
148 

THE SIMIAN ARCHITECTURE - AN OBJECT-ORIENTATED FRAMEWORK FOR INTEGRATED 
POWER SYSTEM MODELLING, ANALYSIS AND CONTROL 

N.B.P. Phillips, J.O. Gann and M.R. Irving 

Brunel Institute of Power Systems, Brunel University, UK 

ABSTRACT 

This paper details the work conducted by the Brunel 
Institute of Power Systems into an Object Orientated 
framework for Power Systems Modelling, Analysis and 
Control. 

Based around a central OODBMS (Object Orientated 
Database Management System), the architecture 
provides a framework for the construction of analysis 
and control applications and the sharing of calculated or 
real-time data between the applications. Although the 
paper details the architecture only in so far as its 
applicability to two applications, the framework is 
designed such that further applications, either client 
output (such as Control applications) or input (such as 
SCADA systems) may easily be added to the basic 
structure. 

To illustrate the architecture, a loadflow simulation 
application is presented, along with the strategy for 
incorporating other applications. The mechanism by 
which these ‘applications’ interact with the OODBMS 
and core structure of the architecture is illustrated. 

INTRODUCTION 

Over the last few years it has become increasingly ap- 
parent that power system computer solutions currently 
in-place are becoming inadequate. Todays business re- 
quirements demand complex data models, fast access 
and information sharing across the whole of the busi- 
ness. Object orientated software languages, databases 
and development techniques are now seen as a ossible 
solution to this problem and much r e~ea rch [~>~’  ,**I has 
been devoted to the application of this methodology to 
power system analysis and control. 

.p 

The SIMIAN System Architecture 

The SIMIAN architecture (SIMulation Image and ANi- 
mation) is an object-orientated framework designed spe- 
cifically to enable the sharing of data between different 
business processes within a complex data environment. 

The SIMIAN architecture consists of 5 major compo- 
nents. 

0 A central OODBMS. 

0 A general architecture class heirachy, 

0 An application specific class heirachy derived 
from the general classes, 

An inter-application communication protocol and 
Event Handler, 

A number of ‘applications’ 

Every application interacts with the central datastore and 
(optionally) the user, whilst notifying other ‘interested’ 
applications of changes to the data model. Messages are 
sent from the class objects to the event handler under pre- 
defined conditions, where they are then dispatched, asyn- 
chronously, to applications which have registered a prior 
interest in the specific data element. By this mechanism, 
results from one application may be updated automati- 
cally within another application. This situation is illus- 
trated in Figure - 1. 

Figure 1 : SIMIAN Architecture Overview 

BIPS have initially implemented the SIMIAN architecture 
in C++[’ol, using an Objectstore database to provide the 
required central data repository, and the CORBAL8I 
(Common Object Request Broker Architecture) commu- 
nication standard. The use of an Object Orientated data- 
base within the power system industry should lead to 
improved performance whilst dealing with an increas- 
ingly complex and extensive data set. In addition the 
complexity of the objects themselves is greatly simplified 
by adopting an object orientated design and implementa- 
tion. 

Power System Control and Management, 16-18Aprill996, Conference Publication No. 421, 0 IEE, 1996 



149 

Overview of SIMIAN Class Heirachy 

The top of the SIMIAN class heirachy defines basic 
functionality common to all Objects within the system. 
Each layer is defined to perform a specific function 
(Figure-2) 

Figure 2: Overview of the SIMIAN class heirachy 

The abstract superclass, dynamic behaviour and mes- 
saging class groups form the core classes of the archi- 
tecture, irrespective of application. The further class 
groups are application dependent. Figure-2 only depicts 
a network topology and model class heirachy, though in 
other applications, such as required for integrating a 
SCADA system into the architecture, the classes of that 
hierarchy would be placed in the parallel hierarchy posi- 
tion within the diagram. 

The following sections detail the implementation of the 
component parts of the SIMIAN architecture and the 
implications for applications and algorithms. 

THE SIMIAN ARCHITECTURE BASE CLASSES 

Figure-3 depicts, following OMTt9] notation, the class 
heirachy for the SIMIAN base class heirachy, 
incorporating the dynamic behaviour and messaging 
layers of the SIMIAN class heirachy. 

Figure 3: SIMIAN Core Class Heirachy 

The Dynamic Behaviour of Objects 

One of the prime tenets of the SIMIAN architecture is 
the flexibility and extensibility that the system should 
provide, enabling levels of customisation at run-time. 
Although a software producer may endeavour to pro- 
vide facilities for most users, there will always be func- 
tionality that is not covered. Some flexibility is also de- 
manded if the system is to enable easy extension over 
time (independent of any database schema migration 
functionality). 

During the design phase of an object-orientated applica- 
tion the behaviour of an object is frequently established 
by defining logical state machines for the proposed 
classes within a ~ y s t e m [ ~ ’ ~ ’ ~ ] .  The valid states for a class 
are then translated into program code to create the inter- 
nal data members and external constraints for the class. 

The design of the SIMIAN classes also follows this 
principle, but rather than translate the state machine 
model into static, programmatic statements, demands 
that each Object within the system be associated with an 
explicit state machine. 

Declaring the behaviour of the object within an explicit 
state machine provides a number of benefits over the 
traditional mechanism of programmatic statements. 

Encapsulation of explicit object behaviour in one 
class 

The behaviour of objects, though linked to class 
inheritance is not fixed to it, relievin the difficulties 
associated with state and inheritance B1 . 

State Machine are modifiable at run-time 

User may query the state of an object 

User may alter the behaviour of an object 

User may associate / disassociate actions with a 
change in state of the Object 

State changes may be dynamically triggered 
through a single user interface 

The behaviour of an object may be relayed to the 
user through a single mechanism rather than a 
diverse set of attributes (thus simplifying user 
interface design). 

The internal state machine of each object provides a 
dynamic behaviour model for the object. From Figure-3, 
Each state machine may be based upon a parent state 
machine. Run-time editing may be either performed by 
creating a child machine (in an analogous manner to 
class inheritance) - involving a change to only the 
behaviour of the class instance, or alternatively to the 
associated state machine, altering the behaviour of all 



150 

class objects associated with the given machine as well 
as all its children. 

Each state machine contains a set of internal states, a set 
of external triggers and a set of transitions. Once all the 
input states for a transition are VALID, the 
transformation to the output states is instigated. If the 
transition completes (see below) a message is sent to the 
Event Handler application to notify interested 
applications of a possible change in data for the class 
instance. 

Dynamic Functions. Each transition may be associated 
with a number of instances of the class saDynamicFunc- 
tion. Instances of the class SaDynamicFunction serve as 
synchronous messages demanding the execution of a 
class member function (of any class inherited from the 
abstract base class) defined for the owning object. These 
messages may either be processed prior to (as a pre- 
requisite for the transitions execution) or after the suc- 
cessful completion of the transition (as a side effect of 
the transition). 

State Variables. Dynamic Functions allow different be- 
haviour to be exhibited each time the state of an object 
changes. In corollary, State Variables allow for a class 
member variable to exhibit a different value depending 
upon the state of the machine. 

For instance, the power rating for overhead lines and 
underground cables is dependent upon the temperature 
of the surrounding medium (air or earth). Rather than 
providing 4 variables and the associated access methods 
within the Line / Cable class, the value can be linked to 
4 states defined for the conductor - one value associated 
with each state. 

To illustrate how the complete dynamic behaviour sub- 
system fits together, consider the following example. 

As part of a CircuitBreaker class, there exist two states 
corresponding to the Open and Closed states of the de- 
vice. Conventional coding of the class would entail con- 
structing public functions to open and close the switch 
as well as internal data to hold the current state of the 
switch. Under the State Machine mechanism for deter- 
mining the interface to a class, the class utilises a state 
machine that contains the two states Open and Closed, 
as well as the trigger states ‘openswitch’, ‘closeSwitch’ 
and associated transitions, illustrated in Figure-4.. 

:loseSwit 

Figure 4: Simple Switch toggle state Machine 

This model may be adequate for a power system model- 
ling simulation of a switch, but is in no way adequate 
for a control application which requires many more 
safeguards to be built into the switch model. To add 
these constraints to the behaviour of a conventional sys- 
tem would require the recoding of the class. However, 
under the SIMIAN system, the support for control appli- 
cations may be simply inserted by amending the ma- 
chine definition to that in Figure-5. 

Figure 5: Augmented Switch State Machine 

In Figure-5 the changing of the state of a switch now re- 
quires confirmation - two additional trigger states and 
two extra internal states are inserted. In addition, a dy- 
namic function (sendMessage) is now associated with 
the transition from ‘Switch Open Pending’ to ‘Open’. 
The sendMessage function (common to all objects) dis- 
patches a message to the SIMIAN event handler, which 
would subsequently be passed to the relevant applica- 
tion to provide an audible signal at the control desk. 

It is important to note that the incorporation of this func- 
tionality can be conducted during system run-time. State 
Machines may be edited by authorised personnel at any 
time, while the link between the core code and the audi- 
ble signal is through a message passing protocol to an 
independent application (which accesses the core 
OODBMS). 

Inter-Object Communication 

As described in the Introduction and mentioned in the 
above example, each object within the system may send 
messages to any other object within the system. The Ob- 
ject class in the Core class heirachy provides this func- 
tionality. 

Though messages ultimately pass between two objects, 
all messages are routed through the Event Handler ap- 
plication which determines which applications require 
the message. 

The objects within applications, during their execution 
cycle, register an interest in either objects or categories 
of message. When a message arrives at the event han- 
dler, a check for satisfaction of either constraint is con- 
ducted. If successful, the object which registered the in- 
terest is ‘called back’ with the contents of the incoming 
message. 



The inter-process communication system is implemem- 
ted using CORBA. This mechanism supplies a greater 
level of functionality than the simple message process- 
ing required above, allowing requests for information to 
be served, independent of language, locality and ma- 
chine architecture. 

THE SIMIAN ARCHITECTURE POWER 
SYSTEM CLASSES 

Figure-6 depicts the upper part of the class heirachy for 
the Dower system modelling auolication classes. 

Figure 6: SIMIAN Power Class Heirachy 

The Object class introduced in the previous section 
serves as the base class for the Power System Architec- 
ture. The principle inheritor of the Object class, in re- 
spect of the power system component heirachy is the 
Model class. This class encapsulates topological con- 
nectivity between power system model components. 

The SIMIAN class heirachy is based, as with other 
upon the topological classification of plant 

items I networks. Every topological entity in the archi- 
tecture inherits from the model class which provides 
topological tracing functionality as well as interconnec- 
tion I disconnection methods for the inherited classes. 
After the Model class, the heirachy divergence occurs 
on the basis of the cardinality of possible inter- 
connections to other topological models. 

As depicted in Figure-6, Models may be connected to 
other models through the Link class. (Every Link must 
be connected to exactly two Models, whilst a Model 
may be connected to any number of Links). Though, at 
the Model class level in the heirachy a model may be 
connected to any number of other models, the exact 
number of models that any instance can be connected to 
is controlled through the execution of virtual functions 
in the inheritor classes. At the next level down, A Group 
has zero possible connections, a Port - one, a Pipe - two 
and a Web has n possible interconnections to other ob- 
jects. Further restrictions may be introduced in child 
classes to prohibit the interconnection of specific plant 
(such as plant items operating at diverse voltage levels, 
e.g. 132 kV directly to 415 V). 

In addition to interconnection, Models may be repre- 
sented by other Models, and may also contain other 
Models. 

Model Aggregation. In Power System Modelling there 
is frequently a need for aggregating entities (either 
physical or abstract) together into one ‘component 
model’. For instance, a Bus Selector switch is logically 
composed of two switches, but in fact is a single ‘com- 
ponent’, (the duality is also seen between Transformers 
and Windings and a distribution network and the substa- 
tions within it.). 

Model Representation. Although the primary model 
of the network would concentrate on components, once 
analysis techniques (such as load flow or fault analyses) 
are applied to the plant model, the data is often trans- 
formed into specialised data structures for numerical al- 
gorithms. This process is wasteful since it dis-associates 
the physical model from the analytical model. More so 
since, (for example), the topology of a load flow node- 
branch network is fundamentally similar to the physical 
plant topology, rather represented in a different manner. 
The node-branch model. is thus regarded as simply a 
new representation of the network model. Each of the 
load flow node Model instances is composed of, 
through the Model Aggregation association, physical 
plant in the network. Moreover, the interconnectivity 
between the new load flow node and surrounding nodes 
is not reconstructed, the connectivity established be- 
tween the physical plant at the borders of the individual 
node-branch model is used instead. 



152 

This is illustrated in Figure-7. ARCHITECTURE APPLICATION - LOAD FLOW 

Figure 7: Model Representation Schema 

Model Accuracy. Each model is associated with an ac- 
curacy. Since, through the aggregation association, there 
may be many views of an area of network, the accuracy 
determines the extent to which any algorithm should 
delve before retrieving a representation of the physical 
plant. For instance, an algorithm may require a number 
of line I cable segments in series or an abstract line 
whose parameters are an amalgam from the individual 
sections. The accuracy to which the analysis must be 
performed dictates which representation is valid. 

This concept has two by-products: 

It becomes possible to conduct analyses with user 
defined accuracies. In regions where computational 
accuracy is paramount the most detailed models may 
be used, and conversely in unimportant regions - 
raising computational performance at little cost in 
accuracy. 

If little or inaccurate detail is known for a plant item, 
the model is explicitly flagged as inaccurate allow- 
ing analysis modules to, for instance, lower the ac- 
curacy as a whole and inform the user of expected 
study accuracy - leading to more accurate user ap- 
praisal of the results of the analysis. 

Plant Model Heirachy classes 

Below the Model and connectivity constraint classes 
may be found the component classes. Most classes oc- 
cupy a position consistent with the definition of Ports, 
Pipes and Webs. Transformers are not a subclass of pipe 
since the topological connectivity is actually due to the 
windings - the transformer being a composite (‘Web’) 
subclass. Note also that analysis and network abstract 
objects are intermixed in the heirachy with physical 
plant models, in contrast to[*’. For example, the load 
flow Node and Branch classes alongside the Busbar and 
Line classes. 

The IEEE 30-Bus network was used to test the applica- 
bility of the SIMIAN architecture. 

The execution of a load flow analysis on a given electri- 
cal network calculates the voltage at certain points 
within the network, and by derivation the power flows 
within the network. A request for any of this informa- 
tion requires the execution of the analysis. 

Once a request is received from the user, if no loadflow 
representation is associated with the model, the follow- 
ing sequence of events occurs: 

The model establishes, through its representations 
and surrounding connectivity, whether it may per- 
form a loadflow. If not, the request is passed to any 
composite model above it. This process continues, 
recursively until a model is found that, at the mini- 
mum, represents a single island with load and gen- 
eration. 

The satisfying model then constructs, from the ag- 
gregate components - a new loadflow network repre- 
sentation composed of load flow nodes I branches 
associated to the relevant power system components. 

The loadflow network model then queries its com- 
ponents (which in turn query the real plant) to con- 
struct a Jacobian model for a Newton-Raphson load 
flow simulation, and the simulation is executed. 

On completion, the results propagate back through 
to the model representations, updating the individual 
node I branch elements and in turn the physical plant 
models and links - thus satisfying the users request. 

This process is unnecessary if a loadflow representation 
of the network already exists. When network parameters 
change, the tight binding between the physical and ana- 
lytical model allows lazy re-evaluation of the analysis. 
For instance, a change to the network topology invali- 
dates only those load flow nodes I branches directly 
linked to the new topology - it is not necessary to recal- 
culate the whole node-branch topology. Likewise a 
change to the parameters, say a Line WX value, does 
not require any topology recalculation. 

A change to the required accuracy of either the analysis 
or the composed models may or may not require load 
flow topology readjustment. For high accuracy, each 
sequence of one or more series line elements is con- 
verted to a branch. With low accuracy and a low line 
impedance, the load flow nodes at either end are amal- 
gamated (the line is approximated as a perfect conduc- 
tor) and analysis performance is enhanced. 

Results, from the Load flow simulation, on the basis of 
accuracy and performance were found to be encourag- 
ing. Though the initial construction of the load flow net- 
work representation was slower than a conventional 
FORTRAN numerical analysis, an ongoing cycle of 



153 

analyse-amend-reanalyse performed on a par with the 
equivalent sequence of conventional steps. Since this 
scenario is commonplace during network planning and 
analysis, the overall business process should be no less 
efficient than at present. 

ACKNOWLEDGEMENT 

The work presented in this paper is supported by the En- 
gineering and Physical Sciences Research Council (EP- 
SRC) at Brunel University. 

The effect of the OODBMS, in comparison to a 
relational database storage system was more apparent. 
Preliminary performance evaluation of selected opera- 
tions between the two storage mechanisms indicate that 
the OODBMS performed between 36% and 173% faster 
than the equivalent relational model. 

The performance of the SIMIAN dynamic behaviour 
mechanism was also assessed, and, as expected, was 
slower then the equivalent hard-coded C++. However, 
the flexibility the mechanism allowed was perceived to 
more than outway the slight performance degradation. 
In any case, continuing advances in CPU speed make 
sheer algorithm performance less of an issue in com- 
parison to 'a friendly program suite'. 

The use of Model accuracy was also investigated. The 
effects of a single inaccuracy in a network were ob- 
served to have a complex interrelationship with the 
overall accuracy of the network study allowing only a 
subjective expression of the accuracy to be relayed. 

Where multiple models were implemented to represent 
groups of plant items, the varying accuracy levels did 
ensure that performance was increased when an overall 
lower accuracy was required. 

CONCLUSIONS 

From the preliminary results, the SIMIAN architecture 
appears to be a workable and efficient system for power 
system modelling. Future work will investigate the ef- 
fects of a scaling in the size of the network. The IEEE 
30-Bus network is unrealistically small compared to 
typical distribution planning studies of 5000 nodes. 

The dynamic behaviour capability of the SIMIAN sys- 
tem was found to allow easy extension, whilst maintain- 
ing the object-orientated nature of the architecture. Inte- 
gration of a GUI (Graphical User Interface) both for 
browsing Model parameters and topological representa- 
tion of a network were both implemented using the dy- 
namic function, and state machine functionality. The 
use of a common mechanism not only simplified the de- 
sign but also enabled the resultant GUI classes to be 
constructed in a highly generic manner. In addition, the 
automatic updating of information between applications 
and the OODBMS was completed seamlessly through 
the event handling system. From this experience, it ap- 
pears that more complex applications, for instance 
SCADA, could be 'bolted-on' in a comparable manner. 

REFERENCES 

1. Aksit, M., Bergmans, L., 1992, "Obstacles in 
Object-Orientated Software Development", OOPSLA 

2. Bruegge, B., Blythe, J., Jackson, J., Shufelt, J.,1992, 
"Object-Orientated System Modelling with OMT", 

3. de Champeaux, D., Anderson, A., Feldhousen, E., 
1992, "Case Study of Object-Orientated Software De- 
velopment", OOPSLA '92, 377 - 391. 

4. Dillon, T., Chang E., 1994, "Solution of Power Sys- 
tem Problems through the use of the Object-Orientated 
Paradigm", Int. J. Electrical Power Enerw Svstems.16, 

5. Foley, M., Bose, A., 1995, "Object-Orinetated On- 
Line Network Analysis", IEEE Transactions on Power 
Systems. 10, 125-132. 

6. Hakavik, B., Holen, T., 1994, "Power System Mod- 
elling and Sparse Matrix Operations using Object- 
Orientated Programming", IEEE Transaction on Power 
Svstems, 9, 1045-1051. 

7. Neyer, A., Wu, F., Imhof, K., 1990, "Object- 
Orientated Programming for Flexible Software: Exam- 
ple of a Load Flow", IEEE Transactions on Power Svs- 
tems, 5,689-696. 

8. Object Management Group, 1991, "OMG Common 
Object Request Broker Architecture: Architecture and 
Specification", OMG TC Document 9 1.12.1 

9. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., 
Lorensen W., 1991, "Object-Orientated Modelling and 
Design", Prentice Hall, Englewood Cliffs, NJ (USA). 

10. Stroustrup, B., 1986, "The C++ Programming Lan- 
guage", Addison-Wesley Publishing Company Inc. 

11. Tan, S., Rico-Melgoza, J., Fuerte-Esquivel, C., 
Acha, A., 1995, "C++ Object-Orientated Power System 
Software", UPEC '95 - Greenwich, 399-342. 

92, 341-358. 

OOPSLA '92,359-376. 

157- 165. 


