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Abstract

We consider the equivalence classes of graphs induced by the un-
signed versions of the Reidemeister moves on knot diagrams. Any
graph which is reducible by some finite sequence of these moves, to a
graph with no edges is called a knot graph. We show that the class
of knot graphs strictly contains the set of delta-wye graphs. We prove
that the dimension of the intersection of the cycle and cocycle spaces
is an effective numerical invariant of these classes.

1 Introduction

The problems discussed in this paper stem from the paper of Schwärzler and
Welsh [6] where an attempt is made to decide how well the Jones polynomial,
or equivalently the bracket polynomial, of a knot diagram detects whether
the diagram represents the unknot. As far as we know this problem is still
open and is one of the foremost unsolved questions in the theory of link
polynomials. Most of [6] is concerned with signed graphs, that is ordinary
undirected graphs, in which each edge is given a plus or minus sign. Here we
are primarily interested in the unsigned case and unless otherwise specified,
graphs will be unsigned. The notation is fairly standard. We use Ok to
denote the graph with k vertices and no edges. A graph with no edges is
called an empty graph. G \ A (G/A) is formed by deleting (contracting) all
the edges in A; G|A is G \ (E −A). The class of all graphs is denoted by G.
A graph is simple if it contains no loops or parallel edges; it is cosimple if
it contains no isthmuses or vertices of degree 2. The number of connected
components of a graph is denoted by k(G). The rank of a set A of edges is
given by r(A) = |V (G)| − k(G|A).

In [6] a class of graphs is studied which are called Reidemeister graphs.
These are the R-graphs defined below. The graphic versions of Reidemeister
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moves are clearly related to the relatively well studied delta-wye moves (see
Robertson, Seymour and Thomas [5]) which define the class D, the delta-
wye graphs. Much of this paper is concerned with transformations related
to Reidemeister and delta-wye moves on unsigned graphs. We are especially
interested in the class of knot graphs, denoted by K, which consists of those
graphs which are reducible to an empty graph by the unsigned version of the
Reidemeister graph moves. We show that delta-wye graphs form a proper
subset of the class of knot graphs. We show in Section 4, a relationship
between the span of the bracket polynomial of a knot and K-equivalence and
it is tempting to believe that K-reducibility might be related to linkless or
flat embeddings in R

3 as described in [5]. However any connection cannot be
too straightforward. A prime reason for this is that each of these geometric
properties is closed under minors, whereas the class of knot graphs certainly
is not.

In the original version of this paper we stated as a conjecture the belief
that the “smallest” graphs which are not knot graphs are the seven graphs
of the Petersen family. This was posed as a problem by the second author
at the DIMACS meeting in July 1998 and settled in the affirmative there
by a multipronged attack, consisting of D. Archdeacon, N. Robertson, P. D.
Seymour, R. Thomas and D. L. Vertigan [2], who showed that K6 is not a
knot graph. The argument is not straightforward.

2 Reidemeister moves

In [6] the allowable moves on signed graphs consist of the following moves
and their inverses.

A Delete any loop, contract any isthmus (or coloop).

B Delete any pair of edges e, f with opposite signs and such that {e, f}
is a circuit; contract any pair of edges e, f with opposite signs and
such that {e, f} is a cocircuit.

C Replace a triangle which has edges of both signs as shown in Figure 1.

Two signed graphs G, H are called Reidemeister equivalent, G
R
∼ H,

if it is possible to transform G to an isomorphic copy of H by some finite
sequence of moves (A),(B),(C) and their inverses.

For two unsigned graphs G and H we say that G is Reidemeister re-

ducible, (R-reducible) to H, denoted by G
R
→ H if there exist signings ω1,
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Figure 1: Moves of type C.

ω2 such that ω1(G)
R
∼ ω2(H). We denote by Rk the class of unsigned graphs

which are R-reducible to Ok and let R =
⋃

k≥1 Rk. Although it is easy
to see that R-equivalence is an equivalence relation on signed graphs, we
do not know whether R-reducibility is an equivalence relation on unsigned
graphs.

As pointed out in [6], the moves (A) – (C) are not the exact equivalents
of the Reidemeister moves on knots. We now define a weaker notion of
equivalence which is closer to the spirit of the Reidemeister moves. Replace
the set of moves (B) by (D).

D Delete any pair of parallel edges e, f with opposite signs; contract any
pair of edges e, f with opposite signs and e, f incident with a common
vertex of degree 2.

Call two signed graphs G and H, Q-equivalent, G
Q
∼ H if G can be reduced

to an isomorphic copy of H by some finite sequence of the moves (A),(C),(D)
and their inverses.

For unsigned graphs, G is Q-reducible to H, G
Q
→ H if there are signings

ω1, ω2 such that ω1(G) and ω2(G) are Q-equivalent. Again we do not know
whether Q-reducibility is an equivalence relation.

Since (D) is a special case of (B) it is clear that the following is true.

Observation 1. If G is Q-reducible to H then G is R-reducible to H.
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Similarly, Qk, defined as the class of graphs Q-reducible to Ok, is con-
tained in Rk.

For our next result we need a few basic facts from knot theory. A link
with k components is a subset of R

3 which is homeomorphic to the disjoint
union of k circles. Two links K, L are ambient isotopic if there exists a
homotopy ht : R

3 → R
3 (0 ≤ t ≤ 1) such that h0 is the identity map,

each ht is a homeomorphism and h1(K) = L. A knot is usually described
by a projection onto a plane. A projection of K is a regular projection if
it contains only finitely many multiple points and all multiple points are
double points and these are crossing points. A regular projection and the
specification of which is the under/over crossing for each crossing point
determines the knot.

Given any link diagram it is easy to prove that we can colour the faces
black and white so that no two faces with a common edge receive the same
colour. Conventionally the outer face is coloured black and this colouring
is known as a Tait colouring. From this we can get a canonical signed
graph S(D), its vertices are the black faces of the Tait colouring and two
vertices are joined by a signed edge if they share a crossing. The sign of the
edge is determined by the rule shown in Figure 2. Given any signed plane
graph we can construct a link diagram in a canonical way. Given a graph
G, the medial graph m(G) has vertices at the midpoint of each edge of G
and two vertices are adjacent in m(G) if they are on consecutive edges of
a face in G. Therefore m(G) is 4-regular and the vertices are the crossings
of the link diagram D. The sign of the edge of G determines whether the
corresponding crossing is under/over in D. This construction determines a
1-1 correspondence between link diagrams and plane signed graphs. The
fundamental theorem of Reidemeister, [4], can be stated in terms of plane
signed graphs.

Theorem 2. Two plane signed graphs G1, G2, represent links which are
ambient isotopic if and only if G1 can be transformed to a graph isomorphic
to G2 by a finite sequence of moves (A), (C), (D) and their inverses.

A link is said to be descending if for each component we can find a point
on the string and trace along the string and always take the under crossing
the first time we arrive at a particular crossing. It is easy to see that each
component of this link is ambient isotopic to the unknot and that the link
diagram of the unknot is just O1. See [8] for more information on knot
theory.

Proposition 3. Q contains all planar graphs.
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Figure 3: Move 2.

Proof. Given a planar graph G give it an arbitrary signing ω. Let L(G)
be the associated link. Now successively change the under/over crossings
of L(G) so that it becomes the descending link L′ with say k components.
Change the signs of the edges of G to get a graph G′ such that L′ = L(G′)
and then G′ is the signed version of G which is Q-equivalent to Ok.

However Q is a larger class than this, for example K5 ∈ Q. In fact, as
pointed out in [6] there are 260 signings of K5 which show this. In the next
section we relate Q and R with classes that do not rely on signings.

3 ∆Y -Equivalence and knot graphs.

We start by recalling the notion of ∆Y -equivalence from [5]. Let G be a
graph with a vertex v of degree 3 which has distinct neighbours. Let H be
obtained from G by deleting v and its incident edges and adding an edge
between each pair of neighbours of v. We say that H is obtained from G
by a Y ∆-exchange and that G is obtained from H by a ∆Y -exchange. Two
graphs are ∆Y -equivalent if one can be obtained from a graph isomorphic to
the other by a finite sequence of the following operations and their inverses.

1. Deleting a vertex of degree 1.

2. Suppressing a vertex of degree 2 (that is contracting an edge incident
with a vertex of degree 2) as in Figure 3.

3. Deleting a parallel edge or a loop.
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4. Y ∆-exchange.

We define the class of graphs Dk by G ∈ Dk if G is ∆Y -equivalent to Ok.
We let D =

⋃∞
k=1 Dk and if G ∈ D we say G is a delta-wye graph. Applying

any of moves 1 – 4 does not affect the number of connected components and
so a delta-wye graph is in Dk if and only if it has k components.

We now define the unsigned graphs G and H to be K-equivalent if one
can be obtained from an isomorphic copy of the other by a finite sequence
of the following moves and their inverses.

I. Contract an isthmus.

II. Delete a loop.

III. Delete a pair of parallel edges.

IV. Contract a pair of edges which are not parallel if both are incident
with the same vertex of degree 2.

V. Y ∆-exchange.

We write G
K
∼ H if G and H are K-equivalent. Clearly this is an equiv-

alence relation. As we said earlier, the motivation for this is that this set of
moves can be regarded as the unsigned graphical version of the Reidemeis-
ter moves on knots. For each positive integer k, we define the class Kk by,

G ∈ Kk if and only if G
K
∼ Ok. Then the class of knot graphs is given by

K =
⋃∞

k=1 Kk.
A sequence of moves reducing G to an empty graph is called a reduction

sequence. To make it clear that the moves in a reduction sequence are for
instance the K moves we will sometimes refer to a reduction sequence as a
K-reduction sequence.

Observation 4. If G,H belong to Kj ,Kk respectively and have disjoint ver-
tex sets, then G ∪ H belongs to Kj+k.

Our first results link K with existing classes.

Proposition 5. K contains Q.

This is easy and follows from

Proposition 6. For each positive integer k, Qk ⊆ Kk.
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Proof. Suppose G ∈ Qk. Then there exists some signing ω, such that ω(G)
Q
∼

Ok. Now follow the Q-reduction sequence ω(G)
Q
∼ · · ·

Q
∼ Ok replacing each

signed move from the set {(A), (C), (D)} together with their inverses with its
unsigned equivalent from moves I – V and their inverses giving a K-reduction
from G to Ok.

Every planar graph is contained in Q by Proposition 3 and so we have
the following corollary.

Corollary 7. The class of knot graphs contains all planar graphs.

Moreover this containment is strict as we have the following result.

Proposition 8. The class of knot graphs contains all delta-wye graphs.

The proof of this result needs the following lemmata which may be known
but we have been unable to find in the literature, although the proof ideas
are certainly contained in [7]. A similar result can be found in [1].

Lemma 9. Suppose G is in D, and there is a D-reduction sequence for G
in which the number of edges never increases. Now let H be a minor of G,
then H is in D and there exists a D-reduction sequence for H in which the
number of edges never increases.

Proof. The proof is by induction on the number of edges in H plus the
number of moves in the D-reduction sequence for G. The result is clearly
true if H has no edges. Otherwise we may assume that H is simple and
cosimple, if not we could apply one of moves 1 – 4 to remove an edge from
H and we could then use induction. Let G′ be the first graph obtained in
the D-reduction sequence of G. If G′ is obtained from G by one of moves 1
– 4 then H is a minor of G′ because H is simple and cosimple and H is a
minor of G. Suppose the first move in the D-reduction sequence of G is a
Y ∆-exchange. If the three edges involved are contained in H then because
H is simple and cosimple they join a vertex of degree three to three distinct
vertices so apply the same Y ∆-exchange to H giving H ′. Now H ′ is a minor
of G′. If any of the three edges involved is not present in H then H is a
minor of G′. The case when the first move in the D-reduction sequence of
G is a ∆Y -exchange is similar. Either one of the three edges involved is not
present in H in which case H is a minor of G′ or the three edges form a
triangle and so applying a ∆Y -exchange to H gives a graph H ′ which is a
minor of G′. In each case we have obtained a graph with the same number
of edges as H and which is a minor of G′, and so by induction H can be

7



reduced to the empty graph without increasing the number of edges at any
stage.

Lemma 10. If G ∈ D then there is a D-reduction sequence for G in which
the number of edges never increases.

Proof. If the lemma is not true for G then any D-reduction sequence for
G must contain a move where the number of edges increases. Consider a
D-reduction sequence for G where the number of moves which increase the
number of edges is minimised. Suppose this D-reduction sequence is of the
form G → . . . → H → H ′ → . . . → Ok(G) and the transition H → H ′ is the
last move which increases the edge number. Hence H is a minor of H ′ and
there is a decreasing D-reduction sequence for H ′ so applying the preceding
lemma implies that there is a D-reduction sequence for H in which the
number of edges never increases. This contradicts the choice of D-reduction
sequence for G.

The following lemma is well known folklore and is immediate from the
two preceding lemmata.

Lemma 11. The class D is closed under minors.

Hence from Robertson-Seymour theory we know that there is a finite
collection of forbidden minors. This set is known to include K6 and the
Petersen family, that is those graphs which can be obtained from K6 by a
finite sequence of Y ∆ and ∆Y moves but seems to be much larger.

Proof of Proposition 3.5: We use induction on the number of edges in G.
If G has no edges then clearly G is a knot graph so suppose G has k edges
and G ∈ D. Find any D-reduction sequence for G in which the number
of edges never increases. This sequence will begin with a possibly empty
sequence of Y ∆ and ∆Y -exchanges to form H and then make a move that
reduces the number of edges. Suppose the next move is to delete a loop e
from H. Now H \ e ∈ D and has k − 1 edges and so by induction H \ e is
a knot graph but this means that H is a knot graph. The same argument
works if the next move is to contract a pendant edge. Now suppose the next
move is to delete e where e and f are a pair of parallel edges. We have that
H \ {e, f} ∈ D because D is closed under minors and H \ {e, f} is a minor
of H. Now H \ {e, f} has k− 2 edges and so by induction it is a knot graph
which means that H and hence G are knot graphs. The case where the next
move is to suppress a vertex of degree two is similar.

�

8



However K is much larger than D for the following reasons. The 2-
thickening of G, denoted by G(2), is formed by replacing every edge of G by
two parallel edges and the 2-stretch of G is formed by replacing every edge
of G by two edges in series. An obvious fact is

Proposition 12. For any graph, both its 2-thickening and 2-stretch are knot
graphs.

Example 13. For any k ≥ 6, K
(2)
k is a knot graph and is not a delta-wye

graph.

The question of whether every graph is a knot graph was resolved by
Archdeacon, Robertson, Seymour, Thomas and Vertigan [2]. See the re-
marks in Section 1.

Theorem 14. K6 is not a knot graph.

Corollary 15. The smallest graphs which are not knot graphs are the seven
graphs of the Petersen family.

Proof. The Petersen family is the class of graphs that can be obtained from
K6 using a sequence of Y ∆ and ∆Y moves so if any of them is a knot graph
then all are. Since K6 is not a knot graph none of them are. Straightforward
checking shows that every graph with fewer than fifteen edges is a knot
graph.

Combining Proposition 12 and Theorem 14 give the following Corollary.

Corollary 16. The class of knot graphs is not closed under either deletion
or contraction.

4 The bracket and Tutte polynomials

We start by recalling the definition of the Tutte polynomial. This is the
two-variable polynomial defined by

T (G;x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

where E is the edge set of G. One evaluation of T which is particularly
relevant here is

|T (G;−1,−1)| = 2dim(C∩C∗)
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where C and C∗ are respectively the cycle and cocycle spaces of G, (see [6]).
The point (−1,−1) is one of the very few points in the (x, y) plane at which
there exists a polynomial time algorithm to evaluate T , see [3].

In [6] the definition of the bracket polynomial of a knot is extended to
any matroid and hence to any graph. As far as this paper is concerned
for a signed graph G the bracket polynomial is a Laurent polynomial in the
variable A given by

< G;A > = A|E−|−|E+|−2r(E)(−A2 − A−2)k(G)−1

·
∑

X⊆E

A4(r(X)−|X− |)(−A4 − 1)r(E)+|X|−2r(X)

where X+ (X−) denotes the set of positive (negative) edges of X.
When G is planar and monosigned, along the hyperbola xy = 1, T

evaluates the bracket polynomial of the alternating link L(G) determined
by G, (see [6]).

First we give a necessary condition for G to belong to Kk in terms of the
Tutte polynomial. For any G define

µ(G) = dim(C ∩ C∗) + k(G).

Theorem 17. The integer µ is an invariant of K-equivalence.

Corollary 18. For any positive integer k a necessary condition for a graph
G to belong to Kk is that k = log2(|T (G;−1,−1)|) + k(G).

Proof. This is immediate from Theorem 17 because T (Ok;−1,−1) = 1.

Corollary 19. Given a knot graph G, we have a polynomial time algorithm
to decide which class Kk contains G.

Proof of Theorem: Let t(G) = T (G;−1,−1). We will show that µ(G)
is preserved under moves I – V and their inverses. First recall the well-known
deletion-contraction formulae for T . If e is a loop in G then

T (G;x, y) = y T (G \ e;x, y). (20)

If e is a coloop in G then

T (G;x, y) = xT (G/e;x, y). (21)

Otherwise
T (G;x, y) = T (G \ e;x, y) + T (G/e;x, y). (22)

Suppose we are applying one of moves I – V to G and the move acts on the
component H. Repeated use of Equations 20 – 22 gives the following.
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Move I If e is an isthmus of H then t(H/e) = −t(H).

Move II If e is a loop then t(H \ e) = −t(H).

Move III If e and f are parallel edges, there are two cases depending on
whether deleting e and f disconnects H. Suppose first that H \ {e, f}
is connected.

t(H) = t(H \ e) + t(H/e)

= t(H \ {e, f}) + t(H \ e/f) − t(H/e \ f)

= t(H \ {e, f}).

Now suppose that H \ {e, f} is disconnected and that H1 and H2 are
the connected components of H \ {e, f}.

t(H) = t(H \ e) + t(H/e)

= −t(H \ e/f) − t(H/e \ f)

= −2t(H1)t(H2).

Move IV If e and f are incident on a vertex of degree two and not in
parallel.

t(H) = t(H \ e) + t(H/e)

= −t(H \ e/f) + t(H/e \ f) + t(H/{e, f})

= t(H/{e, f}).

Move V Suppose v is a vertex of degree 3, with distinct neighbours x, y
and z. Let e, f and g be the edges {v, x}, {v, y} and {v, z} respectively.
Let H ′ denote the graph formed from H by applying the Y ∆-exchange.
Let e′, f ′ and g′ be the edges {y, z}, {x, z} and {x, y} respectively, that
is those edges that are added in the Y ∆-exchange. There are 3 cases
to consider depending on how many of e, f and g are isthmuses. In
each of the cases the expressions are not asymmetric because various
terms have been cancelled, for instance in the first case H \{e, g}/f =
H \ {e, f}/g. First suppose none of e, f and g are isthmuses. Then

t(H) = t(H \ {e, f}) + t(H \ e/f) + t(H \ f/e) + t(H/{e, f})

= t(H \ {e, g}/f) + t(H \ e/{f, g}) + t(H \ f/{e, g})

+ t(H \ g/{e, f}) + t(H/{e, f, g})

11



and

t(H ′) = t(H ′ \ {e′, f ′}) + t(H ′ \ e′/f ′) + t(H ′ \ f ′/e′) + t(H/{e′, f ′})

= t(H ′ \ {e′, f ′, g′}) + t(H ′ \ {e′, f ′}/g′) + t(H ′ \ {e′, g′}/f ′)

+ t(H ′ \ {f ′, g′}/e′) + t(H ′ \ f ′/{e′, g′}).

So t(H) = t(H ′). The second case is when e, say, is an isthmus but f
and g are not. Then

t(H) = −t(H/e)

= t(H \ f/{e, g}) − t(H \ g/{e, f}) − t(H/{e, f, g})

= −t(H/{e, f, g}),

and

t(H ′) = t(H ′ \ f ′) + t(H ′/f ′)

= −t(H ′ \ f ′/g′) + t(H ′/{f ′, g′}) + t(H ′ \ g′/f ′)

= −t(H ′ \ e′/{f ′, g′}).

So again t(H) = t(H ′). It is not possible for exactly two of {e, f, g} to
be isthmuses so suppose they all are. In this case,

t(H) = −t(H/{e, f, g})

and

t(H ′) = t(H ′ \ e′) + t(H ′/e′)

= t(H ′ \ e′/{f ′, g′}) − t(H ′ \ f ′/{e′, g′}) − t(H ′ \ g′/{e′, f ′}).

This shows that µ = log2(|t(G)|)+ k(G) is preserved under moves I – V and
their inverses.

�

While proving that K6 is not a knot graph is difficult it is much easier
using Theorem 17 to prove the following result.

Proposition 23. K6 6∈ R.

Proof. A graph G ∈ Rk if and only if there exists a signing ω such that

ω(G)
R
∼ Ok. It is not difficult to show that if G

R
→ H then µ(G) = µ(H)

because the only extra move that must be checked in addition to the K
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moves is when we apply Move B to contract a pair of edges which form
a cocircuit and checking this is essentially the same as showing that µ is
preserved under Move II.

The span of a signed graph, G, is the difference between the largest and
smallest powers with non-zero coefficients in the bracket polynomial of G.

Since by [6] span is preserved under R-moves we have that ω(G)
R
∼ Ok

implies spanω(G) = spanOk. The bracket polynomial of Ok is

< Ok;A >= (−A2 − A−2)k−1

so that span Ok = 4(k − 1). In [6], it was reported that a computer search
of all possible signings of K6 showed that no signing had span less than 24.
However

T (K6;−1,−1) = 16

and so if K6
R
∼ Ok, then k = 5 but span O5 = 16 < 24

At the moment we know of no graphs which would show that any of the
sets K \ Q, K \ R, R \K or R \Q is non-empty.

5 Conclusion: Which graphs are knot graphs ?

A natural hypothesis is that knot graphs are those graphs which are obtain-
able from some delta-wye graph by a finite sequence of moves I – IV and
their inverses. However this is not true as the following example shows.

Example 24. Let G be the graph in Figure 4. If G is obtainable from some
H ∈ D by a finite sequence of moves I – IV and their inverses then because
G is simple and cosimple G must be a minor of H. It is easy to see that G
contains K6 as a minor and so H must also contain K6 as a minor which
contradicts the assumption that H ∈ D because the class D is closed under
minors and K6 is not contained in D. However it is not difficult to show
that G is a knot graph.

One of the main purposes of this paper has been to sort out the rela-
tionships between the classes of graphs defined by closely related families of
moves. Two other open problems which are particularly frustrating us are
the following.

1. If G is K-equivalent to the empty graph does there exist a K-reduction
sequence which achieves this and never increases the number of edges?
If this is true then K can contain no simple, cosimple, triangle free
graph with minimum degree 4.
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Figure 4: The graph G.

2. Is membership in K decidable? The answer is clearly yes if (1) is true,
and it could even be decidable in polynomial time.
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