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Abstract

In this work, a new time marching technique is proposed to analyze hyperbolic bioheat transfer problems. In this new approach, time integration parameters adapt themselves along the solution process, in accordance to the properties and results of the model. Thus, the time integrators are locally evaluated, assuming different values along the spatial and temporal discretizations, enabling a more accurate and effective solution algorithm. The proposed technique has guaranteed stability, it is truly self-starting, and it is formulated as a non-iterative single-step/solver procedure, demanding low computational efforts. As illustrated in the manuscript, the methodology is very accurate, robust and simple to implement, providing a suitable numerical approach to analyze hyperbolic bioheat conduction models.
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1. Introduction

Numerical methods have been widely used for the solution of many problems in the thermo-biology field. Different mathematical models can be used to describe the bioheat transfer process in living tissue [1-2]. The literature reports a substantial number of papers on the numerical modelling of the parabolic Pennes equation considering different numerical techniques [1, 3-6]. However, there are some applications involving extremely short time duration or very low temperature (e.g. cryogenic surgery, laser induced thermal damage, etc.) for which the parabolic bioheat equation, which assumes an infinite thermal speed of propagation according to Fourier’s law, is not adequate and the mathematical model may be more accurately described by the hyperbolic bioheat equation [7-13]. The hyperbolic bioheat equation is characterised by a finite thermal speed of propagation of the thermal waves due to the application of a modified Fourier’s law [14-15], involving a relaxation time 
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 which indicates that there is a delay between the heat flux vector and the temperature gradient. For the same point in the conduction medium, the temperature gradient is established at time t, but the heat flux vector will be established at a later time t + 
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. Another hyperbolic bioheat equation was developed by Tzou [16], giving origin to the dual phase lag (DPL) model involving two time delays 
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 and 
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 (phase lags), which allows for the heat flux to respond to the temperature gradient or vice-versa, depending on the relative values of the phase lags.
The work presented in this paper proposes a new methodology to analyze hyperbolic bioheat transfer problems, considering the more generic context that is represented by the DPL model. Here, the spatial discretization of the body is carried out taking into account the standard Finite Element Method (FEM) [17-18], and the time domain analysis is carried out taking into account a modified, extended new version of the adaptive methodology proposed by Soares [19], which was developed for dynamic applications. Following this new approach, two time integration parameters are considered, namely 
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 and 
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, which are allowed to assume different values at each FEM element and at each time step. The computation of the 
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 parameter is designed to improve accuracy and to ensure the stability of the analysis. The evaluation of the 
[image: image8.wmf]a

 parameter, on the other hand, focuses on enabling an effective numerical dissipative algorithm, aiming to eliminate the influence of spurious modes and to reduce amplitude decay errors; it defines the so-called dissipative and non-dissipative elements of the model, which are relabeled at each time step of the analysis. The proposed adaptive strategy is non-iterative, and the values for the time integrators are simply and directly computed taking into account just the physical/geometrical properties of the finite elements of the spatial discretization, the adopted time-step, and local previous time-step results. In addition, the proposed technique is only based on single-step relations involving two variables: the temperature field and its first time derivative. Thus, just a single set of equations has to be dealt with within a time-step, and the resulting method stands as truly self-starting, eliminating any kind of cumbersome initial procedure, such as the computation of initial second time derivative values and/or the computation of multistep initial values. 
The manuscript is organized as follows: initially, the governing equations of the DPL model are briefly presented and, in the sequence, the adopted spatial and temporal numerical discretizations are discussed, followed by a detailed description of the proposed adaptive technique. Relevant numerical validation tests are then considered, illustrating the accuracy and effectiveness of the proposed methodology. Further details on the mathematical formulation of the new approach are provided in the appendix, where the stability and dissipative features of the technique are discussed in more detail.

2. Governing equations

The dual-phase-lag (DPL) model may be expressed as:
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which is a conduction law that allows either the temperature (T) gradient to precede the heat flux vector (q), when 
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, or the heat flux vector to precede the temperature gradient, when 
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; where 
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 and 
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 stand for the phase lags for the heat flux vector and temperature gradient, respectively. For 
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, the modified Fourier’s law reduces to the Cattaneo–Vernotte (CV) model [14-15] and, for 
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, the standard Fourier’s law is obtained [20].

Taking into account the DPL model and first-order expansions, the governing equation for hyperbolic bioheat transfer problems reads:
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where over dots indicate time derivatives; k, ρ and c stand for the thermal conductivity, density and specific heat of the tissue, respectively; cb, wb and Tb are the specific heat, perfusion rate and temperature of blood, respectively; and the volumetric heat 
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 contains the metabolic and spatial heating terms qmet and qext, as well as their time derivatives: 
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Once the governing differential equation is established, boundary and initial conditions must be defined. Here, they are given by:

(i) Boundary conditions (t 
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(ii) Initial conditions (t = 0, x ( 
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where equation (3a) stands for essential (or Dirichlet) boundary conditions and equation (3b) stands for natural (or Neumann) boundary conditions (n represents an outward unit vector normal to the boundary). In equations (3) and (4), overbars indicate prescribed values and the boundary of the model is denoted by 
[image: image30.wmf]G

, whereas the domain is denoted by 
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.

3. Numerical discretization

Once the governing equations of the model are described, their numerical discretizations can be considered. Here, the spatial discretization is carried out by the Finite Element Method (FEM) and the temporal discretization is provided by a new time-marching algorithm, which locally adapts itself spatially and temporally, following the properties of the model and the computed solution. Both these space and time discretization techniques are described in the subsections that follow.
3.1. Spatial discretization

The Galerkin weak form of equation (2) can be derived from the method of weighted residuals. Once an approximation for T is considered, an error or residual will exist. This residual can be weighted by a suitable weighting or test function 
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, integrated, and set to zero, as indicated below:
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(5)

where equation (5) stands for the strong integral form of equation (2). 

The divergence theorem states that:


[image: image34.wmf]W

Ñ

×

Ñ

-

G

×

Ñ

=

W

Ñ

×

Ñ

ò

ò

ò

W

G

W

d

T

k

d

T

k

d

T

k

y

y

y

n














(6)

which, when applied to equation (5), yields:
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where equation (7) stands for the weak integral form of equation (2).


When a local approximate relation is employed, such as 
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 stands for the total amount of degrees of freedom of the element, and the standard Bubnov-Galerkin method is considered (in which the test functions are equivalent to the trial functions, i.e., 
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where 
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and the symbol 
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 indicates an assembly procedure.

Equation (8) can be rewritten in a more compact form as follows:
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where 
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. Once equation (10) is generated, its solution along time is presented in the next subsection. In the appendix, the spectral properties of the proposed time marching technique are further discussed.
3.2. Temporal discretization

By time integrating equation (10) at the element level, considering a time-step ∆t (i.e., 
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The integrals in equation (11) may be evaluated as:
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where 
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The temperature 
[image: image68.wmf]1

+

n

T

 can be defined by the following simple finite difference expression:

[image: image69.wmf]1

2

1

2

1

1

+

+

D

+

D

+

=

n

n

n

n

t

t

T

T

T

T

&

&




















(13)
which, in conjunction with approximations (12), allows equation (11) to be rewritten as the following recursive relation:
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Equation (14) enables the evaluation of 
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 can be computed, following relation (13). Thus, equations (14) and (13) define the proposed time integration algorithm.
As it has been highlighted, different spatial and temporal attributions for the integration parameters 
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 and 
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 can be considered, allowing a more flexible and versatile approach. Thus, these parameters can be locally selected in order to better explore specific features, enabling enhanced procedures. Here, 
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 is computed as a function of the highest eigenvalue of the element e (i.e., considering the generalized eigenvalue problem of local matrices 
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 will also not change, and the effective matrix of the model (see the l.h.s. of equation (14)) will remain the same along the complete analysis. In this case, the effective matrix can be computed/treated just once, allowing an efficient approach. 

Regarding the value of the 
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 parameter, better accuracy is provided when 
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, the main features of the Central Difference (CD) method are reproduced by the proposed technique and, for 
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 (which describes a non-dissipative formulation), an intermediate methodology between the CD and the TR takes place. Since the CD provides negative period elongation and the TR provides positive period elongation, for 
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 reduced period elongation errors occur, enabling a more accurate technique. This fact is explored here, and 
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 is selected between 0 and ½, in a way that stability is always ensured (stability is discussed in the appendix). In this context, 
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Still considering equations (12c) and (14), different 
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 parameters may also be selected for each element and for each time step. Thus, a spatial/temporal adaptive procedure may be further developed, locally computing the time integration parameter 
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 according to the properties of the model and to the evolution of the computed fields. This is carried out here taking into account numerical damping aspects. The 
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 parameter controls the dissipative properties of the proposed time marching technique. Thus, its value can be locally adapted according to the evolution of the solution, introducing numerical dissipation when it is necessary, activating or not dissipative elements according to the circumstances. The purpose of numerical dissipation is to reduce spurious, non-physical oscillations that sometimes occur due to excitation of spatially unresolved modes. One basic difficulty in designing such dissipative algorithms is to add high-frequency dissipation without introducing excessive algorithmic damping in the important low-frequency modes. Thus, a local space/time adaptive computation of 
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 aims to overcome this difficulty and to optimize the introduction of numerical damping into the analysis, maximizing its positive features and minimizing its negative aspects. 
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, numerical dissipation is not introduced into the analysis and, for 
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, numerical damping occurs (these properties are further discussed in the appendix). Thus, dissipation can be locally activated in the analysis when it is necessary (i.e., when spurious, non-physical oscillations occur), and deactivated when it is not. In this sense, a permanent algorithmic dissipative pattern can be overcome and subsequent excessive numerical damping errors avoided (especially when considering long periods of analyses). This idea can be automatically carried out based on an oscillatory criterion. Thus, if the computed response of a degree of freedom of the model oscillates along time, the 
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 parameters of the elements surrounding this degree of freedom are modified, locally introducing numerical dissipation into the analysis. Once no oscillatory behavior is observed, 
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The above idea can be mathematically established as follows: (i) for each time step and for each element, compute an oscillatory parameter 
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, as described in equation (16); (ii) if this oscillatory parameter is null, the degrees of freedom of the element are not oscillating, and 
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 should be considered (equation (17a)), introducing no numerical dissipation into the analysis; (iii) if this oscillatory parameter is not null, at least one degree of freedom of the element is oscillating, and 
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 is considered once m+1 consecutive oscillations are observed (equation (17b)), introducing numerical dissipation into the analysis.
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Equation (17b) introduces maximal numerical dissipation at the maximal sampling frequency of the element (i.e., at 
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). Thus, higher modes are aimed to be more effectively dissipated following this design (this is further discussed in the appendix). In equation (17b), 
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 is computed considering the physical properties of the element and the square root of its maximal eigenvalue, i.e.: 
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. It is important to observe that the above proposed formulation for 
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 is more generic than that discussed in reference [19], since the 
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 term is disregarded in the context of that work. 
The oscillatory criterion represented by equation (16) indicates whether or not an oscillation occurs, taking into account the computed results at the last three time steps. According to this simple criterion, if the solution increment within two consecutive time steps (i.e., 
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), an oscillation occurs. It is suggested to adopt 
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; i.e., it is recommended to activate the dissipative elements once one or two time consecutive oscillations occurs.
It is important to observe that this time-marching technique is very efficient. Although the method is based on adaptive parameters, no iterative process is associated to the methodology, enabling a very effective single-step time-marching procedure, which is only based on two updating variables, i.e., 
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 and 
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. Thus, the resulting method also stands as truly self-starting, eliminating any kind of cumbersome initial procedure, such as the computation of initial second time derivative values and/or the computation of multistep initial values. In addition, the procedure is very simple to implement and it requires no input parameter, which is very suitable for non-specialized users and for commercial codes. The technique also establishes a link between the spatial and the temporal discretization, and the time marching algorithm becomes a function of the adopted mesh (it locally adapts itself according to the adopted spatial discretization). This is very important, once both spatial and temporal numerical discretizations introduce errors, and if somehow these errors can be counterbalanced, optimal performance is achieved. In fact, higher modes of semidiscrete equations are artifacts of the spatial discretization process and not representative of the behaviour of the governing partial differential equations; thus, it is generally viewed as desirable and often considered absolutely necessary to have some form of time marching algorithmic damping present to remove the participation of the high frequency modal components [17]. The present methodology links the spatial and temporal discretizations, aiming at this goal. Although the idea of a time marching procedure acting in connection to the adopted spatial discretization is highly recommended, few algorithms in the literature consider this approach.    
In the next section numerical examples are considered, illustrating the good performance of the proposed adaptive formulation. 

4. Numerical examples
Two numerical applications are considered here, illustrating the performance of the proposed methodology. In the first application, a biological tissue subjected to a sudden temperature rise at the skin surface, with the rest of the boundary considered as adiabatic, is considered. In the second application, a model submitted to an initial temperature field within its domain is analyzed, considering 
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. In both cases, analytical solutions are available, allowing to evaluate the errors of the computed results. Results provided by the Trapezoidal Rule (TR) [21] and by the Generalized α (G-α) method [22] (with its integration parameter selected as 
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, which provides maximal numerical dissipation) are also considered here, for comparison. As it is well known, the TR does not introduce numerical dissipation into the analysis, whereas the G-α is a very well established dissipative algorithm. Furthermore, all these numerical techniques (including the new one) basically demand the same computing time (all of them stand as a single solution procedure per time step), providing a fair comparison. Additionally, comparison with the Bathe method [23-24], which is a dissipative time marching technique that requires two solution procedures per time step (and, consequently, twice the computational effort of the previous referred approaches), is also carried out in the first application, further illustrating the excellent accuracy of the proposed methodology.
For the evaluation of the errors, the following expression is considered:
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where 
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 stand for the computed and the analytical solutions, respectively, and N represents the total number of time steps in the analysis.  


For all the numerical simulations that follow, the solution is written in terms of the elevated temperature (i.e., 
[image: image129.wmf]b

T

T

-

, where 
[image: image130.wmf]C

T

o

b

37

=

; in order words, values are provided in reference to the blood temperature).

4.1. First example

In this application, a strip of body tissue is analyzed [13]. A sketch of the model is depicted in Fig.1. The thermal properties of the tissue and blood are: 
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). Here, the CV model [14-15] is considered, and the values for the phase lags are: 
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For this configuration, the analytical solution is available [8], and its expression is given by:
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where 
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In order to numerically analyze the tissue, a regular (302x10) mesh composed of 6040 linear triangular elements is adopted to spatially discretize the model. Regarding the temporal discretization, analyses are carried out considering four different time-steps, namely: 
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. The computed results for the relative errors (equation (18)) at point A (see Fig.1) are depicted in Fig.2 (here, the index n of equation (19) for the series adopted to compute the reference solution is 10000). As one can observe, the new technique is very accurate, providing much better results than standard approaches, even considering time-steps six (or more) times larger, and/or solution procedures that are noticeably more computationally demanding, per time step.
In Fig.3, the time histories of the temperature at point A are depicted, considering the focused methodologies and 
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. As it can be observed in Fig.3, the new technique properly dissipate the spurious modes of the model, providing very accurate results. Although the Generalized α method is also able to inhibit the effects of spurious modes along time, its dissipative performance is less effective, as well as its period elongation errors are more pronounced. The Bathe method, on the other hand, provides lower period elongation errors than the TR and the G-α; however, it is unable to properly inhibit the spurious oscillations of the model, although it stands as a dissipative algorithm. In addition, the Bathe method is a two-step time marching procedure and, consequently, it stands as twice more computationally demanding than the other considered time marching techniques. In this context, a more fair comparison would take place if the results of the Bathe method were compared to those of the other techniques considering a time step value of 
[image: image156.wmf]2

/

t

D

 for these techniques, engendering the same overall computational effort for all procedures. In this case, as Fig.2 illustrates, the performance of the Bathe method becomes worse than that of the TR and of the G-α. 
In recent years, several further composite multi-step time integration algorithms [24-27] have been proposed inspired on the Bathe method, diminishing its period elongation errors and its numerical dissipative capabilities. Thus, an expressive presence of spurious oscillations is still expected considering these newer composite time marching techniques, for the present application.
4.2. Second example

In this second application, a rectangular sampling of body tissue is analyzed. A sketch of the model is depicted in Fig.4. The tissue is submitted to an initial constant temperature distribution, along its central area (gray area in Fig.4), of 
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The analytical solution for this 2D application was derived by the authors, and it is given by:
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where 
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The symmetry of the model is considered and just one quarter of it is discretized. Here, two spatial-temporal discretizations are applied. In the first discretization (discretization 1), a regular (125x125) mesh, composed of 31250 linear triangular elements, is adopted, and a time-step of 
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 is selected. In the second discretization (discretization 2), a regular (250x250) mesh of 125000 linear triangular elements and a time-step of 
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 are considered. Initially, the CV model is focused, and the values for the phase lags are 
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Taking into account this configuration, the time history results for the temperature at point A (see Fig.4) are depicted in Fig.5, for discretization 1 (here, the number of terms n and m in the series in equation (20) to compute the reference solution is 500). Again, better results are obtained considering the proposed formulation, which allows to properly eliminate the spurious high frequency modes from the analysis and to properly represent the important low frequency modes. In fact, considering the new approach, spurious oscillations are very quickly damped and excessive amplitude decay and period elongation errors do not appear in the solution. This is not the case considering standard time marching techniques.

In Fig.6, contour plots, displaying the isolines of the temperature field, are depicted along the discretized ¼ of the model (discretization 1), for the time instant 
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. Results are presented considering the different time marching techniques and the reference solution. As one can clearly observe in this figure, the TR provides very poor results, once it is unable to dissipate the spurious oscillations of the model. The G-α, on the other hand, provides slightly better results, although its quality is still relatively poor. Considerably better results are obtained by the proposed new technique. In this case, isolines are computed that are much closer to the reference solution. Analogous results are depicted in Fig.7, considering the time instant 
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. For this farther time instant, the pattern of the temperature field along the tissue is extremely elaborated, since multiple reflections have occurred at the boundaries of the model; and, again, the results obtained by the proposed technique are considerably better than those of the standard approaches.

In Fig.8, the active dissipative elements of the new methodology are indicated (marked by a darker colour), for the focused time instants. As previously highlighted, the dissipative capability of the element is activated or not, in accordance to the computed field, aiming to optimally dissipate the spurious oscillations of the model. Thus, algorithm damping is spatially and temporally locally applied, following the evolution of the solution. In this scenario, the amount of active dissipative elements along the mesh varies a lot, but, usually, few dissipative elements are enough to provide proper results. In the case that a more demanding pattern takes place, more dissipative elements may be activated, preserving the good quality of the results.
Analogous results to those presented in Figs.5-7 are presented in Figs.9-11, considering the so-called discretization 2. Once again, considerably better accuracy is provided by the new technique. For this more refined discretization, as Fig.9 indicates, the new technique provides very good results, matching relatively well the reference answer of the problem. On the other hand, expressive errors and spurious oscillations still remain, considering the other time marching techniques.
In this example, the DPL model is also considered with the value 
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 increases, smoother temperature fields occur, and the problem becomes easier to be dealt with by numerical techniques. In Fig.12, the time history results for the temperature at point A are depicted, taking into account the DPL model, discretization 1, and the various techniques in focus. As one can observe, for this configuration, all methods provide very good results. In Fig.13, contour plots displaying the isolines of the temperature field are depicted for the time instant 
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, taking into account the reference solution and the new formulation, further indicating the smoother behaviour of the temperature field for non-null 
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The relative errors (equation (18)) obtained for this second example are presented in Tab.1. As one can observe, as in the first example, the new technique always provides better results than the selected standard approaches, standing as a very effective numerical tool to analyze hyperbolic bioheat conduction models. 
5. Conclusions

In this work, a new algorithm is presented to analyze hyperbolic bioheat conduction models. In this approach, an adaptive time-marching technique is considered, which accounts for a linked formulation between the temporal and the spatial numerical discretizations. The technique considers two simple adaptive parameters, namely 
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 and 
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, which are spatially and temporally locally evaluated, taking into account the features of the discretized domain and the evolution of the computed results. In this context, 
[image: image185.wmf]g

 is locally computed as a function of the maximal sampling frequency of the element, in a way that stability is always ensured and reduced period elongation errors occur, providing very accurate analyses. The 
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 parameter is also locally computed taking into account the maximal sampling frequency of the element, as well as its 
[image: image187.wmf]g

 value and its physical dissipative features (ξ). In addition, the evaluation of 
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 considers the local historical evolution of the computed fields as a trigger for algorithmic dissipation. In this way, numerical dissipation can be locally introduced into the analysis or not, in accordance to the behavior of the computed results. If numerical dissipation is enabled, the selected elements are designed to optimally dissipate the influence of their highest modes. 
As illustrated in the manuscript, the performance of the proposed technique is very robust. The proposed algorithm is very accurate and efficient, and it is entirely automatized, requiring no special input parameters or expertise from the user, which is very suitable for complex applications. The main features of the novel technique can be summarized as follows: (i) it is simple; (ii) it is locally defined; (iii) it has guaranteed stability; (iv) it is an efficient non-iterative single-step procedure; (v) it provides enhanced accuracy; (vi) it enables advanced controllable algorithmic dissipation in the higher modes; (vii) it considers a link between the temporal and the spatial discretization; (viii) it is truly self-starting; (ix) it is entirely automatic, requiring no decision or expertise from the user.
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Appendix – Spectral analysis 

The single degree of freedom (SDOF) problem is considered here in order to discuss the stability and numerical dissipative properties of the proposed methodology. Of course, since different values are expected to (spatially and temporally) occur for 
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 and 
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 along the analysis, a standard modal decomposition correlation is not valid for the proposed adaptive approach. Thus, results are presented taking into account several values for the selected sampling frequency (
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 ― aiming to illustrate a basic possible range of behaviors and features that characterizes the proposed technique. 

The governing equation for the SDOF model can be written as:
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where 
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 stands for the physical dissipative ratio and 
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 stands for the natural frequency of the model. Considering equation (A1) and the proposed methodology, the following recursive relationship can be written:
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(A2)

where A and L stand for the amplification and the load operator matrices, respectively. 


In the proposed technique, the amplification matrix A is given by equations (A3): 
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where 
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, and the load operator matrix L is given by: 
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The stability condition requires that matrix A does not amplify errors as the time-step algorithm advances on time. The conditions required to assure stability are [17]: (i) 
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; (ii) eigenvalues of A of multiplicity greater than one are strictly less than one in modulus. In item (i), 
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 is the spectral radius of matrix A, which represents the maximal absolute magnitude of the eigenvalues of A. 


The eigenvalues of the amplification matrix of the proposed method are given by equation (A5), where A1 is half the trace of matrix A and A2 is the determinant of A, as defined by equations (A6):
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where 
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and the bifurcation sampling frequency 
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At the bifurcation sampling frequency, the spectral radius achieves a minimal value for 
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 (which is the solution of equation (A8) for 
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An alternative procedure to verify stability in the analysis could be to compute the critical value of a in 
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In Fig.A2, the spectral radii of the proposed method are depicted considering various values for 
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, maximal numerical dissipation is introduced at the selected sampling frequency 
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