
A tool supported methodology to passively test asynchronous systems with multiple

users

Mercedes G. Merayoa, Robert M. Hieronsb, Manuel Núñeza,∗

aDepartamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain
bDepartment of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH United Kingdom

Abstract

Context: Testing usually involves the interaction of the tester with the system under test. However, there are many
situations in which this interaction is not feasible and so one requires a passive approach in which the system is analysed
to look for failures or unexpected behaviours. The entities of a complex system usually communicate in an asynchronous
manner and this complicates the testing tasks since the observed order of events need not be the same as the order in
which the events were produced. In previous work, we presented a formal passive testing theory for a single user and
system communicating through an asynchronous channel. We were able to check that a trace generated by the system
satisfies a given property.
Objective: This papers extends our work, for detecting potential intrusions and unexpected behaviours, to the case
where many users simultaneously communicate with a central server. We evaluate the practical value of the theoretical
framework with a non-trivial system.
Method: We developed a novel complete theoretical framework to analyse asynchronous systems with multiple users. All
the algorithms are fully implemented. Experiments were performed over the Nextcloud platform to show the applicability
of our framework. The experiments include an attack so that actual vulnerabilities could be revealed.
Results: The application of our methodology, supported by a tool fully implementing it, was able to reveal a vulnerability
in the WebDAV protocol running on Nextcloud.
Conclusion: The extension of our previous work is not only useful from a theoretical point of view but also increases
the applicability of the original work. We are now able to analyse systems where the interaction with different users can
lead to unexpected behaviours. We have been able to find a vulnerability in a real system, showing the usefulness of our
work.

1. Introduction

1.1. Motivation

The development of reliable software depends on the
use of appropriate verification and validation methods,
with testing being one of the most widely used approa-
ches [33]. The application of testing techniques has tra-
ditionally been manual and so expensive and error prone.
This has led to the development of approaches that auto-
mate parts of the testing process, with some of the most
promising approaches being based on methods that for-
malise aspects of software testing [13].

The usual understanding of the testing process is that
testers apply inputs to the system under test (SUT), re-
ceive outputs and establish whether the obtained answers
are the expected ones. However, there are situations where
this schema cannot be applied. For example, we might
have restricted access due to security issues or because the

∗Corresponding author.
Email addresses: mgmerayo@fdi.ucm.es (Mercedes G. Merayo),

rob.hierons@brunel.ac.uk (Robert M. Hierons), manuelnu@ucm.es
(Manuel Núñez)

system is running 24/7 and our interaction might produce
undesirable changes in the associated data. In this case we
have to use a passive approach where we observe the inte-
ractions between the system and its users to try and de-
tect unexpected or unwanted situations. In formal active
testing we usually assume that the tester has a complete
specification of the SUT and derives tests from it. Howe-
ver, in passive testing this is not always the case and it
is more often assumed that the (passive) tester only has a
certain set of properties that the observation of the SUT
cannot violate. In other words, we have a property (or
set of properties) and we check that the trace being obser-
ved satisfies that property. Ideally, we want the process
of checking whether the property is satisfied to be quick
and to take very little storage since this can allow passive
testing to occur in real-time. The application of passive
testing in real-time has an important benefit: a detected
error can be notified to the operators of the system almost
immediately and they can then take appropriate measures.

The initial work on passive testing assumed that the
monitor that observes and checks the behaviour of the
SUT observes the trace actually produced. However, this

Preprint submitted to Information and Software Technology January 14, 2018

Server

Monitor

User

?i

!o

!o

?i

?i !o

Figure 1: Different perception: monitor vs. server

assumption is unrealistic in situations in which there is
asynchronous communications between the parties. Let
us suppose, for example, that a user communicates with
a server and we place a monitor between them (see Fi-
gure 1). If the user sends a message (that is, an input) ?i
then the monitor will observe ?i before ?i is received by
the server. Similarly, if the server sends a message (that
is, an output) !o then the monitor will observe !o after !o
was actually produced. Therefore, it may happen that the
server produced the trace !o?i but the observer has the
perception that the actual trace was ?i!o. This situation
can lead to false positives (the monitor thinks that the ser-
ver is faulty but it is not) and false negatives (the monitor
does not realise that there has been a faulty behaviour).

1.2. Contributions of the paper

In previous work we developed a passive testing theory
for systems with asynchronous communications [19, 20],
with the theoretical framework being completely suppor-
ted by the PTTAC tool [5]. However, in experimenting
with the framework, in particular, analysing different sy-
stems and protocols, we detected a weakness: we cannot
appropriately handle systems where many users interact
with a central server. The main problem is that users
use different instances of the same message to communi-
cate with the server and we need to distinguish between
these when checking a property. Essentially, instead of
simple input/output actions, we will also consider infor-
mation about the party producing/receiving the action.
This is similar to the role played by ids in datagram pro-
tocols. Therefore, our actions will be pairs (a, α) where a
is either an input or an output and α is the user sending,
respectively receiving, the action. In addition, our for-
mer framework processed the observed trace in a sequen-
tial way while now we need to skip actions of users not
involved in the current matching, due to different instanti-
ations, of a property. For example, consider the property
(?a, x)(!b, y), {(!c, y)} whose intended meaning is that if a
certain user sends an input ?a and a different user (if we
have different value names then we assume that they are
instantiated to different users) receives an output !b then
the next output received by the second user must be !c. If

we observe the sequence (?a, u1)(!b, u2)(!d, u3)(!c, u2), then
we cannot say that we observed an erroneous behaviour.
Similar to our previous work, we assume that the SUT
and monitor interact through a FIFO channel1 but there
are no such restrictions on how the monitor and users in-
teract. In this paper we present a complete framework to
deal with this type of systems and properties. In Figure 2
we present a schematics of part of a longer interaction be-
tween three users and a server. This schema shows our
assumption about how the communications between the
different entities take place. The users communicate with
the server (SUT) via an asynchronous channel. The mo-
nitor is placed between users and server. Therefore, the
monitor can observe messages in a different order with re-
spect to the order in which they were actually produced.
For example, in Figure 2 the event (!o′, u1) is produced
before the event (?i, u3) but they are observed in reverse
order.

We have extended the PTTAC tool accordingly to the
new framework. In order to assess the usefulness of our
extension we used a real case study where multiple users
communicate through a server: Nextcloud. We studied
the protocols underlying this platform and we decided to
focus on the WebDAV protocol, identifying some usual
properties that the exchanges of messages should fulfil,
expressing them in our framework and analyzing captured
traces to check whether the properties are violated.

The rest of this paper is structured as follows. In
Section 2 we review related work. In Section 3 we present
our formal framework. In Section 4 we introduce an algo-
rithm to detect suspicious behaviours in observed traces.
In Section 5 we describe how the proposed technique and
tool were used to analyse some properties of the WebDAV
protocol in a real environment. Finally, in Section 6 we
present our conclusions and some potential lines of future
work.

2. Related work

In this section we briefly review related work on passive
testing and related areas, in particular, we will mention the
relation between passive testing and runtime monitoring
and we will review some tools to perform passive testing.

There has been significant interest in approaches that
combine formal methods and testing, associated tools that
automate testing activities are widely available [42], there
are several surveys [7, 17, 18, 49], and there is significant
evidence of industrial uptake [3, 4, 14, 22, 38].

Formal passive testing is already a well established line
of research and extensions of the original frameworks [2,
6, 24] have dealt with issues such as security and trust [26,
31, 44, 48].

1This might, for example, result from the SUT and monitor being
on the same local network or the monitor being placed at the gate-
way between the local network that contains the SUT and another
network.

2

SUT

Monitor

User1

User2

User3

(!o, u1) (?i, u1) (?i, u2) (!o′, u1) (?i, u3) (!o, u2) (!o, u3) (!o′, u3) (?i′, u2)

(?i, u1) (!o, u1) (?i, u2)

(?i, u3)

(!o′, u1) (!o, u2) (!o, u3) (?i′, u2) (!o′, u3)

(?i, u1) (!o, u1)

(?i, u2)

(?i, u3)

(!o′, u1)

(!o, u2)

(!o, u3)

(?i′, u2)

(!o′, u3)

Figure 2: Multiple channels between the monitor and users

We are not aware of previous work on formal passive
testing where there is an asynchronous communication
channel between the system and the monitor, other than
ours [19, 20, 29]. In contrast, there has been some work on
active testing and several approaches have appeared in the
literature for models where there is a distinction between
inputs and outputs [15, 16, 21, 37, 45, 53].

Homing algorithms are used in many approaches to
passive testing, in particular in the seminar contributions
of the 1990s [24, 46], there exist surveys on homing algo-
rithms [40] and this is still an active research area [50]. A
homing algorithm applies a sequence of actions to a sy-
stem so that it brings it to its initial state (or to a certain
special state where we know that we can start testing the
SUT). Homing is not used in our framework. In order to
apply homing we need to have a complete specification of
the system so that, by comparing the observed behaviour
of the SUT with the specification, we can deduct that the
SUT is in the desired state. However, we do not assume
the existence of a complete specification: we consider that
we are given a set of properties and we check that the SUT
does not violate them.

There are two main lines to express properties in pas-
sive testing. One of them uses LTL safety formulas and
creates checking automata by translating formulas to Bu-
chi automata [39]. The use of LTL and other temporal
logics is also the usual way to define properties in runtime
verification. The second one considers properties expres-
sing relations like “if we observe such a trace then the fol-
lowing action must belong to a certain set” [2, 6, 31]. In
this paper we consider this second approach because it is
closer to usual testing terminology and it is widely used in
passive testing.

The main problem, from the theoretical point of view,

to define a passive testing framework of asynchronous sys-
tems is that events might be observed by the monitor in a
different order with respect to the one in which they were
sent/received by the SUT. If we are working in a system
where messages are timestamped then we can use this in-
formation to decide the right order of events. A recent
work [29] uses this approach and considers that a poten-
tial swapping is admissible only if the difference between
the timestamps is below a certain threshold error (due to
a wrong synchronization of the local clocks). In this pa-
per we do not assume time information and, therefore, we
cannot discard potential swaps.

Passive testing is a monitoring technique and as such
it is related to runtime verification. They share the same
goal, checking the correctness of a system without inte-
racting with it, but use different formalisms and methodo-
logies. In runtime verification it is not usual to distinguish
between inputs and outputs, since their observation makes
them events of the same nature, and therefore it is diffi-
cult to compare the work from that area with ours. While
some work has investigated asynchronous runtime moni-
toring [10, 41], the problems considered in this context are
different: this line of work does not distinguish between in-
put and output and does not explore potential reorderings
of traces. Instead, it looks at the situation in which the
monitor and system do not synchronise on actions: acti-
ons engaged in by the system might instead be recorded
and analysed later. Once said this, it is worth noting that
the compensation mechanism [10] can be used to partially
simulate reorderings. The idea is that if we observe an
action that does not match our property (because it was
observed before it was expected by the property) then we
can later cancel this occurrence with the complement of the
observed action. Similarly, the interleavings considered in

3

the last known position mechanism [41] could also be used
to deduct the reorderings allowed by a certain property.

We have to mention work on using passing testing for
the validation of protocols [23, 32]. In our approach we
focus on detecting unexpected behaviours, or behaviours
violating some established rules, in the interaction of the
users with the system and we do not look for errors in the
actual protocol.

Finally, we would like to review some tools implementing
passive testing approaches. Other than our previous ver-
sion of PTTAC [5], passive testing tools do not deal with
asynchronous frameworks. Since there are many tools, we
will concentrate on those using a formalism similar to ours
and/or dealing with security and vulnerabilities. The no-
tion of property that we use in this paper originates from
previous work on EFSMs [2, 6]. These papers introduced
tools to implement their approaches and applied them to
analyse the Simple Connection Protocol and the Wireless
Application Protocol. Continuations of this work present
tools to deal with timed systems [1, 8]. One of these pa-
pers introduces the tool PASTE [1] where a novel com-
bination of passive and mutation testing is implemented.
The TestInv-Code tool [26, 43] implements a passive tes-
ting approach based on Vulnerability Detection Conditions
to automatically detect vulnerabilities in C code. In order
to show its usefulness, Test-Inv-Code has been applied to
several C applications and successfully revealed previously
known vulnerabilities. MMT is a monitoring tool that has
been used to perform security analysis, by inspecting net-
work traffic, and applied to an industrial QoS-aware ad-
hoc radio communication protocol [52]. MMT has also
being extended to deal with temporal properties and app-
lied to a collaborative programming project [48]. A recent
contribution [25], although not properly a tool, introduces
the concept of Software Defined Network and highlights
how it can be used to solve the current limitations in le-
gacy monitoring systems.

3. The methodology

In this section we introduce the main aspects of our for-
mal passive testing methodology that deals with systems
that have many concurrent users. In the original propo-
sal [19, 20] we only considered the situation in which a
single user communicates with the server. Consequently,
the properties represented restrictions over one user. In
the new framework we will be able to define new types of
properties in which we can include variables that allow us
to represent different users.

In this paper, when we refer to a system we will assume
that there is a labelled transition system that represents
the behaviour of the system. In such a model, transitions
are labelled by either an input or an output. Next we
introduce some notation that will be used throughout the
paper.

Definition 1. We fix the sets of inputs and outputs as I
and O, respectively, and let Act be equal to I ∪ O. In
order to distinguish between inputs and outputs we usually
precede the name of an input by ? and precede the name of
an output by !. We let Users be the set of user identifiers.
Given (a, x) ∈ Act×Users we have that act(a, u) = a and
user(a, u) = u. A user trace is a sequence σ belonging to
the set (Act× Users)∗.

In this paper we classify actions from the point of view
of the SUT. That is, an input will be an action produ-
ced by a user (and received by the SUT) while an output
will be an action received by a user (and produced by the
SUT). User traces are sequences of inputs and outputs an-
notated with the identifier of the user from/to which the
actions are sent/received. We need to define the set of user
traces that might be observed by the monitor if the SUT
produces a trace. Since the monitor and server do not
synchronise on actions (there is an asynchronous channel
between the monitor and the SUT), we need to consider
the traces that can be performed by a system and also
the traces that can be observed as a result of this. Typi-
cally, the monitor will be part of the same network as the
SUT and so, as explained in the introduction, we make
the realistic assumption that communications between the
monitor and SUT are FIFO. In contrast, there is no such
restriction on communications between the users and the
monitor.

If a system performs a certain trace then we can ob-
serve a variation of this trace where the outputs appear
later than they were actually performed and the inputs
are observed before they arrive at the SUT. This idea is
formally defined next.

Definition 2. Let σ, σ′ ∈ (Act × Users)∗ be user traces.
We say that σ′ is an observation of σ, denoted by σ σ′,
if there exist sequences σ1, σ2 ∈ (Act×Users)∗, !o ∈ O and
?i ∈ I, u1, u2 ∈ Users such that σ = σ1(!o, u1)(?i, u2)σ2

and σ′ = σ1(?i, u2)(!o, u1)σ2. We let Lu(σ) denote the
set of traces that can be formed from σ through sequences
of transformations of the form , that is, we have that
Lu(σ) = {σ′|σ ∗ σ′}, where ∗ represents the repea-
ted (zero or more times) application of . Given a set
of traces Φ, we overload the previous notation to define
Lu(Φ) = ∪σ∈ΦLu(σ).

The previous definition introduces an equivalence rela-
tion on traces, where certain observations can be exchan-
ged in their order while preserving equivalence. It should
be mentioned that this concept comes from the very roots
of trace theory [27, 28]. In this section we use FTP as a
running example [12]. This is a well known and studied
protocol and, therefore, it will be easy to follow the inten-
ded meaning of the used traces and properties. The list of
commands and return codes used in the paper is given in
Table 1.

Example 1. Let us assume that two users u1 and u2 try
to connect to an FTP server using their valid username

4

RNFR It specifies the old pathname of the file which is to be renamed
RNTO It specifies the new pathname of the file to be renamed
DELE It deletes the file specified in the pathname

Service APPE It causes the server to accept data and to store it in a file at the server site
commands LIST It causes a list to be sent from the server

ABOR It aborts the previous FTP service command and any associated transfer of data
RETR It transfers a copy of the file specified in the pathname
USER User identification required by the server for access to its file system
PASS Password associated to the user identification
150 File status okay; about to open data connection
226 Closing data connection. Requested file action successful
230 User logged in, proceed
250 Requested file action okay, completed
331 User name okay, need password

Reply 350 Requested file action pending further information
codes 450 Requested file action not taken. File unavailable

501 Syntax error in parameters or arguments
503 Bad sequence of commands
530 Not logged in
550 Requested action not taken. File unavailable
553 Requested action not taken. File name not allowed

Table 1: FTP service commands and reply codes used in the paper

and password. Then, the sequence of messages σ that ap-
pears in Figure 3 might be produced. Due to the asynchro-
nous nature of the system, the monitor might observe any
of the traces in the set Lu(σ).2

Next, we formally define our notion of a property to va-
lidate traces that include multiple users interacting with a
server. Variables will be used to allow the names of users
in different pairs in Act × Users to be matched and con-
stants will be used in order to require that a particular user
is involved in a particular pair. Properties will be of the
form (ρ,Oρ), with this meaning that if the SUT produces
the sequence ρ then the next output belongs to Oρ.

Definition 3. Let X be a set of variables. We say that
P = (ρ,Oρ) is a property if Oρ ⊆ O × (X ∪ Users) and ρ
is defined according to the following EBNF:

ρ ::= (a, x)ρ′

ρ′ ::= ǫ|(a, x)ρ′

where a ∈ Act and x ∈ X ∪ Users.
Let P = (ρ,Oρ) be a property. We let act(ρ) and

act(Oρ) (resp. var(ρ)/cons(ρ) and var(Oρ)/cons(Oρ)) de-
note the set of actions (resp. variables/constants) ap-
pearing in ρ and Oρ, respectively. We also let act(P) =
act(ρ)∪act(Oρ), var(P) = var(ρ)∪var(Oρ) and cons(P) =
cons(ρ) ∪ cons(Oρ).

2Note that we do not consider time in this paper. If we did then
we should consider that the users should be NTP synchronised and,
therefore, most of these traces should be discarded.

We say that a property P = (ρ,Oρ) is well-formed
if |var(P) ∪ cons(P)| ≤ |Users|, var(Oρ) ⊆ var(ρ) and
cons(Oρ) ⊆ cons(ρ).

Let P = (ρ,Oρ) be a property and f : var(P) −→
Users\ cons(ρ) be a total injective function. The instanti-
ation of ρ with respect to f is the user trace obtained from
the replacement of each variable x in ρ by f(x). The set
of all instantiations of ρ is denoted by Ins(ρ).

We consider properties of the form (ρ,Oρ). Such a
property says that if the SUT produces the sequence ρ
then the next output belongs to Oρ. The previous EBNF
expresses that ρ is a non-empty sequence of input and out-
put actions parameterised by variables or associated with
specific users. The variables are related to users to/from
which the actions are sent/received. Each variable will be
associated with the identifier of a different user, that is, if
a property has different variables, then they always repre-
sent different users. In addition, a variable cannot take a
value included in the property as a constant. An instantia-
tion is the trace obtained when the variables in a property
are replaced by actual users.

Let us note that in the current framework we do not
consider data associated with actions. Therefore, in our
properties we have to implicitly assume that the actions
are associated with the same objects. For example, if a
property indicates that a delete should not be followed by
an append, then we assume that both actions are referring
to the same file.

Example 2. Consider again the communication of users
with a server using the FTP. The next property represents

5

σ = (?USER, u2)(!331, u2)(?USER, u1)(!331, u1)(?PASS , u2)(!230, u2)(?PASS , u1)(!230, u1)

Lu(σ) =































(?USER, u2)(!331, u2)(?USER, u1)(!331, u1)(?PASS , u2)(!230, u2)(?PASS , u1)(!230, u1)
(?USER, u2)(?USER, u1)(!331, u2)(!331, u1)(?PASS , u2)(!230, u2)(?PASS , u1)(!230, u1)
(?USER, u2)(!331, u2)(?USER, u1)(?PASS , u2)(!331, u1)(!230, u2)(?PASS , u1)(!230, u1)
(?USER, u2)(!331, u2)(?USER, u1)(!331, u1)(?PASS , u2)(?PASS , u1)(!230, u2)(!230, u1)
(?USER, u2)(?USER, u1)(!331, u2)(?PASS , u2)(!331, u1)(!230, u2)(?PASS , u1)(!230, u1)
. . .































Figure 3: Possible observations of trace σ

a behaviour that might occur when a user requests that a
file is renamed.

P1 =

(

(?RNFR, uid)(!350, uid)(?RNTO, uid),
{(!250, uid), (!553, uid), (!503, uid), (!501, uid)}

)

Once the command has been accepted and the informa-
tion has been received by the server, the return codes that
can be produced are: !250 (action completed), !553 (inva-
lid name / cannot rename file), !503 (cannot find the file
which has to be renamed) or !501 (syntax error).

The next property involves two different users repre-
sented by two variables uid1 and uid2. The property repre-
sents the sequence of actions that might be produced when
a user requests that a file is deleted and another user tries
to append information to the same file. In this property
we assume that the user associated with uid1 has admin
permissions and uid2 has read permission. Therefore, if
we detect an error in an observed trace then we have to
check that the specific users have the required permissions.

P2 =





(?DELE , uid1)(?APPE , uid2),
{

(!250, uid1), (!450, uid1),
(!550, uid2), (!501, uid2)

}





In this case, the property indicates that the possible re-
turn codes that can be observed are: !250 (delete completed)
or !450 (cannot delete the file) to uid1 and !501 (syntax er-
ror) or !550 (permission denied) to uid2.

Next we present a property that includes a specific user.
In this case, for the sake of clarity, we use the identifier
adm to denote a specific user with administrator permis-
sions. This property represents the behaviour of the sy-
stem if adm tries to download a remote file and another
user, connected to the same ftp server, tries to abort this
transfer. The only possible action in this situation is !530
(connection rejected).

P3 =





(?LIST , adm)(!150, adm)(!226, adm)
(?RETR, adm)(!150, adm)(?ABOR, uid1),
{(!530, uid1)}





Our methodology is based on the construction of au-
tomata representing the properties to be checked by the
monitors. These automata are built in two phases. Gi-
ven a property P = (ρ,Oρ), in the first phase we built

an automaton accepting all the user traces that might be
observed if the communications between the server and
the users match ρ, assuming FIFO asynchronous commu-
nication. Another consequence of communications being
asynchronous is that an output from before ρ can be ob-
served after inputs from ρ and outputs from ρ can be ob-
served after inputs that follow ρ. This observation leads to
the second step, where we complete the automaton with
transitions corresponding to it being possible to observe
outputs from before ρ and inputs from after ρ.

Next, we explain how the initial automaton can be
built. First, we transform traces into sets of events. Gi-
ven a trace ρ, we derive a set of events that allows us
to distinguish between repeated actions in ρ. The ele-
ments are constructed from actions by labelling each pair
(action,variable/constant) in ρ with the occurrence of this
pair in the trace. Next, we define a partial order≪U on the
labelled pairs to represent which actions must be observed
before other ones if the system produces an instantiation
of ρ.

Definition 4. Let ρ = (a1, x1) . . . (an, xn) ∈ (Act × (X ∪
Users))∗ be a sequence of pairs (action, variable/constant).
We let EU (ρ) denote the set of events of ρ, where e =
((ai, xi), k) belongs to EU (ρ) if and only if there are ex-
actly k − 1 occurrences of ai in a1 . . . ai−1. This says that
the ith element of ρ is the kth instance of ai in ρ.

Let ei = ((ai, xi), ki) and ej = ((aj , xj), kj) be two
events belonging to EU (ρ). We write ei ≪U ej if either
i = j or i < j and one of the following conditions hold:
ai and aj are inputs, or ai and aj are outputs, or ai is an
input and aj is an output.

The first two cases in the definition of ≪U result from
channels being FIFO. The last case results from the obser-
vation of outputs being delayed, while an input is observed
before it is received by the SUT. Essentially, we have that
((ai, xi), ki) ≪U ((aj , xj), kj) does not hold for i < j if
ai is an output and aj is an input since in this case it is
possible that the observation of output ai is delayed until
after input aj has been observed. In order to simplify the
notation, we will remove labels from events (and just write
the pair (action, variable)) if they are irrelevant, for exam-
ple, if a property does not have repeated occurrences of an
action.

6

I0 = {}
I1 = {(?APPE , uid1)}
I2 = {(?APPE , uid1), (!150, uid1)}
I3 = {(?APPE , uid1), (?DELE , uid2)}
I4 = {(?APPE , uid1), (!150, uid1), (!226, uid1)}
I5 = {(?APPE , uid1), (?DELE , uid2)(?LIST , uid1)}
I6 = {(?APPE , uid1), (!150, uid1), (?DELE , uid2)}
I7 = {(?APPE , uid1), (!150, uid1), (!226, uid1), (?DELE , uid2)}
I8 = {(?APPE , uid1), (!150, uid1), (?DELE , uid2), (?LIST , uid1)}
I9 = {(?APPE , uid1), (!150, uid1), (!226, uid1), (?DELE , uid2), (?LIST , uid1)}
I10 = {(?APPE , uid1), (!150, uid1), (!226, uid1), (?DELE , uid2), (!250, uid2)}
I11 = {(?APPE , uid1), (!150, uid1), (!226, uid1), (?DELE , uid2), (!250, uid2), (?LIST , uid1)}

I0 I1 I2 I4

I3 I6 I7 I10

I5 I8 I9 I11

(?APPE , uid1) (!150, uid1) (!226, uid1)

(!150, uid1) (!226, uid1) (!250, uid2)

(!150, uid1) (!226, uid1) (!250, uid2)

(?LIST , uid1) (?LIST , uid1) (?LIST , uid1) (?LIST , uid1)

(?DELE , uid2) (?DELE , uid2) (?DELE , uid2)

Figure 4: Automaton AU (ρ)

Example 3. Consider the trace

ρ = (?DELE , uid1)(!250, uid1)(?LIST , uid2)(?DELE , uid2)

The corresponding set of events is

E(ρ) =

{

((?DELE , uid1), 1), ((!250, uid1), 1),
((?LIST , uid2), 1), ((?DELE , uid2), 2)

}

For instance, ((?DELE , uid1), 1)≪U ((!250, uid1), 1) while
((!250, uid1), 1)≪U ((?LIST , uid2), 1) does not hold.

Next we introduce the notion of ideal. We will use
ideals to construct the states of an automaton that accepts
the set containing all the user traces that can be observed
if the system produces any instantiation of the considered
property.

Definition 5. Let ρ ∈ (Act× (X ∪Users))∗ be a sequence
of pairs (action, variable/constant) and EU (ρ) be the set
of its events. A set I ⊆ EU (ρ) is an ideal of the ordered
set (EU (σ),≪U) if for all ei, ej ∈ EU (ρ), if ei ≪U ej and
ej ∈ I then ei ∈ I.

Intuitively, if the SUT produces ρ and ei is an element
of ideal I, then I includes all events that must be observed
before ei is observed by the monitor.

Example 4. Consider the sequence

ρ = (?DELE , uid1)(!250, uid1)(?LIST , uid2)(?DELE , uid2)

of (action, variable/constant) pairs. The following sets of
events are ideals of (EU (σ),≪U)

I1 = {(?DELE , uid1)}
I2 = {(?DELE , uid1), (!250, uid1)}
I3 = {(?DELE , uid1), (?LIST , uid2)}
I4 = {(?DELE , uid1), (?LIST , uid2), (?DELE , uid2)}
I5 = {(?DELE , uid1), (!250, uid1), (?LIST , uid2)}

I6 =

{

(?DELE , uid1), (!250, uid1), (?LIST , uid2),
(?DELE , uid2)

}

Next we present an alternative characterisation of the
notion of ideal [19].

Proposition 1. Let ρ ∈ (Act × (X ∪ Users))∗ be a se-
quence of pairs (action, variable/constant). We have that
I ⊆ EU (ρ) is an ideal if and only if one of the following
conditions holds:

• I contains a pair (ai, xi), where ai is an input, and
all the earlier pairs in ρ that contain an input;

7

• I contains a pair (aj , xj), where aj is an output, and
all earlier pairs in ρ; or

• I contains a pair (ai, xi) where ai is an input, a
pair (aj , xj) where aj is an output, all the earlier
pairs than (ai, xi) in ρ that contain an input, and all
earlier pairs than (aj , xj) in ρ.

This alternative characterisation indicates that an ideal
I is a set of elements from EU (ρ) such that all earlier
elements, under≪U , are contained in I. In particular, the
third item indicates that if an ideal contains a pair with an
input (?i, x) and another one with an output (!o, y) then it
must also contain, on the one hand, all the previous pairs
that present inputs associated to the variable x in ρ and,
on the other hand, all the pairs with actions corresponding
to variable y. These additions are due to the FIFO nature
of the channels.

Next, we show how the ideals associated with a se-
quence ρ are used to construct the automaton. We use the
ideals of (EU (ρ),≪U) to represent states and based on this
we define the transitions of a finite automaton AU (ρ). Our
automata will include a set of variables that will be used
to capture the actual users of the traces. Let us emphasize
that in this paper, automata are associated to properties3,
not to specifications. Actually, we do not assume the exis-
tence of a complete specification; we only assume that the
passive tester is provided with a set of properties. First,
we introduce the notion of an extended finite automaton
and auxiliary notation.

Definition 6. Let S be a finite set of states, Act be a
set of actions, X be a finite set of variables, C ⊆ Users
be a finite set of constants, sI , sF ∈ S be the initial and
final states, cu /∈ X be the current user variable, nu /∈ X
be the null user variable and Tr ⊆ S × Act × (X ∪ C ∪
{cu, nu})×S be a set of transitions. We say that the tuple
A = (S,Act, T r,X,C, cu, nu, sI, sF) is an extended finite
automaton.

A valuation over X is a total function from X to (Users\
C) ∪ {null}. We denote by VX the set of all valuations of
X. Given v ∈ VX , for all x, y ∈ X such that v(x) 6= null
and v(y) 6= null we have that v(x) 6= v(y).

A configuration of A is a pair (s, v) where s ∈ S is the
current state and v ∈ VX is the valuation corresponding to
the current value of the variables belonging to X.

Given a configuration (s, v), if an action a associated
with a user u is produced then a transition (s, a, y, s′) can
be fired if one of the following conditions holds:

• y = cu.

• y = nu ∧ ∀c ∈ C : c 6= u ∧ ∀x ∈ X : v(x) 6= u.

• y ∈ C ∧ y = u

3More properly, automata are a useful view of properties because
we can reduce the problem of checking whether a sequence reveals a
problem to a problem of an automaton accepting the sequence.

• y ∈ X∧(v(y) = null∧∀x ∈ X : v(x) 6= u)∨v(y) = u).

In this case, the configuration will change to (s′, v′)
where v′ is the valuation such that

v′(x) =

{

u if x = y ∧ v(y) = null
v(x) otherwise

The initial valuation of A, denoted by v0, assigns null
to every variable belonging to X.

Our automata will recognise sequences of (action,user)
pairs. The transitions of the automata will thus be labelled
with pairs of the form (a, y), in which y might be a variable.
If an (action,user) pair (a, u) is received by an automaton
then the only transitions that could be potentially fired are
those with the same action a. If a transition is labelled
with (a, u) then the transition can be fired. However, if
the label of a transition is (a, x), with x ∈ X , then the
variable x plays several roles that we explain later.

In the definition of our automata we use two additional
terms, cu and nu, that can label transitions. If we are
processing a pair (a, u) and a transition is labeled by a and
cu (standing for current user), then the transition can be
triggered. Essentially, cu does not impose any constraints
on the user and does not lead to the change in the value of
any variable. Thus, cu can be seen as a ‘do not care’ term.
The term nu (standing for null user) is similar except that
it requires that none of the regular variables in X have
already been instantiated to u. If a transition is labeled
by a constant, then the transition can only be triggered
if the constant is equal to u. A valuation assigns a user
identifier to each variable in X . If y is a variable then a
transition (s, a, y, s′) will be fired if the current state is s,
the automaton receives the action a associated with a user
u and either y is not instantiated and no other variable is
instantiated to u or v(y) = u in the current valuation of the
variables. If the transition is triggered then the variable y
is instantiated to u if its previous value was null. Finally,
the current state becomes s′. Next, we define the first type
of automata that we use in our approach. Essentially,
given a property (ρ,Oρ), the extended finite automaton
AU (ρ) will accept those traces that are a possible variation
of an instantiation of ρ.

Definition 7. Let (ρ,Oρ) be a property. The extended
finite automaton for ρ, denoted by AU (ρ), is defined as
(S,Act, T r,X,C, cu, nu, Is, If) where

• S, the set of states, is equal to the set of ideals of
(EU (σ),≪U).

• Act is the alphabet.

• X = var(ρ) is a finite set of variables.

• C = cons(ρ) is a finite set of identifiers.

• Is = {} is the initial state.

• If = EU (ρ) is the final state.

8

1. Input (ρ,Oρ).

2. Let AU (ρ) = (S,Act, T r,X, cu, nu, Is, If)

3. Let AU (ρ,Oρ) = (S ∪ {sf},Act, T r,X, cu, nu, s0, sf) where s0 = Is, and sf /∈ S is a fresh state.

4. For all a ∈ I ∪O add the transition (s0, (a, cu), s0).

5. For every state s of AU (ρ,Oρ) that represents an ideal that does not contain any pair with an output action and
for all !o ∈ O, add the transition (s, (!o, cu), s).

6. For every state s of AU (ρ,Oρ) that represents an ideal that contains all the pairs from ρ that present an input
action, add the transition (s, (?i, cu), s) for all ?i ∈ I.

7. For all l ∈ var(Oρ) ∪ cons(Oρ) add the transitions (If , (O \ {!o|(!o, l) ∈ Oρ}, l), sf). Additionally, for all
l ∈ (X \ var(Oρ)) ∪ (C \ cons(Oρ)) add the transitions (If , (O, l), If). Finally, add a transition (If , (O, nu), If).

8. Make sf the only final state of AU (ρ,Oρ).

9. Complete A. Given a state s of AU (ρ,Oρ), let ini(s) denote the set of variables of X and constants appearing in
the pairs belonging to the ideal that represents s. For every state s of AU (ρ,Oρ) with s 6= sf and for all a ∈ Act
and l ∈ ini(s) such that there is no transition from s with label (a, l), add the transition (s, (a, l), s0).
Additionally, for all s ∈ S and all a ∈ Act such that there is no transition with label (a, l), with
l ∈ (X ∪ C)\ini(s), add a transition (s, (a, nu), s).

10. Output AU (ρ,Oρ).

Algorithm 1: Producing AU (ρ,Oρ)

A tuple (I, a, x, I ′) belongs to the set of transitions Tr
if and only if there exists an event ((a, x), k) ∈ EU (σ) such
that I ′ = I ∪ {((a, x), k)}.

Example 5. Consider the trace

ρ = (?APPE , uid1)(!150, uid1)(!226, uid1)
(?DELE , uid2)(!250, uid2)(?LIST , uid1)

Figure 4 depicts the automaton AU (ρ) that accepts the
set of sequences in Lu(ρ).

Since our methodology applies passive testing and, as
explained before, we cannot use a homing algorithm, a
trace of interest might not be the start of the overall obser-
ved trace. This fact has to be reflected in the construction
of the automaton that will be used. The automaton AU (ρ)
must be adapted to take into account different points. We
must take into account the fact that an instantiation of ρ
might be preceded by other actions and the observation of
earlier outputs might be delayed. Besides, an instantiation
of ρ might be followed by later actions and the outputs of
the instantiation might not be observed until after later
inputs. In addition, the observation will include actions
associated with users that are not of interest. Algorithm 1
achieves this. We denote by AU (ρ,Oρ) the extended au-
tomaton.

Example 6. Consider the automaton AU (ρ) depicted in
Figure 4 corresponding to the trace ρ introduced in Exam-
ple 5. Given Oρ = {(!551, uid1), (!501, uid1)}, Figure 5
shows the automaton AU (ρ,Oρ) constructed by using Al-
gorithm 1. Let us note that the transitions required to com-
plete the automaton given in Step 9 of the algorithm are
not drawn in the figure to not overcomplicate the graph.

Next we explain how our algorithm works and justify
its correctness. Initially we take the automaton AU (ρ) and
add a new final state. The idea is that if the final state
is reached then we can claim that the observed trace vi-
olates the property. The fourth step adds transitions to
the initial state to ensure that we are considering all pos-
sible starting points in the observed trace. In the next
step, we add transitions to deal with the possibility of ear-
lier output being observed after input from ρ. Similarly,
in the sixth step we add transitions to consider the pos-
sibility of later input being observed before some of the
output from ρ is observed. In the seventh step we consi-
der that we have observed an admissible reordering of ρ
and check whether the next action shows an error. If the
next action associated with any of the users in Oρ does not
belong to Oρ, then go to the final (error) state. We also
include loop transitions associated with users not in Oρ to
skip this action. After making the new state a final state
(step eight) then we almost have our desired automata.
Finally, in the ninth step we complete the automata with
two types of transitions. The first one considers actions
performed by users that have not previously matched the
property. These actions are discarded by remaining in the
same state. The second type considers the situation where
a user that was involved in the matching of the property
performs an unexpect action. In this case, the transition
takes the automata to the initial state.

Concerning the complexity of the automata AU (ρ,Oρ)
in terms of states and transitions, let n be equal to the
number of ideals generated from the property. The num-
ber of states of the automaton is equal to n + 1. Next,
we provide the complexity, in the worst case, of the num-
ber of transitions. First, note that var(Oρ) ⊆ var(ρ),
cons(Oρ) ⊆ cons(ρ) and that |var(ρ)| + |cons(ρ)| ≤ |ρ|.

9

s0 I1 I2 I4

I3 I6 I7 I10

I5 I8 I9 I11

sf

(?APPE , uid1) (!150, uid1) (!226, uid1)

(!150, uid1) (!226, uid1) (!250, uid2)

(!150, uid1) (!226, uid1) (!250, uid2)

(?LIST , uid1) (?LIST , uid1) (?LIST , uid1) (?LIST , uid1)

(?DELE , uid2) (?DELE , uid2) (?DELE , uid2)

(Act, cu)

(O, cu)

(O, cu)

(Act, cu)

(I, cu) (I, cu) (I, cu) (O, {uid2, nu})

(O \ {!551, !501}, uid1)

{(!551, uid1), (!501, uid1)}

Figure 5: Automaton AU (ρ, Oρ)

Taking into account that |ρ| ≤ n we have that in the worst
case the number of transitions is in O(n2 · |Act|).

4. Checking Traces

In this section we present the overall method that ana-
lyses an observed trace with respect to a property. In the
case where there is only one user, it is sufficient to decide
whether the application of the trace to the associated au-
tomaton leads to the final state; if this is the case then
the trace does not fulfil the requirements expressed in the
property. However, since there are multiple users we must
take into account the fact that the observed trace might
contain actions related to different users interacting with
the server. In this section we provide an algorithm that
shows how one can analyse a trace ρ taking into account
the fact that ρ could allow different instantiations of the
considered property and the corresponding actions can be
interleaved.

Example 7. Consider the observed trace

(?i, u2)(?i, u3)(?i, u1)(!o
′, u3)(!o, u1)

and the property ((?i, x)(?i, y)), {(!o′, y)}. There are two
ways in which one can match the property and the obser-
ved trace, with these being based on two different instanti-
ations. If we consider the first one, in which x and y take
the values u2 and u3, respectively, then we do not observe
an error because we obtain the expected output (!o′, u3).
However, this is not the case when the variables are in-
stantiated with the values u3 and u1. In this case we skip

(?i, u2) and start matching with the second action of the
sequence. Then, we also skip (!o′, u3) because we are only
interested in checking the behaviour of u1, due to the fact
that y is the only variable involved in the set of actions
included in the property. We observe an unexpected output
for u1, (!o, u1). In this case, we should return failure.

As the previous example shows, we have to deal with
different automata in parallel, with the number of auto-
mata being the number of instantiations of the property
that appear in the trace. In order to deal with the set
of required automata we use a list. Each element of the
list represents an automaton and stores the set of pending
states ; for each of these states, we store the current values
of the variables that appear in the property. The pen-
ding states are those states of the automaton related to
the property, that have been reached during the matching
of the observed trace and the automaton. The variables of
the transitions traversed in the path from the initial state
to each pending state are associated with this path. The
values assigned to these variables correspond to the users
that appear in the trace associated with the actions that
match the labels of the transitions.

We present an algorithm (see Algorithm 2) to decide
whether an automaton, representing a given property, de-
tects a possibly erroneous behaviour in an observed trace.
Essentially, we traverse all the (action,user) pairs of the
trace and for each we analyse if the actions match any
transition of the automaton outgoing from the last rea-
ched states. If so, we distinguish between the transitions
labelled by the variable cu, the ones labelled by nu and the

10

Algorithm Validation_Trace_Property(channel, aut)
/*aut = (S,Act, T r,X,C, cu, nu, s0, sf) */

correct ← true;
Aut← ∅;
while channel.connected ∧ correct do

Read(channel, a, u,);
foreach instance of the automaton InstAut ∈ Aut do

foreach pending state pdSt ∈ InstAut do

Aux← ∅;
Tc ← {s|(pdSt.state, (a, cu), s) ∈ Tr ∧ s 6= s0};
Tc ← Tc ∪ {s|(pdSt.state, (a, u), s) ∈ Tr ∧ s 6= s0};
Tc ← Tc ∪ {s|(pdSt.state, (a, nu), s) ∈ Tr ∧ s 6= s0 ∧ u is not assigned to any variable of pdSt ∧ u /∈ C};
foreach s in Tc do

if s = sf then
correct ← false;

else
Aux← Aux ∪ Create_pendState(pdSt.var, s);

end

end

if u /∈ C then

if u is not assigned to any variable of pdSt then

Tx ← {(s, xi)|(pdSt.state, (a, xi), s) ∈ Tr ∧ s 6= s0 ∧ xi /∈ pdSt.var};
else

Tx ← {(s, xi)|(pdSt.state, (a, xi), s) ∈ Tr ∧ s 6= s0 ∧ pdSt.var(xi) = u};
end

foreach (s, xi) in Tx do

if s = sf then
correct ← false;

else if xi ∈ pdSt.var then
Aux← Aux ∪ Create_pendState(pdSt.var, s);

else if u is not assigned to any variable associated with pdSt then
Aux← Aux ∪ Create_pendState(pdSt.var ∪ {xi = u}, s);

end

end

end

Delete_pendState(InstAut, pdSt);
if Aux 6= ∅ then

Add_pendState(InstAut, Aux);
end

end

T0 ← {(s, xi)|(s0, (a, xi), s) ∈ Tr ∧ s 6= s0};
foreach (s, xi) in T0 do

Create_autIns(Aut, newInsAut);
Add_pendState(newInsAut, Create_pendState({xi = u}, s));

end

Tc ← {s|(s0, (a, u), s) ∈ Tr ∧ s 6= s0};
foreach s in Tc do

Create_autIns(Aut, newInsAut);
Add_pendState(newInsAut, Create_pendState(∅, s));

end

end

end

return(correct);

Algorithm 2: Correctness of a trace with respect to a property.

11

s0 I1

I2 I3

I4 I5

sf

(!o, x)

(!o, x)

(!o, x)

(?i, y)

(Act, y)

(Act \ {?i}, x)

(?i, x)

(?i, y)

(?i, x)

(Act, cu)

(Act \ {?i, !o}, nu)
∪

(O, cu)

(Act, nu)

(Act \ {(?i}, nu)

(Act, cu)
(I, cu) ∪ (O, {x, nu})

(O \ {o′}, y)

(Act, y)

(Act \ {?i}, x)
∪

(Act, y)

(o′, y)

(Act, x)

(Act \ {!o}, x)
∪

(Act, y)

Figure 6: Automaton AU (((!o, x)(?i, y)(?i, x), {(!o′, y)}))

rest of the transitions. The transitions labelled with cu do
not impose restrictions over the user associated with the
action. In this case, we only record the change of state.
Regarding the transitions labelled by nu, they can only
be triggered if the current user in the (action,user) pair
being considered is not assigned to any of the variables in
the automaton. If this requirement is fulfilled, then the
transition will be triggered and the change of state recor-
ded. We do not need to store the user in the system. A
transition labelled by a specific user u only can be fired if
the user in the current (action,user) pair is equal to u. If
the label of a transition contains a variable y then there
are two conditions under which this transition can be fol-
lowed: either the value of y coincides with the user u of the
current (action,user) pair or y has no value assigned and
the current user u is not assigned to any other variable. In
the first case, we only update the state. In the second one,
we also need to register the new value of the variable y,
which becomes u. However, if the value of the variable y is
not equal to the current user u, then the transition cannot
be triggered. In order to reduce the number of elements in
the list, we delete all pending states corresponding to s0.
In this way, we avoid the need to analyse elements that
cannot be modified by the pairs that appear in the rest
of the trace. If an automaton in the list reaches the final
state, then an error is reported and the algorithm stops.

Example 8. Consider that we observe the trace

(?i, ip1)(!o, ip2)(?i, ip2)

and we have the property ((!o, x)(?i, y)(?i, x), {(!o′, y)}).
Next, we explain how our algorithm works. First, the set
of associated ideals is:

I0 = {}
I1 = {(!o, x)}
I2 = {(?i, y)}
I3 = {(!o, x), (?i, y)}
I4 = {(?i, y), (?i, x)}
I5 = {(!o, x), (?i, y), (?i, x)}

The automaton associated with the property is depicted
in Figure 6. Initially, the algorithm processes (?i, ip1) and
searches for all the transitions outgoing from the initial
state that are labelled by ?i. In this case, the only transition
of the automaton that can be triggered is (s0, (?i, y), s2). A
new instance of the automaton, A1, is created and a new
pending state, ps11 = ((x = null, y = ip1), s2), is genera-
ted and associated with it. The pending state corresponds
to the final state of the transition and stores the value as-
sociated with the variable. In our case, the variable y labels
the transition and, therefore, the current user, ip1, is as-
signed to it. For each pair (action, user) processed by the
algorithm, the set of pending states will be updated. In our
example, when the next pair (!o, ip2) is received, the algo-
rithm determines if any of the pending states of A1 must
evolve taking into account the new action. Given that the
only pending state, ps11, is associated with the state s2,
the algorithm looks for transitions labelled by !o and out-
going from s2 that can be triggered. As we can observe,

12

two transitions fulfill these conditions: (s2, (!o, cu), s2) and
(s2, (!o, x), s3). The first one is associated with the cu vari-
able and, in this case, the initial and final states coincide.
Therefore, no changes are applied to ps11. In contrast, the
second transition can be applied if either the variable x has
not been assigned any value in the pending state and none
of the other variables have been assigned the value ip2, or
the value assigned to the variable x corresponds to ip2. In
this case the first condition holds and a new pending state
is associated with A1, ps12 = ((x = ip2, y = ip1), s3).
Note that for each pair (action, user) received by the al-
gorithm, the algorithm evaluates whether a new instance
of the automaton, corresponding to a new instantiation of
the property, must be generated. To do this, the algorithm
considers the initial state of the automaton and, as hap-
pened with the first (action, user) pair of the processed
trace, it checks if any transition can be triggered. In this
case, the transition (s0, (!o, x), s1) can be applied and, the-
refore, a new instance of the automaton, A2, is created
and a pending state ps21 = ((x = ip2, y = null), s1) is as-
sociated with it. The application of the new pair (?i, ip2)
updates the set of pending states, ps11 and ps12, of A1 to
ps11 = ((x = ip2, y = ip1), s4) and ps12 = ((x = ip2, y =
ip1), s5), respectively. In the case of the pending state p21
the only transition that can be triggered leads to the initial
state. This means that the instantiation corresponding to
this pending state does not match the property and we do
not need to continue analysing it. Therefore, the algorithm
removes p21. If any of the transitions that can be triggered
when a pair (action, user) is processed reaches the final
state sf , then an error has been found and the algorithm
stops.

Algorithm 2 is correct in the sense that if the observed
trace, which is a proper permutation of the actual trace
produced by the SUT, does not satisfy the property re-
presented by the automata, then the error state will be
reached. The proof follows the same lines as the proof
of soundness in our previous work (Theorem 1 [19]). Es-
sentially, if we have a subsequence of the observed trace
matching the first part of the property (once irrelevant
actions are removed) and failing to produce an expected
output then this subsequence will also lead from the ini-
tial state to the error state. We only need to take into
account the fact that there can be irrelevant actions, in-
puts observed in advance, due to delayed outputs, that
are not part of the property. These will be appropriately
skipped thanks to the loops included in the states of the
automaton.

Concerning the complexity of the algorithm, let l be
equal to the length of the observed trace. Let O(f(l)) be
the complexity of checking, in the classical sense, whether
an automaton accepts the trace. In the worst case we
have to check all the suffices of the trace, that is, we may
have to check at most l traces of lengths l, l− 1, l− 2, . . .1,
respectively. Therefore, in the worst case, the complexity
of checking the trace is in O(f(l)2).

5. Case study: Vulnerabilities in WebDAV

In this section we show the applicability of our metho-
dology in the context of the Exchange Store Web Distribu-
ted Authoring and Versioning (WebDAV) protocol [51] in
the open source communication platform NextCloud [36].
First, we introduce the new version of PTTAC, Passive
Testing Tool for Asynchronous Communications [5]. We
have extended the tool in order to implement the metho-
dology presented in this work. Next, we will describe the
experimental setup used in our experiments for detecting
vulnerabilities, explain the properties that we considered
for each of the scenarios and report on the obtained results.

5.1. PTTAC Tool

The testing phase of the experiments has been carried
out by using a new version of the PTTAC tool. We have
extended PTTAC in order to implement and automate the
passive testing methodology proposed in the framework
presented in Section 3. PTTAC allows users to define pro-
perties that an SUT must satisfy, it automatically genera-
tes the corresponding automata, it is able to capture the
packages that are sent in a specific network and is able to
test both online and offline captured traces. Unlike the
previous version of PTTAC, which only allowed us to cap-
ture the actions performed by one actor, the new release
allows us to capture and analyse the traces performed by
several users.

The overall architecture of PTTAC is shown in Figure 7
and its main components are:

• Properties manager. It allows users to manage pro-
perties associated with a system.

• Automata generator. It implements the algorithms
to generate automata associated with the properties
of the systems.

• Trace grabber. It is the module where online traces
of a network are captured.

• Testing manager. It performs the process of checking
the correction of the captured traces with respect to
a specific property.

The properties manager allows users to define proper-
ties that must be fulfilled by the SUT. The automata ge-
nerator is the key component of the tool because it puts
into action our methodology. After the user has added
a property of interest, the tool constructs the automaton
that will be used to check captured traces against the cor-
responding property (see Algorithm 1). The trace grabber
is responsible for the capture of online traces, using a spe-
cific communication protocol. Currently, the tool provides
three different options: HTTP, FTP and TCP. The trace
grabber is built on top of the network monitor of the web
developer features provided by the Firefox web browser.
The last component, the testing manager, allows the tes-
ters to either capture or load observed traces and check

13

Figure 7: PTTAC architecture

them with respect to different properties. This process
uses the previously generated automaton and reports the
final verdict (see Algorithm 2).

PTTAC provides a user friendly graphical interface.
Its GUI presents different areas that allow the user to
easily access and use the functionalities of the tool. Fi-
gure 8 shows different screenshots of the PTTAC inter-
face. The tool is released as open source and it is availa-
ble at http://antares.sip.ucm.es/tools/multiuser/

for Windows and Linux x64.

5.2. Experimental Setup

The experiments were performed on three computers
equipped with the following features:

• PC 1: Intel(R) Core(TM) i7-6500U CPU @ 3.10GHz,
16 GB RAM with Windows 10 OS.

• PC 2: Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz,
12 GB RAM with Windows 10 OS.

• PC 3: Intel Celeron N2840 Dual Core 2.16GHz, 4
GB RAM with Kali Linux v2016.1 OS.

In order to apply our methodology in the considered
scenarios, we followed the next steps:

• Design of properties. We defined several represen-
tative properties of the behaviour of the WebDAV
protocol.

• Traces capture. The traces were captured from two
PCs using our trace grabber. These traces had to
be processed offline and it was necessary to format
them.

• Traces formatting. Once the protocol communicati-
ons that we wanted to analyze were captured, and
stored as plain text files, it was necessary to trans-
form these files into files that can be accepted by
the testing manager of PTTAC. In order to do it
we designed a Java application, called TraceTrans-
lator, for translating plain text files (TCP, HTTP,
HAR, etc) into XML files with the format that can

be managed by our tool. In the case of the WebDAV
protocol, the traces captured by each computer ge-
nerate HAR files with the actions corresponding to
each user. These files had to be merged to generate
a global trace. With this goal in mind we develo-
ped MergeLogs, a Java application for generating an
XML file from different HAR files compatible with
PTTAC. Both tools are released as open source soft-
ware and included in the previously mentioned repo-
sitory. An example of the translation is showed in
Figure 9.

• Traces analysis. Finally, we tested the traces against
the automata generated by PTTAC from the previ-
ously defined properties.

5.3. Scenarios and Properties

In this work we have used two protocols in our experi-
ments. However, the goals that we tried to reach with each
of them were different. We used FTP as the basis of the
running example used in the presentation of our theoreti-
cal framework. FTP is a standard network protocol of the
application layer used to transfer resources between a ser-
ver and a client. The original specification was published
in 1971 and it has been improved over time [12]. There-
fore, FTP is currently very stable and it is very unlikely
that new errors can be found. However, this protocol allo-
wed us to define properties and check traces against them
for checking the validity and usefulness of our approach
in a real scenario. The selected properties were related
to the control and management of files and their content.
The experiments were conducted in different scenarios in
which the testers tried to lead the operation of the system.
For example, a user tried to rename a file while its content
was being modified by another user, different users tried
to download a file that was being simultaneously modified
or tried to create new directories and files with the same
name. The package of traces that we studied had around
5000 FTP messages but, as it was expected, the behavi-
our of the protocol did not exhibit an error. Therefore,
we decided to analyse a more recent protocol, WebDAV,
an extension of the Hypertext Transfer Protocol (HTTP).
WEbDav has been extended with new methods and hea-
ders for the performance of remote web content operati-
ons, such as namespace management, overwrite protection,
maintenance of file properties and author properties. The
initial version dates from 1996, but the latest one was con-
cluded in 2007. On the contrary to FTP, WebDAV has
less updates and it is more likely to find vulnerabilities. In
fact, there are some references to previously detected vul-
nerabilities due to Man-In-the-Middle (MITM) [11, 9, 30]
and Denial-of-Service (DoS) [47] attacks. We were able to
simulate an attack and show the effectiveness of our met-
hodology for detecting this kind of threats. There exist
several platforms that support WebDav. Among them, we
decided to use Nextcloud due to the recent release of a new

14

http://antares.sip.ucm.es/tools/multiuser/

Figure 8: PTTAC Graphical User Interface

Figure 9: Example of trace translation

product: Nextcloud Box [34]. Nextcloud Box provides a
private cloud that allows to store and synchronize data be-
tween local and remote devices. Although we did not have
access to the full version at the time of the experiments,
we were able to use the demo of the software, available at
the official website [35]. In our experiments, we used two
computers to run Nextcloud desktop clients and the third
computer was running PTTAC.

In order to facilitate the understanding of the studied
properties, in Table 2 we present the WebDAV requests
and responses that we have used in their design. WebDAV
responses are grouped in series, similar to the HTTP pro-
tocol responses: the 200s series includes successful respon-
ses, the 400s series corresponds to client failure responses
and the responses gathered in the 500s series are related
to server failures.

We defined 5 properties to capture different behaviours
of the protocol in the communication between clients and

server in the Nextcloud platform. The first four properties
deal with the behaviour of the system when different users
simultaneously access shared resources. The fifth property
was designed to validate the behaviour of the server when
it does not give access to users.

The first property represents the behaviour of the sy-
stem when two users, uid1 and uid2, try to update the
content of a shared common file. The first user (uid1) that
accesses the file has priority over the second one when they
try to modify the content of the file. Therefore, the second
user should receive a failure response.

P1 =









(?GET, uid1)(?GET, uid2)(!200, uid1)
(!200, uid2)(?PUT, uid1)(?PUT, uid2)
(!200, uid1),
{(!404, uid2)}









The next property captures the situation in which a
user (uid1) moves a file and another user (uid2) tries to get
some information from that file using an obsolete location.
Again, the second user should receive a failure response.

P2 =

(

(?MOV E, uid1)(?GET, uid2)(!201, uid1),
{(!400, uid2), (!404, uid2)}

)

In the next property, the first user (uid1) renames a
folder and the second one (uid2) tries to access it using
the old location.

P3 =





(?MOV E, uid1)(!201, uid1)(?GET, uid2)
(?GET, uid1)(!200, uid1),
{(!400, uid2), (!404, uid2)}





15

Requests

GET Request data from a specified resource
PUT Submit data to a specified resource
MOVE Move a resource to a specific location
DELETE Delete a resource
MKCOL Create a new collection, for example a folder
PROPFIND Retrieve properties for a resource
200 Successful response for methods that do not require the creation of new resources
201 The collection was created/moved correctly

Status 204 Successful response for methods that require the copy, move or delete of a resource
codes 400 Malformed syntax

404 Resource not found
503 Service unavailable

Table 2: WebDAV requests and status codes used in the paper

Property P4 describes the behaviour that the system
should show in the case that a user (uid1) deletes a folder
and another one (uid2) tries to rename it. Due to the
priority of the first request, the only possible response to
user uid2 is a failure.

P4 =

(

(?DELETE, uid1)(?MOV E, uid2), (!204, uid1),
{(!404, uid2)}

)

The last property considers the situation when two
users try to access the content of a file. If the first one
cannot access it due to a failure in the server (a !503 error
message), the second one should receive the same response.

P5 =

(

(?GET, uid1)(?GET, uid2)(!503, uid1),
{(!503, uid2)}

)

As a final remark, the definition of P5 was motivated
by the experience obtained during the use of the platform.
After a period of time, the server eventually restarts the
connection with the user and requires to log in again. The
length of the periods of time were always very similar. This
was due to the fact that the demo version of the platform
restores the contents of all the files to their default ver-
sions, even if they were deleted, when the connection is
restarted. Checking that this fact happened for all the
users connected to the platform at the same time, we de-
cided to explore the possible scenarios that could happen
with these conditions.

5.4. Capturing and Checking Traces

We performed 6 experiments from which we collected
the corresponding traces. The five first traces were captu-
red during the performance of general actions such as copy
and moving files between directories, checking their pro-
perties, adding comments to the different versions of the
files, and deleting or restoring files. However, the obtai-
ned results did not give us any relevant data about pos-
sible vulnerabilities or suspicious behaviours of any of the
actors involved. For this reason, we decided to perform

a last experiment inspired on the previously commented
detected vulnerabilities: Man-In-the-Middle (MITM) and
Denial-of-Service (DoS) attacks. Specifically, we decided
to simulate an MITM attack with a third computer in
the same network as the one to which the users were con-
nected. While the users were performing general actions,
like in the previous experiments, we put in practise the
MITM attack adding delays to the hacked communication
and changing the order of the reception of messages. As
a consequence, the user under attack received the corre-
sponding messages later than the user that has not being
hacked with our intervention.

Table 3 presents some data related to the traces col-
lected during the experiments. In addition to the number
of packages registered during each experiment, the table
also indicates if any attack was simulated during the per-
formance of the experiment and the number of packages
corresponding to the most relevant messages of the study.

The system detected only one error and it was in the
trace captured during the last experiment. However, a
simple inspection of Table 3 does not show a possible vul-
nerability during any of the experiments because the re-
sponses obtained for the series 100s, 200s, 300s and 400s
seem to be quite similar in all the experiments. They re-
present correct interactions between the users and the ser-
ver, information derived from the exchange of information
and correct or incorrect reception of requests in the server.
In addition, the relation between the number and type of
requests and the obtained responses suggests a correct be-
havior. Nevertheless, if we take into account that we were
studying the interactions of two users with the server and
the messages of the series 500s indicate an error in the
server, it looked suspicious to us that there were only one
package of this series in Experiment 6. If the server was
not properly working during a period of time and both
users were interacting with it without interruption, the
message of the 500s series should have been sent to both
users, not only to one of them. In order to check that the
capture was not interrupted during the sending of a “pos-
sible” second 500s message, we manually checked the XML

16

Experiment Total Attack ?GET ?PROPFIND ?DELETE ?MOVE ?MKCOL ?PUT 100s 200s 300s 400s 500s

performed

1 547 No 264 7 5 21 0 3 8 266 4 3 2
2 825 No 385 12 13 6 31 6 0 406 4 3 0
3 817 No 399 6 9 11 0 0 11 217 192 0 0
4 903 No 427 15 0 17 21 4 0 252 196 4 0
5 711 No 342 8 17 42 14 0 0 350 4 2 0
6 910 Yes 439 10 31 35 7 0 4 387 75 0 1

Table 3: Data regarding captured traces: occurrences of each different package per experiment

file of the trace. We wanted to discard that the capture of
the trace had been interrupted and this package was one
of the last actions stored in the trace. The last registered
action of the server did not correspond to this message.
Trying to determine the reason of the incorrect behaviour
of the system, we looked for the package in the trace and
we detected that it was delivered at the same instant at
which the MITM attack was perpetrated. Checking the
log of the MITM attack confirmed our suspicion: the hac-
ker delayed the 500s response delivered to the second user.
Therefore, other responses were sent before a system fai-
lure was received by the user, leading to make him believe
that the service was properly working. In order to confirm
our hypothesis, we analysed the trace registered during the
first experiment because it also contains 500s messages. In
the first experiment, the number of responses indicating a
failure is an even number (there are 2 different 500s mes-
sages). In addition, the information stored in the HAR
files corresponding to each of the users was produced with
a difference of milliseconds. Such a small difference does
not indicate an erroneous behaviour. Actually, the diffe-
rence can be due to the distance between the users and the
server. Consequently, in this case, the observed trace did
not show a possible error of the server side. However, if we
analyse the moment when both users sent a GET request,
we see that the user that is not being attacked received a
500s response while the user that is being attacked recei-
ved a different message. This is a direct consequence of
the MITM attack previously indicated.

In conclusion, the application of our methodology allo-
wed us to detect a vulnerability in the performance of the
WebDav protocol in the Nextcloud platform. We think
that this shows the effectiveness of our approach in de-
tecting faults and that our approach has a compelling value
to formally test applications in asynchronous environments
with multiple users. However, it must be emphasised that,
in general, failing a property such as P5 does not allow us
to claim that a vulnerability has been revealed. For exam-
ple, the fail might be due to an improper network latency.
Therefore, once an error is found we need to perform a sub-
sequent analysis, as the one previously explained, in order
to confirm that we have detected a real vulnerability.

5.5. Threats to Validity

We have analysed different types of threats to the va-
lidity of the results of our experiments.

Threats to internal validity consider uncontrolled fac-
tors that might be responsible for the obtained results. In
our study, the main threat to internal validity is the pos-
sible faults in the implementation of our approach and the
misleading results that could be derived as a consequence.
In order to reduce the impact of this threat, we checked
our tool with critical cases during the development of PT-
TAC. Regarding the experiments, we manually checked
the correctness of the obtained results.

Threats to external validity consider those conditions
that allow us to generalize our findings to other situati-
ons. We identified external threats associated with the
state of the networks that we used in our communications
and with the number of users connected to them. These
are uncontrollable aspects for testing the reliability of the
system. In order to reduce the impact of these two thre-
ats, we performed the experiments with different networks,
at different times of the day, different geographical loca-
tions and with different number of users, with the aim of
checking the same conditions in all these cases. Due to the
extensive use of the service offered by Nextcloud, another
external threat that we were not able to control was the
availability of the servers of the platform. There are dif-
ferent factors that affect the servers such as the quality of
the network, the number of concurrent users and the use
of special dates (e.g. software update releases). The state
of the platform service can also affect the experiments. In
order to reduce the impact of these threats, we captured
traces at different times of day and, also, in different days.

Finally, threats to construct validity are related to the
reality of our experiments, that is, whether our experi-
ments reflect real-world situations. In this case, the main
threats are the numerous scenarios that can be developed
using Nextcloud and the representative group of packages
that we used as a general population to represent them.
In order to reduce its impact, we used different properties
and scenarios in order to have various experiments that
reflect daily experiences of their users (sending comments,
sharing files, deleting files and changing file properties).

6. Conclusions and Future Work

In this paper we have introduced a complete frame-
work, supported with tools, to perform passive testing
of complex systems with two main features that strongly
complicate its design and implementation: asynchronous

17

communications and several users interacting with diffe-
rent objects. In addition to presenting the theoretical fra-
mework, including all the algorithms implementing its fea-
tures, we have modified our tool PTTAC to implement the
new framework. In order to practically show how our fra-
mework works we have detailed our experiments in a real,
non-trivial system. It is very difficult to unmask errors
and vulnerabilities in real, already running systems, but
we were able to find a previously unknown malfunction in
the WebDAV protocol.

There are several lines to extend the work reported
in this paper. First, it would be interesting to comple-
ment the theoretical framework with characteristics that
can increase its power to detect errors. Most notably, it
would be interesting to distinguish those swaps between
inputs and outputs that are due to delays and those due
to an erroneous behavior of the SUT. In this line, we are
considering to add probabilities to quantify the likelihood
of such a swap to be admissible. Another line of work
to improve our formalism is to add data in the messages.
It is well known that finite domains can be encoded wit-
hout explicitly representing data but the extension would
allow users to express properties in a more concise way.
An alternative approach would be to introduce the notion
of role when defining the framework. So, in addition, to
the properties, we will have a set of roles assigned to each
user. An action can be performed by a user only if it has a
specific role associated with the action. Therefore, the pro-
cess of checking traces against properties would have two
phases: no unexpected action is observed and no user per-
forms an action without having the associated role. From
the practical point of view, we would like to perform more
experiments with other protocols so that we can unmask
hidden vulnerabilities. We are aware that this is a time-
consuming activity, because it is not easy to find these
errors, but it is very satisfying to see that our theoreti-
cal framework is useful in practice. Finally, it would be
interesting to extend the framework to test the rollback
transitions of a user in a multiple user scenario.

Acknowledgements

We would like to thank the anonymous reviewers of this
paper for the careful reading and the detailed comments
and suggestions. The changes proposed by the reviewers
have certainly strengthened the paper.

This work has been supported by the Spanish MI-
NECO/FEDER (grant number TIN2015-65845-C3-1-R);
and the Region of Madrid (grant SICOMORo-CM of the
program S2013/ICE-3006).

[1] C. Andrés, M. G. Merayo, and M. Núñez. Formal passive tes-
ting of timed systems: Theory and tools. Software Testing,
Verification and Reliability, 22(6):365–405, 2012.

[2] E. Bayse, A. R. Cavalli, M. Núñez, and F. Zaïdi. A passive
testing approach based on invariants: Application to the WAP.
Computer Networks, 48(2):247–266, 2005.

[3] R. V. Binder, B. Legeard, and A. Kramer. Model-based testing:
where does it stand? Communications of the ACM, 58(2):52–
56, 2015.

[4] C. Braunstein, A. E. Haxthausen, W.-L. Huang, F. Hübner,
J. Peleska, U. Schulze, and L. V. Hong. Complete model-based
equivalence class testing for the ETCS ceiling speed monitor. In
16th Int. Conf. on Formal Engineering Methods, ICFEM’14,
LNCS 8829, pages 380–395. Springer, 2014.

[5] M. A. Camacho, M. G. Merayo, and I. Medina-Bulo. PTTAC:
Passive Testing Tool for Asynchronous Systems. In 10th Int.
Conf. on Signal-Image Technology & Internet-Based Systems,
SITIS’14, pages 223–229. IEEE Computer Society, 2014.

[6] A. R. Cavalli, C. Gervy, and S. Prokopenko. New approaches
for passive testing using an extended finite state machine speci-
fication. Information and Software Technology, 45(12):837–852,
2003.

[7] A. R. Cavalli, T. Higashino, and M. Núñez. A survey on for-
mal active and passive testing with applications to the cloud.
Annales of Telecommunications, 70(3-4):85–93, 2015.

[8] A. R. Cavalli, E. Montes de Oca, W. Mallouli, and M. Lallali.
Two complementary tools for the formal testing of distributed
systems with time constraints. In 12th IEEE/ACM Int. Sym-
posium on Distributed Simulation and Real-Time Applications,
DS-RT’08, pages 315–318. IEEE Computer Society, 2008.

[9] Cisco. Microsoft windows WebDAV
ssl information disclosure vulnerability.
https://tools.cisco.com/security/center/viewAlert.x?alertId=40282.

[10] C. Colombo, G. J. Pace, and P. Abela. Safer asynchronous
runtime monitoring using compensations. Formal Methods in
System Design, 41(3):269–294, 2012.

[11] Security Focus. Microsoft windows WebDAV cve-2015-
2476 man in the middle information disclosure vulnerability.
http://www.securityfocus.com/bid/76234/info.

[12] FTP: File Transfer Protocol.
https://tools.ietf.org/rfc/rfc959.txt .

[13] M.-C. Gaudel. Testing can be formal, too! In 6th Int. Joint
Conf. CAAP/FASE, Theory and Practice of Software Develop-
ment, TAPSOFT’95, LNCS 915, pages 82–96. Springer, 1995.

[14] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman.
Model-based quality assurance of protocol documentation: tools
and methodology. Software Testing, Verification and Reliabi-
lity, 21(1):55–71, 2011.

[15] O. Henniger. On test case generation from asynchronously com-
municating state machines. In 10th Int. Workshop on Testing of
Communicating Systems, IWTCS’97, pages 255–271. Chapman
& Hall, 1997.

[16] R. M. Hierons. Implementation relations for testing through
asynchronous channels. The Computer Journal, 56(11):1305–
1319, 2013.

[17] R. M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Der-
rick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause,
G. Luettgen, A.J.H Simons, S. Vilkomir, M.R. Woodward, and
H. Zedan. Using formal specifications to support testing. ACM
Computing Surveys, 41(2), 2009.

[18] R. M. Hierons, J.P. Bowen, and M. Harman, editors. Formal
Methods and Testing, LNCS 4949. Springer, 2008.

[19] R. M. Hierons, M. G. Merayo, and M. Núñez. Passive
testing with asynchronous communications. In IFIP 33rd
Int. Conf. on Formal Techniques for Distributed Systems,
FMOODS/FORTE’13, LNCS 7892, pages 99–113. Springer,
2013.

[20] R. M. Hierons, M. G. Merayo, and M. Núñez. An extended
framework for passive asynchronous testing. Journal of Logical
and Algebraic Methods in Programming, 86(1):408–424, 2017.

[21] J. Huo and A. Petrenko. Transition covering tests for systems
with queues. Software Testing, Verification and Reliability,
19(1):55–83, 2009.

[22] I. Hwang, A. R. Cavalli, M. Lallali, and D. Verchère. Applying
formal methods to PCEP: an industrial case study from mo-
deling to test generation. Software Testing, Verification and
Reliability, 22(5):343–361, 2012.

18

https://tools.ietf.org/rfc/rfc959.txt

[23] D. Lee, D. Chen, R. Hao, R.E. Miller, J. Wu, and X. Yin. Net-
work protocol system monitoring: a formal approach with pas-
sive testing. IEEE/ACM Transactions on Networking, 14:424–
437, 2006.

[24] D. Lee, A.N. Netravali, K.K. Sabnani, B. Sugla, and A. John.
Passive testing and applications to network management. In 5th
IEEE Int. Conf. on Network Protocols, ICNP’97, pages 113–
122. IEEE Computer Society, 1997.

[25] M. Liyanage, J. Okwuibe, I. Ahmed, M. Ylianttila, O. López
Pérez, M. Uriarte Itzazelaia, and E. Montes de Oca. Software
defined monitoring (SDM) for 5G mobile backhaul networks.
In IEEE Int. Symposium on Local and Metropolitan Area Net-
works, LANMAN’17, pages 1–6. IEEE Computer Society, 2017.

[26] A. Mammar, A. R. Cavalli, W. Jimenez, W. Mallouli, and
E. Montes de Oca. Using testing techniques for vulnerability de-
tection in C programs. In 23rd Int. Conf. on Testing Software
and Systems, ICTSS’11, LNCS 7019, pages 80–96. Springer,
2011.

[27] A. Mazurkiewicz. Traces, histories, graphs: Instances of a pro-
cess monoid. In 11th Symposium on Mathematical Foundations
of Computer Science, MFCS’84, LNCS 176, pages 115–133.
Springer, 1984.

[28] A. Mazurkiewicz. Introduction to trace theory. In V. Diekert
and G. Rozenberg, editors, The Book of Traces, pages 3–41.
World Scientific, 1995.

[29] M. G. Merayo, R. M. Hierons, and M. Núñez. Passive testing
with asynchronous communications and timestamps. Distribu-
ted Computing (in press), 2018.

[30] Microsoft. Ms15-089: Vulnerability in WebDAV
could allow security feature bypass: August 11, 2015.
https://support.microsoft.com/en-us/kb/3076949.

[31] G. Morales, S. Maag, A. R. Cavalli, W. Mallouli, E. Montes de
Oca, and B. Wehbi. Timed extended invariants for the passive
testing of web services. In 8th IEEE Int. Conf. on Web Services,
ICWS’10, pages 592–599. IEEE Computer Society, 2010.

[32] P. Mouttappa, S. Maag, and A. R. Cavalli. Using passive tes-
ting based on symbolic execution and slicing techniques: Appli-
cation to the validation of communication protocols. Computer
Networks, 57(15):2992–3008, 2013.

[33] G. J. Myers. The Art of Software Testing. John Wiley & Sons,
2nd edition, 2004.

[34] Nextcloud box. https://nextcloud.com/box/.
[35] Nextcloud. Demo of nextcloud software.

https://demo.nextcloud.com/index.php/login.
[36] Nextcloud. https://nextcloud.com/.
[37] N. Noroozi, R. Khosravi, M. R. Mousavi, and T. A. C. Willemse.

Synchrony and asynchrony in conformance testing. Software
and Systems Modeling, 14(1):149–172, 2015.

[38] J. Peleska. Industrial-strength model-based testing - state of the
art and current challenges. In 8th Workshop on Model-Based
Testing, MBT’13, EPTCS 111, pages 3–28, 2013.

[39] J. Peleska. Translating testing theories for concurrent systems.
In R. Meyer, A. Platzer, and H. Wehrheim, editors, Correct
System Design - Symposium in honor of Ernst-Rüdiger Olderog
on the occasion of his 60th birthday, LNCS 9360, pages 133–
151. Springer, 2015.

[40] S. Sandberg. Homing and synchronization sequences. In
M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretsch-
ner, editors, Model-Based Testing of Reactive Systems, LNCS
3472, chapter 1, pages 5–33. Springer, 2005.

[41] T. Scheffel and M. Schmitz. Three-valued asynchronous distri-
buted runtime verification. In 12th ACM/IEEE Int. Conf. on
Formal Methods and Models for Codesign, MEMOCODE’14,
pages 52–61. IEEE Computer Society, 2014.

[42] M. Shafique and Y. Labiche. A systematic review of state-
based test tools. International Journal on Software Tools for
Technology Transfer, 17(1):59–76, 2015.

[43] N. Shahmehri, A. Mammar, E. Montes de Oca, D. Byers, A. R.
Cavalli, S. Ardi, and W. Jimenez. An advanced approach for
modeling and detecting software vulnerabilities. Information
and Software Technology, 54(9):997 – 1013, 2012.

[44] G. Shu and D. Lee. Message confidentiality testing of security
protocols - passive monitoring and active checking. In 18th Int.
Conf. on Testing Communicating Systems, TestCom’06, LNCS
3964, pages 357–372. Springer, 2006.

[45] A. Simão and A. Petrenko. Generating asynchronous test ca-
ses from test purposes. Information and Software Technology,
53(11):1252–1262, 2011.

[46] M. Tabourier and A. R. Cavalli. Passive testing and application
to the GSM-MAP protocol. Information and Software Techno-
logy, 41(11-12):813–821, 1999.

[47] Microsoft TechNet. Anatomy of a DoS attack that ex-
ploits WebDAV vulnerability in Apache Web server.
https://blogs.technet.microsoft.com/nettracer/2011/09/08/anatomy-
of-a-dos-attack-that-exploits-webdav-vulnerability-in-apache-
web-server/.

[48] K. Toumi, W. Mallouli, E. Montes de Oca, C. Andrés, and A. R.
Cavalli. How to evaluate trust using MMT. In 8th Int. Conf.
on Network and System Security, NSS’14, LNCS 8792, pages
484–492. Springer, 2014.

[49] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification
and Reliability, 22(5):297–312, 2012.

[50] H-E. Wang, K-H. Tu, J-H. R. Jiang, and N. Kushik. Homing
sequence derivation with quantified boolean satisfiability. In
29th IFIP WG 6.1 Int. Conf. on Testing Software and Systems,
ICTSS’17, LNCS 10533, pages 230–242. Springer, 2017.

[51] Exchange store web distributed authoring & versioning
(WebDAV) protocol. http://www.ietf.org/rfc/rfc4918.txt.

[52] B. Wehbi, E. Montes de Oca, and M. Bourdellès. Events-based
security monitoring using MMT tool. In 5th IEEE Int. Conf. on
Software Testing, Verification and Validation, ICST’12, pages
860–863. IEEE Computer Society, 2012.

[53] M. Weiglhofer and F. Wotawa. Asynchronous input-output con-
formance testing. In 33rd Annual IEEE Computer Software and
Applications Conference, COMPSAC’09, pages 154–159. IEEE
Computer Society, 2009.

19

	Introduction
	Motivation
	Contributions of the paper

	Related work
	The methodology
	Checking Traces
	Case study: Vulnerabilities in WebDAV
	PTTAC Tool
	Experimental Setup
	Scenarios and Properties
	Capturing and Checking Traces
	Threats to Validity

	Conclusions and Future Work

