Optimal Arrangement of Data in a Tree
Directory

M.J. Luczak!

Mathematical Institute, 24-29 St. Giles, Ozford, OX1 3LB, UK

S.D. Noble

Department of Mathematical Sciences, Brunel University, Kingston Lane,
Uzxbridge, UBS8 3PH, UK

Abstract

We define the decision problem DATA ARRANGEMENT, which involves arranging the
vertices of a graph G at the leaves of a d-ary tree so that a weighted sum of the
distances between pairs of vertices measured with respect to the tree topology is at
most a given value. We show that DATA ARRANGEMENT is strongly NP-complete
for any fixed d > 2 and explain the connection between DATA ARRANGEMENT and
arranging data in a particular form of distributed directory.

Key words: Complexity, Graph Embedding, Data Arrangement.

1 Introduction

This paper is concerned with arranging data between nodes in a form of dis-
tributed directory described in [10] for use in communication systems. The
directory has the form of a rooted tree with data for users in a particular cell
being stored at each of the leaves of the tree. Upon a call connection request,
a signal must pass through the tree from the node containing data about the
user making the call to the node containing data about the user receiving the
call, in order to find the receiver’s current address and enable the call.

For any pair of cells 7 and j, we define a traffic intensity \;; between these cells.
A natural problem to consider is how to map cells to leaves of a tree directory

I The author is supported by a British Telecommunications studentship

Preprint submitted to Elsevier 16 February 2008

to minimise the average cost of lookups weighted by the traffic intensities.
This motivates the study of the problem DATA ARRANGEMENT.

In Section 2 we introduce a very general problem, involving graph embedding,
which is a generalisation of the OPTIMAL LINEAR ARRANGEMENT problem.
We show that it contains various classical graph problems as specialisations.
This enables us to prove that it is NP-complete even in very restricted cases.
However the main result of this paper concerns the problem DATA ARRANGE-
MENT which we describe in Section 3. One version of DATA ARRANGEMENT
is a very special case of the embedding problem. We prove in Section 4 that
DATA ARRANGEMENT is strongly NP-complete.

2 A General Embedding Problem

Problems involving embedding a graph into another so as to minimise a par-
ticular cost function have received much attention, due to their importance in
VLSI design. For a general survey see for example [3]. We will be concerned
with a particular embedding problem, namely OPTIMAL LINEAR ARRANGE-
MENT.

All our notation is fairly standard. A graph G with vertex set V' and edge
set F is denoted by G = (V, E). Our graphs are assumed to have no loops or
multiple edges. For any vertices u and v, dg(u, v) denotes the shortest distance
between them in G.

Given a graph G = (V, E), a labelling of G is an injective function f : V —
{1,...,|V]}. The total length L;(G) of a labelling f is given by

Ly(G)= > If@)—f0)l.

{i,7}€E

The total length L(G) of a graph G is the minimum over all labellings of L¢(G).
Note that although the total length has been well-studied [2,8] in connection
with the optimal linear arrangement problem we describe below, there does
not seem to be any popular name for what we call the total length.

This motivates the following decision problem.

OPTIMAL LINEAR ARRANGEMENT
Instance: A graph G = (V, E) and an integer B.
Question: Is L(G) < B?

This problem was first investigated by Harper [8] in connection with error
correcting codes. Tt is known to be NP-complete [6] but there is a polynomial

time algorithm when the input is restricted to being a tree [2,7,11]. This
contrasts with the bandwidth problem, in which the total sum of a labelling
is replaced by maxy; j1er | f(¢) — f(J)], since this problem is NP-complete even
when the input is restricted to being a tree with no vertex having degree
exceeding three [4].

We now consider ways of generalising the total length of a labelling. One way
to do this would be to take a function g : N> — N satisfying g(z,y) = g(y, v)
for all z and y and define the g-total length L?(G) of a labelling f to be

LYG) = > g(f@), Q)

{i,j}€E

However we will restrict our attention to the case when g(z,y) is the distance
between vertices x and y in a fixed graph H, so rather than labelling the
vertices of a graph GG we will be embedding it into a graph H. From now on we
will refer to G as the guest graph and H as the host graph. Given G = (Vi, E)
and H = (V4, E5), an injective function f : Vj — V5 is said to be an embedding.
The total length of such an embedding is >>¢; e, du(f(7), f(5)).

Given such a cost function, it is natural to consider the complexity of finding an
embedding that minimises it. This motivates the following decision problem.

GRAPH EMBEDDING
Instance: Graphs G, H, a subset A of V(H) and an integer B.
Question: Is there a 1-1 function f : V(G) — A which satisfies

> du(f(i), f(4)) < B.

{i.g}reB(@)

Placing various simple restrictions on the input turns the problem into one of
the classical graph problems. For instance,

(1) if G is a circuit with |V (H)| vertices, A = V(H) and B = |V(H)| then
the problem becomes HAMILTONIAN CIRCUIT;

(2) similarly, if G is a path with |V (H)| vertices, A = V(H) and B =
|V(H)| — 1 then the problem becomes HAMILTONIAN PATH;

(3) i [V(G)| = [V(H)], |E(G)| = |E(H)], A = V(H) and B = |E(G)| then
the problem becomes GRAPH ISOMORPHISM;

(4) if H is a path with |V(G)| vertices and A = V(H) then the problem
becomes OPTIMAL LINEAR ARRANGEMENT.

There are likely to be many similar examples. In the next section we consider
a restriction of this problem that requires A to be a proper subset of V3; it
would be nice if there were other natural problems with this requirement.

The first two examples above imply the following.

Proposition 1 The problem GRAPH EMBEDDING is NP-complete even when
the guest graph is a path or a circuit.

The final example implies the following.

Proposition 2 The problem GRAPH EMBEDDING is NP-complete even when
the host graph is a path.

Clearly these two propostions rule out the possibility of a polynomial time
algorithm for the case when one of the input graphs has bounded tree-width.
It is obviously possible to consider the complexity of many other restrictions.
The answer to the following question seems far from obvious.

Problem 3 What is the complerity of GRAPH EMBEDDING when both input
graphs are restricted to being trees?

3 Data Arrangement

We now move on to the main problem in this paper, namely, DATA ARRANGE-
MENT. First we need to introduce some notation. We define a d-ary tree as a
rooted tree in which each node has at most d children. In a (0,d) d-ary tree,
each node has exactly 0 or d children. A complete d-ary tree of height h is a
(0,d) d-ary tree in which there are exactly d" nodes at a distance r from the
root, for r =0,...,h.

In DATA ARRANGEMENT, the question is to decide whether there exists an
arrangement of the data from the nodes of a communication graph G = (V, E)
at the leaves of a complete d-ary tree of height [log,|V|] such that the sum
over all 7 and j in the range {1,...,|V|}, weighted by the traffic intensities
Aij, of the lengths of the paths along the tree between cells ¢ and j, is less than
or equal to a given value. This corresponds to assigning geographical cells to
the leaves of a tree directory so as to minimise communication costs.

We now give a precise formulation of the problem.

DATA ARRANGEMENT

Instance: Graph G = (V, E) integer weights \;; > 0 for each pair of vertices
¢ and j, symmetric in ¢ and j, a nonnegative integer B; numbers)\;; and B
given in binary.

Question: Is there an injective mapping f from V' to the leaves of a complete

d-ary tree, T, of height [log,|V|], such that

vl Vi
Y, 3 wdn(f0).£) < B

We shall be mainly interested in the restricted case where A;; depends only
on whether there is an edge between ¢ and j. That is

1,if {i,5} € E,
. 0, otherwise.

We call the restricted problem SIMPLE DATA ARRANGEMENT. The formal
definition is as follows.

SIMPLE DATA ARRANGEMENT

Instance: Graph G = (V, F) and a nonnegative integer B given in binary.
Question: Is there an injective mapping f from V to the leaves of a complete
d-ary tree, T, of height [log,|V|], such that

S dr(f(i), f(j)) < B?

{i,j}€FE

The path between ¢ and j in the tree contributes to the total sum if and only if
¢ and j are joined by an edge in GG. Note that SIMPLE DATA ARRANGEMENT is
a special case of GRAPH EMBEDDING where G = (V, E) is an arbitrary graph,
H is a complete d-ary tree of height [log, |V'|] and A is the set of leaves of H.

We now state the main result of the paper.

Theorem 4 SIMPLE DATA ARRANGEMENT is NP-complete for any fived d >
2.

The next section consists of the proof of this theorem. This result implies the
following corollary.

Corollary 5 DATA ARRANGEMENT is strongly NP-complete for any fixed d >
2.

The idea of embedding on the leaves of a binary tree is not new. In [1] Bien-
stock considers this problem in detail but he is concerned with cutwidth and
bandwidth. He gives bounds on the cutwidth and bandwidth of the embedding
in terms of the tree-width of the graph being embedded. In contrast to [1] we
have just been concerned with complexity.

It seems sensible to consider various restrictions on the input graph in the
hope that this would lead to a polynomial time algorithm for SIMPLE DATA
ARRANGEMENT. The position seems far from clear even when the input is a
tree.

Problem 6 What is the complexity of SIMPLE DATA ARRANGEMENT when
the input is restricted to being a tree?

4 Proof of Main Result

We shall first show that the following problem is NP-complete.

SIMPLE MAX DATA ARRANGEMENT

Instance: Graph G = (V| F) and a nonnegative integer B.

Question: Is there an injective mapping f from V' to the leaves of a complete
d-ary tree, T, of height [log,|V|] such that

S dr(f(i), f(j)) = B?

{i,j}€E

Before setting out to prove the main result, we need to establish some auxiliary
facts.

Definition 7 Suppose P = {V; : 1 <i < m} is a partition of the vertex set V
of a graph G = (V, E). Then a cross-edge of P is an edge of the form {i,j},
with © and 7 contained in two distinct elements of P.

We now make the following observation.

Observation 1 The total sum of all the path lengths in a complete d-ary tree
can be split into the contributions due to separate levels in the tree.

PROOF. Let us consider the contribution of the edges at level r for any 1 <
r < h. There are d"~"*! nodes directly below them, and each of these nodes has
a subtree with d"~! leaves rooted underneath. These subtrees correspond to a
partition of the nodes of G into d"~"*! subsets. The contribution due to level
r edges, therefore, is the number of ‘cross-edges’ of the partition, multiplied
by 2. 0O

We also need to consider the following problem.

d- PARTITION INTO STABLE SETS OF EQUAL SIZE (d-PSSES)

Instance: Graph G = (V, E), with |V| divisible by d, where d is a positive
integer.
Question: Can V' be partitioned into d stable sets of equal size?

Proposition 8 d-PSSES is NP-complete for any fized d > 3.

PROQOF. It is clear that the problem is in NP. The proof of its NP-completeness
is by a transformation from GRAPH d-COLOURABILITY [5], [9]. In the proof,
we restrict the input to graphs on d" vertices, for positive integers h.

Given an instance of d-COLOURABILITY, that is, a graph G = (V) E), we
construct a corresponding instance of d-PSSES,

V' =Vu {331, e ,l’(dh,‘vl)},
where

VN {171, - ,:L’(dh_WD} :Q,
h=]

logy V1 +1,
and
E'=FE.
Then |V’| = d". The transformation is polynomial, since |V| > d"~? and
V'l = O(]V]). Suppose G is d-colourable. Then G can be partitioned into
stable sets Ay, ..., Ay corresponding to colours 1,...,d. Add vertices to each
A; from {zy,..., 24 _y)}, to obtain A}, ..., A} such that

Al = !

for : =1,...,d. Thus G’ can be partitioned into d stable sets of equal size.

Conversely, suppose G’ can be partitioned into d stable sets A}, ..., A} of equal
size. Set A; = A\{x1,...,2@@_py} for i =1,...,d, to get a d-colouring for
G.

The result follows from the NP-completeness of d-COLOURABILITY for d > 3
[9]. O

Proof of the main result Firstly, it is clear that both SIMPLE DATA AR-
RANGEMENT and SIMPLE MAX DATA ARRANGEMENT are in NP.

We now show that SIMPLE MAX DATA ARRANGEMENT is NP-complete. In
the proof, we restrict the input to the class of graphs G = (V| F) such that

|V| = d" for some positive integer h.

Case 1 d > 3. The proof is by a transformation from d-PSSES.

Given an instance of d-PSSES, such that the input graph G = (V| E) has
d" vertices for some h, we define the corresponding instance of SIMPLE MAX
DATA ARRANGEMENT on G with B := 2h|E|. Clearly, the transformation
is polynomial.

Note that the value of B in the transformation is the maximum possible
one in SIMPLE MAX DATA ARRANGEMENT. It can only be achieved by an
arrangement of vertices such that every pair of vertices joined by an edge
in G are separated by 2h links in the tree.

By Observation 1, the contribution due to level r edges is twice the num-
ber of cross-edges in the partition of the vertices of G into d""*! sets
of equal size determined by the subtrees underneath the level r edges. In
particular, the contribution of the top level edges is twice the number of
cross-edges in the corresponding partition of V' into d sets of equal size.

Suppose there exists a partition {V3, ..., V;} of V into stable sets of equal
size. We define a corresponding leaf arrangement in the d-ary tree by putting
the members of V; together, in an arbitrary order, as leaves of the ith subtree
of the root node.

Then only paths of length 2h contribute to the sum and the number of
contributions equals the number of edges, |E|.

Conversely, suppose that there exists an arrangement such that the weighted
sum of distances in the tree equals B. Let U; be the subset of V' which is
mapped onto the leaves of the ith subtree of the root for « = 1,...,d. Then
each of the U; must be a stable set.

Case 2 d = 2. The proof of this part is by a transformation from SIMPLE
MAX CUT [5], [6].

Given an instance of SIMPLE MAX CUT, a graph G and a nonnegative
integer K, we construct a graph G’ as follows. Corresponding to each edge
e = {i,7}, we add nodes e; and e;. We also replace edge {i,7} by edges
{i,e1}, {e1, e}, and {ey, 7}. We now add an appropriate number of isolated
nodes so that the number of vertices in G’ is a power of 2. We want |V’| = 2",
where h = [log, (|[V| + 2|E|)] + 2. It is clear that this can be done in time
polynomial in input size.

Let M be the maximum size of a cut in G; then 2| E|+4 M is the maximum
size of a cut in G’. To see this, suppose (S, V' \ S) is a maximum cut in G.
We obtain a maximum cut (S’,V '\ S’) as follows. If e = {4, j} is an edge
such that ¢ € S and j € V'\ S, then we put j and e; in V' \ S, and we
put i and e in S’. This ensures that edges {i,e;1}, {e1,e2}, and {es, j} all
contribute to the cut. If ¢ and j are in the same set, say .S, then put ¢ and
jin S’ e and eg in V'\ S”. Then edges {i,e;1} and {ey, j} contribute to the
cut.

Now, we show that GG has a cut of size at least K if and only if there is
an arrangement of vertices of G’ with total weighted sum of path lengths

greater than or equal to
2(h —1)(|E| — K) + 2h(2|E| + K).

First note that the above value is the maximum possible. It can only
be achieved by an arrangement of vertices of G’ in which each edge of G’
contributes at least 2(h — 1) to the sum. Thus the vertices of G’ must be
partitioned into 4 stable sets of equal size. Also, a necessary condition is
that G’ has a cut of size at least 2|E| + K. This can only happen if G has
a cut of size at least K.

Conversely, suppose G has a cut (S,V \ S) of size K. We partition the
vertices of G’ into four stable sets of equal size, Si, Ss, S5 and S, as follows.
Set S consists of vertices of S and an appropriate number of isolated nodes.
Set Sy contains nodes from V' '\ S and some isolated nodes. Using the same
notation as above, for each edge e = {i,j} such that i € S and j € V' \ S,
we put e; in S3 and eg in Sy. If ¢ and j are both in S or both in V'\ S, then
we put e in Sy and es in S5 (or the other way round). We ‘fill up’ Sy and S3
with isolated vertices. This is possible because the number of vertices |V’| of
G’ satisfies |V| < [V'|/4, and |E| < |V'|/4. We place S; and Sy together in
the left subtree, and S3 together with Sy in the right subtree. The resulting
vertex arrangement has the value of the path length sum required.

Finally we need to show that SIMPLE DATA ARRANGEMENT is NP-complete.
Again, it is enough to consider the restricted case where the number of vertices
in the input graph is a power of d. We make a transformation from SIMPLE
MAX DATA ARRANGEMENT. Given an instance of this, a graph G = (V, E)
on d" vertices for some positive integer h, and an integer B, we construct an
equivalent instance of SIMPLE DATA ARRANGEMENT on G, the complement
of G, setting

h
B =Y 2r <;l> d*"Vd" T — B.
r=1

Then the original instance of SIMPLE MAX DATA ARRANGEMENT has a ‘yes’
answer if and only if the SIMPLE DATA ARRANGEMENT instance constructed
has a ‘yes’ answer. This is because, for r = 1,...,h, there are d"~" subtrees
of height » whose leaves are also leaves of the entire tree. Each such subtree
contributes up to (;) d?"=1) pairs of leaves separated by 2r links. O

We observe also that the case d = 2 of SIMPLE DATA ARRANGEMENT requires
a different reduction, since partitioning the vertex set of a graph into two
stable sets of equal size is easy.

5 Conclusions

We close by recalling the two problems stated in this paper.

(1) What is the complexity of GRAPH EMBEDDING when both input graphs
are restricted to being trees?

(2) What is the complexity of SIMPLE DATA ARRANGEMENT when the input
graph is restricted to being a tree?

The existence of a polynomial time algorithm for either of these problems
would then suggest studying the case where the input is restricted to graphs
with bounded tree-width.

Acknowledgements

We would like to thank Dominic Welsh for helpful suggestions.

References

[1] D. Bienstock, On embedding graphs in trees, Journal of Combinatorial Theory
Series B 49 (1990) 103-137.

[2] F. R. K. Chung, On optimal linear arrangements of trees, Computers and
Mathematics with Applications 10 (1984) 43-60.

[3] F.R. K. Chung, Labellings of graphs, in: L. W. Beineke and R. J. Wilson, eds.,
Selected Topics in Graph Theory 3 (Academic Press, 1988), 151-169.

[4] M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth, Complexity results
for bandwidth minimization, SIAM Journal on Applied Mathematics 34 (1978)
477-495.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability (W. H. Freeman,
New York, 1979).

[6] M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simplified NP-complete
graph problems, Theoretical Computer Science 1 (1976) 237—267.

[7] M. A. Goldberg and I. A. Klipker, Minimal placing of trees on a line, Technical
report, Physico-Technical Institute of Low Temperatures, Academy of Sciences
of Ukranian SSR, USSR (1976).

[8] L. H. Harper, Optimal assignments of numbers to vertices, Journal of the
Society for Industrial and Applied Mathematics 12 (1964) 131-135.

10

[9] R. M. Karp, Reducibility among combinatorial problems, in: J. W. Thatcher
and R. E. Miller, eds., Complexity of Computer Computations (Plenum Press,
New York, 1972), pages 85-103.

[10] I. Novoa and M. Wilby, Knowledge and location, in: Proceedings of the
International Joint Conference on Artificial Intelligence, Montreal (August
1997).

[11] Y. Shiloach, A minimum linear arrangement algorithm for undirected trees,
SIAM Journal on Computing 8 (1979) 15-32.

11

