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Abstract 

Objectives: The aim of this study was to investigate the effect of age and sex on nPWV 

and ndI in the ascending aorta of healthy humans. 

Background: Local pulse wave velocity (nPWV) and wave intensity (ndI) in the human 

ascending aorta have not been studied adequately, due to the need for invasive pressure 

measurements. However, a recently developed technique made the non-invasive 

determination of nPWV and ndI possible using measurements of flow velocity and arterial 

diameter.  

Methods: Diameter and flow velocity were measured at the level of the ascending 

aorta in 144 healthy subjects (aged 20-77 years, 66 male), using magnetic resonance imaging. 

nPWV, ndI parameters; forward (FCW); backward (BCW) compression waves, forward 

decompression wave (FDW), local aortic distensibility (nDs) and reflection index (nRI) were 

calculated. 

Results: nPWV increased significantly with age from 4.7±0.3 m/s for those 20-30 years 

to 6.4±0.2 m/s for those 70-80 years (P<0.001) and did not differ between sexes. nDs 

decreased with age (5.3±0.5 vs. 2.6±0.2 10-5 1/Pa, P<0.001) and nRI increased with age 

(0.17±0.03 vs. 0.39±0.06, P<0.01) for those 20-30 and 70-80 years, respectively. FCW, BCW 

and FDW decreased significantly with age by 86.3%, 71.3% and 74.2%, respectively 

(P<0.001), all compared to the lowest age-band.   

Conclusions: In healthy humans, ageing results in stiffer ascending aorta, with 

increase in nPWV and decrease in nDs. A decrease in FCW and FDW indicates decline in left 

ventricular early and late systolic functions with age in healthy humans with no differences 

between sexes. nRI is more sensitive than BCW in establishing the effects of ageing on 

reflected waves measured in the ascending aorta.  
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Abbreviations 

BCW = backward compression wave 

FCW = forward compression wave 

FDW = forward decompression wave 

nCs = non-invasive compliance 

nDs = non-invasive distensibility 

nPWV = non-invasive pulse wave velocity 

nWIA = non-invasive wave intensity analysis 
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Background 

It has long been established that pulse wave velocity (PWV) is a direct measure of 

arterial distensibility (1). A large meta-analysis has shown that increased PWV predicted 

cardiovascular disease independently of blood pressure and other cardiovascular risk factors 

(2). Additionally, PWV is an independent predictor of cardiovascular mortality (3), and fatal 

stroke (4) in hypertensive patients. Furthermore, PWV enhances the prediction of 

cardiovascular events (5), which is why most clinically used techniques for measuring arterial 

stiffness involve determining PWV. 

Non-invasive methods for quantifying regional PWV have been explored (6)(7)(8), 

most commonly using the foot-to-foot method (f-t-f). The f-t-f estimates PWV as the ratio of 

the distance between two measurement sites at a known distance apart to the time it takes 

the pulse wave to travel from one site to the other; traditionally the foot of the wave. Although 

the carotid-femoral PWV is frequently used as an index to aortic stiffness (9), the carotid-

femoral path includes segments which have different mechanical properties and varying PWV 

(10)(11). Therefore, carotid-femoral PWV can only provide an average measure of stiffness 

over the whole pathway. Also, the path of the wave with carotid-femoral index is not 

unequivocal, which would lead to uncertainties. 

This suggests that PWV measured locally in the ascending aorta would provide a more 

accurate estimation of local aortic stiffness than does regional PWV. Further, the ascending 

aorta is considered a prime location as it has the hemodynamic conditions that are most 

relevant to ventricular load such as impedance (12). Furthermore, recent reports have shown 

that stiffening of the proximal aorta is strongly related to ageing in healthy humans (13); all 

suggesting the importance of local stiffness, although limited data are available on local 

stiffness within the ascending aorta (14), and especially using non-invasive direct 

measurements; hence the motivation of this work. 
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Ventricular-arterial coupling is of great clinical and physiological interest, as it 

provides important haemodynamic insights into the complex cardiovascular system and its 

changes with aging in health and disease (15). The wave intensity analysis (WIA) technique is 

most suitable for studying ventricular-arterial coupling (16) as it has been validated on the 

bench (17), used in vitro with the airways (18), in vivo (19) and clinical investigations 

(20)(21), including ventricular assist devices (22). Extensive reviews of the various 

applications of WIA have been provided elsewhere (23)(24), but briefly WIA was initially 

introduced  as a time-domain technique for analysing wave propagation, and the ventricular-

arterial interaction (25). Previous studies have shown that the forward compression wave 

(FCW) in early systole relates to LV myocardial contractility, the backward compression wave 

(BCW) in mid-systole relates to peripheral reflections, and forward decompression wave 

(FDW) in end-systole correlates with LV early diastolic performance (26). Although WIA has 

not yet been adopted as a diagnostic tool, there is a growing number of studies that are 

investigating the clinical usefulness of the technique (27). Regardless, examining the 

alterations of these WIA parameters, as descriptors of the ventricular-arterial coupling, with 

ageing, sex and disease can provide fundamental insights into the pathophysiology of 

cardiovascular function and could potentially improve the effectiveness of current therapeutic 

interventions (15). 

WIA was initially derived from measurements of pressure and velocity. However, the 

limitation of acquiring invasive measurement of pressure prohibited the use of WIA in routine 

clinical settings. To avoid the need for invasive measurements, Feng and Khir developed a 

technique for the non-invasive calculation of PWV, nPWV and WIA, nWIA, using measurements 

of arterial diameter and blood flow velocity (28), this technique has been validated in vitro 

(29) and used in vivo in carotid and femoral arteries (11).  
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 In our earlier work we examined changes of regional PWV with age (6), in this paper 

we extend this work to investigate local PWV in the vital location of the circulation; ascending 

aorta, and further examine age related changes of the ventricular-arterial coupling using WIA. 

Accordingly, the aims of this study are to 1) determine the aortic stiffness using our non-

invasive technique; 2) demonstrate the use of non-invasive WIA; 3) assess the ability of WIA 

to capture novel haemodynamic variables across the age spectrum and examine sex 

differences in a large population of healthy subjects, using magnetic resonance imaging 

measurements. 

 

Methods 

Study population 

Subjects were recruited from the Cambridge arm of the Anglo-Cardiff Collaborative 

Trial, which explores the factors influencing arterial stiffness, in a community-based 

investigation. Subjects are free of cardiovascular disease and medication, health status were 

determined by medical records, and only two subjects presented supine brachial blood 

pressure measurement >140/90 mmHg. Approval was obtained from the local Research 

Ethics Committee, and written informed consent was obtained from all participants.  

A total of 149 subjects underwent haemodynamic measurements but 5 subjects were 

unable to complete the MRI scan due to claustrophobia. The characteristics of the 144 

subjects (66 men, mean age 49±17 years, mean±SD, range 20-77 years) are shown in Table 1.  

Brachial blood pressure of each subject was measured in duplicate in the non-dominant arm, 

according to the British Hypertension Society Guidelines, using a validated oscillometric 

device (HEM-711A-E, Omron Corp., Matsusaka, Japan). 

Magnetic resonance imaging  
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As previously described(6), images were acquired using a 1.5T MRI system (Signa HDx, GE 

Healthcare, Waukesha, WI). An ECG-gated, segmented k-space, cine phase contrast sequence 

(CPC-MRI) was used with the following parameters: 30⁰ flip angle, slice thickness = 5 mm, 

field of view = 280 x 280 mm, repetition time (TR) = 6.7 ms, matrix = 256 x 256, and through-

plane velocity encoding (VENC) = 150 cm/s, with one view per segment. In all subjects, CPC-

MRI sequences were performed in the ascending aorta, located approximately 1 cm distal to 

the aortic valve. Acquisition time was approximately 5 minutes for each sequence. 100 

temporal phases were retrospectively reconstructed with a true temporal resolution of 2 x 6.7 

ms due to the interleaved positive and negative velocity encoding.  

Image processing 

Images were analysed offline using CV Flow software (Figure S1, Medis, Leiden, the 

Netherlands). Aortic contours were automatically detected in each slice to obtain the cross-

sectional area through the cardiac cycle and the area in the phase image from which the mean 

aortic flow velocity was calculated. Aortic diameters (D) were calculated from the aortic areas 

(Area) by D = (4 × Area / π) 1/2, D curve was smoothed using a Savitzky-Golay filter of 3rd 

order with 11 points window size. The systolic (Dm) and diastolic (D0) diameters were used in 

the analysis. 

Local non-invasive PWV 

In the absence of reflected waves in early systole, nPWV (c) can be calculated as we previously 

described (28) 




Dd

dU
c

ln2

1
                                                                                        (1)                                       

Where dU is the change in flow velocity and dlnD is the change in the logarithmic diameter of 

the vessel. The ‘+’ and ‘-’ subscripts refer to the forward and backward travelling waves. Then, 



 8 

using c in the Bramwell-Hill equation (1) allows for determining the non-invasive 

distensibility (nDs) and compliance (nCs)  as previously demonstrated (11) 

𝐷𝑠𝑛 =
1

𝜌𝑐2   and 𝐶𝑠𝑛 =
𝜋

4

𝐷0
2

𝜌𝑐2                                                                                                                           (2) 

Where ρ is the blood density and assumed as 1,050 kg/m3.  

 The non-invasive WIA, (ndI) is calculated in the + and – directions, and as previously 

described (28) and can be  explicitly written as 

ndI± = ±
1

4( D 2c)
(dD±

D

2c
dU)

2                                                                                                            (3) 

The standard ndI curve includes three peaks; ndI+C is the forward compression wave (FCW), 

ndI- is the backward compression wave (BCW), ndI+D is the forward decompression wave 

(FDW). Timing of peaks of FCW, BCW and FDW are TndI+C, TndI-, and TndI+D. In addition, the 

arrival time (Trw) of BCW was also determined. Trw is determined as the first sampling point of 

the BCW, calculated as the first minimum on the first order derivative of the waveform. 

Further, we calculated the wave energies (nI+C, nI-, nI+D) by respectively integrating the area 

under the ndI three main peaks, ndI+C, ndI-, ndI+D, with respect to time. Furthermore, the ratio of 

BCW (ndI-) to FCW (ndI+C) was calculated and defined as the reflection index (nRI), as 

previously done (11). 

Statistics  

Subject characteristics are presented as means ± SD, results are expressed as means ± SE. Effects 

of age and sex were assessed with two-way ANOVA. Post-hoc analysis was carried out using 

the Bonferroni method. Analysis was performed using SPSS version 22 and P<0.05 was taken 

as significant. 
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Result 

Diameter and velocity 

Figure 1a,b shows an example of flow velocity and diameter waveforms for a typical healthy 

subject (41 year old male). Figure 1c, illustrates the lnDU-loop used for calculating nPWV, 

giving a result of 5.1 m/s in this case. The corresponding separated forward and backward 

components of flow velocity and diameter waveforms are also shown in Figure 1d,e, as well 

as nWIA in Figure 1f where we can identify a FCW in early systole, followed by a BCW in mid-

systole, and a FDW at end of systole. 

The average systolic diameters of the ascending aorta increased with age by 3.3% per 

decade (2.8±0.05 vs. 3.3±0.07 cm, P<0.001, Table 2). Men had larger ascending aorta 

diameters than women (3.2±0.05 vs. 3.1±0.05 cm, P<0.05). Flow velocity in the ascending 

aorta correlated negatively with age (R=0.69, P<0.001), and men had higher values of flow 

velocity than women (0.62±0.02 vs. 0.54±0.02 m/s, P<0.01). 

PWV, distensibility and compliance 

As expected, nPWV in the ascending aorta was significantly higher in older subjects, 

where the average nPWV across all age groups was 5.6±0.1 m/s, increasing linearly from 

4.7±0.3 m/s (20-30 years) to 6.4±0.2 m/s (70-80 years), (R=0.40, P<0.001; Figure 2). There 

was no statistically significant difference between males and females. 

The distensibility and compliance show the local mechanical properties of the 

ascending aorta. As expected, the distensibility decreased significantly with age, by 50.8% 

from 20-30 years old to 70-80 years old (P<0.001); the compliance decreased 23.2% in total 

(P<0.001). There was no significant difference in distensibility and compliance between males 

and females.  
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Wave Intensity magnitudes and timings 

FCW was decreased significantly from 6.86±0.62×10-5 m2/s in 20-30 year olds to 

0.94±0.12×10-5 m2/s in 70-80 year olds (Figure 3), BCW and FDW followed the same trend, 

decreasing from 1.01 ±0.13×10-5 m2/s to 0.29±0.04×10-5 m2/s and from 0.89±0.08×10-5 m2/s 

to 0.21±0.02×10-5 m2/s, respectively. Table 2 displays the changes of wave energies with 

ageing. We found no significant dependence of wave intensity and wave energy parameters 

on sex, except that the forward expansion wave energy (nI+D) was higher in males than 

females (1.38±0.14×10-4 m2 vs 1.27±0.10×10-4m2, respectively, P<0.05). 

The backward waveform (Trw) arrives earlier with ageing, approaching a minimum in 

late life (57±3 ms at 20-30 years old vs 43±3 ms at 70-80 years old). Interestingly, the timing 

of peak of ndI- was greater with increasing age, from 80±10 ms in 20-30 year olds to 193±33 

ms in 70-80 year olds (P<0.001). 

nRI, indicating wave reflections, increased with age, from 0.17±0.03 in 20-30 year olds 

to 0.39±0.06 in 70-80 year olds (P<0.005), but was not significantly affected by sex.  
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Discussion 

Using phase contrast MR imaging, we have demonstrated the feasibility of determining 

local nPWV, nDs and ndI in the human ascending aorta from direct measurements of diameter 

and blood flow velocity. Wave intensity parameters and reflection index were also calculated. 

In addition, and for the first time, we have investigated the effect of age and sex on these 

parameters in a healthy population covering a wide age-spectrum. The main findings of the 

current study were: 1) ascending aorta nPWV and nDs increased and decreased with age, 

respectively; 2) the magnitude of FCW, FDW and BCW decreased, but the nRI increased with 

age; 3) the arrival time of BCW decreased with age. 

In the current work, local nPWV is derived from MRI measurement at a single point in 

the ascending aorta (aortic root) being a prominent location in the circulation; due to its 

proximity and direct influence on ventricular performance. This allowed also for the non-

invasive determination of the ascending aorta distensibility, a widely used parameter for 

characterising arterial stiffness. The MRI based technique is both useful and convenient since 

pressure measurement is not required or assumed in the calculation, highlighting the 

potential contribution of the current method and findings.  

There are numerous studies addressing the age-related changes in regional PWV 

measured using the foot-to-foot method. Although this technique is well established, with 

many commercial devices available, at best it only provides a regional average of the PWV, 

which varies locally because of the varying dimensions and wall properties along the arterial 

path. Moreover, different segments of the path undergo different changes with aging and 

disease which complicates the interpretation (30). Those regional indices also have inherent 

problems related to exclusion of the proximal aorta from the path length (the proximal aorta 

normally contributes ~50% of total arterial compliance) (31), and the uncertainty of the 

distance travelled by the pulse wave (32). The latter is particularly problematic in older 
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individuals where there is greater tortuosity of the arterial tree (33). Table 2 of Hickson et al. 

(6), indicates a difference as large as 28% between PWV measured along the aorta using MRI 

and carotid-femoral index using SpygmoCor (5.7±1.8 vs. 7.3±1.8 m/s, R=0.71, P<0.001). 

However, local nPWV determined in the current study is derived from MRI measurement at a 

single point and could theoretically be performed at any other location along the arterial 

system.  

Compliance and distensibility are common measures of arterial stiffness. Compliance is 

determined as the change of segmental volume (∆V) in response to change in blood pressure 

(∆P), which requires the invasive measurement of pressure. Distensibility on the other hand is 

preferred as it is normalised to the initial segmental volume (V) and allows for comparisons 

between different sized vessels and/or subjects, and has been found to relate more closely to 

arterial wall stiffness (34). As expected, in the current study the distensibility of the ascending 

aorta decreased with age (Figure 5), in agreement with previous reports (13). We found that 

the impact of age was most marked in those > 50 years of age; nDs decreased in 50-60, 60-70 

and 70-80 year olds, by 39.5%, 40.2% and 50.8%, respectively. 

Utilising MRI Vulliemoz et al., with direct measurements of flow and area, QA-method 

(35), reported PWV values of 4.9 m/s, which is in agreement with our results of 5.4 m/s in the 

ascending aorta. Also utilising MRI, Biglino et al. (36)., developed a variation of our initial 

derivation (28)(37) and calculated nPWV and nWIA using measurements of velocity and vessel 

area (rather than diameter). The authors reported PWV of 5.8 m/s in the ascending aorta, 

which is in good agreement with our result at approximately the same location. This variation 

has also been used in pulmonary hypertension (38),  all demonstrating that nWIA provides a 

valid alternative to invasive WIA and offers a description of the coupling between the ejecting 

ventricle and the arterial bed, through its three main peaks; FCW, FDW and BCW.  
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Classical approaches for the separation of pressure and velocity waveforms to their 

forward and backward directions have been introduced in the frequency (39) and time (40)  

Domains.  Different techniques for the determination of the reflection index have been tested 

in vitro (41) and used in vivo (11) using pressure and velocity, or diameter and velocity  

approaches.  The reflection index (nRI) in this study is calculated as the ratio of BCW over FCW 

and the average values of each decade reported in Table 2 show that nRI significantly 

increased with age (P=0.002). Since pressure measurements were not taken in this study, we 

also calculated the reflection index using the separated flow velocity and separately, using the 

diameter waveforms as the ratio of peak backward velocity to peak forward velocity, and 

peak backward diameter to forward diameter. The separated waves techniques have also 

shown to increase with age. Although the absolute values of these reflection indices do not 

produce similar values as they use different fundamental units, they all share the same trend 

of increase with age. 

Earlier work demonstrated that aortic FCW is proportional to left ventricular 

myocardial contractility (max dP/dt) (42), thus FCW may provide an alternative way to assess 

LV function, which declines with age in the current study. Further, aortic BCW indicates 

discontinuities and reflection sites in the proximal arteries, and importantly, can provide 

novel haemodynamic information concerning aortic stenosis and aneurysm (19)(38).  

However, the magnitude of BCW decreased with age in our study, which was surprising. A 

possible explanation for this result is the reduction of the FCW magnitude with age, and that 

the BCW had to follow the same pattern. We note that nRI was more sensitive and indeed 

increased with age, suggesting that it is the ratio of the BCW to the FCW, and not the absolute 

value of the BCW, that better describes the stiffening of the arterial system.  

The arrival time of BCW was associated with ventricular hypertrophy and heart failure 

in patients (43). The findings in the current study demonstrate that increased PWV due to 
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reduced distensibility, resulted in earlier arrival of BCW in older groups.  These results clearly 

indicate stiffening of the arterial system with age even in healthy subjects, which resulted in 

an increase in ventricular load and decline in ventricular performance, judged by the 

reduction in FCW and FDW, as previously suggested (26). 

Our results obtained using MRI show significant differences in the magnitude of FCW 

and FDW, and the timing of peak BCW between older and younger subjects, which agree with 

earlier reports in the carotid artery using ultrasound (11). Both, the current MRI results and 

earlier work using ultrasound have shown that the technique is sensitive to changes in age, 

thus demonstrating the potential clinical applications of nWIA (26).  

An increase in regional PWV has been reported as a surrogate marker for 

cardiovascular events (44) (45) (46). Therefore we extrapolate that the increase of local PWV 

in the ascending aorta could potentially be used as a clinical predictor to cardiovascular 

events. Further, the elasticity of the ascending aorta is an important parameter in determining 

left ventricular afterload, and the distensibility measurement in ascending aorta could also be 

used to evaluate the influence of the ascending mechanical properties on systolic ventricular 

function and the vascular-ventricular coupling through the FCW, FDW and BCW. Therefore, 

the results of this study provide plausible insights into the effects of ageing on the ascending 

aorta hemodynamics and their effects on ventricular function with ageing. 

Limitation 

The CPC-MRI sequence that we used was suboptimal to measure diastolic diameter 

accurately, therefore the absolute values of compliance calculated in this study may be less 

accurate than those that could have been obtained if a faster sequence had been used. 

Regardless, this is not expected to change the overall trend or differences in compliance with 

age or between sexes, and thus does not alter our conclusions. Further, although the sampling 
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frequency was not as high as what could potentially be acquired with ultrasound, MRI 

provided data that facilitated the analysis to capture local waves in the ascending aorta. 

Conclusions 

In conclusion, we demonstrated that local PWV, distensibility and non-invasive WIA 

parameters as well as the reflection index can feasibly be calculated in the ascending aorta 

using CPC-MRI. The MRI fundamental measurements provided the basis for a description of 

the coupling between the ejecting ventricle and the arterial bed, using nWIA.   

In healthy adults, local ascending aorta PWV increased and distensibility decreased 

with age, with no significant difference between male and female. The decrease in the forward 

compression and decompression waves indicates a decline in LV function with age, even in 

healthy individuals. The reflection index is more sensitive than the magnitude of the 

backward compression wave in establishing the effects of ageing on reflected waves 

measured in the ascending aorta 

Perspectives 

Competency in medical knowledge: 

Aortic pulse wave velocity (PWV) is a direct measurement of aortic distensibility/stiffness. 

The current recommended method for determining aortic PWV is complex, requiring 

measurements of pressure or flow velocity at two different locations and an estimated 

distance between them. Alternatively, the same information could be achieved from using 

CPC-MRI with measurements of diameter and velocity at single location. 

Translational Outlook 

The determination of non-invasive local PWV and wave intensity analysis (WIA) in the 

ascending aorta as demonstrated in this study is useful for evaluating arterial 

distensibility/stiffness and the ventricular-arterial coupling, respectively. These parameters 
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could potentially be implemented in routine magnetic resonance examinations, providing 

further information that could assist in the diagnosis and guide therapeutic strategies. 

 

References  

1.  Bramwell JC, Hill A V. The Velocity of the Pulse Wave in Man. Proc R Soc B Biol Sci. 
1922;93(652):298–306.  

2.  Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic Pulse Wave Velocity as a Marker 
of Cardiovascular Risk in Hypertensive Patients. Hypertension. 1999;33(5):1111–7.  

3.  Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an 
independent predictor of all-cause and cardiovascular mortality in hypertensive patients. 
Hypertension [Internet]. 2001;37(5):1236–41. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/11358934 

4.  Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, et al. Aortic stiffness is an 
independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34(5):1203–6.  

5.  Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse 
wave velocity improves cardiovascular event prediction: An individual participant meta-
analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 
2014;63(7):636–46.  

6.  Hickson SS, Butlin M, Graves M, Taviani V, Avolio AP, McEniery CM, et al. The relationship of 
age with regional aortic stiffness and diameter. JACC Cardiovasc Imaging. 2010;3(12):1247–
55.  

7.  Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyeritz RE, et al. Age-associated changes in 
regional aortic pulse wave velocity. J Am Coll Cardiol. 2001;38(4):1123–9.  

8.  Dogui A, Redheuil A, Lefort M, Decesare A, Kachenoura N, Herment A, et al. Measurement 
of aortic arch pulse wave velocity in cardiovascular MR: Comparison of transit time 
estimators and description of a new approach. J Magn Reson Imaging. 2011;33(6):1321–9.  

9.  Millasseau SC, Stewart AD, Patel SJ, Redwood SR, Chowienczyk PJ. Evaluation of carotid-
femoral pulse wave velocity: Influence of timing algorithm and heart rate. Hypertension. 
2005;45(2):222–6.  

10.  Khir AW, Zambanini A, Parker KH. Local and regional wave speed in the aorta: Effects of 
arterial occlusion. Med Eng Phys. 2004;26(1).  

11.  Borlotti A, Khir AW, Rietzschel ER, De Buyzere ML, Vermeersch S, Segers P. Noninvasive 
determination of local pulse wave velocity and wave intensity: changes with age and gender 
in the carotid and femoral arteries of healthy human. J Appl Physiol [Internet]. 
2012;113(5):727–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22678965 

12.  Adji A, Kachenoura N, Bollache E, Avolio A, O’Rourke M, Mousseaux E. Magnetic resonance 
and applanation tonometry for noninvasive determination of left ventricular load and 



 17 

ventricular vascular coupling in the time and frequency domain. J Hypertens. 2016;34:1099–
108.  

13.  Redheuil A, Yu WC, Wu CO, Mousseaux E, De Cesare A, Yan R, et al. Reduced ascending 
aortic strain and distensibility: Earliest manifestations of vascular aging in humans. 
Hypertension. 2010;55(2):319–26.  

14.  Nethononda RM, Lewandowski AJ, Stewart R, Kylinterias I, Whitworth P, Francis J, et al. 
Gender specific patterns of age-related decline in aortic stiffness: a cardiovascular magnetic 
resonance study including normal ranges. J Cardiovasc Magn Reson. 2015;17:20.  

15.  Chantler PD, Lakatta EG. Arterial-ventricular coupling with aging and disease. Front Physiol. 
2012;3 MAY.  

16.  Ramsey MW, Sugawara M. Arterial wave intensity and ventriculoarterial interaction. Hear 
Vessel. 1997;Suppl 12:128–34.  

17.  Khir AW, Parker KH. Measurements of wave speed and reflected waves in elastic tubes and 
bifurcations. J Biomech. 2002;35(6).  

18.  Clavica F, Parker KH, Khir AW. Wave intensity analysis in air-filled flexible vessels. J Biomech. 
2015;48(4):687–94.  

19.  Khir AW, Parker KH. Wave intensity in the ascending aorta: Effects of arterial occlusion. J 
Biomech. 2005;38(4):647–55.  

20.  Li Y, Gu H, Alastruey J, Chowienczyk P. Forward and backward pressure waveform 
morphology in hypertension. Hypertension. 2017;69:375–81.  

21.  Khir AW, Henein MY, Koh T, Das SK, Parker KH, Gibson DG. Arterial waves in humans during 
peripheral vascular surgery. Clin Sci (Lond) [Internet]. 2001;101(6):749–57. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/11724665 

22.  Kolyva C, Pantalos GM, Giridharan G a, Pepper JR, Khir AW. Discerning aortic waves during 
intra-aortic balloon pumping and their relation to benefits of counterpulsation in humans. J 
Appl Physiol [Internet]. 2009;107(5):1497–503. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2917174&tool=pmcentrez&re
ndertype=abstract 

23.  Kolyva C, Khir AW. Wave Intensity Analysis in the Great Arteries - What has been learned in 
the past 25 years ? Part I. ICF J. 2013;1:68–73.  

24.  Kolyva C, Khir AW. Wave intensity analysis in the ventricles , carotid and coronary arteries – 
What has been learnt during the last 25 years ?: Part 2. 2014;1(3):122–7.  

25.  Parker KH, Jones CJ, Dawson JR, Gibson DG. What stops the flow of blood from the heart? 
Heart Vessels [Internet]. 1988 Jan [cited 2015 Oct 17];4(4):241–5. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/3254905 

26.  Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, et al. Clinical usefulness of carotid 
arterial wave intensity in assessing left ventricular systolic and early diastolic performance. 
Heart Vessels. 2003;18(3):107–11.  

27.  Sugawara M, Niki K, Ohte N, Okada T, Harada A. Clinical usefulness of wave intensity 



 18 

analysis. Med Biol Eng Comput. 2009;47(2):197–206.  

28.  Feng J, Khir AW. Determination of wave speed and wave separation in the arteries using 
diameter and velocity. J Biomech. 2010;43(3):455–62.  

29.  Li Y, Khir AW. Experimental validation of non-invasive and fluid density independent 
methods for the determination of local wave speed and arrival time of reflected wave. J 
Biomech [Internet]. 2011;44(7):1393–9. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/21367424 

30.  Cameron JD, Bulpitt CJ, Pinto ES, Rajkumar C. The aging of elastic and muscular arteries: A 
comparison of diabetic and nondiabetic subjects. Diabetes Care. 2003;26(7):2133–8.  

31.  Ioannou C V., Stergiopulos N, Katsamouris AN, Startchik I, Kalangos A, Licker MJ, et al. 
Hemodynamics induced after acute reduction of proximal thoracic aorta compliance. Eur J 
Vasc Endovasc Surg. 2003;26(2):195–204.  

32.  Weber T, Ammer M, Rammer M, Adji A, O’Rourke MF, Wassertheurer S, et al. Noninvasive 
determination of carotid-femoral pulse wave velocity depends critically on assessment of 
travel distance: a comparison with invasive measurement. J Hypertens. 2009;27(8):1624–30.  

33.  Sugawara J, Hayashi K, Yokoi T, Tanaka H. Age-Associated Elongation of the Ascending Aorta 
in Adults. JACC Cardiovasc Imaging. 2008;1(6):739–48.  

34.  Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM 
Cardiovasc Dis [Internet]. 2012;1(4):11. Available from: 
http://cvd.sagepub.com/content/1/4/11.full 

35.  Vulliémoz S, Stergiopulos N, Meuli R. Estimation of local aortic elastic properties with MRI. 
Magn Reson Med. 2002;47(4):649–54.  

36.  Biglino G, Steeden JA, Baker C, Schievano S, Taylor AM, Parker KH, et al. A non-invasive 
clinical application of wave intensity analysis based on ultrahigh temporal resolution phase-
contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson [Internet]. 
2012;14(1):57. Available from: http://www.jcmr-online.com/content/14/1/57 

37.  Feng J, Khir AW. Determination of wave intensity in flexible tubes using measured diameter 
and velocity. Conf Proc IEEE Eng Med Biol Soc. 2007;  

38.  Quail MA, Knight DS, Steeden JA, Taelman L, Moledina S, Taylor AM, et al. Noninvasive 
pulmonary artery wave intensity analysis in pulmonary hypertension. AJP Hear Circ Physiol 
[Internet]. 2015;308(12):H1603-11. Available from: 
http://ajpheart.physiology.org/lookup/doi/10.1152/ajpheart.00480.2014%5Cnpapers3://pu
blication/doi/10.1152/ajpheart.00480.2014 

39.  Westerhof N, Sipkema P, Bos GC Van Den, Elzinga G. Forward and backward waves in the 
arterial system. Cardiovasc Res. 1972;6(6):648–56.  

40.  Parker KH, Jones CJ. Forward and backward running waves in the arteries: analysis using the 
method of characteristics. J Biomech Eng [Internet]. 1990 Aug [cited 2015 Oct 
10];112(3):322–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2214715 

41.  Li Y, Borlotti A, Hickson SS, McEniery CM, Wilkinson IB, Khir AW. Using magnetic resonance 
imaging measurements for the determination of local wave speed and arrival time of 



 19 

reflected waves in human ascending aorta. In: 2010 Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society, EMBC’10. 2010. p. 5153–6.  

42.  Niki K, Sugawara M, Uchida K, Tanaka R, Tanimoto K, Imamura H, et al. A noninvasive 
method of measuring wave intensity, a new hemodynamic index: application to the carotid 
artery in patients with mitral regurgitation before and after surgery. Heart Vessels. 
1999;14(6):263–71.  

43.  Koh TW, Pepper JR, DeSouza AC, Parker KH. Analysis of wave reflections in the arterial 
system using wave intensity: A novel method for predicting the timing and amplitude of 
reflected waves. Heart Vessels [Internet]. 1998;13(3):103–13. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/10328180 

44.  Maroules CD, Khera A, Ayers C, Goel A, Peshock RM, Abbara S, et al. Cardiovascular 
outcome associations among cardiovascular magnetic resonance measures of arterial 
stiffness: The Dallas heart study. J Cardiovasc Magn Reson. 2014;16(1).  

45.  Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of Cardiovascular Events and All-
Cause Mortality With Arterial Stiffness. J Am Coll Cardiol. 2010;55(13):1318–27.  

46.  Ohyama Y, Ambale-Venkatesh B, Noda C, Kim J-Y, Tanami Y, Teixido-Tura G, et al. Aortic 
Arch Pulse Wave Velocity Assessed by Magnetic Resonance Imaging as a Predictor of 
Incident Cardiovascular Events: The MESA (Multi-Ethnic Study of Atherosclerosis). 
Hypertension [Internet]. 2017;70(3):524–30. Available from: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85021840438&doi=10.1161%2FHYPERTENSIONAHA.116.08749&partnerID=40&md5=9e751
e2f2e41a3bb36a5efb173655dff 

 

 

 

 

 

 

 

 

 

 



 20 

Figure Legends 

Figure 1: Determination of pulse wave velocity, and the separation of waves. Diameter (A) 

and flow velocity (B) measured in the ascending aorta of a typical healthy subject (male, age 

41), using MRI. In early systole, the relationship between the velocity and logarithm of 

diameter is linear, as shown in the initial part of the lnDU-loop (C) and the slope (highlighted 

in red) of which indicates local PWV of 5.1 m/s as calculated using equation (1). Using 

knowledge of PWV with dU and dlnD data, the net, forward (dashed) and backward (dotted) 

wave intensity were calculated using equations (3) and finally plotted against time (F).  

Figure 2: Relationship between age and ascending aorta PWV for all subjects, linear data 

fitting (R = 0.40, P < 0.001). 

Figure 3: Local PWV (A), diameter (B), flow velocity (C), FCW (D), BCW (E), and FDW (F) are 

shown as a function of age with sex. 

Figure 4: Reflection index (a) and distensibility (b) are shown as a function of age and sex. nRI 

increased but distensibility decreased with age for both sexes. 
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Table 1 Subject Characteristics 

   Age groups    

 
20-30 years 

(n=26) 

30-40 years 

(n=21) 

40-50 years 

(n=23) 

50-60 years 

(n=26) 

60-70 years 

(n=25) 

70-80 years 

(n=23) 

Age (years) 24±3 33±3 44±2 57±3 63±2 73±2 

Sex (men) 11 11 9 12 11 12 

BMI 

(kg/m2) 
22.9±2.7 25.9±3.8 25.6±4.4 23.9±2.7 25.4±4.0 25.0±2.4 

BSA (m2) 1.58±0.12 1.34±0.19 1.58±0.14 1.50±0.13 1.69±0.11 1.62±0.11 

HR (bpm) 68±11 60±8 65±8 66±10 64±9 67±10 

SBP 

(mmHg) 
112±13 116±9 121±15 117±12 128±16 138±16 

DBP 

(mmHg) 
63±5 69±6 73±9 71±8 75±6 75±8 

Values are means ± SD. BMI: body mass index; BSA: body surface area; HR: heart rate; SBP: 

supine systolic blood pressure; DBP: supine diastolic blood pressure. 
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Table 2 Non-invasive Wave Intensity Analysis for all Age Groups 

 Age groups 

Parameters 

20-30 

years 

(n=26) 

30-40 

years 

(n=21) 

40-50  

years 

(n=23) 

50-60 

years 

(n=26) 

60-70 

years 

(n=25) 

70-80 

years 

(n=23) 

P 

Value 

nPWV (m/s) 4.7±0.3 5.2±0.3 5.6±0.3 5.9±0.3 6.1±0.3 6.4±0.3 0.001 

nDs 

(10-5 1/Pa) 
5.3±0.51 4.2±0.49 4.1±0.58 3.2±0.34 3.2±0.38 2.6±0.24 0.001 

nCs 

(10-8 m2/Pa) 
2.6±0.32 2.5±0.32 2.7±0.33 2.3±0.24 2.4±0.29 2.0±0.17 0.644 

Dm (cm) 2.8±0.07 3.0±0.07 3.2±0.09 3.2±0.08 3.3±0.08 3.3±0.07 0.001 

D0 (cm) 

U (m/s) 

2.5±0.05 

0.8±0.03 

2.7±0.07 

0.7±0.04 

3.0±0.09 

0.6±0.03 

2.9±0.09 

0.5±0.03 

3.1±0.07 

0.5±0.02 

3.1±0.07 

0.4±0.02 

<0.001 

0.001 

FCW  

(10-5 m2/s) 
6.9±0.6 4.1±0.5 3.2±0.4 2.0±0.3 1.7±0.2 0.9±0.1 0.001 

BCW  

(10-5 m2/s) 
-1.0±0.13 -0.9±0.16 -0.6±0.13 -0.4±0.04 -0.3±0.03 -0.3±0.04 0.001 

FDW 

(10-5 m2/s) 
0. 9±0.08 0.5±0.08 0.4±0.06 0.3±0.02 0.3±0.03 0.2±0.02 0.001 

nI+C  (10-4 

m2) 
2.7±0.18 1.8±0.17 1.3±0.14 0.8±0.09 0.7±0.08 0.5±0.07 0.001 

nI- (10-4 m2) -1.0±0.12 -0.9±0.13 -0.6±0.08 -0.4±0.03 -0.4±0.03 -0.3±0.04 0.001 

nI+D (10-4 m2) 0.7±0.07 0.4±0.07 0.3±0.03 0.2±0.02 0.2±0.01 0.2±0.02 0.001 

nRI 0.17±0.03 0.24±0.03 0.21±0.03 0.19±0.02 0.28±0.05 0.39±0.06 0.002 

TndI+C (ms) 

TndI+D (ms) 

TndI- (ms) 

29±3 

303±14 

80±10 

44±5 

397±29 

95±8 

39±6 

311±25 

114±11 

41±6 

332±15 

126±14 

42±5 

351±35 

189±32 

49±11 

325±30 

193±33 

0.357 

0.157 

0.001 

Trw (ms) 57±3 54±3 50±4 44±5 47±4 43±3 0.069 

Values are means ± SE. PWV: pulse wave velocity; nDs: non-invasive distensibility; nCs: non-

invasive compliance; FCW: peak of forward compression wave; BCW: peak of backward 

compression wave; FDW: peak of forward decomposition wave; nI+C: forward compression 

wave energy; nI-: backward compression wave energy; nI+D: forward decompression wave 

energy; nRI: non-invasive reflection index calculated by ratio of BCW to FCW; TndI+C: timing of 

FCW; TndI+D: timing of FDW; TndI-: timing of BCW; Trw: arrival time of backward wave. Dm and 

D0 are systolic and diastolic diameters respectively. 
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