A note on the polynomial approximation of vertex singularities in
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Abstract

We study polynomial approximations of vertex singularities of the type 7*|logr|® on
three-dimensional surfaces. The analysis focuses on the case when \ > —%. This assumption
is a minimum requirement to guarantee that the above singular function is in the energy
space for boundary integral equations with hypersingular operators. Thus, the approximation
results for such singularities are needed for the error analysis of boundary element methods
on piecewise smooth surfaces. Moreover, to our knowledge, the approximation of strong
singularities (—% < A < 0) by high-order polynomials is missing in the existing literature.
In this note we prove an estimate for the error of polynomial approximation of the above
vertex singularities on quasi-uniform meshes discretising a polyhedral surface. The estimate
gives an upper bound for the error in terms of the mesh size h and the polynomial degree p.
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1 Introduction

In this note we analyse polynomial approximations of vertex singularities inherent to solutions
of boundary integral equations (BIE) on a polyhedral surface I". In particular, denoting by r the
distance to a vertex of I', we study approximations of singularities of the type r*|logr|® under
a minimum assumption on A ensuring that this singular function is in the space H'/2(I') (the
energy space for the BIE with hypersingular operator on I').

It is well known that solutions to BIE on piecewise smooth surfaces exhibit a singular be-
haviour in neighbourhoods of edges and vertices of the surface. In [16, 17] explicit formulas are
given to specify this behaviour for polyhedral and piecewise plane open surfaces. In particular,
it has been shown that solutions of BIE can be decomposed into a number of singular functions
and a smooth remainder. Moreover, taking enough singularity terms in this decomposition, one
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can obtain the smooth remainder as regular as needed. Let r be the distance to a vertex v of I’
and let p be the distance to one of the edges e C OI" such that € 3 v. Then typical singularities
are:

(i) vertex singularities of the type r*|logr|?;
(ii) edge singularities of the type pY|log p|??;
111) combined edge-vertex singularities ol the type "7 p7|logr|73;

here, A and ~ are real parameters to be specified below and 3; (i = 1,...,3) are non-negative
integers.

The admissible values of A and v depend on the problem under consideration. Let us consider
the following model problem: Find u € HY?(T') such that

(Wu,v) = (f,v) Yve HYXD). (1.1)

Here, f € H™1/2 (T") is a given functional, W is the hypersingular operator

1 9 o 1
1474 = / — . dS,, W: HY*I)— H YD),
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() = () 2y denotes the extension of the L*(I')-inner product by duality, and H~2(T) is
the dual space of HY/2(T'). The latter space is defined in §2.
As it follows from [17], for sufficiently smooth given f, the singularity exponents A and ~y

satisfy
A>XA >0 and > >1/2. (1.2)

We note that in the case of an open surface T, the energy space for problem (1.1) is H'/2(I)
and for sufficiently smooth given f there hold

A>A >0 and vy > >1/2. (1.3)

Thus, conditions (1.2) (or (1.3)) appear, if singularities in the solution to problem (1.1) are
caused solely by the geometry of the surface. However, for singular right-hand sides f in (1.1),
it may also occur that

)\2)\1>—1/2 and v >y >0, (1.4)

which are the minimum requirements to ensure u € H'/?(T).

In the framework of the p-version of the boundary element method (BEM), approximations
of singularities (i)—(iii) were first analysed in [15] under assumptions (1.2) on A, 7. These
assumptions guarantee that all singular functions (i)-(iii) are H'(I')-regular. Due to this fact,
a rigorous analysis of polynomial approximations of these singularities in L?(T") and in H'(T)
was performed in [15]. Then, using interpolation between these spaces, the paper culminated in
the optimal a priori error estimate for the p-version of the BEM with hypersingular operator on
a (closed) polyhedral surface I' (for smooth right-hand side f).



Later, in [5], we extended the results of [15] to the case of open surfaces, where singularity
exponents A, 7y satisfy (1.3). Moreover, our analysis in [5] for the p-BEM and then in [6] for the
hp-BEM with quasi-uniform meshes, covers the least regular cases (A, v satisfying (1.4)), but
only for edge and vertex-edge singularities (on both open and closed piecewise plane surfaces).
In these cases the corresponding singularities are not in H'(I') and one cannot apply the results
of [15]. To the author’s knowledge, the analysis of the high-order polynomial approximations
of the least regular vertex singularities is missing in the existing literature. With this note we
aim to fill this gap. As in [5, 6], we perform the error analysis on a scale of fractional order
Sobolev spaces. However, in contrast to [5], the analysis of p-approximations in this note relies
on explicit definitions of corresponding norms by the K-method of interpolation.

Let us note that efficient approximations of singularities (i)—(iii) under minimum assumptions
for A, v as in (1.4) can be helpful also for the analysis of high order BEM for time-harmonic
Maxwell equations in the exterior and/or interior of polyhedral domains. In fact, it is known (see
[11]) that solutions to these problems of electromagnetism are vector fields whose components
exhibit singularities analogous to those in (i)—(iii). It has been shown recently that the analysis
of polynomial approximations of singular vector fields inherent to the solution of the electric
field integral equation on a plane open surface r (in the energy space H Y 2(div,f)) can be
reduced to the analysis of scalar singularities (i)—(iii) in Sobolev spaces H'/?(T") and H'/?(I") (see
[9]). Besides efficient approximation of singularities, the use of high order methods for solving
problems of electromagnetism can be advantageous also from the point of view of minimising
numerical dispersion errors (see [1, 2, 13]).

We also note that for BIE with weakly singular operators, where the energy space is H /2 (T)
(or H~Y2(I"), if T is an open surface), the minimum assumptions for singularity parameters are

A>A>-3/2 and > > —1.

Polynomial approximations of singularities (i)—(iii) under these minimum assumptions were stud-
ied in [7, 8] in the context of the p-BEM and the Ap-BEM with quasi-uniform meshes.

The rest of the paper is organised as follows. In the next section we introduce a quasi-
uniform mesh discretising a Lipschitz polyhedral surface, define corresponding sets of piecewise
polynomials, recall definitions of Sobolev spaces and norms, and collect several auxiliary results.
Section 3 is focused on p-approximations of vertex singularities on a separate element of the
fixed size. Then in §4 we prove the main result (Theorem 4.1), which states an error estimate
(in terms of the mesh parameter h and polynomial degree p) for the approximation of vertex
singularities by piecewise polynomials on quasi-uniform meshes.

2 Preliminaries

Throughout the paper, I' denotes a Lipschitz polyhedral surface with plane faces and straight
edges. In what follows, h > 0 and p > 1 will always specify the mesh parameter and a polynomial
degree, respectively. We will denote by C' a generic positive constant which does not depend on
h or p.



For any domain 2 C R™ we will denote pq = sup{diam(B); B is a ball in Q}. By A ~ B we
mean that A is equivalent to B, i.e., there exists a constant C' > 0 such that C B < A< C~'B
where B and A may depend on a parameter (usually h or p) but C' does not.

Let M = {A} be a family of meshes A, = {I';; j =1,...,J} on I', where I'; are open
triangles or parallelograms such that I' = U}-Izlfj. For any I'; € Ay, we will denote h; = diam(I';)
and p; = pr;. Let h = mjax hj. In this paper we will consider a family M of quasi-uniform

meshes Ay, on I' in the sense that there exist positive constants o1, o2 independent of h such
that for any I'; € Ay, and arbitrary A, € M

h S Ulhj, hj S ngj. (2.1)

Let @ = (0,1)? and T = {(z1,72); 0 < 71 < 1,0 < @3 < z1} be the reference square and
triangle, respectively. Then for any I'; € Aj one has I'; = M;(K), where M; is an affine
mapping with Jacobian |J;| ~ h? and K = @ or T as appropriate.

Further, P, (/) denotes the set of polynomials of degree < p on an interval I C R. Moreover,
P; (T') is the set of polynomials on T' of total degree < p, and Pg(@) is the set of polynomials on
Q of degree < p in each variable. Let K C R? be an arbitrary triangle or parallelogram, and let
K = M(T) or K = M(Q) with an invertible affine mapping M. Then by P,(K) we will denote
the set of polynomials v on K such that vo M € P)(T) if K is a triangle and vo M € P2(Q) if
K is a parallelogram (in particular, we will use this notation for K = @ and K = T'). For given
p, we then consider the space of continuous, piecewise polynomials on the mesh Ay, € M,

S"P(T) == {v e C°(T); vlr, € Pp(Ty), j=1,...,J}

Let us recall the Sobolev norms and spaces that will be used, see [14, 12]. For a domain
2 C R" and integer s let H*(€2) be the closure of C*°(€2) with respect to the norm

el = lull3gecs gy + [uldregey (s > 1),

where
2 2 0
fule ) = /Q ID*u(x)|>de, and HO(Q) = Lo(Q).
Here, |DSu(z)|? = >lal=s | D%(x)|? in the usual notation with multi-index o = (e, ..., @) and
with respect to Cartesian coordinates x = (x1,...,2,). For non-integer s, the Sobolev spaces

are defined by interpolation. We use the real K-method of interpolation (see [14]), where, for
two normed spaces Ag and Aq, the interpolation space (Ag, A1)g2 (0 < 6 < 1) is equipped with
the norm

> —20 : 2 2 2 dt 1/2
Jall e = (€2, int | (ool + € asl3) F)

Using this method we define

HY(Q) = (Lo(Q), H(©))  (0<s<1).

S



Furthermore, if 2 has Lipschitz boundary, we set

() = (L2(Q), H§(Q)), . (1/2<s<1,0<7<5).

r
S

Here, H§(Q) (0 < s < 1) is the completion of C§°(Q) in H*(2) and we identify HJ () and H(Q).
It is well-known that the norms in H*(Q), H$() and H*(Q) are equivalent for 0 < s < 1/2.
For 1/2 < s < 1, only the norms in Hg(Q) and H*(Q) are equivalent.

For s € [—1,0) the spaces are defined by duality:

H*(Q) = (H*(Q)), H(Q)=(H ()"
Now let us collect several technical lemmas. We will need the following scaling result.

Lemma 2.1 Let K" and K be two open subsets of R™ such that K" = M (K) under an invertible
affine mapping M. Let diam K" ~ pyn ~ h and diam K ~ px ~ 1. Ifu € H™(K") with integer
m >0, then & = uo M € H™(K) and there exists a positive constant C' depending on m but
not on h or u such that

[t (1) < CP™ % [l om (g (2.2)

Analogously for any 4 € H™(K) there holds
[l g ey < CB2 @ gy (1) (2.3)
Moreover, if 4 € H*(K) with real s € [0, m], then
CLh 2 llill o xe) < Nlull s sy < Coh2™*[[all s (xc)- (2.4)

For the proof of (2.2), (2.3) see [10, Theorem 3.1.2]. Inequalities (2.4) then follow by inter-
polation (see [3, Lemma 4.3]).

The next theorem states the result on the hp-approximations of smooth functions (for the
proof see [6, Proposition 4.1]).

Theorem 2.1 Letm > 1. Then foru € H™(T') there exists up, € S" (') such that for s € [0, 1]
lu = wnpl ey < CR*=*p™ ]| gy,

where p = min{m,p+ 1} and

1/2 if s€l0,1/2),
§=¢1/24¢,e>0 if s=1/2, (2.5)
s if s € (1/2,1].

The following two lemmas have been also proved in [6], c¢f. Lemma 3.4 and Lemma 3.5
therein.



Lemma 2.2 Let K" be a triangle (respectively, a parallelogram) satisfying the assumptions
of Lemma 2.1, and let I" be a side of K" with vertices vi, vo. Let wp, € Pp(I") be such
that wpp(v1) = wpp(ve) = 0, and ||wpp| p,qny < f(hyp). Then there exists upy € Popi1(KM)
(respectively, upy € Pp(K™)) such that upy = wpy on 1", up, =0 on OK™M\I", and for 0 < s <1

[npll s zeny < ChY275p=1F28 f(h,p).

Lemma 2.3 Let A, = {T';} be a quasi-uniform mesh on I'. Then for 0 < s <1

lullZrery = D lullfrer,) Vu € H¥(I),
j

and for 1/2 < s < 1 there holds

lallzrey < € (h >l ey + ulfrery))  Vu € B(D). (26)
J

The positive constant C' in (2.6) is independent of w and the mesh A.

3 p-approximation on a separate element of the fixed size

We start with a model situation on the reference square Q = (0,1)2. This will lead us to the
p-approximation result on a separate element (either a triangle or a parallelogram) of the fixed
size.

For the model situation, let £ > 1 and denote S,, = {x € Q; klz <ao < kx1}. We consider
the following singular function over the square Q:

u(r,0) = 7“)‘\ logrlﬁx(r)w(e), (3.1)

where (r,6) denote local polar coordinates with origin at (0,0), A > —1/2, 8 > 0 is an integer,
w(0) is sufficiently smooth, and y is a C°° cut-off function satisfying

x(r)=1 for 0<r<§/2 and x(r)=0 for r>. (3.2)

Here, 6 € (0,1) is small enough. If A = 0, we will assume that [ is a positive integer, so that
the function u has only a logarithmic singularity in this case. Observing that u € H*(Sj,) for
ko > 1 and for any s € [0, A+ 1), we study polynomial approximations of u. We emphasize again
that for A € (—1/2,0] the function u is not H'(T')-regular, and one cannot apply the results of
[4, 15, 5], were A was assumed to be positive.

Theorem 3.1 Let u be given by (3.1). Then there exists a sequence u, € PSJFQ(Q), p=12,...,
such that u, = 0 at the origin (0,0),

lu = upllrss,y) < Cp 2P (1+1ogp)?, 0<s <min{l,A+1}, (3.3)
and for any straight line £ > (0,0) there holds
|u — up”LQ(mSKO) < Cp_z(/\H/Q) (1+ 10%17)6- (3.4)



Although the results of [4] and [15] cannot be applied directly, we will use the approach
developed in these papers (see, in particular, Theorem 5.1 in [4] and Theorem 8.1 in [15]). First,
we extend u smoothly from Sy, to S, D Sk,. This can be done by multiplying (3.1) by a C*°
cut-off function x(#) such that for k > kg

x(#) =1 for arctan /io_l < 6 < arctan ko,

X(@) =0 for § <arctansk~! and 6 > arctank.
We will retain the notation u for the extended function. Let
E(x1,m0) = (21 — ko) (Kxy — T2) = r2®1 ()

and
u(xy, x2)

£(x1, 22)

where ®9(0) is smooth. Introducing a cut-off function w such that

ug (1, 9) = = 2| log 7|’ x () ®2(6),

weC®R), w(z)=0 for 2<1, w(z)=1 for z>2, (3.5)

we define for a small A € (0,1)

Then we decompose ug as

u(z -
up(z) = 553:; = g (z)w™ () + uo ()@ (1) =: vo(z) 4+ wo(z). (3.6)
The function vp in (3.6) is smooth and vanishes for 0 < r < A. Moreover, for any non-
negative integers k and [ there exists a positive constant C'(k + [) independent of A such that
for (z1,22) € @ and for i = 1,2

ak+lv0

Oxk o,

0 for 0 <r <A,

3.7
222 log AJP otherwise. (37)

SC(mz){

Polynomial approximations of functions satisfying (3.7) (and not necessarily having the explicit
form given above) were investigated in [4] when proving Theorem 5.1 therein, and were also
studied in [15, Theorem 8.1]. The estimate for the approximation error in the H(S,)-norm
immediately follows from [4], while [15] gives also the estimate in the La(.S,)-norm and then, by
interpolation, in the norm of H*(S,) with 0 < s < 1. Moreover, [15, Lemma 8.2] estimates the
approximation error in the Lo(¢ N S,)-norm, where /¢ is the line z; = Rxo (mal < R < ko). We
summarise the mentioned results in the following lemma.



Lemma 3.1 Let A = p~2. If vy satisfies (3.7), then there exists a sequence v, € 7’5+2(Q);
p=1,2,..., such that v,(0,0) =0 and for any 0 < s <1

1§00 = vpllr12(5,,y) < Cp2M79) (1 +log p)”.

Moreover,
[[€vo — UPHLQ(EOS'KO) < CP_Q(/\—H/Q) (1+ logp)ﬁ,

where ¢ denotes the line x1 = kxa (Hal <k < ko).

The function wg in (3.6) has a small support, suppwy C Ka = {z € Sx; 0 <r < 2A}. In
the next lemma we show that the function wy being approximated by zero leads to the same
estimates as in (3.3), (3.4).

Lemma 3.2 Let A =p~2. Then for 0 < s < min {1, A\ + 1}
€wol s (5,,y) < Cp P79 (1 + log p)”. (3.8)
ngO”Lz(fﬁS‘nO) < Cp—Q(A—I-l/?) (1 + 10gp)6, (39)
where ¢ is the same as in Lemma 3.1.

Proof. First, we prove (3.8) for s = 0. For sufficiently small A > 0 one has (hereafter,
61 = arctan k!, o = arctan k)

l€woll, (s, < N€wollZys,) = lI€wollZ,xy)

2A 02
C//r”‘\ log |2 rdfdr < CAP*2|log A|?P, X > —1, (3.10)
0 6

IN

where C' > 0 is independent of A. Let 0 < s < min{1,\+ 1}. Then

o0

o dt
lgwolly s,y = [, wf (Il + & loalngs,) 5 (G4D
0

Ewo=w1+w2

For any t € (0, A) we define
wir) =w(}), &) =1-w(r), r>0,

where w is as in (3.5). Then by (3.11) we have

A
lwolnsyy < [t (Newodly s,y + 12 I€wowlngs, ) ) de
0



e}

n /t_2s—1“5w0\|i2(sﬁo)dt. (3.12)
A

Now we estimate the norms on the right-hand side of (3.12). Since @(r) = 0 for r > 2¢, we
obtain similarly to (3.10)

2t
||£w0u~1t||%2(sﬁo) < C/r2A+1| 10g7"2ﬁ dr < Ct2)‘+2’ logt‘zg- (3.13)
0

To estimate the norm [|{wowt| 1 (s,,) we evaluate the derivatives of {wow;. We will use the
following inequalities

or 00 1 1
<1 < = <C(K)- S., i=1,2;
Ox;| = |0xi| ~ x; — (H)r’ ve !
dw®(r) do® (r) for 0 <r < Aorr>2A,
dr | ar - Z Z for A <r<2A
< Cr~ for r >0,
and a similar estimate for ‘dwjﬁr) . Hence, for any x € S, we find by simple calculations
()| = [ (PlogrPX(ROUOPC)n()]
6 A 1 dCUt
: our) v (|55 + 557+ [ 5+ 5|+ )
< C[ x( | log r| )’—i—r!ogﬂ ar I
< Cr* Y logr|?, i=1,2. (3.14)

Since wowy vanishes on 05, and outside the domain Ki ={z € S,; t <r < 2A}, we deduce
from (3.14) that
2A 09
lgworllys,y) < Cléwownligey, < C [ [ 12 logr r dbr
t 6,
2A

t>Mlogt|?® if A<0
< C’/r2’\_1|logr|2ﬁdr <C 2L og | 1 =% (3.15)
J A log A2 if A > 0.

If A =0, we introduce a small € € (0,2 — 2s) and estimate the norm ||§w0wt||§{1(s  as follows
0]

2A 2A
waoth%p(Smo) <C / r~Ylogr*Pdr < C|logt|?? / rIE S dr < CASEF|logt|?®. (3.16)
t t



Using estimates (3.10), (3.13), (3.15) for the norms on the right-hand side of (3.12) we obtain
for 0 < s <min{l,\+ 1}

A 00
lwll3re(sy < C / $2AH1225 1og 1284t 4 CAP2|log A2 / 21y
0 A
< CAYMH1=9)|10g AP if —1<A<0 (3.17)
and
A A
lgwollZs s,y < € / 21725 log 7 dt + CAP [ log AP / >t
0 - 0
+ CAPF2|log AP / 2 1gp
A
< CA2OF1=9)10g AP if A > 0. (3.18)

In the case when A = 0 we proceed similarly and use (3.16) instead of (3.15). Then recalling
that 0 < e <2 —2s we have for 0 < s <1

A (%)
€wollFrs(s,,) < C/t_28_1<t2 +t2—5A8)\1ogt|25dt+CA2|1ogA\25/t—25—1dt
0 A

A
< CAT2|log AP +CA€/t72S+1*E|logt|26dt
0

< CA?179)|log AP if A=0. (3.19)

Taking A = p~2 and using estimates (3.10), (3.17)-(3.19) we prove (3.8). B
Let £ be the line 1 = Kxy, where /@51 < &k < Kg- Then, recalling that suppwg C Ka, we
find by simple calculations

2A(1472)~1/2
16wollZ1em5,,) < CON B, R) / 2 log z[*dz < CAP M |log A7
0

Setting A = p~2 we obtain (3.9). O

Proof of Theorem 3.1. The desired statement follows from Lemmas 3.1 and 3.2 making use
of decomposition (3.6). O

Now we consider an element (triangle or parallelogram) K C R? of the fixed size (i.e., we
assume that diam K ~ pg ~ 1).

10



Theorem 3.2 Let K C R? and suppose that O = (0,0) is a vertex of K. Let u be given by (3.1)
on K. Then there exists a sequence up, € Pp(K), p=1,2,... such that for 0 < s < min {1, \+1}

lu = pll s (rey < Cp 279 (1 + logp)”.
Moreover, u,(0,0) =0, u, =0 on the sides l; C 0K, 1; # O, and
lu = upllya,) < Cp 2012 (1 4 logp)?  for each side I C OK, O € .

The proof is based on Theorem 3.1 and repeats exactly the arguments in [15, Theorem 8.2].

4 hp-approximation on quasi-uniform meshes

In this section we prove the result on the approximation of vertex singularities by piecewise
polynomials defined on the quasi-uniform mesh A} discretising polyhedral surface I'. Let us fix
a vertex v of I'. We will consider the vertex singularity u given by (3.1), where (r, §) now refers
to local polar coordinates (with origin at v) on each face of I' containing v.

Theorem 4.1 Let u be given by (3.1) with A > —% and an integer 3 > 0. Then there exists
upp € SMP(T') with p > X such that for 0 < s < min {1, + 1}

lu = wppl sy < CRATI5p~2OH79) (1 4 log(p/h)) P+, (4.1)

where v = % if p= X\, and v = 0 otherwise.
If 1 < p < A\, then there exists up, € S"™(T) satisfying for s € [0,1]

lu — wpp| oy < CRPHIS (4.2)

Proof. Note that assumption 1 < p < X implies A > 1. This case was considered in [6,
Theorem 6.1], where estimate (4.2) was proved.
To prove (4.1) we decompose u as u = 1 + @2, where

p1:=ux(r/ho), 2 :=u(l=x(r/ho)), ho= (o102)"'h, (4.3)

X is the cut-off function in (3.1), and o1, o9 are the same as in (2.1).

The singular function ¢; has small support, supp¢i C A, = U{fj; v E fj}. Let KM =
I' C Ay and let K C R? be a triangle or parallelogram such that K" = M, (K) under the affine
mapping Mp, : x; = hi;, i = 1,2, x € K" & € K. Then O = (0,0) is a vertex of K and for
h < % we have

B
D1 (ﬁ?) = (h:il, hig) = pApA Z <§> ‘ log h|k| log ’f'|ﬁ_kx(0'10'2f)w((9)7
k=0

where 7 = (22 4 22)1/2, § = arctan(i2/21).

11



Let A = {I;} contain those sides I; C 0K for which O € [;, and let B be the union of the other
sides of K. Then applying Theorem 3.2 to each function N log #|Fx (o109™)w(h), k=0,...,7,
we find a polynomial ¢ € P,(K) such that ¢(0,0) =0, ¢ =0 on B,

IN

161 = Sl ms(xc) C(B) P p2OH =) (1 4 log(p/h))’, 0 <s <min{l,A+1}, (4.4)

|p1 — (ZASHLQ(l) < C(B) h)‘p*2()‘+1/2) (1+ log(p/h))ﬁ for every [ € A. (4.5)

N

Let us define ¢; := b o Mh_l. Then ¢; € Py(I'j), ¢; = 0 at the vertex v and on the sides
I € Bj = My, (B). Furthermore, making use of Lemma 2.1, we obtain by (4.4), (4.5)

IN

o1 = &l m=(r) C WM p A7) (1 4 log(p/h))?, 0 <s <min{l,A+1},  (4.6)

lor = @illyary < CRM2pT2OHR (1 4 log(p/h))? for every 1" € Aj = My(A). (4.7)

Suppose that I';, I'; C A, are two elements having the common edge =T, ﬂfj (these elements
may lie on different faces of I'). Let ¢; € Pp(I';) and ¢; € Pp(I';) be the approximations of ¢
constructed above and satisfying estimates (4.6), (4.7). Then the jump g = (¢; — ¢;)|;» vanishes
at the end points of " and

g/l Lyny < CRATY2p=2OF12) (1 4 log(p/h))P.
If T'; is a parallelogram, we use Lemma 2.2 to find a polynomial z € P,(I";) such that
z=g onl" z=0 on OI;\I", (4.8)

and for 0 <s <1
12l a5y < C AT p72AH79) (14 log (p/ ). (4.9)

In the case that I'; is a triangle, we note that (4.6) and (4.7) also hold for a polynomial );
of degree [%} (with different constants C' for the upper bounds in (4.6) and (4.7)). Then
Lemma 2.2 yields a polynomial z € P,(I';) which satisfies (4.8), (4.9) for I'; being a triangle.

Setting gE = ¢; + z on I'; and ¢~> = ¢j on I'; we find a continuous piecewise polynomial gZ)
such that the norms ||¢1 — (Z)”Hs(l“i) and |1 — <]3||Hs(pj) are bounded as in (4.6) for 0 < s <
min {1, A+ 1}.

Repeating the above procedure we construct a continuous function v, € CY(4,) such that
Y1 =0 on 0A,, Y1 € Py(I'y) for each I'; C A,, and

ler — il s,y < C RS p720H179) (1 4 log(p/h))?, 0 <s<min{l,A+1}.  (4.10)

Now we extend 11 by zero onto I'\ 4, (keeping the notation 1; for the extension). Then v, €
ShP(T) and there holds for 0 < s < min {1, \ + 1}

lor = il sy < CRA 72019 (1 1 log(p/h)”. (4.11)
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In fact, for s = 0 estimate (4.11) on I" immediately follows from inequalities (4.10) on individual
elements. If 1/2 < s < min {1, A\ 4+ 1}, then we use Lemma 2.3:

”801—1/)1H%{s(r) < C<h_281@1_¢1’%2(F)+ Z 901—1/}1%{3@-))
j:T;CT

C(h o1 =villan+ 2 ller =il )

j:FjCAU

IN

and (4.11) follows again from (4.10), because the number v, of elements in A, is independent of
h (v, < “g—g, where w, is the total length of the closed piecewise smooth arc cut out in the unit

sphere S? by the edges of I having v as an endpoint, y is the minimal angle of elements in the
mesh).

Finally, for 0 < s < 1/2, estimate (4.11) follows via interpolation between H%(I') and H* (T')
for some s’ € (5, min {1, + 1}).

For the function 2 (see (4.3)) one has

p2 = | log r|"x(r)(1 = x(r/ho))w(6) € H™(T),
where m depends on the regularity of w(#), m is fixed and as large as required. Furthermore,
supp w2 C R", where R" = {z €T, gho < r(x) < 0 on each face at the vertex v},

where ¢ is the same as in (3.2).
To bound the norm ||z z#(ry we need the following inequalities:

l+m l+m
al t’n < 1—l—m’ 8[ ?n < CT_l_m
O0x 0z} O0x 0z}
for any integer I, m > 0, and
! 0 for 0 < r < 2hy and r > Ghy,
il(l _ X(’f’/ho)) — . 5 2/%0 0
or ]x(l)|h6 for Sho <r < dho

< Cr! for >0
with any integer [ > 1.
Hence, we find by simple calculations
o2 l2m ) < Cllog(1/h))* / P2OR) pdr 0 < k< m. (4.12)
Sho/2

Further, due to Theorem 2.1, there exists 1o € S"(T) such that for s € [0, 1]
2 — ol s ry < CRP*p~E=9la| ey, (4.13)
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where k € (1,m] is integer, u = min {k,p + 1}, and § is defined by (2.5).
If A\ +1 <k <m, then (4.12) and (4.13) yield

2 — ol go(ry < CRPTAFH= = 10g0T7(1/h), s € [0,1], (4.14)

where v = 3 if k=A+1,and v =0 if k > A+ 1.
Ifp>2X+ %, we select an integer k satisfying

2 A+ 5 <k<p+l

Then p =k > 3 and p~ =5 < p=20+1=9) for any s € [0, 1].
IfA<p<2\+ % (i.e., p is bounded), we choose an integer k such that

max{l, A+ 1} <k <p—+1,

and if p = X, then we take k = A+ 1 = p+ 1. In both these cases p = k > 1 and p~ =9 <
C(\) p~2X+1=9) for any s € [0, 1].
Thus, for any p > A, selecting k as indicated above we find by (4.14)

2 — Wl e (ry < CRAMTI5p 2O 1= 1068t (1 /1), s € [0, 1], (4.15)

where v = % if p = A and v = 0 otherwise.
Now combination of (4.11) and (4.15) gives (4.1) with up, := 11 + 19 € S"P(T). O

Remark 4.1 If I' is an open piecewise plane surface and the function u in (3.1) vanishes on
T, then w € H*(T") for any 0 < s < min{1, A+ 1}. In this case the same arquments as in the

proof of Theorem 4.1 lead to even stronger result: if p > X, then there exists up, € Sgp(F) =
She(T) N HE(T) such that for 0 < s < min {1, \ + 1}

Ju — Uthﬁs(r) < ChME p72()‘+175) (1+ IOg(p/h))ﬂJrV’

where v is the same as in (4.1); if 1 < p < A, then there exists up, € Sgp(f‘) satisfying for
s €[0,1]

lu = unpll oy < CHPFI
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