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Abstract

We study polynomial approximations of vertex singularities of the type rλ| log r|β on
three-dimensional surfaces. The analysis focuses on the case when λ > − 1

2 . This assumption
is a minimum requirement to guarantee that the above singular function is in the energy
space for boundary integral equations with hypersingular operators. Thus, the approximation
results for such singularities are needed for the error analysis of boundary element methods
on piecewise smooth surfaces. Moreover, to our knowledge, the approximation of strong
singularities (− 1

2 < λ ≤ 0) by high-order polynomials is missing in the existing literature.
In this note we prove an estimate for the error of polynomial approximation of the above
vertex singularities on quasi-uniform meshes discretising a polyhedral surface. The estimate
gives an upper bound for the error in terms of the mesh size h and the polynomial degree p.
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1 Introduction

In this note we analyse polynomial approximations of vertex singularities inherent to solutions
of boundary integral equations (BIE) on a polyhedral surface Γ. In particular, denoting by r the
distance to a vertex of Γ, we study approximations of singularities of the type rλ| log r|β under
a minimum assumption on λ ensuring that this singular function is in the space H1/2(Γ) (the
energy space for the BIE with hypersingular operator on Γ).

It is well known that solutions to BIE on piecewise smooth surfaces exhibit a singular be-
haviour in neighbourhoods of edges and vertices of the surface. In [16, 17] explicit formulas are
given to specify this behaviour for polyhedral and piecewise plane open surfaces. In particular,
it has been shown that solutions of BIE can be decomposed into a number of singular functions
and a smooth remainder. Moreover, taking enough singularity terms in this decomposition, one

∗Supported by EPSRC under grant no. EP/E058094/1.
†BICOM, Department of Mathematical Sciences, Brunel University, Uxbridge, West London UB8 3PH, UK.

email: albespalov@yahoo.com. Supported by the INTAS Young Scientist Fellowship grant (project no. 06-
1000014-5945) and by the Russian Science Support Foundation.

1



can obtain the smooth remainder as regular as needed. Let r be the distance to a vertex v of Γ
and let ρ be the distance to one of the edges e ⊂ ∂Γ such that ē 3 v. Then typical singularities
are:

(i) vertex singularities of the type rλ| log r|β1 ;

(ii) edge singularities of the type ργ | log ρ|β2 ;

(iii) combined edge-vertex singularities of the type rλ−γργ | log r|β3 ;

here, λ and γ are real parameters to be specified below and βi (i = 1, . . . , 3) are non-negative
integers.

The admissible values of λ and γ depend on the problem under consideration. Let us consider
the following model problem: Find u ∈ H1/2(Γ) such that

〈Wu, v〉 = 〈f, v〉 ∀v ∈ H1/2(Γ). (1.1)

Here, f ∈ H−1/2(Γ) is a given functional, W is the hypersingular operator

Wu(x) := − 1
4π

∂

∂nx

∫

Γ
u(y)

∂

∂ny

1
|x− y| dSy, W : H1/2(Γ) → H−1/2(Γ);

〈·, ·〉 = 〈·, ·〉L2(Γ) denotes the extension of the L2(Γ)-inner product by duality, and H−1/2(Γ) is
the dual space of H1/2(Γ). The latter space is defined in §2.

As it follows from [17], for sufficiently smooth given f , the singularity exponents λ and γ
satisfy

λ ≥ λ1 > 0 and γ ≥ γ1 > 1/2. (1.2)

We note that in the case of an open surface Γ, the energy space for problem (1.1) is H̃1/2(Γ)
and for sufficiently smooth given f there hold

λ ≥ λ1 > 0 and γ ≥ γ1 ≥ 1/2. (1.3)

Thus, conditions (1.2) (or (1.3)) appear, if singularities in the solution to problem (1.1) are
caused solely by the geometry of the surface. However, for singular right-hand sides f in (1.1),
it may also occur that

λ ≥ λ1 > −1/2 and γ ≥ γ1 > 0, (1.4)

which are the minimum requirements to ensure u ∈ H1/2(Γ).
In the framework of the p-version of the boundary element method (BEM), approximations

of singularities (i)–(iii) were first analysed in [15] under assumptions (1.2) on λ, γ. These
assumptions guarantee that all singular functions (i)–(iii) are H1(Γ)-regular. Due to this fact,
a rigorous analysis of polynomial approximations of these singularities in L2(Γ) and in H1(Γ)
was performed in [15]. Then, using interpolation between these spaces, the paper culminated in
the optimal a priori error estimate for the p-version of the BEM with hypersingular operator on
a (closed) polyhedral surface Γ (for smooth right-hand side f).
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Later, in [5], we extended the results of [15] to the case of open surfaces, where singularity
exponents λ, γ satisfy (1.3). Moreover, our analysis in [5] for the p-BEM and then in [6] for the
hp-BEM with quasi-uniform meshes, covers the least regular cases (λ, γ satisfying (1.4)), but
only for edge and vertex-edge singularities (on both open and closed piecewise plane surfaces).
In these cases the corresponding singularities are not in H1(Γ) and one cannot apply the results
of [15]. To the author’s knowledge, the analysis of the high-order polynomial approximations
of the least regular vertex singularities is missing in the existing literature. With this note we
aim to fill this gap. As in [5, 6], we perform the error analysis on a scale of fractional order
Sobolev spaces. However, in contrast to [5], the analysis of p-approximations in this note relies
on explicit definitions of corresponding norms by the K-method of interpolation.

Let us note that efficient approximations of singularities (i)–(iii) under minimum assumptions
for λ, γ as in (1.4) can be helpful also for the analysis of high order BEM for time-harmonic
Maxwell equations in the exterior and/or interior of polyhedral domains. In fact, it is known (see
[11]) that solutions to these problems of electromagnetism are vector fields whose components
exhibit singularities analogous to those in (i)–(iii). It has been shown recently that the analysis
of polynomial approximations of singular vector fields inherent to the solution of the electric
field integral equation on a plane open surface Γ̃ (in the energy space H̃−1/2(div, Γ̃)) can be
reduced to the analysis of scalar singularities (i)–(iii) in Sobolev spaces H1/2(Γ̃) and H̃1/2(Γ̃) (see
[9]). Besides efficient approximation of singularities, the use of high order methods for solving
problems of electromagnetism can be advantageous also from the point of view of minimising
numerical dispersion errors (see [1, 2, 13]).

We also note that for BIE with weakly singular operators, where the energy space is H−1/2(Γ)
(or H̃−1/2(Γ), if Γ is an open surface), the minimum assumptions for singularity parameters are

λ ≥ λ1 > −3/2 and γ ≥ γ1 > −1.

Polynomial approximations of singularities (i)–(iii) under these minimum assumptions were stud-
ied in [7, 8] in the context of the p-BEM and the hp-BEM with quasi-uniform meshes.

The rest of the paper is organised as follows. In the next section we introduce a quasi-
uniform mesh discretising a Lipschitz polyhedral surface, define corresponding sets of piecewise
polynomials, recall definitions of Sobolev spaces and norms, and collect several auxiliary results.
Section 3 is focused on p-approximations of vertex singularities on a separate element of the
fixed size. Then in §4 we prove the main result (Theorem 4.1), which states an error estimate
(in terms of the mesh parameter h and polynomial degree p) for the approximation of vertex
singularities by piecewise polynomials on quasi-uniform meshes.

2 Preliminaries

Throughout the paper, Γ denotes a Lipschitz polyhedral surface with plane faces and straight
edges. In what follows, h > 0 and p ≥ 1 will always specify the mesh parameter and a polynomial
degree, respectively. We will denote by C a generic positive constant which does not depend on
h or p.
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For any domain Ω ⊂ IRn we will denote ρΩ = sup{diam(B); B is a ball in Ω}. By A ' B we
mean that A is equivalent to B, i.e., there exists a constant C > 0 such that C B ≤ A ≤ C−1B
where B and A may depend on a parameter (usually h or p) but C does not.

Let M = {∆h} be a family of meshes ∆h = {Γj ; j = 1, . . . , J} on Γ, where Γj are open
triangles or parallelograms such that Γ̄ = ∪J

j=1Γ̄j . For any Γj ∈ ∆h we will denote hj = diam(Γj)
and ρj = ρΓj . Let h = max

j
hj . In this paper we will consider a family M of quasi-uniform

meshes ∆h on Γ in the sense that there exist positive constants σ1, σ2 independent of h such
that for any Γj ∈ ∆h and arbitrary ∆h ∈M

h ≤ σ1hj , hj ≤ σ2ρj . (2.1)

Let Q = (0, 1)2 and T = {(x1, x2); 0 < x1 < 1, 0 < x2 < x1} be the reference square and
triangle, respectively. Then for any Γj ∈ ∆h one has Γj = Mj(K), where Mj is an affine
mapping with Jacobian |Jj | ' h2

j and K = Q or T as appropriate.
Further, Pp(I) denotes the set of polynomials of degree ≤ p on an interval I ⊂ IR. Moreover,

P1
p (T ) is the set of polynomials on T of total degree ≤ p, and P2

p (Q) is the set of polynomials on
Q of degree ≤ p in each variable. Let K ⊂ IR2 be an arbitrary triangle or parallelogram, and let
K = M(T ) or K = M(Q) with an invertible affine mapping M . Then by Pp(K) we will denote
the set of polynomials v on K such that v ◦M ∈ P1

p (T ) if K is a triangle and v ◦M ∈ P2
p (Q) if

K is a parallelogram (in particular, we will use this notation for K = Q and K = T ). For given
p, we then consider the space of continuous, piecewise polynomials on the mesh ∆h ∈M,

Shp(Γ) := {v ∈ C0(Γ); v|Γj ∈ Pp(Γj), j = 1, . . . , J}.

Let us recall the Sobolev norms and spaces that will be used, see [14, 12]. For a domain
Ω ⊂ IRn and integer s let Hs(Ω) be the closure of C∞(Ω) with respect to the norm

‖u‖2
Hs(Ω) = ‖u‖2

Hs−1(Ω) + |u|2Hs(Ω) (s ≥ 1),

where
|u|2Hs(Ω) =

∫

Ω
|Dsu(x)|2 dx, and H0(Ω) = L2(Ω).

Here, |Dsu(x)|2 =
∑
|α|=s |Dαu(x)|2 in the usual notation with multi-index α = (α1, . . . , αn) and

with respect to Cartesian coordinates x = (x1, . . . , xn). For non-integer s, the Sobolev spaces
are defined by interpolation. We use the real K-method of interpolation (see [14]), where, for
two normed spaces A0 and A1, the interpolation space (A0, A1)θ,2 (0 < θ < 1) is equipped with
the norm

‖a‖(A0,A1)θ,2
:=

(∫ ∞

0
t−2θ inf

a=a0+a1

(‖a0‖2
A0

+ t2 ‖a1‖2
A1

)
dt

t

)1/2

.

Using this method we define

Hs(Ω) =
(
L2(Ω), H1(Ω)

)
s,2

(0 < s < 1).
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Furthermore, if Ω has Lipschitz boundary, we set

H̃r(Ω) =
(
L2(Ω),Hs

0(Ω)
)

r
s
,2

(1/2 < s ≤ 1, 0 < r < s).

Here, Hs
0(Ω) (0 < s ≤ 1) is the completion of C∞

0 (Ω) in Hs(Ω) and we identify H1
0 (Ω) and H̃1(Ω).

It is well-known that the norms in Hs(Ω), Hs
0(Ω) and H̃s(Ω) are equivalent for 0 < s < 1/2.

For 1/2 < s < 1, only the norms in Hs
0(Ω) and H̃s(Ω) are equivalent.

For s ∈ [−1, 0) the spaces are defined by duality:

Hs(Ω) = (H̃−s(Ω))′, H̃s(Ω) = (H−s(Ω))′.

Now let us collect several technical lemmas. We will need the following scaling result.

Lemma 2.1 Let Kh and K be two open subsets of IRn such that Kh = M(K) under an invertible
affine mapping M . Let diamKh ' ρKh ' h and diamK ' ρK ' 1. If u ∈ Hm(Kh) with integer
m ≥ 0, then û = u ◦M ∈ Hm(K) and there exists a positive constant C depending on m but
not on h or u such that

|û|Hm(K) ≤ Chm−n
2 |u|Hm(Kh). (2.2)

Analogously for any û ∈ Hm(K) there holds

|u|Hm(Kh) ≤ Ch
n
2
−m|û|Hm(K). (2.3)

Moreover, if û ∈ Hs(K) with real s ∈ [0,m], then

C1h
n
2 ‖û‖Hs(K) ≤ ‖u‖Hs(Kh) ≤ C2h

n
2
−s‖û‖Hs(K). (2.4)

For the proof of (2.2), (2.3) see [10, Theorem 3.1.2]. Inequalities (2.4) then follow by inter-
polation (see [3, Lemma 4.3]).

The next theorem states the result on the hp-approximations of smooth functions (for the
proof see [6, Proposition 4.1]).

Theorem 2.1 Let m > 1. Then for u ∈ Hm(Γ) there exists uhp ∈ Shp(Γ) such that for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ Chµ−sp−(m−s̃)‖u‖Hm(Γ),

where µ = min {m, p + 1} and

s̃ =





1/2 if s ∈ [0, 1/2),
1/2 + ε, ε > 0 if s = 1/2,
s if s ∈ (1/2, 1].

(2.5)

The following two lemmas have been also proved in [6], cf. Lemma 3.4 and Lemma 3.5
therein.
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Lemma 2.2 Let Kh be a triangle (respectively, a parallelogram) satisfying the assumptions
of Lemma 2.1, and let lh be a side of Kh with vertices v1, v2. Let whp ∈ Pp(lh) be such
that whp(v1) = whp(v2) = 0, and ‖whp‖L2(lh) ≤ f(h, p). Then there exists uhp ∈ P2p+1(Kh)
(respectively, uhp ∈ Pp(Kh)) such that uhp = whp on lh, uhp = 0 on ∂Kh\lh, and for 0 ≤ s ≤ 1

‖uhp‖Hs(Kh) ≤ C h1/2−s p−1+2s f(h, p).

Lemma 2.3 Let ∆h = {Γj} be a quasi-uniform mesh on Γ. Then for 0 < s < 1

‖u‖2
Hs(Γ) ≥

∑

j

‖u‖2
Hs(Γj)

∀u ∈ Hs(Γ),

and for 1/2 < s < 1 there holds

‖u‖2
Hs(Γ) ≤ C

∑

j

(
h−2s

j ‖u‖2
L2(Γj)

+ |u|2Hs(Γj)

)
∀u ∈ Hs(Γ). (2.6)

The positive constant C in (2.6) is independent of u and the mesh ∆.

3 p -approximation on a separate element of the fixed size

We start with a model situation on the reference square Q = (0, 1)2. This will lead us to the
p-approximation result on a separate element (either a triangle or a parallelogram) of the fixed
size.

For the model situation, let κ > 1 and denote Sκ = {x ∈ Q; κ−1x1 <x2 <κx1}. We consider
the following singular function over the square Q:

u(r, θ) = rλ| log r|βχ(r)w(θ), (3.1)

where (r, θ) denote local polar coordinates with origin at (0, 0), λ > −1/2, β ≥ 0 is an integer,
w(θ) is sufficiently smooth, and χ is a C∞ cut-off function satisfying

χ(r) = 1 for 0 ≤ r ≤ δ/2 and χ(r) = 0 for r ≥ δ. (3.2)

Here, δ ∈ (0, 1) is small enough. If λ = 0, we will assume that β is a positive integer, so that
the function u has only a logarithmic singularity in this case. Observing that u ∈ Hs(Sκ0) for
κ0 > 1 and for any s ∈ [0, λ+1), we study polynomial approximations of u. We emphasize again
that for λ ∈ (−1/2, 0] the function u is not H1(Γ)-regular, and one cannot apply the results of
[4, 15, 5], were λ was assumed to be positive.

Theorem 3.1 Let u be given by (3.1). Then there exists a sequence up ∈ P2
p+2(Q), p = 1, 2, . . . ,

such that up = 0 at the origin (0, 0),

‖u− up‖Hs(Sκ0) ≤ C p−2(λ+1−s) (1 + log p)β, 0 ≤ s < min {1, λ + 1}, (3.3)

and for any straight line ` 3 (0, 0) there holds

‖u− up‖L2(`∩S̄κ0 ) ≤ C p−2(λ+1/2) (1 + log p)β. (3.4)
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Although the results of [4] and [15] cannot be applied directly, we will use the approach
developed in these papers (see, in particular, Theorem 5.1 in [4] and Theorem 8.1 in [15]). First,
we extend u smoothly from Sκ0 to Sκ ⊃ Sκ0 . This can be done by multiplying (3.1) by a C∞

cut-off function χ̃(θ) such that for κ > κ0

χ̃(θ) = 1 for arctanκ−1
0 ≤ θ ≤ arctanκ0,

χ̃(θ) = 0 for θ ≤ arctanκ−1 and θ ≥ arctanκ.

We will retain the notation u for the extended function. Let

ξ(x1, x2) = (x1 − κx2)(κx1 − x2) = r2Φ1(θ)

and
u0(x1, x2) =

u(x1, x2)
ξ(x1, x2)

= rλ−2| log r|βχ(r)Φ2(θ),

where Φ2(θ) is smooth. Introducing a cut-off function ω such that

ω ∈ C∞(IR), ω(z) = 0 for z ≤ 1, ω(z) = 1 for z ≥ 2, (3.5)

we define for a small ∆ ∈ (0, 1)

ω∆(r) = ω
(

r
∆

)
, ω̃∆(r) = 1− ω∆(r), r ≥ 0.

Then we decompose u0 as

u0(x) =
u(x)
ξ(x)

= u0(x)ω∆(r) + u0(x)ω̃∆(r) =: v0(x) + w0(x). (3.6)

The function v0 in (3.6) is smooth and vanishes for 0 ≤ r ≤ ∆. Moreover, for any non-
negative integers k and l there exists a positive constant C(k + l) independent of ∆ such that
for (x1, x2) ∈ Q and for i = 1, 2

∣∣∣∣∣
∂k+lv0

∂xk
1∂xl

2

∣∣∣∣∣ ≤ C(k + l)

{
0 for 0 < r < ∆,

xλ−2−k−l
i | log ∆|β otherwise.

(3.7)

Polynomial approximations of functions satisfying (3.7) (and not necessarily having the explicit
form given above) were investigated in [4] when proving Theorem 5.1 therein, and were also
studied in [15, Theorem 8.1]. The estimate for the approximation error in the H1(Sκ)-norm
immediately follows from [4], while [15] gives also the estimate in the L2(Sκ)-norm and then, by
interpolation, in the norm of Hs(Sκ) with 0 ≤ s ≤ 1. Moreover, [15, Lemma 8.2] estimates the
approximation error in the L2(` ∩ Sκ)-norm, where ` is the line x1 = κ̃x2 (κ−1

0 ≤ κ̃ ≤ κ0). We
summarise the mentioned results in the following lemma.
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Lemma 3.1 Let ∆ = p−2. If v0 satisfies (3.7), then there exists a sequence vp ∈ P2
p+2(Q),

p = 1, 2, . . ., such that vp(0, 0) = 0 and for any 0 ≤ s ≤ 1

‖ξv0 − vp‖Hs(Sκ0 ) ≤ C p−2(λ+1−s) (1 + log p)β.

Moreover,
‖ξv0 − vp‖L2(`∩S̄κ0 ) ≤ C p−2(λ+1/2) (1 + log p)β,

where ` denotes the line x1 = κ̃x2 (κ−1
0 ≤ κ̃ ≤ κ0).

The function w0 in (3.6) has a small support, suppw0 ⊂ K̄∆ = {x ∈ S̄κ; 0 ≤ r ≤ 2∆}. In
the next lemma we show that the function ξw0 being approximated by zero leads to the same
estimates as in (3.3), (3.4).

Lemma 3.2 Let ∆ = p−2. Then for 0 ≤ s < min {1, λ + 1}

‖ξw0‖Hs(Sκ0) ≤ C p−2(λ+1−s) (1 + log p)β. (3.8)

‖ξw0‖L2(`∩S̄κ0 ) ≤ C p−2(λ+1/2) (1 + log p)β, (3.9)

where ` is the same as in Lemma 3.1.

Proof. First, we prove (3.8) for s = 0. For sufficiently small ∆ > 0 one has (hereafter,
θ1 = arctanκ−1, θ2 = arctanκ)

‖ξw0‖2
L2(Sκ0 ) ≤ ‖ξw0‖2

L2(Sκ) = ‖ξw0‖2
L2(K∆)

≤ C

2∆∫

0

θ2∫

θ1

r2λ| log r|2β r dθdr ≤ C∆2λ+2| log ∆|2β, λ > −1, (3.10)

where C > 0 is independent of ∆. Let 0 < s < min {1, λ + 1}. Then

‖ξw0‖2
Hs(Sκ0 ) =

∞∫

0

t−2s inf
ξw0=w1+w2

(
‖w1‖2

L2(Sκ0) + t2 ‖w2‖2
H1(Sκ0 )

) dt

t
. (3.11)

For any t ∈ (0, ∆) we define

ωt(r) = ω
(

r
t

)
, ω̃t(r) = 1− ωt(r), r ≥ 0,

where ω is as in (3.5). Then by (3.11) we have

‖ξw0‖2
Hs(Sκ0 ) ≤

∆∫

0

t−2s−1
(
‖ξw0ω̃t‖2

L2(Sκ0 ) + t2 ‖ξw0ωt‖2
H1(Sκ0)

)
dt
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+
∞∫

∆

t−2s−1‖ξw0‖2
L2(Sκ0 )dt. (3.12)

Now we estimate the norms on the right-hand side of (3.12). Since ω̃t(r) = 0 for r ≥ 2t, we
obtain similarly to (3.10)

‖ξw0ω̃t‖2
L2(Sκ0 ) ≤ C

2t∫

0

r2λ+1| log r|2β dr ≤ Ct2λ+2| log t|2β. (3.13)

To estimate the norm ‖ξw0ωt‖H1(Sκ0 ) we evaluate the derivatives of ξw0ωt. We will use the
following inequalities

∣∣∣∣
∂r

∂xi

∣∣∣∣ ≤ 1,

∣∣∣∣
∂θ

∂xi

∣∣∣∣ ≤
1
xi
≤ C(κ)

1
r
, x ∈ Sκ, i = 1, 2;

∣∣∣∣∣
dω∆(r)

dr

∣∣∣∣∣ =

∣∣∣∣∣
dω̃∆(r)

dr

∣∣∣∣∣ =

{
0 for 0 < r < ∆ or r > 2∆,∣∣∣ω′

(
r
∆

)∣∣∣ 1
∆ for ∆ ≤ r ≤ 2∆

≤ C r−1 for r > 0,

and a similar estimate for
∣∣∣dωt(r)

dr

∣∣∣. Hence, for any x ∈ Sκ we find by simple calculations
∣∣∣∣

∂

∂xi
(ξw0ωt)

∣∣∣∣ =
∣∣∣∣

∂

∂xi

(
rλ| log r|βχ(r)χ̃(θ)w(θ)ω̃∆(r)ωt(r)

)∣∣∣∣

≤ C

[∣∣∣∣
∂

∂xi
(rλ| log r|β)

∣∣∣∣ + rλ| log r|β
(∣∣∣∣

dχ

dr

∣∣∣∣ +
∣∣∣∣
dχ̃

dθ

∣∣∣∣
1
r

+
∣∣∣∣
dw

dθ

∣∣∣∣
1
r

+
∣∣∣∣
dω̃∆

dr

∣∣∣∣ +
∣∣∣∣
dωt

dr

∣∣∣∣
)]

≤ Crλ−1| log r|β, i = 1, 2. (3.14)

Since ξw0ωt vanishes on ∂Sκ and outside the domain K1
∆ = {x ∈ Sκ; t < r < 2∆}, we deduce

from (3.14) that

‖ξw0ωt‖2
H1(Sκ0 ) ≤ C|ξw0ωt|2H1(K1

∆) ≤ C

2∆∫

t

θ2∫

θ1

r2λ−2| log r|2β r dθdr

≤ C

2∆∫

t

r2λ−1| log r|2βdr ≤ C

{
t2λ| log t|2β if λ < 0,
∆2λ| log ∆|2β if λ > 0.

(3.15)

If λ = 0, we introduce a small ε ∈ (0, 2− 2s) and estimate the norm ‖ξw0ωt‖2
H1(Sκ0 ) as follows

‖ξw0ωt‖2
H1(Sκ0 ) ≤ C

2∆∫

t

r−1| log r|2βdr ≤ C| log t|2β

2∆∫

t

r−1−εrεdr ≤ C∆εt−ε| log t|2β. (3.16)
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Using estimates (3.10), (3.13), (3.15) for the norms on the right-hand side of (3.12) we obtain
for 0 < s < min {1, λ + 1}

‖ξw0‖2
Hs(Sκ0 ) ≤ C

∆∫

0

t2λ+1−2s| log t|2βdt + C∆2λ+2| log ∆|2β

∞∫

∆

t−2s−1dt

≤ C∆2(λ+1−s)| log ∆|2β if −1 < λ < 0 (3.17)

and

‖ξw0‖2
Hs(Sκ0 ) ≤ C

∆∫

0

t2λ+1−2s| log t|2βdt + C∆2λ| log ∆|2β

∆∫

0

t−2s+1dt

+C∆2λ+2| log ∆|2β

∞∫

∆

t−2s−1dt

≤ C∆2(λ+1−s)| log ∆|2β if λ > 0. (3.18)

In the case when λ = 0 we proceed similarly and use (3.16) instead of (3.15). Then recalling
that 0 < ε < 2− 2s we have for 0 < s < 1

‖ξw0‖2
Hs(Sκ0) ≤ C

∆∫

0

t−2s−1
(
t2 + t2−ε∆ε

)
| log t|2βdt + C∆2| log ∆|2β

∞∫

∆

t−2s−1dt

≤ C∆2−2s| log ∆|2β + C∆ε

∆∫

0

t−2s+1−ε| log t|2βdt

≤ C∆2(1−s)| log ∆|2β if λ = 0. (3.19)

Taking ∆ = p−2 and using estimates (3.10), (3.17)–(3.19) we prove (3.8).
Let ` be the line x1 = κ̃x2, where κ−1

0 ≤ κ̃ ≤ κ0. Then, recalling that suppw0 ⊂ K̄∆, we
find by simple calculations

‖ξw0‖2
L2(`∩S̄κ0 ) ≤ C(λ, β, κ̃)

2∆(1+κ̃2)−1/2∫

0

z2λ| log z|2βdz ≤ C∆2λ+1| log ∆|2β.

Setting ∆ = p−2 we obtain (3.9). 2

Proof of Theorem 3.1. The desired statement follows from Lemmas 3.1 and 3.2 making use
of decomposition (3.6). 2

Now we consider an element (triangle or parallelogram) K ⊂ IR2 of the fixed size (i.e., we
assume that diamK ' ρK ' 1).
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Theorem 3.2 Let K ⊂ IR2 and suppose that O = (0, 0) is a vertex of K. Let u be given by (3.1)
on K. Then there exists a sequence up ∈ Pp(K), p = 1, 2, . . . such that for 0 ≤ s < min {1, λ+1}

‖u− up‖Hs(K) ≤ C p−2(λ+1−s) (1 + log p)β.

Moreover, up(0, 0) = 0, up = 0 on the sides li ⊂ ∂K, l̄i 63 O, and

‖u− up‖L2(lk) ≤ C p−2(λ+1/2) (1 + log p)β for each side lk ⊂ ∂K, O ∈ l̄k.

The proof is based on Theorem 3.1 and repeats exactly the arguments in [15, Theorem 8.2].

4 hp -approximation on quasi-uniform meshes

In this section we prove the result on the approximation of vertex singularities by piecewise
polynomials defined on the quasi-uniform mesh ∆h discretising polyhedral surface Γ. Let us fix
a vertex v of Γ. We will consider the vertex singularity u given by (3.1), where (r, θ) now refers
to local polar coordinates (with origin at v) on each face of Γ containing v.

Theorem 4.1 Let u be given by (3.1) with λ > −1
2 and an integer β ≥ 0. Then there exists

uhp ∈ Shp(Γ) with p ≥ λ such that for 0 ≤ s < min {1, λ + 1}

‖u− uhp‖Hs(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β+ν , (4.1)

where ν = 1
2 if p = λ, and ν = 0 otherwise.

If 1 ≤ p < λ, then there exists uhp ∈ Shp(Γ) satisfying for s ∈ [0, 1]

‖u− uhp‖Hs(Γ) ≤ C hp+1−s. (4.2)

Proof. Note that assumption 1 ≤ p < λ implies λ > 1. This case was considered in [6,
Theorem 6.1], where estimate (4.2) was proved.

To prove (4.1) we decompose u as u = ϕ1 + ϕ2, where

ϕ1 := uχ(r/h0), ϕ2 := u(1− χ(r/h0)), h0 = (σ1σ2)−1h, (4.3)

χ is the cut-off function in (3.1), and σ1, σ2 are the same as in (2.1).
The singular function ϕ1 has small support, suppϕ1 ⊂ Āv := ∪{Γ̄j ; v ∈ Γ̄j}. Let Kh =

Γj ⊂ Av and let K ⊂ IR2 be a triangle or parallelogram such that Kh = Mh(K) under the affine
mapping Mh : xi = hx̂i, i = 1, 2, x ∈ Kh, x̂ ∈ K. Then O = (0, 0) is a vertex of K and for
h < 1

2 we have

ϕ̂1(x̂) = ϕ1(hx̂1, hx̂2) = hλr̂λ
β∑

k=0

(
β

k

)
| log h|k| log r̂|β−kχ(σ1σ2r̂)w(θ̂),

where r̂ = (x̂2
1 + x̂2

2)
1/2, θ̂ = arctan(x̂2/x̂1).
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Let A = {li} contain those sides li ⊂ ∂K for which O ∈ l̄i, and let B be the union of the other
sides of K. Then applying Theorem 3.2 to each function r̂λ| log r̂|kχ(σ1σ2r̂)w(θ̂), k = 0, . . . , β,
we find a polynomial φ̂ ∈ Pp(K) such that φ̂(0, 0) = 0, φ̂ = 0 on B,

‖ϕ̂1 − φ̂‖Hs(K) ≤ C(β) hλ p−2(λ+1−s) (1 + log(p/h))β, 0 ≤ s < min {1, λ + 1}, (4.4)

‖ϕ̂1 − φ̂‖L2(l) ≤ C(β) hλ p−2(λ+1/2) (1 + log(p/h))β for every l ∈ A. (4.5)

Let us define φj := φ̂ ◦ M−1
h . Then φj ∈ Pp(Γj), φj = 0 at the vertex v and on the sides

lhi ∈ Bj = Mh(B). Furthermore, making use of Lemma 2.1, we obtain by (4.4), (4.5)

‖ϕ1 − φj‖Hs(Γj) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β, 0 ≤ s < min {1, λ + 1}, (4.6)

‖ϕ1 − φj‖L2(lh) ≤ C hλ+1/2 p−2(λ+1/2) (1 + log(p/h))β for every lh ∈ Aj = Mh(A). (4.7)

Suppose that Γi, Γj ⊂ Av are two elements having the common edge lh = Γ̄i∩Γ̄j (these elements
may lie on different faces of Γ). Let φi ∈ Pp(Γi) and φj ∈ Pp(Γj) be the approximations of ϕ1

constructed above and satisfying estimates (4.6), (4.7). Then the jump g = (φj −φi)|lh vanishes
at the end points of lh and

‖g‖L2(lh) ≤ C hλ+1/2 p−2(λ+1/2) (1 + log(p/h))β.

If Γi is a parallelogram, we use Lemma 2.2 to find a polynomial z ∈ Pp(Γi) such that

z = g on lh, z = 0 on ∂Γi\lh, (4.8)

and for 0 ≤ s ≤ 1
‖z‖Hs(Γi) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β. (4.9)

In the case that Γi is a triangle, we note that (4.6) and (4.7) also hold for a polynomial ψj

of degree
[

p−1
2

]
(with different constants C for the upper bounds in (4.6) and (4.7)). Then

Lemma 2.2 yields a polynomial z ∈ Pp(Γi) which satisfies (4.8), (4.9) for Γi being a triangle.
Setting φ̃ = φi + z on Γi and φ̃ = φj on Γj we find a continuous piecewise polynomial φ̃

such that the norms ‖ϕ1 − φ̃‖Hs(Γi) and ‖ϕ1 − φ̃‖Hs(Γj) are bounded as in (4.6) for 0 ≤ s <
min {1, λ + 1}.

Repeating the above procedure we construct a continuous function ψ1 ∈ C0(Āv) such that
ψ1 = 0 on ∂Av, ψ1 ∈ Pp(Γj) for each Γj ⊂ Av, and

‖ϕ1 − ψ1‖Hs(Γj) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β, 0 ≤ s < min {1, λ + 1}. (4.10)

Now we extend ψ1 by zero onto Γ\Av (keeping the notation ψ1 for the extension). Then ψ1 ∈
Shp(Γ) and there holds for 0 ≤ s < min {1, λ + 1}

‖ϕ1 − ψ1‖Hs(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β. (4.11)
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In fact, for s = 0 estimate (4.11) on Γ immediately follows from inequalities (4.10) on individual
elements. If 1/2 < s < min {1, λ + 1}, then we use Lemma 2.3:

‖ϕ1 − ψ1‖2
Hs(Γ) ≤ C

(
h−2s‖ϕ1 − ψ1‖2

L2(Γ) +
∑

j:Γj⊂Γ

|ϕ1 − ψ1|2Hs(Γj)

)

≤ C

(
h−2s‖ϕ1 − ψ1‖2

L2(Av) +
∑

j:Γj⊂Av

‖ϕ1 − ψ1‖2
Hs(Γj)

)
,

and (4.11) follows again from (4.10), because the number νv of elements in Av is independent of
h (νv ≤ ωv

θ0
, where ωv is the total length of the closed piecewise smooth arc cut out in the unit

sphere S2 by the edges of Γ having v as an endpoint, θ0 is the minimal angle of elements in the
mesh).

Finally, for 0 < s ≤ 1/2, estimate (4.11) follows via interpolation between H0(Γ) and Hs′(Γ)
for some s′ ∈ (1

2 , min {1, λ + 1}).
For the function ϕ2 (see (4.3)) one has

ϕ2 = rλ| log r|βχ(r)(1− χ(r/h0))w(θ) ∈ Hm(Γ),

where m depends on the regularity of w(θ), m is fixed and as large as required. Furthermore,

suppϕ2 ⊂ R̄h, where Rh = {x ∈ Γ; δ
2h0 < r(x) < δ on each face at the vertex v},

where δ is the same as in (3.2).
To bound the norm ‖ϕ2‖Hk(Γ) we need the following inequalities:

∣∣∣∣∣
∂l+mr

∂xl
1∂xm

2

∣∣∣∣∣ ≤ Cr1−l−m,

∣∣∣∣∣
∂l+mθ

∂xl
1∂xm

2

∣∣∣∣∣ ≤ Cr−l−m

for any integer l, m ≥ 0, and
∣∣∣∣∣
∂l

∂rl

(
1− χ(r/h0)

)∣∣∣∣∣ =

{
0 for 0 < r < δ

2h0 and r > δh0,

|χ(l)|h−l
0 for δ

2h0 ≤ r ≤ δh0

≤ C r−l for r > 0

with any integer l ≥ 1.
Hence, we find by simple calculations

‖ϕ2‖2
Hk(Γ) ≤ C(log(1/h))2β

δ∫

δh0/2

r2(λ−k) rdr, 0 ≤ k ≤ m. (4.12)

Further, due to Theorem 2.1, there exists ψ2 ∈ Shp(Γ) such that for s ∈ [0, 1]

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chµ−sp−(k−s̃)‖ϕ2‖Hk(Γ), (4.13)
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where k ∈ (1,m] is integer, µ = min {k, p + 1}, and s̃ is defined by (2.5).
If λ + 1 ≤ k ≤ m, then (4.12) and (4.13) yield

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chµ−s+λ−k+1p−(k−s̃) logβ+ν̄(1/h), s ∈ [0, 1], (4.14)

where ν̄ = 1
2 if k = λ + 1, and ν̄ = 0 if k > λ + 1.

If p > 2λ + 3
2 , we select an integer k satisfying

2λ + 5
2 < k ≤ p + 1.

Then µ = k > 3
2 and p−(k−s̃) ≤ p−2(λ+1−s) for any s ∈ [0, 1].

If λ < p ≤ 2λ + 3
2 (i.e., p is bounded), we choose an integer k such that

max {1, λ + 1} < k ≤ p + 1,

and if p = λ, then we take k = λ + 1 = p + 1. In both these cases µ = k > 1 and p−(k−s̃) ≤
C(λ) p−2(λ+1−s) for any s ∈ [0, 1].

Thus, for any p ≥ λ, selecting k as indicated above we find by (4.14)

‖ϕ2 − ψ2‖Hs(Γ) ≤ Chλ+1−sp−2(λ+1−s) logβ+ν(1/h), s ∈ [0, 1], (4.15)

where ν = 1
2 if p = λ and ν = 0 otherwise.

Now combination of (4.11) and (4.15) gives (4.1) with uhp := ψ1 + ψ2 ∈ Shp(Γ). 2

Remark 4.1 If Γ is an open piecewise plane surface and the function u in (3.1) vanishes on
∂Γ, then u ∈ H̃s(Γ) for any 0 ≤ s < min {1, λ + 1}. In this case the same arguments as in the
proof of Theorem 4.1 lead to even stronger result: if p ≥ λ, then there exists uhp ∈ Shp

0 (Γ) :=
Shp(Γ) ∩H1

0 (Γ) such that for 0 ≤ s < min {1, λ + 1}

‖u− uhp‖H̃s(Γ) ≤ C hλ+1−s p−2(λ+1−s) (1 + log(p/h))β+ν ,

where ν is the same as in (4.1); if 1 ≤ p < λ, then there exists uhp ∈ Shp
0 (Γ) satisfying for

s ∈ [0, 1]
‖u− uhp‖H̃s(Γ) ≤ C hp+1−s.
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