

The results from that analysis are reported as specifications ‘a’, ‘b’ and ‘c’ in Table 

18. We find that the mean-reverting level idiosyncratic volatility is a significant predictor of 

the cross-section in both medium- and low-volatility episodes. The coefficient of the 

mean-reverting volatility is not materially different between the low-volatility and the 

medium-volatility state. In contrast, during episodes of market turbulence, idiosyncratic 

volatility made little difference for expected returns. However, it should be remarked that the 

number of high-volatility months (only forty) means that the results from that sub-sample 

should be interpreted with caution because the error of the estimates could be higher. 

                                                 

130 See Chapter 3. Research Methodology and Data Sources, section “3.5. ” (p. 144) for 

further details. The parameters of the Markov chain were provided in Table 9 on p. 147. 
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Table 17: Descriptive statistics by principal market, 1/1980 - 3/2013 

The table summarises the descriptive statistics for the sample used in the tests, split into principal exchange where stocks are traded as assigned by Datastream.  

‘Beta’ is the stock beta calculated by portfolios constructed as in Fama and French (1992). ‘ln(Cap)’ is the natural logarithm of market capitalisation calculated as number of 

shares times the unadjusted price. ‘ln(B/M)’ is the natural logarithm of book value of equity as available at the end of the preceding month to market price of equity (B/M), 

and is calculated from the price-to-book value series from Datastream (PTBV) where book values of equity are taken at a lag of six months to ensure that they are known to 

investors. ‘Roll’ is the bid-ask spread calculated Roll’s model; Roll (1984). ‘𝐼𝑉̂𝑎𝑟𝑚𝑎’ is expected volatility from ARMA(1,1) model fitted on the available series of 𝐼𝑉𝑡−1
𝑑𝑎𝑖𝑙𝑦

. 

‘𝑚’ is the mean-reverting level of volatility implied by the fitted ARMA model. 

‘Mean (EW)’ and ‘Mean (VW)’ are the equally-weighted and the value-weighted values of the respective indicators. ‘St.dev.’ is the standard deviation; ‘Median’, ‘Q1’ and 

‘Q3’ are the median and the first and third quartiles of the sample. ‘Skewness’ is the skewness coefficient for the sample. ‘Obs’ is the number of rows for which data is 

available.  

The table demonstrates the differences between the Nasdaq and the non-Nasdaq sub-samples. The Nasdaq stocks are characterised with higher beta, lower liquidity (higher 

bid-ask spread), higher volatility, and smaller capitalisation. 

 

Variables   Mean (EW)   Mean (VW)   St.dev.   Median   Q1   Q3   Skewness   Obs  

Panel A: Nasdaq stocks 

Beta  1.30 1.19 0.30 1.28 1.06 1.50 -0.01 370,266 

ln(𝐶𝑎𝑝)  5.22 9.59 1.69 5.09 4.02 6.26 0.55 370,266 

ln(𝐵/𝑀)  -0.78 -1.48 0.82 -0.71 -1.25 -0.23 -0.63 370,266 

Roll  8.67 5.65 4.57 7.62 5.64 10.46 2.55 370,244 

𝐼𝑉̂𝑎𝑟𝑚𝑎 14.87 8.74 6.85 13.57 10.00 18.26 1.31 347,293 

𝑚 17.42 11.25 6.67 16.31 12.68 20.85 1.22 347,248 
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Panel B: Non-Nasdaq stocks 

Beta  1.13 0.94 0.30 1.11 0.95 1.33 0.16 493,733 

ln(𝐶𝑎𝑝)  6.36 9.87 1.92 6.37 4.97 7.68 0.10 493,733 

ln(𝐵/𝑀)  -0.66 -1.19 0.73 -0.58 -1.03 -0.21 -0.89 493,733 

Roll  5.53 3.90 3.40 4.69 3.47 6.52 3.66 493,726 

𝐼𝑉̂𝑎𝑟𝑚𝑎 9.18 5.98 4.88 7.97 6.01 10.90 2.37 465,627 

𝑚 10.42 6.69 5.44 9.09 6.92 12.20 2.53 465,545 

Source: author’s calculations 
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In order to examine whether idiosyncratic risk explains returns for all markets and not 

only of NASDAQ, which is characterised with smaller stocks with higher idiosyncratic risk, 

we split our sample into two sub-samples based on the exchange where the stock has primary 

listing131: NASDAQ and non-NASDAQ (NYSE and AMEX). The NASDAQ sub-sample 

includes 3,375 securities, while the non-NASDAQ sub-sample includes 3,103 securities. 

The results for those splits are reported as specifications ‘d’ and ‘e’ in Table 4.3. We find that 

the mean-reverting volatility is significant in both specifications, however the magnitude of 

the coefficient for non-NASDAQ securities is between one-third and one-half that for 

NASDAQ shares, suggesting that the differences between the two sub-samples are 

economically significant. In our view this finding is consistent with the prediction of the 

underlying theoretical model of Merton (1987), as the stocks traded at NYSE are typically 

larger and better-known issuers; this point is illustrated well by Table 17, which shows that 

Nasdaq stocks are on average more volatile and less liquid, and also characterised by higher 

beta. In this setting higher slope in the Fama-Macbeth regressions for Nasdaq stocks conforms 

with the predictions of the theoretical models that less known stocks should earn higher 

premium for idiosyncratic risk. According to Merton’s model, idiosyncratic risk of more 

widely-invested stocks should earn lower premium, which in our case is reflected in the 

differential between the coefficients from the Fama–MacBeth regressions on NASDAQ and 

non-NASDAQ sub-samples. 

Another split that we perform aims to examine whether the significance of 

idiosyncratic volatility in explaining the cross-section holds both in periods of economic 

growth and during recessions. To that end we split our sample into two subsamples using the 

business cycle breakpoints of the National Bureau of Economic Research (NBER). These 

breakpoints are determined informally by the NBER’s Business Cycle Dating Committee 

based on a broad set of economic indicators and served as a benchmark for the state of the US 

economy. As customary in business cycle studies, we assumed that the peak month is 

classified as the last month of an expansion period, and the through month is considered as the 

last month of a recession period. The results are reported under specifications ‘f’ and ‘g’ in 

Table 18. During both expansion and recession episodes we find that idiosyncratic volatility is 

a significant predictor of the cross-section of stock returns, although in specification ‘3g’ the 

                                                 

131 Primary listing refers to the exchange where the stock was traded most actively. The 

allocation to a specific exchange is the one determined by Thomson-Reuters.  
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confidence level is somewhat lower. The differences in the point estimates for idiosyncratic 

risk between expansion and contraction are particularly striking – in specifications ‘3’ and ‘6’ 

the difference was between four- and five-fold. In general, the direction of the difference is 

consistent with the economic intuition that in expansion episodes investors are less risk averse 

and would be willing to assume more risk (in this case – idiosyncratic risk) for premium 

compared to contraction episodes. Nonetheless, that explanation also has caveats: firstly, the 

magnitude of the difference does not match the magnitude of risk aversion changes; secondly, 

as a baseline case one would expect that a change of risk aversion would have similar effect 

for the different types of risk, which is not reflected in the values of liquidity premium or beta. 

We consider more reasonable to attribute those results to the much smaller sample of 

contraction (recession) months in our test sample – only 50 months – which resulted in higher 

risk of the result being affected by pricing adjustments during recessions, which also overlap 

more with high-volatility months. Moreover, high-volatility months, for which we previously 

reported no correlation between idiosyncratic risk and return, are more likely to occur during 

recessions. Thus, 11 out of 41 high-volatility months fall during recessions, while recessions 

account for 56 out of 400 months, showing that a turmoil (high-volatility) month is more 

likely to occur during recession. Nevertheless, this difference in slopes between growth and 

recession is worth exploring in future studies, as it may suggest that the observed positive link 

between idiosyncratic risk and returns might be due to high-volatility growth companies, 

which earn more during a period of economic expansion, and not necessarily due to the 

premium on exposure to undiversified idiosyncratic risk.  

Next, we investigate if the significance of idiosyncratic risk is due to previous 

accumulated gains or losses. The model of Merton derives the equilibrium in essentially a 

neo-classical framework with the added behavioural assumption that investors are constrained 

from holding a well-diversified portfolio. The prospect theory of investing suggests that 

decisions could depend on whether the position has an accumulated loss or gain relative to 

some reference value. Unfortunately, there is no information concerning the value used as 

reference by investors. Bhootra and Hur (2014), for example, employ the Capital Gains 

Overhang, where the reference price is measured as a weighted average of all prices in the 

preceding three years with weights depending on the traded volume. Benartzi and Thaler 

(1995) suggest that the annual period is consistent with the tax return frequency, while 

Malkiel and Xu (2004) point out that some institutional investors are required to disclose 

individual loss-making positions on a quarterly basis. Therefore, there appears to be no clear 

guideline as to how to evaluate the reference price used by investors. In order to investigate if 
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differences in accumulated gains and losses might have affect decisions, we split our sample 

into two sub-samples based on the accumulated gains over the six months preceding the 

previous month, i.e. based on our 𝑅𝑒𝑡(−7,−2) variable, with one sub-sample including all 

securities with cumulative net gain over that period (𝑅𝑒𝑡(−7,−2) > 1), while the other 

sub-sample including the remaining non-profit-making positions (𝑅𝑒𝑡(−7,−2) ≤ 1). These 

results are reported in specifications ‘h’ and ‘i’ in Table 18. The mean-reverting level of 

idiosyncratic volatility remains a significant predictor of the cross-section, and its magnitude 

does not appear to be significantly affected by whether the six-month cumulative return as 

measured by 𝑅𝑒𝑡(−7,−2) is in the red or not. Nevertheless, we emphasise that these tests 

are intended to confirm the robustness of the mean-reverting level of volatility as a predictor 

of the cross-section of returns, and are not intended as a test of the prospect theory of 

investing as such. In particular, other measures of the reference price might yield different 

conclusions. 

Another concern that we wish to address in this section is the possibility that 

idiosyncratic volatility serves as a proxy for default risk. In principle, default risk could be 

estimated more directly by using some combination of market and accounting data to estimate 

the default probabilities or at least credit risk scores. There is a plethora of models that could 

be useful. One of the earliest ones is Altman’s z-score (Altman, 1968), where the score Z is a 

linear combination of five accounting ratios, i.e.: 𝑍 = 1.2 𝑋1 + 1.4 𝑋2 + 3.3 𝑋3 + 0.6 𝑋4 +

1.0 𝑋5, where 𝑋1 is the ratio of working capital to total assets, 𝑋2 is the ratio of retained 

earnings to total assets, 𝑋3 is the ratio of earnings before interest and taxes (EBIT) to total 

assets, 𝑋4 is the ratio of market value of equity to book value of total liabilities, and 𝑋5 is 

the ratio of sales to total assets. Other models build on the structural model of Merton (1974) 

that views the value of the firm as a stochastic process and the value of equity as a European 

call option on the value of the firm with exercise price equal to the value of company debt, 

with default occurring whenever the value process fell below the level of debt. The works of 

Altman and Merton inspired a number of other contributions, but due to lack of sufficient data 

to implement those models we shall again use filters to exclude some segments from the 

sample that are exposed to higher default risk. For example, Damodaran (2004) suggests (p. 

256-57) that stocks that have lost substantial value over the previous year are often riskier 

than the remaining stocks. He points out that this is due both to the empirical regularity that 

low-priced stocks are more volatile, as well as to the increased leverage132 and financial risk 

                                                 

132 From a valuation perspective leverage should be calculated with market values of debt and 
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when market value of equity declines substantially. In his examination he therefore excludes 

stocks with price below US$ 5, annualised volatility over 80%, beta over 1.25, and debt to 

market capital over 80%. For our test we implement a similar filter aimed to leave in the test 

sample only stocks with lower default probability: we exclude stocks with Beta over 1.25, 

last-month volatility ( 𝐼𝑉𝑡−1 ) or expected volatility ( 𝐼𝑉̂𝑡
𝑎𝑟𝑚𝑎 ) over 23.09% 133 , and 

price/earnings (P/E) ratio between 12.0 and 26.0. The motivation for the use of P/E stems 

from its link to past earnings; when past earnings are negative, P/E is not defined, so those 

rows are excluded; 12 and 26 are correspondingly the first and the third quartile of the P/E 

data. The rationale for exclusion of low P/E securities is that the low values could signal low 

expected future growth or low quality of earning. The rationale for exclusion of high P/E 

stocks was that these may have very low earnings, which could be a signal of distress, e.g. 

like the securities in the dot-com bubble.134 The cumulative application of these criteria 

results in a quite small subset of the original data set – only 269,685 rows remain, i.e. about 

31.2% of the original data set. That subset is flagged as the “low default” subset in the table of 

results (specification “j”). We find that the significance and magnitude of the coefficients of 

the cross-sectional regression are unaffected by the restriction to the low-default-risk 

subsample, and in fact the coefficients are marginally higher than those of the full sample. 

Therefore, these tests do not provide evidence that the significance of idiosyncratic volatility 

is driven by its possible correlation with probabilities of default. 

The impact of extreme observations should also be a concern for econometric tests. 

For example, Walkshäusl (2013) finds that low-volatility stocks earn abnormally high return, 

which the authors explain as “quality premium”, while Fu (2009) suggests that the negative 

                                                                                                                                                         

equity. Whereas market value of debt is often close to accounting value, the value of equity 

could drift significantly away from the accounting value, which is reflected in the price/book 

value ratio. 
133 This corresponded roughly to annual volatility of 80% since 80 √12 ≈ 23.09⁄ . 
134 One way to think about the expected values of P/E was through the Gordon’s growth 

model, which proposed that the price P of a security with required rate of return (𝑟) and 

growth rate (𝑔 )  of dividends 𝐷1  would be 𝑃0 =
𝐷1

𝑟−𝑔
=
𝐸𝑃𝑆1(1−𝑏)

𝑟−𝑔
,  where 𝑏  was the 

retention rate (the part of earnings not paid out as dividends). Noting that 𝑔 = 𝑏 × 𝑅𝑂𝐸, 

where ROE was the return on equity, the forward price/earnings ratio took the form 𝑃/𝐸 =
𝑃

𝐸𝑃𝑆
=
1−𝑔/𝑅𝑂𝐸

𝑟−𝑔
. In that setting, a low P/E ratio could correspond to either high required rate of 

return (a risky business profile), or low growth perspective g. Similarly, a high P/E could be 

seen as result of high expected growth (low 𝑟 − 𝑔), so that the price of the security was 

undepinned by growth expectations rather than by strong earnings. (Gordon and Shapiro 

(1956)) 
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link documented by Ang et al. (2006) is due to return reversals of high-volatility stocks. In 

order to examine if our results are driven by the lowest-volatility or highest-volatility stocks, 

in each month we fitted the cross-sectional regression using only the volatilities between the 

0.25 and 0.75 quartile in the respective month grouped by the mean-reverting level of 

volatility; thus, we used the middle 50% of the observation in each month, discarding the 25% 

with lowest volatility and the 25% with highest volatility. These results are reported as 

specifications “k” in Table 18. Contrary to the hypothesis that the results are driven by low- or 

high-volatility stocks, we find that the regression coefficients remain statistically significant 

and actually increase, which could suggest that the extreme volatilities add more noise to the 

estimates instead of driving coefficient significance.  

We also explore whether the mean-reverting level of volatility could be exploited by 

arbitrageurs. If abnormal returns accrued only to companies that experience short episode of 

high volatility and expected returns quickly revert to the mean, then the transaction costs 

associated with exploiting differences in idiosyncratic volatilities could potentially offset the 

higher expected returns. For example, Li et al. (2014) reported that “in extending our tests to 

include holding periods beyond the first two months following portfolio formation, we found 

that current-month IVOL has no meaningful relationship with stock returns in periods beyond 

the second month. Empirically then, the excess returns of the IVOL anomaly all occur in the 

first month or two following portfolio formation. In short, we found that the IVOL effect is 

short lived, effectively requiring traders to adjust portfolio holdings at least every other month 

to have a reasonable chance at producing alpha. Such frequent rebalancing naturally raises 

questions about the impact of transaction costs and liquidity constraints” (p. 56-7). In order to 

examine this point, we use lagged values of mean-reverting volatilities in the cross-section of 

returns. If such lagged values are significant for a sufficiently long lag, then it would follow 

that investors could exploit the higher returns accruing to high-volatility stocks for 

sufficiently long periods. We used securities with unadjusted price over US$ 10 for lags of 1, 

2, 3 and 6 months. The results from that exercise are reported in Table 19 (p. 178). We find 

that past expected mean-reverting volatility levels remain significant predictors of the 

cross-section of returns for at least six months. On the other hand, the estimated coefficients 

for lags of six month are about one half of the coefficients of the contemporaneous 

coefficients.  
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Table 18: Fama–Macbeth cross-sectional regressions with mean-reverting volatility – robustness checks 

The table reports results from Fama-Macbeth cross-sectional regressions. Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation 

(‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month 

(‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables are the mean-reverting level of volatility (‘𝑚’) and its natural logarithm. ‘𝑅2’ reports the 

averaged R-squared statistics from the cross-sectional regressions.  

Column ‘Filter’ indicates the subsample used for estimating the cross-sectional regressions: ‘all’ in case the entire sample is used; ‘high vol’, ‘medium vol’ and ‘low vol’ 

indicate that cross-sectional regressions are estimated using only months that fall in the respective market volatility regime as classified by the Viterbi algorithms. ‘NASDAQ’ 

and ‘non NASDAQ’ indicate that the sample includes only securities with principal listing on NASDAQ or other (NYSE or Amex) stock exchange. ‘contraction’ and 

‘expansion’ indicate that the cross-sectional regressions are estimated using months with economic contraction or expansion as classified by the National Bureau of Economic 

Research (NBER). ‘growing stocks’ and ‘falling stocks’ considers only stocks with cumulative growth or decline for six months based on 𝑅𝑒𝑡(−7,−2) in order to examine 

possible behavioural differences depending on stock momentum. ‘low default’ indicates that the cross-sectional regressions are estimated using stocks with lower beta (below 

1.25), price/earnings ratio between 12 and 26, and lower values of last-month and current-month ARMA forecasts below 23%.  

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns. Sign, coefficient estimates and significance levels remain stable across 

alternative specifications. Premium on NASDAQ stocks, however, tends to be notably higher. However, premium during contraction episodes appears to be significantly higher 

compared to periods of expansion – a difference that cannot be explained solely as changes in risk tolerance. 

 

# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

1 all  0.36           0.04   2.76 

    (1.26)           (3.06)     

1a  high vol  -1.70           -0.03   5.12 

     (-1.46)            (-0.49)      

1b  medium vol  1.45           0.06   2.99 

    (2.81)           (2.64)     

1c  low vol  0.01           0.04   2.15 

    (0.05)           (2.77)     

1d  NASDAQ  0.35           0.06   1.85 

    (0.95)           (3.29)     



 

 

 

 

171 

# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

1e  non-NASDAQ  0.37           0.04   2.86 

    (1.34)           (3.29)     

1f  contraction  0.44           0.08   3.41 

    (0.47)           (2.02)     

1g  expansion  0.35           0.04   2.66 

    (1.25)           (2.55)     

1h  growing stocks  0.48           0.06   3.07 

    (1.62)           (4.31)     

1i  falling stocks  0.14           0.04   2.68 

    (0.46)           (2.38)     

1j  low default 0.27 

     

0.04 

 

2.18 

  

 

(1.01) 

     

(2.47) 

  1k  low default 0.28 

     

0.06 

 

1.66 

  

 

(0.98) 

     

(2.48) 

  

           2 all  0.41 0.03 0.88       0.05   4.07 

    (1.50) (0.90) (8.97)       (3.62)     

2a  high vol  -1.84 0.08 1.58       -0.02   7.36 

     (-1.69)  (0.71) (3.54)       (-0.30)      

2b  medium vol  1.44 0.05 0.82       0.06   4.52 

    (2.96) (0.90) (4.48)       (2.79)     
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

2c  low vol  0.13 0.00 0.79       0.05   3.14 

    (0.47) (0.08) (8.43)       (3.21)     

2d  NASDAQ  0.59 0.20 1.29       0.09   3.32 

    (1.72) (2.90) (10.19)       (4.28)     

2e  non-NASDAQ  0.27 0.00 0.72       0.04   4.15 

    (1.05)  (-0.12)  (7.96)       (3.29)     

2f  contraction  0.29 0.02 0.97       0.08   4.88 

    (0.33) (0.24) (2.63)       (2.09)     

2g  expansion  0.43 0.03 0.87       0.04   3.95 

    (1.57) (0.86) (8.91)       (3.01)     

2h  growing stocks  0.54 -0.04 0.71       0.05   4.39 

    (1.86)  (-1.04)  (7.30)       (4.15)     

2i  falling stocks  0.12 0.06 1.13       0.05   3.98 

    (0.42) (1.63) (11.94)       (3.06)     

2j  low default 0.23 0.06 0.36 

   

0.05 

 

3.50 

  

 

(0.82) (1.64) (4.07) 

   

(3.01) 

  2k  middle 50% 0.24 0.10 0.90 

   

0.09 

 

3.33 

  

 

(0.93) (2.18) (8.35) 

   

(3.19) 
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

3 all  0.31 0.04 0.88 0.01 0.02 -0.04 0.03   5.78 

    (1.25) (1.25) (11.05) (3.61) (0.71)  (-8.91)  (2.89)     

3a  high vol  -1.72 0.06 1.16 -0.01 -0.13 -0.05 0.01   11.28 

     (-1.77)  (0.52) (3.53)  (-0.94)   (-1.17)   (-2.99)  (0.28)     

3b  medium vol  1.15 0.07 0.87 0.01 0.07 -0.04 0.03   6.31 

    (2.71) (1.11) (5.85) (3.09) (1.52)  (-5.41)  (1.78)     

3c  low vol  0.12 0.02 0.84 0.01 0.02 -0.03 0.03   4.37 

    (0.48) (0.52) (9.54) (4.77) (0.50)  (-7.67)  (2.39)     

3d  NASDAQ  0.52 0.20 1.25 0.02 0.00 -0.05 0.07   5.94 

    (1.69) (3.01) (10.21) (4.66)  (-0.11)   (-7.58)  (2.82)     

3e  non-NASDAQ  0.12 0.00 0.73 0.01 0.03 -0.03 0.02   6.26 

    (0.53) (0.07) (9.94) (2.55) (1.04)  (-6.93)  (2.20)     

3f  contraction  0.17 0.04 0.93 0.00 -0.14 -0.05 0.11   7.4 

    (0.20) (0.39) (4.31) (0.14)  (-1.48)   (-3.62)  (3.10)     

3g  expansion  0.33 0.04 0.88 0.01 0.04 -0.03 0.02   5.55 

    (1.34) (1.16) (10.13) (5.36) (1.52)  (-8.29)  (1.84)     

3h  growing stocks  0.38 -0.03 0.77 0.01 -0.04 -0.02 0.04   5.94 

    (1.47)  (-0.94)  (8.92) (6.09)  (-1.17)   (-3.17)  (3.55)     

3i  falling stocks  -0.01 0.10 1.00 0.00 0.06 -0.05 0.04   6.04 

     (-0.02)  (2.49) (12.18) (0.96) (1.65)  (-10.97)  (2.30)     
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

3j  low default 0.16 0.05 0.36 0.00 -0.02 -0.05 0.05 

 

6.01 

  

 

(0.60) (1.20) (4.38) (1.69) (-0.43) (-9.46) (3.02) 

  3k  middle 50% 0.11 0.11 0.92 0.01 -0.02 -0.04 0.09 

 

5.31 

  

 

(0.49) (2.46) (10.44) (3.02) -(0.62) -(8.06) (3.77) 

  

           4 all  0.26             0.62 2.78 

    (0.94)             (3.27)   

4a  high vol  -1.66             -0.41 5.16 

     (-1.56)               (-0.41)    

4b  medium vol  1.26             0.93 3.04 

    (2.58)             (2.99)   

4c  low vol  -0.06             0.60 2.14 

     (-0.23)              (3.15)   

4d  NASDAQ  0.32             0.86 1.73 

    (0.88)             (3.35)   

4e  non-NASDAQ  0.25             0.59 2.91 

    (0.94)             (3.75)   

4f  contraction  0.25             1.07 3.43 

    (0.28)             (2.14)   

4g  expansion  0.26             0.55 2.68 

    (0.97)             (2.72)   
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

4h  growing stocks  0.30             0.88 3.09 

    (1.08)             (4.61)   

4i  falling stocks  0.11             0.51 2.65 

    (0.36)             (2.43)   

4j  low default 0.19 

      

0.42 2.25 

  

 

(0.71) 

      

(2.65) 

 4k  middle 50% 0.28 

      

0.73 1.65 

  

 

(0.98) 

      

(2.48) 

 

           5 all  0.30 0.06 0.90         0.76 4.14 

    (1.16) (1.64) (9.26)         (3.76)   

5a  high vol  -1.8 0.06 1.57         -0.31 7.58 

     (-1.83)  (0.50) (3.42)          (-0.30)    

5b  medium vol  1.23 0.11 0.86         1.16 4.62 

    (2.71) (1.65) (4.86)         (3.02)   

5c  low vol  0.06 0.02 0.80         0.68 3.16 

    (0.21) (0.54) (8.71)         (3.58)   

5d  NASDAQ  0.51 0.22 1.30         1.40 3.20 

    (1.57) (3.05) (10.33)         (4.44)   

5e  non-NASDAQ  0.16 0.02 0.74         0.60 4.23 

    (0.65) (0.74) (8.18)         (3.83)   
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

5f  contraction  0.11 0.08 1.01         1.21 4.96 

    (0.14) (0.71) (2.72)         (2.16)   

5g  expansion  0.33 0.05 0.88         0.69 4.02 

    (1.28) (1.42) (9.25)         (3.10)   

5h  growing stocks  0.37 0.00 0.74         0.89 4.46 

    (1.41) (0.00) (7.86)         (4.34)   

5i  falling stocks  0.09 0.07 1.13         0.66 4.01 

    (0.33) (1.60) (11.83)         (2.87)   

5j  low default 0.12 0.08 0.37 

    

0.64 3.54 

  

 

(0.43) (1.93) (4.19) 

    

(3.27) 

 5k  middle 50% 0.25 0.10 0.90 

    

1.01 3.32 

  

 

(0.94) (2.16) (8.32) 

    

(3.03) 

 

           6 all  0.23 0.07 0.90 0.01 0.01 -0.04   0.53 5.84 

    (0.97) (1.93) (11.44) (3.63) (0.55)  (-8.94)    (3.61)   

6a  high vol  -1.71 0.05 1.15 -0.01 -0.13 -0.05   0.09 11.43 

     (-1.86)  (0.37) (3.42)  (-0.92)   (-1.16)   (-3.00)    (0.16)   

6b  medium vol  1 0.12 0.91 0.01 0.05 -0.04   0.74 6.38 

    (2.49) (1.75) (6.32) (3.12) (1.22)  (-5.45)    (2.74)   

6c  low vol  0.07 0.04 0.85 0.01 0.02 -0.03   0.48 4.4 

    (0.28) (1.00) (9.85) (4.81) (0.55)  (-7.71)    (2.77)   
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

6d  NASDAQ  0.48 0.22 1.27 0.02 0.00 -0.05   1.04 5.79 

    (1.64) (3.13) (10.33) (4.67) (0.07)  (-7.45)    (3.45)   

6e  non-NASDAQ  0.05 0.03 0.75 0.01 0.02 -0.03   0.43 6.32 

    (0.21) (0.83) (10.19) (2.56) (0.79)  (-6.97)    (3.07)   

6f  contraction  -0.02 0.10 0.97 0.00 -0.14 -0.05   1.55 7.45 

     (-0.02)  (0.84) (4.46) (0.14)  (-1.59)   (-3.64)    (3.01)   

6g  expansion  0.26 0.06 0.89 0.01 0.04 -0.03   0.39 5.6 

    (1.13) (1.66) (10.54) (5.41) (1.39)  (-8.32)    (2.57)   

6h  growing stocks  0.26 0.00 0.80 0.01 -0.04 -0.02   0.69 5.98 

    (1.07) (0.03) (9.44) (6.10)  (-1.42)   (-3.27)    (4.54)   

6i  falling stocks  -0.02 0.11 1.00 0.00 0.06 -0.05   0.43 6.05 

     (-0.08)  (2.50) (12.24) (0.97) (1.64)  (-11.07)    (2.13)   

6j  low default 0.07 0.06 0.37 0.01 -0.02 -0.05 

 

0.63 5.99 

  

 

(0.25) (1.48) (4.51) (1.79) (-0.62) (-9.55) 

 

(3.47) 

 6k  middle 50% 0.11 0.10 0.92 0.01 -0.02 -0.04 

 

0.98 5.30 

  

 

(0.50) (2.44) (10.41) (3.02) -(0.60) -(8.05) 

 

(3.69) 

 Source: author’s calculations 
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Table 19: Fama-Macbeth cross-sectional regressions with mean-reverting volatility – return persistence 

The table reports results from Fama-Macbeth cross-sectional regressions using lagged values of the mean-reverting level of volatility (‘𝑚−𝑙’) and its natural logarithm. If the 

mean-reverting level allows construction of tradable strategies, we would like the predictive performance of the variable to remain stable in order to reduce the costs of portfolio 

rebalancing. The lag used in the test is indicated in column ‘Lag (𝑙)’. 
Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month (‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). ‘𝑅2’ reports the 

averaged R-squared statistics from the cross-sectional regressions.  

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns for lags up to 6 months. The regression coefficient remains statistically 

significant, but its value declines with the increase of the lag.  

 

# Lag (𝑙) 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚−𝑙 ln𝑚−𝑙 𝑅2 

1  𝑙 = 1 0.22 

     

0.03 

 

3.43 

    (0.87) 

     

(1.78) 

    𝑙 = 2 0.28 

     

0.02 

 

3.48 

    (1.11) 

     

(1.16) 

  

 

𝑙 = 3 0.29 

     

0.02 

 

3.52 

    (1.16) 

     

(0.92) 

  

 

𝑙 = 6 0.28 

     

0.01 

 

3.59 

    (1.15) 

     

(0.72) 

  

           2 𝑙 = 1 0.27 0.04 0.62 

   

0.05 

 

4.81 

    (1.10) (1.17) (6.88) 

   

(2.95) 

  

 

𝑙 = 2 0.32 0.03 0.60 

   

0.04 

 

4.86 

    (1.31) (0.86) (6.79) 

   

(2.18) 

  

 

𝑙 = 3 0.34 0.02 0.60 

   

0.03 

 

4.92 

    (1.37) (0.73) (6.70) 

   

(1.80) 
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# Lag (𝑙) 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚−𝑙 ln𝑚−𝑙 𝑅2 

 

𝑙 = 6 0.33 0.02 0.59 

   

0.03 

 

5.01 

    (1.36) (0.73) (6.53) 

   

(1.56) 

  

           3 𝑙 = 1 0.26 0.02 0.64 0.01 -0.07 -0.03 0.05 

 

6.84 

    (1.22) (0.57) (8.68) (3.61) -(1.97) -(6.21) (4.11) 

  

 

𝑙 = 2 0.31 0.01 0.63 0.01 -0.05 -0.03 0.03 

 

6.91 

    (1.40) (0.31) (8.62) (3.69) -(1.58) -(6.33) (2.74) 

  

 

𝑙 = 3 0.31 0.01 0.63 0.01 -0.05 -0.03 0.03 

 

6.99 

    (1.42) (0.22) (8.49) (3.80) -(1.36) -(6.50) (2.18) 

  

 

𝑙 = 6 0.30 0.01 0.62 0.01 -0.05 -0.03 0.02 

 

7.11 

    (1.40) (0.21) (8.25) (3.98) -(1.50) -(6.61) (1.94) 

  

           4 𝑙 = 1 0.13 

      

0.39 3.46 

    (0.56) 

      

(2.00) 

 

 

𝑙 = 2 0.20 

      

0.28 3.50 

    (0.85) 

      

(1.44) 

 

 

𝑙 = 3 0.22 

      

0.23 3.54 

    (0.94) 

      

(1.17) 

 

 

𝑙 = 6 0.24 

      

0.18 3.62 

    (1.01) 

      

(0.87) 
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# Lag (𝑙) 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚−𝑙 ln𝑚−𝑙 𝑅2 

5 𝑙 = 1 0.16 0.07 0.64 

    

0.68 4.88 

    (0.68) (1.96) (7.11) 

    

(3.27) 

 

 

𝑙 = 2 0.23 0.05 0.62 

    

0.54 4.93 

    (0.98) (1.53) (6.96) 

    

(2.55) 

 

 

𝑙 = 3 0.25 0.05 0.62 

    

0.47 4.98 

    (1.08) (1.34) (6.85) 

    

(2.17) 

 

 

𝑙 = 6 0.27 0.04 0.60 

    

0.39 5.07 

    (1.17) (1.12) (6.56) 

    

(1.75) 

 

           6 𝑙 = 1 0.17 0.05 0.67 0.01 -0.09 -0.03 

 

0.76 6.88 

    (0.81) (1.52) (8.96) (3.63) -(2.52) -(6.19) 

 

(5.05) 

 

 

𝑙 = 2 0.23 0.04 0.65 0.01 -0.07 -0.03 

 

0.56 6.95 

    (1.10) (1.08) (8.83) (3.70) -(2.07) -(6.32) 

 

(3.69) 

 

 

𝑙 = 3 0.24 0.03 0.65 0.01 -0.06 -0.03 

 

0.47 7.02 

    (1.16) (0.88) (8.68) (3.80) -(1.77) -(6.48) 

 

(3.00) 

 

 

𝑙 = 6 0.26 0.02 0.63 0.01 -0.06 -0.03 

 

0.38 7.15 

    (1.24) (0.68) (8.32) (4.00) -(1.79) -(6.60) 

 

(2.42) 

 Source: author’s calculations 
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4.5. Further tests of robustness 

4.5.1. Was there an omitted factor? 

The evidence presented thus far suggests that the mean-reverting level of idiosyncratic 

volatility is a significant predictor of the cross-section of returns. Nevertheless, as discussed 

previously, one measures idiosyncratic risk with respect to some specific factor model – in 

our case, the one of Fama–French–Carhart. It may happen that idiosyncratic volatility serves 

only as a proxy for the loading on some other, omitted factor. For example, we found that the 

premium on idiosyncratic risk was lower during an economic downturn. Then we may 

hypothesise that our model lacks some economic factor, and the inclusion of the loading on 

that factor in the cross-sectional regressions could make the idiosyncratic risk insignificant. 

On the other hand, if the Merton model is correct, investors should dislike idiosyncratic risk 

purely because of under-diversification and not because high-volatility stocks have greater 

exposure to some systematic factor.  

In this section we address that problem by estimating the principal omitted factor and 

adding its loading as an explanatory variable in the cross-sectional regressions. If the principal 

factor is the reason for the significance of the idiosyncratic risk variable, then we expect that 

the addition of the new loading will make the slope of idiosyncratic risk insignificant. Firstly, 

we use statistical factor analysis135 in order to estimate the returns on the omitted factor(s). 

We then use the loadings of the individual securities on that factor (or, possible, on a number 

of factors) in our cross-sectional regressions.  

More specifically, we use the heteroscedastic factor analysis of Jones (2001) in order 

to extract a set of 𝐾 common factors underlying observed idiosyncratic returns (𝐼𝑅𝑒𝑡𝑖,𝑡). The 

common factors are extracted from the full data set, comprising all available time series of 

idiosyncratic innovations for the studied period. The number of factors can be selected using 

the 𝑃𝐶𝑝1 and 𝑃𝐶𝑝2 criteria discussed by Bai and Ng (2002). Then, factor loadings are 

estimated as the coefficients of ordinary least squares (OLS) regressions of monthly returns 

on each stock on the set of factors identified at the preceding stage of the analysis. 

Let 𝑅𝑛 denote the 𝑛 × 𝑇 matrix of observed idiosyncratic returns (𝐼𝑅𝑒𝑡𝑖,𝑡), 𝐻 - the 

                                                 

135 For a review refer to Ch.4 in Connor et al. (2010) 
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matrix of (unobservable) factor realisations, 𝐵𝑛 - the matrix of factor loading, and 𝐸𝑛 -  

residual returns. These residual returns could be viewed as the remaining idiosyncratic 

innovations after accounting for the omitted factors of idiosyncratic returns. Then the model 

of idiosyncratic returns is assumed to be in the form:  

𝑅𝑛 = 𝐵𝑛𝐻 + 𝐸𝑛. 

Let 𝐹 ≡ 𝑀−1/2𝐻 stand for the matrix of rotated factor realisations, introduced to simplify 

notation, and let 𝐷 denote the diagonal matrix of average idiosyncratic variances. Jones 

(2001) proves that the average variance (1/𝑛)𝑅𝑛′𝑅𝑛 converges to 𝐹′𝐹 + 𝐷 and could be 

estimated using Jöreskog’s procedure, i.e.: 

1. Compute 𝐶 = (1/𝑛)𝑅𝑛′𝑅𝑛; 

2. Guess an initial 𝐷, e.g. 𝐷 = 0.5𝐶; 

3. Obtain the 𝐾 largest eigenvalues of 𝐷−1/2𝐶𝐷−1/2 and create a diagonal matrix 𝛬 

having the largest eigenvalues along its main diagonal; then create a matrix 𝑉 of their 

corresponding eigenvectors; 

4. Estimate the factor matrix as 𝐹 = 𝐷1/2𝑉(𝛬 − 𝐼)1/2; 

5. Compute a new estimate of 𝐷 = 𝐶 − 𝐹′𝐹  and return to 3 until the algorithm 

converged; 

6. Estimate factor loading using OLS regression of observed excess returns on estimated 

factors and obtain residual idiosyncratic errors 𝜖. 

An important issue in factor analysis is the choice of an appropriate number of factors. 

Remembering that we are analysing residuals (idiosyncratic returns) obtained from a factor 

model that already has three factors, we perform this test assuming only one omitted common 

factor. That factor would be the one with the highest contribution in explaining the common 

pattern of idiosyncratic residuals. The methodology could be readily expanded further with 

the inclusion of more than one factor.136 

Summary statistics for the recovered factor and the loading of idiosyncratic returns on 

the extracted factor (𝑓ℎ𝑓𝑎) are given in Table 20. Factor loadings (𝛽ℎ𝑓𝑎) are estimated using 

rolling regressions with monthly idiosyncratic returns (𝐼𝑅𝑒𝑡𝑖,𝑡) from the last 24 to 60 months 

preceding the current month, as available (i.e. from (𝑡 − 1) until (𝑡 − 𝑘), 𝑘 = 24…60).  

                                                 

136 There is no commonly accepted approach to selecting the number of factors. In general, 

such approaches aim to measure whether an additional factor has additional explanatory 

power (e.g. Kandel and Stambaugh (1989), Connor and Korajczyk, and Bai and Ng). For 

further details see Kandel and Stambaugh (1989); Connor and Korajczyk (1993); Bai and Ng 

(2002) 
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Table 20: Summary statistics of the first common factor of idiosyncratic returns and 

loadings on that factor, 07/1982-03/2013 

The table reports summary statistics of the latent (statistical) factor (𝑓ℎ𝑓𝑎) estimated using the heteroscedastic 

factor analysis of Jones (2001) and the loading (𝛽ℎ𝑓𝑎) on the statistical factor. ‘Mean (EW)’ and ‘Mean (VW)’ 

are equally-weighted and value-weighted averages, ‘Std.dev’ stands for the standard deviation of the sample., 

and ‘Median’, ‘Q1’and ‘Q3’ stand for the second, first and third quartiles of the sample. ‘Skew’ is the skewness 

coefficient of the sample, and ‘Count’ is the number of records in the sample.  

 

 

Mean (EW) Mean (VW) Std.dev Median Q1 Q3 Skew Count 

𝑓ℎ𝑓𝑎 -0.16 - 5.05 -0.06 -3.25 3.14 0.00 393 

𝛽ℎ𝑓𝑎 0.05 0.03 0.48 -0.01 -0.23 0.26 0.79 713,860 

Source: author’s calculations 

 

Table 21 reports the results from Fama–Macbeth cross-sectional regressions involving 

the loading (𝛽ℎ𝑓𝑎) on the statistical factor (𝑓ℎ𝑓𝑎) explaining asset returns. We find that 

although the coefficient of the loading is always negative, it is not significant at conventional 

levels in any of the specifications. On the other hand, the coefficients for both the 

mean-reverting level of volatility (𝑚) and its natural logarithm (ln𝑚) are significant and 

positive, consistent with the results from the previous section. The results support the 

conclusion that the mean-reverting level of volatility is a significant predictor of the 

cross-section of returns and its significance is not attributable to correlation with the loading 

on some unknown factor that affects idiosyncratic returns but was omitted from the Fama–

French–Carhart specification.  
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Table 21: Fama–Macbeth cross-sectional regressions with loading on the principal factor affecting idiosyncratic returns, 07/1982 – 

03/2013 

The table reports the results from Fama-Macbeth cross-sectional regressions involving the loading on the statistical factor (𝛽ℎ𝑓𝑎).  

Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month (‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). ‘𝑅2’ reports the 

averaged R-squared statistics from the cross-sectional regressions. ‘𝑚’ and ‘ln𝑚’ denote the mean-reverting level of volatility and its natural logarithm.  

The table shows that the statistical factor is insignificant in explaining the cross-section beyond the contribution of the volatility forecast, and albeit its value remains negative 

and reasonably stable, it is found to be statistically insignificant.  

 

# 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝛽ℎ𝑓𝑎 𝑅2 

1 0.91 

       

-0.06 2.73 

 

(2.55) 

       

(-0.37) 

 2 0.82 -0.04 0.87 

     

-0.09 4.24 

 

(2.53) (-1.14) (8.21) 

     

(-0.53) 

 3 0.54 0.03 0.88 0.01 0.06 -0.04 

  

-0.18 6.01 

 

(1.93) (0.92) (10.65) (2.87) (2.60) (-9.58) 

  

(-1.14) 

 4 0.47 0.06 0.90 0.01 0.03 -0.04 0.02 

 

-0.17 6.42 

 

(1.79) (1.76) (11.41) (2.59) (1.29) (-9.66) (2.22) 

 

(-1.04) 

 5 0.39 0.08 0.91 0.01 0.03 -0.04 

 

0.44 -0.18 6.47 

 

(1.55) (2.33) (11.69) (2.59) (1.11) (-9.67) 

 

(3.12) (-1.12) 

 Source: author’s calculations 
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4.5.2. Evidence from daily data  

We have previously pointed out that the Capital Asset Pricing Model (CAPM) and its 

extension – Merton’s model – are not linked to any specific time frequency. Consequently, 

results that hold on daily data should also hold at lower frequencies, e.g. weekly, monthly, 

quarterly, or annually. The opposite is also true: if the mean-reverting level of volatility is 

explaining the cross-section of returns at monthly frequency, then a similar effect should be 

observed at daily frequency.  

For the purposes of the test, the change of frequency, however, is not a trivial task. 

Models that are suited for monthly frequency by accommodating the shorter time-series and 

the higher noise in the observed proxies of the underlying, unobservable idiosyncratic 

volatility, could be unsuitable for higher frequencies. For example, the previously referenced 

study of Hansen and Lunde (2005) documents the strong empirical performance of the simple 

GARCH(1,1) for one-day forecasts. On the other hand, the simple model also has certain 

drawbacks, which invited the development of a host of GARCH extensions that accommodate 

phenomena observed in various financial time series.137 For example, the observation that 

volatility reacts differently to positive and negative shocks invited the development of the 

Exponential GARCH model138. The idea of different volatility regimes led to the development 

of the Regime-Switching ARCH model, where parameter values depend on the volatility 

regime.139 The observation of slow decay of the auto-covariance function of empirical 

volatility processes prompted the development of the Fractionally Integrated GARCH 

model.140  

In our study we emphasise the role of the mean-reverting level of idiosyncratic 

volatility, to which current volatility is expected to converge gradually over time. We also 

found that short-horizon forecasts (one-month-ahead) were insignificant predictors of the 

cross-section of returns, which in the present context also suggests that we should aim to 

employ a model that has long memory in volatility and which will not be unduly affected by 

short-term volatility outbursts. Such considerations could suggest the use of the FIGARCH or 

RS-(G)ARCH models, both of which offer interesting approaches for capturing the 

                                                 

137 see Pagan and Schwert (1990) for a comparison of competing volatility forecasting 

techniques 
138 see Nelson (1991) 
139 see Hamilton and Susmel (1994) 
140 Baillie et al. (1996) 
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mean-reverting level of volatility. Structurally, however, we think that the Component 

GARCH (CGARCH) model of Lee and Engle (1999) offers a more direct and transparent 

route to capturing the mean-reverting volatility while allowing the mean-reverting level to 

evolve over time. When we used monthly data, such specification was not feasible due to 

scarcity of data, but at the daily frequency it offers a more direct implementation of our 

approach.  

Lee and Engle propose to model volatility as the sum of two components: a permanent 

one and a transitory one. The permanent component has persistence close to unity, whereas 

the transient component has an expected value of zero and decays more quickly. More 

specifically, we employ Component GARCH(1,1), which has the following specification: 

𝜎𝑡
2 = 𝑞𝑡 + 𝛼(𝜀𝑡−1

2 − 𝑞𝑡−1) + 𝛽(𝜎𝑡−1
2 − 𝑞𝑡−1), 

𝑞𝑡 = 𝜔 + 𝜌𝑞𝑡−1 + 𝜑(𝜀𝑡−1
2 − 𝜎𝑡−1

2 ), 

where 𝑞𝑡  is the permanent component of volatility, while (𝜎𝑡
2 − 𝑞𝑡)  is the transitory 

component of volatility. The 𝑛-step expected values from the CGARCH(1,1) are found to be 

as follows: 

𝔼𝑡−1(𝜎𝑡+𝑛
2 ) = 𝔼𝑡−1(𝑞𝑡+𝑛) + (𝛼 + 𝛽)

𝑛(𝜎𝑡
2 − 𝑞𝑡), 

and 

𝔼𝑡−1(𝑞𝑡+𝑛) =
1 − 𝜌𝑛

1 − 𝜌
𝜔 + 𝜌𝑛𝑞𝑡, 

and when 𝑛 → ∞, the unconditional expected values became 𝔼𝑡−1(𝜎𝑡+𝑛
2 ) = 𝔼𝑡−1(𝑞𝑡+𝑛) =

𝜔

1−𝜌
. 

These formulae allow us to test our results from the previous section. Firstly, we can 

calculate the forecasted volatility for one month ahead, which we can take to be 21 days, so 

that the one-month forecast would be 𝔼𝑡−1(𝜎𝑡+21
2 ), which would be an equivalent of the 

volatility forecasts from the previous section. We can also calculate the unconditional 

expectation of the permanent component, towards which volatility is expected to revert as 

𝑛 → ∞, i.e. 𝔼𝑡−1(𝑞𝑡+∞) = 𝜔 (1 − 𝜌)⁄ . We could then use these two volatility forecasts to 

analyse the cross-section of monthly141 returns. Based on our results thus far we expect that 

𝔼𝑡−1(𝜎𝑡+21
2 ) would not be a significant predictor of the cross-section of returns, while 

𝔼𝑡−1(𝑞𝑡+∞) would be significant.  

                                                 

141 Of course nothing prevents the use of the same approach to test its performance in 

explaining other frequencies, e.g. daily or weekly returns. At any rate, the use of daily returns 

should also take into account the possible impact of market microstructure effects.  
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More specifically, we proceed as follows. We select a random sample of 2100 

securities from the full sample of available securities.142 For each security before the start of 

each month we calculate daily idiosyncratic returns from the Fama–French–Carhart model 

using the last five years of data, as available, but not less than 250 returns.143 We estimate a 

CGARCH(1,1) model using the available history from the rolling window, and forecast the 

expected volatility at the end of the month (𝔼𝑡−1(𝜎𝑡+21
2 )), as well as the unconditional 

expected value of the mean level (𝔼𝑡−1(𝑞𝑡+∞)).
144  

 

Table 22: Summary statistics of expected volatilities from daily data 

The table reports summary statistics for estimates of next-month volatility (‘𝔼𝑡−1(𝜎𝑡+21
2 )’) and of unconditional 

volatility (‘𝔼𝑡−1(𝑞𝑡+∞)’) estimated directly from daily returns using Component GARCH(1,1). Estimates are 

calculated using expanding window design for a random sample of 2100 securities. Volatilities are scaled to 

monthly frequency. The table reports values for equally-weighted and value-weighted averages (‘Mean (EW)’ 

and ‘Mean (VW)’), standard deviation (‘St.dev.’), median (‘Median’), first and third quartiles (‘Q1’ and ‘Q3’), 

skewness coefficient (‘Skewness’) and number of observations (‘Obs’). 

 

Variables  Mean (EW)  Mean (VW)   St.dev.   Median   Q1   Q3  Skewness   Obs  

𝔼𝑡−1(𝜎𝑡+21
2 ) 14.41 8.11 8.83 12.06 8.32 17.99 2.13 278,301 

ln 𝔼𝑡−1(𝜎𝑡+21
2 ) 2.52 1.99 0.54 2.49 2.12 2.89 0.23 278,301 

𝔼𝑡−1(𝑞𝑡+∞) 18.41 9.68 16.66 13.73 8.93 22.10 4.09 278,301 

ln 𝔼𝑡−1(𝑞𝑡+∞) 2.66 2.11 0.68 2.62 2.19 3.10 0.29 278,301 

Source: author’s calculations 

 

Our results are presented in Table 23. Consistent with the results from the preceding 

sections, we find that expected volatility for the next month, 𝔼𝑡−1(𝜎𝑡+21
2 ), is not a significant 

predictor of the cross-section of returns. On the other hand, the mean-reverting level 

𝔼𝑡−1(𝑞𝑡+∞) is a significant predictor. The slopes of 𝔼𝑡−1(𝑞𝑡+∞) and ln 𝔼𝑡−1(𝑞𝑡+∞) are 

somewhat lower than those estimated from monthly ARMA(1,1), which were reported 

                                                 

142 The use of sampling is motivated by the high computational burden of calculating 

expected volatilities while preventing look-ahead bias. A small sample results in a lower 

number securities available in each month, and hence high errors of the cross-sectional 

coefficients, which in turn translates into higher likelihood of failing to reject the null 

hypothesis that the coefficients of the cross-sectional regressions are insignificant.  
143 We excluded daily returns below -25% or above 300% as possible data errors, as 

suggested in  Ince and Porter (2006) 
144  For easier comparison with the coefficients from the preceding section, the daily 

volatilities are scaled to monthly frequency by multiplying by a constant factor of √21. 
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previously in this thesis. Part of the reason could be the scaling from daily to monthly 

frequency, which is evident in the higher average expected idiosyncratic volatilities reported 

in Table 6 (p. 117), compared with the summary statistics of the series obtained directly from 

daily data, reported in Table 22. Nevertheless, the magnitude of the difference is such that it 

could not be explained solely by scaling. One plausible explanation could be the lower 

persistence of daily volatilities compared to monthly volatilities, which may somewhat dilute 

the predictive performance of the mean-reverting level estimated from daily data. On the 

other hand, the predictive performance of the mean-reverting volatility remains robust in the 

alternative model specifications, which confirmed its relevance in explaining the cross-section 

of returns. 
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Table 23: Cross-sectional Fama–Macbeth regressions with volatilities calculated from daily data using Component GARCH(1,1) 

The table reports results from Fama-Macbeth cross-sectional regressions using volatility forecasts obtained from Component GARCH(1,1) model fitted on expanding window 

of daily returns. ‘𝔼𝑡−1(𝜎𝑡+21
2 )’ is the estimate of next-month volatility, and ‘𝔼𝑡−1(𝑞𝑡+∞)’ denotes the corresponding unconditional volatility for the model. 

Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month (‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). ‘𝑅2’ reports the 

averaged R-squared statistics from the cross-sectional regressions. ‘𝑚’ and ‘ln𝑚’ denote the mean-reverting level of volatility and its natural logarithm. 

The results are consistent with those obtained from monthly data. One-month forecasts are not statistically significant once momentum (‘𝑅𝑒𝑡(−7,−2)’), liquidity (‘𝑅𝑜𝑙𝑙’) and 

return reversals (‘𝑅𝑒𝑡𝑡−1’) are added to the model. On the other hand, unconditional volatility remains a significant predictor of the cross-section. However, the estimate of the 

coefficient for 𝔼𝑡−1(𝑞𝑡+∞) is markedly below the corresponding value when forecasts from ARMA(1,1) are used, highlighting the room for improvement of the specification. 

 

# 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝔼𝑡−1(𝜎𝑡+212 ) ln𝔼𝑡−1(𝜎𝑡+212 ) 𝔼𝑡−1(𝑞𝑡+∞) ln𝔼𝑡−1(𝑞𝑡+∞) 𝑅2 

1 0.47 

     

0.03 

   

2.83 

 

(1.63) 

     

(3.02) 

    2 0.58 -0.01 0.90 

   

0.03 

   

4.35 

 

(2.07)  (-0.21) (7.67) 

   

(2.24) 

    3 0.49 0.01 0.92 0.01 0.07 -0.03 0.00 

   

6.11 

 

(0.25) (0.04) (0.08) (0.00) (0.03) (-0.00) (0.01) 

    4 0.34 

      

0.64 

  

2.76 

 

(1.27) 

      

(3.04) 

   5 0.48 0.00 0.90 

    

0.54 

  

4.34 

 

(1.88) (0.05) (7.67) 

    

(2.36) 

   6 0.47 0.01 0.91 0.01 0.06 -0.03 

 

0.11 

  

6.15 

 

(1.91) (0.34) (9.04) (4.06) (2.28) (-7.90) 

 

(0.56) 

   7 0.60 

       

0.02 

 

2.37 

 

(1.86) 

       

(3.58) 
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# 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝔼𝑡−1(𝜎𝑡+212 ) ln𝔼𝑡−1(𝜎𝑡+212 ) 𝔼𝑡−1(𝑞𝑡+∞) ln𝔼𝑡−1(𝑞𝑡+∞) 𝑅2 

8 0.60 -0.02 0.92 

     

0.02 

 

3.96 

 

(1.96) (-0.49) (7.37) 

     

(4.49) 

  9 0.42 0.03 0.94 0.01 0.05 -0.03 

  

0.01 

 

5.99 

 

(1.58) (0.84) (9.34) (3.86) (1.77) (-7.77) 

  

(3.44) 

  10 0.44 

        

0.47 2.43 

 

(1.47) 

        

(3.77) 

 11 0.47 0.01 0.94 

      

0.52 3.99 

 

(1.64) (0.27) (7.73) 

      

(4.48) 

 12 0.36 0.05 0.96 0.01 0.05 -0.04 

   

0.30 5.99 

 

(1.38) (1.21) (9.58) (3.87) (1.84) (-7.83) 

   

(3.70) 

 Source: author’s calculations 
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4.5.3. Portfolios as assets 

 

The preceding section utilised the Fama–MacBeth methodology using individual 

securities as assets. The rationale for that choice stems from the superior efficiency compared 

to portfolios145 and is consistent with the approaches of Fama and French (1992) and Fu 

(2009). From a practical perspective, however, it is also useful to examine the role of 

idiosyncratic volatility using suitably constructed portfolios. This allows us to drill down the 

results and identify situations where the mean-reverting volatility is likely to be useful and 

situations where it may not be appropriate. 

We form double-sorted portfolios based on capitalisation and the expected 

mean-reverting level of volatility. We first form ten decile portfolios based on market 

capitalisation, and then split each of these into five quintile portfolios based on the 

mean-reverting level of volatility. For each portfolio we calculate the simple (equal-weighted) 

average return for the next one month, after which the double-sorting procedure is repeated. 

In order to prevent the numerous small-capitalisation stocks listed at NASDAQ from asserting 

undue influence on our estimates we employ breakpoints calculated only from NYSE 

securities. The choice of the number of portfolios is driven by pragmatic considerations: the 

significant correlation between the explanatory variables (beta, size, liquidity, and 

idiosyncratic volatility) necessitates a higher number of portfolios, so that using only 

twenty-five portfolios appears unjustified. On the other hand, using decile NYSE breakpoints 

for the mean-reverting level of volatility results into too few (fewer than ten) securities in 

some portfolios in the earlier months of the sample. Therefore, we opt for using fifty 

portfolios for this test. 

 

                                                 

145 Ang et al. (2010) 
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Table 24: Fama–Macbeth regressions with quintile portfolios as assets 

The table reports results from Fama-Macbeth cross-sectional regressions calculated on a total of 50 double-sorted portfolios formed each month by capitalisation (ten decile 

portfolios) and idiosyncratic risk (five quintile portfolios) using breakpoints for NYSE stocks only. For each portfolio we calculate the simple (equal-weighted) average return 

for the next month, after which the double-sorting procedure is repeated. 

Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Control variables are averaged by portfolios. Tested 

variables are the mean-reverting level of volatility (‘𝑚’) and its natural logarithm. ‘𝑅2’ reports the averaged R-squared statistics from the cross-sectional regressions.  

Column ‘Filter’ indicates the subsample used for estimating the cross-sectional regressions: ‘all’ in case the entire sample is used; ‘UP>10’ indicates that cross-sectional 

regressions are estimated using only stocks with unadjusted price above USD 10; ‘NASDAQ’ and ‘non NASDAQ’ indicate that the sample includes only securities with 

principal listing on NASDAQ or other (NYSE or Amex) stock exchange.  

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns. However, the results for non-NASDAQ stocks do not support significance of 

idiosyncratic risk, consistent with the underlying economic model that predicts that premium for more widely-followed securities should be lower or insignificant; however, the 

small number of portfolios invites further analysis of those results.  

 

# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑚 ln𝑚 𝑅2 

1 All 1.35 0.02 0.52 

    

37.39 

  

(2.86) (0.48) (3.11) 

    

   

2 All 1.10 0.04 0.66 0.00 

   

40.95 

  

(2.47) (1.13) (4.88) (0.89) 

   

  

3 All 0.47 

    

0.04 

 

28.98 

  

(1.02) 

    

(2.16) 

 

  

4 All -0.05 

     

0.66 28.95 

  

 (-0.10)  

     

(2.74)   

5 All 0.77 0.06 0.67 

  

0.04 

 

41.93 

  

(1.71) (1.76) (4.65) 

  

(2.34) 

 

  

6 All 0.15 0.08 0.66 

   

0.72 41.35 

  

(0.34) (1.93) (4.39) 

   

(3.31)   
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑚 ln𝑚 𝑅2 

7 All 0.55 0.07 0.71 0.00 

 

0.04 

 

44.81 

  

(1.30) (2.15) (5.52) (0.40) 

 

(2.67) 

  8 All 0.00 0.09 0.74 0.00 

  

0.69 44.36 

  

(0.01) (2.42) (5.67) (0.66) 

  

(3.33)   

9 UP>10 0.28 0.06 0.63 0.01 

 

0.04 

 

42.27 

  

(0.67) (1.65) (5.02) (1.14) 

 

(2.38) 

 

  

10 UP>10 -0.11 0.08 0.70 0.01 

  

0.58 41.96 

  

 (-0.27)  (1.97) (5.47) (1.36) 

  

(3.00)    

11 non-NASDAQ 0.61 0.04 0.78 0.01 

 

0.03 

 

38.30 

  

(1.38) (0.94) (6.13) (1.66) 

 

(2.09) 

 

  

12 non-NASDAQ 0.18 0.05 0.79 0.01 

  

0.51 38.20 

  

(0.42) (1.22) (6.23) (1.52) 

  

(2.65)   

13 All 0.61 0.07 0.66 0.00 0.02 0.04 

 

47.25 

  

(1.46) (2.20) (5.36) (0.83) (0.36) (1.63) 

 

  

14 All 0.07 0.07 0.67 0.00 0.00 

 

0.67 46.98 

  

(0.18) (2.01) (5.55) (0.51)  (-0.01)  

 

(2.69) 

 15 UP>10 0.37 0.06 0.59 0.01 -0.01 0.04 

 

44.59 

  

(0.96) (1.60) (4.60) (1.57)  (-0.16)  (1.59) 

 

  

16 UP>10 0.00 0.07 0.64 0.01 -0.06 

 

0.74 44.28 

  

 (-0.01)  (1.86) (5.04) (1.54)  (-0.89)  

 

(3.03)   
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑚 ln𝑚 𝑅2 

17 non-NASDAQ 0.40 0.04 0.69 0.01 0.10 0.00 

 

40.69 

  

(0.95) (0.96) (5.59) (2.10) (1.90) (0.03) 

 

  

18 non-NASDAQ 0.19 0.04 0.68 0.01 0.07 

 

0.22 40.69 

  

(0.47) (0.94) (5.64) (1.66) (1.34) 

 

(0.87)   

Source: author’s calculations 
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The estimates from the Fama–MacBeth regressions using portfolios as assets are 

reported in Table 24. Specifications 3 through 16 confirm the conclusions from the preceding 

section, with idiosyncratic risk found to be a significant predictor of the cross-section of 

portfolio returns. Even in specifications 13 and 15, where the 𝑡-statistic for the idiosyncratic 

risk variable is below the 90% confidence level, the sign and magnitude of the coefficient are 

unchanged. 

An interesting exception emerges in specifications 17 and 18, where idiosyncratic risk 

is found to be an insignificant predictor of the cross-section. One possible explanation could 

be the fairly high number of correlated predictors that results in difficulties in separating the 

contributions of the individual covariates. However, our deductive approach suggests that we 

should look at the underlying economic theory for clues, before drawing conclusions from 

these negative results. We believe that the selection of explanatory variables should be 

motivated by underlying economic theories and not by data mining. The baseline model for 

the significance of idiosyncratic risk is Merton (1987); it predicts that for a given beta and 

size, equilibrium alphas increase with the decrease of the share of investors that follow that 

security. In order to explore whether that is consistent with our data we form five size-quintile 

portfolios using the NYSE breakpoints, and then split each quintile into five quintile 

portfolios based on the mean-reverting level of idiosyncratic volatility, again using the NYSE 

breakpoints. The alphas relative to the Fama–French–Carhart model are reported in Table 25; 

in parentheses we report the 𝑡-statistics calculated using Newey and West (1987) standard 

errors. 
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Table 25: Portfolio Alphas Relative to Fama–French–Carhart Model 

The table reports portfolio alphas relative to Fama-French-Carhart model for 25 double-sorted portfolios formed 

by market capitalisation (‘Size’) and mean-reverting level of volatility. Newey-West t-statistics are reported in 

parantheses. ‘Average’ is the average alpha for given volatility bucket. ‘(H-L)’ is the spread between alpha for 

highest-volatility and lowest-volatility stocks.  

The results suggest that alpha generally increases with the increase of idiosyncratic volatility and decrease of 

size. The average spread between the high-volatility portfolio and the low-volatility portfolio comes at 0.61 per 

cent per month, an economically and statistically significant difference. Also consistent with the economic 

model, the premium for idiosyncratic risk increases as size decreases. A significant exception is the first size 

quintile, which contains broadly followed stocks with market capitalisation of about half of the entire market. In 

that size quintile there is only a small difference between the first two volatility quintiles, and the relationship 

flattens afterwards.  

 

  Mean-reverting level of volatility   

Size   Low   2   3   4   High   (H-L)  

Large   0.31   0.46   0.49   0.49   0.49   0.18  

  (1.51)   (1.94)   (1.88)   (1.82)   (1.38)   (0.77)  

2  0.29   0.63   0.80   0.51   0.75   0.46  

  (1.47)   (2.48)   (2.83)   (1.77)   (1.99)   (1.80)  

3  0.39   0.63   0.67   0.79   0.71   0.32  

  (1.90)   (2.47)   (2.31)   (2.61)   (1.79)   (1.16)  

4  0.53   0.73   0.77   0.83   0.98   0.46  

  (2.45)   (2.63)   (2.60)   (2.62)   (2.42)   (1.74)  

Small   0.44   0.82   0.85   1.26   1.31   0.87  

  (1.74)   (3.00)   (2.95)   (3.95)   (3.59)   (3.85)  

Average   0.39   0.67   0.74   0.89   1.01   0.61 

  (1.93)   (2.69)   (2.70)   (3.07)   (2.76)   (2.67)  

Source: author’s calculations 

 

Consistent with other studies, Table 25 shows that alpha increases with the increase of 

idiosyncratic volatility and decrease of size. The average spread between the high-volatility 

portfolio and the low-volatility portfolio comes at 0.61 per cent per month, an economically 

and statistically significant difference. The two exceptions are the first and the third size 

quintiles. In the case of the latter, the result is driven mostly by the somewhat lower alpha for 

the high-volatility portfolio, while the middle four portfolios demonstrate a gradual increase 

of alpha with the increase of volatility, consistent with the hypothesis. Similarly and 

consistent with the economic model, the premium for idiosyncratic risk increases as size 

decreases. The significant exception is the first size quintile where there is only a small 

difference between the first two volatility quintiles, and the relationship flattens afterwards. 
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This seems particularly important given that those securities account for more than half of the 

whole market (in our sample). Again, it is important to recognise that this finding does not 

contradict the underlying economic model. The size of the alpha premium that accrues is not 

fixed but depends on how many investors actually track the securities in those portfolios. 

Therefore, even though the spread between the mean volatility of high-volatility and 

small-volatility shares for the first two size quintiles is similar (6 percentage points (p.p.) for 

the largest shares vs 7.4 p.p. for the second size quintile), the difference in alphas increases 

from 0.18 p.p. to 0.46 p.p. Such increases of alphas for a given volatility quintile are observed 

in the majority of cases. It seems reasonable to assume that the largest shares in terms of 

capitalisation are also more widely followed and consequently their premia for assuming 

idiosyncratic risk are smaller compared to the less-followed securities in the smaller size 

quintiles. Similarly, for a fixed series length smaller spreads in alphas would make rejection 

of the null hypothesis more unlikely. In that vein, the standard errors of the difference 

between the alphas of high-volatility and low-volatility stocks are very similar for the five 

size quintiles and the decision whether or not to reject the null hypothesis is driven mostly by 

the magnitude of the spread in alphas, which by the previous argument would be smaller for 

the better-known large stocks. Therefore, the mixed evidence reported by portfolio studies 

like Bali and Cakici (2008) as well as our results in this section could be seen as supporting 

the underlying model rather than contradicting it. 

The table also shows that the alphas for the lowest-volatility stocks are materially 

below those of medium- and high-volatility stocks. Indeed, our table suggests that the steepest 

increase of alphas occurs between the lowest-volatility quintile portfolio and the second 

quintile portfolio. From second quintile until fifth quintile portfolio the alphas are either fairly 

flat (esp. for the largest cap quintile), or increase less steeply (the second and third size 

quintiles). Thus, the table does not exhibit the anomalies documented by Li et al. (2014)146 

and Walkshäusl (2013), who explore the finding of Ang et al. (2009, 2006) that there is a 

negative relationship between idiosyncratic volatility and expected returns. Walkshäusl 

explains such negative link between volatility and returns in terms of quality premium for 

low-volatility firms, where securities with more stable cash flows are concentrated. Li et al. 

(2014) point out that the strategy of zero investment portfolio that is long in low-volatility 

stocks and short in high-volatility stocks could be difficult to exploit due to the low liquidity 

                                                 

146 Note that their study performs the sorts based on the Ang volatility measure, and should 

be interpreted in the context of return reversals for high-volatility stocks and the stationarity 

of volatility series, both of which are documented by Fu (2009). 
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and high cost of implementation. When portfolio sorts are implemented based on 

mean-reverting volatilities, we find no low-volatility anomaly (low-volatility stocks earning 

higher return than higher-volatility stocks), which suggests that the anomalies reported by 

other studies are transient phenomena that are due to random deviations of volatilities from 

their mean levels (e.g. due to arrival of new information). Therefore, if there is a puzzle, it 

would be why the difference of yields between the lowest-volatility quintile and the 

second-lowest volatility quintiles is so pronounced. At any rate, such low-volatility firms tend 

to have significantly lower betas and potentially – more stable earnings, although the latter 

does not necessarily translate into higher returns.147 

 

4.5.4. Interaction effects  

Thus far we examined how the different measures of expected idiosyncratic volatility 

explained the cross-section of returns. We found that the estimators that yielded best 

one-period-ahead forecasts (ARMA and Ang’s 𝐼𝑉𝑡−1 ) in fact were of limited use in 

explaining the cross-section. Then we saw that the mean-reverting level of volatility was a 

robust explanatory variable, which remained significant across various breakdowns of the 

sample. Those tests share one caveat with most of the existing studies – the tested models 

arguably does not accurately reflect the predictions of the tested economic model. 

Specifically, when reviewing the predictions of Merton’s model in section “2.2. Underlying 

economic theories” (p. 21) we noted that it predicted that the alpha earned by higher 

idiosyncratic risk would depend on two factors: the share of investors that know the security, 

and the variance of idiosyncratic shocks. In particular, for securities with given beta Merton 

(1987) showed (eq. 31.a on p. 496) that:  

 
∂𝛼𝑘

∂𝜎𝑘
2 = 𝛿(1 − 𝑞𝑘)𝑥𝑘/𝑞𝑘 > 0, (15) 

where 𝛼𝑘  is the alpha earned for investing in company 𝑘 , 𝜎𝑘
2  is the exposure to 

idiosyncratic risk, 𝑞𝑘 ∈ (0,1] is the share of investors that ‘know’ security 𝑘, 𝛿 is the 

parameter of the quadratic preference function, and 𝑥𝑘 is the share of the value of company 

𝑘 in the overall market capitalisation. Thus for given beta and given company size 𝑥𝑘, 

securities that are in the investment set of all investors (𝑞𝑘 = 1) would earn no premium for 

idiosyncratic risk, while for companies that are not followed by all investors (𝑞𝑘 < 1), lower 

share of investors investing in that security would translate into higher alpha for idiosyncratic 

                                                 

147 For arguments against the link between stable earnings and expected returns see Chapter 5 

in Damodaran (2004) 
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risk. This non-linear relationship between 𝛼𝑘 and 𝑞𝑘 and 𝜎𝑘
2 is not taken into account in 

the preceding tests, which effectively assume that ∂𝛼𝑘/ ∂𝜎𝑘
2 = 𝑐𝑜𝑛𝑠𝑡, i.e. 𝑞𝑘 = 𝑐𝑜𝑛𝑠𝑡 and 

𝑥𝑘 = 𝑐𝑜𝑛𝑠𝑡 for all 𝑘, which was a counter-factual assumption. Therefore, the tests in the 

preceding section might suffer from a functional form misspecification problem, which could 

result in biased estimates. 

Similarly, Merton derived the comparative static with respect to size (𝑥𝑘) and investor 

recognition (𝑞𝑘):  

∂𝛼𝑘
∂𝑥𝑘

=
𝛿(1 − 𝑞𝑘)𝜎𝑘

2

𝑞𝑘
> 0, 

∂𝛼𝑘
∂𝑞𝑘

= −
𝛿𝑥𝑘𝜎𝑘

2

𝑞𝑘
2 . 

However, the signs of the partial derivatives do not guarantee the sign of the total derivatives. 

In particular, since size correlates with volatility and investor recognition, its impact on alpha 

is unclear. Merton points out that 
𝑑𝛼𝑘

𝑑𝑥𝑘
=
∂𝛼𝑘

∂𝑥𝑘
+
∂𝛼𝑘

∂𝜎𝑘
2

𝑑𝜎𝑘
2

𝑑𝑥𝑘
+
∂𝛼𝑘

∂𝑞𝑘

𝑑𝑞𝑘

𝑑𝑥𝑘
, the sign of which is 

uncertain and in principle could be negative (i.e. 𝑑𝛼𝑘 𝑑𝑥𝑘 < 0⁄ ) even though the partial 

derivative is positive (∂𝛼𝑘 ∂𝑥𝑘⁄ > 0). The same point would in principle apply to the total 

derivative with respect to volatility, i.e. 
𝑑𝛼𝑘

𝑑𝜎𝑘
2 =

∂𝛼𝑘

∂𝜎𝑘
2 +

∂𝛼𝑘

∂𝑥𝑘

𝑑𝑥𝑘

𝑑𝜎𝑘
2 +

∂𝛼𝑘

∂𝑞𝑘

𝑑𝑞𝑘

𝑑𝜎𝑘
2, and again if larger 

firms have lower volatilities so that 
𝑑𝑥𝑘

𝑑𝜎𝑘
2 < 0, then the alpha on size could in principle offset 

the partial derivative with respect to volatility.  

In this section we shall extend our study and examine if idiosyncratic risk interacts 

with other explanatory variables in the cross-section. We see that the right-hand side is a 

linear function of company capitalisation (for a given market size) and a non-linear function 

of 𝑞𝑘. Unfortunately, we do not have information on 𝑞𝑘, the share of investors knowing each 

specific share. However, there are other proxy variables which may correlate with the share of 

investors following a given security. Such “instrument variables” could be the capitalisation 

of each company, the unadjusted price, and liquidity as measured by Roll’s bid-ask spread 

and the trade volume in each security. Concerning unadjusted price we note that previous 

research suggested that institutional investors prefer securities with higher price, e.g. over 

𝑈𝑆𝐷 10, in order to reduce transaction costs. Another characteristic that could be useful here 

is again the market capitalisation, where one could speculate that companies with large 

capitalisation are better known to investors and more widely tracked than small-cap stocks. 

Furthermore, liquidity, as measured by the Roll’s bid-ask spread and by the traded value in 
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the last 24 to 36 month (as available), are also likely correlated with idiosyncratic volatility.   

We examine possible differences in idiosyncratic risk slopes as follows: at each month 

we split our sample into four quartile portfolios based on some variable that could be 

correlated with idiosyncratic risk; we then estimated the cross-sectional regression using only 

the observations in that quartile portfolio.148 Thus, for each specification we obtain four 

estimates – one for each quartile of the control variable. We employ three such control 

variables: capitalisation (𝐶𝑎𝑝)149, liquidity, as measured by the Roll’s estimator of the bid-ask 

spread (𝑅𝑜𝑙𝑙)150, the unadjusted price151, and traded turnover.152 This allows us to examine if 

significance of idiosyncratic volatility is limited only to some specific subsets of the 

cross-section of returns, and whether it changes with the instrument variables. The split by 

capitalisation is aimed to capture differences in size, and in particular whether idiosyncratic 

risk is a significant predictor of the cross-section among larger companies. The splits by 

Roll’s bid-ask spread and by traded value are intended to test whether idiosyncratic risk 

matters only for the most illiquid stocks. Finally, the split by unadjusted prices is aimed to test 

if idiosyncratic volatility mattered mostly for low-price stocks, which could be associated 

with financial distress.  

We should also note that the tests in this section share one drawback: since the split 

into quartile segments is based on variables presumably correlated with idiosyncratic 

volatility, within each quartile the variation of idiosyncratic volatility is reduced, which may 

render more difficult the rejection of the null hypothesis and result in seemingly insignificant 

coefficients of idiosyncratic volatility and other covariates, correlated with the instrument. In 

such cases, the introduction of three dummy variables for three of the four quartiles could 

allow us to capture changes in mean alphas within each segment; however, it would be 

difficult to attribute the coefficients of these dummies to any specific factor among the ones 

correlated with idiosyncratic risk. Therefore, we focus on the baseline methodology outlined 

in preceding paragraphs of this section, but the reader should interpret indications of 

insignificance of some coefficients with a grain of salt.  

                                                 

148  Another approach could be to incorporate directly interaction terms in the tested 

specification. That approach could work more easily for variable that is already present in the 

specification, like size and Roll’s bid-ask spread, but is more difficult to justify when we used 

other control variables like unadjusted price or traded volume.  
149 see Table 26 on p. 225 
150 see Table 27 on p. 228 
151 see Table 28 on p. 231 
152 see Table 29 on p. 234 
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Table 26 summarises the tests of idiosyncratic risk by quartiles of market 

capitalisation. In all four quartiles we observe similar statistically-significant coefficients for 

the mean-reverting volatility. In fact, contrary to what we anticipated, the coefficients turned 

out positive and significant even in the high-capitalisation quartile, and in fact the point 

estimate is slightly higher than the corresponding estimate for the small-cap quartile. In part 

this may be due to more noise in the small-cap quartile. An indication in that direction is the 

generally lower values of adjusted-R2 for the small-cap securities compared to large-cap ones; 

this pattern we observe also in some of the other analyses from this section.  

The patterns documented in Table 27 are similar to those reported above: the 

coefficients for idiosyncratic volatilities are numerically similar and significant across Roll’s 

bid-ask quartiles, and again the point estimate for the low-spread (high-liquidity) quartile is in 

fact somewhat higher than the corresponding value for the high-spread (low-liquidity) 

quartile, which also has a somewhat lower adjusted-R2 coefficient.  

Table 28 summarises the interaction between idiosyncratic volatilities and unadjusted 

prices. Again, contrary to our expectations we find that idiosyncratic volatilities are a 

significant predictor even in the high-price quartile, where investors could be expected to hold 

more diversified portfolios and require smaller risk premia for idiosyncratic risk. Again the 

coefficient estimates are not too dissimilar across quartiles, but high-price quartiles show 

higher point estimate and higher adjusted-R2 coefficient compared to the low-price quartile. 

A notable exception from the above results is the interaction between the traded 

volume and idiosyncratic risk premium. Among all controls tested in this section, this one is 

perhaps most directly related to the underlying concept of breadth of investors ‘knowing’ a 

security. Indeed, securities that are traded consistently in high volumes are likely to be 

well-known to investors and should earn no or a negligible risk premium. The results in Table 

29 are broadly consistent with the model predictions: in the lowest-traded volume quartile we 

found significant correlation between idiosyncratic risk and the cross-section of returns. 

Surprisingly, however, the coefficients for the remaining three quartiles are insignificant; 

clearly, we expected that it should be insignificant in at least the highest-traded-volume 

quartile and possibly in the second-highest quartile, but we find that it is insignificant for the 

subsamples that covered 75% of our sample. The point estimates, however, remained 

remarkably stable within the three quartiles, which could be consistent with the limitation of 

the methodology that we outlined earlier in this section, viz. that the null hypothesis may be 

difficult to reject due to the limited variability of idiosyncratic volatility in each of the 

quartiles. We have therefore explored this further in specifications 25-30 in Table 29, where 
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we pool together the three quarters of securities with higher traded volume. In those 

specifications we again find significant correlation between idiosyncratic risk and returns, 

which supports the view that the insignificant coefficients in some of the specifications 7 

through 24 could be driven by the reduced variance of the explanatory variable, rather than by 

its insignificance per se.  
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Table 26: Fama–MacBeth regressions with mean-reverting level of volatility - interaction with size, 7/1980–3/2013 

The table reports results from Fama-Macbeth cross-sectional regressions for subsets formed by size (market capitalisation). In each month all stocks are sorted in four quartile 

groups based on the capitalisation and the cross-sectional regressions are estimated separately for each quartile group.  

Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month (‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables are 

the mean-reverting level of volatility (‘𝑚’) and its natural logarithm. ‘𝑅2’ reports the averaged R-squared statistics from the cross-sectional regressions.  

Column ‘Filter’ indicates the subsample used for estimating the cross-sectional regressions: ‘high-cap’ marks Fama-Macbeth regressions estimated using only 25% of stocks 

with highest capitalisation in each month. ‘2nd quartile’, ‘3rd quartile’ and ‘small-cap’ mark the remaining three quartile groups.  

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns for all quartile groups. However, the slope does not appear to increase with 

capitalisation, contrary to expectations.  

 

# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

1 high-cap 0.23 

     

0.01 

 

5.60 

  

(0.86) 

     

(0.55) 

  2 high-cap 0.20 0.02 0.33 

   

0.03 

 

7.17 

  

(0.75) (0.41) (3.27) 

   

(1.27) 

  3 high-cap 0.14 0.02 0.33 0.00 -0.05 -0.02 0.04 

 

10.99 

  

(0.60) (0.36) (3.96) (1.23) (-0.95) (-3.58) (2.28) 

  4 high-cap 0.19 

      

0.17 5.54 

  

(0.72) 

      

(0.74) 

 5 high-cap 0.14 0.04 0.34 

    

0.38 7.14 

  

(0.54) (0.77) (3.40) 

    

(1.62) 

 6 high-cap 0.09 0.04 0.34 0.00 -0.07 -0.02 

 

0.53 10.98 

  

(0.42) (0.86) (4.20) (1.27) (-1.18) (-3.59) 

 

(3.08) 
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

7 2nd quartile 0.26 

     

0.01 

 

3.65 

  

(0.94) 

     

(0.53) 

  8 2nd quartile 0.24 0.01 0.72 

   

0.05 

 

4.57 

  

(0.89) (0.16) (6.34) 

   

(2.62) 

  9 2nd quartile 0.23 -0.03 0.72 0.01 -0.07 -0.03 0.05 

 

6.89 

  

(0.97)  (-0.36) (7.74) (2.44)  (-1.46)  (-5.21) (3.61) 

  10 2nd quartile 0.17 

      

0.25 3.65 

  

(0.63) 

      

(0.98) 

 11 2nd quartile 0.12 0.05 0.75 

    

0.74 4.60 

  

(0.44) (0.61) (6.43) 

    

(3.32) 

 12 2nd quartile 0.13 0.00 0.75 0.01 -0.09 -0.03 

 

0.87 6.91 

  

(0.54) (0.03) (7.95) (2.42) (-2.02) (-5.24) 

 

(5.07) 

 

           13 3rd quartile 0.72  

    

0.00 

 

2.39 

  

(2.31)  

    

(-0.18) 

  14 3rd quartile 0.69 0.15 1.09  

  

0.04 

 

3.26 

  

(2.27) (1.20) (10.45)  

  

(2.88) 

  15 3rd quartile 0.61 0.16 1.16 0.01 0.01 -0.03 0.03 

 

5.24 

  

(2.37) (1.35) (12.99) (5.99) (0.25) (-5.79) (2.15) 

  16 3rd quartile 0.65 

      

0.05 2.41 

  

(2.16) 

      

(0.21) 
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# Filter 𝐵𝑒𝑡𝑎 ln (𝐶𝑎𝑝) ln (𝐵/𝑀) 𝑅𝑒𝑡(−7,−2) 𝑅𝑜𝑙𝑙 𝑅𝑒𝑡𝑡−1 𝑚 ln𝑚 𝑅2 

17 3rd quartile 0.59 0.18 1.10 

    

0.74 3.30 

  

(2.00) (1.38) (10.48) 

    

(3.17) 

 18 3rd quartile 0.56 0.18 1.17 0.01 0.00 -0.03 

 

0.49 5.25 

  

(2.19) (1.44) (13.04) (6.03) (0.00) (-5.77) 

 

(2.66) 

 

           19 small-cap 0.72 

     

0.03 

 

1.23 

  

(2.06) 

     

(2.00) 

  20 small-cap 0.90 -0.05 1.26 

   

0.05 

 

2.20 

  

(2.67) (-0.49) (10.34) 

   

(3.95) 

  21 small-cap 0.62 0.15 1.23 0.01 0.06 -0.06 0.03 

 

4.08 

  

(2.02) (1.29) (10.79) (3.24) (2.10) (-9.45) (2.34) 

  22 small-cap 0.65 

      

0.61 1.24 

  

(1.89) 

      

(2.29) 

 23 small-cap 0.81 -0.04 1.26 

    

1.07 2.21 

  

(2.45) (-0.36) (10.49) 

    

(4.42) 

 24 small-cap 0.56 0.16 1.24 0.01 0.06 -0.06 

 

0.66 4.08 

  

(1.86) (1.34) (10.94) (3.31) (1.95) (-9.46) 

 

(3.02) 

 Source: author’s calculations 
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Table 27: Fama–Macbeth regressions with mean-reverting level of volatility – interactions with Roll's bid-ask spread, 7/1980-03/2013 

The table reports results from Fama-Macbeth cross-sectional regressions for subsets formed by liquidity (bid-ask spread). In each month all stocks are sorted in four quartile 

groups based on the bid-ask spread and the cross-sectional regressions are estimated separately for each quartile group.  

Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month (‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables are 

the mean-reverting level of volatility (‘𝑚’) and its natural logarithm. ‘𝑅2’ reports the averaged R-squared statistics from the cross-sectional regressions.  

Column ‘Filter’ indicates the subsample used for estimating the cross-sectional regressions: ‘high-liquidity’ marks Fama-Macbeth regressions estimated using only 25% of 

stocks with highest liquidity (lowest bid-ask spread) in each month. ‘2nd quartile’, ‘3rd quartile’ and ‘low-liquidity’ mark the remaining three quartile groups.  

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns for all quartile groups, confirming that the result is not due to a small subset of 

illiquid stocks and is therefore tradable even for the most liquid stocks.  

 

# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

1 high-liquidity 0.36 

     

0.06 

 

3.31 

  

(1.39) 

     

(3.36) 

  2 high-liquidity 0.30 0.04 0.20 

   

0.07 

 

5.07 

  

(1.15) (1.42) (2.85) 

   

(4.10) 

  3 high-liquidity 0.25 0.03 0.18 0.01 0.04 -0.05 0.06 

 

7.38 

  

(1.04) (1.14) (2.84) (1.85) (0.70) (-7.75) (3.55) 

  4 high-liquidity 0.30 

      

0.53 3.41 

  

(1.17) 

      

(3.88) 

 5 high-liquidity 0.22 0.06 0.21 

    

0.73 5.19 

  

(0.87) (1.98) (3.10) 

    

(4.79) 

 6 high-liquidity 0.20 0.05 0.19 0.01 0.01 -0.05 

 

0.65 7.43 

  

(0.84) (1.71) (3.11) (1.85) (0.19) (-7.79) 

 

(4.33) 
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# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

7 2nd quartile 0.15 

     

0.05 

 

1.51 

  

(0.67) 

     

(3.62) 

  8 2nd quartile 0.16 0.04 0.56 

   

0.06 

 

3.14 

  

(0.73) (1.26) (5.61) 

   

(3.96) 

  9 2nd quartile 0.07 0.04 0.56 0.01 0.03 -0.04 0.05 

 

6.24 

  

(0.32) (1.23) (6.63) (2.42) (0.38) (-8.08) (3.44) 

  10 2nd quartile 0.11 

      

0.62 1.57 

  

(0.47) 

      

(3.99) 

 11 2nd quartile 0.10 0.07 0.58 

    

0.79 3.17 

  

(0.46) (1.90) (5.86) 

    

(4.66) 

 12 2nd quartile 0.02 0.06 0.58 0.01 0.00 -0.04 

 

0.69 4.84 

  

(0.08) (1.78) (6.84) (2.40) (0.04) (-8.12) 

 

(4.19) 

 13 3rd quartile 0.28 

     

0.03 

 

1.29 

  

(1.03) 

     

(1.97) 

  14 3rd quartile 0.47 0.07 1.00 

   

0.04 

 

3.06 

  

(1.90) (1.20) (8.96) 

   

(3.04) 

  15 3rd quartile 0.40 0.05 1.07 0.01 0.02 -0.03 0.03 

 

4.52 

  

(1.68) (0.85) (11.13) (5.41) (0.37) (-5.69) (2.51) 

  16 3rd quartile 0.25 

      

0.44 1.34 

  

(0.94) 

      

(2.00) 

 17 3rd quartile 0.41 0.10 1.03 

    

0.81 3.12 
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# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

  

(1.70) (1.62) (9.37) 

    

(3.37) 

 18 3rd quartile 0.35 0.07 1.10 0.01 0.01 -0.03 

 

0.66 4.56 

  

(1.51) (1.23) (11.52) (5.38) (0.17) (-5.74) 

 

(3.08) 

 19 small-liquidity 0.14 

     

0.03 

 

1.07 

  

(0.37) 

     

(2.23) 

  20 small-liquidity 0.86 -0.07 1.35 

   

0.04 

 

2.89 

  

(2.59) (-0.88) (10.59) 

   

(3.00) 

  21 small-liquidity 0.80 0.00 1.40 0.01 0.04 -0.04 0.03 

 

4.43 

  

(2.51) (0.02) (11.83) (3.73) (1.38) (-8.61) (1.94) 

  22 small-liquidity 0.10 

      

0.58 1.63 

  

(0.28) 

      

(2.03) 

 23 small-liquidity 0.82 -0.06 1.37 

    

0.84 2.90 

  

(2.48) (-0.71) (10.91) 

    

(2.93) 

 24 small-liquidity 0.76 0.01 1.40 0.01 0.04 -0.04 

 

0.57 4.45 

  

(2.40) (0.16) (12.11) (3.75) (1.37) (-8.64) 

 

(2.01) 

 Source: author’s calculations 
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Table 28: Fama–Macbeth regressions with mean-reverting level of volatility – interaction with unadjusted prices, 07/1980-03/2013 

The table reports results from Fama-Macbeth cross-sectional regressions for subsets formed by unadjusted prices. In each month all stocks are sorted in four quartile groups 

based on the unadjusted price and the cross-sectional regressions are estimated separately for each quartile group.  

Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month (‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables are 

the mean-reverting level of volatility (‘𝑚’) and its natural logarithm. ‘𝑅2’ reports the averaged R-squared statistics from the cross-sectional regressions.  

Column ‘Filter’ indicates the subsample used for estimating the cross-sectional regressions: ‘low-price’ marks Fama-Macbeth regressions estimated using only 25% of stocks 

with lowest unadjusted price in each month. ‘2nd quartile’, ‘3rd quartile’ and ‘high-price’ mark the remaining three quartile groups.  

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns for all quartile groups. The results suggest that significance of idiosyncratic 

volatility is not due to subset of small-price stocks that are avoided by institutional investors due to transaction costs. On the other hand, there is no clear trend in the regression 

slopes. Low-priced stocks would be preferred by individual investors who are less diversified, so ceteris paribus should also earn higher premium for assuming idiosyncratic 

risk.  

 

# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

1 low-price 0.35 

     

0.02 

 

1.38 

  

(1.00) 

     

(1.22) 

  2 low-price 0.66 0.01 1.31 

   

0.05 

 

2.58 

  

(2.00) (0.10) (11.55) 

   

(3.71) 

  3 low-price 0.51 0.10 1.31 0.01 0.07 -0.05 0.03 

 

4.28 

  

(1.64) (1.22) (12.50) (2.76) (2.53) (-9.35) (2.06) 

  4 low-price 0.29 

      

0.33 1.43 

  

(0.84) 

      

(1.05) 

 5 low-price 0.58 0.03 1.33 

    

1.01 2.61 

  

(1.79) (0.42) (11.97) 

    

(3.80) 

 6 low-price 0.45 0.12 1.33 0.01 0.07 -0.05 

 

0.60 4.29 

  

(1.47) (1.47) (12.87) (2.81) (2.50) (-9.41) 

 

(2.44) 
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# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

7 2nd quartile 0.29 

     

0.00 

 

2.50 

  

(0.95) 

     

(0.24) 

  8 2nd quartile 0.43 0.09 0.97 

   

0.04 

 

3.68 

  

(1.53) (1.82) (9.51) 

   

(2.57) 

  9 2nd quartile 0.46 0.10 1.01 0.01 -0.07 -0.03 0.03 

 

5.43 

  

(1.72) (2.04) (11.46) (5.91) (-1.94) (-5.94) (2.74) 

  10 2nd quartile 0.23 

      

0.13 2.53 

  

(0.77) 

      

(0.54) 

 11 2nd quartile 0.33 0.12 1.00 

    

0.72 3.74 

  

(1.21) (2.34) (9.81) 

    

(3.20) 

 12 2nd quartile 0.37 0.13 1.04 0.01 -0.08 -0.03 

 

0.71 5.46 

  

(1.42) (2.58) (11.71) (5.93) (-2.48) (-5.93) 

 

(3.91) 

 13 3rd quartile 0.24 

     

0.01 

 

3.81 

  

(0.98) 

     

(0.57) 

  14 3rd quartile 0.34 -0.01 0.57 

   

0.03 

 

5.02 

  

(1.37) (-0.33) (5.77) 

   

(1.83) 

  15 3rd quartile 0.33 -0.01 0.57 0.01 -0.07 -0.03 0.03 

 

7.16 

  

(1.52) (-0.34) (6.94) (3.26) (-1.78) (-6.06) (2.25) 

  16 3rd quartile 0.15 

      

0.25 3.81 

  

(0.65) 

      

(1.11) 
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# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

17 3rd quartile 0.23 0.01 0.59 

    

0.54 5.03 

  

(0.98) (0.24) (5.97) 

    

(2.63) 

 18 3rd quartile 0.25 0.01 0.60 0.01 -0.09 -0.03 

 

0.59 7.15 

  

(1.19) (0.31) (7.16) (3.26) (-2.27) (-6.04) 

 

(3.56) 

 19 high-price 0.20 

     

0.04 

 

4.33 

  

(0.82) 

     

(1.47) 

  20 high-price 0.17 0.04 0.36 

   

0.06 

 

5.85 

  

(0.71) (1.10) (4.25) 

   

(2.49) 

  21 high-price 0.17 0.03 0.38 0.01 -0.05 -0.02 0.06 

 

8.84 

  

(0.82) (1.01) (4.74) (1.96) (-0.96) (-3.90) (3.64) 

  22 high-price 0.16 

      

0.34 4.29 

  

(0.68) 

      

(1.38) 

 23 high-price 0.11 0.06 0.38 

    

0.65 5.85 

  

(0.45) (1.55) (4.40) 

    

(2.52) 

 24 high-price 0.12 0.06 0.39 0.01 -0.06 -0.02 

 

0.69 8.84 

  

(0.60) (1.63) (4.94) (2.03) (-1.18) (-3.82) 

 

(4.22) 

 Source: author’s calculations  
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Table 29: Fama–Macbeth regressions with mean-reverting level of volatilities – interaction with traded volume in the last 36 months, 

07/1980-03/2013 

The table reports results from Fama-Macbeth cross-sectional regressions for subsets formed by traded volume. In each month all stocks are sorted in four quartile groups based 

on the traded volume and the cross-sectional regressions are estimated separately for each quartile group.  

Control variables are beta with market (‘𝐵𝑒𝑡𝑎’), natural logarithms of market capitalisation (‘ln (𝐶𝑎𝑝)’) and book-to-market value (‘ln (𝐵/𝑀)’), momentum of returns measured 

as cumulative return from (t-7) until (t-1) (‘𝑅𝑒𝑡(−7,−2)’), return in the previous month (‘𝑅𝑒𝑡𝑡−1’), liquidity measured in terms of Roll’s estimator (‘𝑅𝑜𝑙𝑙’). Tested variables are 

the mean-reverting level of volatility (‘𝑚’) and its natural logarithm. ‘𝑅2’ reports the averaged R-squared statistics from the cross-sectional regressions.  

Column ‘Filter’ indicates the subsample used for estimating the cross-sectional regressions: ‘low-volume’ marks Fama-Macbeth regressions estimated using only 25% of stocks 

with lowest traded volume in each month. ‘2nd quartile’, ‘3rd quartile’ and ‘high-volume’ mark the remaining three quartile groups. ‘75% volume’ pools together the stocks 

from the top 75% in terms of traded volume. 

The results suggest that 𝑚 and ln𝑚 are significant predictors of the cross-section of returns only for stocks with low traded volume. However, the remaining point estimates 

remain notably stable although statistically insignificant. In order to examine if the insignificance of the coefficient is due to some specific months, e.g. ones with high volatility, 

we have pooled together the top 75% into one portfolio, which shows a statistically significant slope, confirming the significance of the mean-reverting volatility.  

 

# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

1 low-volume 0.26 

     

0.05 

 

1.72 

  

(0.83) 

     

(3.39) 

  2 low-volume 0.33 -0.18 1.05 

   

0.05 

 

2.90 

  

(1.12) (-2.89) (9.87) 

   

(3.72) 

  3 low-volume 0.22 -0.10 1.06 0.01 0.05 -0.05 0.03 

 

4.52 

  

(0.82) (-1.69) (10.30) (5.49) (2.09) (-9.13) (2.26) 

  4 low-volume 0.17 

      

0.83 1.72 

  

(0.58) 

      

(3.69) 

 5 low-volume 0.28 -0.17 1.04 

    

0.82 2.91 

  

(0.97) (-2.79) (9.93) 

    

(3.84) 
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# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

6 low-volume 0.19 -0.10 1.05 0.01 0.05 -0.05 

 

0.41 4.52 

  

(0.73) (-1.61) (10.40) (5.53) (2.20) (-9.16) 

 

(2.44) 

 7 2nd quartile 0.64 

     

0.04 

 

3.27 

  

(2.08) 

     

(2.17) 

  8 2nd quartile 0.38 -0.43 0.97 

   

0.02 

 

4.14 

  

(1.36) (-4.71) (9.93) 

   

(1.57) 

  9 2nd quartile 0.25 -0.36 1.02 0.01 0.00 -0.04 0.02 

 

6.03 

  

(1.00) (-4.77) (11.35) (5.81) (0.05) (-7.99) (1.33) 

  10 2nd quartile 0.51 

      

0.63 2.80 

  

(1.75) 

      

(2.53) 

 11 2nd quartile 0.31 -0.41 0.97 

    

0.42 4.13 

  

(1.19) (-4.35) (9.94) 

    

(2.01) 

 12 2nd quartile 0.21 -0.35 1.03 0.01 0.00 -0.04 

 

0.28 6.02 

  

(0.86) (-4.47) (11.34) (5.88) (-0.02) (-8.04) 

 

(1.76) 

 13 3rd quartile 0.30 

     

0.06 

 

3.77 

  

(1.07) 

     

(2.70) 

  14 3rd quartile 0.07 -0.49 0.75 

   

0.01 

 

5.40 

  

(0.29) (-4.81) (6.70) 

   

(0.77) 

  15 3rd quartile -0.03 -0.49 0.78 0.01 -0.07 -0.03 0.02 

 

7.77 

  

(-0.15) (-6.68) (8.01) (3.81) (-1.45) (-5.49) (1.18) 
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# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

16 3rd quartile 0.17 

      

0.73 3.75 

  

(0.63) 

      

(2.91) 

 17 3rd quartile 0.00 -0.46 0.78 

    

0.27 5.37 

  

(0.01) (-4.46) (6.78) 

    

(1.19) 

 18 3rd quartile -0.11 -0.46 0.80 0.01 -0.08 -0.03 

 

0.38 7.78 

  

(-0.46) (-6.27) (8.13) (3.80) (-1.73) (-5.48) 

 

(1.76) 

 19 high-volume 0.18 

     

0.08 

 

5.48 

  

(0.66) 

     

(3.22) 

  20 high-volume 0.04 -0.25 0.42 

   

0.03 

 

7.27 

  

(0.16) (-4.36) (3.62) 

   

(1.37) 

  21 high-volume -0.02 -0.24 0.44 0.01 0.03 -0.01 0.02 

 

10.68 

  

(-0.08) (-4.66) (4.58) (1.85) (0.48) (-2.52) (1.08) 

  22 high-volume 0.12 

      

0.81 5.44 

  

(0.43) 

      

(3.37) 

 23 high-volume 0.03 -0.25 0.42 

    

0.33 7.19 

  

(0.13) (-4.22) (3.61) 

    

(1.32) 

 24 high-volume -0.03 -0.24 0.44 0.01 0.03 -0.01 

 

0.21 10.61 

  

(-0.12) (-4.50) (4.60) (1.84) (0.46) (-2.47) 

 

(1.29) 

 25 75% volume 0.41 

     

0.04 

 

3.51 

  

(1.50) 

     

(2.51) 
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# Filter Beta ln (Cap) ln (B/M) Ret(−7,−2) Roll Rett−1 m lnm R2 

26 75% volume 0.34 -0.04 0.77 

   

0.04 

 

4.90 

  

(1.30) -(0.96) (7.50) 

   

(2.70) 

  27 75% volume 0.19 -0.03 0.78 0.01 0.01 -0.03 0.03 

 

7.04 

  

(0.87) -(0.70) (9.58) (3.38) (0.31) -(7.06) (2.26) 

  28 75% volume 0.30 

      

0.59 3.54 

  

(1.17) 

      

(2.77) 

 29 75% volume 0.24 -0.01 0.79 

    

0.66 4.94 

  

(0.97) -(0.25) (7.66) 

    

(3.02) 

 30 75% volume 0.12 0.00 0.80 0.01 0.00 -0.03 

 

0.49 7.07 

  

(0.56) -(0.05) (9.75) (3.38) (0.06) -(7.04) 

 

(3.11) 

 Source: author’s calculations 
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4.6. Summary 

In this chapter we presented the empirical finding on the correlation between 

idiosyncratic risk and stock returns. We found that past volatilities and forecasts derived using 

ARMA(1,1) based on past volatilities substantially outperformed forecasts from monthly 

GARCH(1,1) or OLS residuals as predictors of next-period volatility. Nonetheless, we found 

that those superior forecasts did not yield support to the hypothesis that idiosyncratic risk is 

priced. In particular, we found that the empirical evidence in favour of negative correlation 

noted by Ang et al. (2006) and Ang et al. (2009) was fragile and could not be confirmed as a 

robust predictor of the cross-section after controlling for the skewness of the lagged volatility 

distribution. On the other hand, the forecasts from OLS and GARCH(1,1) did support the 

existence of such positive correlation, consistent with the findings of Fu (2009) and Spiegel 

and Wang (2005). In view of the negative results for one-period forecasts we explored the 

predictive performance of another key characteristic of expect volatility path – the 

mean-reverting level of volatility. We found that the mean-reverting level was a robust 

predictor of the cross-section after controlling for many characteristics and factor loadings, 

including beta, size, book-market ratio, return momentum, return reversals, liquidity, omitted 

factors, daily frequency, and various subsamples. In the following chapter we shall offer 

further interpretation of our results in order to understand how they fit with previous empirical 

and theoretical research.  
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5. Discussion 

5.1. Introduction 

The results in the preceding chapter convincingly demonstrated that next-period 

volatility does not explain the cross-section of stock returns, but the mean-reverting level of 

volatility is established as a robust predictor of the cross-section. In this chapter we shall step 

back and assess our findings against the backdrop of other studies and theoretical 

developments in the recent years. In Section 5.2. we shall discuss the findings concerning the 

superior performance of volatility forecasts based on daily data, and compare our conclusions 

with those reported by related studies. In Section 5.3. we shall examine the grounds and 

theories that motivate the use of the mean-reverting volatility as a predictor of the 

cross-section and basis for portfolio construction, instead of the short-term volatility forecasts. 

Section 5.4. offers an interpretation of the grounds for the conflicting conclusions reached by 

existing literature and shall demonstrate, that those studies are actually consistent with one 

another, as well as with the theoretical models. Section 5.5. is dedicated to the interaction of 

idiosyncratic volatility with other predictors of the cross-section, especially liquidity and size. 

There we explain why the idiosyncratic premium might not be separable from liquidity and 

size premia. Section 5.6. is dedicated to one domain where further research is needed, namely 

the tradability of idiosyncratic volatility.  

5.2. Forecasts quality and goodness of fit 

Existing studies employed different measures volatilities, which substantially obscured 

the comparison and interpretation of results. For example, Fu (2009) criticised the approach of 

Ang et al. (2006) as backward-looking rather than forward-looking, while Bali and Cakici 

(2008: 52) reported that monthly idiosyncratic volatility forecasts significantly outperformed 

daily volatility forecasts. 

We approached the problem by starting off from the basic question which measure of 

volatility fared better in forecasting the true volatilities. We pursued that by using 

Mincer-Zarnowitz regressions, the results of which we reported in Table 13 on page 136. As 

predictor variables we used a couple of existing measures proposed in the literature: the OLS 

monthly rolling historical volatility, the last-month historical volatility used by Ang et al. 
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(2006), the expected volatility from the GARCH model, and the expected volatility from the 

ARMA model using monthly volatilities estimated from daily data. In this way we covered a 

broader range of possible measures without, however, ruling out the possibility of some 

methodological refinements, e.g. using Exponential GARCH as in Fu (2009) and Spiegel and 

Wang (2005) instead of simple GARCH. Nevertheless, in our empirical analysis we found a 

fairly wide gap in predictive performance between ARMA and Ang’s forecasts, on the one 

hand, and monthly GARCH and OLS volatilities on the other hand, so we doubt that 

alternative specifications could close that gap, although we are confident that some 

specifications could improve predictive accuracy. Nevertheless, our result seem to be quite 

away from those of Spiegel and Wang, who reported153 that the use of EGARCH(p,q) 

forecasts with lags p and q ranging between 1 and 3 reduced the forecasting error to just half 

of that of OLS residuals.  

The separation of the predictive performance of idiosyncratic volatilities can be seen 

in terms of approaches to forecasting of volatilities. The approach of Ang et al. (2006) and its 

forward-looking extension using ARMA(1,1) were based on the average daily volatilities 

from the preceding month as a proxy of monthly volatility (after corresponding scaling). This 

approach was in the spirit of Merton (1980) in the sense that lower-frequency volatilities (in 

our case – monthly frequency) were estimated from higher-frequency data (daily data), which 

increased the accuracy (i.e., reduced the noise) of estimating monthly volatilities. The 

superior measures of past history of monthly volatilities then resulted in superior forecasts of 

next-month volatilities even though the approach of Ang et al. (2006) was essentially the 

simplest possible: it assumed that last month’s volatility was a good proxy of present month’s 

volatility. On the other hand, approaches based on monthly data used squared monthly return 

as a proxy of realised volatility. Thus, each month’s volatility was estimated from a single 

realisation from the unobservable monthly return distribution, which in the present context 

was assumed to have time-varying scale. This was too big a hurdle to be overcome even with 

an otherwise powerful forecasting model like GARCH. The OLS residuals essentially reduced 

that problem by averaging those squared residuals over the rolling window, implicitly 

assuming a constant scale of the idiosyncratic return distributions. That would be a robust 

approach in case of static, unchanging monthly volatilities, but it filtered out most of the time 

variation of volatilities. The GARCH model addressed that problem by updating the previous 

forecast with the estimate of the realised volatility. However, the noisy update (squared 

                                                 

153 Table 2 in Spiegel and Wang (2005) 
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residuals) was a significant handicap and capped the forecasting performance of the model. 

Nonetheless, the jury is still out, as Table 13 also demonstrated that the ranking of predictive 

models could also depend on the choice of estimator of the true volatility. Thus, the 

superiority of models using daily data to forecast monthly frequencies was significantly more 

pronounced when the realised volatility was measured using an in-sample EGARCH model 

on daily data, than the case where realised volatility equalled the squared idiosyncratic return. 

Therefore, different methods to estimate the true volatility could also impact the ranking, 

although we did not find evidence of that in our tests. 

In our study we found that ARMA(1,1) yielded the most accurate predictor of future 

volatility among the compared alternatives. Using one-step forecasts from that model we 

found that idiosyncratic volatility appeared to be uncorrelated with returns. These results were 

reported in Table 15 on page 154. There we found that ARMA forecasts were insignificant 

across specifications both in levels and in logs. The historical estimator of Ang et al. (2006), 

which was the second best predictor of true volatilities in our Mincer and Zarnowitz (1969) 

tests, also yielded insignificant results once its skewness was reduced by using the natural 

logarithm of volatility. These results seemingly contradicted the theory of Merton that 

idiosyncratic risk was priced in case of imperfect diversification. On the other hand, the less 

accurate predictors in our study – GARCH and OLS – yielded support for the theory, as 

evident in Table 14 on page 148. The contrast between the results in Table 14 and Table 15 

suggested that efforts to improve forecasting performance could be in fact leading us astray. If 

the better forecasts yielded inconclusive results, whereas the worse forecasts yielded stronger 

support for the theory of Levy and Merton, then we should conclude that those worse 

forecasts served as proxies for some other variable.  

Our results cast new light on previous studies. Thus, we find that contrary to the 

findings of Bali and Cakici (2008), monthly idiosyncratic volatility was in fact an inferior 

predictor of future volatility. The difference in conclusions comes from their use of monthly 

data to estimate realised volatilities. When monthly volatilities were estimated from 

higher-frequency (daily) returns, the measures based on daily data (ARMA and Ang’s 

measure) vastly outperformed those based on monthly data. The choice of estimator of the 

latent realised volatility was therefore found to affect significantly the conclusions of such 

comparisons. While the filtering of monthly volatilities from monthly returns may seem as 

more natural a choice, we point out that the short series and the theoretical works of Merton 

(1980) and Andersen and Bollerslev (1998) lend strong support for the use of 

higher-frequency data to estimate monthly volatilities. Using that approach we found that the 
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daily-based volatility forecasts outperformed monthly forecasts, and in particular that the use 

of GARCH with monthly data significantly underperformed as predictor of future volatility 

when compared to the historical volatilities of Ang et al. (2006). These findings suggest that 

the approach of Ang et al. (2006) and Ang et al. (2009) could not be discarded as a valid 

forecast of future volatilities.  

5.3. Mean-reverting level 

The analysis of the cause of the contrasting findings reported in Table 14, which 

supported the theory of Levy and Merton, and Table 15, which rejected it, should consider 

how volatilities change in time. In Table 12 on page 148 we reported that for the majority of 

companies the null hypothesis of unit root could be rejected at conventional confidence levels. 

This remained true when the true (ex post) volatility was measured by fitting the in-sample 

GARCH model with monthly data, as well as when we used a daily EGARCH model. The 

stationarity of the volatility series suggested that the level to which volatility reverted could 

be the one that actually mattered for investors. Indeed, the original model of Merton was a 

one-period model with known volatility. The model then derived the equilibrium prices given 

the known expected return and risk. In reality, investors faced a more complex decision 

problem: to estimate their allocations in the presence of changing volatilities. Thus, from the 

perspective of each investor, the return on asset i was determined by the sum of the expected 

dividend yield and the expected capital gains, i.e. 

𝔼𝑡𝑅𝑖,𝑡+1 =
𝔼𝑡 𝑃𝑖,𝑡+1 −  𝑃𝑖,𝑡

𝑃𝑖,𝑡
+
𝔼𝑡 𝐷𝑖,𝑡+1
𝑃𝑖,𝑡

, 

where 𝔼𝑡𝑅𝑖,𝑡+1 was the expected return for the next period, 𝔼𝑡 𝑃𝑖,𝑡+1 was the expected price 

at the end of the allocation period, and 𝔼𝑡 𝐷𝑖,𝑡+1 was the expected dividend payment through 

the holding period. If equilibrium prices depended on the expected volatilities, as Merton 

proposed, then the equilibrium problem would need to change to incorporate the next-period 

volatility, as it would affect the end-of-period prices. Therefore, investors would be solving 

the problem backwards, starting from the unconditional mean (the mean-reverting level) and 

solving the problem backwards until the current level of volatility. Seen this way, the problem 

suggested a role of the unconditional mean as it determined the expected future trajectory of 

volatilities. On the other hand, such a perspective also supported the significance of the 

one-period volatility forecast, as this determined the distribution of the end-of-period prices, 
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and consequently, the end-of-period wealth. These two extremes – the start of the volatility 

trajectory, and its end – as well as the speed with which the volatility was expected to transit 

starting from the current level could all matter to investors. The volatility trajectories also 

mapped to the measures used in the empirical tests of the Merton model; thus, last-period 

volatility (i.e., the measure of Ang) could be seen as the starting point of the volatility at the 

time of allocation. The volatility during the investment period (the ARMA/GARCH 

one-period forecast) could be seen as an intermediary point on the trajectory linking the last 

volatility (Ang et al’s) and the mean-reverting level of volatility. 

The proposition that the mean-reverting level of volatility explains the cross-section 

could be linked to a number of previous studies. Thus Gunthorpe and Levy (1994) 

demonstrate that the planning horizon affects the portfolio composition; contrary to intuition, 

they find that short-term investors would invest in more aggressive assets, while long-term 

investors would invest in defensive assets. Thus they recommend that investors should first 

assess their transaction costs and then decide on their planning horizon. In models with no 

transaction costs, investors could rebalance their portfolio continuously without incurring any 

cost for those trades. In practice this is not the case, so Brown and Smith (2011) explored a 

simulation of three alternative heuristics in order to compare how strategies that disregard 

transaction costs compare with ones that do incorporate them. They find that strategies that 

rebalance portfolios periodically (one-period ahead, or many-months-ahead with monthly 

rebalancing) outperform a strategy that rebalances continuously. Moreover, the strategy that 

constructs portfolios for a longer period while allowing rebalancing more frequently than the 

planning horizon, performs slightly better than a strategy that employs a planning horizon 

equal to the rebalancing horizon. In our setting such a comparison would be between 

strategies that construct portfolios based on next-period idiosyncratic risk versus a strategy 

that constructs portfolios based on longer planning horizon (e.g. six months) even though 

portfolio rebalancing could still occur monthly; in this setting a portfolio construction based 

on a medium-term planning horizon would tend to outperform the strategy that constructs a 

portfolio using only next-month volatility, disregarding longer-term volatility. Importantly, as 

the planning horizon increases, volatilities quickly converge to the mean-reverting level, 

which could explain why investors would be using profitably the mean-reverting level instead 

of the next-period volatility. This is consistent with our exploratory analysis of the data, 

which showed that short-term forecasts (two-, three-month or longer) did not fare much better 

as explanatory variables than the one-month ahead forecasts, while for horizons over six 

months projected volatilities where numerically quite close to the mean-reverting level. Thus, 
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portfolios constructed using mean-reverting idiosyncratic volatilities could outperform 

portfolios based on one-month volatility forecasts even when portfolio rebalancing occurred 

on monthly frequency. Liu and Loewenstein (2002) explore the portfolio construction 

problem for CRRA investor in presence of transaction costs and finite horizon. They conclude 

that the optimal portfolio would be horizon-dependent, and would favour buy-and-hold 

strategy. Another perspective on the link between the portfolio planning horizon and the 

stockholding horizon is offered by Shiryaev et al. (2008), who employ a Black-Scholes model 

to analyse at what price level investors would be exiting optimally a given stock position. 

They demonstrate that such a choice would depend on the ratio between expected excess 

return and volatility, and for stocks for which that ratio is higher would be held longer; in case 

it exceeds 0.5, the optimal behaviour would be to hold the investment until the end of the 

planning horizon. Overall, those studies suggest that the prominence of the mean-reverting 

level is not just a data-mining artefact, but is consistent with rational portfolio construction 

based on intermediate planning horizons (e.g. six months or more) even though portfolios 

could still be rebalanced frequently; the reduced transaction costs from portfolio rebalancing 

could allow that approach to outperform myopic portfolios constructed on short-term 

forecasts of risk characteristics. Further theoretical arguments in that direction were recently 

proposed by Bichuch and Sircar (2015), who used perturbation methods to explore optimal 

investing in the presence of mean-reverting stochastic volatility and trading costs. In case of 

fast mean-reversion, they point out that there is just too little time for profit, and thus optimal 

trading decisions are based on the root mean squared volatilities, rather than on the current 

volatility factor realisation. On the other hand, when mean-reversion is slow, investors would 

not care for the average volatility, but rather for the Sharpe ratio. On average we observe 

fairly quick volatility reversion, which warrants the use of the expected mean-reverting level 

of volatility, rather than short-term expected volatility or averaged past values. 

5.4. Comparison with other studies 

Our approach highlights the consistency of existing evidence, rather than its 

divergence. We see that studies that found evidence supporting the studies of Merton and 

Levy used GARCH-based forecasts (Spiegel and Wang (2005); Fu (2009); Fu and Schutte 

(2010)) or filtered volatilities (Cao (2010); Cao and Xu (2010)), both of which would be 

correlated with the mean-reverting level. For example, in Table 11 on p. 133 we found that 
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forecasts from monthly GARCH(1,1) models correlated more with OLS residuals (0.92) than 

with Ang’s historical volatility (0.65), which we found to be the second best predictor of true 

volatility. Likewise, its cross-sectional correlation with true (𝐼𝑉𝑖,𝑡
𝑒𝑔𝑎𝑟𝑐ℎ

) volatility was just 

0.79, similar to the results for OLS residuals (0.78) and the mean-reverting level (0.81), 

compared to a correlation to the ARMA forecasts of 0.91, which we found to be the best 

predictors of true volatility among the compared estimators. The point was made even more 

strongly in Table 13, where 𝑅2 of 𝐼𝑉̂𝑡
𝑔𝑎𝑟𝑐ℎ

 as predictor of true volatility was found to be 

less than half of the predictive performance of ARMA(1,1) forecasts and much closer to, 

albeit better than, OLS forecasts. Therefore, despite the forward-looking nature of the model 

per se, in practice GARCH forecasts with monthly data correlate better with OLS and the 

mean-reverting level, rather than future volatilities.  

These findings should not be viewed as surprising. Indeed, the OLS variance forecast 

is the mean squared idiosyncratic shock in the respective month, and that squared shock is a 

measure of idiosyncratic variance in that month. Therefore, the OLS residuals serve as a 

moving-average filter of true volatilities, smoothing out transitory changes in a manner that is 

quite similar to the approach of Cao (2010) and Cao and Xu (2010).  
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Figure 4: Moving average and Exponentially-weighted moving average as filters 

 

 

 

The relation between GARCH forecasts and the mean-reverting level might be more 

difficult to see immediately, but it is nonetheless there. Indeed, note that the EWMA 

specification (𝜎̂𝑡
2 = 𝜆 𝜎̂𝑡

2 + (1 − 𝜆)𝜖𝑡−1
2 ) is a particular case of the more general GARCH 
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model (𝜎̂𝑡
2 = 𝜔 + 𝛼 𝜎̂𝑡

2 + 𝛽𝜖𝑡−1
2 ). Moreover, the parameters we often observe in finance are 

sufficiently close to the assumption of EWMA – so much so, that they motivated the 

development of the Integrated GARCH model by NELSON, which builds on the observation 

that in many financial series 𝛼 + 𝛽 ≈ 1, as well as the incorporation of the EWMA in the 

RiskMetrics methodology (J.P.Morgan/Reuters (1996)). Thus, EWMA, like MA, could be 

viewed as an example of Finite Impulse Response (FIR) filter, where each value is calculated 

as a weighted sum of its most recent realisations: 

𝑦𝑛 = 𝑏0𝑥𝑛−0 + 𝑏1𝑥𝑛−1 + 𝑏2𝑥𝑛−2 +⋯+ 𝑏𝑁𝑥𝑛−𝑁. 

In that setting, the moving average (the OLS volatility) is FIR filter with 𝑁 between 24 and 

60, where 𝑏𝑖 =
1

𝑁
, 𝑖 = 1,…𝑁. Likewise, EWMA could be viewed as a FIR filter with 𝑏𝑖 =

(1−𝜆)𝜆𝑖−1

1−𝜆𝑁
, 𝑖 = 1,…𝑁. These filters do refer in terms of their response to unit step change of the 

impulse signal and amplitude reduction for difference frequencies (see Figure 4), however 

both OLS and EWMA are low-pass filters, i.e. they let low frequency changes through the 

filter while reducing high-frequency noise. The similarity between the GARCH(1,1) forecasts 

with SGED innovations and EWMA with SGED residuals (lambda estimated by best fit) is 

0.94 in our sample, which confirms that GARCH(1,1) forecasts are very similar to those 

produced by EWMA and would thus filter primarily the low-frequency component of 

volatility. Therefore, we see that when one uses a forecasting method that functions as a 

low-pass filter, idiosyncratic volatility emerges as a significant predictor. This was the case 

with our tests involving OLS and GARCH(1,1), as well as in the related literature – the 

studies of Fu (2009), Fu and Schutte (2010) and Spiegel and Wang (2005) that used 

EGARCH(p,q), as well as the studies of Cao (2010) and Cao and Xu (2010), that used 

Hodrick-Prescott filters. Therefore, those studies produced significant correlation with 

returns, but the reason was not that they used accurate, forward-looking forecasts of 

volatilities, as suggested by Fu (2009), but rather filtered past volatilities to produce forecasts 

that correlated with the expected mean-reverting level of volatility.  

Our study found furthermore that the best volatility forecasting method (among the 

ones compared in the study) was an insignificant predictor of the cross-section. We can 

hypothesise that the reason for its insignificance are the random changes from month to 

month, which are difficult to exploit economically due to transaction costs (Li et al. (2014)), 

and that results in longer planning horizons (Gunthorpe and Levy (1994)). However, that 

pattern could also give rise to other anomalies which resemble the ones documented in the 

related literature. In particular, let us decompose next-period expected volatility (𝜎̂𝑡) into two 
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components: the mean-reverting level ( 𝑚 ), and the transitory difference between 

mean-reverting volatility (𝜎̂𝑠 = 𝜎̂𝑡 −m). Since 𝜎̂𝑡 is found to be an insignificant predictor of 

returns, while 𝑚 is a significant one, then it follows algebraically that the coefficient 𝜎̂𝑠 

would be negatively correlated with returns. Such considerations could explain the negative 

correlation between last-month volatility, documented by Ang et al. (2006), Ang et al. (2009), 

Li et al. (2014), and explored as a trading strategy by practitioners, e.g. Bender et al. (2013). 

However, since such studies use the last realised volatility, instead of the spread between 

expected volatility and the mean-reverting volatility, their results tend be inconclusive. For 

example, the use of ln (𝐼𝑉𝑡−1) as an explanatory variable found no evidence of significant 

negative correlation between volatility and returns. Moreover, the magnitude of the premium 

for idiosyncratic risk was found to be smaller in absolute terms compared to the premium for 

the mean-reverting level.154 Therefore, our results suggest that contrary to the suggestion of 

Bender et al. (2013), if investors seek exposure to idiosyncratic risk, they should construct 

portfolios based on expected mean-reverting level of volatility, or, equivalently, the deviation 

of expected volatility from the mean-reverting level, as our study suggests that these are more 

reliable estimators of returns. Strategies that seek to profit from exposure to the extreme 

quantiles of the volatility distributions, like low-volatility or high-volatility portfolios, are 

likely to profit only inasmuch as those portfolios would be loaded with securities that have 

volatility significantly below the mean-reverting level (low-volatility investing), and volatility 

above the mean-reverting level. In the former case, the low-volatility portfolio would earn 

higher return not because there is some abnormal quality premium, but because those 

securities are priced based on their higher mean-reverting volatility. In the high-volatility 

portfolio the situation is reversed: for many of the securities the mean-reverting volatility is 

likely to be below the current one, and hence those portfolios would be earning lower returns 

than what is implied by their current volatility. Such considerations, however, do not exclude 

interaction with the mechanism documented by Fu (2009), namely the return reversals for 

some high-volatility stocks. Indeed, we documented that neither idiosyncratic volatility, nor 

most of the other explanatory variables explained the cross-section of returns in an 

environment of market turmoil. It could be conjectured, that idiosyncratic volatility may be 

insignificant in situations where there is great price uncertainty due to arrival of material new 

information to the market. Such considerations may be more relevant for high-volatility 

                                                 

154 If we use the spread between expected volatility and the mean-reverting level, we would 

expect to see a slope that equals in absolute terms the one for the mean-reverting level, but 

with a negative sign. 
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portfolios, and therefore such securities may earn returns that deviate from their equilibrium 

expected returns. What we emphasise, however, is that the significance of the mean-reverting 

volatility and the insignificance of short-term forecasts is consistent with both positive 

correlation between returns and mean volatility, and with negative correlation between returns 

and the spread between expected volatility and the mean-reverting volatility. 

The patterns documented in our study are also consistent with the observations of Bali 

and Cakici (2008) that the idiosyncratic volatility may not be a robust predictor of the 

cross-section. Such an outcome is consistent with tests that focus on larger stocks that have a 

wide investor base and a higher share of institutional ownership. Consistent with the 

underlying economic model, such securities would be earning lower premium for equivalent 

spreads of volatility, and thus the null hypothesis of no correlation would be more difficult to 

reject. Furthermore, as pointed out by Ang et al. (2010), tests based on portfolios may be less 

efficient, and may therefore suggest no correlation whereas in fact there is (failure to reject 

the null hypothesis when it is in fact false). We document similar patterns in our study: lower 

slopes for NYSE/Amex-traded stocks compared to Nasdaq-traded ones; less robust 

correlation when excluding stocks with lower unadjusted price compared to high-price stocks 

that have higher institutional ownership; less robust correlation for larger, presumably better 

known, stocks; less robust correlation when using portfolios and NYSE breakpoints. These 

findings did not contradict the underlying economic model per se – that would require 

widespread under-diversification among both individual and institutional investors, as well as 

across small and large-capitalisation stocks. Instead, investors seeking extra returns for 

idiosyncratic risk would likely gain more by focussing on less known stocks; such strategies 

may not befit all investors, as those stocks may also have lower liquidity, and such trading 

strategies may have lower capacities. Nevertheless, studies that use models geared at 

predicting next-period volatility, which we demonstrated to be insignificant, would be also 

more likely to fail to establish a positive correlation between idiosyncratic risk and return 

simply because as they aim to predict the wrong volatility, the more accurately they predict 

volatilities, the less robust their findings would be.  

5.5. Liquidity premium and other premia 

Another difficulty in the empirical tests of the Merton model was that it predicted that 

premium was earned for exposure to idiosyncratic risk. Thus, researchers are expected to 
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demonstrate that idiosyncratic risk explains the cross-section of returns, and that idiosyncratic 

risk is not a proxy for any other explanatory variable. The former task is easier, as it requires 

proving a positive fact: that securities with higher idiosyncratic risk earn higher returns. The 

latter requires proving a negative fact: that there is no other (omitted) factor explaining the 

cross-section of returns. Even if the number of possible factors that could explain the 

cross-section was finite, many of them may not be available to researchers. The most obvious 

example would be Roll’s critique: that the market portfolio that CAPM refers to includes all 

assets in the economy, rather than the exchange-traded shares (Roll, 1977). In that setting it 

could be argued that idiosyncratic risk served as a proxy of some other underlying risk. For 

example, Eiling (2013) suggested a link between idiosyncratic risk and industry-specific 

human capital. In our study we attempted to mitigate the problem of negative proof by using a 

wide range of controls. For example, we estimated idiosyncratic risk relative to the four-factor 

Fama–French–Carhart model in order to estimate residual variance after controlling as many 

factors as practically possible. We also employed a wide range of tests of robustness: a long 

list of control variables in the cross-sectional regressions (beta, size, book/market value, stock 

momentum, Roll’s bid-ask spread, return reversals), as well as a range of subsamples (Nasdaq 

vs non-Nasdaq, unadjusted prices, growth vs recession episodes, market-wide volatility state, 

behavioural momentum, quartiles by correlated covariates); moreover, we also attempted to 

recover through statistical factor analysis any unobservable factor driving idiosyncratic 

returns that was omitted by the other tests.155 Nevertheless, we recognise that there do remain 

other factors that could also be tested. Such factors could relate to the inadequate capture of 

risk preferences by expected return and standard deviation (i.e., first and second moments of 

the return process) and propose the use of further characteristics, e.g. skewness and kurtosis, 

and co-skewness and co-kurtosis with the market.156 Relevant results on the link between 

idiosyncratic tail risk and the cross-section of returns (at daily frequency) were obtained by 

Huang, Liu, Rhee and Wu (2012), who reported that securities with higher extreme downside 

risk earned higher returns. In preparatory studies for this dissertation we have explored 

whether extreme downside risk could be useful in explaining the cross-section of returns, but 

we found the results inconclusive. Furthermore, it might be appropriate to explore the link to 

the extreme downside risk and the default probabilities, as extreme price changes may be 

                                                 

155 See p. 206, Table 21: Fama–Macbeth cross-sectional regressions with loading on the 

principal factor affecting idiosyncratic returns, 07/1982 – 03/2013 
156 Kraus et al. (1976); Fang and Lai (1997); Harvey and Siddique (2000); Jondeau and 

Rockinger (2000); Dittmar (2002); Bali et al. (2011) 
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triggered by default events or revisions of risk of default. In principle such tests could be 

accomplished in various ways: external agency ratings, synthetic ratings or models akin to 

Altman’s score157, and option-based default probabilities158. Due to lack of accounting data, 

we have not explored this avenue of research. We have nevertheless used high-betas and low 

prices as indications of higher probability of distress; these tests again confirmed the 

significance of idiosyncratic risk as an explanatory factor.159  

We observed significant correlation between the explanatory control variables in this 

study. Idiosyncratic risk was noted to correlate with size, beta and liquidity. The link between 

these four variables, however, may go well beyond simple correlation, so that it is possible 

that the true factor space is some lower-dimensional subspace of the 

size-beta-liquidity-volatility space. This issue could be particularly prominent in connection 

with stock liquidity. In this study we documented that the mean-reverting level of 

idiosyncratic volatility was a reasonably robust predictor of the cross-section of returns. This 

could not be said of liquidity. Indeed, in various specifications we observe changes in the 

magnitude and the sign of Roll’s bid-ask spread. Of course, Roll’s measure was just one of 

the possible measures of liquidity. The actual bid-ask spread, the measure of Amihud and 

Mendelson (1986), or the traded volume, were other possibilities. Due to lack of enough data 

we were unable to perform similar tests using actual bid-ask spreads and Amihud and 

Mendelson’s bid-ask spreads. However, we did try to use the traded volume as a predictor and 

found that its coefficient was more often than not with the wrong sign in our sample, i.e. more 

traded stocks earned higher returns.160 The unstable predictions yielded by the different facets 

of liquidity could be an argument against using liquidity as a predictor of returns. However, 

such conclusions could be unwarranted. The underlying assumption of the models of Levy 

and Merton was that investors were unable or unwilling to invest in some securities, e.g. due 

to transaction costs and finite divisibility of assets. However, there are also valid behavioural 

considerations in that decision to abstain from investing in certain assets. One of the principal 

investment constraints that should be documented in any individual investor’s investment 

policy statement as summarised by the CFA Institute 161  is the identification of any 

requirements for maintaining liquidity. For example, if there is uncertainty about an investor’s 

                                                 

157 Altman (1968) 
158 Merton (1974) 
159  See specification “k” in Table 18: Fama–Macbeth cross-sectional regressions with 

mean-reverting volatility – robustness checks, on p. 192. 
160 Such a finding was also reported by Malkiel and Xu (2004) 
161 CFA Institute (2010) 
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income stream or risk of unplanned portfolio withdrawals, the resulting portfolio allocation 

should address these by increasing portfolio liquidity, e.g. increasing the share of 

fixed-income securities and exclusion of illiquid securities. Such considerations could be even 

more material for institutional investors, which may need to stand ready to convert their 

portfolios in cash to support any liquidity needs; for example, commercial banks are exposed 

to maturity mismatch risk as their deposits are callable at any time, while their assets are 

frozen in illiquid loans, a mismatch, the risk of which is mitigated by holding a portfolio of 

assets available for sale that can quickly be converted to cash in order to fund deposit 

withdrawals or outbound payments. Such considerations may result in investors excluding 

from their investment horizon securities with low liquidity. The liquidity preference could be 

incorporated directly in the portfolio-decision problem; one such approach was proposed by 

Lo et al. (2003), who used it in conjunction with five liquidity measures: the traded volume 

(total number of traded shares), natural logarithm of traded volume, turnover (traded 

volume/number of shares outstanding), percentage bid-ask spread, and Loeb price-impact 

function. Denoting the normalised liquidity metric by 𝑙𝑖,𝑡, they suggested three alternative 

formulations of the portfolio-selection problem. The first approach is the liquidity-filtered 

portfolio, which is identical to the standard portfolio-selection problem but with the added 

constraint that only securities with normalised liquidity exceeding some threshold value 

(specific for each investor) are allowable investments. The important consequence is that the 

set of liquidity-filtered securities in this case corresponds directly to the set of securities the 

investor “knows” about in Merton’s model. Thus, the preference for liquidity in the 

formulation of Lo et al. (2003) would result in risk premium for idiosyncratic risk of the less 

liquid securities. This means that if all (or many) investors select their portfolio allocations 

based on liquidity filters, the premia for idiosyncratic risk would be just another name of the 

premium for liquidity; illiquid securities would earn higher return in equilibrium because the 

few investors in them are exposed to the undiversified idiosyncratic risk, while heavily-traded 

securities would earn no or low excess return for idiosyncratic risk because most of that risk is 

diversified. In this setting there is no real distinction between the liquidity premium and the 

idiosyncratic risk premium: the former simply refers to the underlying preference for 

liquidity, while the latter refers to the mechanism of how the aversion to illiquidity translates 

to risk premium through the channel of undiversified idiosyncratic risk. However, liquidity 

need not be the only filtering criterion: some investors may be excluding securities on other 

grounds, e.g. ethical (tobacco, weapons, etc.), transaction costs or creditworthiness (e.g. 

avoiding penny stocks), asset indivisibility (avoiding high-priced stocks), etc. All such 
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considerations could result in premia under the same mechanism as the premium for liquidity, 

which could be one reason why in this study idiosyncratic risk was found to be a more reliable 

predictor than liquidity. The two additional constraints proposed by Lo et al. (2003) could 

also have a similar impact on the equilibrium, although they do not map directly to the 

formulation of Merton. One such specification added a liquidity constraint to the problem, i.e. 

portfolio variance was minimised subject to achieving target levels of return and liquidity.162 

Another specification included the portfolio liquidity as a penalty term in the quadratic 

optimisation problem. Again, these two formulations are closely related to the Markowitz 

formulation and should give rise to a similar blurring of the distinction between liquidity and 

idiosyncratic risk premia.  

A similar pattern might be observable also in terms of capitalisation constraints: small 

companies might be disliked by investors on various grounds, e.g. they may have more risky 

(less diversified) cash flows or less mature corporate governance. Neither of these actually 

guarantees superior performance163, but if investors avoid small companies (even when they 

are liquid164) and filter them out when making portfolio allocations, this again might give rise 

to idiosyncratic risk premium accruing to small stocks. Similarly, larger investors may dislike 

small stocks simply because their free float is too small for the typical capacities of their 

trading strategies, i.e. these investors do not engage in too small transactions for efficiency 

reasons, which again could result in a risk premium for small stocks, as documented by Fama 

and French (1992). 

For our cross-sectional tests such considerations could have material impacts. If the 

premia for size, liquidity and idiosyncratic risk overlap, then the cross-sectional regressions 

may suffer from multicollinearity. When such multicollinearity is not addressed, the OLS 

coefficients are still unbiased, but their standard errors are higher, which may explain the lack 

of robust performance of the liquidity and size variables in the cross-sectional tests. For 

empirical applications, however, addressing this problem explicitly may result in superior 

                                                 

162 The liquidity constraint in that case has the following form: 

𝑙0 = {

𝑤′𝑙,  for long-only portfolio,

∑
|𝑤𝑖,𝑝|

∑ |𝑤𝑗,𝑝|
𝑛
𝑗=1

𝑙𝑖,𝑖

𝑛

𝑖=1

 , for long-short portfolio.
  

163 See Ch.6 in Damodaran (2004) 
164 In principle the turnover usually refers to the ratio of the number of shares traded over the 

number of shares outstanding. There may be heavy trading in the shares of some small 

company, yet the value of the traded volume may be relatively small and uninteresting for 

larger, institutional investors because of the limited capacity of the position. 
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forecasts and more stable portfolio allocations. 

 

5.6. Is it tradable? 

The significance of idiosyncratic volatility as a characteristic explaining the 

cross-section of returns was confirmed by comparing the implied premia for one standard 

deviation difference of each characteristic. In the case of idiosyncratic volatilities (Table 16 

on p. 160), our results imply an annualised premium for idiosyncratic risk of between 2.58 (in 

specification 3) and 3.17 (specification 6), which was well above the premia for beta (0.86), 

capitalisation (1.58), and liquidity (0.76).165 This finding was consistent with similar results 

obtained by Fu (2009) and Spiegel and Wang (2005), albeit those studies used different 

methodology to predict idiosyncratic volatility. 

The implied premium for idiosyncratic risk was found to be statistically significant. 

However, its economic significance was somewhat less clear. A premium of between 2.58 

and 3.17 seemed to merit consideration. On the other hand, if the expected mean-reverting 

levels of volatility changed significantly over time, then the trading costs of executing a 

strategy that was betting on idiosyncratic risk premium could offset most or the entire 

idiosyncratic risk premium. There are two types of costs relevant for deal execution: explicit 

costs (mostly brokerage fees) and implicit costs (bid-ask spreads, execution costs). Brokerage 

fees are incurred due to the remuneration of the intermediary executing each trade. The 

bid-ask spread is the difference between sell and buy prices, while the execution costs 

measure the actual price, at which an order of a given price could be executed. Another type 

of implicit cost is the opportunity cost that refers to the foregone profit due to partial order 

execution or cut-back of the intended transaction volume. There is a significant body of 

literature concerning the measurement of the implicit and explicit costs. The review article by 

Keim and Madhavan (1998) summarises the key findings of those studies. Concerning 

brokerage fees, Keim and Madhavan (1998) report that these costs change over time, 

generally in downwards direction, and average about 0.20% of the traded volume. The broker 

fees depend on the price of the traded stock, as well as on broker type, trading mechanism, 

order difficulty, type of trade, and exchange. For example, ECN crossing trades166 are 

                                                 

165 Based on specification #6. 
166 “Electronic Communications Networks, or ECNs, as defined in Rule 600(b)(23) of 
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reported to incur a cost of 1-2 cents per share, whereas upstairs broker-dealers167 could 

charge up to 10-15 cents per share. Keim and Madhavan (1998) also point out that brokerage 

fees do not take into account the additional soft-dollar services rendered by the brokers to 

their clients, and as such may overestimate the true economic price of brokerage services. 

The quoted bid-ask spread measures the costs to execute a buy or sell transaction 

whereupon the buyer would need to offer the ask price or the seller would need to lower the 

ask price to the bid price if a sale is to occur. As such, the spread measures the overhead that 

the buyer or seller would incur in order to execute a transaction. The reviewed literature found 

that the quoted bid-ask spread depended strongly on the company size and liquidity, with the 

bid-ask spread as low as 0.5% for the larger-capitalisation liquid stocks, and up to 4-6% for 

small and illiquid stocks. Keim and Madhavan (1998), however, also point out three 

considerations why the quoted bid-ask could be overstating the true cost incurred by the 

traders. Firstly, they point out that trades often occur inside the quoted bid-ask spread. They 

also note that bid and ask prices have a systematic tendency to follow the market, with both 

bid and ask prices increasing following a buy order and decreasing following a sale order. 

Finally, they point out that large block transactions need not close at the bid or ask prices. We 

should also recognise, that the context of the study of Keim and Madhavan (1998) is 

institutional trades, and the second point (that quotes follow market direction) may be more 

relevant for higher-frequency trading, but less so in strategies seeking exposure to 

idiosyncratic risk. Likewise, idiosyncratic premium should be higher for less-known stock, 

where larger block trades are less likely to occur.  

Another consideration of the cost analysis of trades concerned the execution costs. 

These refer to the limited depth of the order book, so that not the entire orders could be 

                                                                                                                                                         

Regulation NMS, are electronic trading systems that automatically match buy and sell orders 

at specified prices. ECNs register with the SEC as broker-dealers and are subject to 

Regulation ATS. Subscribers, which are typically institutional investors, broker-dealers, and 

market-makers — can place trades directly with an ECN. Individual investors must currently 

have an account with a broker-dealer subscriber before their orders can be routed to an ECN 

for execution. When seeking to buy or sell securities, ECN subscribers typically use limit 

orders. ECNs post orders on their systems for other subscribers to view. The ECN will then 

automatically match orders for execution. An ECN may choose to facilitate compliance by a 

market-maker with its obligations under the Commission's Quote Rule by transmitting the 

ECN's best bid/offer to a national securities exchange or registered securities association for 

public display.” (SEC (n.d.)) 
167 The Nasdaq financial glossary defines upstairs market as “A network of trading desks for 

the major brokerage firms and institutional investors, which communicate with each other by 

means of electronic display systems and telephones to facilitate block trades and program 

trades.” (Nasdaq, n.d. ) 
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executed at the bid or ask price. For example, if a seller wished to dispose of a larger block of 

shares at market prices, the best bid order would be executed, after which the seller would 

need to go to the next available buy-order, and then to the next until the entire block is sold. 

Alternatively, the sale could be split into smaller sales so that the transaction can have lower 

impact on market prices. Therefore, a strategy that trades less liquid shares would also have 

higher execution costs and/or limited capacity, i.e. smaller volume that could be invested in 

that strategy.  

The aforementioned arguments suggest that even if the idiosyncratic risk premium 

exists, the opportunities for its use in trading might be limited as costs could offset the gains 

from higher exposure to idiosyncratic risk. Keim and Madhavan (1998) estimate the total 

costs of equity trades of a set of institutional investor trades broken down by type of trade 

(buyer-initiated vs seller-initiated), market (NYSE or Amex exchanges vs Nasdaq), trade size 

quartiles and capitalisation quintiles. They find that trading costs increase steeply with the 

increase of order size. Thus, the lowest quartile exchange-listed buyer-initiated trades incur a 

cost of 0.31% compared to 0.90% for the highest-quartile trades; the corresponding numbers 

for Nasdaq-listed stocks are about twice those numbers – 0.76% and 1.80%, respectively. 

Thus, increasing the size of the trades also increases the total costs and reduces the gains from 

the trading strategy. In Table 18 on page 170 we reported that Nasdaq shares earned a two to 

three times higher premium compared to NYSE/Amex-traded stocks. Thus, the higher gains 

on exposing to idiosyncratic risk on Nasdaq could be largely offset by the higher trading 

costs. Whether that is indeed the case requires further research. Indeed, the argument 

concerning the higher costs of larger trades is generic for any trading strategy. Furthermore, 

the split reported in Keim and Madhavan (1998) is different from the split used in Table 18; 

the former is based on exchange listing, while the Datastream assignment is based on 

exchange where most of the trade occurred, thus limiting the comparability between the 

premia and costs.  

In a similar vein, Keim and Madhavan (1998) also report that the total traded costs 

decrease with the market capitalisation. Thus, trading costs for buyer-initiated trades in 

exchange-traded stock in the highest-capitalisation quintile amount to 0.31% and increased 

non-linearly to 1.78% in the smallest-quintile stocks. The corresponding total costs for 

Nasdaq-listed stocks amounted to 0.24% and 2.85%, respectively, confirming the generally 

higher trading costs for Nasdaq-listed shares.  

Overall, we find that idiosyncratic risk is a significant factor in explaining the 

cross-section of returns. The tradability of that finding, however, is yet to be confirmed. The 
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recent study of McLean and Pontiff (2016) may be particularly relevant in that matter, as it 

uncovers that markets rapidly exploit abnormal returns, albeit not to the full extent. Since the 

return to idiosyncratic volatility is an equilibrium phenomenon rather than an anomaly, we 

should expect that it should continue to be a reliable predictor of the cross-section. However, 

we point out that the multicollinearity in the cross-sectional regressions may be a both 

theoretically and empirically sound way to carry out such tests, and portfolio sorts should first 

aim to estimate the true dimension of the size-liquidity-volatility space. 
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6. Conclusions and directions for future research 

6.1. Conclusions 

This study explored whether idiosyncratic volatility was associated with higher 

equilibrium returns, as predicted by the models of Levy (1978), Merton (1987), and Malkiel 

and Xu (2004). The existing empirical studies provided mixed support to those CAPM 

extensions. Thus, the studies of Ang et al. (2006) and Ang et al. (2009) found significant 

negative correlation between idiosyncratic risk and returns. In contract, the studies of Malkiel 

and Xu (2004), Fu (2009) and Spiegel and Wang (2005) documented significant positive 

correlation, while the tests of Bali and Cakici (2008) found no significant correlation. The 

studies of Cao (2010) and Cao and Xu (2010) proposed that it is the long-term component of 

idiosyncratic volatility that explains the cross-section of returns. Most of those studies 

employed different measures of idiosyncratic risk, which hindered the interpretation of those 

conflicting findings. Some of these tests were backward-looking (e.g. Ang et al., 2006, or 

Cao, 2010), whereas Fu (2009) pointed out that investors would base their portfolio decisions 

on expected future values, rather than on just historical ones. On the other hand, the results of 

Fu (2009) were questioned for omitting last-month return (omitted variable bias) or for 

inclusion of current-month return in generating expected volatilities (look-ahead bias).  

Against this backdrop we compared the predictive performance of the main classes of 

estimators of idiosyncratic volatility, as well as their performance in predicting future returns. 

We used four estimators of returns: the historical volatility employed by Ang et al. (2006); the 

forward-looking ARMA(1,1); the GARCH(1,1); and the OLS estimator. We found that the 

latter two significantly underperformed in forecasting next-period realised volatility, but in 

contrast confirmed the positive link between idiosyncratic risk and returns. The contrast 

between poor performance in forecasting volatilities and good performance in predicting 

returns demonstrated that contrary to expectations, the results of Fu (2009), Spiegel and Wang 

(2005), and Cao (2010) were not an outcome of superior forecasting performance; in fact, the 

measure of Ang et al. (2006) proved to be a superior predictor of the cross-section compared 

to GARCH forecasts with monthly data. Moreover, we found that the negative correlation 

reported by Ang et al. (2006) is an artefact of poor performance of very high-volatility 

(distressed) stocks, and after we reduced the skewness of the cross-sectional distribution of 

idiosyncratic volatilities, the estimator of Ang et al. (2006) became insignificant.  
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We found that idiosyncratic risk and stock returns were nevertheless robustly 

correlated, but returns correlated with the mean-reverting level of volatility, rather than 

next-month volatility. It proved to be a very robust predictor of the cross-section of stock 

returns that remained statistically and economically significant after controlling for beta, size, 

book/market, momentum, return reversals, liquidity, portfolio construction, change of 

frequency (from monthly to daily data), omitted factors, unadjusted price, credit risk, and for 

primary exchange, on which shares were traded. We found that the strength of the correlation 

between mean-reverting volatility and returns was not constant, but depended on the primary 

market, on which the stock was traded, with a regression slope for Nasdaq-traded stocks 

almost trice that of NYSE and Amex stocks. This finding is consistent with observations that 

NYSE and Amex are preferred by larger investors, while stocks traded at Nasdaq are 

preferred by smaller and presumably – less diversified investors. Thus, differences in slopes 

between Nasdaq and NYSE-traded stocks are fully-consistent with the underlying economic 

models that predict that the premium per unit of idiosyncratic risk would be lower the better 

known the stock.  

We also documented that the link between idiosyncratic risk and return does not hold 

in high-volatility environments. Moreover, in periods of recession the premium for 

idiosyncratic risk is significantly higher compared to expansion periods, and while the 

direction of that difference is not surprising, its magnitude poses a puzzle.  

Our findings are significant from both theoretical and practical perspective. From 

theoretical perspective they support the predictions of the models of Levy (1978) and Merton 

(1987), and suggest that under-diversification is sufficiently wide-spread to result in existence 

of a material risk premium. Moreover, our results suggest that investors avoid frequent 

rebalancing of their portfolios, probably due to the associated transaction costs, and base their 

investment decisions not on short-term horizons, but on medium-term characteristics. The 

observed material speed of mean-reversion, consistent with previous results of stationarity of 

volatilities, suggested that volatilities normally converged to the mean-reverting level in less 

than six months, so this might be a suitable target investment horizon for many investors. This 

would be particularly true for non-institutional investors, which are likely to trade in 

better-known stocks due to market depth considerations, a segment where the correlation 

between idiosyncratic risk and returns is low. In the interpretation of our results we 

particularly emphasised the process of portfolio construction with additional constraints, 

especially on liquidity, and we pointed out that such a portfolio construction framework 

would blur or even remove the difference between liquidity, size and idiosyncratic risk 
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premia. Therefore, our results suggest that portfolio planning and horizon deserve further 

exploration and the assumption of continuous rebalancing may not be a realistic one for all 

segments of the market.  

For practitioners our results should be useful as we identify a characteristic that 

predicts the cross-section of returns. Unlike other studies in the field, this predictive 

performance is implied by the theory and does not constitute a stock market anomaly; it 

should therefore persist in time. Failure to incorporate that characteristic in portfolio 

performance metrics could result in a false sense of gaining alpha whereas the portfolio could 

be simply exposed to idiosyncratic risk. Similarly, constructing portfolios aimed to exploit the 

negative correlations documented by Ang et al. (2006) could expose investors to stocks with 

very high volatility. On the other hand, portfolios constructed based on the mean-reverting 

volatilities could result in superior outcomes for investors due to persistence of those 

volatilities that requires less frequent portfolio adjustments. Nevertheless, such portfolios 

should also balance idiosyncratic volatilities with exposure to lower liquidity and shallow 

markets. Our analysis of the results also suggests that idiosyncratic risk is closely intertwined 

with liquidity risk and other characteristics that may be disliked by investors, e.g. small size. 

Therefore, the hedging of risk exposures might be better achieved by explicitly accounting for 

the dependence between various characteristics (e.g. high idiosyncratic volatility being 

associated with higher beta, lower liquidity, smaller size, higher default risk).  

In our view, future research should seek to improve the forecasting of the 

mean-reverting level of volatility by directly using higher-frequency data. Furthermore, 

dimensionality reduction could be employed in order to identify the common factors driving 

stock returns. Such dimension reduction should be useful for both theoretical reasons 

(identification of factors based on theory, rather than data mining), as well as practical 

considerations. If liquidity preference results in avoidance of smaller, less liquid stocks, 

giving rise to idiosyncratic risk premium, then the true premium to the exposure of the 

underlying factor would be underestimated by using many characteristics loaded on that 

factor and trying to construct portfolios on each separate characteristic.  

6.2. Limitations and directions for future research 

We explored the link between idiosyncratic volatility and returns using the 

methodology of Fama and MacBeth (1973) with individual securities as assets and Newey 
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and West (1987) standard errors. The existence of that link was predicted by the models of 

Levy (1978) and Merton (1987). These models predicted that if for some reason investors 

were unable to diversify idiosyncratic risk fully, then they would be requiring compensation 

for the undiversified idiosyncratic risk. However, since we do not observe the actual 

portfolios held by all market participants, it was not possible to estimate reliably the 

undiversified component of idiosyncratic risk. One of the few studies that actually attempt to 

proxy undiversified idiosyncratic risk was that of Malkiel and Xu (2004). However, their 

approach did not measure the undiversified risk but rather used idiosyncratic volatility of 

quantile portfolios in place of individual security volatility, arguing that the former could be 

closer to undiversified volatility than the latter. Nonetheless, it was not clear why investors 

should be diversifying their portfolios using similar securities from the same quantile bucket, 

nor whether the number of securities in each bucket was consistent with portfolio sizes 

observed by some empirical studies; for example, if a bucket contained 50 securities, while 

investors held 10 securities, then the undiversified risk could be understated. Such 

underestimation of the true value and the associated reduction of the cross-sectional 

differences in the explanatory variable could result in false negatives in the cross-sectional 

tests.168 Similar criticisms could be raised against the second point: greater diversification 

would be obtained by investing in securities with lower correlation, which are likely to be in 

another size-beta portfolio than the tested one, which could result in overstating the 

undiversified idiosyncratic risk. Based on the lack of normative grounds to choose that 

approach, in this study we used almost exclusively the total idiosyncratic risk as a predictor 

variable. Nevertheless, we have also studied portfolios as assets and we have found that 

portfolio alphas increase with the increase of volatilities, which addresses concerns that the 

obtained results are driven by data errors.169 Most other studies, including ours, used total 

idiosyncratic risk of individual securities. The problem with using total idiosyncratic risk was 

that the share of the undiversified component in total idiosyncratic risk was not constant 

across securities, and to a presumably lesser extent – in time. Thus, securities that were 

widely followed (present in many portfolios) should ceteris paribus have lower undiversified 

idiosyncratic risk. Since we were unable to observe the actual portfolios held, it was not 

possible to observe the risk-return frontier available to each investor and deduce its impact on 

equilibrium prices and returns. Therefore, studies that incorporate some information on the 

                                                 

168 cf the arguments in Fama and French (1992); Ang et al. (2010) 
169 See page 218, Table 25: Portfolio Alphas Relative to Fama–French–Carhart Model. 
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breadth of the investor base provide valuable evidence on the consistency of the correlation 

between idiosyncratic risk and returns. 

A significant difference across the related studies concerned the measurement of 

idiosyncratic risk. In the first place it should be emphasized that idiosyncratic volatility is just 

one of the possible measures of idiosyncratic risk. It is indeed the one most commonly used, 

but its choice may be dictated by convenience and concerns about generalizability (external 

validity) of the research; in particular, as discussed previously, that was one of our primary 

considerations in selecting our research approach. For example, Ang et al. (2006) and 

Brockman et al. (2009) used dispersion of analysts’ forecasts as measures of idiosyncratic 

risk, albeit in the context of control variables. Unfortunately, the availability of such 

alternative proxies of idiosyncratic risk was limited, which constrained the available sample 

both in terms of number of followed securities and past information. On the other hand, 

idiosyncratic volatility had the advantage of being a function of past prices, which were 

available for all traded securities. Moreover, there existed established models for volatility 

forecasting like GARCH. Furthermore, volatilities were an established measure of risk since 

the formulation of the mean-variance optimisation problem, as formulated by Markowitz 

(1952). Nevertheless, inasmuch as return distribution need not be specified fully in terms of 

its mean and variance, other measures of idiosyncratic risk could also yield further useful 

insights. For example, Huang, Liu, Rhee and Wu (2012) found that extreme downside risk 

also predicted the expected returns. Other possible idiosyncratic risk measures could include 

the third and fourth moments (skewness and kurtosis), and their dependence with the market 

factor (co-skewness and co-kurtosis). 

Behavioural patterns might be a particularly promising direction for feature research. 

For example, Kraus et al. (1976) suggested on classical grounds that investors should prefer 

co-skewness with the market, while the behavioural model of Barberis and Huang (2008) 

identified preference for asset’s own skewness. Iwasawa and Uchiyama (2013) similarly 

suggested that institutional investors prefer high-beta securities in an attempt to beat the 

market, while individual investors like stocks with high tail return (positive skewness) which 

they call “gambling preference”. We noted a significant change of slope of idiosyncratic risk 

during economic expansion and downturn – that split was, in fact, resulting in a larger spread 

between the slopes than any other split, including those based on liquidity or stock exchange 

(cf. Table 18 on p. 170). The slope during contraction periods was materially higher compared 

to expansion periods. We pointed out that changes in risk tolerance could hardly explain such 

a differential between the premia. Furthermore, the idiosyncratic risk premium is driven by 
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under-diversification, a problem that is more relevant for individual and smaller investors. 

However, such changes in risk tolerance could be compounded with some cyclical, 

flight-to-safety behaviour of investors. For example, Papaioannou et al. (2013) identify five 

major factors driving pro-cyclical investment behaviour, viz.: (i) underestimation of liquidity 

needs in downturn environment; (ii) uncertainty in assessing market risk, compounded with 

decreased transparency of issuers; (iii) incentive problems, e.g. due to focus on short-term 

performance, resulting in increased investment in illiquid and more speculative assets; (iv) 

reporting and disclosure requirements concerning loss-making positions and portfolios; and 

(v) accounting and regulatory requirements like strict mark-to-market policies resulting in 

immediate loss recognition and eating up capital of institutional investors, as well as herding, 

e.g. due to common, market-standard valuation models. Such considerations might plausibly 

result in flight to stocks with lower volatility and higher capitalisation (liquidity), and could 

explain the significant increase in the slope of idiosyncratic risk in the cross-sectional 

regressions during recessions.  

In this study idiosyncratic risk was measured as the standard deviation of returns that 

is not explained by changes of economic factors like market excess return, Fama and French’s 

small-minus-big and high-minus-low factors, and the momentum factor. Security returns were 

measured by monthly arithmetic excess returns. We acknowledge that there is not a single 

correct way of measuring either idiosyncratic return, or idiosyncratic volatility. Thus, 

idiosyncratic returns could be measured relative to the CAPM model, or relative to the Fama–

French factor model, or relative to Fama–French–Carhart model, as we did. However, nothing 

prevents the use of any other model of asset returns, for example, a macroeconomic model or 

a stochastic factor model. Malkiel and Xu (2004) pointed out that different models were 

unlikely to result in very different conclusions, as idiosyncratic volatility was a second 

moment. We agree with that point, but we have also managed to mitigate that risk by using a 

factor model with four explanatory variables and allowing for some unidentified factor 

recovered through heteroscedastic factor analysis. If such a significant contributory factor had 

been omitted from the Fama–French specification, that would have resulted in correlation of 

idiosyncratic returns and would have been captured by the statistical factor. Whenever 

possible we opted for the Fama–French–Carhart model in order to mitigate possible concerns 

of the presence of an omitted momentum factor. Moreover, in Section “4.5.1. Was there an 

omitted factor?” we additionally tested whether some omitted factor could account for the 

significance of idiosyncratic volatility in explaining the cross-section of returns and we found 

that that was not the case. Nonetheless, one cannot rule out entirely that some differences in 
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our findings from previous studies could be the result of our choice of factor model. However, 

we point out that the use of a more comprehensive model should be reducing the significance 

of idiosyncratic volatility as an explanatory factor, rather than increasing it. Therefore, we are 

sceptical that our results could be driven by the choice of a factor model, and we expect that a 

study using a lower number of factors would result in qualitatively similar results. 

Idiosyncratic risk should explain returns in equilibrium. In Table 18170 on p. 170 we 

explored how cross-sectional regressions were affected in the three volatility regimes and 

found that the results in the high-volatility regime deviated from the theory. Part of the 

problem could be the low number of months in that regime, and correspondingly the difficulty 

to obtain more accurate estimates of the regression coefficients and the standard errors, thus 

resulting in the inconclusive results. However, the high-volatility episodes may reflect 

adjustment of investor expectations and risk tolerance, or macroeconomic shocks. The 

standard cross-sectional models do not include adjustment for such common shocks and that 

may result in higher standard errors of the estimates and failure to reject the null hypothesis in 

the full sample. Such considerations may help explain why the mean-reverting level of 

volatility was found to be a significant predictor of the cross-section of returns, but one-step 

forecasts produced insignificant results. For example, Andrews (2005) explored the impact of 

common shocks in cross-sectional regressions and found that the resulting coefficient 

estimates were consistent as long as the errors were uncorrelated with the regressors 

conditional on the sigma field generated by the common shocks. In that case he proved that 

the t-, F- and Wald tests were also asymptotically valid. However, if the errors were 

correlated with the regressors conditional on the sigma-field generated by the shocks, then the 

null rejection probabilities for t-, F- and Wald tests converged to one. This might be a relevant 

consideration in the empirical tests of idiosyncratic volatilities, as some common shocks (e.g. 

economic shocks or technological trends before the dot-com bubble) might have resulted in 

dependence between errors and some of the explanatory variables like liquidity and 

idiosyncratic risk. 

 

 

                                                 

170 Table 18: Fama–Macbeth cross-sectional regressions with mean-reverting volatility – 

robustness checks 
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