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Abstract

Background: Quorum sensing drives biofilm formation in bacteria in order to ensure that biofilm formation only
occurs when colonies are of a sufficient size and density. This spatial behaviour is achieved by the broadcast
communication of an autoinducer in a diffusion scenario. This is of interest, for example, when considering the role of
gut microbiota in gut health. This behaviour occurs within the context of the four phases of bacterial growth,
specifically in the exponential stage (phase 2) for autoinducer production and the stationary stage (phase 3) for
biofilm formation.

Results: We have used coloured hybrid Petri nets to step-wise develop a flexible computational model for E.coli
biofilm formation driven by Autoinducer 2 (AI-2) which is easy to configure for different notions of space. The model
describes the essential components of gene transcription, signal transduction, extra and intra cellular transport, as
well as the two-phase nature of the system. We build on a previously published non-spatial stochastic Petri net model
of AI-2 production, keeping the assumptions of a limited nutritional environment, and our spatial hybrid Petri net
model of biofilm formation, first presented at the NETTAB 2017 workshop. First we consider the two models
separately without space, and then combined, and finally we add space. We describe in detail our step-wise model
development and validation.
Our simulation results support the expected behaviour that biofilm formation is increased in areas of higher bacterial
colony size and density. Our analysis techniques include behaviour checking based on linear time temporal logic.

Conclusions: The advantages of our modelling and analysis approach are the description of quorum sensing and
associated biofilm formation over two phases of bacterial growth, taking into account bacterial spatial distribution
using a flexible and easy to maintain computational model. All computational results are reproducible.
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Background
Human gut microbiota. The human body hosts a large
number of prokaryotic and unicellular eukaryotic cells,
which are found in most tissues. This huge population can
be up to 100 trillion in the human body, almost the same
number as human cells, with the total mass of around
0.2 kg [1].

Human gut microbiota play an important role in human
health and are necessary for a human to survive. For
instance, human gut microbiota help in vitamin synthe-
sis, dairy digestion, gut development, nutrient processing,
resistance to pathogens, brain development and function,
immune cell development and immune responses [2]. It is
notable that some of these bacteria in human intestine can
prevent certain diseases such as diabetes [3] or liver dis-
eases [2]. In addition, gut microbiota have a direct effect
on the diseases related to intestines such as Irritable Bowel
Syndrome (IBS), Inflammatory Bowel Disease (IBD) [2],
metabolic diseases and obesity [4].

The composition of gut microbiota is unique for each
individual host. However, family members can have more
similar gut microbiota compared to unrelated people. The
composition of gut microbiota is influenced by diet, drugs,
lifestyle, stress and genetics [2, 4].

Quorum sensing. Bacteria need to act in a concerted
manner in order to achieve large scale effects in, for exam-
ple, a multicellular host such as human. This involves
communication, and the detection of the presence of
other bacteria of the same species or strain whose activ-
ities can be coordinated and aggregated. This process
of stimulus and response correlated to population den-
sity is called quorum sensing which can happen among
microbes, particularly among the bacteria of the same
strain, with other strains and with human cells [5].
This communication mechanism between cells is based
on chemical broadcasting, i.e. one-way communication
whereby molecules acting as chemical signals are trans-
mitted via diffusion without requirement for an acknowl-
edgement of receipt. The concentration of the molecules
involved stands as a proxy for population density. The
receiving cells detect these molecules via their membrane
receptors which employ a threshold mechanism over the
concentration of the molecules. This results in the activa-
tion of pathways which induce changes in gene expression.

Bacteria use quorum sensing to initiate some changes in
their behaviour or phenotype, such as biofilm formation,
pathogenicity and virulence factor production, motility
and toxin production. These changes play an important
role in the relationship between the host and the microor-
ganism [6].

This process is achieved by the production, release and
detection of a signalling molecule called autoinducer (AI)
[7]. According to Elias and Banin, distance has an impact
on the ability of the cells to intercommunicate. Their study

shows that the distance between the cells and hence the
compactness of the society of the bacteria is a more impor-
tant factor than the size of the population itself [8]. When
the population density is low, the total amount of AI pro-
duced is too low for the quorum sensing process to be
enabled. As soon as AI is produced and exported, it dif-
fuses into the environment. Thus it can not be detected
by the individual cell to activate biofilm formation. An
increase in the population increases the amount of AI
observable in the intercellular environment, facilitating
the ability of the cell to detect and import it. AI accu-
mulates in the cell and can activate transcriptional signals
by binding to a regulator protein which is a gene tran-
scriptional suppressor. This is when quorum sensing is
switched on [6].

Bacterial population growth occurs in four different
phases, see Fig. 1. In the first stage, Lag Phase, the bac-
teria adapt to the environment, and growth is not fast. In
the second stage, Exponential Phase, the bacteria start to
grow fast such that their number doubles logarithmically.
In the third stage, Stationary Phase, the growth rate and
death rate of bacteria equalise due to limited availability
of growth factors and the accumulation of waste products.
The final Death Phase takes place when waste products
dominate the environment and the growth rate dramat-
ically decreases while death rate is high. Autoinducer
production occurs in the Exponential Phase (Phase 2) and
the response of the bacteria to it occurs in the Stationary
Phase (Phase 3) [9].

Looking at the phases of bacterial growth in detail, AI
is produced and exported to the intracellular environment
during the mid-Exponential Phase and early Stationary
Phase. In the case of a sufficiently large population of bac-
teria, the level of AI exceeds its threshold, which happens
during the late Phase 2 and the start of the Phase 3, when
the bacteria start to import this chemical to their cyto-
plasm [10]. At this point (Phase 3), AI production is slow
while the import is so rapid that no AI in the environment
is detectable [11].

In Gram-negative bacteria, there are three classes of AI
according to the way they are produced: AI-1, AI-2, AI-3
[12]. The main focus of this study is on Autoinducer-2
(AI-2) which is the only AI molecule that is produced
and detected by both Gram-negative and Gram-positive
bacteria [10]. AI-2 is synthesized by LuxS or its homo-
logues from methionine and is actively transported to the
extracellular environment throughout cell growth [12, 13].

When non-pathogenic E.coli produce AI-2 in the intes-
tine, an inflammatory response is initiated which is
quickly arrested. Not only can AI-2 act as an inter-
kingdom signal between bacteria and their hosts [12],
but it is also non-specific between bacterial species. Thus
when the AI-2 system is activated, the signal molecule is
quickly removed from the environment by absorbtion by
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Fig. 1 Bacteria population growth phases. Our model relates to the Exponential and Stationary Phases

the receiving cells in order to avoid cross-talk with other
strains of bacteria. This mechanism prevents these strains
from using AI-2 to change their behaviour — for exam-
ple, interacting inappropriately with the host. In E.coli,
AI-2 affects virulence factors, motility, pathogenicity and
biofilm formation [12]; in this paper we concentrate on the
latter.

Biofilm formation. Quorum sensing can cause changes
in behaviour and morphology of a bacterium. One of the
consequences is the formation of biofilm. Biofilm for-
mation is a structural process where a polymer layer of
carbohydrates or small amounts of protein and DNA, are
produced and exported to the micro-environment [14].
This process results in phenotype changes while enabling
the bacteria to adhere to each other and the surface.

The bacteria in this community are structurally organised
by the way in which they communicate with each other and
respond to one another’s signals. The formation of biofilm
can have several beneficial effects for bacterial colonies: it
(i) can act as a physical protection against antibiotics, thus
facilitating bacterial antibiotic resistance, (ii) helps them
in colonization of the host by facilitating adherence of the
bacteria to host tissues, (iii) is helpful in collecting
nutrients from the environment [15], and (iv) facilitates
DNA exchange between bacteria in the biofilm which
results in changes in DNA recombination or DNA repair [14].

Biofilm production leading to inter-cell matrix forma-
tion does not form in sparse or scattered colonies because the
distances between the bacteria are too high to permit high
enough autoinducer concentration to pass the threshold
required to trigger the relevant internal pathways [16].

The study of biofilm is an important field for micro-
biologists and immunologists since it can be a threat for
human health. Biofilms are involved in 65% of hospital
infections, causing serious problems due to their high
resistance to antibiotics [15].

In a microbiology lab, one of the constraining resources
is time. In order to obtain results a researcher should wait
at least for 24 h for a sufficient population of bacteria to
have developed. By simulating biological systems in-silico
it is possible to predict and analyse the behaviour of bio-
logical systems faster. This method, aside from being less
time and money consuming, gives us a clear detailed result
to study and to guide lab experiments.

Related work
The first description of quorum sensing was given in the
early 1970s for Vibrio fischeri [17, 18] and many scien-
tific descriptions have subsequently been published; see
the review by Waters and Bassler [19] for an overview of
this large area.

Many mathematical models of the quorum sensing
mechanism have been proposed, and are reviewed in
depth in [16, 20]. Models of the intracellular molecu-
lar mechanism at the single cell level have mostly been
continuous, using ordinary differential equations (ODEs).
Some models are stochastic, for example Weber and
Buceta [21] give both a deterministic model to describe
AI-2 production in E.coli which treats the cell as one
entity, and a stochastic model which divides the cell
into individual compartments, including a noise term
on the luxR gene expression, which depends on the cell
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density and may influence phenotypic changes stochas-
tically. Another set of models describe self-controlling
mechanisms in the quorum sensing process, where the
general purpose of AI systems is held to be (i) the homeo-
static control of costly cooperative behaviours [22] and (ii)
that bacteria have evolved mechanisms to repress certain
components of quorum sensing if needed, see e.g. [23].

One of the most complete works in this field is
the stochastic Petri net model of E.coli AI-2 pro-
duction, constructed by Li and his colleagues [24]; it
has quantified values for the reaction rate constants
and the initial concentrations of species. This model
describes the AI-2 production pathway as outlined in
“Phase 2 model – AI-2 production” section, which forms
one component of our overall model.

The modelling of biofilms has a long history over the last
30 years, and has been extensively reviewed in [25]. The
representation of space is a critical component of such
models, and initially models comprised partial differential
equations (PDEs) modelling a biofilm as a flat layer; sub-
sequently multidimensional models have been developed
to describe non-uniformities.

The mechanism of biofilm production itself has been
described in papers by Li et al. [26] and Novak et al. [27].
However the descriptions are textual only without any
quantified values for concentrations or rate constants, and
no formal models are given.

Janowski et al. [28] have modelled both the production
of autoinducer signals as well as their diffusion and cel-
lular import in a quorum sensing scenario using standard
Petri nets. They achieve a notion of space by constructing
a large model explicitly comprising several copies of the
Petri net descriptions of individual cells, connected by the
diffusion of the AI molecules outside the cell. One draw-
back of this modelling approach is that each copy of the
cellular mechanism needs to be updated if the intracel-
lular description is changed during model development,
and also the extracellular connections are explicitly repre-
sented individually and likewise would require individual
updating.

Other approaches to describing quorum sensing at the
population scale include agent-based models which per-
mit the allocation of a range of conditions to different
individuals. For example, Müller et al. [29] have proposed
a spatial single-cell model of quorum sensing using two
layers: intra-cellular and inter-cellular, and a population of
such single cells, where the quorum sensing signalling sys-
tem is modelled by nonlinear ODEs and PDEs are used
to give spatial structure. P systems exploit a hierarchical
membrane approach for modelling and have been used
by Pérez-Jiménez and Romero-Campero [30] to describe
quorum sensing in terms of an agent-based model where
an individual agent or cell is described by a P system
exploiting Gillespie-style [31] stochastics.

Our contributions
We developed a spatial model describing E.coli biofilm
formation driven by the Autoinducer 2 (AI-2) covering
Phase 2 and Phase 3 of bacterial growth and comprising
different abstraction levels. The model is represented as
coloured Petri net, which can be equally read as stochastic
or hybrid Petri net. We investigate different model con-
figurations comprising the single bacterium, dense colony
and sparse colonies of different sparseness, by simulat-
ing them with the approximative delta-leaping stochastic
simulation algorithm [32].

We describe in detail our step-wise model develop-
ment and validation strategy. All results are reproducible.
Our approach of encoding space is flexible, it can easily
be configured for the 1D, 2D or 3D scenario, and con-
veniently adjusted to different notions of space, such as
different boundary conditions or neighbourhood relations
[33]. Our modelling strategy can be equally applied to
other problems evolving in time and space.

Outline. This paper is organised as follows. In the
next section we describe our methods, comprising stan-
dard Petri nets in the stochastic, continuous and hybrid
paradigms, as well as their coloured counterparts, and
simulative model checking of linear time temporal logic
properties. Next, we present our model and its step-wise
development and validation; first we consider the model
components separately without space, and then com-
bined, and finally we add space. We conclude our paper with
a discussion and conclusions suggesting further work. We
also provide Additional files with supplementary material
illustrating in more details our methodology and results.

Methods
Petri nets
To simulate a model in silico, a powerful tool is needed,
which is able to show the complex interactions within a
cell [34] in the simplest way possible. At the same time,
this tool should be easy to work with and provide the
required data such as graphs or data tables to be analysed.
We chose to use Petri nets as they support a graphical and
mathematical environment in silico; they ease communi-
cation among professionals with a diverse background and
permit to computationally simulate a biological system.

Standard Petri nets are inherently discrete and free
of any notion of time, which means that they consider
behaviour under any timing constraints, supported by
a substantial body of Petri net theory [35]. They have
been proven to be useful for a wide range of applications,
among them biochemical networks, such as metabolic
networks, gene regulatory networks, or a combination of
them [36]. If required for clarity, we call them qualitative
Petri nets (QPN).

Over the years, Petri nets have been extended in
various ways, for example by assigning firing rates to
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transitions, which can either be read as stochastic or
deterministic rates. Stochastic rates yield stochastic Petri
nets (SPN), which can be seen as high-level descriptions of
continuous-time Markov Chains [37], while deterministic
rates yield continuous Petri nets (CPN), which in turn can
be seen as a structural descriptions of ordinary differential
equations (ODEs) [38, 39]. Combining stochastic and con-
tinuous rates within one model brings us to hybrid Petri
nets (HPN), which contain SPN and CPN as proper sub-
sets [40]. Firing rates are often state-dependent and follow
specific kinetic laws. In the case study considered in this
paper, all firing rates follow mass-action kinetics [41].

We use the Petri net tool Snoopy [42] which supports
Petri nets in different paradigms – as required for the case
study discussed in this paper, comprising QPN, SPN, CPN,
and HPN, as well as their coloured counterparts, see next
section. Importantly, it is possible to conveniently convert
the individual net classes into each other according to the
user’s need.

In the following we assume basic knowledge of Petri
nets; see [43] for a gentle introduction in the context of
Systems Biology, and [44] for formal definitions.

Coloured Petri nets
Enriching Petri nets by a colouring concept yields a kind of
high-level Petri nets. Colours are organised in colour sets,
which can be seen as a synonym for (finite) discrete data
types as known from traditional programming languages.

Coloured Petri nets allow for concise descriptions of
similar network structures, which in turn permits, among
others, to conveniently encode space, as we have first
shown in [45] and later applied for various notions of
space, for example to deal with planar cell polarity requir-
ing the nesting of two spatial concepts [46], or to inves-
tigate phase variation in bacterial colonies, where we
applied Cartesian and polar coordinates [47]. The tutorial-
like paper [33] showcases the use of coloured continuous
Petri nets to encode partial differential equations.

A special strengths of this approach of colouring space
is its flexibility: models can be conveniently adjusted
to different notions of space, such as different bound-
ary conditions or neighbourhood relations [33]. As we
will see, models can also be designed in such a way
that they subsume as special cases the one-dimensional,
two-dimensional or three-dimensional settings. Thus, the
basic modelling strategy can be applied to a large variety of
problems evolving in time and space. See [48] for a recent
review paper illustrating the wide use of coloured Petri
nets for multi-level, multiscale, and multi-dimensional
modelling of biological systems.

Coloured Petri nets consist, as standard Petri nets, of
places, transitions and arcs. Additionally, a coloured Petri
net is characterised by a set of discrete data types, the
colour sets, and related net inscriptions.

• Places get assigned a colour set and may contain a
multiset of distinguishable tokens coloured with a
colour of this colour set.

• Transitions get assigned a guard, which is a Boolean
expression. The guard must be evaluated to true for
the enabling of the transition.

• Arcs get assigned an expression; the result type of
this expression is a multiset over the colour set of the
connected place.

We consider diffusion in 3D space to recall the basic con-
cepts of coloured Petri nets, as supported in our toolkit
in different paradigms, i.e. as coloured Petri nets (no
notion of time), coloured stochastic Petri nets (coloured
SPN), coloured continuous Petri nets (coloured CPN), and
coloured hybrid Petri nets (coloured HPN).

In order to encode spatial information we introduce the
following.

• Constants D1, D2 and D3: integers which define the
length of the X, Y and Z axes of the environment
space.

• Constant D: an integer to be used to define uniform
lengths of the non-zero axes. For example, in order to
model a 3D cube, they are all set to the same value D.
For a square 2D grid, D1 and D2 are set to D while
D3 is set to 1, and for a 1D linear array, D1 is set to D
while both D2 and D3 are set to 1.

Having these constants we can now define the follow-
ing colour sets specifying a 3D grid, and a colour function
specifying the neighbourhood relation over the grid posi-
tions, which are triples of the X, Y, Z coordinates.

c o l o r s e t s :
CD1 = { 1 . . D1 } ; / / i n d e x o f 1 s t dimens ion
CD2 = { 1 . . D2 } ; / / i n d e x o f 2nd dimens ion
CD3 = { 1 . . D3 } ; / / i n d e x o f 3 rd dimens ion
Grid3D = PROD(CD1 , CD2 , CD3) ; / / 3D g r i d

c o l o r f u n c t i o n s :
/ / I s ( a , b , c ) a n e i g h b o u r o f ( x , y , z ) ?
bool neighbour3D26 (CD1 a , CD2 b , CD3 c ,

CD1 x , CD2 y , CD3 z ) {
( a=x−1 | a=x | a=x +1) & ( b=y−1 | b=y |

b=y +1)
& ( c=z−1 | c=z | c=z +1) & ( ! ( a=x & b=y

& c=z ) )
& (1 <= x & x<=D1 ) & (1 <= y & y<=D2 ) &

(1 <= z & z <=D3 ) } ;

The advantage of this approach relying on colour
is to concisely define a potentially large model which
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has many repeated elements, one example of which
is a spatial grid whose elements can be addressed by
colour tuples specifying the grid positions, and move-
ment in space translates into re-colouring of tokens.
See Fig. 2 for a Petri net showing diffusion in 3D
space which can be easily configured for 1D or 2D by
merely changing the constants D1. . . D3. This coloured
representation can be automatically unfolded generat-
ing the corresponding uncoloured Petri net in standard
notation amenable to simulation and analysis tech-
niques available for uncoloured Petri nets. See Additional
file 1: Figures S2–S4 for some examples of unfolded
nets.

We can further define a sub-space, called ‘region’ for
brief, within the overall environment, using the following
constants:

• Constants M1, M2 and M3: integers representing the
central position of the X, Y, Z dimensions of the
environment,

• Constant R: an integer controlling the radius of a
region in each dimension (assuming a circular shape
which maps to a rectangle in our representation).
Note that when R=1, the side of the region is of length
3 and hence a 2D region comprises 3 × 3 = 9 grid
positions and a 3D region comprises 27 positions.
When R=2, the side is of length 5 giving 25 positions
in the 2D case and 125 in the 3D case, and so on.

• Constants S1, S2 and S3: integers controlling the
sparseness (density) of the bacterial colony in the X,
Y and Z dimensions, respectively, where Si=1 results
in no gaps in the region, Si=2 generates a region
spread s.t. there is one empty grid position between
each occupied position, Si=3 gives 2 empty grid
positions, etc.

This allows us to introduce the following colour set and
colour function:

Fig. 2 Diffusion as coloured Petri net. The initial marking sets 1000
tokens in the centre of the grid, specified by the constants M1, M2,
and M3. The transition rate (not shown) follows the mass-action law
with the kinetic parameter k.The size of the underlying unfolded Petri
net is determined by the constants D1, D2, and D3; see Additional
file 1: Figures S2–S4 for some examples. Additional file 1 also gives a
complete self-contained textual specification of this coloured Petri net

c o l o r s e t s :
D i s t a n c e = { 1 . . D } ;

c o l o r f u n c t i o n s :
bool r e g i o n (CD1 x , CD2 y , CD3 z , CD1 x0 ,

CD2 y0 , CD3 z0 ,
D i s t a n c e r a d i u s , D i s t a n c e xd , D i s t a n c e yd

, D i s t a n c e zd ) {
( x0−r a d i u s ) <=x & x <=( x0+ r a d i u s )
& ( y0−r a d i u s ) <=y & y <=( y0+ r a d i u s )
& ( z0−r a d i u s ) <=z & z <=( z0+ r a d i u s )
& (1 <= x & x<=D1 ) & (1 <= y & y<=D2 ) &

(1 <= z & z <=D3 )
& ( x%xd=0 & y%yd=0 & z%zd =0) } ;

which defines a region around the centre (x0,y0,z0) with
a max distance from the centre of ‘radius’, and a space of
xd, yd, zd in-between in the X, Y, Z axes, respectively. In
our current scenario, the main grid represents an environ-
ment within which a bacterial colony is located using the
region function.

The entire diffusion mechanism with its associated
colour definitions will be one of the three components
of our final model, discussed when adding space –
see “Adding space” section. A complete self-contained
description is given in the Additional file 1.

Temporal logics
Model checking can be used to determine whether the
behaviour of a model conforms to some desired proper-
ties specified in temporal logic. We use here Probabilistic
Linear-time Temporal Logic with numerical constraints
(PLTLc) [49], based on Linear-time Temporal Logic (LTL)
[50], extended with probabilities [51] and numerical con-
straints over real value variables [52]. Several features
of PLTLc facilitate the expression of the behaviour of
biochemical networks, including the ability to express
properties relative to an absolute time value or range,
the use of functions which compare the concentration
of a protein to its peak value, and the derivative func-
tion enabling the description of transient, sustained or
oscillatory behaviour.

The operators of PLTLc include the usual first order
logic connectives: & (And), ∨ (Or), ¬ (Not), and → (Impli-
cation). In addition the language includes the following
temporal operators over formulae: F(φ) (φ holds eventu-
ally (finally)), G(φ) (φ holds forever (globally)), φ1 U φ2
(φ1 holds until φ2 holds).

In this research we have used simulative model check-
ing over time series traces of the species in the model
which include the small molecules, metabolites, proteins,
RNAs, genes and complexes. This can be done for single
output of a continuous model, or for the several runs of
a stochastic model – either separately or averaged. In our
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case, the behaviours that we check can also be generated
by a hybrid model yielding both deterministic traces (for
the continuous places) as well as stochastic traces (for the
discrete places). We give the properties in PLTL format
following the usage in the simulation-based MC2 model
checker [49] which we have employed, with the results
belonging to the set {0, 1} rather than in being in the range
[ 0..1], when applied to continuous or averaged traces.

MC2 has two built-in functions, the first of which, max,
operates over all the values of a species to return the max-
imum of the species’ value in the simulation run, thus the
peak of a species can be expressed using max(Protein).
The other function d returns the derivative of the con-
centration of the species at each time point, thus increas-
ing and decreasing species values can be expressed as
d(Protein) > 0 and d(Protein) < 0, respectively.

Commonly, the property of interest refers to known val-
ues, often motivated by observations in the wet lab; e.g.
The concentration of metabolite A is always below a cer-
tain threshold, for example 100, and always decreasing.
This can be expressed by the temporal logic property:

P≥1[ G(A < 100 & d(A) < 0) ].
In the research reported in this paper we often are pre-

sented with a large number of species, for example all
those in the particular network of interest in one bac-
terium, and would like to know which of these fulfil a
particular property, then we can express the previous
property by:

P≥1[ G($x < 100 & d($x ) < 0) ], where $x is a meta
variable ranging over all species in the model. This feature
can also be applied to check all the species in the often
very large models generated by uncolouring a coloured
model by unfolding. As result we obtain the set of all
variables fulfilling the given property, with the set being
empty, when no variable fulfils the property.

Results - models
In this section we show how our model has been devel-
oped using a step-wise approach. First we consider AI-2
production (Phase 2 model) and biofilm formation (Phase
3 model) separately as two models without space, then we
combine them, and finally we add space to the combined
model. Each step involves model validation.

Phase 2 model – AI-2 production
We have used the non-spatial stochastic Petri net model
of AI-2 production given in Li [24] to describe the pro-
duction of AI-2 in Phase 2, keeping the assumptions of
a limited nutritional environment. The model does have
elements of AI-2 activity in Phase 3, which we sepa-
rate out into our description of biofilm formation (see
“Phase 3 model – biofilm formation” section). The
model is available in SBML format from the website
of the PMC journal where the paper was published.

By importing this SBML specification, we obtained the
Petri net model shown in Fig. 3, which can be read
as a stochastic Petri net or a continuous Petri net
alike.

The detailed mechanism of the AI-2 produc-
tion pathway is as follows: AI-2 is derived from
S-adenosylmethionine (SAM) which is a methyl donor
for the methyl transferase enzyme, which produces
a methylated product from SAM called S-adenosyle-
homocysteine (SAH) which can be toxic if accumulated.
Therefore, the cell rapidly acts on SAH to produce
adenine and S-ribosyl homocysteine (SRH) using the
nucleosidase Pfs. While transforming SAH to SRH, Pfs
uses a water molecule to produce Adenine. In the next
step the LuxS protein catalyses reactions which use SRH
to produce both homocysteine and 4,5-dihydroxy-2,3-
pentamidine (DPD). The effect of this is to create a
feedback loop in the pathway by transforming homo-
cysteine to methionine, and also to rearrange DPD to
eventually produce more AI-2 [24].

On another branch of the pathway, SAM decarboxy-
lase converts SAM to Decarboxylated SAM (De-SAM)
by releasing CO2. After that Spermidine synthase trans-
forms De-SAM to 5′-methylthioadenosine (MTA) using
putrescine and producing spermidine. The Pfs enzyme
also converts MTA to 5′-methylthioribose (MTR) while
using a water molecule and producing polyamines; MTR
is later excreted from E.coli [53]. Note that ubiquitous
molecules such as CO2 and water are not represented in
our model.

The model has 21 places, and 23 transitions. The Li
model has a specific finite number of tokens in each
place and specific rate constants, all being derived from
experiments [24]. There are two source places, i.e. with
only outgoing arcs and thus an always limited num-
ber of tokens, reflecting limited environmental resources:
Nutrients and Putrescine. Two other places maintain a
constant value: the Pfs and LuxS genes, modelling the
fact that genes are not used up by transcription. In sum-
mary, the model describes the pathway starting from
the sources places to AI2_Out which represents the AI-
2 produced in Phase 2 excreted to the environment.
See Tables 1 and 2 respectively for an explanation of
the names of the places and transitions in the Phase 2
model.

In the following, place and reaction names are the
short form given in the actual model and indicated in
italic.

Phase 3 model – biofilm formation
Our Phase 3 biofilm formation model follows the word-
ing in the papers by Li et al. [26] and Novak et al. [27],
neither of which presents a formal model, but rather pro-
vide textual descriptions of the various sub-mechanisms.
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Fig. 3 Phase 2 model. Petri net obtained by SBML import of the model presented in [24], mimicking the original layout, but rotated by 180 degrees.
Note that we have removed the two transitions describing the phosphorylation of AI-2 and the transportation of AI-2 back into the cell since they
occur in the Phase 3 biofilm formation part. All transition rates follow mass-action kinetics with specific rate constants (not shown); see Additional
file 2 for details. Colour code: source places highlighted in green and genes in red. This model can be equally read as SPN or CPN

In the following we consider the production of the bio-
chemical components of the biofilm matrix rather than
the formation and structural properties of the matrix
itself.

In order for the process of biofilm formation to
be activated, bacteria actively transport AI-2 into the
cell if they detect that the external concentration of
the molecule is above some threshold, implying that
the population of bacteria is high enough to initi-
ate this pathway as well as other pathways [26]. Then

the next stage of quorum sensing starts; AI-2 enters
the bacteria in the stationary phase through a trans-
porter complex called LuxS Regulator ABCD (LsrABCD).
Thus, when there is insufficient AI-2, the cell will not
detect it and biofilm formation will not be initiated
[6, 54].

As soon as AI-2 enters the cell, it is phosphorylated by
the kinase LsrK. The phosphorylated AI-2 counteracts the
repression of the lsr genes by LsrR, by binding to and thus
separating the repressor LsrR from the lsr genes [26, 53].
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Table 1 Phase 2 Places

Place name Biological entity

Adenine Adenine

AI2_In_Phase2 AI_2 produced in phase 2 in the cell

AI_2_Out AI_2 exported into the environment

Decarb_SAM Decarboxylated S-adenosylmethionine

DPD 4,5-dihydroxy-2,3-pentamidine

Homocys homocysteine

LuxS_gene LuxS genes

LuxS_mRNA LuxS mRNA

LuxS_prot LuxS protein

Met methionine

MTA 5′-methylthioadenosine

MTR 5′-methylthioribose

Nutrients Nutrition source

pfs_gene nucleosidase Pfs genes

Pfs_mRNA nucleosidase Pfs mRNA

Pfs_prot nucleosidase Pfs protein

Putrescine putrescine

SAH S-adenosylehomocysteine

SAM S-adenosylmethionine

Spermidine Spermidine

SRH S-ribosyl homocysteine

This allows the lsr genes to actively produce the proteins
LsrABCD, LsrK and LsrR, all of which are degraded.

The biochemical components of biofilm (carbohydrates
etc.) – hereafter called ‘biofilm’ for short – can be formed
in two ways; firstly by the interaction between AI2_In
and QSeBC via a complex process represented overall
by the transition BiofilmFormationAI2. QSeBC (Quorum
sensing E.coli regulator B and C) is a coupling mecha-
nism that senses and responds to environmental changes
in order to control biofilm formation [27]. The alterna-
tive route for the formation of biofilm is via LsrR which
requires the presence of AI2_In as well [26], again via
a complex process represented overall by the transition
BiofilmFormationLsrR.

See Fig. 4 for a graphical representation of the model,
which comprises 11 places and 15 transitions; in addition
we have introduced a control mechanism (“Go system”)
to ensure that AI-2 will enter the cell only when a cer-
tain threshold is reached [54], and also that AI-2 can build
up in the environment and consequently diffuse as a sig-
nal to other cells in the environment. This models the
fact that under low population densities AI-2 will keep
diffusing in the environment and never enter the cell, with
the consequence that biofilm will never be formed [12].

Table 2 Phase 2 Transitions

Transition name Biological action

AdoMet Methioninadenosyl transfer

AI2_excret AI_2 excretion

AI2_syn AI_2 synthesis

bio_reac General bioreaction over nutrients

DPD_deg DPD degradation

LuxS_mRNA_deg LuxS mRNA degredation

LuxS_prot_deg LuxS protein degredation

LuxS_transcription LuxS transcription

LuxS_translation LuxS translation

MethyTrans Methyl transfer

Met_recover Recovery of Methionine

MTR_excret Excretion of MTR

MTR_syn MTR synthesis

Pfs_mRNA_deg Pfs mRNA degredation

Pfs_prot_deg Pfs protein degredation

pfs_transcription Pfs transcription

pfs_translation Pfs translation

Polyamin_util Utilisation of Polyamine

SAH_Hydro SAH Hydrolysis

SAM_Decarb SAM decaroxylation

SpeE_syn Spermidine synthesis

Spermi_util Spermidine utilisation

SRH_cleave SRH cleavage

In order to impose a threshold on the activity of the
Transport_in transition, we exploit two special arcs avail-
able in Extended Petri nets. Special arcs always connect a
place to a transition. Read arcs (represented by black cir-
cles as arrow head) test if the marking of the pre-place is
larger or equal than the arc weight, which we specify by
the constant THR. Inhibitory arcs (represented by hollow
circles as arrow head) test if the marking of the pre-place
is smaller than the arc weight; in our case we use (so far)
the weight 1, which is usually not shown. Both special
arcs influence the enabledness of a transition, but do not
change the marking of the tested places upon firing. Com-
bining both as shown in the Fig. 4 (yellow subnet) brings
the required control mechanism. As we want to obtain a
sharp on/off mechanism, we implement the Go control
mechanism as a discrete component. The stochastic tran-
sition open is enabled if m(AI2_Out) ≥ THR∧m(go) < 1,
and the stochastic transition close if m(AI2_Out) < 1.
Obviously, both conditions preclude each other for any
THR ≥ 1; thus there is always at most one token on the
discrete place go, which appears as a side-condition for the
transition Transport_in. Consequently, the rate (following
the mass-action pattern) is zero, if m(go) = 0, and else the
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Fig. 4 Phase 3 Biofilm production model. To graphically distinguish discrete and continuous nodes, we adopt the usual drawing convention of
representing discrete nodes by thin lines, and continuous nodes by thicker lines. The arc weight for the read arc going from go to Transport_in is
given by the integer constant THR. All transition rates follow mass-action kinetics with specific rate constants (not shown); see Additional file 2 for
details. Colour code: yellow - discrete nodes (the go mechanism), green - infinite inflow, blue - protein (complexes), red - genes. This model can be
equally read as SPN or HPN

rate depends only on the other two pre-places (AI2_Out,
LsrABCD).

Due to the stochastic nature of the go mechanism, the
Phase 3 model can either be read as an entirely stochas-
tic model, or as a hybrid model keeping the go mechanism
stochastic and the remainder being continuous. Moreover,
the model implements the repression-derepression tran-
scription cycle of lsr genes which also should be modelled
stochastically because gene expression is a fundamen-
tally stochastic process [55]. This suggests that the two

places and transitions involved in this cycle can be kept as
stochastic in the hybrid model as well.

See Tables 3 and 4 respectively for an explanation of the
names of the places and transitions in the Phase 3 model.

Please note that this is a new model and no precise
rates, rate parameters or initial concentrations are avail-
able in the literature. We assume mass-action kinetics,
and the rate parameters have been uniformly set in three
categories, see Table 5 for details. The initial marking
comprises four categories, see Table 6 for details.
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Table 3 Phase 3 Places

Place name Biological entity

AI2_In Imported AI_2

AI2_Out AI_2 in the environment

AI2_P Phosphorylated AI_2

Biofilm Biofilm

go AI_2 threshold control system

LsrABCD LsrABCD protein

lsrGenes lsr genes

lsrGenes_LsrR The complex of LsrR and lsr genes

LsrK LsrK protein

LsrR LsrR protein

LsrR_AI2_P The complex of LsrR and phosphorylated AI_2

QSeBC Quorum sensing E.coli regulator B and C

Combining phase 2 & 3 models
We created an overall model, see Fig. 5, describing
AI-2 production and biofilm formation by combin-
ing the Phase 2 model based on Li [24] described in
“Phase 2 model – AI-2 production” section with the
Phase 3 model for production of biofilm described in
“Phase 3 model – biofilm formation” section. This was
achieved by linking these two models using the place
AI2_Out, which we represented in each model as a log-
ical place (a shared place appearing in both models). To
keep all place names unique, we named AI2_In from Phase
2 as AI2_In_Phase2, and likewise for AI2_In in Phase 3.

Table 4 Phase 3 Transitions

Transition Name Biological action

BasalProduceLsrABCD Basal production of LsrABCD proteins

BasalProduceLsrK Basal production of LsrK protein

BasalProduceLsrR Basal production of LsrR protein

Biofilmformation_AI2 Biofilm formation via AI_2

Biofilmformation_LsrR Biofilm formation via LsrR

close Closure of AI2 import control system

derepress Derepression of lsr genes

inflow Inflow of diffused AI2

LsrABCD_deg Degradation of LsrABCD complex

LsrK_deg LsrK degradation

LsrR_AI2_P_deg LsrR_AI2_P degradation

LsrR_deg LsrR degradation

open Opening of AI2 import control system

Phosphorylation AI_2 Phosphorylation

repress Repression of lsr genes

TranscribeTranslate Trascription and translation of lsr genes

Transport_in Importation of AI_2 into the cell

Table 5 Rate parameters for the biofilm formation component

Category Ratio Transitions

low 1 basal transcription:

BasalProduceLsrABCD, BasalProduceLsrK, BasalProduceLsrR;

degradation: LsrABCD_deg, LsrK_deg, LsrR_deg,
LsrR_AI2_P_deg;

medium 10 all other transitions

high 104 open, close

In preparation for the spatial interpretation of the com-
bined system, we provide the basis of the AI-2 broadcast
mechanism. For this purpose we add a sink transition Dif-
fusion summarising diffusion to the neighbourhood in any
direction; the kinetic constant for diffusion is multiplied
by the number of neighbours (2, 8 and 26 in 1D, 2D and
3D, respectively). In this way, the Diffusion transition will
enable transmission of the broadcast signal via dispersion
thus facilitating long-range communication in the spatial
model below.

We also adjusted the estimated rates in the Phase 3
model to concord with the general ranges of the specific
rates in the Phase 2 model, low being set to 10−4, medium
to 10−3, and high to 1. Note that there are two thresholds,
one for open and one for close – for the time being we
keep the threshold for close at its default value of 1, while
varying that for open.

Adding space
In this section we reuse the coloured Petri net definitions
introduced in “Coloured Petri nets” section to describe
diffusion in space, which are summarised in the Addi-
tional file 1.

In order to add spatial information regarding both the
environment of the bacteria, and the size, position and
density (“sparseness”) of the bacterial colony we need to
define the environment size over a 1, 2 or 3D grid, and
the colony as a smaller grid within this environment. The
topology of both the environment and the bacterial colony
(or “cluster”) are by default linear in the 1D case, a square
in 2D and a cube in 3D. We first export the combined
model obtained in the previous section to a coloured Petri
net and define all colour-related definition as discussed in

Table 6 Initial concentration (marking) for the biofilm formation
component

places comment initial value

QSeBC a constant place which never changes 1

lsrGenes_LsrR the inhibited state of the lsr genes1 1

LsrABCD, LsrK, LsrR the Lsr proteins 1

else all other places 0

1corresponding to their basal production required to activate the biofilm formation
system [66]
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Fig. 5 Combined model. The two places AI2_Out given in grey are logical places, connecting the two model components, compare Figs. 3 and 4.
This model can be equally read as SPN or HPN when keeping the partitioning into discrete and continuous nodes as in Fig. 4

“Coloured Petri nets” section. Next we add the following
annotations to the coloured model.

• We uniformly assign the colour set Grid3D to all
places. Thus, every (coloured) place may hold
coloured tokens which are colour triples (x,y,z), the x,
y, z components of which are defined over a range
from 1 to D1, D2 or D3, respectively.

• All (coloured) places are initialised with markings
using the region function. This will allocate bacteria
to all (x,y,z) positions fulfilling the region criterion as
specified by its parameterised call
region(x,y,z,M1,M2,M3,R,S1,S2,S3).

• We enhance the definition of the Diffusion
transition, making it two way in order to model the
long-range reception of broadcast AI-2 signals.

• All arcs get assigned the arc expression (x,y,z), with
one exception: one arc adjacent to Diffusion has to
get the triple (a,b,c) to provide the parameters for the
neighbourhood function serving as guard, see next
item.

• All transitions get assigned as guard the function
region, with one exception: the transition Diffusion
gets the guard neighbour3D26. This ensures that the
combined biofilm model for Phase 2 and Phase 3 will

only be generated upon unfolding) for those grid
positions as specified by the parameters of the
function call region, and only AI2_Out can diffuse
over the whole of the environment grid.

See Fig. 6 for the resulting model and Additional file 2 for
its complete CANDL specification.

Discussion - model validation
Sound model engineering requires a step-wise model
development strategy. Here, we present selected aspects
of our step-wise model validation.

Phase 2 model validation
Note that we consider the Li model as being vali-
dated by its publication, but take this opportunity to
demonstrate the power of our analysis techniques. We
start with standard Petri analysis techniques as known
from Petri net theory; see [44] for a summary and
related formal definitions in the context of systems
biology.

When adding source and sink transitions to model an
environment ensuring infinite in/out flow, which makes
the Petri net transition-bordered (no sink/source places
anymore), the net becomes covered with T-invariants,
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Fig. 6 Coloured combined model. The coloured model inherits its structure from the combined model, see Fig. 5, from which it was derived, but
enriched by the colour annotations. Typically, uniform annotations are not shown. For illustration, we show them here for a few nodes and arcs, see
top right. All other places have the same colour set as the place AI2_Out; all transitions for which the guard is not given have the same guard as
shown for BasalProduceLsrABCD; and all arcs for which the arc expression is not given carry the expression (x, y, z). The initial marking of coloured
places shows the total sum of tokens of any colour; e.g., there are 25 coloured tokens on the place LsrK, which tells us that the model configuration
comprises here 25 bacteria. This model can be equally read as a coloured SPN or a coloured HPN

which is known as a generally criterion for “all transi-
tions may be involved forever in some basic elementary
behaviour”.

There are two trivial 1-P-invariants (made of a single
place, having always exactly one token), which correspond
to the two genes. Due to the added source transitions, the
net is structurally unbounded, thus, without timing con-
straints (i.e. forgetting the rates), all other places (besides
those involved in P-invariants) are unbounded.

There are only the two trivial siphons, established by
the two 1-P-invariants; consequently, the Siphon Trap
Property (STP) holds (because a P-invariant is a siphon
and a trap as well). As the net also belongs to the
net class Extended Simple (ES), we can conclude that
the net is live, i.e. all transitions will forever contribute
to the system behaviour. Please note, this conclusion
for a structurally unbounded net is possible thanks a
structural criterion (STP & ES), and this is true for
any timing constraints because it is known that an ES
Petri net is time-independently live [56]. See Additional

file 3 for more details of these structural analysis
results.

We continue with simulative model checking. It is
known that the results may depend on the simulation
trace, specifically on the step size of the ODE solver and
the granularity of the recorded trace, see, e.g., [49, 57].
We chose to simulate the continuous Phase 2 model using
the classic Runge-Kutta solver in Snoopy over 10,000 time
points and recorded 10,000 observations and truncating
the accuracy up to 2 digits after the decimal place. There
are 21 species (places), which we categories using the
simulative Model Checker MC2 by means of a property
library, we developed previously [58]; compare Fig. 7.

1 always steady state zero:
P≥1[ G([ $x] = 0) ]
There are no corresponding variables, i.e. there are
no entities which are never active.

2 always steady state above zero:
P≥1[ G(d[ $x] = 0 & [ $x] > 0) ]
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Fig. 7 Validating Phase 2 model. Simulation traces for the 5 categories obtained by simulative model checking. The last two rows show in two
diagrams each the entities which have been categorised together. For comparison, top left shows all places together. See also Additional file 3:
Figure S3
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holds for two entities, which are genes – in this
model these are side conditions, they are always
active, but never consumed: luxS_gene and pfs_gene.

3 decreasing weakly until steady state zero:
P≥1[ G(d[ $x] ≤ 0) & ¬G(d[ $x] = 0) &
((G(d[$x]≤ 0) & ¬G(d[$x] = 0)) U (G(d[$x] = 0 &
[ $x] = 0))) ]
holds for the two source places, i.e. places without
pre-transitions, which reflect our assumption in the
model of finite supply: Nutrients and Putrescine.

4 increasing weakly, until steady state:
P≥1[ G(d[ $x] ≥ 0) & ¬G(d[ $x] = 0) &
((G(d[ $x] ≥ 0) &
¬G(d[ $x] = 0)) U (G(d[ $x] = 0))) ]
holds for six entities comprising the sink place
AI_2_Out, and two pairs of protein and mRNA
which are produced and degraded continuously until
production and degradation are balanced
LuxS_mRNA, LuxS_prot, Pfs_mRNA, Pfs_prot, and
also for Decarb_SAM where the inflow and outflow
eventually become balanced.

5 peaks once and falls weakly until steady state
zero:
P≥1[ d[ $x] > 0) &
(d[ $x] > 0 U (G(d[ $x] ) ≤ 0 U (G(d[ $x] = 0 &
[ $x] = 0)))) ]
holds for seven entities: Adenine, DPD, Homocys,
MTA, MTR, SAH, and SRH.

6 falls and rises to peak before falling weakly until
steady state zero:
P≥1[ ((d[ $x] < 0) & (d[ $x] < 0 U F((d[ $x] > 0) &
(d[ $x] > 0 U (F((d[ $x] < 0) &
(d[ $x] < 0 U (G(d[ $x] = 0) & [ $x] = 0)))))))) ]
holds for four entities: AI2_intra, Met, SAM, and
Spermidine.

Phase 3 model validation
Standard Petri net analysis techniques do not cover
inhibitory arcs; so we preclude the go mechanism from
the structural analysis. Applying the same approach as
we did for the first component relating to Phase 2 con-
firms again that the transition-bordered version of the

Fig. 8 Phase 3 model (hybrid) – unlimited supply. Top row: THR=10, bottom row: THR=30. Left column: go opens when AI2_Out exceeds the THR
up to some stochasticity; Right column: internal mechanism driving stepped accumulation of Biofilm
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Petri net is covered with T-invariants, and reveals two
P-invariants - a trivial one, comprising QSeBC, and
another one comprising the two states (repressed, de-
repressed) of the lsr genes, i.e., the places lsrGenes_LsrR
and lsrGenes. Moreover, the STP holds; but because the
net structure is beyond ES we can only structurally deduce
that the Petri net is free of dead states; see Additional file 3
for details.

Next, we considered our model under two conditions: (i)
unlimited amount of AI_2_Out and (ii) limited amount of
AI2_Out. Each condition was simulated in the stochastic
setting using the Gillespie [31] algorithm. The simulation
was also performed in the hybrid setting using a simu-
lator comprising three components: (1) an ODE solver,
we specifically use the CVODE library [59], for the con-
tinuous part, (2) Gillespie simulation for the stochastic
part, and (3) the synchronisation between the contin-
uous and stochastic net components is done via the
improved Hybrid Rejection-based Stochastic Simulation

Algorithm (HRSSA) [60], which combines the accelerated
method introduced in [60] with the hybrid rejection-
based stochastic algorithm from [61].

Under the first condition we observed a repeatedly
peaking behaviour for most of the metabolites because
the go place is repeatedly opening and closing. These
metabolites were AI_2_In, AI_2_Out, AI_2_P, LsrABCD,
LsrK, LsrR_AI_2_P, lsrGenes, lsrGenes_LsrR and go.
Because of its accumulatory nature, Biofilm increases
stepwise. See Fig. 8 for the hybrid results The stochastic
results are not reported as they are similar for a suffi-
ciently high number of runs.

In contrast, with a limited amount of AI_2_Out no
repeated peaks were observed for most of the places
because the go place is immediately occupied once and
then becomes empty later on.

To explore the repression–depression machinery caus-
ing changes between the states of lsrGenes bound or
unbound to LsrR, we performed stochastic runs in the

Fig. 9 Phase 3 model (stochastic): limited supply. Focus on repression–derepression machinery causing changes between states with lsrGenes
bound or unbound to LsrR. Top row: two single runs illustrating stochasticity of the repression–derepression machinery; Bottom row: average over
1000 runs of repression–derepression machinery showing initial repressed state will be reached again as AI2_P approaches zero steady state
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Fig. 10 Combined non-spatial model (stochastic). Average over 100 runs of (left) repression–derepression machinery showing initial repressed state
will be reached again as AI2_P approaches zero steady state, (right) all species. First row: Gillespie, second row: Delta leaping

limited AI2_out scenario. The on-off nature of the bind-
ing is clearly observable in single runs, whereas the nature
of the overall state switch driven by the availability of
AI2_P is apparant in the average of many stochastic runs,
see Fig. 9. The average behaviour can equally be observed
in the hybrid setting. The initial repressed state will be
reached again as AI2_P approaches zero steady state; this
is not observed in the unlimited AI_2_Out setting because
AI2_P never approaches a zero steady state.

Table 7 Total values of AI2_Out and Biofilm, for the 21x21 colony

Colony AI2_Out Biofilm

(i) R0 13,374.49 0.68

(ii) R2 308,478.60 55,468.61

(iii) R5 326,647.00 637.79

(iv) R7 341,143.57 35.14

(i) a single bacterium, (ii) a compact (non-sparse) colony of 25 bacteria in a 5x5
square, and sparse colonies with (iii) 24 bacteria regularly positioned in a 11x11
square, and 25 bacteria regularly positioned in a (iv) 15x15 square

Validation of the non-spatial combined model
We start with the following observations of some specific
aspects of the model behaviour. Increasing the thresh-
old THR of the transition open (in the following briefly
called THR_open) postpones the inflow into the biofilm

Table 8 Total values of AI2_Out and Biofilm, for the 101x101
colony

Colony AI2_Out Biofilm

(i) R0 12966.33 0.8

(ii) R2 302,573.88 51,995.51

(iii) R4 331,666.27 4,023.54

(iv) R7 333,870.79 88.35

(v) R9 334,316.30 29.99

(vi) R11 333,968.73 27.05

(i) a single bacterium, (ii) a compact (non-sparse) colony of 25 bacteria in a 5x5
square, where all all bacteria are adjacent to each other, sparse colonies with 25
bacteria regularly positioned in a (iii) 9x9 square, (iv) 15x15 square, (v) 19x19 square,
and (vi) 23x23 square
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component and allows higher values of AI2_Out to accu-
mulate. When THR of the transition close (in the following
briefly called THR_close) is close to 1, i.e. the gate rarely
closes, then it takes longer until the AI2_In_Phase3 is
processed by the biofilm component, because there is an
higher inflow.

When THR_close is close to THR_open (THR_close ≤
THR_open), then the thresholds strongly influence how
much of the AI-2 is used by the biofilm component and
how much is left to diffuse in space by the transition Diffu-
sion. The experimental evidence [62] is that the biological
threshold mechanism is symmetrical in that the opening
and closing of the AI2 inward transport channel occur
at the same threshold value, which we have reflected by
making the values for open and close identical.

We found that the lsr genes eventually reach the
repressed state in the steady state using the following
values: diffusion parameter kd = 0.1, THR_open =
THR_close = 40, with a simulation time = 15000, see
top row in Fig. 10, and compare with Fig. 9. While per-
forming these experiments we noticed that the runtimes
to simulate the hybrid model were considerably greater
than those for the stochastic simulation (using Gillespie:

95s, hybrid: 3609s), caused by increasing stiffness and dis-
continuities which are problematic for continuous solvers.
Thus in the following we use stochastic simulations. We
further reduced the runtime required for stochastic sim-
ulation to 13 s, i.e. by a factor of over 7, by employing the
approximative delta-leaping algorithm [32, 63]. Although
delta-leaping is an approximative approach, the results
are sufficiently close to the exact Gillespie algorithm, see
second row in Fig. 10.

Furthermore the behaviour of the combined model
can be characterised by a combination of the valida-
tion results reported in “Phase 2 model validation” and
“Phase 3 model – biofilm formation” sections, which
reflects the fact that the two components have a simple
interface comprising just one species (place).

Validation of the spatial combined model
The validation is carried out by simulating an auto-
matically unfolded stochastic Petri net. The size of the
unfolded net obviously depends on the size of the grid,
i.e., its resolution, and on the number of bacteria we
position on the grid (the exact position does not mat-
ter). Due to the regular structure of our coloured model,

Fig. 11 Stochastic simulation of a dense colony. Heatmap visualisation for 25 bacteria in a dense colony in a 21x21 grid size environment, showing
two time points
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we are in the favourite position to be able to provide
closed formulae specifying the size of the underlying
uncoloured model. The coloured Petri net comprises 34
places and 40 transitions. Thus, with N being the num-
ber of bacteria and D the size of the square grid, we
obtain by unfolding (33N + D2) places and (39N +
8D2 − 12D + 4) transitions. For example, with D = 21
and N = 25, we obtain an unfolded Petri net com-
prising 1266 places and 4255 transitions, and with D =
101 and N = 25 we obtain 11,026 places and 81,375
transitions.

We explored the behaviour of the model for differ-
ent configurations: a single bacterium, and for colonies
with 25 bacteria under different sparseness conditions, in
two different environment grids (21x21 and 101x101). We
simulated each configuration with the stochastic approx-
imative Delta leaping solver for the same time period
(100 runs for 20,000 time steps and recording 1000 time
points).

In all cases the AI2_Out peaks before the Biofilm
reaches a steady state due to the exhaustion of Nutrients
and Putrescine in the Phase 2 part of the model.

We found that the single bacterium produced an
extremely small amount of biofilm. In all the other con-
figurations, although the production of AI2_Out is the
same in all these cases because the number of bacteria
is the same, the total amount of AI2_Out remaining in
the environment increased as the sparseness increased,
because less is absorbed by the colony under sparse
conditions.

Further, we observed that the total amount of Biofilm
noticeably decreased with sparseness, because AI2_Out
diffuses more rapidly away from the bacteria in sparse
situations, thus reducing the signal required to trigger
the threshold and maintain the production of biofilm; see
Tables 7 and 8. We also found that that the values of
biofilm at the central positions of a compact colony are
higher than those at the edges, see Figs. 11 and 12.

These observations were in concord with our expecta-
tions; so we consider the model as validated. To illustrate
the spatial behaviour, we provide movies as supplemen-
tary material showing the behaviour of AI2_Out and
Biofilm over time and space, see Additional file 1 for
download instructions.

Fig. 12 Stochastic simulation of a sparse colony. Heatmap visualisation for 25 bacteria in a sparse colony in a 21x21 grid size environment, showing
two time points
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We conclude our model validation with questioning our
stochastic simulation strategy by comparing the results
produced by the exact Gillespie algorithm with those gen-
erated by the Delta-leaping algorithm, for 10 and 100
runs each. For doing this, we generated four traces of
simulation length 20,000 recorded at 1,000 time points
for a grid square of size 9 in the 2D scenario, hosting a
sparse colony of 9 bacteria distributed over a region with a
radius of 2. We use the following formula to calculate the
absolute difference between two simulation traces over
time:

AD(t) = |(DataSet1(t) − DataSet2(t))|

The result is represented as a heat map, showing the
propagation of the absolute difference encoded by colour
over the given time period, where time and the trace

variables are represented by x and y axes, respectively; see
Fig. 13.

The stripes in the middle relate to the biofilm produced
by the 25 bacteria positioned in the middle of the grid,
the two thinner stripes in the lower half relate to the
two genes in the Phase 2 model, which both have lower
token numbers, thus stochasticity has an higher effect.
Both stripes can be explained by the stochastic effect
not levelled out by the small number of runs. We take
the close resemblance of the two heat maps in the first
row as a confirmation that the delta leaping simulation
method sufficiently well approximates the exact stochas-
tic method, while substantially reducing the runtime, as
previously reported [32, 58]. All heat maps together illus-
trate that there is not much difference between 10 and 100
runs, which we take as a justification not to increase the
number of runs over which we average.

Fig. 13 Comparing stochastic simulations. First row: comparing Gillespie with delta leaping, (left) 10 runs, (right) 100 runs. Second row: (left)
comparing Gillespie, 10 runs with Gillespie, 100 runs; (right) likewise for delta leaping
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Conclusions
The spatial model which we have developed and pre-
sented in this paper describes E.coli biofilm formation
driven by the Autoinducer 2 (AI-2). We have incorpo-
rated the non-spatial model of AI-2 production in Phase 2
of bacterial growth previously published by Li et al. [24],
and linked it with our description of biofilm formation
in Phase 3. We have described the method by which we
have rigorously developed and tested our model in a step-
wise manner covering continuous, stochastic, hybrid, and
spatial aspects at different levels of abstraction. The spa-
tial representation is achieved using coloured stochastic
and coloured hybrid Petri nets, and the behaviour of this
version reveals emergent properties not evident in the
non-spatial one. For example, we have investigated the
model under different configurations ranging from a sin-
gle bacterium, to colonies under different conditions of
sparseness, all contained within environments of differ-
ent sizes. The model can also be used to investigate the
behaviour of models under different host environments,
for example finite resources versus those renewed under
steady or even cyclical regimes – as occurs in the gut or in
oral biofilm. Our results confirm that our model behaves
as expected, i.e. that biofilm formation is increased in
areas of higher bacterial density. Our research into related
work has shown that there is a lack of quantitative experi-
mental data on the effect of population density on quorum
sensing driven biofilm formation, and we suggest that this
is an open area for exploration by experimentalists.

Although we have explored configurations in 2D in
order to keep computations within reasonable time
bounds, our approach to encode space is highly flexible,
and easily configured for the 1D, 2D or 3D scenario. Our
spatial modelling strategy can be equally applied to other
problems evolving in time and space.

Reproducibility
We provide all models in their source format, and
use only publicly available tools. Modelling and simula-
tion was done with Snoopy [42]. Additionally, we used
Marcie [64] and MC2 [49] for simulative model checking.
The 2D visualisation was done by help of Octave [65]; all
our scripts are available on request.

Additional files

Additional file 1: Colouring space. A brief primer illustrating how to deal
with coloured Petri nets in Snoopy by means of diffusion in 3D. (PDF 567 KB)

Additional file 2: Complete CANDL specification of the case study. The
complete listing of the CANDL specification for the coloured SPN given in
Fig. 6. (PDF 184 KB)

Additional file 3: Supplementary material for model validation.
Additional explanations and figures illustrating various aspects of the
model validation performed. (PDF 3614 KB)
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