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Abstract: We investigate a new kernel-weighted likelihood smoothing quantile re-

gression method. The likelihood is based on a normal scale-mixture representation of

asymmetric Laplace distribution (ALD). This approach enjoys the same good design

adaptation as the local quantile regression (Spokoiny et al., 2013), particularly for

smoothing extreme quantile curves, and ensures non-crossing quantile curves for any

given sample. The performance of the proposed method is evaluated via extensive

Monte Carlo simulation studies and one real data analysis.
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1 Introduction

Parametric quantile regression (Koenker, 2005) has been used in a number of disci-

plines to explore the relationship between the response and covariates at both the

center and extremes of the conditional distribution and obtain a more comprehensive

analysis of the relationship between variables. While a parametric model is possibly

misspecified, non-parametric models, on the other hand, require fewer assumptions

about the data and offer a more flexible way of modelling a relationship than para-

metric models, consequently avoid model misspecification when a parametric model

is not available, which is common in wide applications (Wand and Jones, 1995; Fan

and Gijbels, 1996a; Takezawa, 2005). One of the popular nonparametric smoothing

techniques is kernel smoothing. Nonparametric kernel smoothing quantile regression

has attracted much attention in the literature (Chaudhuri, 1991; Hardle and Mam-

men, 1993; Fan and Gijbels, 1996a; Yu and Jones, 1998; Cai and Xu, 2008; Dette and

Volgushev, 2008; Dabo-Niang and Laksaci, 2012; Schaumburg, 2012; Kong and Xia,

2015; among others).

However, the performance of kernel smoothing techniques, in spite of their advantages

over parametric models in dealing with model misspecification, depends on smooth-

ing parameter or bandwidth selection. While a global bandwidth such as the rule

of thumb (Yu and Jones, 1998) is generally useful, a point-wise bandwidth, which

depends on the values of covariate X or the design set should be considered for the

complexity of the underlying regression functions. In particular, bandwidth selec-

tion in nonparametric smoothing quantile regression requires not only design adap-

tation but also quantile adaptation. Spokoiny, Wang and Härdle (henceforth SWH)

(Spokoiny et al., 2013) developed a kernel-weighted likelihood quantile regression with
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point-wise bandwidth selection and promising performance in practice.

But SWH’s approach may not guarantee non-crossing quantile curves for any given

sample (calculated for various percentile τ ∈ (0, 1)), which is a common problem in the

estimation of conditional and structural quantile functions due to lack of monotonic-

ity. Note that, monotonicity (for each x in the design set, it’s a monotone function of

percentile value τ) guarantees non-crossing quantile curves, but not vice versa. Such

a phenomenon violates the basic principle of probability theory, that is, the associ-

ated distribution functions should be monotone increasing. Various methods were

presented to address or avoid the quantile crossing in parametric quantile regression,

but with few on nonparametric quantile regression. Recently, Jones and Yu (2007b)

improved double kernel smoothing for quantile regression, Using spline-based con-

straints easily allows us to incorporate non-crossing conditions, as in Bondell et al.

(2010) or Muggeo et al. (2013), for quantile estimation. Liu and Wu (2011) dealt

with this issue via simultaneous multiple quantile smoothing, Qu and Yoon (2015)

applied inequality constrains to ensure the monotonicity over quantiles.

In this paper, we explore a local quantile regression based on a normal scale-mixture

representation of asymmetric Laplace distribution (ALD) and show that this method

has the similar property of SWH’s procedure but much better-adaptive for smoothing

extreme quantile curves. Moreover, quantile function is monotone with respect to τ

for all x, which is satisfied by the proposed method, but SWH’s method, which may

also be non-crossing practically but without theoretical justification. Therefore, the

proposed method enjoys both design adaptation and non-crossing quantile curves

simultaneously. This paper is organized as follows. We first review SWH’s approach

in Section 2, then propose a new local likelihood smoothing based on a normal scale-
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mixture representation of ALD and show that this approach satisfies the propagation

condition (Spokoiny and Vial, 2009) in Section 3. In Section 4 we elaborate the

proposed adaptive bandwidth selection rule and point out that the rule is able to avoid

the problem of quantile curves crossing, especially for estimating extreme quantiles.

Section 5 illustrates the numerical performance of the proposed method. Section 6

provides concluding remarks and discusses future work.

2 Kernel-Weighted Likelihood for Local Quantile Re-

gression

Spokoiny et al. (2013) developed an interesting nonparametric quantile regression

method: local quantile regression, which provides point-wise bandwidth selection

and exhibits promising performance in practice. SWH claimed that their bandwidth

selection rule is adaptive and novel, although the regression estimator named qMLE

in their Eq.(8) is simply equivalent to a local polynomial quantile regression or a

type of kernel-based weighting ‘check function’ approach, such as the local linear

single-kernel approach of Yu and Jones (1998).

Let (X, Y ) be the random variables, where Y is a continuous random variable and X is

a univariate regressor X ∈ R1. Let FY (Y |X) be the cumulative distribution function

of Y given X. Let Qτ (Y |X) = inf {Y : FY (Y |X) ≥ τ} be the inverse function, which

is also the value of a that minimizes the expected loss function:

Qτ (Y |X) = argmin
a

Eρτ (Y − a) , (2.1)

where, τ ∈ (0, 1) and ρτ (·) is an asymmetric loss function that satisfies ρτ (u) =
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u (τ − I(u < 0)) with I(·) is an indicator function.

Under the quantile non-parametric model Y = f(X) + ε, given data in the form

{Xi, Yi}ni=1, where Xi and Yi are independent scalar observations of X and Y , respec-

tively. The τth conditional quantile of Y given X is estimated by

f̂(x) = argmin
β

n∑
i=1

ρτ (Yi − f(Xi)) . (2.2)

SWH took advantage of the link between the minimization of the sum of the loss

function in Eq.(2.2) and the maximum likelihood theory given by the asymmetric

Laplace distribution. For a random variable Y ∼ ALD(µ, σ, τ), its density function

can be written as

f(y;µ, σ, τ) =
τ(1− τ)

σ
exp

{
y − µ
σ

[τ − I(y ≤ µ)]

}
, y ∈ (−∞,+∞) (2.3)

where, 0 < τ < 1 is skew parameter, σ > 0 is scale parameter, and −∞ < µ < ∞ is

location parameter.

Based on an ALD log-likelihood, SWH considered

LSWH(θ) ≡ log {τ(1− τ)}
n∑
i=1

I −
n∑
i=1

ρτ (Yi − fθ(Xi)) , (2.4)

with 0 < τ < 1 is the level of the quantile. Then they fit f(x) at point x by

the local polynomial approach Yi = ψT
i θ + ε, with basis ψi = {1, (Xi − x), (Xi −

x)2/2!, · · · , (Xi−x)p/p!}T and θ = (θ0, ..., θp)
T . Therefore, the local log-likelihood at

x is given by

LSWH(W,θ) ≡ log τ(1− τ)
n∑
i=1

wi −
n∑
i=1

ρτ
(
Yi −ψT

i θ
)
wi, (2.5)

where the weights W is chosen via a kernel function wi = K
(
Xi−x
h

)
, while h is a

bandwidth controlling the degree of localization. Note that, Eq.(2.5) is similar to
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the global log-likelihood in Eq.(2.4), but each summand in LSWH(W,θ) is multiplied

with the weight wi, so only the points from the local vicinity of x contribute to

LSWH(W,θ).

The corresponding local quantile MLE (they named it as qMLE) at x is then given

via the maximization of LSWH(W,θ) in Eq.(2.4)

θ̃SWH(x) ≡ argmax
θ∈Θ

LSWH(W,θ)

= argmin
θ∈Θ

n∑
i=1

ρτ
(
Yi −ψT

i θ
)
wi. (2.6)

3 An Alternative Likelihood for Local Quantile Regres-

sion

Figure 1a displays the performance of SWH’s approach, showing the bandwidth se-

quence (upper panel) and the smoothed 50% quantile curve (lower panel) based on

the Lidar dataset (available in R package ‘SemiPar’ ), which adapts the data well.

And this is also true for other moderate or central quantile curves. However, it can

be seen from smoothing extreme quantile curves in Figure 1 here, the proposed band-

width selection rule is lack of good adaptation and then results in the over-smoothing

phenomenon. Figures 1b and 1c display the smoothed 1% and 99% quantile curves

using SWH’s method and shows that when the curves start to switch smoothness, the

rule is not adaptive so that the estimated curves are too smoothing out of the data

ranges. A possibly theoretical interpretation for this problem is: when τ → 0, the

weighted ‘check function’ ρτ (Yi − ψT
i θ)wi takes constant 0 if Yi > ψ

T
i θ (also, when

τ → 1 and if Yi < ψ
T
i θ). This may result in that the proposed significant test always
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picks constant bandwidth for smoothing extreme quantile curves although this is not

a problem for the local quantile regression estimation equation. We want to point

out that this over-smoothing problem will be solved by a new version of adaptive

bandwidth selection rule.
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Figure 1: The bandwidth sequences (upper panels) and smoothed quantile curves

(lower panels) for the Lidar dataset using SWH’s kernel-weighted likelihood.

Moreover, there is no guaranteed of this approach to avoid quantile crossing. There-

fore we propose an alternative adaptive bandwidth selection rule based on a normal

scale-mixture representation (henceforth NSM) of ALD and show that this alterna-

tive version has the similar property of SWH’s procedure but much better-adaptive

for smoothing extreme quantile curves.

Reed and Yu (2010) and Kozumi and Kobayashi (2011) noted that under the as-

sumption of ALD-based ‘working likelihood’, the quantile regression model error

ε ∼ ALD(0, 1, τ) can be represented as a scale mixture of normal variables, that

is,

ε = µz + δ
√
ze, (3.1)

where µ = 1−2τ
τ(1−τ)

, δ2 = 2
τ(1−τ)

, z ∼ Exp(1) and e ∼ N(0, 1), and z and e are
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independent. Hence, SWH’s model (1) (Yi = f(Xi) + εi) could be re-written as

Yi = f(Xi) + µzi + δ
√
ziei. (3.2)

That is, for given z = (z1, z2, ...., zn),

Yi ∼ N
(
f(Xi) + µzi, δ

2zi
)
, (3.3)

i.e., the joint conditional density of Y = (Y1, Y2, ..., Yn) is given by

l (Y |z, X) =
n∏
i=1

1√
2π δ
√
zi

exp

{
−(Yi − f(Xi)− µzi)2

2δ2zi

}
. (3.4)

Clearly, if z is fixed in advance, then the local log-likelihood (SWH’s Eq.(7)) can be

replaced by a normal scale-mixture representation of ALD :

LNSM(W,θ) ≡ − log(
√

2πδ)
n∑
i=1

wi −
1

2

n∑
i=1

log(zi)wi

− 1

2δ2

n∑
i=1

(Yi − f(Xi)− µzi)2

zi
wi −

n∑
i=1

ziwi, (3.5)

where the weights W is chosen via a kernel function wi = K
(
Xi−x
h

)
, while h is a

bandwidth controlling the degree of localization. Similar to Eq.(2.5), the local log-

likelihood in Eq.(3.5) depends on the central point x via the structure of the basis

vectors ψi and via the weights wi.

Now, once a local pth-degree polynomial ψT
i θ is used to approximate f(x) at X = x,

the corresponding local qMLE at x could be defined via maximization of LNSM(W,θ)

above:

θ̃(x) ≡
(
θ̃0(x), θ̃1(x), ..., θ̃p(x)

)
= argmax

θ∈Θ
LNSM(W,θ)

= argmin
θ∈Θ

n∑
i=1

(Yi −ψT
i θ − µzi)2

δ2zi
wi, (3.6)
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where θ̃0(x) estimates f(x), and θ̃m(x) estimates the mth derivative of f(x). Further,

let ψ = (ψ1, ..,ψn)T and wk = diag

(
w

(k)
1

δ2z1
, ..., w

(k)
n

δ2zn

)
, we have

θ̃k(x) =
(
ψwkψ

T
)−1

ψwk

(
Y + µz + δz1/2e

)
, (3.7)

where the design matrix ψ consists of the columns ψi = {1, (Xi − x), · · · , (Xi −

x)p/p!}T .

We note that the LNSM(W,θ) involves in a specification of vector z, and we point out

that z could be fixed in advance via a sample from a data-driven inverse Gaussian

distribution, and our extensive experiments in Section 5 show that the selection of

the sample has no effect on the estimation. In fact, note that the joint likelihood

function of (Y, z) is given by

f(Y, z|X) =
n∏
i=1

1√
2π τ
√
zi

exp

{
−(Yi − f(Xi)− µzi)2

2τ 2zi

}
n∏
i=1

exp(−zi).

Therefore, the conditional density of f(z|Y ) is given by

f(z|Y ) ∝ f(Y, z)

∝
n∏
i=1

1
√
zi

exp

(
−1

2

[
(Yi − f(Xi))

2

δ2
z−1
i +

(
µ2

δ2
+ 2

)
zi

])
. (3.8)

That is, zi, z2, ...., zn are i.i.d. with a generalized inverse Gaussian (GIG) distribution:

f(z|Y ) ∝ z
− 1

2
i exp

(
−1

2

[
(Yi − f(Xi))

2

δ2
z−1
i +

(
µ2

δ2
+ 2

)
zi

])

∼ GIG

(
1

2
, ηi, ζi

)
, (3.9)

where η2
i = (Yi−f(Xi))

2

δ2
and ζ2

i = µ2

δ2
+ 2.
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4 Performance of Adaptive Bandwidth Selection and

Non-Crossing Estimation

4.1 Adaptive Bandwidth Selection

There are several methodologies for automatic smoothing parameter selection. One

class of methods chooses the smoothing parameter value to minimize a criterion that

incorporates both the tightness of the fit and model complexity. Such a criterion

can usually be written as a function of the error mean square, and a penalty func-

tion designed to decrease with increasing smoothness of the fit. Examples of specific

criteria are generalized cross-validation (Craven and Wahba, 1979) and the Akaike

information criterion (AIC)(Akaike, 1973). These classical selectors have two unde-

sirable properties when used with local polynomial and kernel estimators: they tend

to under-smooth and tend to be non-robust in the sense that small variations in the

input data can change the choice of smoothing parameter value significantly. Hurvich

et al. (1998) obtained several bias-corrected AIC criteria that limit these unfavorable

properties and perform comparably with the plug-in selectors (Ruppert et al., 1995).

The adaptive bandwidth selection rule in SWH’s paper is different from the rule-of-

thumb rule of Yu and Jones (1998) and AIC rule of Cai and Xu (2008). It does add

a nice option to the bandwidth selection menu for practitioners. In this paper, we

perform the local quantile curve estimation following the similar bandwidth selection

procedures, but based on a normal scale-mixture representation of ALD.

First, we fix a finite ordered set of candidates of bandwidth h1 < h2 < · · · < hK ,

where h1 is very small. According to SWH, the bandwidth sequence can be taken
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geometrically increasing of the form hk = abk with fixed a > 0, b > 1, and n−1 <

abk < 1 for k = 1, · · · , K. For each k ≤ K, an ordered weighting scheme W (k) =(
w

(k)
1 , w

(k)
2 , · · · , w(k)

n

)
is chosen via a kernel function w

(k)
i = K

(
Xi−x
hk

)
leading to the

local quantile estimator at x, θ̃k(x), as:

θ̃k(x) = argmax
θ∈Θ

LNSM(W (k),θ)

= argmin
θ∈Θ

n∑
i=1

(Yi −ψT
i θ − µzi)2

δ2zi
w

(k)
i . (4.1)

Then, we start with the smallest bandwidth h1. For any k > 1, compute the lo-

cal qMLE θ̃k(x) and check whether it is consistent with all the previous estima-

tors θ̃l(x) for l < k. We use a localized likelihood ratio test, i.e. the difference

LNSM

(
W (l), θ̃l(x)

)
−LNSM

(
W (l), θ̃k(x)

)
to reject θ̃k(x), where θ̃l(x) maximize the

log-likelihood LNSM

(
W (l), θ̃l(x)

)
= supθ LNSM

(
W (l),θ

)
defined in Eq.(3.5) with

bandwidth hl and LNSM

(
W (l), θ̃k(x)

)
is the other local likelihood under θ̃k(x) with

bandwidth hk(l < k). The difference checks whether θ̃k(x) belongs to the confidence

set εl(ζ) of θ̃l(x):

εl(ζ) :=
{
θ ∈ Θ : LNSM

(
W (l), θ̃l(x)

)
− LNSM

(
W (l), θ̃k(x)

)
≤ ζl

}
,

where ζl refers the choice of critical values given in Theorem 1 below.

If the consistency check is negative, the procedure terminates and selects the latest

accepted estimator.

The adaptation algorithm can be summarized as follows:
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Algorithm 1

Step 1 : Start with θ̂1(x) = θ̃1(x).

Step 2 : For k ≥ 2, θ̃k(x) is accepted and θ̂k(x) = θ̃k(x), if θ̃k−1(x) was accepted

and

LNSM

(
W (l), θ̃l(x)

)
− LNSM

(
W (l), θ̃k(x)

)
≤ ζl, l = 1, ..., k − 1.

where the choice of critical values ζl, l = 1, ..., k − 1 are based on the propagation

conditions (detailed in Theorem 1 below).

Step 3 : Otherwise, θ̂k(x) = θ̂k−1(x).

The adaptive estimator θ̂(x) is the latest accepted estimator after all K steps:

θ̂(x) = θ̂K(x).

Moreover, all the estimators θ̃k(x) should be consistent to each other and the pro-

cedure should not terminate at any intermediate step k < K. This effect is called

as ‘propagation’. Hence, under the assumptions (A1)-(A3) in Appendix, and then

according to Serdyukova (2012), the propagation conditions (PC) for this approach

also satisfies:

Theorem 1. (Theoretical choice of the critical values.) Assume (A1)-(A3), given

α ∈ (0, 1] and r > 0, the critical values ζ1, · · · , ζK satisfy

E
∣∣∣∣(θ̃k(x)− θ̂k(x)

)T (
ψwk(x)ψT

) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r ≤ αC(p, r), (4.2)

for all k = 2, · · · , K, where C(p, r) = 2rΓ(r + p/2)/Γ(p/2), with the choice of the

critical values of the form

ζl =
4

µ

{
r(K − l)logb+ log

K

α
− p

4
log(1− 4µ)− log(1− b−r) + C̄(p, r)

}
, l = 1, ..., k−1

where µ ∈ (0, 1/4) is an arbitrary constant, b > 1 and C̄(p, r) = log
{

22r[Γ(2r+p/2)Γ(p/2)]1/2

Γ(r+p/2)

}
.
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The critical values are selected to ensure the desired propagation condition which ef-

fectively means a ‘no alarm’ property, that is the selected adaptive estimator coincides

in the most cases that the estimator θ̃k(x) corresponding to the largest bandwidth.

An advantage of the proposed alternative normal scale-mixture likelihood function

over SWH’s method is that the derived bandwidth has better adaptation when τ

tends to 0 or 1. Figure 2 displays the bandwidth sequence (upper panel) and smoothed

quantile curves for quantiles 1% (2a) and 99% (2b) based on the Lidar dataset, which

provides much better fitting than those curves presented in Figure 1. The dependency

structure changing on smoothness is more adaptive than the bandwidth sequence in

Figure 1. This alternative normal scale-mixture likelihood method also works well for

other moderate or central quantile curves. Figure 2 shows that the method gives quite

similar estimates to SWH’s method for τ = 0.5 (2c) and 0.9 (2d) quantile curves.
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Figure 2: The bandwidth sequences (upper panels) and smoothed quantile curves

(lower panels) for the Lidar dataset using the alternative normal scale-mixture like-

lihood.

4.2 Non-crossing Quantile Curve Estimation

The proposed bandwidth selection rule in SWH’s method seems to have no quantile

crossing phenomenon when several smoothed quantile curves are provided together.

This indicates the advantage of the local bandwidth selection rule. Whereas most

of published articles on this topic, which include constrained smoothing spline (He,

1997; Bondell et al., 2010), double-kernel smoothing (Yu and Jones, 1998; Jones

and Yu, 2007a) and monotone constraint on conditional distribution function (Hall
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et al., 1999; Dette and Volgushev, 2008), among others, focus on the development of

new methods rather than adaptive bandwidth selection for avoiding quantile crossing.

SWH showed, even working with ‘local constant’ kernel smoothing quantile regression

via

q̂τ (x) = argmin
a

n∑
i=1

ρτ (Yi − a)Kh (x−Xi) ,

adaptive bandwidth selection rule may not have quantile crossing either. This may be

true practically, but without a theoretical justification. Under our proposed approach,

the justification of non-crossing quantiles could be outlined as below.

Recall the nonparametric quantile regression model Y = f(X) + ε, where Qτ (ε) = 0.

Given data {Xi, Yi}ni=1, and under the local polynomial approach, θ̃0(x) estimates

f(x), with

θ̃NSM ≡
(
θ̃0, θ̃1, · · · , θ̃p

)
= argmax

θ∈Θ
LNSM(W,θ),

where the likelihood function LNSM(W,θ) is expressed in Eq.(3.5) and θ̃m(x) estimate

the mth derivative of f(x).

That is, the derivative of LNSM(W,θ) over θ̃0(x) satisfies
∑n

i=1
wi
zi

(Yi − ψT
i θ̃NSM −

µzi) = 0. Therefore, θ̃0(x) can be expressed as,

θ̃0(x) =

∑n
i=1

wi
zi

(
Yi − µzi −

∑p
j=1 θ̃j

(Xi−x)j

j!

)
∑n

i=1
wi
zi

.

For each x, we aim to check the derivative of θ̃0(x) over τ ∈ (0, 1). If dθ̃0(x)
dτ

> 0, then

θ̃0(x) is an increasing function of τ .
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Note that µ = 1−2τ
τ(1−τ)

, therefore, we have

dθ̃0(x)

dτ
=

1∑n
i=1

wi
zi

n∑
i=1

−ziwi dµdτ
zi

=
1∑n
i=1

wi
zi

n∑
i=1

−ziwi−2(τ−1/2)2−1/2
τ2(1−τ)2

zi

=
1∑n
i=1

wi
zi

n∑
i=1

wi
2(τ − 1/2)2 + 1/2

τ 2(1− τ)2

> 0. (4.3)

That is, f̂(x) ≡ θ̃0(x) is a strictly monotonic function of τ over x.

5 Numerical examples

In this section, we implement the proposed method via extensive Monte Carlo simu-

lation studies and one real data analysis. All numerical experiments are carried out

on one Inter Core i5-3470 CPU (3.20GMHz) processor and 8 GB RAM.

5.1 Simulation 1

In this simulation study, we aim to summarize our numerical results on choosing the

critical values by the propagation condition as described in Section 4.1. We generate

data of size 106 from an ALDτ (0, 1), which does coincide with the likelihood (ALDτ )

taken to simulate critical values. We mainly check the critical values at different

quantile levels τ = 0.05, 0.25, 0.5, 0.75, 0.95, and for different choices of α and r. We

also study how bandwidth sequence affects the critical values.

Table 1 shows the critical values with several choices of α and r with τ = 0.2 and m =

5000 Monte Carlo samples, and a bandwidth sequence (5, 7, 10, 13, 17, 21, 24, 28, 36, 45)/365
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scaled to the interval [0, 1]. Critical values decrease when α increases, and increase

when r increases.

Table 1: Critical values with different α and r (τ = 0.2).

α r Critical values

0.25 0.5 16.971 11.539 8.133 3.584 0.044 0.000

0.25 0.75 20.218 13.743 9.336 3.131 0.000 0.000

0.25 1 24.676 16.270 9.308 4.214 1.561 0.000

0.5 0.5 12.823 9.619 7.205 3.703 0.949 0.000

0.75 0.5 11.249 7.222 4.244 0.181 0.000 0.000

Table 2 shows the critical values for different τs with α = 0.25, r = 0.5 and m = 5000

Monte Carlo samples, and a bandwidth sequence (5, 7, 10, 13, 17, 21, 24, 28, 36, 45)/365

scaled to the interval [0, 1]. Critical values behave similarly for symmetric τ .

Table 2: Critical values with different τ (α = 0.25, r = 0.5).

τ Critical values

0.05 10.357 7.605 4.888 1.248 0.000 0.000

0.25 15.782 11.332 8.440 4.354 0.908 0.000

0.50 21.714 15.427 10.351 3.594 0.000 0.000

0.75 15.283 10.932 8.396 3.949 0.840 0.000

0.95 10.789 7.686 4.943 1.208 0.000 0.000

Table 3 compares critical values for the following three bandwidth sequences, with

α = 0.25, r = 0.5, τ = 0.8 and m = 5000 Monte Carlo samples.

η1 = (5, 7, 10, 13, 17, 21, 24, 28, 36, 45)/365

η2 = (10, 13, 17, 21, 24, 28, 36, 45, 49, 60)/365

η3 = (2, 3, 5, 7, 10, 13, 17, 21, 24, 28)/365
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Clearly, although the critical values differ for different bandwidth sequences, they in-

dicate the same patterns (finite and decreasing). Moreover, the adaptation algorithm

can be completed in maximum K = 6 steps, as all critical values decrease to zero in

6-step.

Table 3: Critical values with different bandwidth sequences (α = 0.25, r = 0.5, τ =

0.8).

η Critical values

η1 11.002 6.508 3.089 0.000 0.000 0.000

η2 23.187 13.810 7.775 3.690 0.000 0.000

η3 6.871 4.737 2.046 0.389 0.000 0.000

5.2 Simulation 2

In this simulation study, we compare the performance of our proposed approach to

SWH’s method as well as two other bandwidth selection techniques. One proposal

comes from Ng and Maechler (2007), in which they considered constrained quantile

estimations using linear or quadratic splines (implemented with R function cobs in

Package cobs), and the other is from Yu and Jones (1998), in which they considered

a rule of thumb bandwidth (implemented with R function lprq in Package quantreg).

We generate one training data of size 2000 and 500 test data sets of size 500 from the

model

Y = m(X) + σ(X)ε, (5.1)

where the univariate input X follows a uniform distribution on [4, 4] and m(X) is a

non-linear function of X

m(X) = (1−X + 2X2)e−0.5x2 ,



Improved Local Quantile Regression 19

and the scale factor σ(X) is linearly increasing in X with the form

σ(X) =
1

5
(1 + 0.2x).

Therefore, Eq.(5.1) is a heteroskedastic model.

In this simulation, we consider three different types of random errors for ε: N(0, 1),

t(3) and χ2(3), respectively. Therefore, the true τ -th conditional quantile function of

Y given X = x can be expressed as

QY (τ |x) = m(x) + σ(x)F−1
τ (ε),

where F−1
τ (ε) is the τ -th quantile of ε. Fig. 3 presents the training data generated

under this scenario with their true τ -th conditional quantile functions QY (τ |x), τ ∈

c(0.05, 0.50, 0.95). Note that, the nonlinear function m(X) in the right figure is not

identical to the true conditional median function QY (0.50|x) as the random error

χ2(3) is an asymmetric distribution.
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Figure 3: Simulated training data and true conditional quantile functions with

τ ∈ c(0.05, 0.50, 0.95).

We aim to compare the prediction power of the above-mentioned four methods for

the prediction of the conditional quantile function by 500 test data sets, in terms of
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three measurements, namely, the root mean square error (RMSE), the mean absolute

errors (MAE), and the Theil-U statistic, which is a relative accuracy measure that

compares the forecast results with the näıve forecast (Theil, 1966):

RMSE(τ) =

√√√√ 1

n

n∑
i=1

(
QYi(τ |x)− Q̂Yi(τ |x)

)2

,

MAE(τ) =
1

n

n∑
i=1

∣∣∣QYi(τ |x)− Q̂Yi(τ |x)
∣∣∣ ,

TheiU(τ) =

√√√√√√
∑n

i=2

(
Q̂Yi (τ |x)−QYi (τ |x)

QYi−1
(τ |x)

)2

∑n
i=2

(
QYi (τ |x)−QYi−1

(τ |x)

QYi−1
(τ |x)

)2 ,

where Q̂Yi(τ |x) is the prediction of the true conditional quantile QYi(τ |x). The smaller

the measurement value is, the better the method is. The three measurements are

implemented with R function av.res in package AnalyzeTS.

The superiority of the proposed normal-scale mixture approach is demonstrated in

Table 4 which summarizes the results for three values of τs: 0.05, 0.50, and 0.95, based

on the 500 replications. Note that, Simulation 2 is implemented with bandwidth se-

quence η= (5,7,10,13,17,21,24,28,36,45)/365, simulated from ALD(0, 1, τ) (coincide

with the likelihood) with α=0.25, r=0.5. The bold face values show that both SWH’s

method and the proposed normal scale-mixture approach are superior to LPQR and

COBS, while the proposed approach performs slightly better than SWH. It is encour-

aging to see that the proposed approach approximates well under Gaussian error and

also provides excellent results under the circumstance of heavy tail and asymmetric

distributions, such as t(3) and χ2(3).
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Table 4: Average value of the evaluation indices for 500 test data of size 500.

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ χ2(3)

Indices LPQR COBS SWH NSM LPQR COBS SWH NSM LPQR COBS SWH NSM

τ = 0.05

RMSE 0.364 0.254 0.168 0.157 0.399 0.274 0.226 0.213 0.432 0.239 0.162 0.154

MAE 0.234 0.176 0.128 0.121 0.273 0.205 0.173 0.163 0.269 0.162 0.121 0.116

Thei U 17.773 12.414 8.196 7.667 19.293 13.264 10.896 10.286 20.974 11.640 7.863 7.480

τ = 0.5

RMSE 0.178 0.184 0.163 0.140 0.184 0.172 0.141 0.139 0.210 0.198 0.176 0.170

MAE 0.140 0.144 0.128 0.114 0.144 0.137 0.107 0.103 0.171 0.161 0.139 0.132

Thei U 8.524 8.865 7.839 7.131 8.942 8.403 6.875 6.741 10.246 9.695 8.587 8.241

τ = 0.95

RMSE 0.258 0.210 0.159 0.157 0.283 0.245 0.205 0.195 0.367 0.324 0.331 0.326

MAE 0.193 0.153 0.125 0.123 0.226 0.190 0.162 0.153 0.272 0.261 0.250 0.261

Thei U 12.507 10.176 7.735 7.600 8.983 9.553 6.862 7.570 16.743 14.798 15.159 14.852

Note: The bandwidth hτ at τ that controls the complexity of the LPQR model is selected

by the rule of thumb in Fan and Gijbels (1996b).

5.3 Real-world data application

In this section we demonstrate the efficacy of our the proposed alternative approach

with one benchmark example that comes from the second and third health examina-

tion surveys of the USA (National Center for US Health Examination Surveys, 1970;

1973). Taken together these provide data on the anthropometry of children between

the ages of 6 years and under 18 years, with from 400 to 600 children of each sex seen

in each year of age (Cole, 1988). Here, along with Yu and Jones (1998), the weights

and ages of 4011 US girls were analysed.

The scatter plot in Figure 4a displays weight against age for a sample of 4011 US
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girls, where age is a univariate regressor X ∈ R1 for simplicity. It is evident that

the distribution is left-skewed and presents long tails, suggesting that focusing on

the centre is not sufficient for a comprehensive description of a weight distribution.

Such observation motivates the use of quantile regression, where a complete picture

of weight distribution is captured by conditional quantiles.

We then continue by inspecting the relation between weight and age in the sample. In

Figure 4, we display the bandwidth sequence (upper right panels), boxplot of adapted

bandwidth (lower right panels) showing the relationship between the adapted estima-

tor and the bandwidth index, and smoothed quantile curves for quantile 99% (4b) and

1% (4a) respectively by using the alternative normal scale-mixture likelihood func-

tion. Both adaptations show that the proposed bandwidth selection is well-adapted

over the data distribution, which provides smooth fitting and better adaptation when

τ tends to extreme quantiles. Furthermore, Figure 5 shows that the non-quantile

crossing property holds for the rule in Section 4.2, which is based on the alternative

normal scale-mixture likelihood function.
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(b) τ = 0.99

Figure 4: Smoothed quantile curves (in red) for US Health Examination Surveys with

τ = 0.01 and τ = 0.99 via alternative normal scale-mixture likelihood (left panel).

The bandwidth sequence (upper right); boxplot of adaptive bandwidth (lower right).
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Figure 5: Smoothed quantile curves for US Health Examination Surveys with τ =

c(0.05, 0.25, 0.5, 0.75, 0.95) via alternative normal scale-mixture likelihood function.

6 Discussions and Concluding Remarks

The kernel-weighted likelihood function Eq.(2.5) in SWH’s paper is a local ALD-

based likelihood function. The ALD-based inference has nowadays become a power-

ful tool for formulating different quantile regression techniques, particularly for the

development of different Bayesian inference techniques for quantile regression. The

ALD-based inference for non-Bayesian methods includes Taylor and Yu (2016) in

financial risk analysis, Geraci and Bottai (2007) in longitudinal data analysis and

among others. The local ALD-based likelihood approach in the paper uses an al-

ternative ALD-type of likelihood. The resulting automatic bandwidth selection rule

not only enjoys the propagation condition of SWH (which postulates that the risk is

smaller than the upper bound for the risk of the estimator θ̃k(x)) but also guarantees

non-quantile curve crossing. Theoretical results also claim that the proposed adap-
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tive procedure performs well, which would minimize the local estimation risk for the

problem at hand. We illustrate the performance of the procedure by comparing the

Lidar dataset with SWH’s approach and analyzing an extended real data application.

In particular, we show that the performance of the adaptive procedure is promising

in practice, especially for smoothing extreme quantile curves.

Moreover, the proposed approach can also be extended to the d-dimensional case X ∈

Rd with d > 1, under the non-parametric additive modelling framework (Yu and Lu,

2004). That is, let Y be a real-valued dependent variable and X =
(
X(1), · · · , X(d)

)
∈

Rd is a vector of explanatory variables. Let f(x) be a d-dimensional τth quantile

regression function of Y given X = x. Suppose that the τth quantile function f(x)

is modelled as an additive function of
(
x(1), · · · , x(d)

)
,

f(x) =
d∑
l=1

f (l)
(
x(l)
)
, (6.1)

where each f (l)(x(l)) can be fitted by the proposed approach in Section 3 and the whole

f(x) can be further derived via backfitting algorithm used in Yu and Lu (2004). For

example, without of generality, consider a local linear regression with p = 2, for

l = 1, · · · , d,

(â(l), b̂(l)) = argmin
a,b

n∑
i=1

ρτ

(
Yi − a− b

(
X

(l)
i − x(l)

))(X(l)
i − x(l)

h(l)

)
,

where K(·) is a kernel function and h(l)(l = 1, · · · , d) is the bandwidth for estimating

f (l)(x(l)) in the setting above.
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Appendix:

Recall: wk = diag

(
w

(k)
1

δ2z1
, ..., w

(k)
n

δ2zn

)
.

Assumption 1. Consider a finite sequence of scales wk = diag
(
w

(k)
1 , · · · , w(k)

n

)
, the p×n

matrix ψTw1is of full row rank.

Assumption 2. For any fixed x and the method of localization with w
(k)
i (x) ≥ 0, the

following relation holds:

w1(x) ≤ w2(x) ≤ · · · ≤ wn(x).

Assumption 3. Assume that the true regression model

Yi = f0(Xi) + µ0z0,i + δ2
0
√
z0,iei,

considering the regression model (3.2), where z0 = diag
(
δ2

0z0,1, · · · , δ2
0z0,n

)
stands for the

unknown true covariance matrix, with z0,i is the true value of Eq.(3.2), there exists η ∈ [0, 1)

such that

1− η ≤ δ2
0z0,i

δ2zi
≤ 1 + η for all i = 1, · · · , n.

Assuming (A3), the true covariance matrix z0 � z(1 + η), and the conditional variance of
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the estimate θ̃k(x) is bounded with
(
ψwkψ

T
)−1

: as follows :

Var
(
θ̃k(x)

)
=

(
ψwkψ

T
)−1

ψwkz0wkψ
T
(
ψwkψ

T
)−1

� (1 + η)
(
ψwkψ

T
)−1

ψwkzwkψ
T
(
ψwkψ

T
)−1

= (1 + η)
(
ψwkψ

T
)−1

ψz−1/2w2
kz
−1/2ψT

(
ψwkψ

T
)−1

� (1 + η)
(
ψwkψ

T
)−1

ψz−1/2wkz
−1/2ψT

(
ψwkψ

T
)−1

= (1 + η)
(
ψwkψ

T
)−1 (

ψwkψ
T
) (
ψwkψ

T
)−1

= (1 + η)
(
ψwkψ

T
)−1

= (1 + η)

(
n∑
i=1

ψiψ
T
i

w
(k)
i

δ2zi

)−1

. (6.2)

According to the basic property of quadratic equation, consider a simple example
(

1
z1

+ 1
z2

)−1

and there always holds
(

1
z1

+ 1
z2

)−1
= z1z2

z1+z2
≤ z1+z2, with z1, z2 > 0 . The same procedure

may be easily adapted to Eq.(6.2) as follows:

Var
(
θ̃k(x)

)
� (1 + η)

n∑
i=1

ψiψ
T
i w

(k)
i δ2zi

= (1 + η)δ2
n∑
i=1

ψiψ
T
i w

(k)
i zi. (6.3)

Therefore, the unconditional variance of the estimate θ̃k(x) as follows is bounded with

ψwkψ
T

Vk(x) ≡ E
[
Varθ̃k(x)

]
= E

[
(1 + η)δ2

n∑
i=1

ψiψ
T
i w

(k)
i zi

]

= (1 + η)δ2
n∑
i=1

ψiψ
T
i w

(k)
i E [zi]

= (1 + η)δ2
n∑
i=1

ψiψ
T
i w

(k)
i

= (1 + η)δ2ψwkψ
T . (6.4)
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Proof. of Theorem 1.

E
∣∣∣∣(θ̃k(x)− θ̂k(x)

)T (
ψwk(x)ψT

) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r
=

k−1∑
m=1

E
∣∣∣∣(θ̃k(x)− θ̃m(x)

)T (
ψwkψ

T
) (
θ̃k(x)− θ̃m(x)

)∣∣∣∣r I {θ̂k(x) = θ̃m(x)
}
.(6.5)

The event
{
θ̂k(x) = θ̃m(x)

}
happens if for some l = 1, · · · ,m, Tl,m+1 > ζl, Hence,

{
θ̂k(x) = θ̃m(x)

}
⊆

m⋃
l=1

{Tl,m+1 > ζl}.

Further, combined with the Cauchy-Schwarz inequality, for any positive a:

E
∣∣∣∣(θ̃k(x)− θ̃m(x)

)T (
ψwkψ

T
) (
θ̃k(x)− θ̃m(x)

)∣∣∣∣r I {θ̂k(x) = θ̃m(x)
}

= E
∣∣∣2LNSM (W (k), θ̃k(x), θ̃m(x)

)∣∣∣r I {θ̂k(x) = θ̃m(x)
}

≤
m∑
l=1

e−
a
4
ζl

{
E
[∣∣∣2LNSM (W (k), θ̃k(x), θ̃m(x)

)∣∣∣2r]} 1
2 {

E
[
exp

{
aLNSM

(
W (k), θ̃l(x), θ̃m+1(x)

)}]} 1
2
.(6.6)

Among which,

E

[∣∣∣2LNSM (W (k), θ̃k(x), θ̃m(x)
)∣∣∣2r] (6.7)

= 2r

∫ ∞
0

P
{

2LNSM

(
W (k), θ̃k(x), θ̃m(x)

)
≥ ζ
}
ζ2r−1dζ

≤ 2r

∫ ∞
0

P

{
γ ≥ ζ

[
2 (1 + η)

(
1 + b(k−m)

)]−1
}
ζ2r−1dζ

= 22r (1 + η)2r
(

1 + b(k−m)
)2r

E
∣∣χ2
p

∣∣r
= η = 0 22rC(p, 2r)

(
1 + b(k−m)

)2r
, (6.8)

and

E
[
exp

{
aLNSM

(
W (k), θ̃l(x), θ̃m+1(x)

)}]
=

p∏
j=1

[
1− aλj

(
V
−1/2
l,m+1

(
ψwmψ

T
)
V
−1/2
l,m+1

)]−1/2

≤
[
1− aλmax

(
V
−1/2
l,m+1

(
ψwmψ

T
)
V
−1/2
l,m+1

)]−p/2
≤

[
1− 2a (1 + η)

(
1 + b−(m+1−l)

)]−p/2
= η = 0

[
1− 2a

(
1 + b−(m+1−l)

)]−p/2
. (6.9)
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Therefore, we obtain

E

∣∣∣∣(θ̃k(x)− θ̂k(x)
)T (

ψwk(x)ψT
) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r
≤ 2r

√
C(p, 2r)(1− 4a)−p/4

k−1∑
m=1

m∑
l=1

e−
µ
4
ζl
(

1 + bk−m
)r

≤ 22r
√
C(p, 2r)(1− 4a)−p/4(1− b−r)

k−1∑
l=1

e−
µ
4
ζlbr(k−l). (6.10)

For any l < k < K, with an arbitrary constant µ ∈ (0, 1/4) the choice of the threshold of

the form

ζl =
4

µ

{
r(K − l)logb+ log

K

α
− p

4
log(1− 4µ)− log(1− b−r) + C̄(p, r)

}
,

where C̄(p, r) = log
{

22r[Γ(2r+p/2)Γ(p/2)]1/2

Γ(r+p/2)

}
provides the required PC bounds.

E

∣∣∣∣(θ̃k(x)− θ̂k(x)
)T (

ψwk(x)ψT
) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r ≤ αC(p, r), for all k = 2, · · · ,K.
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