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I look forward to hearing from you in due course.
Yours Sincerely.

Yangzhi Ren
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1. Flexural behavior of deep beam prestressed with multi-tendons is analyzed for both post- and 

pre- tensioning processes.

2. Solutions for displacements and stresses are obtained based on Timoshenko beam theory.

3. The compatibility condition between beam and tendons needs to be found to solve the increase 

in tendon force.

4. The proposed method is capable of estimating the displacements, stresses and the increase in 

tendon force.
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Abstract: External prestressing is one of the most powerful techniques to retrofit and strengthen 13 

the existing beams and columns. In this paper, the flexural behavior of deep beam prestressed with 14 

multi-tendons is investigated under concentrated forces for both post- and pre- tensioning 15 

processes. Solutions for displacements and stresses are achieved based on Timoshenko beam 16 

theory. Besides, a statically indeterminate system was established, and a compatibility condition 17 

between the beam and tendons was founded to solve the increase in tendon force in loading period 18 

in pre-tensioning. Verifications were performed in tables by applying Finite element analysis. 19 

Finally, parameter studies were carried out to examine the effects of tendon force and eccentricity 20 

on the flexure of beams. Numerical results were summarized into a series of curves indicating the 21 

distribution of warping stresses on flanges and the increases in sub-tendon forces. 22 
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1. Introduction 26 

Steel deep beams with large height-to-span ratio are widely used in buildings and offshore 27 

structures. As shown in Fig.1, a series of steel large plate girders (deep beams) are applied to resist 28 

the external loads from boiler in electric power plant. Due to the overloading, many girders are 29 

suffering from fatigue and fracture problems, and are in need of rehabilitation and replacement. 30 

Externally prestressed technique is an effective way to retrofit existing beams, which 31 

produces additional stresses in the direction that opposes to the external loads [1-2]. Externally 32 

prestressed beams possess many advantages such as large loading capacity [3], favorable fatigue 33 

and fracture behaviors [4], full use of materials and structural lightweight [5], ease in inspection 34 

and replacement of tendons [6], high redundancy and reliability [7-8]. 35 

Different from the internally prestressed tendons in concrete, externally prestressed tendons 36 

are located outside the beam and are fixed between anchorages. Therefore, tendons are free to 37 

move with respect to the beam axis, resulting in a gradual variation in tendon eccentricity [9-10]. 38 

Although researches on the externally prestressed technique has been mature in concrete 39 

beams [10-13], composite steel-concrete beams [1-8, 14-17] and concrete deep beams [18-20], 40 

those on prestressed steel deep beams are still scarce. More recently, Belletti [21] investigated the 41 

flexure of prestressed I-shaped steel beams and found that more deviators result in the higher 42 
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prestressed force and more stability of beams. Park [22] found that the flexural capacity increased 43 

by 30% to 40% for beams prestressed with straight tendons, and even higher for those with draped 44 

tendons. Besides, researches on the continuous steel beams prestressed with external tendons show 45 

that the increase of the height of cross section at internal supports effectively reduces the 46 

deflections and stresses induced by negative moments [23]. Further, the externally prestressed 47 

technique increases the torsional stability of beams, and the capacity increases along with the 48 

eccentricity of tendons [24]. 49 

  
(a) electric power plant (b) large plate girders

suspended boiler

 50 

Fig.1 Large plate girders in electric power plant 51 

A detail observation on the literatures reveals that most researches generally focus on the 52 

prestressed beams with only one straight/draped tendon, but less on those with multi-tendons. This 53 

motivates the author to investigate the flexural behavior of deep beams with multi-tendons. In this 54 

paper, formulas for displacements and stresses were obtained for steel deep beams prestressed 55 

with multi-tendons for both post- and pre- tensioning processes. A high-order indeterminate 56 

system was established in loading period in pre-tensioning, and the compatibility between the 57 

beam and tendons was found to solve the increase in tendon force. Finite element analysis was 58 

applied to verify the accuracy of the proposed method for both tensioning processes. Finally, 59 

parameter studies were performed to investigate the effects of tendon force and eccentricity on the 60 

flexural behavior of prestressed beams with multi-tendons. 61 

2. Structural model 62 

For analysis, a orthogonal coordinate system O-xyz is established in Fig.2. The I-shaped 63 

beam is made of a homogenous, isotropic and elastic steel with Young’s and shear moduli E and G. 64 

The span is l. The height and width of the cross section are h and b. The thicknesses of top and 65 

bottom flanges are uniform tf and the thickness of web is tw, respectively. The concentrated forces 66 

Pis (i=1, 2, …n) are acted on the centroid axis in the symmetrical plane XY, having a distance of ci 67 

away from the right end of the beam. The uniform load q represents the beam self weight, having 68 

'q=ρAg', where ρ is the density, A is the cross-sectional area of the beam, g is the acceleration of 69 

y-axial gravity. u and v are horizontal and vertical displacements, respectively. 70 

The tendons Tj (j=1, 2, …, k), with the eccentricities of ej away from the x-axis, are anchored 71 

between endplates, introducing a negative moment to resist the deformations produced by Pi and q. 72 

Tendons are equally divided into two sub-tendons (Fig.2b), being symmetrical with respect to the 73 

plane XY. The elastic modulus and cross-sectional area are indicated by ETj and ATj for the 74 

sub-tendons at the jth row, respectively. 75 



 

 

In following analysis, each couple of sub-tendons at the same height is regarded as one single 76 

tendon with its path through the plane XY. Besides, all forces in tendons are effective without 77 

involving the prestressing loss. The self weight of tendons and the deflection of tendons due to 78 

self weight are not considered, so all tendons keep straight during the tensioning process. 79 
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Fig.2 Deep beams prestressed with straight unbonded multi-tendons 81 

According to the application sequence of external forces Pi and the prestressed forces Sj, the 82 

tensioning process is classified into post-tensioning and pre-tensioning. For post-tensioning, two 83 

periods are performed in sequence in Fig.3. The prestressed forces Sj are applied after Pi, resulting 84 

in the reduction of downward deformation induced by Pi and q. While for pre-tensioning, as 85 

shown in Fig.4, the initial prestressed forces S0j are applied before Pi, resulting in a upward 86 

deflection in prestressing period. Then a high-order statically indeterminate system is established 87 

later in loading period, producing an extra increase SΔj in each tendon Tj due to Pi. 88 
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Fig.3 Post-tensioning 90 
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Fig.4 Pre-tensioning 92 

Actually, there is another case that the prestressed forces S0j cannot overcome the self weight 93 

q and the beam still displays downwards in prestressing period in pre-tensioning. However, this 94 

can be regarded as a special case in prestressing period in post-tensioning, where Pi =0. So only 95 

the upward case is studied in prestressing period in pre-tensioning. 96 



 

 

In the following, the displacements and stresses for both tensioning processes are analyzed 97 

respectively. 98 

3. Post-tensioning 99 

For post-tensioning, two periods are performed in sequence. 100 

3.1. Loading period 101 

Based on Timoshenko beam theory [25], the moment equation due to the self weight q is 102 

2 1 2

s

2

d ( )

d 2 2

qv x EIα qqlx qx
EI

x GA

             (1) 103 

where 
1
vq(x) is the y-axial displacement due to q in loading period. I is the moment of inertia of the 104 

beam section with respect to z-axis. A is the cross-sectional area of the beam. αs is the shear stress 105 

distribution coefficient, αs=A/Aw for I-shaped beam, Aw is the web area of the beam, Aw = tw(h˗2tf). 106 

For simply supported beam, the solution for Eq.(1) is 107 
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The displacements due to Pi are obtained in the form of piecewise function [25] 109 
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If we assume there are m of n forces (P1, P2, .., Pm) located at the right of calculated point x, 112 

then the total displacement caused by all Pis can be obtained by superimposing Eq.(3) for forces 113 

P1, P2, .., Pm and Eq.(4) for forces Pm+1, Pm+2, …, Pn. 114 
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Combining Eq.(2) with Eq.(5), the total displacement in loading period is 116 

     

   
 

 

1 3 2 3 2 2 2s s

1 1

3 2 2 3 s

1 1

( ) 2
24 2 6

1

6

m m

i i i i i

i i

n n

i i i i i i i i i

i m i m

α qx α xqx x
v x l lx x l x Pc l x c Pc

EI GA EIl GAl

α l x
Pl x l c Pc x l c Pc x P l c

EIl GAl

 

   

        


        
 

 

 

 (6) 117 

Correspondingly, the warping stress is 118 
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3.2. Prestressing period 120 

Referred to Fig.5, the moment equation due to q in prestressing period is 121 
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where 
2
vq(x) is the y-axial displacement due to q in prestressing period. Mj is the ending moment 123 

due to the prestressed force Sj, Mj=Sjej. Sj and ej are the prestressed force and eccentricity of the jth 124 

tendon (j=1,2,…,k), see Fig.3b. 125 
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Fig.5 Model of prestressed deep beams in prestressing period in post-tensioning 127 

For simply supported beam, the solution for Eq.(8) is 128 
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where 2
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The moment equation due to Pi is 131 
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where 
2
vPi(x) is the displacement due to Pi without shear effect. 134 

For simply supported beam, the solutions for Eq.(10) and Eq.(11) are 135 
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Referred to Eq.(3) and Eq.(4), the displacements due to Pi with shear effect are 138 

2 s

3 2

sin sin 1
( )

sin

i i i i
Pi

P pc px Pc x α
v x

EIp pl l GA EIp

 
   

 
, for 0≤x≤l˗ci   (14) 139 

 
 

  2 s

3 2

sin 1
( ) sin

sin

i i i i

Pi

P p l c P l c l x α
v x p l x

EIp pl l GA EIp

    
    

 
, for l˗ci≤x≤l (15) 140 

Referred to Eq.(5), the displacement due to all Pis can be obtained by superimposing Eq.(14) 141 

for forces P1, P2, .., Pm and Eq.(15) for forces Pm+1, Pm+2, …, Pn. Therefore, the total y-axial 142 

displacement in prestressing period is 143 
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Correspondingly, the warping stress is 145 
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4. Pre-tensioning 147 

4.1. Prestressing period 148 

Referred to Fig.6, the moment equation due to q in prestressing period is 149 
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where 
3
v(x) is the y-axial displacement in prestressing period. M0j is the ending moment, M0j=S0jej. 151 

S0j is the initial prestressed force of the tendon Tj (j=1, 2,…, k), see Fig.4a. 152 

q

v, y

u, x
M01M02M0k M01 M02 M0k

S01 S01S02 S0k S0k S02

 153 

Fig.6 Model of prestressed deep beams in prestressing period in pre-tensioning 154 

For simply supported beam, the solution for Eq.(18) is 155 
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Correspondingly, the warping stress is 158 
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4.2. Loading period 160 
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Fig.7 Statically indeterminate system 162 

In this period, a high-order indeterminate system is established including both the beam and 163 

tendons, producing an increase SΔj (j=1,2,…,k) in tendon Tj , as shown in Fig.4b. The key point of 164 

solving SΔj is to find the compatibility condition between the beam and tendons. To do this, a 165 

scenario is configured in Fig.7, where all tendons are frictionally cut off. The gap between cutting 166 

sections enlarges due to Pis (Fig.7a) and shortens due to SΔj (Fig.7b). Therefore, the compatibility 167 

equation is 168 
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      (21) 169 

where ΔjP is the gap length due to Pis. δrs is the rth gap length due to the unit prestressed force in 170 

the sth tendon (r, s =1, 2, …, k). Based on the virtual work theory, ΔjP and δrs are 171 
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where MP(x) and QP(x) are the moment and shear force due to Pis, given by 174 
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where m is the number of Pis on the right side of calculation point x. n is the total number of Pis. 177 

/ ( )r sS x are the unit prestressed force in the r/sth tendons, and / ( ) 1r sS x  . 178 

/ / ( )j r sM x , / / ( )j r sQ x are the moments and shear forces due to the unit prestressed forces in the 179 

j/r/sth tendons, respectively. Therefore, the moment equation due to the unit prestressed force is 180 
2
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where vuj(x) is the y-axial displacement due to the unit prestressed force in the jth tendon. 182 

For simply supported beam, the solution for Eq.(26) is 183 
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where pu=1/EI. 185 

Therefore, the moment and shear force are 186 

2

u

u2
u

d ( )
( ) cosh

d 2
cosh

2

j j
j

v x e l
M x EI p x

p lx

 
     

 
    (28) 187 

u

u
u

d ( )
( ) sinh

d 2
cosh

2

j j

j

p eM x l
Q x p x

p lx

 
   

 
     (29) 188 

Similarly, the moments / ( )r sM x  and shear forces 
/ ( )r sQ x  can be obtained by substituting 189 

the subscript j with r and s in Eq.(28) and Eq.(29). 190 

Substitute Eqs.(24), (25), (28) and (29) into Eq.(22), and the gap length ΔjP is 191 
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where s
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  . Rm, Um and Zm represent the first-order difference of functions R(β), 193 
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where ci (i=1, 2, …, n) is the distance away from the right end of the beam for the force Pi. Plus, 198 

c0=0 and cn+1=l. 199 

Similarly, the gap δrs in Eq.(23) is 200 
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 (31) 201 

where er and es are the eccentricities of the rth and sth tendons, respectively. ATr and ETr are the 202 

cross-sectional area and elastic modular of sub-tendons at the rth row, respectively. 203 

Finally, the increase SΔj in Eq.(21) can be obtained according to Eqs.(30) and (31). Then, 204 

substituting the force Sj with the total force ‘S0j+SΔj’, the displacements and stresses in loading 205 

period in pre-tensioning are obtained from Eqs.(16) and (17). Plus, it is seen from the Eq.(21) that 206 

the increases SΔj has nothing to do with the initial tendon forces S0j and the self weight q. 207 



 

 

5. Numerical verification 208 

In order to verify the proposed method, an I-shaped large plate girder (see Fig.1b), externally 209 

prestressed with three/four tendons respectively, are investigated by finite element analysis (FEA) 210 

using ANSYS software package. 211 
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Fig.8 Deep beams prestressed with three (a) and four (b) straight tendons 214 

Measurements 215 

The model is shown in Fig.8 and the measurements are selected from practice. 216 

For beam, the span l is 40m, the height h and width b of the cross section are 8m and 1.5m, 217 

the thicknesses of flanges and web are 125mm and 45mm, respectively. So the cross-sectional area 218 

A of the beam is 0.7294m
2
. The Young's elastic module E is 210GPa and Poisson's ratio v is 0.3. 219 

The overall yield strength Ys is 345MPa. 220 

According to the specification in AISC [26], the beam is a non-compact section and a mass of 221 

stiffeners are needed to avoid the local web (or flanges) buckling before overall yielding. However, 222 

the stiffeners may influence the distribution of warping stresses, probably resulting in a singularity 223 

of the stresses at the connections between the web (or flanges) and stiffeners. So the stiffeners are 224 

not considered in the model, and the deformation for beams is controlled within elastic range. 225 

For tendons, the eccentricities are shown in Fig.8. Each tendon is divided into a couple of 226 

sub-tendons symmetrical with respect to the plane XY (e.g. T1→T11+T12). The cross-sectional area 227 

AT of sub-tendons is uniform 0.01m
2
. The distance between sub-tendons is 0.75m. The Young's 228 

elastic module ET of tendons is 200GPa. The tensioning capacity fptk of sub-tendons is set to be 229 

1625MPa. The tendons' self weight and initial strain are not considered. The prestressed forces in 230 

tendons are realized by dropping temperature, and the thermal expansion coefficient CT of tendons 231 

are set to be constantly 1.19×10
-5

/˚C. 232 

Meshing 233 

In FEA, the element of Shell63 is applied for the beam and endplates, and the element of 234 

Link10 is for tendons. The meshing grid is shown in Fig.9. A convergence test shows that a total 235 

of 1306 elements are adequate for beams with three tendons and 1432 elements for those with four 236 

tendons. 237 
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Fig.9 Meshing grid 239 

Loadings and constraints 240 

Five concentrated forces P are evenly acted along the centroid axis. The y-axial acceleration 241 

g is 9.8N/kg. The density of the beam ρ is 7850 kg/m
3
. Therefore, the self-weight q is 56111N/m 242 

(q=ρAg). For simply supported boundary, one end of the beam is hinged and the other is allowed 243 

to slide freely on a frictionless support in the direction of x-axis. 244 

5.1. Post-tensioning 245 

In order to verify the deformations and stresses obtained from Eq.(16) and (17), the cases C1 246 

to C11, with a series of tendon forces, are set in Tab.1 for beams with three tendons, and the cases 247 

D1 to D11 are in Tab.2 for those with four tendons. fij is the stress in sub-tendon Tij (i=1,2,3,4; 248 

j=1,2), and fi1 =fi2 due to the symmetry of sub-tendons. The dropping temperatures tij on the sub- 249 

tendons Tij are listed in Tab.3 and Tab.4 respectively for two prestressed beams. 250 

 251 

Tab.1 Cases for beams with three tendons 252 

Cases C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

f11 / fptk 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 

f21 / fptk 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 

f31 / fptk 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 

 253 

Tab.2 Cases for beams with four tendons 254 

Cases D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

f11 / fptk 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 

f21 / fptk 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 

f31 / fptk 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 

f41 / fptk 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 

 255 

Tab.3 Dropping temperatures on tendons for beams with three tendons in post-tensioning 256 

Cases C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

t11, t12 -260.7 -268.4 -276.2 -283.9 -291.6 -299.3 -307.0 -314.7 -322.4 -330.1 -337.8 

t21, t22 -262.1 -269.9 -277.8 -285.6 -293.4 -301.3 -309.1 -316.9 -324.8 -332.6 -340.4 

t31, t32 -257.7 -265.5 -273.3 -281.1 -288.9 -296.7 -304.5 -312.3 -320.1 -327.9 -335.7 

 257 

Tab.4 Dropping temperatures on tendons for beams with four tendons in post-tensioning 258 

Cases D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

t11, t12 -271.5 -279.5 -287.4 -295.4 -303.3 -311.3 -319.2 -327.1 -335.1 -343.0 -351.0 

t21, t22 -276.5 -284.6 -292.7 -300.8 -308.9 -317.0 -325.1 -333.2 -341.3 -349.4 -357.5 

t31, t32 -277.3 -285.5 -293.6 -301.8 -310.0 -318.1 -326.3 -334.4 -342.6 -350.7 -358.9 

t41, t42 -273.4 -281.5 -289.6 -297.6 -305.7 -313.8 -321.9 -330.0 -338.1 -346.2 -354.2 



 

 

It's worth noting that the dropping temperatures in Tab.3 and Tab.4 do not strictly follow the 259 

equation 'fij=ETCTtij'. This is because the dropping of temperature on one tendon will not only 260 

increase the tensile stress on itself, but also result in the reduction of the stress on the another. 261 

Contours of displacements and stresses are depicted in Fig.10 for non-prestressed beams and 262 

two prestressed beams in post-tensioning under the case C6, where P=10000kN. It is seen that the 263 

y-axial (vertical) displacements UY at mid span reduce largely from 46.1mm to 29.5mm when 264 

prestressed with four straight tendons. The x-axial (warping) stresses SX on bottom flange at mid 265 

span reduce largely from 160MPa to 29.9MPa and those on top flange increase slightly from 266 

160MPa to 173MPa after being prestressed, resulting in the downward shift of neutral axis. This 267 

infers that the externally prestressed technique can effectively reduce the warping stress on bottom 268 

flange and enhance the bending capacity of beam. 269 

(a) UY, non-prestressed beams (b) SX, non-prestressed beams 

˗160MPa

+160MPa

 270 

(c) UY, beams with three tendons (d) SX, beams with three tendons 

˗168MPa

+63.4MPa

 271 

(e) UY, beams with four tendons (f) SX, beams with four tendons 

˗173MPa

+29.9MPa

 272 

Fig.10 Contours of displacements UY and warping stresses SX for non-prestressed beams and two prestressed 273 

beams in post-tensioning under the case C6 (unit: m, Pa). 274 

In post-tensioning, displacements at mid span, obtained from both FEA and the proposed 275 

method, are listed in Tab.5 and Tab.6 for two prestressed beams respectively, where P=10000kN. 276 

It is obvious that the proposed method (Eq.(16)) provides an acceptable estimation on the y-axial 277 

displacements with the relative error (RE) being less than 5% for all cases C1 to C11 and D1 to 278 

D11. Therefore, the proposed method is capable of estimating the y-axial displacement for the 279 

prestressed beams in post-tensioning. 280 

 281 

Tab.5 Comparisons between FEA and the proposed method for the y-axial displacement of beams with three 282 

tendons in post-tensioning (unit: mm, direction: downwards) 283 

Cases C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

FEA 34.10 33.87 33.64 33.41 33.18 32.95 32.72 32.48 32.25 32.02 31.79 

Eq.(16) 33.19 32.96 32.72 32.48 32.25 32.01 31.78 31.54 31.30 31.07 30.83 

RE (%) 2.66 2.69 2.73 2.76 2.80 2.83 2.87 2.91 2.94 2.98 3.02 



 

 

 284 

Tab.6 Comparisons between FEA and the proposed method for the y-axial displacement of beams with four 285 

tendons in post-tensioning (unit: mm, direction: downwards) 286 

Cases D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

FEA 31.09 30.78 30.48 30.17 29.86 29.55 29.24 28.93 28.62 28.31 28.00 

Eq.(16) 30.12 29.81 29.49 29.18 28.86 28.54 28.23 27.91 27.60 27.28 26.97 

RE (%) 3.12 3.18 3.23 3.28 3.34 3.40 3.46 3.52 3.57 3.63 3.71 

Similarly, the warping stresses on flanges at mid span are listed in Tab.7 and Tab.8 for two 287 

prestressed beams for two methods, where P=10000kN. It is evident that the proposed method 288 

(Eq.(17)) offers an accurate estimation on the warping stresses on flanges with the RE being less 289 

than 6% for beams with three tendons. For the warping stresses on bottom flange in Tab.8, though 290 

the RE raises up to 16.1% for the case D11, the absolute error (AE) keeps decreasing for the 291 

increased tendon forces from D1 to D11. Besides, the warping stresses obtained from Eq.(17) are 292 

larger than those from FEA, which proves that the proposed method is conservative. So the 293 

proposed method (Eq.(17)) can be applied to estimate the warping stresses on flanges for beams 294 

externally prestressesd multi-tendons in post-tensioning. 295 

Tab.7 Comparisons between FEA and the proposed method for warping stresses on flanges for beams with three 296 

tendons in post-tensioning (ζu: stress on top flange, ζd: stress on bottom flange, unit: MPa) 297 

Cases C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

ζu 

FEA -166.3 -166.7 -167.1 -167.4 -167.8 -168.1 -168.5 -168.9 -169.2 -169.6 -169.9 

Eq.(17) -174.8 -175.1 -175.5 -175.8 -176.1 -176.4 -176.8 -177.1 -177.4 -177.8 -178.1 

RE (%) 4.84 4.81 4.78 4.76 4.73 4.71 4.68 4.65 4.63 4.60 4.58 

ζd 

FEA 75.0 72.6 70.3 68.0 65.7 63.4 61.1 58.8 56.4 54.1 51.8 

Eq.(17) 78.5 76.2 73.9 71.5 69.2 66.8 64.5 62.1 59.8 57.5 55.1 

RE (%) 4.57 4.67 4.78 4.90 5.03 5.16 5.30 5.46 5.62 5.80 6.00 

 298 

Tab.8 Comparisons between FEA and the proposed method for warping stresses on flanges for beams with four 299 

tendons in post-tensioning (ζu: stress on top flange, ζd: stress on bottom flange, unit: MPa) 300 

Cases D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

ζu 

FEA -170.6 -171.1 -171.5 -172.0 -172.5 -173.0 -173.4 -173.9 -174.4 -174.9 -175.4 

Eq.(17) -178.6 -179.1 -179.5 -180.0 -180.4 -180.8 -181.3 -181.7 -182.1 -182.6 -183.0 

RE (%) 4.51 4.48 4.45 4.41 4.38 4.35 4.31 4.28 4.25 4.22 4.18 

ζd 

FEA 45.4  42.3 39.2 36.1 33.0 29.9 26.8 23.7 20.7 17.6 14.5 

Eq.(17) 48.5  45.4 42.3 39.2 36.0 32.9 29.8 26.6 23.5 20.4 17.3 

AE 3.17 3.13  3.09  3.05  3.01  2.97  2.93  2.89  2.86  2.82  2.78  

RE (%) 6.52 6.89 7.31 7.79 8.36 9.04 9.85 10.87 12.14 13.82 16.10 

 301 

5.2. Pre-tensioning 302 

Similarly, the above cases C1 to C11 and D1 to D11 are both applied to verify accuracy of 303 

Eqs.(19) and (20) for prestressed beams in pre-tensioning, where the tendon force refers to the 304 

initial prestressed force. The dropping temperatures tij on the sub-tendons Tij in pre-tensioning are 305 

shown in Tab.9 and Tab.10 for two prestressed beams respectively. Similarly, the dropping 306 

temperatures do not follow the relation 'fij=ETCT tij' due to the interactions between tendons. 307 

 308 



 

 

 309 

Tab.9 Dropping temperatures on tendons for beams with three tendons in pre-tensioning 310 

Cases C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

t11, t12 -270.4  -278.1  -285.8  -293.5  -301.2  -308.9  -316.6  -324.3  -332.0  -339.8  -347.5  

t21, t22 -281.4  -289.3  -297.1  -305.0  -312.8  -320.6  -328.5  -336.3  -344.1  -352.0  -359.8  

t31, t32 -287.0  -294.8  -302.6  -310.4  -318.2  -326.0  -333.8  -341.6  -349.4  -357.2  -365.0  

 311 

Tab.10 Dropping temperatures on tendons for beams with four tendons in pre-tensioning 312 

Cases D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

t11, t12 -279.2  -287.2  -295.1  -303.1  -311.0  -319.0  -326.9  -334.9  -342.8  -350.8  -358.7  

t21, t22 -292.0  -300.1  -308.2  -316.3  -324.4  -332.5  -340.6  -348.7  -356.9  -365.0  -373.1  

t31, t32 -300.7  -308.8  -317.0  -325.2  -333.3  -341.5  -349.6  -357.8  -366.0  -374.1  -382.3  

t41, t42 -304.7  -312.8  -320.9  -329.0  -337.1  -345.2  -353.3  -361.4  -369.5  -377.6  -385.7  

Contours of displacements and stresses are depicted in Fig.11 for non-prestressed beams 313 

under gravity and two prestressed beams in pre-tensioning under the case C6, where P=0kN. It is 314 

obvious that compared with the non-prestressed beams (Fig.11a), the y-axial displacement UY at 315 

mid span changes from the downward to upward, and the warping stress on bottom flange changes 316 

from tension to compression after being prestressed, which results in the vanish of neutral axis in 317 

the range of cross section. So the external force P needs to overcome the prestressed force first in 318 

the later loading period, which largely improves the loading capacity of beam. 319 

(a) UY, non-prestressed beams, P=0 (b) SX, non-prestressed beams, P=0

˗5.1MPa

+5.1MPa

 320 

(c) UY, beams with three tendons (d) SX, beams with three tendons 

˗19.4MPa

˗90.1MPa

 321 

(e) UY, beams with four tendons (f) SX, beams with four tendons 

˗24.0MPa

˗123.8MPa

 322 
Fig.11 Contours of displacements UY and warping stresses SX for non-prestressed beams under gravity and two 323 

prestressed beams in pre-tensioning under the case C6 (unit: m, Pa). 324 

 325 

Comparisons of displacements obtained from FEA and the proposed method are tabulated in 326 

Tab.11 and Tab.12 respectively for two prestressed beams in pre-tensioning. It is seen that the 327 

proposed method provides a high accuracy in calculating the y-axial displacements with the RE 328 

less than 1% for all cases. So the proposed method has a strong ability in solving the vertical 329 

displacements for prestressed beams in pre-tensioning. 330 

 331 



 

 

 332 

Tab.11 Comparisons between FEA and the proposed method for the y-axial displacement of beams with three 333 

tendons in pre-tensioning (unit: mm, direction: upwards) 334 

Cases C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

FEA 6.99  7.23  7.46  7.70  7.93  8.17  8.40  8.64  8.87  9.11  9.34  

Eq.(19) 7.06  7.30  7.53  7.77  8.00  8.24  8.47  8.71  8.94  9.18  9.41  

RE (%) 0.95 0.93 0.91 0.89 0.87 0.85 0.83 0.81 0.79 0.77 0.75 

 335 

Tab.12 Comparisons between FEA and the proposed method for the y-axial displacement of beams with four 336 

tendons in pre-tensioning (unit: mm, direction: upwards) 337 

Cases D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

FEA 10.06  10.37  10.68  11.00  11.31  11.63  11.94  12.26  12.57  12.89  13.20  

Eq.(19) 10.12  10.43  10.75  11.06  11.37  11.69  12.00  12.31  12.62  12.94  13.25  

RE (%) 0.63 0.60 0.57 0.55 0.52 0.49 0.46 0.44 0.41 0.38 0.35 

 338 

Similarly, the warping stresses on flanges at mid span, obtained from FEA and the proposed 339 

method, are compared in Tab.13 and Tab.14 for two prestressed beams in pre-tensioning. It is seen 340 

that the proposed method (Eq.(20)) gives an acceptable results in calculating the warping stresses 341 

with all REs being less than 7%. So the proposed method is capable of estimating the warping 342 

stresses on flanges for beams externally prestressed with multi-tendons in pre-tensioning. 343 

 344 

Tab.13 Comparisons between FEA and the proposed method for warping stresses on flanges for beams with three 345 

tendons in pre-tensioning (ζu: stress on top flange, ζd: stress on bottom flange, unit: MPa) 346 

Cases C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

ζu 

FEA -17.72  -18.06  -18.41  -18.75  -19.09  -19.44  -19.78  -20.12  -20.47  -20.81  -21.15  

Eq.(20) -18.99  -19.33  -19.66  -20.00  -20.33  -20.66  -21.00  -21.33  -21.67  -22.00  -22.34  

RE (%) 6.73 6.56 6.39 6.23 6.08 5.94 5.80 5.67 5.54 5.42 5.31 

ζd 

FEA -78.40  -80.73  -83.06  -85.39  -87.72  -90.05  -92.37  -94.70  -97.03  -99.36  -101.7 

Eq.(20) -77.25  -79.59  -81.93  -84.27  -86.61  -88.95  -91.29  -93.63  -95.97  -98.31  -100.6 

RE (%) 1.47 1.41 1.36 1.31 1.26 1.22 1.17 1.14 1.10 1.06 1.03 

 347 

Tab.14 Comparisons between FEA and the proposed method for warping stresses on flanges for beams with four 348 

tendons in pre-tensioning (ζu: stress on top flange, ζd: stress on bottom flange, unit: MPa) 349 

Cases D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

ζu 

FEA -21.74  -22.19  -22.65  -23.10  -23.56  -24.01  -24.46  -24.92  -25.37  -25.82  -26.27  

Eq.(20) -22.90  -23.35  -23.80  -24.24  -24.69  -25.14  -25.60  -26.05  -26.50  -26.95  -27.40  

RE (%) 5.07 4.94 4.82 4.71 4.61 4.51 4.42 4.33 4.25 4.18 4.11 

ζd 

FEA -108.3 -111.4 -114.5 -117.6 -120.7 -123.8 -126.9 -130.0 -133.1 -136.2 -139.4 

Eq.(20) -107.2 -110.3 -113.5 -116.6 -119.7 -122.8 -125.9 -129.0 -132.1 -135.2 -138.4 

RE (%) 0.96 0.92 0.89 0.86 0.84 0.81 0.79 0.77 0.75 0.73 0.71 

 350 

5.3. The increase in tendon force 351 

Based on the initial prestressed forces in the cases C6 and D6, verifications on the increases 352 

in sub-tendon forces are performed under a series of forces P in Tab.15 and Tab.16 for the two 353 



 

 

prestressed beams, where SΔj1 is the increase in the sub-tendon Tj1 (j=1,2,3,4) and SΔj1=SΔj2 due to 354 

the symmetry of sub-tendons. It is seen that almost all REs are less than 10% and those for 355 

sub-tendons with larger eccentricities are much smaller. Besides, results obtained from the 356 

proposed method (Eq.(21)) are larger than those from FEA, which means the proposed method is 357 

conservative in estimating the increase in tendon force. 358 

Additionally, the influences of meshing size (MS) in FEA on the above REs are analyzed in 359 

Fig.12 for two prestressed beams respectively, where P=10000kN. It is seen that the REs reduce 360 

slightly and tend to be stable for the gradually refined meshing gird for both prestressed beams. 361 

Therefore, the proposed method (Eq.(21)) can be applied to calculate the increase in tendon force. 362 

 363 

Tab.15 Comparisons between FEA and the proposed method for the increase in sub-tendons for beams with three 364 

tendons (unit: kN) 365 

P 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

SΔ11 

SΔ12 

FEA 17.7  36.0  54.3  72.5  90.7  108.7  126.8  144.7  162.6  180.4  

Eq.(21) 19.6  39.2  58.8  78.3  97.9  117.5  137.1  156.7  176.3  195.8  

RE (%) 9.62 8.09 7.58 7.45 7.37 7.49 7.50 7.64 7.75 7.88 

SΔ21 

SΔ22 

FEA 38.9  79.3  119.6  159.9  200.1  240.2  280.3  320.3  360.2  400.1  

Eq.(21) 42.5  85.0  127.5  170.0  212.5  255.0  297.5  340.0  382.5  425.0  

RE (%) 8.47 6.70 6.19 5.94 5.83 5.80 5.78 5.79 5.82 5.85 

SΔ31 

SΔ32 

FEA 61.3  125.2  188.9  252.6  316.3  379.8  443.3  506.7  570.1  633.4  

Eq.(21) 65.4  130.8  196.2  261.6  327.1  392.5  457.9  523.3  588.7  654.1  

RE (%) 6.28 4.30 3.74 3.46 3.29 3.23 3.18 3.17 3.16 3.17 

 366 

Tab.16 Comparisons between FEA and the proposed method for the increase in sub-tendons for beams with four 367 

tendons (unit: kN) 368 

P 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

SΔ11 

SΔ12 

FEA 12.4  25.2  38.0  50.8  63.4  76.1  88.6  101.1  113.6  125.9  

Eq.(21) 13.8  27.7  41.5  55.4  69.2  83.1  96.9  110.8  124.6  138.5  

RE (%) 10.45 9.01 8.53 8.29 8.43 8.41 8.60 8.74 8.85 9.08 

SΔ21 

SΔ22 

FEA 28.9  59.0  89.0  119.0  148.9  178.7  208.5  238.2  267.8  297.4  

Eq.(21) 32.0  64.0  96.0  127.9  159.9  191.9  223.9  255.9  287.9  319.8  

RE (%) 9.64 7.77 7.24 6.98 6.89 6.88 6.87 6.91 6.97 7.01 

SΔ31 

SΔ32 

FEA 46.1  94.0  141.9  189.7  237.4  285.1  332.7  380.2  427.7  475.1  

Eq.(21) 50.1  100.2  150.4  200.5  250.6  300.7  350.8  401.0  451.1  501.2  

RE (%) 8.02 6.22 5.63 5.38 5.27 5.19 5.17 5.18 5.18 5.21 

SΔ41 

SΔ42 

FEA 64.4  131.5  198.5  265.5  332.4  399.2  466.0  532.7  599.3  665.9  

Eq.(21) 68.3  136.5  204.8  273.0  341.3  409.5  477.8  546.0  614.3  682.6  

RE (%) 5.65 3.67 3.06 2.75 2.60 2.52 2.47 2.44 2.44 2.44 
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 369 

Fig.12 Relative errors (RE) versus the meshing size in FEA for the increases in sub-tendon force for two 370 

prestressed beams (b is the width of flanges, b=1.5m) 371 

6. Parametric study 372 
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Fig.13 Deep I-shaped beams prestressed with two straight tendons 374 

In order to investigate the effects of tendon force and eccentricity on the flexural behavior of 375 

beams, a deep I-shaped beam externally prestressed with two straight tendons are analyzed under 376 

five evenly-distributed forces P (P=10000kN) for both post- and pre-tensioning processes, in 377 

which the measurements and beam self weight refer to Section 5. The Young's elastic module E 378 

and Poisson's ratio v are 210GPa and 0.3 respectively. For the sub-tendon Tij, the tendon force and 379 

eccentricity are Sij and ei, in which S11=S12 and S21=S22 due to the symmetry of sub-tendons. Two 380 

ratios ρS and ρe are herein defined by ρS=S21/S11 and ρe=|e2˗e1|/h, respectively. The cross-sectional 381 

area and elastic module of the sub-tendons Tij are uniform ATi and ETi (i=1, 2), respectively. The 382 

tensioning capacity fptk of sub-tendons is uniform 1625MPa. 383 

Relations between the location of neutral axis and the tendon forces and eccentricities are 384 

analyzed in Fig.14 for both post- and pre-tensioning in terms of two ratios ρS and ρe, respectively. 385 

For post-tensioning in Fig.14a, the distance eN increases non-linearly in terms of the tendon 386 

force and eccentricity with a increasing rate, and those with larger ratios ρS or ρe are much larger. 387 

While for pre-tensioning in Fig.14b, the distance eN varies in the form of a logarithm-shaped 388 

function. The curves with larger ratios ρS and ρe have a smaller absolute value of eN, resulting in a 389 

larger difference for stresses between top and bottom flanges, so that it needs a larger external 390 

force P to make the warping stresses on bottom flange change from compression to tension. 391 

Besides, the effects of tendon eccentricity on the increases in sub-tendon forces (SΔ21, SΔ11) 392 

and strains (εΔ21, εΔ11) are analyzed in Fig.15 in terms of the tensile rigidity KTi of sub-tendons Tij 393 

(j=1, 2) and the ratio ρe respectively, where KTi =ETiATi and KT1=0.068GA. 394 



 

 

As shown in Fig.15a, the ratio SΔ21/SΔ11 reduces non-linearly in terms of the eccentricity e1 395 

with a decreasing rate, and those with larger ρe and KT2 are much larger. Similar variability 396 

happens to the tendon strains in Fig.15b. However, it almost makes no difference between the 397 

cases with 'KT2=KT1' and those with 'KT2=1.6KT1'. This infers that the ratio εΔ21/εΔ11 almost has 398 

nothing to do with the ratio KT2/KT1. Furthermore, considering the equation 'KTi =ETiATi', we know 399 

that the changes on the module ETi or area ATi will not affect the ratio εΔ21/εΔ11. 400 
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Fig.14 Relations between the location of neutral axis and the tendon forces and eccentricities (AT1=0.01m2) 402 
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Fig.15 The ratios of the increases in sub-tendon forces and strains in terms of the eccentricity e1 (KT1=0.068GA) 404 

 405 

Conclusion 406 

In this paper, the flexural behavior of deep beam prestressed with straight multi-tendons is 407 

investigated under concentrated forces for both post- and pre- tensioning processes. 408 

Main conclusions are drawn as follows 409 

(1) The proposed method is capable of estimating the vertical displacements and warping 410 

stresses on flanges for beams prestressed with multi-tendons for both post- and pre- tensioning, 411 

which has been well verified by FEA. 412 



 

 

(2) For prestressed beams in loading period in pre-tensioning, the proposed method offers an 413 

acceptable and conservative estimation on the increase in tendon force, and the deviation with 414 

FEA decreases with the gradually refined meshing gird in FEA model. 415 

(3) Prestressed beams with larger tendon forces or distances between tendons display a more 416 

significant prestressed effect for both post- and pre- tensioning, resulting in a larger difference for 417 

stresses between the top and bottom flanges. Besides, the ratio of tensile rigidities between the top 418 

and bottom sub-tendons almost makes no change to that of the increases in sub-tendon strains. 419 

Future work are needed for (1) beams prestressed with draped multi-tendons; (2) the local 420 

stability of anchorages; (3) the relaxation of tendons. 421 
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