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H I G H L I G H T S

• An advanced ORC system, tested on a 200 kW – class off-highway diesel engine.

• A radial ORC turbine expander with novel back-swept blading tested experimentally.

• A state-of-the-art molecularly-complex working fluid was tested.

• Integrated generator electrical system power and efficiency measured.

• Maximum 4.3% ORC system efficiency at 40% load on NRTC cycle at 1700 rpm (80 kW).
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A B S T R A C T

The purpose of this work is to experimentally evaluate the effect on fuel efficiency of a small scale organic
Rankine cycle (ORC) as a waste heat recovery system (WHRS) in a heavy duty diesel engine that operates at
steady state conditions. The WHRS consists of two operating loops, namely a thermal oil loop that extracts heat
from the engine exhaust gases, and the working fluid loop which is the ORC system. The expansion machine of
the ORC system is a radial inflow turbine with a novel back-swept blading that was designed from scratch and
manufactured specifically for this WHR application. The engine test conditions include a partial engine load and
speed operating point where various operating conditions of the ORC unit were tested and the maximum thermal
efficiency of the ORC was defined close to 4.3%. Simultaneously, the maximum generated power was 6.3 kW at
20,000 rpm and pressure ratio of 5.9. The isentropic efficiency reached its peak of 35.2% at 20,000 rpm and 27%
at 15,000 rpm. The experimental results were compared with the CFD results using the same off-design condi-
tions, and the results were in good agreement with a maximum deviation of 1.15% in the total efficiency. Last
but not least, the engine-WHRS energy balance is also discussed and presented.

1. Introduction

State of the art internal combustion engines (ICE) waste a sub-
stantial amount of fuel energy in the form of exhaust gases and engine
coolant heat loss. Modern commercial road and off-road heavy-duty
diesel engines present a maximum brake thermal efficiency value of
approximately 45% at their optimum operating point [1], while

gasoline engine maximum thermal efficiency is typically between 30%
and 40% [2]. Engine wasted heat is not only a waste of fuel but also a
matter of significant global warming and environmental pollution
concerns. CO2 emissions from the transportation sector have increased
by 45% between 1990 and 2007, making this sector responsible for
nearly one third of the world’s CO2 emissions. Therefore, manufacturers
of ICEs are increasingly forced to look at the feasibility of adopting
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technologies such as waste heat recovery systems in order to reduce fuel
consumption and CO2 emissions.

Waste heat recovery technologies depend upon tapping into main
heat sources in ICEs such as exhaust gas, EGR and/or engine coolant to
be recovered. One such technology in use is Turbo-Compounding (TC)
either in its mechanical or electrical forms. Depending on the engine
load, TC can reduce the average BSFC by 3–6% with the ability of
further reduction of 6.5% with highly efficient TC configurations [3]. In
addition, combination of TC and steam injection could result in re-
duction of BSFC by 6.0–11.2% over different speeds [4]. However, it is
worth mentioning that the utilization of TC in ICEs is limited due to the
high exhaust backpressure caused by such technology and eventually
higher pumping losses [5]. Another significant waste heat recovery
technology proposition is thermoelectric generation. Experimental
studies have shown that fuel savings of 3.9 up to 4.7% could be
achieved by using thermo-electric generation [6–8]. However, this
technology is currently too expensive and faced with a longer devel-
opment time [9]. In addition, it still presents very poor efficiency (ty-
pically less than 4%). Therefore, it is of essence to investigate a more
efficient and cheaper technology.

Organic Rankine Cycles (ORCs) have become popular in re-using
wasted heat since they operate efficiently and use relatively simple
standard components. Moreover, ORCs can take indirect advantage of
the heat rather than the direct exhaust gas supply thus allow a much
higher degree of freedom in optimising the expander. Using ORCs in
mobile applications is not a new idea. A first concept on a train had
already been commercialized in the 1920s, taking advantage of the
price difference between diesel and coal [10]. Unfortunately, this
system quickly became uncompetitive because that difference stopped
being profitable [11]. Later, several systems were developed, mostly for
trucks or marine applications, and then this interest disappeared until
the 2000s, when automotive manufacturers started being interested in
that technology again [11] largely due to regulatory pressure. Patel and
Doyle [12] built a prototype of an ORC that was used as a bottoming
cycle in a Mack 676 diesel engine. The authors stated that at the peak
power condition, 36 additional horsepower was produced resulting in a
gain of 13% in power without additional fuel. Recently, wide theore-
tical investigations have been conducted on ORC applications in ICEs
[13–21]. The results indicate that the BSFC improvements of up to 10%
can be obtained. However, these theoretical studies usually neglect
electro-mechanical losses along the turbo-generator power transmission
route and heat transfer to the environment. Realistic expectations are
limited to approximately 50% of the above BSFC figures [22].

Selection of the appropriate expansion machines is of great im-
portance when utilizing ORC systems since these machines are re-
sponsible for power conversion and subsequent production usually by
direct coupling to a generator [22–25]. In addition, the type of

expansion machine has significant effects on the overall cycle perfor-
mance, size and cost [26,27]. Expanders can be classified into two main
groups, namely, positive displacement expanders (Screw, Scroll, Piston
and Rotary Vane) and turbo-machines (Axial or Radial). The selection
of the appropriate expander depends on the application. Moreover,
other important factors should be considered when selecting expanders
such as high isentropic efficiency, pressure ratio, power output, lu-
brication requirements, complexity, rotational speed, dynamic balance,
reliability, cost, working temperatures and pressures, leakage, noise
and safety [28,29]. Turbo-expanders are preferred when to convert the
extracted power to electricity while reciprocating expanders, due to
their flexibility of operation, are preferred when the extracted power is
coupled directly to the crankshaft [30]. Moreover, displacement ex-
panders could be used at low output powers due to the limitation of
their rotational speed [31], whereas turbo-expanders operate at higher
rotational speed and hence higher power. However, for waste heat re-
covery applications, scroll expanders and radial turbines are the most
common solutions to be found in literature [32,33]. Since ORC effi-
ciency increases at high pressure ratios, radial turbines appear more
suitable for vehicular applications where mass flow rates are in the low-
to-medium range and pressure ratios are in the medium-to-high range.

Nowadays, ORC systems as WHR technologies are gaining attention
in both academic and industrial sectors. Several recent studies have
investigated ORC technology and show promise in solar systems
[34–38], biomass [39–44] and geothermal applications [45–48]. In
recent years, studies concentrating on ICE applications have increased.
Zhang et al. [49] evaluated the wasted heat in the engine exhaust, in-
take air, and coolant of a vehicular light-duty diesel engine. It is worth
mentioning that the performance map of the light-duty diesel engine
was created using an engine test bench while the study of the coupled
system (engine+ORC) was conducted using a simulation study. The
results of the simulation study showed that the ORC output power
improved from 14% to 16% in the peak effective thermal efficiency
region and from 38% to 43% in the small load region. Furukawa et al.
[50] conducted an experimental test on the ORC that was used to re-
cover the heat of the engine coolant with Hydro-fluoro-ether as the
working fluid. The fuel consumption decreased by 7.5%. Recently,
Wang et al. [51] conducted a recent study on recovering the wasted
heat of the exhaust gas and coolant of a CNG machine using a super-
critical-subcritical dual-loop organic Rankine cycle. R1233zd and
R1234yf were used as the working fluids. The engine point with
600 N.m and 1600 rpm was selected as the case study since CNG engine
usually operates at low to middle speed and torque for bus applications.
Similar to Zhang et al. [51], the engine map was obtained experimen-
tally while the results of the integrated system (engine+ORC) were
obtained using the simulation study. The simulations showed that fuel
efficiency could be improved by more than 8% in most of the engine’s

Nomenclature

Variables

h enthalpy [kJ/kg]
m. mass flow rate [kg/s]
P pressure [bar]
Pe electrical power [kW]
W power output [kW]

Subscripts

0 total thermodynamic properties
1–2 stations within the cycle
s isentropic
to thermal oil

wf working fluid

Greek letters

η efficiency [%]
τ torque [N.m]

Acronyms

ASIC Application Specific Integrated Circuit
BSFC brake specific fuel consumption
ICE internal combustion engine
ORC organic Rankine cycle
rms root mean square
TC turbo-compounding
WHR waste heat recovery
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operating regions. Other recent studies such as Shao et al. [52] and
Pang el al. [53] conducted experimental studies using radial turbine
and scroll expander, respectively, as the expansion machines. However,
both studies used oil heaters as the heat sources. The results of [52]
showed that a maximum thermal efficiency of 5.3% and turbine effi-
ciency of 75.2% were achieved. The results of the other study [53]
showed that a maximum net power 1.66 kW with an electrical effi-
ciency of about 4.4% were obtained. Guillaume et al. [17] used exhaust
gases of a truck diesel engine as the heat source for their ORC system.
They used a radial inflow turbine as the expansion machine and two
working fluids: R245fa and R1233zd. However, the employed turbine
was developed mainly using components modified from truck turbo-
charger designs. Also, the heat wasted by the truck through the exhaust
gases is simulated using an electric oil boiler coupled to the ORC loop.
The maximum electric power and turbine efficiency were 2.8 kW (using
R245fa) and 32% (using R1233zd), respectively. Yang et al. [54] pre-
sented a thermo-economic model of a dual-loop ORC system using the
performance map of a six-cylinder CNG engine. The thermal efficiency
of the dual loop ORC system was in the range of 8.97–10.19% over the
whole operating range. More recently, Sellers [55] evaluated the ben-
efits of ORC systems in harnessing the wasted heat in the jacket water of
a 12 cylinder ship engine. The paper was more about the difficulties
that the author faced during the installation of the system. The results
showed that the largest kilowatt hour value of 78,001 was produced
during the first voyage from Asia to the USA east coast. In the industry
sector, a recent study through cooperation between AVL, FPT and Iveco
[56] was published. The exhaust gas of a 4-stroke diesel engine was
used as the heat source for the ORC system, axial piston expander was
selected as the expansion machine. The tests were run on public roads.
The results showed that the fuel consumption could be reduced by
2.5–3.4%. Honda [57,58] installed an ORC system on a hybrid vehicle
with the vehicle running at constant speed and the thermal efficiency
increased by 13.2% compared to the base vehicle. MAN [59] installed a
Rankine cycle system on a marine 2-stroke diesel engine and claimed

that a 10% efficiency improvement was achieved.
The brief literature survey in the previous paragraph indicates that

these investigations were either performed using simulated engine data
(academic sector) or expanders types other than radial turbine (in-
dustry sector). Although Guillaume et al. [17] used a radial inflow
turbine in their study, the turbine was developed using components of
truck turbochargers. Also, they applied an electric oil boiler as the heat
source. The coupling of a custom-designed radial turbine (and gen-
erator) on-engine to explore ORC WHR system performance is an area
in which little available literature exists. To allow a realistic apprecia-
tion of the ORC system’s contribution to heavy-duty diesel engine, a
coupling of ORC system with real engine is essential. In the present
work, a test rig containing an ORC thermal oil loop was built around a
heavy-duty diesel engine and was tested. The radial turbine in the
current study was designed and manufactured specifically for this ap-
plication considering the cycle operating conditions and the working
fluid properties. From the engine point of view, part-load performance
is seldom investigated in depth and this is where the focus of this study
was. For this study, the engine was operated at 40% of its maximum
power targeting a representative, mean operating condition. The ex-
haust gas of a heavy duty diesel engine was applied as the heat source
for the thermal oil loop. Then, the oil exchanged heat with the ORC
unit. Direct heat transfer from the exhaust gases to the organic fluid is
often preferred in transport applications as it increases the heat transfer
efficiency and reduces the weight of the WHR system. On contrast, the
thermal oil loop requires an extra heat exchanger and pump which
increases the cost and weight and reduces the system efficiency. One
main advantage of the oil loop is that it eases the control of the ther-
modynamic conditions in the ORC circuit. In addition, the combination
of ORC-thermal oil loop is beneficial in order to keep the thermal oil
temperature in the evaporator stable. The measurements were all per-
formed in steady state conditions. The results of both the ORC cycle and
specific turbine are all presented in the following pages.

Fig. 1. Schematic representation of the test bench.
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2. Working fluid selection

Selection of working fluid for an ORC system is of key importance
for the cycle efficiency and network. It also represents the first step in
the design of an ORC. In ORC systems, only working fluids with low
Global Warming Potential (GWP) and Ozone Depletion Potential (ODP)
should be utilized [60].

Among the hundreds of fluids available, it is necessary to select
either non-flammable fluids or flammable fluids whose auto-ignition
temperature is higher than that of the exhaust gasses leaving the ICE.
For example, only a small subset of the Alkanes can be considered. In
particular, the Alkanes that have a flammability limit that is higher
than the heat source of the ORC in question. In order to come up with
the optimum fluid for the current applications, the authors [61] pro-
posed novel method for the selection of the proper working fluid for
ORC-WHR systems based on a radial expander in which thermodynamic
properties and evaporator heat transfer surface are taken into account.
The detailed results of the proposed method can be found in [61]. The
final screening was based on the effect of the organic fluids on the re-
quired components of the ORC, namely,

• The evaporator heat transfer surface needs to be minimized due to
the space constraints since this component has to be fitted into the
immediate surroundings of the ICE exhaust manifold.

• The Radial turbine rotational speed is known to affect the turbine
efficiency (furthermore, excessive rotational speeds lead to manu-
facturing and operational problems). The expander/turbine is di-
rectly coupled to the Power Conversion Unit (PCU), which performs
the mechanical-electrical power conversion, and the alternator
would become much more expensive.

• The Back work ratio (BWR), i.e., the ratio between pump and tur-
bine power, must be minimized to maximize the cycle net power
output.

• The Turbine external diameter should fall within the dimensional
constraints of the retrofitting capability of the technology.

Two fluids (Fluid A and R1233zde) were selected for further
screening because they have zero toxicity, low GWP, maximum power
output compared to others, and both are inflammable. The results were
further expanded as shown in another work by the authors [5]. Overall,
Fluid A was shown to produce lower back pressure at the evaporator
exit. On the other hand, R1233zde presented very high turbine rota-
tional speed which in turns had a negative effect on the electric gen-
erator cost. Moreover, according to 3M [62] that produced Fluid A, this
fluid is an effective heat transfer fluid that can be utilized in applica-
tions such as ORC where non-flammability or environmental factors are
a consideration. Last but not least, Fluid A, which unfortunately cannot
be mentioned here for reasons of strict confidentiality, is generally
more available in the market.

3. ORC thermodynamic definitions used in the experiment

This section presents the experimental set-up tested and the

principal theoretical expressions used in the definition of the ORC
system and expander performance. Fig. 1 presents the schematic layout
of the ORC test rig. Thermal oil extracts the heat of the exhaust gas via
the gas-oil heat exchanger (main heat exchanger). Using the working
fluid pump, the working fluid is pumped at high pressure to the eva-
porator to extract the heat from the hot thermal oil. The superheated
fluid then enters the turbine to rotate the turbine blades generating
power output. The turbine is directly coupled to a high speed syn-
chronous electric generator to convert the turbine mechanical power to
electricity. In the test bench, a load bank is installed for the purpose of
electric power dissipation. Since the working fluid leaving the eva-
porator is still hot, the fluid enters the recuperator to absorb the re-
maining heat. The warm working fluid then enters the condenser where
it is condensed into liquid before entering the working fluid receiver
tank and restarting the cycle.

Table 1 presents the principal thermodynamic equations of each
component. Performance of the ORC system is measured using the
definition of the thermal efficiency ηORC as shown in Eq. (1). Thermal
efficiency is defined as the ratio between the cycle work net and the
heat extraction in the evaporator. Wnet is the cycle power and it is the
difference between the electrical power generated by the generator and
the power consumed by the pumps (working fluid pump and thermal oil
pump), Eq. (2).

=η W
QORC

net

evap (1)

= − +W P W W( )net e pump wf pump to, , (2)

The performance of the turbine is measured using bulk properties
for the total-to-total isentropic efficiency definition as shown in Eq. (3).
h s08 is obtained using REFPROP [63] at P s{ , }08 01 as shown in the h-s
diagram, Fig. 2. Another indicator of turbine performance is the turbine
expansion power and it is defined using Eq. (4). Eq. (4) is a well know
expression that combines the energy conservation and Euler equation.
Euler equation can be defined in another form as shown in Eq. (5).
According to Moustapha et al. [64], Euler equation can be combined
with the velocity triangle to obtain Eq. (6), where a and b denotes the
rotor inlet and exit, respectively.

=
−

−

η h h
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s

07 08

07 08 (3)

= =W m h τω̇ Δout act (4)

= −W m U C U C( )out a θa b θb
. (5)

= − − − + −W U U W W C C0.5[( ) ( ) ( )]out a b a b a b
2 2 2 2 2 2 (6)

4. Experimental apparatus

The test rig consists of two main components: the heavy duty diesel
engine (Fig. 3) and the ORC skid (Fig. 4).

Table 1
Thermodynamic equations defining the operation of each component of the ORC.

Component Equation Equation # Comments

Evaporator = −Q m h h( )evap wf
. 7 6 (7) Qevap is the heat transfer in the evaporator in kW. h6 and h7 are enthalpies in kJ/kg at inlet and exit of the evaporator.

mwf
. is the mass flow rate of the working fluid

Turbine = −W m h h( )turb wf
. 7 8 (8) Wturb is the turbine power output in kW

Recuperator = − = −Q h h h h( ) ( )recup 6 5 8 9 (9) Qrecup is the heat transfer in the recuperator in kW

Condenser = −Q m h h( )cond wf
. 9 10 (10) Qcond is the heat transfer in the condenser in kW

Pump = −W m h h( )pump wf
. 5 13 (11) Wpump is the turbine power output in kW
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4.1. Description of the heavy duty diesel engine

The heavy duty diesel engine utilized in the test is a 7.25ℓ Yuchai
engine. It is a turbocharged, direct injection engine and fulfils the EURO
III regulatory requirements. The detailed characteristics of the heavy
duty diesel engine are presented in Table 2. The engine capacity is
considered sufficient to apply a waste heat recovery system to, due to
the high exhaust flow enthalpy available.

The engine exhaust heat map of this heavy duty diesel engine is
illustrated at Fig. 5. It is observed that the maximum exhaust energy is
wasted at maximum power conditions, which was also considered as
the design point of this ORC unit, in order to maximize the ORC system
power output. However in transient automotive applications the ORC
system rarely operates at the design conditions. In this study, the pre-
sented tested off-design conditions of the ORC system are at 40%
(81 kW) of the maximum engine power, as presented in Fig. 5. This
operating point represents an average steady state operation between
high and low engine load and speed of the non-road transient cycle
(NRTC) test protocol. NRTC is a legislative driving cycle developed by
US EPA in collaboration with EU and is utilized worldwide for type
approval of non-road engines. The normalized engine speed and torque
profile are also presented in Fig. 5.

4.2. ORC installation

This section presents a brief description of each component of the
ORC system. Fig. 4 illustrates the installation which was tested in the

powertrain test facility at Brunel University London.

4.2.1. Gas-oil heat exchanger (main heat exchanger)
In the gas-oil heat exchanger (Fig. 3), heat transfer takes place be-

tween the exhaust gases of the engine and the thermal oil. It is a single
heat flow, shell and tube heat exchanger manufactured by Entropea
Labs.

4.2.2. Evaporator, condenser and recuperator
The evaporator, condenser and recuperator units are all counter

current flow, brazed plate heat exchangers. The counter current con-
figuration in the condenser is beneficial to ensure that saturated liquid
leaves the condenser, thereby, allowing the working fluid pump to

Fig. 2. Enthalpy-entropy diagram through the turbine stage [65].

Fig. 3. Engine-ORC installation with main test components identified.

Fig. 4. The ORC skid constructed for ICE waste heat recovery testing.

Table 2
Characteristics of the heavy duty diesel engines.

Displaced Volume 7255 cc Number of
cylinders

6

Stroke 132mm Number of valves 4
Bore 108mm Maximum torque 1100 Nm @ 1400–1600

RPM
Compression Ratio 17.5:1 Maximum power 206 kW @ 2300 RPM
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operate more efficiently. The brazing is made of copper and connec-
tions inside the heat exchangers are made of stainless steel to withstand
the operating conditions of the cycle. Brazed plate heat exchangers
consist of a pack of plates that are pressed together which eliminates
the use of gaskets. The maximum temperature and test pressure of the
heat exchangers are 225 °C and 46 bar for the evaporator, 225 °C and
40 bar for the condenser, and 225 °C and 72 bar for the recuperator. The
condenser is cooled by a water loop that is controlled by a throttling
valve.

4.2.3. Pumps
There are two pumps available in the test rig – one for the oil loop

and the other for working fluid loop. Both pumps are of positive dis-
placement type (gear pumps). The pumps are connected to an electrical

motor with the same maximum speed. The characteristics of both
pumps are listed in Table 3.

4.2.4. Turbine
The turbine was designed according to the methodology presented

in Fig. 6. Firstly, the basic geometry was constructed using a mean-line
model. Then, the 3D parts of the turbine were constructed as shown in
Fig. 7. The turbine then was optimized through dedicated CFD in-
vestigations. Finally, the turbine was manufactured as shown in Fig. 7.
The detailed design methodology is presented in previous paper by the
authors [65]. Table 4 presents the main geometrical parameters of the
turbine. The turbine was designed with novel back-swept blading in
order to increase the tangential velocity component and hence higher
power output as expressed in Eq. (5).

The radial inflow turbine was designed mainly for this application
considering the exhaust gas temperature of the engine at full load as the
heat source for the thermal oil loop. After extensive ORC simulations by
the industrial partner, the design point operating conditions of the
turbine were specified as shown in Table 5. The turbine shown in Fig. 7
was designed based on the design point conditions shown in the table.
At the design point, the theoretical and CFD results showed that the
turbine could produce power output of 18 kW and operate with a total

Fig. 5. (a) left: Exhaust heat diesel engine map, (b) right: The Nonroad Transient Cycle (NRTC) protocol.

Table 3
Pumps specifications.

Pump Speed (RPM) Flow rate (lt/
min)

Maximum power (kW)

Oil pump 1400 40 1.1
Working fluid pump 1400 60 5.5

Fig. 6. The design methodology employed in the design of the radial inflow turbine.
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to static efficiency of 75.2%. The maximum theoretical thermal effi-
ciency was 9.3%.

However, due to the limitation of the dynamometer, the engine was
not running at full load. In fact, the engine could only provide a torque
of 450 N.m which for the maximum speed tested (1700 rpm) equated to
81 kW. Therefore, the turbine was tested at highly off-design conditions
as shown in Table 5. Indeed, this could be more beneficial since the

exhaust gas temperature is unstable and uncontrollable, thereby ob-
taining more practical results. In addition, off-design point is the fre-
quent engine operating point, as shown in Fig. 5.

4.3. Instrumentation

The test facility is instrumented with measuring devices at inlet and

Fig. 7. Details of the radial inflow turbine.
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Fig. 7. (continued)

Table 4
Basic geometrical data of the radial turbine.

Parameter Unit Design point Off-design (Testing)

Turbine inlet total pressure bar 13 1.8–9
Turbine inlet total temperature K 471.5 423.15–437.5
Turbine exit static pressure bar 1.3 1.1–1.4
Turbine inlet mass flow rate kg/s 0.923 0.03–0.815
Rotational speed rpm 40,000 15,000–20,000

Table 5
Design and off design conditions for the radial inflow turbine.

Parameter Value

Stator inlet radius [mm] 44.4
Stator exit radius [mm] 35.5
Stator blade height [mm] 3.4
Rotor inlet radius [mm] 34.1
Radius exit radius (rms) [mm] 17.2
Rotor inlet blade height [mm] 3.4
Rotor exit blade height [mm] 15
Rotor inlet blade angle [deg] 54
Rotor exit blade angle [deg] −45
Number of rotor blades [–] 15
Number of stator vanes [–] 17

Table 6
Operating range and accuracy of the measuring devices.

Measurement Range Accuracy

Total temperature −40 to 1100 °C ± 1.1 °C
Total pressure 1–50 bar ± 0.25 full scale
Working fluid flow rate 0.23–1.82m3/h ±3% of reading

Fig. 8. Effect of heat source temperature on working fluid and oil temperature.

Fig. 9. Effect of heat source temperature on working fluid and oil pressures.

Fig. 10. Effect of working fluid mass flow rate on turbine inlet pressure.

Fig. 11. Relationship between Oil Power and Electrical Power.
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exit of the components in order to measure total pressure, total tem-
perature and/or mass flow rate. This is aimed at evaluating ORC effi-
ciency, turbine power and efficiency, and the generated electrical
power at different operating conditions. All the thermocouples are of K

Fig. 12. Energy balance through the main heat exchanger.

Fig. 13. Cycle efficiency evolution with time.

Fig. 14. Power generation with speed.

Fig. 15. Power generation with turbine pressure ratio at 20,000 rpm.

Fig. 16. Turbine isentropic efficiency at two different speeds.

Fig. 17. Mass flow parameter vs pressure ratio.

Fig. 18. Variation of power with working fluid mass flow rates.

Fig. 19. Variation of power with turbine speed.
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type (Nickel Chromium/Nickel Aluminium). They are highly flexible
and the sheath can be formed or bent to suit the applications required.
The pressure transducers use piezo-resistive sensing technology with
ASIC (Application Specific Integrated Circuit) signal conditioning in
brass housing and Metri-Pack 150 or cable harness electrical connec-
tions. The mass flow rates of thermal oil and working fluid are mea-
sured using flow meters. The turbine is directly coupled to the gen-
erator and the speed can be controlled by the user. The operating range
and accuracy of the measuring devices are described in Table 6.

5. Results and discussion

5.1. Overview of the results

The recording of the test data was initiated once thermal equili-
brium (steady state) was achieved. Therefore, the time (x-axis) shown
in latter figures in this section is the time after recording and not the
time from the start of the test.

The exhaust gas temperature is the main external factor that affects
cycle performance. Figs. 8 and 9 present the impact of the exhaust gas
temperature on temperature and pressure of both the oil through the
evaporator, and the working fluid through the turbine at constant

Fig. 20. Stator mesh (top) and rotor mesh (bottom).

Fig. 21. Mesh dependence study. Fig. 22. Comparison of the turbine total efficiency between the experimental and CFD
results.
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working fluid mass flow rate (0.33 kg/s). It is clear from Fig. 8 that the
oil temperature increases at a constant rate as the exhaust gas tem-
perature increases. Consequently, the temperature of the working fluid
at the turbine inlet increases proportionately. It is also noticed that the
turbine exit temperature increases proportionately as the exhaust gas
temperature increases. The temperature drop between inlet and exit of
the turbine is a result of the expansion process within the turbine. The
maximum temperature difference of the oil between evaporator inlet
and exit is 14.4 °C while it is 12.3 °C of the organic fluid between tur-
bine inlet and exit at the maximum exhaust gas temperature. Fig. 9
presents the influence of the exhaust gas temperature on the oil and
working fluid pressure. The increase of the oil pressure at inlet and exit
of the main heat exchanger is negligible which indicates a steady state
condition. The turbine inlet pressure increases by 0.4 bar as the exhaust
gas temperature increases. On the other hand, the turbine exit pressure
is almost constant during the process since the exit pressure is not di-
rectly related to the evaporator exit. As mentioned earlier, this sample
of results are taken at constant working fluid mass flow rate. Fig. 10
shows that the turbine inlet pressure increases with increasing the
working fluid mass flow rate. As the mass flow rate increases from
0.05 kg/s to 0.83 kg/s, the turbine inlet pressure increases from
1.45 bar to 8.3 bar.

As stated before the tests were run at 81 kW of engine power (40%
of the maximum engine power). Therefore, heating of the thermal oil
could not be sustained which diminished the oil power with time.
Hence, the power generation in the electric generator lasts for about
30min with a maximum power of 6.3 kW before it fell sharply in the
last five minutes. Fig. 11 presents the variation of the electrical and oil
power with time.

The equations presented in Table 1 were applied in order to cal-
culate the performance for the three heat exchangers involved (gas-oil
heat exchanger, evaporator and condenser) at different heat source
temperatures. It is worth mentioning that the points, where two-phase
flow occurs, were excluded in the analysis due to the difficulty of
measuring the thermodynamic properties (i.e. enthalpies) involved at
those stations. As can be seen in Fig. 12, the maximum deviation in the
main heat exchanger (gas-oil heat exchanger) is 1.9% at 239 °C. The
same analysis was performed on the evaporator and the condenser. The
maximum errors for the two components were 3.7% and 4.1%, re-
spectively. The above errors are relatively low and could be explained
due to inaccuracies in the temperature measurements and the heat loss
in the connecting pipes as these pipes were not insulated during the
test.

The thermal efficiency of the cycle was investigated with time as
depicted in Fig. 13. It is worth pointing out that the cycle efficiency is
far below the design point value (9.3%) as the cycle was operated well
within off-design conditions. For instance, the turbo-generator operated
at 20,000 rpm which is far below its rated rotational speed
(40,000 rpm). The cycle efficiency was in the range of 1.4–4.3%. The
efficiency reached its peak after about 12min of testing and then de-
creased to 2.8% due to the reduction of the electrical power in the
generator (Fig. 11).

The main purpose of the ORC as a waste heat recovery system is to
improve the engine performance or conversely the reduction of fuel
consumption. The results reveal that the BSFC was decreased by an
average value of 3% after the implementation of the ORC at these
conditions (40% of the maximum engine power).

5.2. Turbo-generator characteristics

5.2.1. Electrical power
The electrical power generated by the generator is investigated at

different conditions. Fig. 14 reveals the relationship between the gen-
erated power and the turbo-generator speed. It is clear that the elec-
trical power increases linearly as the speed increases. As the speed in-
creases from 5000 to 7000 rpm, the power increase is insignificant. The

power then increases gradually from 8000 to 20,000 rpm with a max-
imum power of 6.3 kW at 20,000 rpm. In addition, the generated power
is investigated at different turbine pressure ratios as can be seen in
Fig. 15. The generated power linearly increases as the expansion ratio
between turbine inlet and exit increases. It is worth mentioning that the
expansion is increased by controlling the mass flow rate using the
working fluid gear pump. As the mass flow rate increases, the turbine
inlet pressure increases as demonstrated in Fig. 10. It is also worth
noting that the results in Fig. 15 are demonstrated at constant turbo-
expander speed (20,000 rpm). The maximum obtained electrical power
is 6.3 kW at 5.9 pressure ratio. For the 15,000 rpm speed, the maximum
electrical power achieved is 5.1 kW at 3.8 pressure ratio.

5.2.2. Turbine performance
The turbine performance is investigated at different speed and mass

flow rate conditions, and at constant heat source temperature.
For the evaluation of the efficiency of the turbo-expander, the

isentropic total-to-total efficiency definition is applied as shown in Eq.
(3). The heat source temperature is kept constant while the mass flow is
increased in order to control the pressure ratio through expander for
each speed line. The turbine is directly coupled to the generator.
Therefore, the turbo-generator speed can be controlled by the user. Two
speed lines are selected, namely; 15,000 and 20,000 rpm. As stated,
20,000 rpm is the maximum allowable speed due to the limitation of
the engine dynamometer. Each single value of pressure ratio is taken as
the average value for about 3min of testing. As can be seen in Fig. 16,
both speed lines have the same trend where the efficiency increases
until reaching its peak then decreases as the pressure ratio increases.
This decrease is expected in radial turbines due to the choked flow at
high pressure ratios as can been seen in Fig. 17. At PR≥ 4.2, the flow
becomes supersonic at the nozzle exit which results in choking condi-
tion for any further increase in the pressure ratio. In case of choking,
total losses especially the incidence and frictional losses also increase.
The choking condition results also in raising the flow velocity in the
rotor much more than in the nozzle. The latter phenomenon results in
shock waves in the radial gap between the stator exit and rotor inlet.
The aforementioned problems arising from the flow choking result in
lower turbine efficiency as the pressure ratio exceeds the choked value.
With the 20,000 rpm speed, the efficiency increases with increasing the
pressure ratio until it reaches its peak of 35.2% before it decreases to
30% at 5.9 pressure ratio. At the 15,000 rpm, the isentropic efficiency
varies from 10%, reaching its peak of 27.3%, to 14% at a pressure ratio
of 5.5. The cumulated measurement uncertainty is nearly constant for
each speed line. For the 20,000 rpm, the uncertainty measurement is
1.5%, while it is approximately3% for the 15,000 rpm.

In addition, the turbine power is investigated at different mass flow
rates and speeds. The results are presented in Figs. 18 and 19. The
power of the turbine increases linearly as the mass flow increases. In-
creasing the mass flow rate, by adjusting the gear pump, results in a
higher pressure ratio through the turbine stage. As the pressure ratio
increases, the enthalpy drop increases leading to higher turbine power
output. As shown in Fig. 18, the maximum obtained power is 10.2 kW
at 0.85 kg/s mass flow rate. According to Eq. (4), the higher the turbine
speed is, the more power is obtained. Unlike mass flow rate, turbine
power increases non-linearly along with the increase in the turbine
speed with a maximum value of 10.2 kW at 20,000 rpm as depicted in
Fig. 19. The non-linear increasing of turbine power is justified by the
term −U U( )4

2
5
2 which represents the first term of Eq. (6).

5.3. Computational fluid dynamics (CFD)

Since the tests were performed at highly off-design conditions, the
turbine performance was further evaluated using the CFD results. The
stator vanes and rotor blades were designed using the BladeGen tool in
ANSYS and then imported to the ANSYS TurboGrid to generate the
appropriate meshes, as shown in Fig. 20. In this study, an automatic
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topology (ATM Optimised) was selected so that ANSYS TurboGrid could
select the suitable topology for the blade passage. If the mesh quality at
a certain region, such as the rotor leading edge, is poor, then the control
points can be adjusted by the user to solve the problem. Fig. 21 presents
the sensitivity analysis of the element number of the passage to the
turbine isentropic efficiency at the design point. The passages with one
million elements were selected for the current study.

Two models of boundary conditions can be applied in ANSYS CFX.
The first model applies total pressure and temperature at the turbine
inlet, whereas the second model is defined with the combination of
mass flow rate at the inlet and static pressure at the outlet. In this study,
the first model was applied because it provides the best numerical
stability and convergence rates [66]. To include the effect of heat
transfer, the total energy model was included in the simulation because
it depicts the transport of enthalpy and considers the flow kinetic en-
ergy [67]. All solid surfaces were modelled as smooth walls using a no-
slip boundary condition. The parameters of the off-design conditions
shown in Table 5 were applied with the rotational speed kept
20,000 rpm. In order to define the working fluid, look-up table were
built and discretised in 500×500 arrays with pressure
(50–13,500 kPa) and temperature (350–500 K) as independent vari-
ables.

The results of the parametric CFD study were in good agreement
with the experimental results as shown Fig. 22. The maximum deviation
was 1.15% at =PR 5.9. For the rest of the range, the deviations were
less than 1%. These insignificant deviations indicate that the CFD study
is properly set, and the experimental results are reliable.

6. Conclusion

A compact ORC system was built, coupled to a heavy duty diesel
engine and tested. A thermal oil loop was constructed to absorb the
wasted heat in the exhaust and deliver it to the organic fluid. This
helped to control the operating conditions in and out of the different
ORC components; hence steady state was reached prior to testing. The
intermediate oil loop was necessary to preserve the integrity of the
working fluid selected but increased the system complexity and cost
and resulted in lower system efficiency. Therefore, its choice is de-
pendent on working fluid selection and ultimate application.

In addition, a radial inflow turbine was designed specifically for the
current application considering the cycle conditions and the thermo-
dynamic properties of the organic fluid. The overall cycle and the turbo-
generator performance were investigated.

The results revealed that the maximum generated power was 6.3 kW
at 20,000 rpm at 40% engine power. The operating conditions were a
substantially off-design condition, at which the peak efficiency of the
radial turbine was 35.2% at 20,000 rpm. In addition, the maximum
thermal efficiency of the cycle was 4.3%. The results also revealed that
the coupled engine-ORC system improved the engine power and the
BSFC by 3% at the tested engine point. For more assurance, the ex-
perimental results of the turbine were compared with the CFD results
due to the highly off-design conditions. The numerical and experi-
mental results were in good agreement with a maximum deviation of
1.15%.

The results of the current study were encouraging for further in-
vestigation including design conditions as well as transient driving
cycles.
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