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Abstract

This thesis deals with the estimation of unobserved variables or states from a

time series of noisy observations. Approximate minimum variance filters for

a class of discrete time systems with both additive and multiplicative noise,

where the measurement might be delayed randomly by one or more sample

times, are investigated. The delayed observations are modelled by up to N

sample times by using N Bernoulli random variables with values of 0 or 1.

We seek to minimize variance over a class of filters which are linear in the

current measurement (although potentially nonlinear in past measurements)

and present a closed-form solution. An interpretation of the multiplicative

noise in both transition and measurement equations in terms of filtering un-

der additive noise and stochastic perturbations in the parameters of the state

space system is also provided. This filtering algorithm extends to the case

when the system has continuous time state dynamics and discrete time state

measurements. The Euler scheme is used to transform the process into a

discrete time state space system in which the state dynamics have a smaller

sampling time than the measurement sampling time. The number of sample

times by which the observation is delayed is considered to be uncertain and

a fraction of the measurement sample time.

The same problem is considered for nonlinear state space models of dis-

crete time systems, where the measurement might be delayed randomly by

one sample time. The linearisation error is modelled as an additional source

of noise which is multiplicative in nature. The algorithms developed are

demonstrated throughout with simulated examples.
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Notation

The notation used throughout the chapters is introduced here. ‘time’ refers

to sampling time instant in this table and ‘rv’ stands for ’random variable’.

X (k) State vector at time k

Y(k) Measurement vector at time k

A,C,G1, G2, Uw, Uv Constant matrices

B,D Constant vectors

W(k),V(k) Vector-valued rvs representing additive noise at time k

W(t) Standard Wiener process

S1(k),S2(k) Vector-valued rvs representing multiplicative noise at time k

pk Bernoulli random variable representing a random delay at time k

A⊤ Transpose of a vector or matrix A

P(A) Probability of an event A

E[X ] Expected value of a rv X
f, h nonlinear, vector-valued functions

tr(·) The trace of a matrix

(⋆)⊤ Transpose of a matrix-valued expression

diag(yk) A block diagonal matrix with yk as the kth diagonal element

vec(f(xj)) A vector with f(xj) as its jth element

X̂ (k + i|k) Estimate of X (k + i), i ≥ 0 from Y(k − j), j = 0, 1, · · ·
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Acronyms

AvRMSE The average of RMSE

CDF Continuous-discrete filtering

DDF Discrete-discrete filtering

EKF Extended Kalman Filter

EnKF Ensemble Kalman Filter

GRV Gaussian random variables

MKF Modified Kalman Filter

MV Minimum variance

ODE Ordinary differential equation

PDF Probability density function

PF Particle Filter

QKF Quadrature Kalman Filter

RMSE Root mean square error

SDE Stochastic differential equation

UKF Unscented Kalman Filter
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Chapter 1

Introduction

This introductory chapter presents the motivation for studying certain prob-

lems within the field of latent state estimation and describes the main con-

tributions of the thesis. It also outlines the structure of the rest of the thesis.

1.1 Motivation

In several branches of computer science and engineering applications, we need

to estimate unobserved variables or states from a time series of noisy obser-

vations, given a functional relationship between them. A commonly used

technique to deal with this problem is called a filter. Research on filtering

and estimation problems has attracted a great deal of attention due to their

extensive applications in many practical areas, including economics, track-

ing, weather forecasting, navigation systems, control and signal processing.

The central idea behind the filtering problems is building an approxima-

tion of the posterior probability density of the unobserved state variables

or model parameters, recursively in time, by incorporating new noisy obser-

vations and model predictions. For any system, the complete information

about the state can be found in the probability density functions (PDFs) of

the state. In general, the solution of the filtering problem is based on Bayes’
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theorem, which tells us how to update the PDF of the unobserved state, the

so-called prior PDF, with new observations to obtain the so-called posterior

PDF. For discrete time systems with a constant sampling time, such a filter

works as a two-step process. First, the prior PDF at time k is obtained using

the known dynamics of the state and the posterior PDF at time k-1. Once

the measurement at time k arrives, this PDF is updated using the likelihood

of the observed measurement.

One of the most common approaches to latent state estimation in linear

dynamical systems is the Kalman filter, which provides an optimal solution

in the sense of minimum variance (MV) for linear systems with Gaussian

additive noise. However, in most applications of interest, the state transition

and the observation equations are nonlinear and the Kalman filter cannot be

directly applied. As a result, a large variety of approximate nonlinear filters

have been considered, such as the extended Kalman filter (EKF), the particle

filter (PF), the unscented Kalman filter (UKF), the Ensemble Kalman filter

(EnKF) and the quadrature Kalman filter (QKF). Some of these filtering

algorithms will be examined in more detail in the chapter two.

Most traditional filter design approaches depend on the assumption that

measurement signals are perfectly transmitted. However, in many practical

situations the measurements available in estimation do not arrive in time but

are randomly delayed due to several factors like slow sensors, long processing

time of the sensor data, limited capacity of the communication link, radar-

based devices, etc. Further, it is worth pointing out that most traditional

filtering algorithms are only concerned with the additive noises. However,

systems may also contain multiplicative noise, which may act as a proxy for

some classes of parameter uncertainties or for linearisation error. It is known

that, for a linear system with a multiplicative noise, the optimal filter is

nonlinear.
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1.2 Contribution

In this thesis several filtering algorithms which tackle the issues of multi-

plicative noise and measurement delayed are developed. The thesis discusses

both discrete and continuous-discrete time filtering problems. The main con-

tributions of the thesis are as follows:

1. An approximate minimum variance (MV) filter for a class of discrete

and continuous-discrete time linear systems with both additive and

multiplicative noise is investigated. An interpretation of the multi-

plicative noise in terms of parameter perturbations in a linear additive

model is provided. For continuous-discrete time systems, the Euler

scheme followed by conditional moment matching to transform stochas-

tic differential equations (SDEs) in the process equation into a discrete

model on a timescale which is finer than the measurement timescale is

used.

2. A new state estimation algorithm for unobserved state variables is pro-

posed for a class of discrete and continuous-discrete time linear systems

with both additive and multiplicative noise, where the measurement

might be delayed randomly by one or more sample times. Specifically,

a filter for this class of systems is constructed which minimizes the trace

of the estimation error covariance matrix over a set of filters which are

linear in the current measurement while being nonlinear in one or more

past measurements. The number of sample times by which the obser-

vation is delayed is considered to be uncertain. For continuous-discrete

time systems, the Euler scheme is used to transform the process into

a discrete time state space system where the state dynamics have a

smaller sampling time than the measurement sampling time.

3. An approximate MV filter for discrete time nonlinear systems with

randomly delayed observations and additive and multiplicative noise is

proposed. The model is linearized at each time step, and the lineari-

sation error is modelled in terms of multiplicative stochastic noise in
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the linearized state space model. A heuristic is provided to adjust the

size of linearisation error in terms of the trace of the estimation error

covariance matrix, in order to tune the filter. Once the nonlinear sys-

tem is reduced to a discrete time linearised system with both additive

and multiplicative noise, one can use the tools developed earlier in the

thesis to design an approximate MV filter in the presence of random

delays.

1.3 Thesis Structure

The rest of the thesis is structured as follows.

• In Chapter 2, a brief overview of state estimation and filtering problems

is provided. A brief description and review of some filtering algorithms

is also provided. In particular, we briefly describe the linear Kalman

filter and its algorithm in some detail. Some nonlinear filter algorithms,

particularly the EKF and the UKF, are explored in some detail, and

their advantages and disadvantages are discussed. Moreover, a brief

review of particle filtering is presented, along with a numerical example.

• In Chapter 3, an interpretation of filtering in additive noise models

under parameter perturbations in some of the parameters is considered.

A multiplicative noise term is considered in both the process and the

measurement equations to deal with the stochastic uncertainty that

arises out of either linearisation errors or parametric uncertainty. The

performance of the new filter is compared to the existing result. In

addition, a new algorithm for approximate MV filtering in the presence

of both additive and multiplicative noise, when the measurements are

randomly delayed and the delay is an integer number of time steps, is

provided. The filter is linear in the current measurement while it was

nonlinear in past measurements. A complete closed-form solution to

the delayed filtering problem for this class of systems is proposed.
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• In chapter 4, the approximate MV filter proposed in chapter 3 for

discrete state space systems with multiplicative noise is extended to

continuous-discrete systems with multiplicative noise. The differen-

tial equations that describe the process are discretised using the Eu-

ler scheme at a higher sampling frequency than the measurement fre-

quency. The procedure for deriving the expressions of a filter with

randomly delayed measurements where the delay is a fraction of a time

step is outlined.

• In chapter 5, an approximate MV filter for discrete time nonlinear

systems with randomly delayed observations and additive and multi-

plicative noise is investigated. Specifically, an interpretation of filtering

under multiplicative noise in terms of linearisation error is provided,

and a closed-form MV filter for this system is derived. Its performance

is compared with the EKF.

• In chapter 6, the thesis concludes with a summary of the main contri-

butions of the thesis and suggestions for future work.

1.4 Publications

• S. Allahyani, P. Date, An Approximate Minimum Variance Filter for

Nonlinear Systems with Randomly Delayed Observations, in: 25th Eu-

ropean Signal Processing Conference (EUSIPCO 2017), IEEE, 2017,

pp. 1639-1643

• S. Allahyani, P. Date, A minimum variance filter for continuous discrete

systems with additive-multiplicative noise, in: 24th European Signal

Processing Conference (EUSIPCO 2016), IEEE, 2016, pp. 2330-2334.

• S. Allahyani, P. Date, A minimum variance filter for discrete time linear

systems with parametric uncertainty, in: MED’16: The 24th Mediter-

ranean Conference on Control and Automation, Mediterranean Control
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Association, 2016, pp. 159-163.

• S. Allahyani, P. Date, A new approximate minimum variance filter for

discrete time linear systems with randomly delayed observations and

additive-multiplicative noise, Under revision.

• S. Allahyani, P. Date, A new approximate minimum variance filter for

continuous-discrete linear systems with randomly delayed observations

and additive-multiplicative noise, Submitted for journal publication.
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Chapter 2

Preliminaries

In this chapter the state estimation is introduced and the filtering problem

is described. The Kalman filter [1] and its limitations are reviewed before

several algorithms for approximate nonlinear filtering are described in detail.

2.1 State Estimation

The state estimation in stochastic state space models can be described in

terms of finding probabilistic information about a state vector X (k) which

typically evolves over time. The state vector X (k) itself is in general not

directly observable. Instead, measurements vector Y(k), which are a noisy

function in the current state vector X (k), are observed at specific times. In

many application areas, the model state is represented by an (approximated)

PDF. State estimation is a means to propagate the PDF of the system states

over time in some optimal way. It is most common to use the Gaussian

PDF to represent the model state, process and measurement noises. The

user, however, is in general interested in recovering the PDF of X (k) given

a stream of measurements online up to time l, Y(1 : l) = {Y(1), . . . ,Y(l)},
in order to calculate up-to-date estimates of the system states. The inter-

pretation of the state as a random variable with a certain distribution is in

accordance with the Bayesian viewpoint, and the sought after conditional
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density p(X (k)|Y(1 : k)) is often called the posterior density, where Y(1 : k))

are measurements vector up to time k. For any variable or parameter in es-

timation, there are three quantities of interest: the true value, the measured

value and the estimated value. The true value (or truth) is usually unknown

in practice; this represents the actual value sought of the quantity being

approximated by the estimator. The measured value denotes the quantity

which is directly determined from a sensor. Measurements are never per-

fect, since they will always contain errors. Thus, measurements are usually

modeled using a function of the true values plus some error. The estimated

values of the latent state are found using a combination of a dynamic state

transition model and the measurement model.

Based on the relation between the time of interest k and the time interval

of available observations, determined by l, three different estimation prob-

lems are recognized, due to the different relations between k and l filtering,

smoothing and prediction.

Filtering: In a Bayesian filtering problem l = k (i.e., observations in-

cluding frame l), that is all the current and past observations are available to

estimate the state. Clearly, the basis of the proposed filtering approach is to

develop an online algorithm to compute the filtering density p(X (k)|Y(1 : k))

when a measurement Y(k) becomes available.

Smoothing: In a Bayesian smoothing problem l > k, that is both

past and future measurements are available to compute the filtering den-

sity p(X (k)|Y(1 : l)).

Prediction: In a Bayesian prediction problem l < k, that is the available

measurements Y(1 : l) are used to compute a prediction density of the state

in the future.
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2.2 The Filtering Problem

Based on the available information (control inputs, if present, and observa-

tion), it is required to obtain an estimate of the system’s state that optimizes

a given criteria. This is the role played by a filter. Filtering approaches es-

timate the unknown true state X (k) from certain noisy observations Y(k).

Within the Bayesian framework, we specified the filtering problem in terms

of finding a conditional probability density p(X (k)|Y(1 : k)), the filtering

posterior. The user, however, is in general interested in a point estimate

X̂ (k|k) of the state and some indication of its confidence, often represented

by a covariance matrix P̄ (k|k). The predominant idea behind point estimate

computations is the minimization of some expected loss, where the expec-

tation is carried out with respect to the posterior density. An interesting

discussion can be found in [2], where it is shown that the conditional mean

E[X (k)|Y(1 : k)] minimizes the expected squared estimation error regardless

of the shape of p(X (k)|Y(1 : k)). The conditional mean is therefore also

known as the minimum mean squared error or MMSE estimate.

The general filtering problem may the formulated as follows [2]:

X (k + 1) = f(X (k),U(k),W(k)), (2.1)

Y(k) = h(X (k),V(k)). (2.2)

The state difference equation (2.1) relates the upcoming state X (k + 1) to

the current state X (k) and the process noise W(k), via a function f . The

measurement equation (2.2) relates X (k) and the measurement noise V(k)
to the observation Y(k), via a function h. All of the quantities X (k), W(k),

Y(k) and V(k) are vectors with known dimensions. U(k) ∈ Rn is the control

input. In control engineering, there is often a separate exogenous input term

in equation (2.1); this term is not considered here since the focus is simply on

filtering rather than control design and hence the input term is not relevant.

The time increment t(k)− t(k − 1) is assumed to be constant for all k. The
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following assumptions are made for the problems that we treat in this thesis.

The initial time index is k = 0 and the first measurement is taken at k = 1.

Both functions f and h are known for each time instance k. The noise char-

acteristics of W(k) and V(k) are known, as is the distribution of X (0). We

assume W(k) and V(k) to be uncorrelated, such that is cov{W(k),W(l)} = 0

and covariance{V(k),V(l)} = 0 for k ̸= l. The initial state X (0) is assumed

to be uncorrelated to W(k) and V(k). The filtering problem is the problem of

finding the conditional distribution P(X (k)|X (k − 1),Y(k)). This takes the

form of finding a discrete approximation of the distribution, or of finding the

first two conditional moments of the distribution. An exact solution to the

filtering problem is possible if f and h are linear in the underlying variables

and all the noise sources are Gaussian. This solution is described later in

section 2.3.1.

2.2.1 The Discrete Time Linear System

The linear state space model that is most common in the literature and has

been best researched and understood is as follows:

X (k + 1) = AX (k) + B + UwW(k), (2.3)

Y(k) = CX (k) +D + UvV(k), (2.4)

which has been at the core of estimation theory for several decades. The

variable X (k) ∈ Rn is the state vector at time k and needs to be estimated,

Y(k) ∈ Rr is the measurement vector at time k, A, C, Uw and Uv are given

constant matrices and B and D are given constant vectors of compatible di-

mensions. Note that equations (2.3)-(2.4) are a special case of system (2.1)-

(2.2) with linear functions. For linear Gaussian systems (2.3)-(2.4), the fil-

tering density is Gaussian throughout time and as such fully described by an

estimate X̂ (k|k) and its covariance P̄ (k|k). In fact, X̂ (k|k) and P̄ (k|k) are
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what are called sufficient statistics for the Gaussian distribution. There ex-

ists an optimal unbiased state estimation algorithm that provides the lowest

mean squared estimation error: the celebrated Kalman filter that we discuss

in Section 2.3.1. It should be noted that (2.3)-(2.4) could be obtained by

linearisation of (2.1)-(2.2), an idea which is exploited in a family of approxi-

mate filtering algorithms, including the EKF, in Section 2.3.2.

2.2.2 The Discrete Time Nonlinear System

A widely used special case of (2.1)-(2.2) is the stochastic state space model

with additive noise:

X (k + 1) = f(X (k)) +W(k), (2.5)

Y(k) = h(X (k)) + V(k), (2.6)

where X (k) ∈ Rn is the state vector at time k, W(k) ∈ Rn is the process

noise, V(k) ∈ Rr is the observation noise and Y(k) ∈ Rr is the noisy obser-

vation of the system. It is conventionally assumed that the distribution of

X (k) is Gaussian. Here, W(k) and V(k) are often assumed to be indepen-

dent. Then, an alternative description of the model in terms of conditional

densities p(X (k+1)|X (k)) and p(Y(k)|X (k)) is easily derived. A number of

approximate filtering techniques given, in Section 2.3.2, rely on (2.5)-(2.6)

with a Gaussian assumption regarding W(k) and V(k). The related algo-

rithms boil down to approximately computing expected values with respect

to Gaussian densities.

2.2.3 The Continuous-discrete Time Linear System

The process equation can be described by the stochastic differential equation

dX (t) = (AX (t) + B)dt+ UwdW(t). (2.7)

11



The behaviour of the system is observed through noisy measurements Y(tk)

which are taken at the discrete time instant tk = kT (T is the measurement

sampling interval)

Y(tk) = CX (tk) +D + UvV(tk), (2.8)

where X (t) is an n-dimensional state of the system at any time t, Y(tk) ∈ Rr

is the measurement at tthk time instant with A, C, Uw and Uv are given

constant matrices and B and D are given constant vectors of compati-

ble dimensions. W(t) ∈ Rn is a standard Wiener process with increment

dW(t) and V(k) ∈ Rr is the measurement noise and zero mean, i.i.d. ran-

dom vectors with identity covariance matrix I. The noise signals W(t)

and V(tk) are uncorrelated with each other. The initial state is a ran-

dom vector with a known mean and covariance matrix E[X (0)] = X̂ (0) and

E[(X (0)− X̂ (0))(X (0)− X̂ (0))⊤] = P (0), respectively. X (0), W(t) and V(tk)
are mutually independent.

Dynamics of many continuous time systems can be represented by their

discrete time approximation with acceptable accuracy with small enough

time steps, as given in chapter 5. Now the problem is to estimate the states

of this discrete time process. When the state-space model is known, one

of the major contributions made to solving this problem is the Kalman fil-

ter, which provides the optimal least-squares estimator in Gaussian linear

systems. Another alternative to continuous-discrete filtering is to use an

ordinary differential equation (ODE) for the evolution of the moments of

the state between the measurement sampling times to yield X̂ (k + 1|k) and
P (k+1|k) and then use a discrete update equation once Y(k+1) is measured.

In this chapter, we provide the reader with a number of tools to approach

the filtering problem. In Section 2.3.1, the Kalman filter is introduced as an

exact and optimal estimator for linear systems with known noise statistics.

In Section 2.3.2, we introduce algorithms that build on the Kalman filter but

consider nonlinear state space models.
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2.3 Gaussian Filtering Techniques

2.3.1 The Kalman Filter

One of the most common approaches to latent state estimation in dynamical

systems is the Kalman filter, first published in 1960 [1] for the discrete-time

case, which provides an optimal solution in the sense of MV for linear sys-

tems. The Kalman filter is a recursive filter which estimates the true states

of the dynamics of a system by combining model predictions with noisy ob-

servations. His work is extended to deal with the continuous-time case in

[3], the filter is called the Kalman Bucy filter in that case. It has numerous

application in technology, including guidance, navigation and control of vehi-

cles, particularly aircraft and spacecraft [4]. As an example, in radar-based

tracking, one may measure the bearing between a fixed axis and a target

and the distance between the target and the radar location, and infer the

coordinates and velocity of the target.

Furthermore, the Kalman filter is widely applied in time series analysis

used in fields such as signal processing and econometrics. An introduction to

the general idea of the Kalman filter can be found in [5] and the references

therein. More extensive accounts of the Kalman filter’s history are given in

[6] and [7]. Anderson and Moore [8] produced an early standard text with a

focus on discrete-time systems, and provide a number of alternative deriva-

tions and many extensions to the Kalman filter.

In general, the Kalman filter addresses the general problem of trying to

estimate the state X ∈ Rn of a discrete time process that is governed by the

linear stochastic difference equation

X (k + 1) = AX (k) + B + UwW(k); k ≥ 0 (2.9)

with a measurement Y ∈ Rr

Y(k) = CX (k) +D + UvV(k), (2.10)
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where W(k) ∈ Rn and V(k) ∈ Rr. The random variables W(k) and V(k)
represent the process and measurement noise, respectively. They are inde-

pendent and are assumed to have normal probability distributions with zero

mean and unit variance:

p(W) ∼ N (0, I),

p(V) ∼ N (0, I),

Further, the noise variables are not correlated forward or backward in time

so that

E[V(k)V⊤(j)] = 0 if k ̸= j,

E[V(k)V⊤(j)] = I if k = j,

and

E[W(k)W⊤(j)] = 0 if k ̸= j,

E[W(k)W⊤(j)] = I if k = j.

We further assume that V(k) and W(k) are uncorrelated so that

E[V(k)W⊤(j)] = 0.

The n × n matrix A in the difference equation (2.9) relates the state at

time step k to the state at step k+1, in the absence of either a driving func-

tion or process noise. The r×n matrix C in the measurement equation (2.10)

relates the state at time step k to the measurement Y(k). B, D, Uw and Uv

are constant matrices.

The initial state, X0, is a Gaussian random vector with mean

E[X0] = X̂0,

and the estimation error covariance matrix

E[(X0 − X̂0)(X0 − X̂0)
T ] = Px0 .

14



The Kalman filter algorithm

Kalman filter equations can be stated in many different forms of which we

present a scheme with alternating time and measurement updates. For the

system (2.9)-(2.10), assume that the conditional expectation X̂ (k|k) and its

covariance matrix Pxx(k|k) at time k, which were obtained by processing

all measurements Y(1 : k), are known. The Kalman filtering algorithm for

finding conditional moments at the next time (k+1) proceeds as follows [9]:

X̂ (k + 1|k) = AX̂ (k|k) + B, (2.11)

Pxx(k + 1|k) = APxx(k|k)A⊤ + UwU
⊤
w , (2.12)

V̂(k + 1) = Y(k + 1)− CX̂ (k + 1|k)−D, (2.13)

Pxv(k + 1|k) = APxx(k + 1|k)C⊤, (2.14)

Pvv(k + 1|k) = CPxx(k + 1|k)C⊤ + UvU
⊤
v , (2.15)

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + Pxv(k + 1|k)P−1
vv (k + 1|k)V̂(k + 1), (2.16)

Pxx(k+1|k+1) = Pxx(k+1|k)−Pxv(k+1|k)P−1
vv (k+1|k)P⊤

xv(k+1|k), (2.17)

where X̂ (k+1|k) denotes the optimal estimate of X at time k+1, given

the measurements and other available values up to time k. The calculation

of X̂ (k + 1|k) can be interpreted as performing the expectation of (2.9) over

the random variables X (k) and W(k). P̄ (k + 1|k) represents the related

covariance which is, again, an expected value. V̂(k + 1) in (2.13) is called

innovation, which is the discrepancy between the observed output and its

prediction. Pvv(k + 1|k) represents the covariance matrix of innovation. P⊤

denotes the transpose of matrix P . To initialise the procedure, it is assumed

that X̂0 and Px0 are known, and proceeding with a time update.

Equation (2.16) is an optimal linear filter, in the sense that it yields the

MV over all linear filters, even when V(k) and W(k) are not Gaussian. When

V(k) and W(k) are Gaussian, X̂ (k + 1|k) is the conditional mean estimator
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for X (k + 1), given Y(k). In fact, equation (2.16) may be derived using a

standard conditional mean relationship for two Gaussian variables X and Y :

E(X|Y) = E(X ) + PXY P
−1
Y Y (Y − E(Y)),

where PY Y and PXY are covariance matrices.

2.3.2 Nonlinear Filtering Problem

In most applications of interest, the state transition and the observation

equations are nonlinear and the Kalman filter cannot be directly applied. As

a result, a wide variety of approximate nonlinear filters have been consid-

ered, such as the the EKF as discussed in [10], the UKF proposed in [11],

EnKF proposed in [12] and the QKF as reviewed in [13]. In the EKF, the

system state distribution and all relevant noise densities are approximated

by Gaussian random variables (GRVs), which are then propagated analyti-

cally through a first-order linearisation of the nonlinear system. On the other

hand, in the UKF the state distribution is again approximated by a GRV as

with a EKF, but is now represented using a minimal set of carefully chosen

weighted sample points. The QKF uses numerical quadrature for finding the

mean and variance of the latent state. The most common approach is to use

the EKF, which simply linearizes the nonlinear equations around the current

estimate so that the traditional linear Kalman filter can be applied.

2.3.3 The Extended Kalman Filter

In the EKF [14], the PDF is propagated through a linear approximation of

the system around the operating point at each time instant. In doing so, the

EKF requires Jacobian matrices. The EKF can be improved by using the

current estimate of the state vector to linearize the measurement equation in

an iterative model. This approach is known as the Iterated EKF (IEKF) [15].
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The EKF Algorithm

Let us assume that our process again has a state vector X ∈ Rn, but that

the process is now governed by the nonlinear stochastic difference equation

(2.5) with a measurement (2.6).

The fundamental concept of the EKF involves the notion that the true

state is sufficiently close to the estimated state. Therefore, it provides ap-

proximation of the mean and covariance which are accurate up to at least

the first term of their Taylor series expansions. For a discussion of and more

detail on the EKF, see [2].

Consider the Taylor series expansion of the nonlinear functions f and h

around the estimates X̂ (k|k − 1) of the states X (k).

f(X (k)) ≈ f(X̂ (k|k − 1)) +
∂f(X̂ (k|k − 1))

∂X (X (k)− X̂ (k|k − 1)) + . . .

h(X (k)) ≈ h(X̂ (k|k − 1))) +
∂h(X̂ (k|k − 1)), )

∂X (X (k)− X̂ (k|k − 1)) + . . .

(2.18)

Equation (2.18) gives a linear approximation of the original nonlinear

state space system. Using only the linear expansion terms, it is easy to

derive the update equations for the mean X̂ and covariance P of the Gaussian

approximation to the posterior distribution of the states. The EKF algorithm

for the system (2.5)-(2.6) is presented below [14]:

• Initialization at k = 0 :

X̂0 = E[X0],

Px0 = E[(X0 − X̂0)(X0 − X̂0)
⊤],

Pw = E[(W − W̄)((W − W̄))T ],

Pv = E[(V − V̄)(V − V̄)T ],
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• For k ≥ 1 :

(1) Prediction step.

(a) Compute the process model Jacobians:

Fx(k) = ∇xf(X , W̄)|X=X̂ (k|k−1),

Gw = ∇wf(X̂ (k|k − 1),W)|W=W̄ .

(b) Compute predicted state mean and covariance (time update)

X̂−(k) = f(X̂ (k|k − 1), W̄),

P−
x (k) = Fx(k)Px(k)F

T
x (k) +GwPwGw

T .

(2) Correction step.

(a) Compute observation model Jacobians:

Hx(k) = ∇xh(X , V̄)|X=X̂−(k),

Dv = ∇vh(X̂−(k),V)|V=V̄ .

(b) Update estimates with latest observation(measurement update)

Kk = P−
x (k)Hx

T (k)(Hx(k)P
−
x (k)Hx

T (k) +DvPnDv
T )−1,

X̂ (k) = X̂−(k) +Kk[Y(k)− h(X̂−(k), V̄)],

Px(k) = (I −KkHx(k))P
−
x (k).

More detail on this algorithm can be found in [14].

Unfortunately, EKF often cannot be applied in practical applications of

nonlinear estimation techniques. It has been successfully applied in [16] and

[17], but fails in others [11] for a variety of reasons, including the existence

of Jacobians, their computational complexity and stability of the resulting

system. Therefore, the EKF has two important potential drawbacks [18].

First, the derivation of the Jacobian matrices, the linear approximators to
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the nonlinear functions, can cause implementation difficulties. Second, these

linearisations can lead to filter instability if the time step intervals are not

sufficiently small. However, in the EKF, the system state distribution and all

relevant noise densities are approximated by GRVs, which are then propa-

gated analytically through a first-order linearisation of the nonlinear system.

This can introduce large errors in the true posterior mean and covariance

of the transformed GRV, which may lead to sub-optimal performance and

,sometimes, divergence of the filter.

To overcome this limitation, Julier, Uhlmann and Durrant-Whyte intro-

duced a new filtering algorithm called the UKF [19].

2.3.4 The Unscented Kalman Filter

The UKF is a superior alternative to the EKF for a variety of estimation and

control problems. The UKF addresses the EKF’s drawbacks by using a deter-

ministic sampling approach. The state distribution is again approximated by

a GRV as an EKF, but is now represented using a minimal set of carefully

chosen weighted sample points. These sample points completely capture

the true mean and covariance of the GRV, and when propagated through

the true nonlinear system, capture the posterior mean and covariance ac-

curately to the second order (Taylor series expansion) for any nonlinearity

[20]. Furthermore, the UKF has substantial advantages over the EKF both

in implementation and performance and requires no analytic differentiation

or Jacobians, as which are necessary when using the EKF.

The UKF algorithm has found a number of applications in many fields

such as communication [11], engineering [21, 19] and finance [22]. The su-

perior performance of the UKF as compared to that of the EKF has been

demonstrated in many applications [18, 23] and [14]. Previous research has

found that the UKF leads to more accurate results than the EKF and that in
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particular it generates much better estimates of the covariance of the state.

The reason for this greater accuracy is that the UKF can predict the state

estimate and error covariance to the fourth order accuracy while the EKF

only predicts up to the second order for the state estimate and the fourth

order for the error covariance [19].

The UKF is based on a nonlinear transformation which nonlinearly prop-

agates the mean and covariance information and is known as the unscented

transformation [11].

The Unscented Transformation

The unscented transformation (UT) is a method for calculating the statistics

of a random variable which undergoes a nonlinear transformation. It is based

on the intuition that ”it is easier to approximate a probability distribution

than a nonlinear function” [24].

Consider propagating a random variable X ∈ RL through an arbitrary

nonlinear function Y = g(X ). Assume X has mean X̂ and covariance Px. To

calculate the first two moments of Y using UT, we form a set of 2L+1 sample

points Xi; i = 0, ..., 2L where Xi ∈ RL, with each point being associated with

a weight wi. These sample points are called sigma points. It is important to

note that these points are not chosen at random but rather according to some

deterministic algorithm. The sigma points are calculated using the following

general selection scheme [25]:

X0 = X̂ , (2.19)

Xi = X̂ + ξ(
√

Px)i, i = 1, ..., L, (2.20)

Xi = X̂ − ξ(
√

Px)i, i = L+ 1, ..., 2L, (2.21)

20



where ξ =
√
L+ λ is a scalar scaling factor that determines the spread of the

sigma points around X̂ , λ = α2(L+κ)−L is a compound scaling parameter,

L is the dimension of the augmented state vector and 0 < α ≤ 1 is the pri-

mary scaling factor determining the extent of the spread of the sigma points

around the prior mean. The typical range for α is 1e − 3 < α ≤ 1. κ is a

tuning parameter and we must choose κ ≥ 0 to guarantee the semi-positive

definiteness the covariance matrix; a good default choice is κ = 0. (
√
P )i

indicates the ith column of the matrix square root of the covariance matrix P .

Once the sigma points are calculated from the prior statistics as shown

above, they are propagated through the nonlinear function

Yi = g(Xi), i = 0, ..., 2L, (2.22)

and the mean and covariance of Y are approximated using a weighted sample

mean and covariance of the posterior sigma points

Ŷ ≈
2L∑

i=0

wi
mYi,

∑
wi

m = 1,

Py ≈
2L∑

i=0

2L∑

j=0

wc
ijYiYT

j ,

Pxy ≈
2L∑

i=0

2L∑

j=0

wc
ijXiYT

j ,

(2.23)

wm
0 = λ/(L+ λ),

wc
0 = wm

0 + (1− α2 + β),

wc
i = wm

i = 1/[2(L+ λ)] for i = 1, ..., 2L,

(2.24)

where wi
m and wi

c are scalar weights of the mean and covariance calculation

associated with the ith point and β is a secondary scaling factor used to em-

phasize the weighting on the zeroth sigma point for the posterior covariance

calculation. β can be used to minimize certain higher-order error terms based

on known moments of the prior random variable. For a Gaussian prior, the
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optimal choice is β = 2 according to [25].

The UKF Algorithm

Let the system be represented by (2.5) and (2.6); in a UKF the state ran-

dom variable is redefined as the concatenation of the original state and noise

variables: X a(k) = [X T (k) WT (k) VT (k)]⊤. The sigma points selection

scheme (system (2.19)-(2.21)) is applied to this new augmented state ran-

dom variable to calculate the corresponding sigma points set, X a
i (k) where

X a
i (k) ∈ RLx+Lv+Ln .

The UKF algorithm is given below[25]:

• Initialization at k = 0 :

X̂0 = E[X0],

Px0 = E[(X0 − X̂0)(X0 − X̂0)
T ],

X̂ a
0 = E[X a

0 ] = [X̂ T
0 W̄T

0 V̄T
0 ],

P a
0 = E[(X a

0 − X̂ a
0 )(X a

0 − X̂ a
0 )

T =

⎡

⎢⎣
Px0 0 0

0 Rw 0

0 0 Rv

⎤

⎥⎦ .

• For k ≥ 1 :

1. Calculate sigma-points:

X̃ a(k−1) = [X̂ a(k|k−1) X̂ a(k|k−1)+ξ(
√
P a(k|k − 1)) X̂ a(k|k−1)−ξ(

√
P a(k|k − 1))].

2. Time-update equations:

X x(k|k − 1) = f(X x(k − 1),Xw(k − 1)),

X̂−(k) =
2L∑

i=0

wm
i X x

i (k|k − 1),
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P−
x(k) =

2L∑

i=0

wc
i (X x

i (k|k − 1)− X̂−(k))(X x
i (k|k − 1)− X̂−(k))T .

3. Measurement-update equations:

Y(k|k − 1) = h(X x(k|k − 1),X v(k − 1)),

Ŷ−(k) =
2L∑

i=0

wm
i Yi(k|k − 1),

Pỹ(k) =
2l∑

i=0

wc
i (Y−

i (k|k − 1)− Ŷ−(k))(Yi(k|k − 1)− Ŷ−(k))T ,

Px(k)y(k) =
2L∑

i=0

wc
i (X x

i (k|k − 1)− X̂−(k))(Yi(k|k − 1)− Ŷ−(k))T ,

Kk = Px(k)y(k)P
−1
ỹ(k),

X̂ (k) = X̂−(k) +Kk(Y(k)− Ŷ−(k)),

Px(k) = P−
x(k) −KkPỹ(k)K

T
k ,

where X̃ = [(X x)⊤ (Xw)⊤ (X v)⊤]⊤, wc
i and wm

i are as defined in (2.24).

Many extensions, generalizations and developments followed Julier and Uhlmann’s

basic work [19]. They developed the UKF algorithm by extending the number

of sigma points in order to capture the first four moments of a Gaussian distri-

bution in [21]. This algorithm was improved by Wan and Van der Merwe [20],

who extended the use of the UKF to a broader class of nonlinear estimation

problems, including nonlinear system identification, training of neural net-

works and dual estimation problems. Julier, Uhlmann and Durrant-Whyte in

[24] described a new approach for generalizing the Kalman filter to nonlinear

systems. They approximated the first three moments of the prior distribu-

tion accurately using a set of samples. The algorithm predicts the mean and

covariance accurately up to the third order. Ponomareva, Date and Wang

[26] also introduced a new UKF for nonlinear multivariate time series. This

UKF generates sample points and corresponding probability weights which
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are modified at each step. These sample points and weights match exactly the

predicted values of average marginal skewness and average marginal kurtosis

of the unobserved state variables, as well as their means and the covariance

matrix.

In order to reduce computational errors, a square root formulation of the

UKF which propagates the mean and square root of the covariance matrix

rather than the covariance matrix itself has been developed [27]. Hermoso-

Carazo and Linares-Perezad [28, 29] addressed the least squares filtering

problem for nonlinear systems with uncertain observations. Reformulations

of the UKF algorithm have been proposed in [30] by adding constraints using

the traditional UKF approach. Gustafsson and Hendeby, who pointed out

the connection between the EKF and the UKF, showed that the sigma point

function evaluation can be used in the classical EKF in place of an explicitly

linearized model [31].

In the literature, various modifications to both the EKF and the UKF

have led to improved accuracy or reduced computational complexity have

been proposed in [27] and [9], among others. All the approximate filtering

methods have their own advantages and disadvantages and provide different

levels of trade-offs in terms of computational complexity and estimation ac-

curacy. [32] and [33] provide reviews of filtering applications.

The methods described above, such as the EKF and the UKF, do not have

provable optimality properties for non-Gaussian disturbances and nonlinear

systems. In contrast, a Bayesian filtering methodology which depends on

sampling from appropriate candidate distributions and adjusting the proba-

bility weights to suit measurements can recover the true posterior distribu-

tion P(X (k)|Y(k)), as the number of samples tend to infinity. This kind of

Bayesian recursive filter is called a particle filter (PF). It is discussed widely

in the literature; see [34] for example. With a PF, a discrete approximation
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of the required density functions is obtained using a set of samples from an

appropriate PDF. These density functions and the corresponding probability

weights are used to compute the conditional moment estimates. Given their

practical and theoretical importance, PFs are discussed in more detail in the

next section, along with a numerical illustration.

2.4 Particle Filters

It is well known that when systems are non-Gaussian and/or nonlinear, there

are not many methods available to reach the filtering goal (i.e., estimating the

distribution of the true state of a process). To handle these problems, PFs,

introduced in [34], have become a very popular class of numerical methods

for the solution of optimal estimation problems in nonlinear, non-Gaussian

models. Thus, the motivation for using PFs lies in their ability to estimate

sequentially the densities of unknowns of non-Gaussian and/or nonlinear sys-

tems based on the concept of sequential importance sampling and the use

of Bayesian theory. It is a technique for implementing a recursive Bayesian

filter by Monte Carlo simulations. The key idea of a PF is to try to represent

the required PDF by a set of random samples with associated weights that

can be interpreted as probability masses, and to compute estimates based on

these samples and weights. The set of samples are called particles and its

location varies with time in a random way. The particles and weights form

a discrete random measure.

Many versions of PF algorithms have appeared independently in several

fields under such names as condensation [35], sequential Monte Carlo [36],

survival of the fittest [37], sequential importance sampling (SIS) with resam-

pling (SIR) [38], [39], bootstrap filters [40], etc. The literature features several

reviews of PF. For instance, in [41] a short introduction to PF is given and

many problems in wireless communications are discussed. In [42] Van and

Peter present an excellent overview of PF theory, including several examples
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from the geoscience. The fundamentals of particle filtering and its most im-

portant implementations are discussed in [43]. Practical applications include

target tracking [44], estimation of stochastic volatility [45], geosciences [46]

and blind deconvolution of digital communications channels [47]. In [48] a

few convergence results on particle filtering methods are reviewed. Numerous

statistical improvements for PFs have been proposed, and some important

theoretical properties have been established. For example, in order to reduce

the computational cost of implementing PFs, an improved PF is proposed

in [49]. In [50] a recursive on-line algorithm based on rejection sampling is

provided and improved versions suggested. A fully nonlinear PF that can

be applied to higher dimensional problems appears in [51]. The method is

applied for the highly nonlinear three-dimensional Lorenz model [52] with

only partial observations of the state vector with only three particles and

the much more complex 40-dimensional Lorenz model [53] using 20 parti-

cles. The same problem has been studied before [54] using standard a PF

with resampling and tens of thousands of particles were needed. In general,

the underlying principle of particle filtering is that the relevant distributions

(both prior and posterior) are approximated by discrete random measures

composed of particles (samples from the space of the unobserved variables)

and weights assigned to those particles.

2.4.1 Basic particle filters

In many applications we are interested in estimating recursively in time the

unobserved state X (k) from the observations Y(k), where the state model

is (2.5) and the observation model is (2.6). As already pointed out, the cen-

tral idea of PF is about approximating X (k) given the measurement Y(k),

which we will represent as X (k|k), with the use of discrete random measure

χ(m)(k) = {X (m)(k),W (m)(k)}Mm=1, where X (m) are the particles, W (m) are

the probability weights and M is the number of particles. The algorithm

starts by drawing an initial independent sample X (1)
0 , . . . ,X (M)

0 ; all particles
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have equal weight, which are then inserted into the system equation (2.5)

- (2.6). The set must be updated by the new measurement Y(1). Suppose

that at time k−1, we know the observations up to k−1 and the a posteriori

PDF p(X (k − 1)|Y(k − 1)). Once Y(k) becomes available, we would like to

update p(X (k−1)|Y(k−1)) and modify it to p(X (k)|Y(k)). To achieve this,

we formally write

p(X (k)|Y(k)) ∝ p(Y(k)|X (k))p(X (k)|Y(k − 1)). (2.25)

The first factor on the right of the proportionality sign is the likelihood func-

tion of the unknown state, and the second factor is the predictive density of

the state. In order to estimate the posterior distribution p(X (k)|Y(k), the

particles drawn from it are used. If we sample a large number of particles

M from p(X (k)|Y(k)), we will be able to estimate E(h(X (k)) with arbitrary

accuracy. In practice, however, the problem is that we often cannot draw

samples directly from the a posteriori PDF, i.e., p(X (k)|Y(k)). An attrac-

tive alternative is to use the concept of importance sampling [58], which

is based on another function for drawing particles. This function is called

the importance sampling function or proposal distribution, and we denote

it by q(X (k)|Y(k)). This importance function minimizes the variance of the

weights. Given the particles, which are obtained by sampling from the pro-

posal distribution q(X (k)|X (k − 1),Y(k)), a weighted approximation to the

posterior density at k is given by

p(X (k)|Y(k) ≈
M∑

m=1

W (m)(k)δ(X (k)− X (m)(k)), (2.26)

where

W (m)(k) ∝ p(X (m)(k)|Y(k))

q(X (m)(k)|Y(k))
, (2.27)

and δ(·) is the Dirac delta function. From the law of large numbers
∑M

m=1 W
m(k)h(Xm(k)) → E(h(X (k))) as M → ∞. If the importance den-
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sity is chosen to factorise such as

q(X (k + 1)|Y(k + 1)) = q(X (k + 1)|X (k),Y(k + 1))q(X (k)|Y(k)), (2.28)

we can augment the trajectory X (m)(k) with X (m)(k + 1), where

X (m)(k + 1) ∼ q(X (k + 1)|X (m)(k),Y(k + 1)).

To derive the weight update equation, p(X (k+1)|Y(k+1)) is first expressed

in terms of p(X (k)|Y(k)), p(Y(k + 1)|X (k + 1)) and p(X (k + 1)|X (k)):

p(X (k + 1)|Y(k + 1)) ∝ p(Y(k + 1)|X (k + 1))p(X (k + 1)|X (k))p(X (k)|Y(k)).

(2.29)

By substituting (2.28) and (2.29) into (2.27), the weight update equation is

then shown to be

W (m)(k + 1) = W (m)(k)
p(Y(k + 1)|X (m)(k + 1))p(X (m)(k + 1)|X (m)(k))

q(X (m)(k + 1)|X (m)(k),Y(k + 1))
,

(2.30)

where p(Y(k + 1)|X (m)(k + 1)) represents the probability density of the ob-

servations given the model state Xm, which is determined by the probabil-

ity density of the observation noise and is often taken as a Gaussian, and

p(X (m)(k + 1)|X (m)(k)) represents the state transition density. q(X (m)(k +

1)|X (m)(k),Y(k+1)) represents the proposal distribution and p(X (k−1)|X (k))

is a common choice for the proposal distribution.

A major problem with particle filtering is that the discrete random mea-

sure degenerates quickly. In other words, all the particles except one have

negligible weights. This means that the statistical information in the ensem-

ble is lost; effectively only one particle has all the information available to

us. The degeneracy implies that the performance of the PF will deteriorate.

Degeneracy, however, can be reduced by using good importance sampling

functions and resampling [43]. The basic idea of resampling is to eliminate
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particles with small weights and replicate particles with large weights, such

that we end up with an ensemble of particles with equal weight again. A

suitable measure of degeneracy of the algorithm is the effective sample size

Meff introduced in [39] and defined as

Meff =
M

1 + V ar(W ⋆m(k))

where W ⋆m(k) = p(Xm(k)|Y(k))/q(X (m)(k)|X (m)(k− 1),Y(k)) is referred to

as the ”true weight”. One cannot evaluate Meff exactly but, an estimate

M̂eff of Meff is given by

M̂eff =
1

∑M
m=1(W

m(k))2
,

with Wm(k) being the normalised weight corresponding to the m-th particle

at time instant k. When M̂eff is below a fixed threshold, resampling is carried

out. Several ways to perform the resampling exist; see for example [39]. The

most widely used class of resampling techniques involves resampling that is

random and has a uniform distribution. That is all weights are put on the

interval [0; 1], and a random number from the uniform density over [0; 1/M ]

is chosen. That number is laid onto the unit interval, and the weight it points

to is the first resampled particle. Then, 1/M is added to the random num-

ber, and the weight to which it points denotes the second resampled particle.

This process is repeated to generate N resampled particles, all with equal

weight. From there we start the model integrations forward in time again.

In general, particle filtering algorithm can be summarized as follows [34].

Suppose that at time step k a discrete probability measure {X (m)(k),W (m)(k)},
m = 1, 2, ...,M , is specified and a proposal density q(X (k+1)|X (k),Y(k+1))

is given. At time steps (k+ 1), the following sequence of operations gives us

the probability measure {(X (m)(k + 1),Wm(k + 1))}:

• At time k + 1, measure Y(k + 1);
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• Sample particles Xm(k+1) from proposal density q(X (k+1|X (k),Y(k+

1));

• Compute the importance weights W (m)(k + 1) according to (2.30);

• Normalize the importance weights as the following

W̃ (m)(k + 1) =
W (m)(k + 1)

∑M
m=1 W

(m)(k + 1)

;

• Resample if necessary whenever degeneracy is observed to obtain m

equally weighted particles, {X̄ (m), 1
M }Mm=1.

2.4.2 Numerical experiment

In this section, the problem of manoeuvering target tracking [55] with con-

stant but unknown turn rate has been formulated and solved with particle

filtering.

Process model

To formulate the problem, we assume an object is manoeuvering with a

constant turn rate in a plane parallel to the ground i.e., during manoeuver

the hight of the vehicle remains constant. If the turn rate is a known constant,

the process model remains linear. However, the constant and known turn rate

which needs to be estimated forces the process model to a set of nonlinear

equations. The equation of motion of an object in a plane (X;Y ) following

a coordinated turn model can be described with

Ẍ = −ΩẎ ,

Ÿ = ΩẊ ,

Ω̇ = 0,
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where X and Y represent respectively the positions in theX and Y directions.

Ω is the angular rate, which is a constant. The state space representation of

the above equations is

Ẋ = AX +W ,

where X is a state vector defined as X = [X Ẋ Y Ẏ ]⊤. The process

noise is added to incorporate the uncertainties in the process equation that

arise due to wind speed, variation in turn rate, change in velocity, etc. The

target dynamics are discretised to obtain the discrete process equation

X (k + 1) = FX (k) +W(k),

where

F =

⎡

⎢⎢⎢⎣

1 sin(ΩT )
Ω 0 1−cos(ΩT )

Ω

0 cos(ΩT ) 0 − sin(ΩT )

0 1−cos(ΩT )
Ω 1 sin(ΩT )

Ω

0 sin(ΩT ) 0 cos(ΩT )

⎤

⎥⎥⎥⎦

Measurement model

In general, the nonlinear measurement equation can be written as

Z(k) = γ(X (k)) + V(k).

In this problem, we assume both the range and the bearing angle are available

from measurements, so the nonlinear function γ(.) becomes

γ(X (k)) =

[ √
X 2(k) + Y2(k)

atan2(Y(k),X (k))

]
+ V(k),

where atan2 is the four quadrant inverse tangent function. Both W(k) and

V(k) are white Gaussian noises of zero mean and Q and R covariances re-

spectively and T is sampling time. The process noise covariance Q, is given

by

Q = q

⎡

⎢⎢⎢⎣

T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T

⎤

⎥⎥⎥⎦
,
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where T = 0.5 seconds, Ω = −3◦/s and q is some constant given as q = 0.1.

R = diag([σ2
rσ

2
t ]), where σr = 120m and σt =

√
70mrad.

• Initialization

The truth state is initialized with X (0) = [1000m 30m/s 1000m 0m/s]⊤.

The initial estimate X̂ (0) is generated from a Gaussian distribution of mean

X (0) and covariance P (0) = diag([200m2 20m2/s2 200m2 20m2/s2]), re-

spectively.

Figure 2.1: Comparison between true state and particle filters estimate for

the first state.
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Figure 2.2: Comparison between true state and particle filters estimate for

the second state.
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We carried out 50 independent simulations. The steps in sth simulation

are as follows.

1. A dataset was generated with the above, fixed initialization parameters.

2. Particle filter was run with 1000 particles for 100 time steps. Figs. 2.1-

2.4 give the tracking performance of the PF for one of the simulations;

the solid curves denote the actual state and the dashed curves denote

the PF.
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Figure 2.3: Comparison between true state and particle filters estimate for

the third state.
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3. Two different quantities were calculated for each state:

RMSE(s) =

√√√√ 1

100

100∑

k=1

(X (s)(k)− X̂ (s)(k|k))2, s = 1, ..., 50.

and

SEt(k, s) = (X (s)(k)− X̂ (s)(k|k))2.

The first one is the root mean squared error averaged along the entire

sample path for each simulation, whereas SEt(k, s) is squared error at

each time step k, for simulation s.
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Figure 2.4: Comparison between true state and particle filters estimate for

the fourth state.
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After running 50 simulations, the following two quantities are computed for

each state:

AvRMSE =
1

50

50∑

s=1

RMSE(s).

and

RMSEt(k) =

√
1

50

∑

s

SEt(s).
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The results for AvRMSE with each of the state are summarized in Table 2.1.

Figs. 2.5-2.8 give the RMSEt all the four states. It can be seen that the

particle filter tracks the states of this highly nonlinear system quite well.

Table 2.1: AvRMSE for each of the state
X Y Ẋ Ẏ

AvRMSE 14.2715 8.7535 13.8102 8.5276

2.5 Summary

For a particular problem, if the assumptions of the Kalman filter hold, the

Kalman filter will typically outperform other algorithms in terms of filtering

performance. However, in many applications, the assumptions do not hold,

and approximation techniques must be used. PFs and related sequential

Monte Carlo methods provide an alternative class of algorithms for non-

Gaussian and/or nonlinear system which approximates the density directly

as a finite number of samples. A review of particle methods for filtering is

provided. One application was presented to illustrate the performance of

particle filtering algorithms for maneuvering target tracking. However, in

some applications, it is still desirable to use a linearised filter instead of a

PF for a variety of reasons, which may include hardware limitations in terms

of computational time available for filtering at each time step. In the rest

of the thesis, we focus on filters for linear state space systems with additive-

multiplicative noise. In particular, the emphasis will be on dealing with

randomly delayed measurements. We also look at the use of multiplicative

noise as a proxy for the linearisation error. Note that the techniques devel-

oped in chapters 4 and 5 can also be used to generate a proposal density

for a PF designed to deal with systems having random delays and additive-

multiplicative noise, besides being standalone filters which are optimal in a

certain sense in their own right. This strand of work is not developed further
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Figure 2.5: RMSEt for the first state.
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Figure 2.6: RMSEt for the second state.
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Figure 2.7: RMSEt for the third state.
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Figure 2.8: RMSEt for the fourth state.
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Chapter 3

Approximate minimum

variance filter under random

delays I: linear discrete systems

with additive and

multiplicative noise

3.1 Introduction

In this chapter, we start with the problem of latent state estimation for linear

discrete systems with additive-multiplicative noise. The main purpose of this

chapter however, is the development of a new algorithm for discrete time lin-

ear systems with randomly delayed observations and additive-multiplicative

noise. The material presented in this chapter has been published in [56] and

submitted for publication in [57].
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3.2 A minimum variance filter for discrete

time linear systems with parametric un-

certainty

3.2.1 Background

Estimation and filtering in noise is an important problem in many practical

areas, including economics, tracking, weather forecasting, navigation sys-

tems, control and signal processing. The additive noise state space model

has received much attention in the filtering literature (see, for instance, [1],

[10], [11] and [58]). On the other hand, in many practical systems we need to

consider the noise component to be both multiplicative and additive to the

signal component. Compared to the additive noise case, the corresponding

filtering problem for systems with multiplicative noise has received somewhat

less attention. Multiplicative noise has been observed in many applications

in the sciences and engineering, such as signal processing systems, chemistry,

economics, biological movement and ecology; see [59], [60], [61], [62] and the

references therein. A separate strand of research on the filtering problem

for linear discrete time systems with multiplicative noise has also received

a great deal of attention recently, since this kind of formulation has found

many applications in the sciences and engineering. Examples of such sys-

tems are encountered in Doppler radar signal processing (see [63]), speech

processing in signal-dependent noise [64], optical imaging under speckle or

scintillation condition [65], sonar [66], synthetic aperture radar image pro-

cessing [67], transmission of signals over fading channels [68] and mechanical

vibrations [69] and [70]), where the multiplicative noise is mainly caused by

nonlinearities in the observed system. In fact, [71] and [72] advocate using

norm-bounded multiplicative uncertainty to model linearisation errors. The

second-order statistics of the multiplicative noise, in contrast to the case of

the additive noise, is unknown a priori, as it depends on the real state of

the system. However, a multiplicative noise model can be used to model the
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stochastic uncertainty in the system parameters which are estimated from

data, and a demonstration of this fact is one of the contributions in the

chapter. In an EKF, multiplicative noise can act as a proxy for neglected

higher-order terms in Taylor series (since, unlike additive noise, it does de-

pend on the state). For systems subject to multiplicative noise, different

kinds of methods have been introduced for the discrete time models. This

includes a filtering algorithm which uses linear matrix inequalities to guar-

antee that the covariance error is bounded from above by a specified posi-

tive definite matrix (see [73]), an optimal filter within a class of polynomial

transformations of a fixed degree (see [74]), a linear minimum mean square

estimator (LMMSE) subject to state and measurement multiplicative noises

and Markov jumps in the parameter vector (see [75]), a robust Kalman filter

[76] and a MV linear filter for a class of systems which includes multiplica-

tive noise (see [77]). In [78], a new structure of a linear recursive estimator

minimizing the mean square error is derived for a system with multiplicative

noise in the measurement model. The results in [78] were generalized in [79]

to develop a different structure of a linear recursive estimator for a nonzero

mean signal corrupted by multiplicative noise. In [59] the filtering and control

problem under the H∞ criterion is studied. In [80], a robust finite-horizon

Kalman filter for discrete time varying uncertain system is designed with

both deterministic uncertainties and stochastic uncertainties, with stochas-

tic uncertainties expressed as multiplicative noise.

In the following subsections we consider an extension of Ponomareva and

Date’s work in [77] on filtering in systems with multiplicative noise. Specif-

ically, we extend the results from [77] to propose a complete, closed-form

solution to the MV filtering problem for linear systems with multiplicative

noise in both transition and measurement equations and demonstrate its

performance through numerical simulation experiments. One of the main

contributions of the following subsections is a demonstration of how filtering

under multiplicative noise can act as a proxy for filtering under parame-

43



ter uncertainty, which is characterized as random perturbations of the state

space matrices. A limited amount of work has been done on MV filtering

under parametric uncertainty, although a related robust estimation problem

under parametric uncertainty has recently been addressed in [81]. In the

next subsection a MV filter for discrete time linear systems with parametric

uncertainty is proposed.

3.2.2 System model and problem formulation

The system dynamics under consideration can be described by the following

discrete time equation:

X (k + 1) = AX (k) + B + UwW(k) +G1 diag(X (k))S1(k), (3.1)

while the measurement model is

Y(k) = CX (k) +D + UvV(k) +G2 diag(X (k))S2(k). (3.2)

Here X (k) ∈ Rn is the state vector at time k, Y(k) ∈ Rr is the measurement

vector at time k and A, B, G1, C, D, G2, Uw and Uv are given deterministic

matrices. For a vector Z,M = diag(Z) represents a diagonal matrix with

Mjj = Zj. W(k) ∈ Rn and V(k) ∈ Rr are the process noise and the measure-

ment noise, respectively. The random variables S1(k) ∈ Rn and S2(k) ∈ Rr

represent the multiplicative noise sources. Note that (3.1) and (3.2) contain

both additive and multiplicative noise. We make two assumptions:

1. The noise signals W(k), V(k), S1(k) and S2(k) are zero mean, i.i.d.

random vectors with covariance matrix

E[V(k)V⊤(j)] = { 0 if k ̸= j,

I if k = j,

E[W(k)W⊤(j)] = { 0 if k ̸= j,

I if k = j,

and E[Si(k)S⊤
i (j)] = { 0 if k ̸= j i = 1, 2,

I if k = j i = 1, 2,

and are uncorrelated with each other.
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2. The initial state is a random vector with a known mean and covariance

matrix, E[X (0)] = X̂ (0) and E[(X (0)− X̂ (0))(X (0)− X̂ (0))⊤] = P̄ (0),

respectively. X (0), W(k), V(k), S1(k) and S2(k) are mutually indepen-

dent.

Under the above assumptions, note that one may also treat S1(k) and S2(k)

as zero mean random perturbations in the system matrices A and C, which

have the covariance matrices G1G⊤
1 and G2G⊤

2 respectively. This can be seen

by re-arranging (3.1) and (3.2) as

X (k + 1) = (A+G1diag(S1(k)))X (k) + B + UwW(k), (3.3)

Y(k) = (C +G2diag(S2(k)))X (k) +D + UvV(k). (3.4)

Later, we use this interpretation of multiplicative noise as stochastic pertur-

bations in parameters in one of the numerical experiments in section 4.2.3.

Remark 1. Since the system (3.1)-(3.2) contains multiplicative noise, it is

non-Gaussian. The exact conditional mean (which minimizes the conditional

variance) is no linear in the past measurement. Hence our filtering algorithm

(which minimizes the conditional variance over the set of filters which are

linear in the current measurement) is an approximate MV filter.

Assume that the observations up to time k are given and that the condi-

tional mean of X (k) given Y(k), X̂ (k|k), is available. From this value, the

approximated conditional mean of X (k + 1), which provides the predictor

X̂ (k + 1|k), is derived using (3.1):

X̂ (k + 1|k) = AX̂ (k|k) + B. (3.5)

The predictor X̂ (k+1|k) must now be updated with the information provided

by the new measurement Y(k+ 1) to obtain the filter. The update equation

for a linear filter is

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K̄(k + 1)(Y(k + 1)− Ŷ(k + 1|k)), (3.6)
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where K̄(k+1) is the filter gain and Ŷ(k+1|k) is a one step ahead prediction

of Y(k + 1). The estimation error covariance matrix is given by

P̄ (k + 1|k + 1) = E[Φ(k + 1)Φ(k + 1)⊤], (3.7)

where Φ(k) := X (k+1)−X̂ (k+1|k+1). Before presenting the main result in

this section, we first introduce the following useful lemma. In the subsequent

discussion, vec(f(xj)) denotes a vector with f(xj) as its jth element.

Lemma 1. The second order moment of diag(X (k)) is given as follows:

q(k|k) = diag (vec(Pjj(k|k)) + (X̂ (k|k))2), (3.8)

where q(k|k) = E[ diag(X (k)) diag(X (k))⊤].

Proof

q(k|k) = E[ diag(X (k)) diag(X (k))⊤] = E[( diagX (k))2]. (3.9)

On the other hand, based on the definition of the covariance matrix we have

diag (vec(P̄jj(k|k))) = E[( diag(X (k)− X̂ (k|k)))2]
= E[( diagX (k))2]− 2E[ diagX (k)] diagX̂ (k|k) + ( diag(X̂ (k|k)))2

= E[( diag(X (k)))2]− 2 diagX̂ (k|k) diagX̂ (k|k) + ( diag(X̂ (k|k)))2

= E[( diag(X (k)))2]− ( diag(X̂ (k|k)))2,
(3.10)

then

E[( diagX (k))2] = diag (vec(Pjj(k|k)) + (X̂ (k|k))2), (3.11)

and by substituting (3.11) in (3.9), the proof of (3.8) can be completed.

Our objective is to find a filter gain K̄(k + 1) that would minimize the

trace of the estimation error covariance matrix P̄ (k + 1|k + 1) of the state

estimate X̂ (k + 1|k + 1) and obtain an expression for the filter. Our main

result in this section, which is an extension of the corresponding result from

[77], is given in the next theorem.
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Theorem 1. For system (3.1)-(3.2) with assumptions 1-2, the filter gain

K̄(k + 1) that minimizes the trace of the covariance P̄ (k + 1|k + 1) is given

by

K̄(k + 1) = P̄ (k + 1|k)C⊤[CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k|k)G⊤

2 ]
−1,

(3.12)

where q(k|k) is as defined in equation (3.8) and

P̄ (k + 1|k) = AP̄ (k|k)A⊤ + UwU
⊤
w +G1q(k|k)G⊤

1 , (3.13)

P̄ (k|k) = P̄ (k|k − 1) + K̄(k)(CP̄ (k|k − 1)C⊤ + UvU
⊤
v +

G2q(k|k − 1)G⊤
2 )K̄(k)⊤ − P̄ (k|k − 1)C⊤K̄(k)⊤ − K̄(k)CP̄ (k|k − 1),

(3.14)

Proof : See Appendix.

Several comments on this result are in order.

• P̄ (k + 1|k) in (3.13) is linear in q(k|k), which in turn is nonlinear in

Y(k). This means that K̄(k + 1) is a nonlinear function of Y(k).

• If G2 = 0, our filter reduces to a special case of the filter with state

multiplicative noise only, which has previously been discussed in [77],

with γ = 1 in the authors’ notation in that paper. If, in addition,

G1 = 0 i.e., if there is no multiplicative noise either in the transition

equation or in the measurement equation, our filter reduces to the

Kalman filter for the linear additive noise case.

• Note that, under fairly general conditions, the Kalman filter described

in chapter 2 (equations (2.11)-(2.17)) converges to a constant gain ma-

trix as k → ∞ (see, e.g. [1]). In the case of bilinear systems, no such

convergence results are available (see, e.g. [71]-[80]). In fact, noting as

above that P̄ (k+1|k) is a function of q(k) and hence of Y(k), K̄(k+1)

cannot converge to a time-invariant matrix.
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3.2.3 Numerical examples

We consider two numerical examples in this section. In both cases, the pa-

rameters of the state space model under consideration are estimated from

real data in the literature. The purpose of these examples is to demonstrate

how one can use the information about randomness in the parameters esti-

mated from data (e.g., in terms of the asymptotic variance of the parameter

estimates) to design a filter which minimizes the variance relative to the

additive noise as well as the noise introduced by parameter uncertainty.

Example 1

In this example, we consider a two-factor extension of the Vasicek interest

rate model [82]. The treatment below and the estimated parameter values

are from [83], although the model has been treated quite extensively in the

econometric and financial literature; see, e.g., [84] and [85] for empirical

studies, among others. The key assumption of the two-factor Vasicek model

is that instantaneously compounded interest rate (or the short rate) given by

the sum of two state variables, each of them following an Ornstein-Uhlenbeck

process. Let us consider two independent state variables that follow linear,

mean reverting Gaussian process under the risk neutral measure Q

X (t) = X1(t) + X2(t),

dXi(t) = κi(θi − Xi(t))dt+ σidWi(t) Xi(0) = Xi0 i = 1, 2, (3.15)

where Xi0, κi, θi and σi are positive constants, and Wi(k) are uncorrelated

Q-Wiener processes. Each Xi(k) conditional to Fs is normally distributed

with mean and variance:

E[Xi(t)|Fs] = Xi(s)e
−κi(t−s) + θi(1− e−κi(t−s)) (3.16)

V ar[Xi(t)|Fs] =
σ2
i

2κi
(1− e−2κi(t−s)) (3.17)
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We discretize the two equations (3.16) and (3.17) considering evenly spaced

observation times t1 ≤ t2 ≤ · · · ≤ tN where tn+1−tn = ∆t. So, the transition

equation in the state space formulation of this model is expressed as follows:
[
X1(k + 1)

X2(k + 1)

]
=

[
e−κ1∆t 0

0 e−κ2∆t

]

︸ ︷︷ ︸
A

[
X1(k)

X2(k)

]
+

[
θ1(1− e−κ1∆t)

θ2(1− e−κ2∆t)

]
+

[
W1(k + 1)

W2(k + 1)

]
,

(3.18)

where W(k + 1) =
[
W1(k + 1) W2(k + 1)

]⊤
∼N (0,W ), with

W =

[
σ2
1

2κ1
(1− e−2κ1∆t) 0

0 σ2
2

2κ2
(1− e−2κ2∆t)

]
,

This discretisation preserves the exact conditional mean E[Xi(t)|Ft] and the

exact conditional variance V ar[Xi(t)|Fs]. When the sort rate follows the

stochastic process given by (3.14), zero coupon bond price at time t, for a

bond which matures at time T > t is given in the following analytical form:

P (t, T,X1(t),X2(t)) = E(e−
∫ T
t Xsds) = eE(t,T )−F1(t,T )X1(t)−F2(t,T )X2(t),

where

E(t, T ) =
2∑

i=1

(κ2i (θi − σiλi
κi

)− σ2
i
2 )(Fi(t, T )− (T − t))

κ2i
− σ2

i F
2
i (t, T )

4κi
,

and

Fi(t, T ) =
1

κi
(1− e−κi(T−t)), i = 1, 2.

where λi is the market price of risk for the ith factor. The measurement

system we used involves the following relationship between zero-coupon yields

and the price of zero-coupon bonds:

Y(t, T ) =
−E(t, T ) +

∑2
i=1 Fi(t, T )Xi(t)

T − t
(3.19)
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In other words,

P (t, T,X1(t),X2(t)) = exp(−y(t, T )(T − t)).

Using equation (3.19) at each tn, for a set of m bonds with maturities

T1, ..., Tm leads to the following vector valued equation:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y(tk, T1)

Y(tk, T2)

.

.

.

Y1(tk, Tm)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(tk,T1)
T1−tk

F2(tk,T1)
T1−tk

F1(tk,T2)
T2−tk

F2(tk,T2)
T2−tk

. .

. .

. .
F1(tk,Tm)
Tm−tk

F2(tk,Tm)
Tm−tk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

[
X1(k)

X2(k)

]

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1(tk,T1)
T1−tk

−E1(tk,T2)
T2−tk

.

.

.

−E1(tk,Tm)
Tm−tk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1(k)

V2(k)

.

.

.

Vm(k)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Here, κi, σi, λi and θi, i = 1, 2 are model parameters. For the example

from [83] considered here, m = 6. Vi(k) ∼ N (0, H) are noise variables with

H = diag(h2
1, h

2
2, ..., h

2
m), where hi are positive constants. In practice, equa-

tion (3.18) is the two-factor short rate model, while each Y(tk, Ti) denotes

the yield at time tk for maturity Ti. The parameters used in our simulation

are the same as those estimated from the real data in [83]. These are listed

in Table 3.1; see [83] for the exact details of the data set, parameter esti-

mation procedure, etc. As the parameters are obtained from data, one has

an estimate of the standard error in each parameter. We consider a small,

zero mean, normally distributed perturbation in the nominal values of κ1
and κ2, with a standard deviation of β = 5% of the nominal value of each

of the two parameters. Matrices G1 and G2 are then computed to reflect
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the element-wise uncertainties introduced in matrices A and C respectively,

using Monte Carlo simulation. This experiment is then repeated for changed

standard deviations of β = 10% and β = 15% of the nominal values for both

parameters.

The initial conditions as in [83] are used:

X (0) =
[
0.015 0.025

]⊤
, X̂ (0) =

[
0.02 0.02

]⊤
and P (0) = 5×10−3

[
1 0

0 1

]
.

Table 3.1: Estimated parameters for Vasicek model [83]

Parameters κ1 θ1 σ1 λ1 κ2

Values 0.7030 0.0056 0.0321 -0.4591 0.0255

Parameters θ2 σ2 λ2 h1 h2

Values 0.0035 0.0142 -0.2652 0.0009 0.0012

Parameters h3 h4 h5 h6

Values 0.0013 0.0007 0.0009 0.0010

Our goal in this section is to see whether a small uncertainty or a small

random perturbation in the parameter values has an impact on the filter ring

performance. We will compare the Kalman filter (KF) (which ignores the

parameter uncertainty) and the filter in [77] (which ignores the measurement

multiplicative noise) with the filter proposed in this section (called MKF in

the tables in this section), which encapsulates the parameter uncertainty in

terms of multiplicative noise via G1 and G2 matrices. In order to compare the

performance of the estimators, we use the root mean square error (RMSE)

criterion. Consider 100 independent simulations, each with 200 data points.

Denoting X (s)(k), k = 1, ..., 200 as the sth set of true values of the state,

and X̂ (s)(k|k) as the filtered state estimate at time k for the sth simulation
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run, the RMSE of the filter for each of the algorithms is calculated by

RMSEi(s) =

√√√√ 1

200

200∑

k=1

(X (s)
i (k)− X̂ (s)

i (k|k))2,

i = 1, 2, s = 1, ..., 100.

Then, the average of RMSE for each of the states over 100 simulations is

given by

AvRMSEi =
1

100

100∑

s=1

RMSEi(s), i = 1, 2.

The results for the three different levels of perturbations, β = 5%, β =

10% and β = 15%, are summarised in Table 3.2. Recall that each of the

parameters κ1 and κ2 are perturbed by normally distributed random noise

with zero mean and a standard deviation equal to β times their respective

nominal values to generate G1, G2 matrices in the state space equations

using Monte Carlo simulation. As can be seen, the modified filter, i.e. the

MKF has a significantly smaller AvRMSE than the KF and the filter in

[77] for both states and for all three levels of parameter perturbations, since

the parameter uncertainties are not taken into account in the KF and the

measurement multiplicative noise is not taken into account in [77].

Example 2

As another example with parameters estimated from real data, consider a

discrete-time system (3.1)-(3.2) with the following parameter specification:

A = ρ

[
cos(λ) sin(λ)

sin(λ) cos(λ)

]
, C =

[
1 1

]
, B = 0, D = 0

where U2
w = 214 and U2

v = 1593. ρ and λ are random variables with means

ρ̂ = 0.4 and λ̂ = 0.41. The dynamics and the chosen parameter values (with

G1 = 0 and G2 = 0) are used in ([86], chapter 2) as a time series model
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Table 3.2: Comparison of AvRMSE1 and AvRMSE2 for KF , filter in [77]

and MKF for different levels of perturbations β
Level of perturbations β = 0.05 β = 0.10 β = 0.15

AvRMSE1 × 10−2 KF 137.0532 137.0534 137.0536

Filter in [77] 136.9530 136.9531 136.9533

MKF 136.4515 135.9493 135.3313

AvRMSE2 × 10−2 KF 108.1107 108.1108 108.1109

Filter in [77] 107.9105 107.9106 107.9107

MKF 107.5329 107.0198 106.9983

of rainfall in north-east Brazil. As in the previous subsection, we allocate

normally distributed random perturbations to λ and ρ with zero mean and

β times the nominal values as the standard deviation. Three different values

of β are used, as in the previous case: β = 5%, β = 10% and β = 15%. The

perturbation matrix G1 is computed in each case via Monte Carlo simula-

tion. G2 in this case is zero since there is no uncertainty in C =
[
1 1

]
. The

initial conditions are

X (0) =
[
0 1

]⊤
, X̂ (0) =

[
0 0

]⊤
and P (0) =

[
1 0

0 1

]
.

Similar to the previous subsection, the RMSE of the filter for each of the

two algorithms is calculated by

RMSE(s) =

√√√√ 1

200

200∑

k=1

(
2∑

i=1

X (s)
i (k)−

2∑

i=1

X̂ (s)
i (k|k))2,

s = 1, ..., 100.

Note that the error in this case is the difference between the true rainfall

generated by the model and the filtered estimate of rainfall. The average of
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RMSE over 100 simulations is given by

AvRMSE =
1

100

100∑

s=1

RMSE(s).

Table 3.3 summarises the results of this numerical experiments. As can be

seen, the proposed filtering algorithm clearly outperforms the KF, which

ignores the parameter uncertainties. This is in keeping with the theoretical

results in [77].

Table 3.3: Comparison of AvRMSE for KF and MKF for different levels

of perturbations β
Level of perturbations β = 0.05 β = 0.10 β = 0.15

AvRMSE KF 6.3097 6.3697 6.5014

MKF 5.8086 5.4468 5.0106

3.3 A minimum variance filter for discrete

time linear systems with randomly de-

layed observations and additive and mul-

tiplicative noise

3.3.1 Background

Most traditional discrete time filter design approaches depend on the as-

sumption that the measurements generated by the system at each time step

contain information about the state of the system at that time step. However,

random delays may affect the arrival of measurements in various practical

situations. This occurs widely, for instance, when a sensor is connected to

the estimator through a network with limited bandwidth. Let us consider

that an unmanned air vehicle (UAV) is controlled by an operator through
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a communication network with a remote sensor. The operator should know

the UAV’s state in order to control its motion. However, if the information

sent by the sensor reaches the operating terminal after a random time delay,

the location of the UAV may be incorrectly estimated and this may lead

to a hazardous situation. This example demonstrates the need for dealing

specifically with random delays when designing a filter.

In networked systems as well, due to their limited carrying capacity

and bandwidth, unavoidable uncertainties of communication networks such

as packet dropouts, random delays and missing measurements estimation

performance may be affected. Accordingly, filtering problems for network-

induced phenomena such as packet dropouts, measurements delays and miss-

ing measurements have been proposed. For systems with packet dropouts, a

large number of filter design algorithms have been investigated in the litera-

ture (see, e.g., [87], [88], [89], [90], [91] and references therein). Some system

measurements may contain noise only at certain time points so that the true

signals are simply missing. As such the filtering problems with missing mea-

surements have received considerable research attention and many important

results have been reported in recent years (see, e.g., [92], [93], [94], [95] and

[96]).

In recent years, several studies have focused on the estimation of the

state of discrete-time linear systems with randomly delayed observations (see,

e.g.,[97] and [98]). These models have received considerable research atten-

tion, and many important results have been reported in the literature. Linear

filtering for discrete time systems with finite random measurement delays is

investigated in [99]. In [100], an optimal filtering problem for networked

systems with random transmission delays is investigated using a multi-state

Markov chain model for the delay process. Centralized fusion filters are de-

signed in [101] for linear systems with multiple sensors with different delay

rates. In [102], a modification of the minimum variance state estimator is
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employed to accommodate the effects of random delays in sensor data arrival

at the controller terminal. Robust filtering problems with random delays

are investigated in [103]. The linear unbiased estimator is studied in [104],

where the one-step sensor delay is described as a binary white noise sequence.

Furthermore, many researchers have investigated these problems under dif-

ferent assumptions about the possible delays and different filtering approxi-

mations. As an example, when the random delay was characterised by a set

of Bernoulli variables, the linear quadratic filter and fixed-point smoother

from randomly delayed observations have been proposed in [105, 106] using

covariance information about the state and the observations. The finite hori-

zon optimal filter, predictor and smoother are given by innovation analysis

method [107]. The proposed estimators are derived by applying the innova-

tion approach and do not require the knowledge of the state-space model;

they use as information the second-order moments of the processes involved

and the probability of delay in the observations. The filtering problem has

been investigated when time delays are unknown in [108] by augmenting the

system and then applying the Kalman filter.

However, multiplicative noise (or any other state-dependent noises) are

not taken into account in the above papers and only additive noise is con-

sidered in the state transition equation. Multiplicative noise is often char-

acterised as signal dependent. This kind of noise accounts for disturbances

in known signals with unknown parameters, as well as random signals with

Gaussian or non-Gaussian additive noise. However, the literature on filtering

problems arising from delayed observations as well as multiplicative noise is

far less extensive. In [109], the problem of a single random delay in each of the

sensor measurements is studied. Multiple random delays may occur in many

applications, and a study of multiple random delay systems under possibly

parametric uncertainty in the state space models (modelled as multiplicative

noise) is clearly worthy of further investigation. The optimal Kalman filter

contaminated with multiplicative noises and randomly occurring two-step
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sensor delays is designed in [110]. Recently, the centralized and distributed

fusion estimation problems for discrete-time system with random parameter

matrices and subject to random delays and packet dropouts is investigated

in [111]. The quantised filtering problem for a class of nonlinear time-varying

systems subject to multiplicative noise and missing measurements is investi-

gated in [112], the measurement multiplicative noise is also considered in this

paper, and an upper bound on the covariance matrix is minimized by the

designed filter. The optimal linear estimators for networked control system

with uncertainties, multiple sensors and packet losses are derived in [113]. In

[114], an innovation analysis approach is employed for filtering in a discrete-

time stochastic system with multiple sensors subject to multiplicative noise

and missing measurements. In [115], the MV estimation has been devel-

oped for linear discrete time-varying subject to bounded uncertainty when

the packet are with and without time-stamp. Recently, the same problem is

considered with correlated noises; see e.g., [116, 117, 118, 119] and [120].

Motivated by the above discussions, a new algorithm for approximate

MV filtering in the presence of both additive and multiplicative noise, when

the measurements are randomly delayed is proposed in this section. A mul-

tiplicative noise term is considered in both the process and the measure-

ment equations to deal with stochastic uncertainty which arises out of either

linearisation errors or parametric uncertainty. The observation delays are

described by mutually independent random variables where the number of

samples which the observation is delayed is uncertain. A complete closed-

form solution to the delayed filtering problem for this class of systems is

designed such that the filter gain minimizes the trace of covariance of the es-

timation error. The minimization is over a set of filters which have a Kalman

filter-like structure, i.e., the filter is linear in the current measurement, al-

though it is a nonlinear function of past measurements. We demonstrate

our results through numerical examples, that also extend our interpretation

of multiplicative uncertainty as stochastic uncertainty in parameters, which
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was recently suggested in [56], to the case with random delays.

3.3.2 System model and problem formulation

The system dynamics under consideration can be described by (3.1) while

the measurement model is as (3.2). In addition, A is assumed to be a full

rank matrix.

One-step randomly delayed observation

To describe the situation when there is at most one random delay at each

sample time, we use a sequence of independent Bernoulli random variables

whose probabilities are known only to the model whether the measurement

arriving at each sample time is delayed or not. At each measurement time k,

there is a Bernoulli random variable pk indicating whether the measurement

is delayed or not. pk = 0 and pk = 1 represent the cases when the measure-

ment is up to date and it is delayed by one sampling period, respectively. If

the delay is not random and Y(k) depends on X (k − j) for a fixed j, note

that the problem is much simpler.

It is assumed that, at k = 1, Y(1) is available for state estimation. At

each time k > 1, the observation may either be delayed randomly by one

sampling period or may be updated. The probability of update is denoted

by β, so the probability of delay is 1− β. Thus the observation available at

time k > 1 can be described as follows:

Z(k) = Y(k), with probability β,

Z(k) = Y(k − 1), with probability (1− β).
(3.20)

We further assume that the observation delay at sample time k is inde-

pendent of all other sources of randomness in the system, viz, the delays

at other sample times j ̸= k, the initial state X (0) and other noise sources

(W(k), V(k), S1(k) and S2(k)).
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The one step randomly delayed measurement equation (alternatively re-

ferred to as ”received measurement”) can now be written as:

Z(k) = (1− pk)Y(k) + pkY(k − 1),

P(pk = 0) = β,

P(pk = 1) = 1− β = E(pk),
E[(pk − (1− β))2] = β(1− β).

(3.21)

pk = 0 implies that the current measurement has arrived (i.e., the mea-

surement is up to date), while pk = 1 means that the measurement at the

previous time step has arrived (i.e., the measurement is delayed by one step).

Here, 0 ≤ β ≤ 1 represents the probability of no delay in measurement. Us-

ing (3.21) we can write our one step ahead prediction of Z(k) in terms of the

past predictions of Ŷ(k − i|k − 1), i = 0, 1 as

Ẑ(k|k − 1) = β ˆY(k|k − 1) + (1− β)Ŷ(k − 1|k − 1) (3.22)

Putting (3.1), (3.2) and (3.21) together, we have

X (k + 1) = AX (k) + B + UwW(k) +G1 diag(X (k))S1(k),

Y(k) = CX (k) +D + UvV(k) +G2 diag(X (k))S2(k),

Z(k) = (1− pk)Y(k) + pkY(k − 1). (3.23)

To derive the recursive filtering equations, it is assumed that the obser-

vations are given up to time k and that the conditional mean of X (k) given

Z(k), X̂ (k|k), is available. From this value, the conditional mean of X (k+1),

which provides the predictor, X̂ (k + 1|k), is derived using (3.1):

X̂ (k + 1|k) = AX̂ (k|k) + B. (3.24)

The predicted estimate X̂ (k+1|k) needs to be updated with the informa-

tion provided by Z(k+1) in order to obtain the filtered estimate. When the

measurements may be randomly delayed by one sampling time, the update

equation for a linear filter using one step randomly delayed measurement is

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K̄(k + 1)(Z(k + 1)− Ẑ(k + 1|k)), (3.25)
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where K̄(k+1) is the filter gain and Ẑ(k+1|k) is a one step ahead prediction

of Z(k+1) defined in (3.22). The estimation error covariance matrix of the

state estimate X̂ (k + 1|k + 1) is given by

P̄ (k + 1|k + 1) = E[Φ(k + 1)Φ(k + 1)⊤], (3.26)

where Φ(k) := X (k + 1)− X̂ (k + 1|k + 1).

The objective of this section is to find the filter gain K̄(k+1) in (3.25) that

minimizes the trace of the estimation error covariance matrix P̄ (k+1|k+1)

of the state estimate X̂ (k+1|k+1). Our main result in this section is given

in the next theorem.

Theorem 2. For system (3.23) with assumptions 1-2, the filter gain K̄(k+1)

that minimizes the trace of the estimation error covariance matrix P̄ (k+1|k+
1) is given by

K̄(k + 1) = (βP̄ (k + 1|k) + (1− β)AP̄ (k|k))C⊤[β(UvU
⊤
v + CP̄ (k + 1|k)C⊤

+G2q(k + 1|k)G⊤
2 ) + (1− β)(CP̄ (k|k)C⊤ + UvU

⊤
v +G2q(k|k)G⊤

2 )+

β(1− β)(ψ̃0(k + 1) + ψ̃1(k + 1))− β(1− β)(ψ0(k + 1)ψ1(k + 1)⊤

+ ψ1(k + 1)ψ0(k + 1)⊤)]−1, (3.27)

where P̄ (k + 1|k) = AP̄ (k|k)A⊤ + UwU
⊤
w +G1q(k|k)G⊤

1 ,

Ŷ(k + 1− i|k) = CX̂ (k + 1− i|k) +D =: ψi(k + 1),

ψ̃i(k + 1) = ψi(k + 1)ψi(k + 1)⊤, i = 0, 1, (3.28)

and q(k|k) is as defined in equation (3.8) and P̄ (k|k) is as defined in equa-

tion (A.13) in the Appendix.

Proof : See Appendix.
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Remark 2. If β = 1, i.e., if there is no random delay, our result reduces to

the filter derived in [56]. If, in addition to β = 1, we have G2 = 0, i.e., if there

is no multiplicative noise in the measurement equations, our result reduces to

a special case of the filter derived in [77], with γ = 1 in the authors’ notation

in that paper. If, in addition to β = 1, we have G1 = G2 = 0, i.e., if there is

no multiplicative noise, our filter reduces to the Kalman filter for the linear

additive noise case.

Remark 3. We are seeking to minimize the variance over a set of filters

where the additive correction term to the prediction is linear in the cur-

rent measurement. We are not minimizing variance in the sense of finding

E(X (k)|Z(k)), which would mean having a very general (nonlinear) function

of past and present values of Z.

After describing the result for a single random delay case, we move on in

the next section to a more general case where there might be up to N > 1

random delays at each time k, where N is an arbitrary but fixed integer.

Measurement with up to N random delays

We consider up toN consecutive delayed measurements. To account for these

delays, we consider N i.i.d. Bernoulli random variables, pik, i = 1, 2, · · · , N ,

with possible values 0 or 1 as before. As in the previous section, it is assumed

that Y(1) is available at time k = 1 for state estimation. At each time

k > 1 the observation is either delayed by one or more sampling periods or

is updated. Specifically, the measurement at time k + 1 can be described as

follows:

Z(k + 1) = (1− p1k+1)Y(k + 1) + p1k+1(1− p2k+1)Y(k) + p1k+1p
2
k+1(1− p3k+1)Y(k − 1)

+ · · ·+ (
N−1∏

i=1

pik+1)(1− pNk+1)Y(k + 1−N + 1) + (
N∏

i=0

pik+1)Y(k −N + 1),

=
N−1∑

i=0

(
i∏

j=0

pjk+1)(1− pi+1
k+1)Y(k + 1− i) + (

N∏

i=0

pik+1)Y(k −N + 1), (3.29)
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with p0k+1 := 1. As a check, the same result is obtained for N = 1 as in the

previous section. The proposed novel multiplicative structure of Bernoulli

random variables ensures that only one measurement (current or delayed) is

available at any time k+1, even though pik+1 are assumed to be independent

of each other.

Remark 4. Using E(pik+1) = 1 − β for i = 1, 2, . . . , N and using the fact

that pik+1 are independent both from each other and from the measurement

noise, we can easily obtain the following:

p̂ik = E
(

i∏

j=0

pjk+1(1− pi+1
k+1)

)2

= β(1− β)i,

p̂Nk = E
(

N∏

i=0

pik+1

)2

= (1− β)N ,

˜̂p
i

k = E
(

i∏

j=0

pjk+1(1− pi+1
k+1)− β(1− β)i

)2

= β(1− β)i − β2(1− β)2i,

(3.30)

˜̂p
N

k = E
(

N∏

i=0

pik+1 − (1− β)N
)2

= (1− β)N − (1− β)2N . (3.31)

Using Remark 4, we can write our one step ahead prediction of Z(k + 1)

in terms of the past predictions of Ŷ(k + 1− i|k) as

Ẑ(k + 1|k) = βŶ(k + 1|k) + (1− β)βŶ(k|k) + (1− β)2βŶ(k − 1|k)
+ · · ·+ (1− β)N−1βŶ(k −N + 1|k) + (1− β)N Ŷ(k −N + 1|k)

= β
N−1∑

i=0

(1− β)iŶ(k + 1− i|k) + (1− β)N Ŷ(k −N + 1|k).

(3.32)
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where Ŷ(k+ i|k) is defined by Ŷ(k+ i|k) = CX̂ (k+ i|k)+D. For the current

set-up, the update equation for a linear filter using N steps randomly delayed

measurement is

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K̄(k + 1)(Z(k + 1)− Ẑ(k + 1|k)), (3.33)

where X̂ (k + 1|k) is as defined in (3.24). Denoting the estimation error

covariance matrix by P̄ (k + 1|k + 1) as before, the expectation of terms

of the form X (k − N)X⊤(k) appears in P̄ (k + 1|k + 1). To evaluate this

expectation, the following result is useful.

Lemma 2. According to (3.1), the relationship between X (k) and X (k−N)

is

X (k −N) = A−N(X (k)−B − UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1))+
N−1∑

i=1

A−(N−i)(−B − UwW(k − (i+ 1))−G1 diag(X (k − (i+ 1)))S1(k − (i+ 1))),

N > 1. (3.34)

Note: X (k− i), i = 1, . . . , N−1, appearing on both sides of the equation

here will not pose a problem in forming the expectation above since S1(k) is

a zero mean. i.i.d. sequence.

Before presenting the main result in this section, we first introduce the fol-

lowing useful lemma.

Lemma 3. The second order moment of diag(X (k − i)) is given as follows:

q(k − i|k) = diag (vec(Pjj(k − i|k)) + (X̂ (k − i|k))2), (3.35)

where q(k − i|k) = E[ diag(X (k − i)) diag(X (k − i))⊤],
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X̂ (k − i|k) = X̂ (k − i|k − 1) + L(k − i)(Z(k + 1)− Ẑ(k + 1|k − 1)),

P̄ (k − i|k) = P̄ (k − i|k − 1) + L(k − i)χ(k − 1)L(k − i)−
ζ(k − i|k − 1)L(k − i)⊤ − L(k − i)ζ(k − i|k − 1)⊤,

L(k − i) = ζ(k − i|k − 1)⊤χ(k − 1)−1,

ζ(k − i|k − 1) =
N−1∑

i=0

β(1− β)i(A−iP̄ (k|k − 1)(A−i+1)⊤ −
i−1∑

j=0

A−(i−j)(UmU
⊤
m+

q(k − (j + 1)|k − 1)))(A−(i−j)+1))⊤ + (1− β)(A−iP̄ (k|k − 1)(A−N+1)⊤−
N−1∑

j=0

A−(N−j)(UmU
⊤
m + q(k − (j + 1)|k − 1)))(A−(N−j)+1))⊤), (3.36)

and χ(k − 1) is as defined in equation (A.29) in the Appendix.

Proof : is on the same lines as Lemma 1.

We will derive an expression for K̄(k + 1) which minimizes the trace of

P̄ (k + 1|k + 1). For this purpose, we assume that the i step ahead pre-

dictions Ŷ(k + 1 − i|k) obtained by using the MV filter are unbiased, i.e.

E[Ŷ(k + 1 − i|k)] = Y(k + 1 − i). Note that this assumption is implicit in

approximate nonlinear filters for systems with delays, such as [121]. Under

this assumption, we have the following result:

Theorem 3. In the case when the measurement is randomly delayed by up

to N time steps where N > 1, the filter gain K̄(k + 1) that would minimize
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the trace of the estimation error covariance matrix P̄ (k+1|k+1) is given by

K̄(k + 1) = (βP̄ (k + 1|k)C⊤ + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i×

(AP̄ (k|k)(A−i+1)⊤C⊤ −
i−2∑

j=0

Aj+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤)

+ (1− β)N(AP̄ (k|k)(A−N+1)⊤C⊤ −
N−2∑

i=0

Ai+1(UwU
⊤
w+

G1q(k − (i+ 1)|k)G⊤
1 )(A

−(N−i)+1)⊤C⊤))χ̂(k)−1, (3.37)

where ψi(k+1) = Ŷ(k−i+1|k) as before, q(k−i|k) is as defined in (3.35) and

P̄ (k + 1|k), P̄ (k|k) and ψ̃i(k + 1) are as defined in (A.28) in the Appendix.

χ̂(k) is as defined in equation (A.29) in the Appendix.

Proof : See Appendix.

Remark 5. Note that it is conceptually easy to generalize this algorithm

to a situation where the probabilities of delays for different sample times

differ from one another (see, e.g., [122] for an example with two delays).

We do not do this for two reasons. Firstly, it complicates the notation even

further and formulae considerably without adding much value. Secondly and

more importantly, the parameters representing the delay probabilities are

not easy to identify from data. Identifying a single parameter as a rate of

arrival (e.g., 1 − β missing measurements per 100 sample times) and then

using it as a proxy rate for a Poisson process truncated at N possible delays

seems to be a sensible compromise. In previous research dealing with delays

and multiplicative noise in [112] and [123], note that multiplicative noise is

modelled as a norm bounded uncertainty, which is a fundamentally different

approach from our assumption of treating it as stochastic noise.

In the next section, we demonstrate the application of this algorithm for

both a single random delay and for multiple random delays.
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3.3.3 Numerical examples

Example 1

Consider a linear state space system with additive-multiplicative noise given

by (3.1)-(3.2), with A = −0.5, B = 0, C = 0.45, D = 0, Uw = 0.1, Uv = 0.6,

G1 = 0.1 and G2 = 0. As in section 4.1.3, W(k), V(k), S1(k) and S2(k)

are uncorrelated random variables with E(V(k)) = E(W(k)) = E(S1(k)) =

E(S2(k)) = 0 and E(V(k))2 = E(W(k))2 = E(S1(k))2 = E(S2(k))2 = 1. In

the simulation, we consider two different sets of the initial conditions. The

first set of initial conditions are X (0) = 1, X̂ (0) = 0 and P (0) = 1 (Case

I). The second set of initial conditions are X (0) = 0.1, X̂ (0) = 0.65 and

P (0) = 10 (Case II).

We perform two experiments for this system with different values of β.

Firstly, we consider a situation where the measurement might be delayed by

up to two sample times, that is

Z(k) = (1−p1k)Y(k)+p1k(1−p2k)Y(k−1)+p1kp
2
kY(k−2) k > 1, Y(1) = Z(1).

In order to compare the performance of the estimators, we use the RMSE

criteria. Consider 100 independent simulations, each with 200 data points.

Denoting X (s)(k), k = 1, ..., 200 as the sth set of true values of the state

and X̂ (s)(k|k) as the filtered state estimate at time k for the sth simulation

run, the RMSE of the filter for each of the algorithms is calculated by

RMSE(s) =

√√√√ 1

200

200∑

k=1

(X (s)(k)− X̂ (s)(k|k))2, s = 1, ..., 100.

Then, the average of the RMSE for each of the algorithms over 100 simula-

tions is given by

AvRMSE =
1

100

100∑

s=1

RMSE(s).
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The data to test filtering performance was generated by simulation with two

random delays. We compare the performance of three filters for this data

generating system with two delays: the filter in [77] (i.e., there is no random

delay), a filter designed for a single delay and a filter for two delays. The

results of the MV filter with the filter in [77], one delay and two delays are

represented by DKF0, DKF1 and DKF2, respectively. The rationale behind

comparing these filters is as follows:

1. To my knowledge, my proposed algorithm is the only systematic way

of dealing with random delays under additive-multiplicative noise, so

that it makes sense to compare our proposed algorithm with a delay-

free filter (see [77]) with the same noise description. This justifies the

comparison between DKF0 and DKF2.

2. Further, as we have commented elsewhere, it is not easy to estimate

accurately the maximum number of random delays in the system. It is

therefore of interest to see how the filter performs with an ‘incorrect’

number of delays assumed; in particular, it is of interest to see if DKF1

performs any better than DKF0 when there is a random delay in the

system even if the maximum number of delays exceeds 1.

The AvRMSE values are calculated for these filters with different values of

β. The results are summarized in Table 3.4 for Case I and in Table 3.5 for

Case II. We can see from these tables that, in all the cases, the estimators

which account for delays perform better than the estimator with no delay

proposed in [77]. In particular, the errors for the filter designed for the correct

maximum number of random delays (i.e., DKF2) are the lowest of all the

cases, followed by the errors for DKF1 and the errors for DKF0. The reason

is that the filter in [77] does not use the knowledge of delays. The fact that

DKF1 gives lower errors that DKF0 is non-trivial and indicates that, in the

presence of random delays, even using a possibly incorrect maximum number

of random delays (e.g., assuming a single random delay) may still be better

than ignoring random delays altogether.
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Table 3.4: Comparison of the AvRMSE for different values of β Case I

(Example 1)

β = 0.9 β = 0.7 β = 0.5 β = 0.3

AvRMSE DKF0 0.1152 0.1153 0.1160 0.1175

DKF1 0.1149 0.1150 0.1155 0.1167

DKF2 0.1141 0.1145 0.1149 0.1157

Table 3.5: Comparison of the AvRMSE for different values of β Case II

(Example 1)

β = 0.9 β = 0.7 β = 0.5 β = 0.3

AvRMSE DKF0 0.1156 0.1168 0.1172 0.1188

DKF1 0.1154 0.1159 0.1168 0.1176

DKF2 0.1149 0.1153 0.1164 0.1171

In the second experiment, it is assumed that the observations are ran-

domly delayed by one sampling period:

Z(k) = (1− pk)Y(k) + pkY(k − 1), k > 1, Y(1) = Z(1).

We compare the performance of the proposed algorithm and the algorithm

proposed in [109]. The AvRMSE is calculated for these filters with different

values of β for Case I. The results are summarized in Table 3.6. We can

see from this table that, in all the cases, the proposed algorithm perform

better than the algorithm proposed in [109]. From two experiments, we note

that the AvRMSE becomes smaller as the probability of the on-time arrival

becoming larger which is in keeping with the comments in [119] and [118].

Example 2

Consider again the discrete time system in example 2 of section 3.2.3, which

is repeated here for ease of reference:
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Table 3.6: Comparison of AvRMSE for our filter and filter in [109] for

different values of β Case I (Example 1)

β = 0.9 β = 0.7 β = 0.5 β = 0.3

AvRMSE filter in [109] 0.1195 0.1211 0.1225 0.1245

our filter 0.1180 0.1192 0.1201 0.1231

A = ρ

[
cos(λ) sin(λ)

sin(λ) cos(λ)

]
, B = 0, C =

[
1 1

]
, D = 0,

U2
w = 214, U2

v = 1593 and G2 = 0. ρ and λ are random variables with means

ρ̂ = 0.4 and λ̂ = 0.41. The dynamics and the chosen parameter values (with

G1 = G2 = 0) are used in ([86], chapter 2) as a time series model of rainfall in

north-east Brazil. As the parameters are obtained from data, one usually has

an estimate of the standard error in each parameter. We allocate standard

errors to λ and ρ (as 10% of nominal values) and compute G1 via Monte

Carlo simulation. This is obtained as

G1 =

[
0.2168 0.0001

0.0001 0.6360

]
.

The initial conditions are

X (0) =
[
0 1

]⊤
, X̂ (0) =

[
0 0

]⊤
and P (0) =

[
1 0

0 1

]
.

The AvRMSE for Y(k) = X s
1 (k)+X s

2 (k) in this case is calculated as follows:

RMSE(s) =

√√√√ 1

200

200∑

k=1

((X (s)
1 (k) + X (s)

2 (k))− (X̂ (s)
1 (k|k) + X̂ (s)

2 (k|k))2, s = 1, ..., 100.

Then the average of RMSE for Y(k) = X s
1 (k) + X s

2 (k) over 100 simulations

is given by

AvRMSE =
1

100

100∑

s=1

RMSE(s).
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As before, we perform two experiments for this system with different values

of β. Firstly, we compare the performance of three filters for this data gen-

erating system with two delays: a no delay filter proposed in [77], a filter

designed for a single delay and a filter for two delays. Even though this delay

scenario is not the most realistic, our purpose is to illustrate that the new

filtering algorithm is robust to delays. Table 3.7 provide the errors for vari-

ous values of β with the filter in [77] which accounts for multiplicative noise,

one delay filter and a two delay filter which clearly illustrate the superior

performance of our algorithm. As in the previous example, the results of the

MV filter with the filter in [77], one delay and two delays are represented

by DKF0, DKF1 and DKF2, respectively. As can be seen, the filter with

two delays outperforms the other filters and the filter with a single delay still

outperforms the filter with no delays proposed in [77] for all values of β and

for both measures of error.

Table 3.7: Comparison of AvRMSE for DKF0, DKF1 and DKF2 for dif-

ferent values of β (Example 2)

β = 0.9 β = 0.7 β = 0.5 β = 0.3

AvRMSE DKF0 28.1939 29.0632 29.1362 29.7086

DKF1 27.5920 28.4413 28.4509 28.9511

DKF2 27.3136 28.2516 28.4135 28.7595

In the second experiment, we compare the performance of DKF1 and

DKF2 with the algorithm proposed in [110]. The AvRMSE is calculated for

these filters with different values of β. The results are summarized in Table

3.8. We can see from this table that, in all the cases, the proposed algorithm

(i.e., DKF1 and DKF2) perform better than the algorithm proposed in [110].
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Table 3.8: Comparison of AvRMSE for DKF1 and DKF2 with filter in [110]

for different values of β (Example 2)

β = 0.9 β = 0.7 β = 0.5 β = 0.3

AvRMSE AvMRAE Filter in [110] 27.5880 27.5910 28.3658 28.7343

DKF1 27.2414 27.4738 28.1173 28.4261

Filter in [110] 27.0773 27.4602 28.2203 28.5127

DKF2 27.0695 27.4563 28.1056 28.3414

3.4 Summary

In this chapter a class of discrete time systems with both additive and mul-

tiplicative noise is considered. The optimal MV filter which is linear in the

current measurement is discussed for this class of systems. The closed-form

solution generalizes the results for MV filtering for additive-multiplicative

noise case in [77]. We have also provided an interpretation of filtering un-

der multiplicative noise in terms of filtering under parameter perturbations

in an additive noise model. A new filter has also been considered for state

estimation problems in a class of discrete time systems with both additive

and multiplicative noise when the measurement might be delayed by one or

more sampling times. The filter minimizes the trace of state covariance ma-

trix over a class of filter gain matrices which generalize the Kalman filter

gain in a specific sense. The optimization is carried out on a set of filters

which have a Kalman filter-like structure, although the gain matrix itself

depends on the previous values of (possibly delayed) measurements. The

proposed closed-form solution generalizes the results for MV filtering for the

additive-multiplicative noise case in [56] (which does not treat delays). The

results of this chapter were applied to four different real data experiments for

linear systems with additive-multiplicative noises. The first two numerical

examples illustrate the utility of the proposed algorithm with parameter per-

turbations. Our numerical experiments indicate that the proposed filtering
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algorithm can be used to improve filtering performance as measured by the

estimation error variance when there is uncertainty in the estimated model

parameters. The third and fourth numerical experiments illustrate the util-

ity of the proposed algorithm with additive-multiplicative noises, where the

measurement might be delayed randomly by one and two sample times. Our

numerical experiments indicate that the proposed algorithm outperforms an

implementation which ignores delays for a range of delay probabilities. The

proposed filter can be applied to state estimation of a system in which the es-

timator consists of sensors connected through communication networks and

many real-world applications where measurements are delayed randomly and

there is parametric uncertainty to be accounted for. We have also demon-

strated that using a filter with a single random delay might still be useful

and better than ignoring random delays if the maximum number of random

delays is unknown. Coupled with a local linearisation of any fully nonlin-

ear system, this algorithm has a potential to be a very useful tool in signal

estimation across a wide range of fields where delays are an issue.
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Chapter 4

Approximate minimum

variance filter under random

delays II: linear continuous

discrete systems with additive

and multiplicative noise

4.1 Introduction

In chapter 4 the problem of the latent state estimation for linear discrete

time systems with randomly delayed observations and additive-multiplicative

noise was studied. In this chapter the problem will be considered for con-

tinuous discrete systems. The material presented in this chapter has been

published in [124] and submitted for publication in [125].
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4.2 A minimum variance filter for continuous

discrete systems with additive-multiplicative

noise

4.2.1 Background

The Bayesian filtering framework is a robust filtering framework where the

state dynamics are typically modelled with stochastic differential or differ-

ence equations. In continuous-discrete filtering problems (see, e.g., [126] and

[127]) the process noise is represented in continuous time and the measure-

ment equation is given in discrete time, i.e. the measurements (which are

typically noisy) are available at discrete time instants. The measurement

model in the continuous discrete filter is thus of the same form as in discrete-

time filtering. The measurement frequency may be limited by hardware or

other physical considerations. The major difference between the continuous

discrete filter (henceforth abbreviated as CDF ) and the discrete time filter

(or discrete discrete filter, abbreviated as DDF ) is that, in the DDF ap-

proach, both the state dynamics and the noisy measurements are modelled

as discrete-time processes. Filtering problems where a continuous-time signal

is observed discretely in time have received a great deal of attention, since this

kind of formulation often arises in numerous applications such as GPS and

inertial navigation [128], stochastic control [129], target tracking [130] and

finance [131]. The Bayesian optimal CDF (e.g., [126] and [132]) is the same

as the DDF only when measurements are obtained at discrete time instants,

the posterior density is propagated from one sampling instant to the next by

solving the associated Fokker-Planck equation. In the literature, many con-

ventional filtering algorithms are extended to deal with continuous-discrete

systems. Examples of such algorithms include EKF [126], which approxi-

mates the exact solution by using a Taylor series expansion approximation

to the nonlinear drift function and forms a Gaussian process approximation to

the SDE, PF [133], where a set of weighted particles is used for approximating
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the posterior probability measure and UKF [134], which relies on propagat-

ing a set of points representing a Gaussian density with the correct first two

moments through the system equations. In [135], the extension of the cu-

bature Kalman filter [136] to continuous-discrete filtering using Itô-Taylor

expansion of continuous dynamics is studied. The results in [137], which use

the cubature integration method in continuous-discrete filtering, were gener-

alized in [138]. In [139], closed-form solutions of continuous-discrete systems

are derived. In [140], CDF algorithms using the EKF, UKF and PF with ap-

plications to the angle-only tracking in 3D are developed. Most of the results

mentioned above are concerned with additive noise only and multiplicative

noise (or any other state-dependent noises) are not taken into account. For

systems subject to multiplicative noise, different kinds of algorithms have

been introduced for continuous-discrete time models. These algorithms are

reported in [141], [142] and [143]. The optimal linear one-stage prediction,

filtering and smoothing in the case of continuous-time system are derived

in [144], where the observation matrix is multiplied by scalar binary-valued

white noise. In [145], the filtering problem for continuous-discrete linear state

space models is considered, where the solution is given in form of solving

coupled ODEs. In [146], both deterministic and stochastic perturbations are

considered in the design of an H∞-type theory for continuous-time stochastic

linear plants. The problem of Kalman filtering for a class of uncertain linear

continuous-time systems with Markovian jumping parameters is studied in

[147], where the system is subjected to time-varying norm-bounded param-

eter uncertainties in the state and measurement equations.

The motivation of this section is to extend the result in section 3.1 to

deal with continuous discrete problems. Specifically, we consider a class of

continuous discrete systems with both additive and multiplicative noise, in-

cluding square-root affine systems. In this section, we use the Euler scheme

followed by conditional moment matching to transform SDEs in the process

equation into a discrete model on a timescale which is finer than the mea-
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surement timescale. The problem addressed here is the design of a filter

that minimizes the trace of the estimation error covariance matrix at each

measurement sampling instant as well as at points in-between the measure-

ment sampling instants. We demonstrate through numerical experiments

that our new filter performs better than the corresponding DDF in [77] when

information about continuous time dynamics is available.

4.2.2 System model and problem formulation

State space model

Consider a system in which the process equation is described by a stochastic

differential equation:

dX (t) = (AX (t) + B)dt+ UwdW(t) +G diag(X γ(t))dS(t) (4.1)

The behaviour of the system is observed through noisy measurements Y(tk)

which are taken at discrete time instants tk = kT , where T is the measure-

ment sampling interval:

Y(tk) = CX (tk) + UvV(tk). (4.2)

Here, γ ∈ {0, 0.5, 1}, X (t) is an n-dimensional state of the system at any

time t, Y(tk) ∈ Rr is the measurement at the tthk time instant and A, B,

G, C, Uw and Uv are given constant matrices of appropriate dimensions.

X γ(t) indicates a vector whose each element is the corresponding element of

X (t) raised to the power γ. W(t) ∈ Rn is a standard Wiener process with

increment dW(t), and V(tk), k = 1, 2, · · · is a discrete time stochastic pro-

cess which represents the measurement noise. The standard Wiener process

S(t) ∈ Rn represents the multiplicative noise. The initial state is a ran-

dom vector with a known mean and covariance matrix, E[X (0)] = X̂ (0) and

E[(X (0)−X̂ (0))(X (0)−X̂ (0))⊤] = P (0), respectively. X (0), W(t), V(tk) and
S(t) are mutually independent. This class of systems includes systems with

additive noise (γ = 0), multiplicative noise (γ = 1) and square root affine
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noise (γ = 0.5). The last case leads to noise terms for which covariance is

affine in the state variables, and is especially relevant in financial mathemat-

ics; see, e.g., [148] and references therein.

The purpose of optimal (Bayesian) CDF is to determine the evolution in

time t of the conditional PDF , also called the posterior density of the state

defined for all t ≥ 0:

p(X (t)|Y(t1), ...,Y(tk+1)), t ∈ [tk, tk+1], k = 1, 2, . . . ,

or at least the relevant moments of the distribution (e.g., the mean vector

and the covariance matrix). The optimal continuous-discrete Bayesian filter

is the same as the DDF performed in two steps.

1) Prediction step: In this step, the prior PDF is evaluated by propagation

of the previous posterior density between the measurement instants.

2) Update step: In this step, the posterior density is obtained by updat-

ing the predictive density using the measurement and Bayesian rule. This

step is the same as the DDF update step because the measurement update

relies only on the measurement equation, which is modelled in discrete time

for a continuous-discrete state-space model case.

Solving the dynamic system (4.1)-(4.2) is very challenging since the SDEs

appearing in the dynamic model or the corresponding Fokker-Planck-Kolmogorov

partial differential equations cannot typically be solved analytically, and ap-

proximation must be used. We look at reducing the state transition equation

to a discrete form at a higher sampling frequency than the measurement fre-

quency (or a smaller time step size than the measurement sampling step size)

and then adapting existing techniques to deal with the resulting system.

Discretisation of process model

Let tk+1 − tk = δ, k > 0 be the uniform time interval between consecutive

measurement samples. Applying the Euler scheme to (4.1) over time interval
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(tk, tk +∆) yields

X (ti+1
k ) = X (tik) + (AX (tik) + B)∆+ Uw∆W +G diag(X γ(tik))∆S,

where tik ∈ [tk, tk+1], i = 0, 1, 2, . . . ,m − 1 are uniformly spaced inter-

sampling times, tmk = tk+1 and∆ = δ
m . ∆W and∆S are n-dimensional Gaus-

sian random variables with zero mean and covariance matrices E[∆W∆W⊤] =

∆I, E[∆S∆S⊤] = ∆I, respectively.

In order to match exactly the first two moments, we use the moment

matching approach. So, the expression for the conditional mean of X (ti+1
k )

given X (tik) can be easily shown to be

E[X (ti+1
k )|X (tik)] = X (tik) + (AX (tik) + B))∆,

where i = 0, 1, . . . ,m− 1 and the associated conditional covariance matrix is

var[X (ti+1
k )|X (tik)] = UwU

⊤
w∆+G( diag(X γ

j (t
i
k)))

2G⊤∆.

Then,

X (ti+1
k ) = ÃX (tik) + B̃ + ŨmW̃(tik) + G̃ diag(X γ(tik))S̃(tik) (4.3)

where

Ã = I + A∆, B̃ = B∆, Ũm = Uw

√
∆, G̃ = G

√
∆,

and W̃ and S̃ are uncorrelated, zero mean random processes with identity

covariance matrices. This puts the system in a discrete state space framework

to which the standard discrete time filtering tools can be applied.

78



Minimum variance filter for the continuous-discrete system

To derive the recursive filtering equations, it is assumed that the observations

are given up to time tk and that the conditional mean of X (tik) given Y(tk)

, X̂ (tik|tk), is available. From this value, the conditional mean of X (ti+1
k ),

which provides the predictor X̂ (ti+1
k |tk) is derived using (4.3):

X̂ (ti+1
k |tk) = ÃX̂ (tik|tk) + B̃. (4.4)

The predicted estimate X̂ (ti+1
k |tk) needs to be updated with the information

provided by Y(tk+1) to obtain the filtered estimate. So, the update equation

for a linear filter is

X̂ (ti+1
k |tk+1) = X̂ (ti+1

k |tk) + K̄(tik+1)(Y(tk+1)− Ŷ(tk+1|tk)), (4.5)

where X̂ (ti+1
k |tk+1) indicates updated estimate of X̂ (ti+1

k ) after Y(tk+1) be-

comes available, and the estimation error covariance matrix is given by

P̄ (ti+1
k |tk+1) = E[(X (ti+1

k )− X̂ (ti+1
k |tk+1))((X (ti+1

k )− X̂ (ti+1
k |tk+1))

⊤]. (4.6)

As in chapter 3, our objective is to find a filter gain K̄(tik+1) that would

minimize the trace of the estimation error covariance matrix P̄ (ti+1
k |tk+1) of

the state estimate X̂ (ti+1
k |tk+1) and obtain an expression for the filter. Our

main result in this section, which is an extension of the corresponding result

from [77], is given in the next theorem.

Theorem 4. For system (4.2) (4.3), the filter gain K̄(tik+1) that minimizes

the trace of the estimation error covariance matrix P̄ (ti+1
k |tk+1) is given by

K̄(tik+1) = (Ãi−m+1(P̄ (tmk |tk)− ŨmŨ
⊤
m − G̃E[ diag(X γ(tm−1

k )) diag(X γ(tm−1
k ))⊤]×

G̃⊤)C⊤ −
m−i−2∑

r=1

Ã−(m−i−r)+1(ŨmŨ
⊤
m + G̃E[ diag(X γ(tm−(r+1)

k )) diag(X γ(tm−(r+1)
k ))⊤]×

G̃⊤)(Ã(r))⊤C⊤)[CP̄ (tmk |tk)C⊤ + UvU
⊤
v ]

−1, (4.7)

where

P̄ (tmk |tk) = P̄ (tk+1|tk) = ÃP̄ (tk|tk)Ã⊤ + ŨmŨ
⊤
m + G̃E[ diag(X γ(tk)) diag(X γ(tk))

⊤]G̃⊤

(4.8)
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and

E[ diag(X γ(tk)) diag(X γ(tk))
⊤]

= diag (vec(Pjj(tk|tk)) + (X̂ (tk|tk))2) if γ = 1,

= diag (X̂ (tk|tk)) if γ = 0.5,

= diag (In) if γ = 0. (4.9)

Proof : See Appendix.

A few remarks on this result are in order.

• If G = 0 i.e., if there is no multiplicative noise, our filter reduces to the

Kalman Bucy filter for continuous-discrete models with additive noise

[1].

• The major difference between my work and the work represented in [77]

is that in this section the dynamics are modelled as a continuous-time

process and the measurements are modelled as a discrete-time process,

while in [77] both the dynamics and measurements are modelled as

discrete-time processes. This requires updating the values of X (t) at

t ∈ (tk, tk+1). As the numerical examples show, this improves the

prediction quality. If m = 1, we recover the results from [77].

• As mentioned earlier, the three specific values of γ, viz. 0, 0.5 and 1,

encompass the cases of additive, square root affine and multiplicative

noise, respectively. As seen in theorem 4 (see equation (4.9), in partic-

ular), these choices of γ still allow us to obtain a closed-form recursive

expression for the covariance matrix. Further, note that γ ≤ 1 in our

set-up is sufficient for the Euler scheme to converge; see [60], chapter

10, for example.
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4.2.3 Numerical example

Example 1

For numerical evaluation, we used the same model parameters as described

in example 1 of section 3.3.3, which is repeated here for ease of reference:

A = −0.5, B = 0, C = 0.45, Uw = 0.1, Uv = 0.6 and G = 0.1. W(t) and S(t)
are standard Wiener processes, V(tk) is a random variable with E(V(tk)) = 0

and E(V(tk))2 = 1 and is uncorrelated with W(t) and S(t). the initial con-

ditions are X (0) = 1, X̂ (0) = 0 and P (0) = 1.

The measurement sampling period is δ = 1. We consider a sequence of

two different time steps between tk = kδ and tk+1 = (k + 1)δ, m = 5 and

m = 10, so ∆ = 1/5 and ∆ = 1/10 . We then use these parameters to derive

the discretisation parameters presented in section 5.2.2. That is,

Ã = 0.9, B̃ = 0, Ũw = 2.6833, G̃ = 0.0447,

Ã = 0.95, B̃ = 0, Ũw = 1.8974, G̃ = 0.0316,

for ∆ = 1/5 and ∆ = 1/10, respectively. In order to compare the perfor-

mance of the estimators, we use the RMSE criteria. Consider 100 indepen-

dent simulations, each with 200 data points. Denoting X (s)(tk), k = 1, ..., 200

as the sth set of true values of the state and X̂ (s)(tk|tk) as the as the filtered

state estimate at time tk for the sth simulation run, the RMSE of the filter

for each of the algorithms is calculated by

RMSE(s) =

√√√√ 1

200

200∑

tk=1

(X (s)(tk)− X̂ (s)(tk|tk))2,

s = 1, ..., 100.

Then, the average of RMSE for the state over 100 simulations is given by

AvRMSE =
1

100

100∑

s=1

RMSE(s).
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Using our estimator, we compare the performance of two filters: the CDF

and the DDF (i.e., filter presented in [77]) with different values of γ. The

results of the continuous-discrete filter and the discrete discrete filter are

represented in the tables by CDF and DDF , respectively. The results are

summarized in Tables 4.1 and 4.2. We can see from these tables that, in

all cases, the estimators with CDF perform better than the estimator with

DDF .

Table 4.1: Comparison of AvRMSE for CDF and DDF for different values

of γ and with ∆ = 1/5

γ = 0 γ = 0.5 γ = 1

AvRMSE CDF 2.1682 2.1189 2.0991

DDF 4.1188 3.8428 3.7547

Table 4.2: Comparison of AvRMSE for CDF and DDF for different values

of γ and with ∆ = 1/10

γ = 0 γ = 0.5 γ = 1

AvRMSE CDF 1.5691 1.5349 1.5316

DDF 3.5794 3.7215 3.6086

Example 2

As another example, we consider the same model parameters as described in

[77] for the system (4.1)-(4.2) which are:

A =

[
0 −0.5

1 1

]
, B = 0 Uw =

[
−6

1

]
, C =

[
−100 10

]
,

G =

[
0.12 0.02

0.15 0.1

]
,

and Uv = 1. As before, W(t) and S(t) are standard Wiener processes,
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V(tk) is random variable with zero mean and identity covariance matrix I
and uncorrelated with W(t) and S(t). The initial conditions are

X (0) =
[
0 1

]⊤
, X̂ (0) =

[
0 0

]⊤
and P (0) =

[
1 0

0 1

]
.

The measurement sampling period is δ = 1. We consider a sequence of 10

time steps between tk = δk and tk+1 = (k + 1)δ, so that ∆ = 1/10. A dif-

ference in our simulation was that instead of using the parameters described

in [77] themselves, we used them to derive the discretisation parameters pre-

sented in section 4.2.2. That is,

Ã =

[
0.9 −0.05

0.1 0.9

]
, B̃ = 0 Ũw =

[
−1.8974

0.3162

]
, G̃ =

[
0.0379 0.0063

0.0474 0.0316

]
,

We compare the performance of two filters for this data generating system:

the CDF and the DDF (i.e., filter presented in [77]) with different values of

γ. In keeping with the notation in the previous example, the results of the

continuous-discrete filter and discrete discrete filter will be represented by

CDF and DDF , respectively. The AvRMSE is calculated for these filters

with different values of γ, as in the previous subsection. Table 4.3 sum-

marizes the results of this experiment. As can be seen, the CDF provides

better accuracy when compared to DDF in all cases.

Table 4.3: Comparison of AvRMSE1 and AvRMSE2 for CDF and DDF

for different values of γ
γ = 0 γ = 0.5 γ = 1

AvRMSE1 CDF 2.1008 2.0561 2.1588

DDF 2.8492 2.8364 3.0235

AvRMSE2 CDF 0.3037 0.3027 0.3703

DDF 0.3729 0.3764 0.3945

83



4.3 A minimum variance filter for continuous-

discrete linear systems with randomly de-

layed observations and additive and mul-

tiplicative noise

4.3.1 Background

All the results reported in the previous section depend on the assumption

that the measurement signals are perfectly transmitted. However, in various

practical situations the measurement available in the estimation may be not

up to date due to the several factors like slow sensors, long processing time

of the sensor data, limited capacity of the communication link, etc. In chap-

ter 3, the delay is considered to be an integer multiple of the sampling time

and a fractional delay is not taken into account. Further, it is noted that

most available results with respect to filtering problems with randomly de-

layed observations have centered on discrete-time systems, and research into

continuous systems for these problems have been very few. In recent years,

however, the estimation of the state of continuous-discrete systems with ran-

domly delayed observations has received considerable research attention and

many important results have been reported. In a very recent study [55], the

continuous-discrete filtering problem for randomly delayed measurements is

investigated. By using reorganized innovation analysis, [149] designed the

minimum mean square error (MMSE) estimation problem for linear continu-

ous time varying systems with time delay measurements. In [150], the mean

square stochastic stability for continuous time systems with stochastic delays

have been investigated. Robust H∞ filtering of uncertain systems with state

delays has been considered in [151].

The literature on filtering problems for continuous-time systems from de-

layed observations as well as multiplicative noise is far less extensive. In [152],
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linear filtering for continuous-time systems with time-delayed measurements

and multiplicative noises is presented using reorganized innovation. This

method is based on solving two Riccati equations in real time for each es-

timation step. The problem of robust H∞ filtering for Markovian jump lin-

ear systems with parameter uncertainties and mode-dependent time-varying

delays has been studied in [153], where a linear matrix inequality (LMI) ap-

proach has been developed to design a Markovian jump linear filter. In [154],

the problem of robust H∞ filtering for continuous-time uncertain linear sys-

tems with multiple time-varying delays in the state variables is investigated.

Up to now, to the best of my knowledge, MV filtering for continuous dis-

crete systems in the presence of both additive and multiplicative noise when

the measurements are randomly delayed has not yet been studied, which mo-

tivates the present study. In particular, my work extends the results in [124]

to deal with delayed measurements, using the theory developed for discrete

linear systems in chapter 3. While in the previous chapter a filter with a

Kalman filter-like structure is designed to approximately minimize the trace

of the estimation error covariance matrix at tk+1, whereas the filter in this

chapter seeks to minimize trace of the estimation error covariance matrix at

points in-between the measurement sampling instants as well as at tk+1.

4.3.2 System model and problem formulation

State space model

The process equation can be described by the stochastic differential equation

dX (t) = (AX (t) + B)dt+ UwdW(t) +G1 diag(X (t))dS1(t). (4.10)

The behaviour of the system is observed through the noisy measurements

Y(tk) which are taken at the discrete time instants tk = kT, k = 1, 2, · · · ,
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where T is the measurement sampling interval:

Y(tk) = CX (tk) + UvV(tk) +G2 diag(X (tk))S2(tk), (4.11)

where X (t) is the n-dimensional state of the system at any time t, Y(tk) ∈ Rr

is the measurement at the tthk time instant, A, G1, C, G2, Uw and Uv are

given constant matrices and B is given constant vectors of compatible di-

mensions. A is assumed to be a full rank matrix. W(t) ∈ Rn is a standard

Wiener process with increment dW(t) and V(k) ∈ Rr is the measurement

noise and zero mean, i.i.d. random vectors with identity covariance ma-

trix I. The standard Wiener process S1(t) ∈ Rn and the random variable

S2(tk) ∈ Rr represent the multiplicative noise. The noise signals W(t), V(tk),
S1(t) and S2(t) are uncorrelated with each other. The initial state is a ran-

dom vector with a known mean and covariance matrix, E[X (0)] = X̂ (0) and

E[(X (0) − X̂ (0))(X (0) − X̂ (0))⊤] = P (0), respectively. X (0), W(t), V(tk),
S1(t) and S2(tk) are mutually independent.

Discretisation of process model

Let tk+1 − tk = δ, k > 0 be the uniform time interval between consecutive

measurement samples. Applying the Euler scheme to (4.10) over a time

interval (tk, tk +∆) yields

X (ti+1
k ) = X (tik) + (AX (tik) + B)∆+ Uw∆W +G1 diag(X (tik))∆S1,

where tik ∈ [tk, tk+1], i = 0, 1, . . . ,m − 1 are uniformly spaced inter-sampling

times and ∆ = δ
m . ∆W and ∆S1 are n-dimensional Gaussian random vari-

ables with zero mean and covariance matrices E[∆W∆W⊤] = ∆I, E[∆S1∆S⊤
1 ] =

∆I respectively.

In order to match exactly the first two conditional moments of X (ti+1
k )

given X (tik), we use the moment matching approach. The expression for the
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conditional mean of X (ti+1
k ) given X (tik) can be easily shown to be

E[X (ti+1
k )|X (tik)] = X (tik) + (AX (tik) + B))∆,

where i = 0, 1, . . . ,m− 1 and the associated conditional covariance matrix is

var[X (ti+1
k )|X (tik)] = UwU

⊤
w∆+G1( diag(X (tik)))

2G⊤
1 ∆

Then

X (ti+1
k ) = ÃX (tik) + B̃ + ŨmW̃(tik) + G̃1 diag(X (tik))S̃1(t

i
k), (4.12)

and

Y(tik) = CX (tik) + UvV(tik) +G2 diag(X (tik))S2(t
i
k), (4.13)

where

Ã = I + A∆, B̃ = B∆, Ũm = Uw

√
∆, G̃1 = G1

√
∆,

and W̃ , S̃1, V and S2 are uncorrelated, zero mean random processes with

identity covariance matrices. Y(tik) represents a pseudo-measurement which

coincides with the actual measurements at tk, tk+1, . . .. This puts the system

in a discrete state space framework, simply with measurements missing be-

tween tk and tk+1, to which the standard discrete time filtering tools can be

applied.

Approximate minimum variance filter for the continuous-discrete

system with randomly delayed measurement

We consider up to N , where N ≤ m, consecutive delayed measurements

between tk = kT and tk+1 = (k + 1)T . To model the delayed measurement,

let us assume pk =
[
p1k p2k · · · pNk

]
to be a vector of independent Bernoulli

random variables taking values either 0 or 1 with probability

P (pjk = 0) = β, P (pjk = 1) = 1− β = E[pjk],
E[(pjk − (1− β))2] = β(1− β). (4.14)
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As the delay is often small in many practical applications, the maximum delay

is considered to be less than or equal to one measurement time step. Then,

the measurement received at the (tk+1)th time step may actually belong to

the (tk+1 − j∆) time instant, j = 0, 1, . . . , N . Specifically, the measurement

at time tk+1 is as follows:

Z(tk+1) = (1− p1k)Y(tmk ) + p1k(1− p2k)Y(tm−1
k ) + p1kp2k(1− p3k)Y(tm−2

k )

+ · · ·+ (
N−1∏

j=1

pjk)(1− pNk)Y(tm−(N−1)
k ) + (

N∏

j=0

pjk)Y(tm−N
k )

=
N−1∑

j=0

j∏

i=0

pik(1− p(j+1)k)Y(tm−j
k ) +

N∏

j=0

pjkY(tm−N
k ),

tik ∈ [tk, tk+1], Y(tmk ) = Y(tk+1), Y(t0k) = Y(tk),

with p0k := 1. The proposed multiplicative structure is the same as in

chapter 4, except that Y(tm−j
k ) are not real measurements for j = 1, 2, · · · ,m−

1.

Using E(pjk) = 1 − β for j = 1, 2, . . . ,m − 1 and using the fact that pjk
are independent from each other as well as from the measurement noise, we

can write our one step ahead prediction of Z(tk+1) as

Ẑ(tk+1|tk) = β
N−1∑

j=0

(1− β)jŶ(tm−j
k |tk) + (1− β)N Ŷ(tm−N

k |tk). (4.15)
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Combining and re-arranging,

(Z(tk+1)− Ẑ(tk+1|tk))

=
N−1∑

j=0

(
j∏

i=0

pik)(1− p(j+1)k)(Y(tm−j
k )− Ŷ(tm−j

k |tk))

︸ ︷︷ ︸
T1

+ (
N∏

j=0

pjk)(Y(tm−N
k )− Ŷ(tm−N

k |tk))

︸ ︷︷ ︸
T2

+
N−1∑

j=0

(
(

j∏

i=0

pik)(1− p(j+1)k)− β(1− β)j
)
Ŷ(tm−j

k |tk)

︸ ︷︷ ︸
T3

+

(
(

N∏

j=0

pjk)− (1− β)N
)
Ŷ(tm−N

k |tk)

︸ ︷︷ ︸
T4

. (4.16)

We use this re-arrangement of the innovation sequence (Z(tk+1)−Ẑ(tk+1|tk))
later in the proof of our main result, given in the Appendix, for computing

the covariance of the estimation error. A similar technique was also used in

chapter 4.

To derive the recursive filtering equations, it is assumed that the ob-

servations are given up to time tk and that the conditional mean of X (tik)

given Z(tk), X̂ (tik|tk), is available. From this value, the conditional mean of

X (ti+1
k ), which provides the predictor, X̂ (ti+1

k |tk), is derived using (4.12):

X̂ (ti+1
k |tk) = ÃX̂ (tik|tk) + B̃. (4.17)

The predicted estimate X̂ (ti+1
k |tk) needs to be updated with the informa-

tion provided by Z(tk+1), to obtain the filtered estimate. When the measure-

ments may be randomly delayed by N sampling times, the update equation

for a linear filter using N steps randomly delayed measurement is

X̂ (ti+1
k |tk+1) = X̂ (ti+1

k |tk) + K̄(tik+1)(Z(tk+1)− Ẑ(tk+1|tk)), (4.18)
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where Ẑ(tk+1|tk) is a one step ahead prediction of Z(tk+1) and the estimation

error covariance matrix of the state is given by

P̄ (ti+1
k |tk+1) = E[(X (ti+1

k )− X̂ (ti+1
k |tk+1))((X (ti+1

k )− X̂ (ti+1
k |tk+1))

⊤].

(4.19)

P̄ (ti+1
k |tk+1) involves expectation of terms of the form X (tik)X⊤(tm−j

k ). To

evaluate this expectation, the following result is useful.

Lemma 4. According to (4.12), the relationship between X (tik) and X (tmk )

is

X (tik) = Ãi−m(X (tmk )− B̃ − ŨmW̃(tm−1
k )− G̃1 diag(Xj(t

m−1
k ))S̃1(t

m−1
k )))+

m−i−1∑

r=1

Ã−(m−i−r)(−B̃ − ŨmW̃(tm−(r+1)
k )− G̃1 diag(Xj(t

m−(r+1)
k ))S̃1(t

m−(r+1)
k ))),

(4.20)

and the relationship between X (tm−j
k ) and X (tmk ) is

X (tm−j
k ) = Ã−j(X (tmk )− B̃ − ŨwW̃(tm−1

k )− G̃1 diag(X (tm−1
k ))S̃1(t

m−1
k ))

+
j−1∑

l=1

A−(j−l)(−B̃ − ŨwW̃(tm−(l+1)
k )− G̃1 diag(X (tm−(l+1)

k ))S̃1(t
m−(l+1)
k )).

(4.21)

Before presenting the main result in this section, we first repeat the fol-

lowing lemma from chapter 3 for ease of reference (note that the notation

here is different due to the two different sampling frequencies):

Lemma 5. The second order moment of q(tik) is given as follows:

q(tik) = diag (vec(Pjj(t
i
k|tk)) + (X̂ (tik|tk))2), (4.22)

where

q(tik) = E[ diag(X (tik)) diag(X (tik))
⊤],

X̂ (tik|tk) = ÃX̂ (ti−1
k |tk) + B̃,

and

P̄ (tik|tk) = ÃP̄ (ti−1
k |tk)Ã⊤ + ŨwŨ

⊤
w + G̃1q(t

i−1
k )G̃⊤

1
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Proof

q(tik) = E[ diag(X (tik)) diag(X (tik))
⊤]

= E[( diagX (tik))
2]. (4.23)

On the other hand, based on the definition of the covariance matrix we have

diag (vec(P̄jj(t
i
k|tk))) = E[ diag(X (tik)− X̂ (tik|tk))2]

= E[( diagX (tik))
2]− 2E[ diagX (tik)] diagX̂ (tik|tk) + ( diagX̂ (tik|tk))2

= E[ diagX (tik)
2]− 2 diagX̂ (tik|tk) diagX̂ (tik|tk) + ( diagX̂ (tik|tk))2

= E[( diagX (tik))
2]− ( diagX̂ (tik|tk))2,

(4.24)

then

E[( diagX (tik))
2] = diag (vec(Pjj(t

i
k|tk)) + (X̂j(t

i
k|tk))2), (4.25)

and by substituting (4.25) into (4.23), the proof of (4.22) can be completed.

The objective of this section is to find the optimum filter gain K̄(tik+1) that

minimizes the trace of the estimation error covariance matrix P̄ (ti+1
k |tk+1) of

the state estimate X̂ (ti+1
k |tk+1). Our main result in this section is given in

the next theorem.

Theorem 5. For equation (4.12) and (4.13), the filter gain K̄(tik+1) that

minimizes the trace of the estimation error covariance matrix P̄ (ti+1
k |tk+1) is
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given by

K̄(tik+1) = (
N−1∑

j=0

β(1− β)j(Ãi−m+1P̄ (tmk |tk)(Ã−j)⊤C⊤+

min{j−1,m−i−2}∑

s=1

Ã−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1)
k )G̃⊤

1 )(Ã
−(j−s))⊤C⊤

−
j−1∑

l=1

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1))
k )(Ã−(j−l))⊤C⊤

− Ãi−m+1(ŨwŨ
⊤
w + G̃1q(t

m−1
k )G̃⊤

1 )(Ã
−j)⊤C⊤

−
m−i−2∑

r=1

Ã−(m−i−r)+1(ŨwŨ
⊤
w + G̃1q(t

m−(r+1)
k )G̃⊤

1 )(Ã
−(j−r))⊤C⊤)+

(1− β)N(Ãi−m+1P̄ (tmk |tk)(Ã−N)⊤C⊤

+
min{N−1,m−i−2}∑

s=1

Ã−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1)
k )G̃⊤

1 )(Ã
−(N−s))⊤C⊤

−
N−1∑

l=1

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(N−l))⊤C⊤

− Ãi−m+1(ŨwŨ
⊤
w + G̃1q(t

m−1
k )G̃⊤

1 )(Ã
−N)⊤C⊤−

m−i−2∑

r=1

Ã−(m−i−r)+1(ŨwŨ
⊤
w + G̃1q(t

m−(r+1)
k )G̃⊤

1 )(Ã
−(N−r))⊤C⊤))χ̂(tk)

−1

where

P̄ (tmk |tk) = P̄ (tk+1|tk) = ÃP̄ (tk|tk)Ã⊤ + ŨwŨ
⊤
w + G̃1q(tk)G̃

⊤
1 ,

(4.26)

and q(tik) is as defined in (4.22) and χ̂(tk) is as defined in equation (A.54)

in the Appendix.

Proof : See Appendix.

Several remarks on this result are in order.
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1. If β = 1, i.e., if there is no random delay and G2 = 0 i.e., if there is

no multiplicative noise in the measurement, our result reduces to the

filter derived in [124]. If, in addition to β = 1, we have G1 = 0 and

G2 = 0, i.e., if there is no multiplicative noise, our filter reduces to the

Kalman Bucy filter for continuous-discrete models with additive noise

proposed in [3].

2. In this chapter, the differential equations that describe the process

are discretised using the Euler scheme instead of Ito-Taylor expansion,

since Ito-Taylor expansion leads to a nonlinear state space system for

which a closed-form filter design is significantly more complex.

3. As mentioned in Chapter 3, P̄ (tk+1|tk) is a function of q(tk) and hence

of Y(tk). Hence K̄(tk+1) does not converge to a time-invariant matrix

and it is not possible to guarantee asymptotic stability.

4. We are seeking to minimize variance on a set of filters which have a

Kalman filter-like structure: K̄(tik+1)(Z(tk+1)− Ẑ(tk+1|tk)). The filter

is still not linear in Z(tk), since K̄(tk+1) itself contains Z(tk), as will be

seen in the proof. We are not minimizing variance in the sense of finding

E(X (tik)|Z(tk)), which would be a very general (nonlinear) function

of past and present values of Z. Again, this fact accords with the

work suggested in chapter 3. However, the filter with a Kalman filter-

like structure in chapter 3 is designed to minimize the variance at the

measurement sampling times (i.e., K̄(k + 1) approximately minimizes

the covariance of the estimate of state at tk+1), whereas the filter in this

chapter seeks to minimize the covariance of the estimate of the state

at points in-between the measurement sampling instants as well as at

the measurement sampling times.
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4.3.3 Numerical example

We use the same model parameters as described in [77], which are: A =[
0 −0.5

1 1

]
, B = 0 Uw =

[
−6

1

]
, C =

[
−100 10

]
, G1 =

[
0.12 0.02

0.15 0.1

]
,

and Uv = 1. W(t) and S1(t) are standard Wiener processes. It is worth

clarifying that V(tk) is random variable with zero mean and identity covari-

ance matrix I and uncorrelated with W(t) and S1(t). The initial conditions

are

X (0) =
[
0 1

]⊤
, X̂ (0) =

[
0 0

]⊤
and P (0) =

[
1 0

0 1

]
.

The measurement sampling period is δ = 1. We consider a sequence of

m = 10 time steps between tk = kδ and tk+1 = (k + 1)δ, so ∆ = 1/10. A

difference in our simulation is that instead of using the parameters described

in [77] themselves we used them to derive the discretisation parameters pre-

sented in section 4.3.2. That is,

Ã =

[
0.9 0.05

0.1 .9

]
, Ũw =

[
−1.8974

0.3162

]
, G̃1 =

[
0.0379 0.0063

0.0474 0.0316

]
,

It is assumed that the observations are randomly delayed by two sample

times, that is:

Z(tk+1) = (1− p1k)Y(tmk ) + p1k(1− p2k)Y(tm−1
k ) + p1kp2kY(tm−2

k ).

In order to compare the performance of the estimators, we use the RMSE

criterion, as before. Consider 100 independent simulations, each with 200

data points. Denoting X (s)(tk), k = 1, ..., 200 as the sth set of true values

of the state and X̂ (s)(tk|tk) as the filtered state estimate at the tthk time instant

for the sth simulation run, the RMSE of the filter for each of the algorithms
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and for the ith state (i = 1, 2) is calculated by

RMSEi(s) =

√√√√ 1

200

200∑

k=1

(X (s)
i (tk)− X̂ (s)

i (tk|tk))2, s = 1, ..., 100, i = 1, 2.

Then, the average of the RMSE for each of the states over 100 simulations

is given by

AvRMSEi =
1

100

100∑

s=1

RMSEi(s), i = 1, 2.

Using our estimator, we estimated the two states when the measurement

is subject to at most two delays. As in chapter 3, we compare the performance

of three filters: a no delay filter (i.e., β = 1), a filter designed for a single

delay and a filter for two delays. The reason for this comparison is as follows.

The exact delay is often not known, and it is of interest to compare the results

when using a filter with an incorrect delay length. Further, it is of interest to

see whether the filter with an incorrect delay still performs better than the

filter with no delay at all. The results of the filter with no delay, one delay

and two delays are represented by DKF0, DKF1 and DKF2, respectively.

Tables 4.4 and 4.5 summarize the results of this experiment. As can be

seen, the new filtering algorithm with two delays outperforms the no delay

filter and one delay for several different values of delays. Importantly, the

results for the one delay filter are consistently better than those of the no-

delay filter. Our (admittedly limited) experience indicates that de-tuning a

no-delay filter for a small delay may be better than using a no-delay filter,

even if the maximum number of delays is unknown.

4.4 Summary

In section 5.1 the optimal MV filter, which is linear in the current measure-

ment, is derived for a class of continuous-discrete systems with both additive

and multiplicative noise. The closed-form solution generalizes the results for
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Table 4.4: Comparison of AvRMSE1 for DKF0, DKF1 and DKF1 for dif-

ferent values of β
β = 0.9 β = 0.7 β = 0.5 β = 0.3

AvRMSE1 DKF0 13.5072 15.7805 17.0713 18.5921

DKF1 9.6485 10.1942 10.4937 11.1298

DKF2 8.8444 9.0650 9.1764 9.5543

Table 4.5: Comparison of AvRMSE2 for DKF0, DKF1 and DKF2 for dif-

ferent values of β
β = 0.9 β = 0.7 β = 0.5 β = 0.3

AvRMSE2 DKF0 3.0353 3.5572 3.8510 4.1912

DKF1 2.6837 2.6736 2.7168 2.8350

DKF2 2.2916 2.4312 2.5781 2.7523

MV filtering for additive-multiplicative noise cases in [77]. The continuous

time dynamics are discretized using the Euler scheme with a smaller time

step than the measurement sampling time. The results of this section were

applied to simulated linear system with additive-multiplicative noises. Our

numerical experiments indicate that the CDF outperforms DDF.

Moreover, we present an approximate MV filter for a class of continuous

discrete time systems with both additive and multiplicative noise when the

measurement might be delayed randomly in section 5.2. A numerical exam-

ple has been provided to illustrate the effectiveness of the proposed design

approach. Our numerical experiments indicate that the proposed algorithm

outperforms an implementation which ignores delays for a range of delay

probabilities. Further, it appears that, in the presence of an unknown num-

ber of delays, using a single delay filter might still be better than using a

filter with no delays.
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Chapter 5

Approximate minimum

variance filter under random

delays III: nonlinear systems

with additive noise

5.1 Introduction

In the previous chapters we considered a linear system with an interpreta-

tion of multiplicative uncertainty as stochastic uncertainty in parameters.

It is ,however, an accepted fact that, in many applications of interest, the

system dynamics and the observation equation are nonlinear This chapter is

concerned with the problem of state estimation for nonlinear discrete time

systems. Unlike a linear Gaussian discrete-time system, the optimal recur-

sive solution to the state estimation problem in nonlinear systems is usually

not available in closed form. In the past few years, considerable attention

has been devoted to the nonlinear filtering problem. A series of suboptimal

approaches have been developed in the literature to solve the nonlinear fil-

tering problem, including the the EKF [10], the UKF [11], EnKF [12] and

97



the QKF [13]. These are reviewed earlier in chapter 2.

An extensive theory and a number of algorithms have been developed for

filtering in nonlinear systems using linearisation, e.g. [126]. If computational

time is not an issue, there are powerful sampling-based particle filtering al-

gorithms [34] available which are guaranteed to converge and outperform the

suboptimal methods if a sufficient number of samples are generated at each

time step. However, linearisation-based filters are still often preferred in real-

time systems where sampling tends to be an expensive operation.

A separate strand of literature considers randomly delayed measurements,

which are frequently encountered in many practical applications, such as tar-

get tracking, communication, signal processing, control and transportation

[155, 156, 157] and [158]. In order to make sure that the filtering error dy-

namics converge, possible measurement delays should be taken into account

in designing filters. In the past few years, many results have been reported

in the literature on the estimation of the state of nonlinear discrete-time

systems with randomly delayed observations; see, e.g., [119]. However, the

literature on nonlinear filtering from delayed observations is less extensive. In

[159], different approximations of the statistics of a nonlinear transformation

of a random vector are used to investigate the filtering problem for a class

of nonlinear stochastic systems with randomly delayed observations, where

the possible delay is restricted to a single step and characterized by a set of

Bernoulli variables. This work is extended in [122] to address the case when

the measurements might be delayed randomly by one or two sampling steps.

For the same model, a Gaussian approximation filter is derived in [121]. In

[160], an EKF algorithm is designed which provides optimal estimates of in-

terconnected network states when some or all the measurements are delayed.

In [161], the filtering problem for a class of nonlinear discrete time stochastic

systems with delayed states is investigated.
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To the best of my knowledge, the problem of state estimation in nonlinear

systems with random delays has not been fully investigated. This chapter is

concerned with the problem of state estimation for a nonlinear discrete time

system with a single random delay in measurement. Unlike chapters 3-4, the

state space model is nonlinear and requires linearisation at each time step

with the covariance of multiplicative noise, which is used as a proxy for the

magnitude of the linearisation error, varies at each time step. A heuristic for

choosing the parameters representing the magnitude of linearisation error is

suggested, and tested through a numerical example. The material presented

in this chapter has been published in [162]

5.2 System model and problem formulation

Our aim is to address the problem of the state estimation for nonlinear dis-

crete time systems with additive noise where the measurement might be de-

layed randomly by one sample time when the Bernoulli random variables de-

scribing the delayed observations, with values one or zero indicating whether

or not the measurement is delayed.

Consider a class of discrete-time nonlinear stochastic systems with addi-

tive noise where the measurement might be delayed by one time step. Using

a notation similar to that in the previous chapters, the model is described

by the following state and measurement equations:

X (k + 1) = f(X (k)) + UwW(k), (5.1)

Y(k) = h(X (k)) + UvV(k), (5.2)

Z(k) = (1− pk)Y(k) + pkY(k − 1), (5.3)

where X (k) ∈ Rn is the state vector at a time k to be estimated, Y(k) ∈ Rr

is the measurement vector at time k and Z(k) ∈ Rr is the one step ran-

domly delayed measurement equation alternatively referred to as ”received
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measurement”, pk denotes the Bernoulli random variable at each time k (bi-

nary switching sequence taking the values 0 or 1) with a known distribution

P(pk = 0) = β and P(pk = 1) = 1−β and pk are uncorrelated with other ran-

dom variables. Uw and Uv are given deterministic matrices. W(k) ∈ Rn and

V(k) ∈ Rr are the process noise and the measurement noise, respectively.

The nonlinear functions f(X (k)) and h(X (k)) are at least twice differen-

tiable, with a known form. The work of this chapter is carried out based on

the following assumptions:

Assumption 1: The noise signals W(k) and V(k) are zero mean, i.i.d.

random vectors with identity covariance matrix I and mutually uncorrelated.

Assumption 2: The initial state is a random vector with a known

mean and covariance matrix, E[X (0)] = X̂ (0) and E[(X (0) − X̂ (0))(X (0) −
X̂ (0))⊤] = P (0), respectively. X (0), W(k) and V(k) are mutually indepen-

dent.

The approximated conditional mean of X (k + 1), which provides the

predictor X̂ (k + 1|k), is derived using (5.1):

X̂ (k + 1|k) = f(X̂ (k|k)). (5.4)

For brevity of notation, an expression LL⊤ will sometimes be denoted as

(L)(⋆)⊤, where L is a matrix-valued or vector-valued expression and where

there is no risk of confusion.

The update equation for a nonlinear filter using one step randomly de-

layed measurements is

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K̄(k + 1)(Z(k + 1)− Ẑ(k + 1|k)), (5.5)
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and the estimation error covariance matrix is given by

P̄ (k + 1|k + 1) = E[(X (k + 1)− X̂ (k + 1|k + 1))(⋆)⊤]

= E[(f(X (k)) + UwW(k)− (f(X̂ (k|k)) + K̄(k + 1)(Z(k + 1)− Ẑ(k + 1|k))))(⋆)⊤]
(5.6)

where Z(k + 1) = (1− pk)(h(X (k + 1)) + UvV(k + 1)) + pk(h(X (k)) + UvV(k)).
(5.7)

Note that the update equation is linear in the current (possibly delayed)

measurement Z(k + 1), which is in keeping with our approach in chapters

4 and 5. By using the Taylor series expansion around X̂ (k|k), we linearize

f(X (k)) and h(X (k)) as follows:

f(X (k)) = f(X̂ (k|k)) + A(k)X̃ (k|k) + o(|X̃ (k|k)|),

h(X (k + 1)) = h(X̂ (k + 1|k)) + C(k + 1)X̃ (k + 1|k) + g(|X̃ (k + 1|k)),

where

A(k) =
∂f(X (k))

∂X (k)
|X (k)=X̂ (k|k),

C(k + 1) =
∂h(X (k + 1))

∂X (k + 1)
|X (k+1)=X̂ (k+1|k)

X̃ (k + i|k) = X (k + i)− X̂ (k + i|k) i = 0, 1. (5.8)

In [112], o(|X̃ (k|k)|) are characterized as

o(|X̃ (k|k)|) = B(k)N(k)L(k)X̃ (k|k),

where B(k) are bounded problem-dependent scaling matrices, L(k) pro-

vides an extra degree of freedom to tune the filter and N(k) are unknown

time-varying matrices accounting for the linearisation errors of the dynamical

model and satisfies

N(k)N(k)⊤ ≤ I.
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In the work presented here, we characterise the linearisation error o(|X̃ (k|k)|)
and g(|X̃ (k + 1|k)|) as stochastic perturbations which are linear in X̃ (k|k)
and X̃ (k + 1|k):

o(|X̃ (k|k)|) = Q1(k)X̃ (k|k)R1(k),

g(|X̃ (k + 1|k)|) = Q2(k + 1)X̃ (k + 1|k)R2(k + 1).

This gives us an approximate equivalent linear system with additive-

multiplicative noise:

X (k + 1) = f(X̂ (k|k)) + A(k)X̃ (k|k) +Q1(k)X̃ (k|k)R1(k) + UwW(k),

(5.9)

Y(k + 1) = h(X̂ (k + 1|k)) + C(k + 1)X̃ (k + 1|k)
+Q2(k + 1)X̃ (k + 1|k)R2(k + 1) + UvV(k + 1), (5.10)

where R1(k) ∈ Rn and R2(k + 1) ∈ Rr are zero mean, i.i.d. random vec-

tors with identity covariance matrix I and are mutually independent with

the initial state and other noise signals. Q1(k) ∈ Rn and Q2(k + 1) ∈ Rr

describe the effect of higher-order terms in the Taylor series in terms of pa-

rameter uncertainties. In particular, the matrices Q1(k) and Q2(k) appear in

the computation of covariance matrix of the state estimate only in the form

Q1(k)Λ(k)Q1(k) and Q2(k)ΛQ2(k), where Λ(k) is a positive definite matrix;

see equations (6.11) and (A.66). The justification of characterising deter-

ministic Taylor series truncation error by stochastic multiplicative noise is

as follows. Firstly, we are typically interested in filter tracking performance

over a period of time, e.g., as measured by the root mean squared error,

and treating the error as stochastic can be advantageous if it yields a closed-

form result (as is the case here). Secondly, as demonstrated in the numerical

example presented, the size of the stochastic uncertainty representing the

linearisation error can be used as a tuning parameter for the linearized filter

in order to improve the filtering performance.
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The objective of this section is to find the optimum filter gain K̄(k + 1)

that minimizes the trace of the estimation error covariance matrix P̄ (k +

1|k + 1) of the state estimate X̂ (k+1|k + 1) for the approximate linear system

given by (5.7), (5.8), (5.9) and (5.10). Our main result in this section is given

in the next theorem.

Theorem 6. For equations (5.7)-(5.10), the filter gain K̄(k + 1) that mini-

mizes the trace of the estimation error covariance matrix P̄ (k + 1|k + 1) is

given by

K̄(k + 1) = (βP̄ (k + 1|k)C(k + 1)⊤ + (1− β)A(k)P̄ (k|k)C(k)⊤)

× [β(C(k + 1)P̄ (k + 1|k)C(k + 1)⊤ +Q2(k + 1)P̄ (k + 1|k)Q2(k + 1)⊤ + UvU
⊤
v )+

(1− β)(C(k)P̄ (k|k)C(k)⊤ +Q2(k)P̄ (k|k)Q2(k)
⊤ + UvU

⊤
v ) + β(1− β)(ψ̃0(k + 1)

+ ψ̃1(k + 1))− β(1− β)(ψ0(k + 1)ψ1(k + 1)⊤ + ψ1(k + 1)ψ0(k + 1)⊤)]−1

(5.11)

where P̄ (k+1|k) and ψi(k+1), ψ̃i(k+1), i = 0, 1 are as defined in (A.62)

and (A.63), respectively, in the Appendix.

Proof : See Appendix.

Remarks:

• It is easy to verify that setting β = 1 and Q1(k) = Q2(k) = 0 gives the

familiar Extended Kalman filter for the delay-free case.

• As in chapters 3 and 4, note that P̄ (k + 1|k) is a function of X̂ (k|k)
and hence of Y(k). K̄(k + 1) thus cannot converge to a time-invariant

matrix as k → ∞, and asymptotic stability cannot be guaranteed in

this case.
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5.3 Numerical Example

To test the accuracy of the new algorithm, the following univariate non-

stationary growth model is considered,

X (k + 1) = aX (k) + b
X (k)

1 + X (k)2
+ d cos(1.2k) + UwW(k),

Y(k) =
X (k)2

20
+ UvV(k),

where V(k) and W(k) are i.i.d. random variables with zero mean and unit

variance. This model has been previously used in [9]. We use the parame-

ters a = 0.5, b = 1, d = 8, Uw = 0.1 and Uv = 0.1. Initial conditions are

X (0) = 1, X̂ (0) = 0 and P (0) = 0.1. In equations (5.9) and (5.10), we use

Q1(k) = γ trace (A(k)) and Q2(k) = γ trace (C(k)), where γ is our tuning

parameter that expresses the linearisation error as a percentage of linearized

parameters. As the model has strong nonlinearities, we expect that using a

large non-zero gamma might improve the performance.

In order to evaluate the efficiency of the estimators, we use the root mean

square error (RMSE) criterion. Consider 100 independent simulations, each

with 200 data points. Denoting X (s)(k), k = 1, ..., 200 as the sth set of true

values of the state and X̂ (s)(k|k) as the filtered state estimate at time k for

the sth simulation run, the RMSE is calculated by

RMSE(s) =

√√√√ 1

200

200∑

k=1

(X (s)(k)− X̂ (s)(k|k))2,

s = 1, ..., 100.

Then, the average of RMSE of the state over 100 simulations is given by

AvRMSE =
1

100

100∑

s=1

RMSE(s).
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We perform two experiments for this system with different levels of lin-

earisation error γ. Firstly, to isolate the improvement in performance even

in the absence of delay, we conduct a delay-free experiment (i.e., with β = 1)

and compare the performance of a filter with pure linearisation or EKF (i.e.,

γ = 0) with a filter with different values of γ (i.e., γ = 0.25, 0.5, 0.75). Ta-

ble 5.1 summarizes the results of this experiment. As can be seen, the filtering

algorithm with the linearisation error accounted for in terms of multiplicative

uncertainty outperforms the filtering algorithm with pure linearisation (i.e.,

γ = 0). Further, improvement in the performance of filter becomes more

pronounced as γ increases.

Table 5.1: Comparison of AvRMSE for different values of γ
γ = 0 γ = 0.25 γ = 0.5 γ = 0.75

AvRMSE 0.1169 0.1168 0.1166 0.1164

In the second numerical experiment, we compared a one delay filter with

pure linearisation (i.e., γ = 0) with a one delay filter using interpretation

of multiplicative noise in terms of linearisation error. We used different

levels of multiplicative uncertainty as a proxy for linearisation error (i.e.,

γ = 0.25, 0.5, 0.75) and different values of β (i.e., β = 0.9, 0.5, 0.1). Re-

call that the actual probability of receiving a delayed measurement is 1− β.

Table 5.2 summarizes the results of this experiment. As can be seen, the fil-

tering algorithm with uncertainties outperforms the filtering algorithm with

pure linearisation (i.e., γ = 0) in all cases. The increase in the error with

increase in delay probability is in keeping with the comments in [112]. Note

that increasing γ to a value larger than 1 makes the filter unstable.

5.4 Summary

In this chapter, an approximate MV filter is discussed for a class of nonlinear

discrete time systems with additive noise and a random delay. The chap-
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Table 5.2: Comparison of AvRMSE for different values of β and γ
β = 0.9 β = 0.5 β = 0.1

AvRMSE γ = 0 0.1170 0.1216 0.1402

γ = 0.25 0.1169 0.1215 0.1401

γ = 0.5 0.1168 0.1214 0.1399

γ = 0.75 0.1167 0.1213 0.1398

ter makes two distinct contributions. Firstly, it generalizes the closed-form

solution for MV filtering for linear systems in [56]. We have used a novel

approach of modelling the linearisation error as multiplicative noise that in

essence de-tunes the EKF to account for this noise or the linearisation er-

ror. Secondly, we extend the results to cope with a random delay of a single

time step. Our numerical experiment indicates that the proposed filtering

algorithm can be used to improve filtering performance as measured by root

mean squared error when linearized dynamics is used for filter design.
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Chapter 6

Conclusions and directions for

future research

This chapter concludes the thesis by summarizing the main contributions

and suggests directions for future research.

6.1 Summary of contributions

In this thesis, the problem of MV filter has been investigated for different

class of systems i.e. linear discrete systems, continuous-discrete time linear

systems and nonlinear discrete systems. Specifically, we propose a various

of an approximate filtering approaches considering of the both additive and

multiplicative noise. Then, we extended these results to deal with situations

when the measurement is delayed by one or more sample times. The pro-

posed filtering algorithms are obtained by using innovation analysis approach.

In chapter 3, an approximate MV filter for a class of discrete time systems

with both additive and multiplicative noise is investigated. The utility of the

proposed algorithm is tested on two examples, one a two-factor extension of

the Vasicek interest rate model and one based on parameters estimated from

real-world data. It is also shown that the proposed filtering algorithm clearly
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outperforms the Kalman filter, which ignores parameter uncertainties. For

the same system, a new approximate MV filter with randomly delayed obser-

vations is proposed. The number of sample times by which the observation

is delayed is considered to be uncertain. We model the observations delayed

by up to N sample times by using N Bernoulli random variables with values

0 or 1, and derive a closed-form expression for the proposed MV filter for this

system which are linear in the current measurement while being nonlinear in

one or more past measurements. The utility of the proposed filtering algo-

rithm is demonstrated through comprehensive numerical experiments. Our

numerical experiments indicate that the proposed algorithm outperforms an

implementation which ignores delays, for a range of delay probabilities.

A filter which minimizes the variance of state estimates at points in-

between the measurement sampling instants can improve the result com-

pared with the filter proposed in chapter 3. This idea has been investigated

in chapter 4. An approximate MV filter for a class of continuous discrete sys-

tems with both additive and multiplicative noise is investigated. The Euler

scheme followed by conditional moment matching is used to transform SDEs

in the process equation into a discrete model on a timescale which is finer

than the measurement timescale. We test the performance of our new filter

i.e. CDF on simulated numerical examples and compare the results with the

DDF which ignores the state behaviour in-between the measurement samples.

The results show that the CDF outperforms the DDF in all cases examined.

The results proposed in Section 4.1 have also been extended to deal with

situations when the measurement is delayed by one or more sample times.

The number of sample times by which the observation is delayed is consid-

ered to be uncertain and a fraction of the measurement sample time. As in

Section 3.1, the Euler scheme is used to transform the process into a discrete

time state space system with a higher sampling frequency than the measure-

ment frequency. Closed-form solution for variance minimizing filter which

is linear in the current measurement while being nonlinear in one or more
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past measurements is obtained for this system. The utility of the proposed

filtering algorithm is demonstrated through numerical experiments. Results

illustrate the improved accuracy achieved by the new filters when compared

to the filter which ignores delays.

The result presented in chapter 3 is extended to deal with nonlinear state

space models of the discrete time systems with additive noise where the

measurement might be delayed randomly by one sample time in chapter 5.

As in the previous chapters, we model the observations delayed by one sample

time by using Bernoulli random variables with values 0 or 1. We model the

linearisation error for system in terms of multiplicative noise and then derive

a closed-form expression for the MV filter for a system with multiplicative

noise and random delay. The performance of the proposed filter with different

levels of linearisation error and EKF has been tested on numerical example.

The results indicate that the proposed filtering algorithm can be used to

improve the filtering performance as measured by root mean squared error

when a linearized filter is used.

6.2 Suggestions for future research

The results presented in this thesis and outlined in the previous section lead

in several directions that could be studied in the future.

1. The MV filter for systems with randomly delayed observations and

additive-multiplicative noise is derived in this thesis. It would be inter-

esting to extend these results to deal with packet dropouts and missing

measurements.

2. The MV filter for systems with randomly delayed observations and

additive-multiplicative noise is derived in this thesis with uncorrelated

noises. It might also be of interest to extend these results to correlated

noises.
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3. In chapter 4 the transition equation is represented in continuous time,

while the measurement equation is made at discrete instances of time.

It might be of interest to consider the measurement equation in the

continuous time as well.

4. The methods presented in chapters 3 and 4 can be used to generate a

proposal density for a PF designed to deal with systems having random

delays and additive-multiplicative noise.

6.3 Summary

To conclude, An approximate minimum variance filter for different class of

systems (i.e. linear discrete systems, continuous-discrete time linear systems

and nonlinear discrete systems) with both additive and multiplicative noise

have been developed and have been tested on several numerical examples.

Then, a new state estimation algorithm for latent state variables is proposed

nd have been tested on several numerical examples for these class of systems

with both additive and multiplicative noise, where the measurement might be

delayed randomly by one or more sample times. Also, closed-form solution for

variance minimizing filter which is linear in the current measurement while

being nonlinear in one or more past measurements is obtained in all the cases.

However, the proposed filters can be applied to state estimation of a system

in which the estimator consists of sensors connected through communication

networks and many real-world applications where measurements are delayed

randomly and there is parametric uncertainty to be accounted for.

110



Appendix A

Appendix

Proof of Theorem 1

The filtering estimates of the state covariance is obtained by combining the

equations (3.1)-(3.6) as follows. For brevity of notation, an expression LL⊤

will sometimes be denoted as (L)(⋆)⊤, where L is a matrix-valued expression

and where there is no risk of confusion. The proof below is a straightforward

modification of a similar proof in [77] and reproduced here for the sake of

completeness. The estimation error covariance matrix at time k + 1 can be

written as

P̄ (k + 1|k + 1) = E[(X (k + 1)− X̂ (k + 1|k + 1))(⋆)⊤]

= E[((AX (k) +B + UwW(k) +G1 diag(X (k))S1(k))

− (AX̂ (k|k) +B + K̄(k + 1)(Y(k + 1)− Ŷ(k + 1|k))(⋆)⊤]

= E[A(X (k)− X̂ (k|k))(⋆)⊤A⊤] + UwU
⊤
w +G1q(k|k)G⊤

1 + K̄(k + 1)(E[(Y(k + 1)

− Ŷ(k + 1|k))(⋆)⊤]K̄(k + 1)⊤ − E[(A(X (k)− X̂ (k|k)) + UwW(k)+

G1 diag(X (k))S1(k))(Y(k + 1)− Ŷ(k + 1|k))⊤]K̄(k + 1)⊤ − K̄(k + 1)E[(Y(k + 1)

− Ŷ(k + 1|k))(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))
⊤]. (A.1)
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Next, we need the following covariance term in evaluating P̄ (k + 1|k + 1):

E[(Y(k + 1)− Ŷ(k + 1|k))(⋆)⊤] = CAP̄ (k|k)A⊤C⊤ + CUwU
⊤
wC

⊤+

CG1q(k|k)G⊤
1 C

⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 . (A.2)

We also need to evaluate some cross covariance terms, whose expressions are

derived next:

E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))(Y(k + 1)− Ŷ(k + 1|k))⊤]
= E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))(CAX (k) + CUwW(k)+

CG1 diag(X (k))S1(k) + UvV(k + 1) +G2 diag(X (k + 1))S2(k + 1)− CAX̂ (k|k)))⊤]
= E[(A(X (k)− X̂ (k|k))(X (k)− X̂ (k|k))⊤A⊤C⊤)] + UwU

⊤
wC

⊤ +G1q(k|k)G⊤
1 C

⊤

= AP̄ (k|k)A⊤C⊤ + UwU
⊤
wC

⊤ +G1q(k|k)G⊤
1 C

⊤. (A.3)

Further,

E[(Y(k + 1)− Ŷ(k + 1|k))(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))
⊤]

= CAP̄ (k|k)A⊤ + CUwU
⊤
w + CG1q(k|k)G⊤

1 . (A.4)

Substituting (A.2), (A.3) and (A.4) in (A.1), we have

P̄ (k + 1|k + 1) = AP̄ (k|k)A⊤ + UwU
⊤
w +G1q(k|k)G⊤

1 + K̄(k + 1)(CAP̄ (k|k)A⊤C⊤

+ CUwU
⊤
wC

⊤ + CG1q(k|k)G⊤
1 C

⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )K̄(k + 1)⊤

− (AP̄ (k|k)A⊤C⊤ + UwU
⊤
wC

⊤ +G1q(k|k)G⊤
1 C

⊤)K̄(k + 1)⊤−
K̄(k + 1)(CAP̄ (k|k)A⊤ + CUwU

⊤
w + CG1q(k|k)G⊤

1 )

= P̄ (k + 1|k) + K̄(k + 1)(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )K̄(k + 1)⊤

− P̄ (k + 1|k)C⊤K̄(k + 1)⊤ − K̄(k + 1)CP̄ (k + 1|k), (A.5)

where P̄ (k + 1|k) is as defined in (3.13). To find the value of K̄(k + 1) that

minimizes the trace of the estimation error covariance matrix P̄ (k+1|k+1)

we differentiate the trace of the above expression with respect to matrix

K̄(k + 1) and set the derivative to zero.

∂trP̄ (k + |k + 1)

∂K̄(k + 1)
= −2P̄ (k + 1|k)C⊤ + 2K̄(k + 1)[CP̄ (k + 1|k)C⊤+

UvU
⊤
v +G2q(k + 1|k)G⊤

2 ]. (A.6)
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Setting ∂trP̄ (k+|k+1)
∂K̄(k+1)

= 0 leads to

K̄(k + 1) = P̄ (k + 1|k)C⊤[CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 ]
−1,

(A.7)

which is the required expression.

Proof of Theorem 2

The proof is on the same lines as the proof of Theorem 1. The filtering

estimates of the covariance matrix is obtained by combining the equations

(3.23)-(3.25) as follows. The estimation error covariance matrix at time k+1

can be written as

P̄ (k + 1|k + 1) = E[(X (k + 1)− X̂ (k + 1|k + 1))(⋆)⊤]

= E[(AX (k) +B + UwW(k) +G1 diag(X (k))S1(k)− (AX̂ (k|k) +B

+ K̄(k + 1)((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k)) + pk+1(Y(k)− Ŷ(k|k))

+ ((1− pk+1)− β)Ŷ(k + 1|k) + (pk+1 − (1− β))Ŷ(k|k))))(⋆)⊤]

= E[A(X (k)− X̂ (k|k))(⋆)⊤] + UwU
⊤
w +G1q(k|k)G⊤

1 + K̄(k + 1)(E[(1− pk+1)
2]×

E[(Y(k + 1)− Ŷ(k + 1|k))(⋆)⊤] + E[(pk+1)
2]E[(Y(k)− Ŷ(k|k))(⋆)⊤]+

E[((1− pk+1)− β)2](Ŷ(k + 1|k))(⋆)⊤ + E[(pk+1 − (1− β))2](Ŷ(k|k))(⋆)⊤

+ E[(1− pk+1)(Y(k + 1)− Ŷ(k + 1|k))(pk+1(Y(k)− Ŷ(k|k)))⊤]

+ E[(pk+1(Y(k)− Ŷ(k|k)))((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k)))⊤]

+ E[((1− pk+1)− β)(pk+1 − (1− β))(Ŷ(k + 1|k)Ŷ(k|k)⊤ + Ŷ(k|k)Ŷ(k + 1|k)⊤)])×

K̄(k + 1)⊤ − E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))

((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k)) + pk+1(Y(k)− Ŷ(k|k)) + ((1− pk+1)− β)Ŷ(k + 1|k)

+ (pk+1 − (1− β))Ŷ(k|k))⊤]K̄(k + 1)⊤ − K̄(k + 1)E[((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k))+

pk+1(Y(k)− Ŷ(k|k)) + ((1− pk+1)− β)Ŷ(k + 1|k) + (pk+1 − (1− β))Ŷ(k|k))

(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))
⊤]. (A.8)
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Next, we need the following covariance terms in evaluating P̄ (k + 1|k + 1):

E[(1− pk+1)
2] = P[1− pk+1 = 0](0)2 + P[1− pk+1 = 1](1)2

= P[pk+1 = 1](0)2 + P[pk+1 = 0](1)2 = β,

E[(pk+1)
2] = P[pk+1 = 0](0)2 + P[pk+1 = 1](1)2 = 1− β,

E[(1− pk+1)− β)2] = E[(1− pk+1)
2 − 2(1− pk+1)β + β2] = β − 2β2 + β2

= β − β2 = β(1− β),

E[(1− pk+1)pk+1] = E[pk+1 − p2k+1] = β − β = 0,

E[((1− pk+1)− β)(pk+1 − (1− β))] = E[(1− pk+1)pk+1 − (1− pk+1)(1− β)

− pk+1β + β(1− β)] = 0− β(1− β)− β(1− β) + β(1− β) = −β(1− β),

(A.9)

We can also derive the following easily:

E[(Y(k + 1)− Ŷ(k + 1|k))(⋆)⊤] = E[(CX (k + 1) +D + UvV(k + 1)

+G2 diag(X (k + 1))S2(k + 1)− (CX̂ (k + 1|k) +D))(⋆)⊤]

= CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 ,

E[(Y(k)− Ŷ(k|k))(⋆)⊤]
= E[(CX (k) +D + UvV(k) +G2 diag(X (k))S2(k)− (CX̂ (k|k) +D))(⋆)⊤]

= CP̄ (k|k)C⊤ + UvU
⊤
v +G2q(k|k)G⊤

2 ,

(A.10)

We also need to evaluate some cross covariance terms, whose expressions are

derived next:

E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k))

+ pk+1(Y(k)− Ŷ(k|k)) + ((1− pk+1)− β)Ŷ(k + 1|k) + (pk+1 − (1− β))Ŷ(k|k))⊤]

= E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))

((1− pk+1)(CAX (k) + CUwW(k) + CG1 diag(X (k))S1(k) + UvV(k + 1)+

G2 diag(X (k + 1))S2(k + 1)− CAX̂ (k|k)))⊤] + E[(A(X (k)− X̂ (k|k)) + UwW(k)+
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G1 diag(X (k))S1(k))(pk+1(CX (k) + UvV(k) +G2 diag(X (k))S2(k)− CX̂ (k|k)))⊤]

+ E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))

(((1− pk+1)− β)ψ0(k + 1) + (pk+1 − (1− β))ψ1(k + 1))⊤]

= E[1− pk+1]E[(A(X (k)− X̂ (k|k))(X (k)− X̂ (k|k))⊤A⊤C⊤)] + UwU
⊤
wC⊤

+G1q(k)G
⊤
1 C

⊤ + E(pk+1)(E[A(X (k)− X̂ (k|k))(C(X (k)− X̂ (k|k)))⊤]

= β(AP̄ (k|k)A⊤C⊤ + UwU
⊤
wC⊤ +G1q(k|k)G⊤

1 C
⊤) + (1− β)AP̄ (k|k)C⊤

= βP̄ (k + 1|k)C⊤ + (1− β)AP (k|k)C⊤ (A.11)

Similarly,

E[((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k)) + pk+1(Y(k)− Ŷ(k|k)) + ((1− pk+1)− β)ψ0(k + 1)

+ (pk+1 − (1− β))ψ1(k + 1))(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(Xj(k))S1(k))
⊤]

= βCP̄ (k + 1|k) + (1− β)CP̄ (k|k)A⊤, (A.12)

Substituting (A.9)- (A.12) in (A.8), we have

P̄ (k + 1|k + 1) = P̄ (k + 1|k) + K̄(k + 1)(β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )

+ (1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +G2q(k|k)G⊤

2 ) + β(1− β)(ψ̃0(k + 1) + ψ̃1(k + 1))

− β(1− β)(ψ0(k + 1)ψ1(k + 1)⊤ + ψ1(k + 1)ψ0(k + 1)⊤))K̄(k + 1)⊤

− (βP̄ (k + 1|k)C⊤ + (1− β)AP̄ (k|k)C⊤)K̄(k + 1)⊤

− K̄(k + 1)(βCP̄ (k + 1|k) + (1− β)CP̄ (k|k)A⊤), (A.13)

where P̄ (k + 1|k), ψi(k + 1) and ψ̃i(k + 1), i = 0, 1 are as defined in (3.28).

To find the value of K̄(k + 1) that minimizes the trace of the estimation error

covariance matrix P̄ (k+1|k+1) we differentiate the trace of the above expression

with respect to the filter gain matrix K̄(k + 1) and set the derivative to zero.

∂trP̄ (k + 1|k + 1)

∂K̄(k + 1)
= −2(βP̄ (k + 1|k) + (1− β)AP̄ (k|k))C⊤ + 2K̄(k + 1)[β(UvU

⊤
v +

CP̄ (k + 1|k)C⊤ +G2q(k + 1|k)G⊤
2 ) + (1− β)(CP̄ (k|k)C⊤ + UvU

⊤
v +G2q(k|k)G⊤

2 )+

β(1− β)(ψ̃0(k + 1) + ψ̃1(k + 1))− β(1− β)(ψ0(k + 1)ψ1(k + 1)⊤ + ψ1(k + 1)ψ0(k + 1)⊤)].

(A.14)
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Setting ∂trP̄ (k+|k+1)
∂K̄(k+1)

= 0 leads the following expression for K̄(k + 1) :

K̄(k + 1) = (βP̄ (k + 1|k) + (1− β)AP̄ (k|k))C⊤[β(UvU
⊤
v + CP̄ (k + 1|k)C⊤

+G2q(k + 1|k)G⊤
2 ) + (1− β)(CP̄ (k|k)C⊤ + UvU

⊤
v +G2q(k|k)G⊤

2 ) + β(1− β)(ψ̃0(k + 1)

+ ψ̃1(k + 1))− β(1− β)(ψ0(k + 1)ψ1(k + 1)⊤ + ψ1(k + 1)ψ0(k + 1)⊤)]−1,

(A.15)

which is the required result.

Proof of Theorem 3

This proof follows along the same lines as the proof of earlier theorems although

it is notationally more involved. The approximated conditional mean of X (k+1),

which provides the predictor, X̂ (k + 1|k), is derived using (3.1):

X̂ (k + 1|k) = AX̂ (k|k) +B. (A.16)

In the case that the measurements are randomly delayed by N sampling times, the

update equation for a linear filter using N step randomly delayed measurement is

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K̄(k + 1)(Z(k + 1)− Ẑ(k + 1|k))

= AX̂ (k|k) +B + K̄(k + 1)(Z(k + 1)− Ẑ(k + 1|k)), (A.17)

where K̄(k + 1) is derived by minimizing the trace of the estimation error covari-

ance matrix and Z(k + 1) is as defined in (3.29).

Next, note that

P̄ (k + 1|k + 1) = E[(X (k + 1)− X̂ (k + 1|k + 1))(⋆)⊤]

= E[(AX (k) +B + UwW(k) +G1 diag(X (k))S1(k)− (AX̂ (k|k) +B+

K̄(k + 1)(Z(k + 1)− Ẑ(k + 1|k))))(⋆)⊤]
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= E[A(X (k)− X̂ (k|k))(⋆)⊤A⊤] + UwU
⊤
w +G1q(k|k)G⊤

1 + K̄(k + 1)E[(Z(k + 1)

− Ẑ(k + 1|k))(⋆)⊤]K̄(k + 1)⊤ − E[(A(X (k)− X̂ (k|k)) + UwW(k)

+G1 diag(X (k))S1(k))(Z(k + 1)− Ẑ(k + 1|k))⊤K̄(k + 1)⊤ − K̄(k + 1)E[(Z(k + 1)

− Ẑ(k + 1|k))(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))
⊤]. (A.18)

Using Remark 4, we can write our one step ahead prediction of Z(k+ 1) in terms

of the past predictions of Ŷ(k + 1− i|k) as

Ẑ(k + 1|k) = βŶ(k + 1|k) + (1− β)βŶ(k|k) + (1− β)2βŶ(k − 1|k)

+ · · ·+ (1− β)N−1βŶ(k −N + 1|k) + (1− β)N Ŷ(k −N + 1|k)

= β
N−1∑

i=0

(1− β)iŶ(k + 1− i|k) + (1− β)N Ŷ(k −N + 1|k). (A.19)

Combining and re-arranging,

(Z(k + 1)− Ẑ(k + 1|k))

=
N−1∑

i=0

(
i∏

j=0

pjk+1)(1− pi+1
k+1)(Y(k + 1− i)− Ŷ(k + 1− i|k))

︸ ︷︷ ︸
T1

+ (
N∏

i=0

pik+1)(Y(k −N + 1)− Ŷ(k −N + 1|k))
︸ ︷︷ ︸

T2

+
N−1∑

i=0

⎛

⎝(
i∏

j=0

pjk+1)(1− pi+1
k+1)− β(1− β)i

⎞

⎠ Ŷ(k + 1− i|k)

︸ ︷︷ ︸
T3

+

(
(
N∏

i=0

pik+1)− (1− β)N
)
Ŷ(k −N + 1|k)

︸ ︷︷ ︸
T4

, (A.20)

Next, using the notation defined in (A.20) and using the fact that pik+1 are i.i.d.,
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we can easily show that

χ̂(k) := E[(Z(k + 1)− Ẑ(k + 1|k))(Z(k + 1)− Ẑ(k + 1|k))⊤] =

E(
4∑

i,j=1

TiT
⊤
j ) = E(

4∑

i=1

TiT
⊤
i ) + E(T1T

⊤
2 + T2T

⊤
1 )︸ ︷︷ ︸

equals zero

+E(
4∑

j=3

T1T
⊤
j + TjT

⊤
1 )

︸ ︷︷ ︸
equals zero

+ E(
4∑

j=3

T2T
⊤
j + TjT

⊤
2 )

︸ ︷︷ ︸
equals zero

+E(T3T
⊤
4 + T4T

⊤
3 ). (A.21)

where E[T1T
⊤
1 ] =

N−1∑

i=0

p̂ikE[(Y(k + 1− i)− Ŷ(k + 1− i|k))(⋆)⊤]

=
N−1∑

i=0

E[(
i∏

j=0

pjk+1(1− pi+1
k+1))

2]E[(CX (k + 1− i) +D + UvV(k + 1− i)

+G2 diag(X (k + 1− i))S2(k + 1− i)− (CX̂ (k + 1− i|k) +D))(⋆)⊤]

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v

+G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)iE[(C(A(A−i(X (k)−B − UwW(k − 1)−

G1 diag(X (k − 1))S1(k − 1)− (X̂ (k|k)−B)) +
i−1∑

j=1

A−(i−j)(−B − UwW(k − (j + 1))

−G1 diag(X (k − (j + 1)))S1(k − (j + 1)) +B)) + UwW(k − i) +G1 diag(X (k − i))S1(k − i))

+ UvV(k + 1− i) +G2 diag(X (k + 1− i))S2(k + 1− i)))(⋆)⊤)]

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +

G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)iE[(C(A(A−i(X (k)− UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1))+

i−2∑

j=1

A−(i−j)(−UwW(k − (j + 1))−G1 diag(X (k − (j + 1)))S1(k − (j + 1)))) + UvV(k + 1− i)
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+G2 diag(X (k + 1− i))S2(k + 1− i)− (CA−i+1X̂ (k|k)))(⋆)⊤)]

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +

G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)i(C(A−i+1(P̄ (k|k) + UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−i+1)⊤

+
i−2∑

j=1

A−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤)C⊤ + UvU

⊤
v +G2q(k + 1− i|k)G⊤

2

+ E[(CA−i+1(X (k)− X̂ (k|k)))(CA−i+1(−UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1))+

i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))−G1 diag(X (k − (j + 1)))S1(k − (j + 1))))⊤]

+ E[(CA−i+1(−UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)) +
i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))

−G1 diag(X (k − (j + 1)))S1(k − (j + 1))))(CA−i+1(X (k)− X̂ (k|k)))⊤])

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +

G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)i(C(A−i+1(P̄ (k|k) + UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−i+1)⊤+

i−2∑

j=1

A−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤)C⊤ + UvU

⊤
v +G2q(k + 1− i|k)G⊤

2

+ E[(CA−i+1(X (k)− X̂ (k|k)))(CA−i+1(−UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)))⊤]+

E[(CA−i+1(X (k)− X̂ (k|k)))(
i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))−

G1 diag(X (k − (j + 1)))S1(k − (j + 1))))⊤]) + E[(CA−i+1(−UwW(k − 1)−

G1 diag(X (k − 1))S1(k − 1)))(CA−i+1(X (k)− X̂ (k|k)))⊤]+

E[(
i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))−G1 diag(X (k − (j + 1)))S1(k − (j + 1))))

(CA−i+1(X (k)− X̂ (k|k)))⊤])

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +

G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)i(C(A−i+1(P̄ (k|k) + UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−i+1)⊤

+
i−2∑

j=1

A−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤)C⊤ + UvU

⊤
v +G2q(k + 1− i|k)G⊤

2

− CA−i+1(UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−i+1)⊤C⊤−

(CA−i+1
i−2∑

j=1

Aj(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤))
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− CA−i+1(UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−i+1)⊤C⊤−

(C
i−2∑

j=1

A−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤))

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +

G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)i(C(A−i+1(P̄ (k|k))(A−i+1)⊤C⊤ + UvU
⊤
v +G2q(k + 1− i|k)G⊤

2

− CA−i+1(UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−i+1)⊤C⊤−

(C
i−2∑

j=1

A−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤))

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +

G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)i(C(A−i+1(P̄ (k|k))(A−i+1)⊤C⊤ + UvU
⊤
v +G2q(k + 1− i|k)G⊤

2

(C
i−2∑

j=0

A−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤)) (A.22)

E[T2T
⊤
2 ] = p̂Nk E[(Y(k −N + 1)− Ŷ(k −N + 1|k))(⋆)⊤]

= (1− β)NE[CX (k + 1−N) +D + UvV(k + 1−N)

+G2 diag(X (k + 1−N))S2(k + 1−N)− (CX̂ (k + 1−N |k) +D))(⋆)⊤]

= (1− β)NE[C(A−N (X (k + 1)−B − UwW(k)−G1 diag(X (k))S1(k))+

N−1∑

i=1

A−(N−i)(−B − UwW(k − i)−G1 diag(X (k − i)))S1(k − i))) +D + UvV(k + 1−N)

+G2 diag(X (k + 1−N))S2(k + 1−N)− (CA−N X̂ (k + 1|k)−B −B +D))(⋆)⊤]

= (1− β)N (C(A−N (P̄ (k + 1|k) + UwU
⊤
w +G1q(k|k)G⊤

1 )(A
−N )⊤+

N−1∑

i=1

A−(N−i)(UwU
⊤
w +G1q(k − i|k)G⊤

1 )(A
−(N−i))⊤)C⊤ + UvU

⊤
v +G2q(k + 1−N |k)G⊤

2 +

E[(CA−NX (k + 1))(CA−N (−UwW(k)−G1 diag(X (k))S1(k)))
⊤]+
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E[(CA−NX (k + 1))(C
N−1∑

i=1

A−(N−i)(−UwW(k − i)−G1 diag(X (k − i)))S1(k − i))⊤]+

E[(CA−N (−UwW(k)−G1 diag(X (k))S1(k)))(CA−NX (k + 1))⊤]+

E[(C
N−1∑

i=1

A−(N−i)(−UwW(k − i)−G1 diag(X (k − i)))S1(k − i))(CA−NX (k + 1))⊤])

= (1− β)N (C(A−N (P̄ (k + 1|k) + UwU
⊤
w +G1q(k|k)G⊤

1 )(A
−N )⊤ +

N−1∑

i=1

A−(N−i)(UwU
⊤
w

+G1q(k − i|k)G⊤
1 )(A

−(N−i))⊤)C⊤ + UvU
⊤
v +G2q(k + 1−N |k)G⊤

2 −

CA−N (UwU
⊤
w +G1q(k|k)G⊤

1 )(A
−N )⊤C⊤ − CA−N

N−1∑

i=1

Ai(UwU
⊤
w

+G1q(k − i|k)G⊤
1 )(A

−(N−i))⊤C⊤ − CA−N (UwU
⊤
w +G1q(k|k)G⊤

1 )(A
−N )⊤C⊤

− C
N−1∑

i=1

A−(N−i)(UwU
⊤
w +G1q(k − i|k)G⊤

1 )(A
−(N−i))⊤C⊤)

= (1− β)N (CA−N P̄ (k + 1|k)(A−N )⊤C⊤ + UvU
⊤
v +G2q(k + 1−N |k)G⊤

2

− CA−N (UwU
⊤
w +G1q(k|k)G⊤

1 )(A
−N )⊤C⊤

− C
N−1∑

i=1

A−(N−i)(UwU
⊤
w +G1q(k − i|k)G⊤

1 )(A
−(N−i))⊤C⊤)

= (1− β)N (CA−N P̄ (k + 1|k)(A−N )⊤C⊤ + UvU
⊤
v +G2q(k + 1−N |k)G⊤

2

− C
N−1∑

i=0

A−(N−i)(UwU
⊤
w +G1q(k − i|k)G⊤

1 )(A
−(N−i))⊤C⊤) (A.23)

E[T3T
⊤
3 ] =

N−1∑

i=0

˜̂p
i
kE[Ŷ(k + 1− i|k))(⋆)⊤] =

N−1∑

i=0

(β(1− β)i − β2(1− β)2i)ψ̃i(k + 1),

(A.24)

E[T4T
⊤
4 ] = ˜̂p

N
k E[Ŷ(k −N + 1|k)(⋆)⊤] = ((1− β)N − (1− β)2N )ψ̃N (k + 1),

(A.25)
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E(T3T
⊤
4 ) = −β(1− β)N

N−1∑

i=0

(1− β)iψi(k + 1)ψN (k + 1)⊤, (A.26)

E(T4T
⊤
3 ) = −β(1− β)NψN (k + 1)

N−1∑

i=0

(1− β)iψi(k + 1)⊤, (A.27)

where

P̄ (k + 1|k) = AP̄ (k|k)A⊤ + UwU
⊤
w +G1q(k|k)G⊤

1 ,

Ŷ(k + 1− i|k) = CX̂ (k + 1− i|k) +D =: ψi(k + 1),

ψ̃i(k + 1) = ψi(k + 1)ψi(k + 1)⊤,

(A.28)

Substituting (A.22) - (A.27) at (A.21) we have

χ̂(k) := E(Z(k + 1)− Ẑ(k + 1|k))(⋆)⊤

= β(CP̄ (k + 1|k)C⊤ + UvU
⊤
v +G2q(k + 1|k)G⊤

2 )) + β(1− β)(CP̄ (k|k)C⊤ + UvU
⊤
v +

G2q(k|k)G⊤
2 )) +

N−1∑

i=2

β(1− β)i(C(A−i+1(P̄ (k|k))(A−i+1)⊤C⊤ + UvU
⊤
v +G2q(k + 1− i|k)G⊤

2

− (C
i−2∑

j=0

A−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤))

+ (1− β)N (CA−N P̄ (k + 1|k)(A−N )⊤C⊤ + UvU
⊤
v +G2q(k + 1−N |k)G⊤

2

− C
N−1∑

i=0

A−(N−i)(UwU
⊤
w +G1q(k − i|k)G⊤

1 )(A
−(N−i))⊤C⊤)

+
N−1∑

i=0

(β(1− β)i − β2(1− β)2i)ψ̃i(k + 1) + ((1− β)N − (1− β)2N )ψ̃N (k + 1)

− β(1− β)N
N−1∑

i=0

(1− β)iψi(k + 1)ψN (k + 1)⊤ − β(1− β)NψN (k + 1)
N−1∑

i=0

(1− β)iψi(k + 1)⊤

(A.29)

We need to evaluate the following expectation to get an expression for P̄ (k +

122



1|k + 1):

E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))(
N−1∑

i=0

(
i∏

j=0

pjk+1)(1− pi+1
k+1)(Y(k + 1− i)

− Ŷ(k + 1− i|k)) +
N∏

i=0

(pik+1)(Y(k −N + 1)− Ŷ(k −N + 1|k))+

N−1∑

i=0

⎛

⎝
i∏

j=0

pjk+1(1− pi+1
k+1)− β(1− β)i

⎞

⎠ψi(k + 1) +

(
(
N∏

i=0

pik+1)− (1− β)N
)
ψN (k + 1))⊤]

=
N−1∑

i=0

β(1− β)iE[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))

(CX (k + 1− i) + UvV(k + 1− i) +G2 diag(X (k + 1− i))S2(k + 1− i)− CAX̂ (k − i|k))⊤]

+ E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))×

(
N∏

i=0

pik+1(Y(k −N + 1)− Ŷ(k −N + 1|k)))⊤] +
N−1∑

i=0

E[(A(X (k)− X̂ (k|k)) + UwW(k)+

G1 diag(X (k))S1(k)) (

⎛

⎝
i∏

j=0

pjk+1(1− pi+1
k+1)− β(1− β)i

⎞

⎠ψi(k + 1))⊤]

︸ ︷︷ ︸
equals zero

+E[(A(X (k)− X̂ (k|k))

+ UwW(k) +G1 diag(X (k))S1(k)) (

(
(
N∏

i=0

pik+1)− (1− β)N
)
ψN (k + 1)⊤)

︸ ︷︷ ︸
equals zero

= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(E[(A(X (k)− X̂ (k|k))+

UwW(k) +G1 diag(X (k))S1(k))(CX (k + 1− i) + UvV(k + 1− i)+

G2 diag(X (k + 1− i))S2(k + 1− i)− CX̂ (k + 1− i|k))⊤])+

(1− β)N (E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))(C(X (k + 1−N)+

D + UvV(k + 1−N) +G2 diag(X (k + 1−N))S2(k + 1−N)− X (k + 1−N |k))⊤]
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= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(E[(A(X (k)− X̂ (k|k)))×

(CX (k + 1− i)− CX̂ (k + 1− i|k))⊤]) + (1− β)N (E[(A(X (k)− X̂ (k|k)))×

(C(X (k + 1−N)− X (k + 1−N |k))⊤]

To find E[A(X (k)−X̂ (k|k))(C(X (k+1−i)−X̂ (k+1−i|k)))⊤] and E[A(X (k)−
X̂ (k|k))(C(X (k + 1−N)− X̂ (k + 1−N |k)))⊤], we will use lemma 2:

Hence E[(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))(
N−1∑

i=0

(
i∏

j=0

pjk+1)(1− pi+1
k+1)

(Y(k + 1− i)− Ŷ(k + 1− i|k)) +
N∏

i=0

(pik+1)(Y(k −N + 1)− Ŷ(k −N + 1|k))+

N−1∑

i=0

⎛

⎝
i∏

j=0

pjk+1(1− pi+1
k+1)− β(1− β)i

⎞

⎠ψi(k + 1) +

(
(
N∏

i=0

pik+1)− (1− β)N
)
ψN (k + 1))⊤]

= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(E[(A(X (k)− X̂ (k|k)))(CA(A−i(X (k)

−B − UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)) +
i−1∑

j=1

A−(i−j)(−B − UwW(k − (j + 1))

−G1 diag(X (k − (j + 1)))S1(k − (j + 1)))) + UwW(k − i) +G1 diag(X (k − i))S1(k − i))

− (CAA−iX̂ (k|k)−B −B))⊤]) + (1− β)N (E[(A(X (k)− X̂ (k|k)))(CA(A−N (X (k)−B−

UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)) +
N−1∑

i=1

A−(N−i)(−B − UwW(k − (i+ 1))

−G1 diag(X (k − (i+ 1)))S1(k − (i+ 1))) + UwW(k −N)

+G1 diag(X (k −N))S1(k −N))− (CAA−NX (k|k)−B −B))⊤]

= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(E[(A(X (k)− X̂ (k|k)))

(C(A−i+1(X (k)− UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1))+
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i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))−G1 diag(X (k − (j + 1)))S1(k − (j + 1))))

− CAA−iX̂ (k|k))⊤]) + (1− β)N (E[(A(X (k)− X̂ (k|k)))

(CA(A−N (X (k)− UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)) +
N−2∑

i=1

A−(N−i)+1(−

UwW(k − (i+ 1))−G1 diag(X (k − (i+ 1)))S1(k − (i+ 1)))− CAA−NX (k|k))⊤]

= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(AP̄ (k|k)(A−i+1)⊤C⊤ + E[A(X (k)

− X̂ (k|k))(CA−i+1(−UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)))⊤] + E[A(X (k)− X̂ (k|k))×

(
i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))−G1 diag(X (k − (j + 1)))S1(k − (j + 1))))⊤]

+ (1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤ + E[(A(X (k)− X̂ (k|k)))(CA−N+1(−UwW(k − 1)

−G1 diag(X (k − 1))S1(k − 1)))⊤] + E[(A(X (k)− X̂ (k|k)))(
N−2∑

i=1

A−(N−i)+1×

(−UwW(k − (i+ 1))−G1 diag(X (k − (i+ 1)))S1(k − (i+ 1))))⊤]

= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(AP̄ (k|k)(A−i+1)⊤C⊤+

E[A(AX (k − 1) + UwW(k − 1) +G1 diag(X (k − 1))S1(k − 1))−AX̂ (k − 1|k))

× (CA−i+1(−UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)))⊤]+

E[A(X (k)− X̂ (k|k))(C
i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))−

G1 diag(X (k − (j + 1)))S1(k − (j + 1))))⊤] + (1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤+

E[(A(AX (k − 1) + UwW(k − 1) +G1 diag(X (k − 1))S1(k − 1))−AX̂ (k − 1|k))

(CA−N+1(−UwW(k − 1)−G1 diag(X (k − 1))S1(k − 1)))⊤]+

E[(A(X (k)− X̂ (k|k)))(C
N−2∑

i=1

A−(N−i)+1(−B − UwW(k − (i+ 1))

−G1 diag(X (k − (i+ 1)))S1(k − (i+ 1))))⊤]
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= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(AP̄ (k|k)A−i+1C⊤ −A(UwU
⊤
w+

G1q(k − 1|k)G⊤
1 )(A

−i+1)⊤C⊤ + E[A(X (k)− X̂ (k|k))(C
i−2∑

j=1

A−(i−j)+1(−UwW(k − (j + 1))

−G1 diag(X (k − (j + 1)))S1(k − (j + 1))))⊤] + (1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤−

A(UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−N+1)⊤C⊤ + E[(A(X (k)− X̂ (k|k)))

(C
N−2∑

i=1

A−(N−i)+1(−B − UwW(k − (i+ 1))−G1 diag(X (k − (i+ 1)))S1(k − (i+ 1))))⊤]

= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(AP̄ (k|k)A−i+1C⊤ −A(UwU
⊤
w+

G1q(k − 1|k)G⊤
1 )(A

−i+1)⊤C⊤ −
i−2∑

j=1

Aj+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤+

(1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤ −A(UwU
⊤
w +G1q(k − 1|k)G⊤

1 )(A
−N+1)⊤C⊤

−
N−2∑

i=1

Ai+1(UwU
⊤
w +G1q(k − (i+ 1)|k)G⊤

1 )(A
−(N−i)+1)⊤C⊤

= β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(AP̄ (k|k)(A−i+1)⊤C⊤−

i−2∑

j=0

Aj+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤ + (1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤

−
N−2∑

i=0

Ai+1(UwU
⊤
w +G1q(k − (i+ 1)|k)G⊤)(A−(N−i)+1)⊤C⊤ (A.30)

where, as before,

Ŷ(k + 1− i|k) = ψi(k + 1). (A.31)
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Similarly,

E[(
N−1∑

i=0

(
i∏

j=0

pjk+1)(1− pi+1
k+1)(Y(k + 1− i)− Ŷ(k + 1− i|k)) +

N∏

i=0

(pik+1)(Y(k −N + 1)−

Ŷ(k −N + 1|k)) +
N−1∑

i=0

⎛

⎝
i∏

j=0

pjk+1(1− pi+1
k+1)− β(1− β)i

⎞

⎠ψi(k + 1)+

(
(
N∏

i=0

pik+1)− (1− β)N
)
ψN (k + 1))(A(X (k)− X̂ (k|k)) + UwW(k) +G1 diag(X (k))S1(k))

⊤]

= β(CP̄ (k + 1|k)) + β(1− β)CP̄ (k|k)A⊤ +
N−1∑

i=2

β(1− β)i(CA−i+1P̄ (k|k)A⊤−

i−2∑

j=0

CA−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
j+1)⊤ + (1− β)NCA−N+1(P̄ (k|k)A⊤

−
N−2∑

i=0

CA−(N−i)+1(UwU
⊤
w +G1q(k − (i+ 1)|k)G⊤

1 )(A
i+1)⊤. (A.32)

After substituting (A.29)- (A.32) in (A.18), we arrive at the following expression

for the estimation error covariance matrix:

P̄ (k + 1|k + 1) = P̄ (k + 1|k) + K̄(k + 1)χ̂(k + 1)K̄(k + 1)⊤ − (β(P̄ (k + 1|k)C⊤)+

β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=2

β(1− β)i(AP̄ (k|k)(A−i+1)⊤C⊤ −
i−2∑

j=0

Aj+1(UwU
⊤
w

+G1q(k − (j + 1)|k)G⊤
1 )(A

−(i−j)+1)⊤C⊤) + (1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤−
N−2∑

i=0

Ai+1(UwU
⊤
w +G1q(k − (i+ 1))G⊤

1 )(A
−(N−i)+1)⊤C⊤))K̄(k + 1)⊤

− K̄(k + 1)(β(CP̄ (k + 1|k)) + β(1− β)CP̄ (k|k)A⊤ +
N−1∑

i=1

β(1− β)i(CA−i+1P̄ (k|k)A⊤−

i−2∑

j=0

CA−(i−j)+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
j+1)⊤ + (1− β)NCA−N+1(P̄ (k|k)A⊤

−
N−2∑

i=0

CA−(N−i)+1(UwU
⊤
w +G1q(k − (i+ 1)|k)G⊤

1 )(A
i+1)⊤), (A.33)
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To find the value of K̄(k+1) that minimizes the trace of the covariance P̄ (k+1|k+1)

we differentiate the trace of the above expression with respect to the filter gain

matrix K̄(k + 1) and set the derivative to zero.

∂trP̄ (k + |k + 1)

∂K̄(k + 1)
= −2(β(P̄ (k + 1|k)C⊤) + β(1− β)AP̄ (k|k)C⊤ +

N−1∑

i=1

β(1− β)i(AP̄ (k|k)×

(A−i+1)⊤C⊤ −
i−2∑

j=0

Aj+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤)

+ (1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤ −
N−2∑

i=0

Ai+1(UwU
⊤
w +G1q(k − (i+ 1)|k)G⊤

1 )×

(A−(N−i)+1)⊤C⊤)) + 2K̄(k + 1)χ̂(k + 1) (A.34)

Setting ∂trP̄ (k+|k+1)
∂K̄(k+1)

= 0 leads the following expression for K̄(k + 1) :

K̄(k + 1) = (βP̄ (k + 1|k)C⊤ + β(1− β)AP̄ (k|k)C⊤ +
N−1∑

i=1

β(1− β)i(AP̄ (k|k)(A−i+1)⊤C⊤−

i−2∑

j=0

Aj+1(UwU
⊤
w +G1q(k − (j + 1)|k)G⊤

1 )(A
−(i−j)+1)⊤C⊤) + (1− β)N (AP̄ (k|k)(A−N+1)⊤C⊤

−
N−2∑

i=0

Ai+1(UwU
⊤
w +G1q(k − (i+ 1)|k)G⊤

1 )(A
−(N−i)+1)⊤C⊤))χ̂(k + 1)−1

(A.35)

where P̄ (k + 1|k) is as defined in (A.28).

This concludes the proof of theorem 3.

Proof of Theorem 4

This proof follows along the same lines as the proof of earlier theorems. The

filtering estimates of the state covariance is obtained by combining the equations

(4.2)-(4.18) as follows. The estimation error covariance matrix at time k + 1 can
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be written as

P̄ (ti+1
k |tk+1) = E[(X (ti+1

k )− X (ti+1
k |tk+1))(⋆)

⊤]

= E[ÃX (tik) + B̃ + ŨmW(tik) + G̃diag(X γ
j (t

i
k))S(tik)−

(ÃX̂ (tik|tk) + B̃ + K̄(tik+1)(Y(tk+1)− Ŷ(tk+1|tk)))(⋆)⊤]

= E[Ã(X (tik)− X̂ (tik|tk))(⋆)⊤] + ŨmŨ⊤
m + G̃E[ diag(X γ

j (t
i
k)) diag(X

γ
j (t

i
k))

⊤]G̃⊤+

K̄(tik+1)(E(Y(tk+1)− Ŷ(tk+1|tk))(⋆)⊤)K̄(tik+1)
⊤−

(ÃX (tik) + B̃ + ŨmW(tik) + G̃diag(X γ
j (t

i
k))S(tik)− X̂ (tik|tk)−B)

(K̄(tik+1)(Y(tk+1)− Ŷ(tk+1|tk)))⊤ − (K̄(tik+1)(Y(tk+1)− Ŷ(tk+1|tk)))

(ÃX (tik) + B̃ + ŨmW(tik) + G̃diag(X γ
j (t

i
k))S(tik)− X̂ (tik|tk)−B)⊤ (A.36)

Next, we need the following covariance term in evaluating P̄ (ti+1
k |tk):

E[(Y(tk+1)− Ŷ(tk+1|tk))(⋆)⊤)] = CP̄ (tmk |tk)C⊤ + UvU
⊤
v (A.37)

We also need to evaluate some cross covariance terms, whose expressions are de-

rived next:

E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW(tik) + G̃ diag(X γ
j (t

i
k))S(tik))(Y(tk+1)− Ŷ(tk+1|tk))⊤]

= E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW(tik) + G̃ diag(X γ
j (t

i
k))S(tik))

(C(X (tmk )− X̂ (tmk |tk)) + UvV(tmk ))⊤]

= E[(Ã(Ãi−m(X (tmk )− B̃ − ŨmW̃(tm−1
k )− G̃diag(X γ

j (t
m−1
k ))S̃(tm−1

k )))+

m−i−1∑

r=1

Ã−(m−i−r)(−B̃ − ŨmW̃(tm−(r+1)
k )− G̃diag(X γ

j (t
m−(r+1)
k ))S̃(tm−(r+1)

k )) +B)

− (Ãi−m+1X (tmk |tk))− B̃) + ŨmW(tik) + G̃ diag(X γ
j (t

i
k))S(tik))

(C(X (tmk )− X̂ (tmk |tk)) + UvV(tmk ))

= E[(Ã(Ãi−m(X (tmk )− ŨmW̃(tm−1
k )− G̃ diag(X γ

j (t
m−1
k ))S̃(tm−1

k )))+

m−i−2∑

r=1

Ã−(m−i−r)(−ŨmW̃(tm−(r+1)
k )− G̃ diag(X γ

j (t
m−(r+1)
k ))S̃(tm−(r+1)

k ))

129



− (Ãi−m+1X (tmk |tk)))(C(X (tmk )− X̂ (tmk |tk)) + UvV(tmk ))

= Ãi−m+1(P̄ (tmk |tk)− ŨmŨ⊤
m − G̃E[ diag(X γ

j (t
m−1
k )) diag(X γ

j (t
m−1
k ))⊤]G̃⊤)C⊤

−
m−i−2∑

r=1

Ã−(m−i−r)+1(ŨmŨ⊤
m + G̃E[ diag(X γ

j (t
m−(r+1)
k )) diag(X γ

j (t
m−(r+1)
k ))⊤]G̃⊤)(Ã(r))⊤C⊤

(A.38)

Further,

E[(Y(tk+1)− Ŷ(tk+1|tk))(Ã(X (tik)− X̂ (tik|tk)) + ŨmW(ti+1
k ) + G̃ diag(X γ

j (t
i
k))S(ti+1

k ))⊤]

= C(P̄ (tmk |tk)− ŨmŨ⊤
m − G̃E[ diag(X γ

j (t
m−1
k )) diag(X γ

j (t
m−1
k ))⊤]G̃⊤)(Ãi−m+1)⊤

−
m−i−2∑

r=1

C(Ãr)(ŨmŨ⊤
m + G̃E[ diag(X γ

j (t
m−(r+1)
k )) diag(X γ

j (t
m−(r+1)
k ))⊤]G̃⊤)(Ã−(m−i−r)+1)⊤

(A.39)

Substituting (A.37), (A.38) and (A.39) in (A.36), we have

P̄ (ti+1
k |tk) = ÃP̄ (tik|tk)Ã⊤ + ŨmŨ⊤

m + G̃E[ diag(X γ
j (t

i
k)) diag(X

γ
j (t

i
k))

⊤]G̃⊤

+ K̄(tik+1)(CP̄ (tmk |tk)C⊤ + UvU
⊤
v )K̄(tik+1)

⊤ − (Ãi−m+1(P̄ (tmk |tk)− ŨmŨ⊤
m

− G̃E[ diag(X γ
j (t

m−1
k )) diag(X γ

j (t
m−1
k ))⊤]G̃⊤)C⊤ −

m−i−2∑

r=1

Ã−(m−i−r)+1(ŨmŨ⊤
m+

G̃E[ diag(X γ
j (t

m−(r+1)
k )) diag(X γ

j (t
m−(r+1)
k ))⊤]G̃⊤)(Ã(r))⊤C⊤)K̄⊤(tik+1)−

K̄(tik+1)(C(P̄ (tmk |tk)− ŨmŨ⊤
m − G̃E[ diag(X γ

j (t
m−1
k )) diag(X γ

j (t
m−1
k ))⊤]G̃⊤)(Ãi−m+1)⊤

−
m−i−2∑

r=1

C(Ãr)(ŨmŨ⊤
m + G̃E[ diag(X γ

j (t
m−(r+1)
k )) diag(X γ

j (t
m−(r+1)
k ))⊤]G̃⊤)(Ã−(m−i−r)+1)⊤)

where E[ diag(X γ
j (t

i
k)) diag(X

γ
j (t

i
k))

⊤] is as in equation (9). To find the value of

K̄(tik+1) that minimizes the trace of the covariance P̄ (ti+1
k |tk) we differentiate the

trace of the above expression with respect to the filter gain matrix K̄(tik+1) and

set the derivative to zero.

∂trP̄ (ti+1
k |tk)

∂K̄(tik+1)
= −2(Ãi−m+1(P̄ (tmk |tk)− ŨmŨ⊤

m − G̃E[ diag(X γ
j (t

m−1
k )) diag(X γ

j (t
m−1
k ))⊤]G̃⊤)C⊤

−
m−i−2∑

r=1

Ã−(m−i−r)+1(ŨmŨ⊤
m + G̃E[ diag(X γ

j (t
m−(r+1)
k )) diag(X γ

j (t
m−(r+1)
k ))⊤]G̃⊤)(Ã(r))⊤C⊤)

+ 2K̄(tik+1)(CP̄ (tmk |tk)C⊤ + UvU
⊤
v ) (A.40)

130



Setting this partial derivative to zero leads the following expression for K̄(tik+1) :

K̄(tik+1) = (Ãi−m+1(P̄ (tmk |tk)− ŨmŨ⊤
m − G̃E[ diag(X γ

j (t
m−1
k )) diag(X γ

j (t
m−1
k ))⊤]G̃⊤)C⊤−

m−i−2∑

r=1

Ã−(m−i−r)+1(ŨmŨ⊤
m + G̃E[ diag(X γ

j (t
m−(r+1)
k )) diag(X γ

j (t
m−(r+1)
k ))⊤]G̃⊤)(Ã(r))⊤C⊤)

[CP̄ (tmk |tk)C⊤ + UvU
⊤
v ]−1. (A.41)

which is the required result.

Proof of Theorem 5

The proof follows on the same lines as the proof of earlier theorems . The filtering

estimates of the state covariance is obtained by combining the equations (4.12)-

(4.18) as follows. The state covariance matrix at time tk+1 can be written as

P̄ (ti+1
k |tk+1) = E[(X (ti+1

k )− X̂ (ti+1
k |tk+1))((X (ti+1

k )− X̂ (ti+1
k |tk+1))

⊤]

= E[(ÃX (tik) + B̃ + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))− (ÃX̂ (tik|tk) + B̃

+ K̄(tik+1)(Z(tk+1)− Ẑ(tk+1|tk)))(⋆)⊤]

= E[(Ã(X (tik)− X̂ (tik|tk)))(⋆)⊤] + ŨmŨ⊤
m + G̃1q(t

i
k)G̃

⊤
1 + K̄(tik+1)E[(Z(tk+1)− Ẑ(tk+1|tk))(⋆)⊤]×

K̄(tik+1)
⊤ − E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t

i
k))(Z(tk+1)− Ẑ(tk+1|tk))⊤]×

K̄(tik+1)
⊤ − K̄(tik+1)E[(Z(tk+1)− Ẑ(tk+1|tk))(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t

i
k))

⊤]

(A.42)

Using the independence of pjk with each other and using E(p2jk) = 1 − β, we

have

E
(

j∏

i=0

pik(1− pjk)

)2

= β(1− β)j , (A.43)
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E

⎛

⎝
N∏

j=0

pjk

⎞

⎠
2

= (1− β)N , (A.44)

E
(

j∏

i=0

pik(1− p(j+1)k)− β(1− β)j
)2

= β(1− β)j − β2(1− β)2j , (A.45)

E

⎛

⎝
N−1∏

j=0

pjk − (1− β)N

⎞

⎠
2

= (1− β)N − (1− β)2N . (A.46)

Next, using the notation defined in (4.16) and using the fact that pjk are i.i.d.,

we can easily show that

E[(Z(tk+1)− Ẑ(tk+1|tk))(Z(tk+1)− Ẑ(tk+1|tk))⊤] =

E(
4∑

i,j=1

TiT
⊤
j ) = E(

4∑

i=1

TiT
⊤
i ) + E(T1T

⊤
2 + T2T

⊤
1 )︸ ︷︷ ︸

equals zero

+E(
4∑

j=3

T1T
⊤
j + TjT

⊤
1 )

︸ ︷︷ ︸
equals zero

+ E(
4∑

j=3

T2T
⊤
j + TjT

⊤
2 )

︸ ︷︷ ︸
equals zero

+E(T3T
⊤
4 + T4T

⊤
3 ). (A.47)

where

E[T1T
⊤
1 ] = E[

N−1∑

j=0

(
j∏

i=0

pik)(1− p(j+1)k)(Y(tm−j
k )− Ŷ(tm−j

k |tk))(⋆)⊤]

=
N−1∑

j=0

E[(
j∏

i=0

pik(1− p(j+1)k))
2]E[(Y(tm−j

k )− Ŷ(tm−j
k |tk))(⋆)⊤]

=
N−1∑

j=0

β(1− β)jE[(CX (tm−j
k ) + UvV(tm−j

k ) +G2 diag(X (tm−j
k ))S2(t

m−j
k )− CX̂ (tm−j

k |tk))(⋆)⊤]

= β(CP̄ (tmk |tk)C⊤ + UvU
⊤
v +G2q(t

m
k )G⊤

2 ) +
N−1∑

j=1

β(1− β)jE[(C(Ã−j(X (tmk )− B̃ − ŨwW̃(tm−1
k )
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− G̃1 diag(X (tm−1
k ))S̃1(t

m−1
k )− (X̂ (tmk |tk)− B̃))+

j−1∑

l=1

A−(j−l)(−B̃ − ŨwW̃(tm−(l+1)
k )− G̃1 diag(X (tm−(l+1)

k ))S̃1(t
m−(l+1)
k )

+ B̃)) + UvV(tm−j
k ) +G2 diag(X (tm−j

k ))S2(t
m−j
k ))(⋆)⊤]

= β(CP̄ (tmk |tk)C⊤ + UvU
⊤
v +G2q(t

m
k )G⊤

2 ) +
N−1∑

j=1

β(1− β)j(C(Ã−j(E[((X (tmk )−

X̂ (tmk |tk)))(⋆)⊤] + ŨwŨ
⊤
w + G̃1q(t

m−1
k )G̃⊤

1 )(Ã
−j)⊤

+
j−1∑

l=1

Ã−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(j−l))⊤ + E[(Ã−j(X (tmk )− X̂ (tmk |tk)))

(Ã−j(−ŨwW̃(tm−1
k )− G̃1 diag(X (tm−1

k ))S̃1(t
m−1
k )) +

j−1∑

l=1

Ã−(j−l)(−ŨwW̃(tm−(l+1)
k )−

G̃1 diag(X (tm−(l+1)
k ))S̃1(t

m−(l+1)
k )))⊤] + E[(Ã−j(−ŨwW̃(tm−1

k )− G̃1 diag(X (tm−1
k ))S̃1(t

m−1
k ))

+
j−1∑

l=1

A−(j−l)(−B̃ − ŨwW̃(tm−(l+1)
k )− G̃1 diag(X (tm−(l+1)

k ))S̃1(t
m−(l+1)
k )))

(Ã−j(X (tmk )− X̂ (tmk |tk)))⊤])C⊤ + UvU
⊤
v +G2q(t

m−j
k )G⊤

2 )

= β(CP̄ (tmk |tk)C⊤ + UvU
⊤
v +G2q(t

m
k )G⊤

2 ) +
N−1∑

j=1

β(1− β)j(C(Ã−j(P̄ (tmk |tk) + ŨwŨ
⊤
w+

G̃1q(t
m−1
k )G̃⊤

1 )(Ã
−j)⊤ +

j−1∑

l=1

Ã−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(j−l))⊤ − Ã−j(ŨwŨ

⊤
w+

G̃1q(t
m−1
k )G̃⊤

1 )(Ã
−j)⊤ −

j−1∑

l=1

Ã−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(j−l))⊤ − Ã−j(ŨwŨ

⊤
w+

G̃1q(t
m−1
k )G̃⊤

1 )(Ã
−j)⊤ −

j−1∑

l=1

Ã−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(j−l))⊤)C⊤ + UvU

⊤
v

+G2q(t
m−j
k )G⊤

2 )

= β(CP̄ (tmk |tk)C⊤ + UvU
⊤
v +G2q(t

m
k )G⊤

2 ) +
N−1∑

j=1

β(1− β)j(C(Ã−jP̄ (tmk |tk)(Ã−j)⊤

− Ã−j(ŨwŨ
⊤
w + G̃1q(t

m−1
k )G̃⊤

1 )(Ã
−j)⊤ −

j−1∑

l=1

Ã−(j−l)(ŨwŨ
⊤
w

+ G̃1q(t
m−(l+1)
k )G̃⊤

1 )(Ã
−(j−l))⊤)C⊤ + UvU

⊤
v +G2q(t

m−j
k )G⊤

2 )
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= β(CP̄ (tmk |tk)C⊤ + UvU
⊤
v +G2q(t

m
k )G⊤

2 ) +
N−1∑

j=1

β(1− β)j(C(Ã−jP̄ (tmk |tk)(Ã−j)⊤

−
j−1∑

l=0

Ã−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(j−l))⊤)C⊤ + UvU

⊤
v +G2q(t

m−j
k )G⊤

2 )

(A.48)

E[T2T
⊤
2 ] = E[(

N∏

j=0

pjk)(Y(tm−N
k )− Ŷ(tm−N

k |tk))(⋆)⊤] = E[(
N∏

j=0

pjk)
2]E[(Y(tm−N

k )− Ŷ(tm−N
k |tk))(⋆)⊤]

= (1− β)N (C(Ã−N P̄ (tmk |tk)(Ã−N )⊤ − Ã−N (ŨwŨ
⊤
w + G̃1q(t

m−1
k )G̃⊤

1 )(Ã
−N )⊤

−
N−1∑

l=1

Ã−(N−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(A
−(N−l))⊤)C⊤ + UvU

⊤
v +G2q(t

m−N
k )G⊤

2 )

(A.49)

E[T3T
⊤
3 ] = E[

N−1∑

j=0

(
(

j∏

i=0

pik)(1− p(j+1)k)− β(1− β)j
)
Ŷ(tm−j

k |tk)(⋆)⊤]

= E[
N−1∑

j=0

(
(

j∏

i=0

pik)(1− p(j+1)k)− β(1− β)j
)2

]E[Ŷ(tm−j
k |tk)Ŷ(tm−j

k |tk)⊤]

=
N−1∑

j=0

(β(1− β)j − β2(1− β)2j)ψj(t
m−j
k )ψj(t

m−j
k )⊤ (A.50)

E[T4T
⊤
4 ] = E[

⎛

⎝(
N∏

j=0

pjk)− (1− β)N

⎞

⎠ Ŷ(tm−N
k )|tk)(⋆)⊤]

= E[((
N∏

j=0

pjk)− (1− β)N )2]E[Ŷ(tm−N
k |tk)(⋆)⊤]

= ((1− β)N − (1− β)2N )ψN (tNk )ψN (tNk )⊤ (A.51)

E(T3T
⊤
4 ) = −β(1− β)N

N−1∑

j=0

(1− β)jψj(t
m−j
k )ψN (tNk )⊤, (A.52)
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E(T4T
⊤
3 ) = −β(1− β)NψN (tNk )

N−1∑

j=0

(1− β)jψj(t
m−j
k )⊤, (A.53)

where Ŷ(tm−j
k |tk) = ψj(t

m−j
k ).

Substituting (A.48) - (A.53) at (A.47) we have

χ̂(tk) = E[(Z(tk+1)− Ẑ(tk+1|tk))(⋆)⊤]

= β(CP̄ (tmk |tk)C⊤ + UvU
⊤
v +G2q(t

m
k )G⊤

2 ) +
N−1∑

j=1

β(1− β)j(C(Ã−jP̄ (tmk |tk)(Ã−j)⊤

−
j−1∑

l=0

Ã−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(j−l))⊤)C⊤ + UvU

⊤
v +G2q(t

m−j
k )G⊤

2 )

+ (1− β)N (C(Ã−N P̄ (tmk |tk)(Ã−N )⊤ − Ã−N (ŨwŨ
⊤
w + G̃1q(t

m−1
k )G̃⊤

1 )(Ã
−N )⊤

−
N−1∑

l=1

Ã−(N−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(A
−(N−l))⊤)C⊤ + UvU

⊤
v +G2q(t

m−N
k )G⊤

2 )+

N−1∑

j=0

(β(1− β)j − β2(1− β)2j)ψj(t
m−j
k )ψj(t

m−j
k )⊤ + ((1− β)N − (1− β)2N )ψN (tNk )ψN (tNk )⊤

− β(1− β)N
N−1∑

j=0

(1− β)jψj(t
m−j
k )ψN (tNk )⊤ − β(1− β)NψN (tNk )

N−1∑

j=0

(1− β)jψj(t
m−j
k )⊤.

(A.54)

Next, we need the following covariance terms in evaluating P̄ (ti+1
k |tk+1):

E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))(Z(tk+1)− Ẑ(tk+1|tk))⊤]

= E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))(

N−1∑

j=0

(
j∏

i=0

pik)(1− p(j+1)k)

(Y(tm−j
k )− Ŷ(tm−j

k |tk)) + (
N∏

j=0

pjk)(Y(tm−N
k )− Ŷ(tm−N

k |tk))+

N−1∑

j=0

(
(

j∏

i=0

pik)(1− p(j+1)k)− β(1− β)j
)
Ŷ(tm−j

k |tk) +

⎛

⎝(
N∏

j=0

pjk)− (1− β)N

⎞

⎠ Ŷ(tm−N
k |tk))⊤]
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= E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))

(
N−1∑

j=0

(
j∏

i=0

pik)(1− p(j+1)k)(Y(t
m−j
k )− Ŷ(tm−j

k |tk)))⊤]

+ E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))((

N∏

j=0

pjk)(Y(tm−N
k )− Ŷ(tm−N

k |tk)))⊤]

+ E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))

(
N−1∑

j=0

(
(

j∏

i=0

pik)(1− p(j+1)k)− β(1− β)j
)

︸ ︷︷ ︸
0

Ŷ(tm−j
k |tk))⊤]

+ E[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k)) (

⎛

⎝(
N∏

j=0

pjk)− (1− β)N

⎞

⎠

︸ ︷︷ ︸
0

Ŷ(tm−N
k |tk))⊤]

=
N−1∑

j=0

β(1− β)jE[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))

(C(X (tm−j
k )− X̂ (tm−j

k |tk)) + UvV(tm−j
k ) +G2X (tm−j

k )S2(t
m−j
k ))))⊤]+

(1− β)NE[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))

(C(X (tm−N
k )− X̂ (tm−N

k |tk)) + UvV(tm−N
k ) +G2X (tm−N

k )S2(t
m−N
k ))))⊤]

=
N−1∑

j=0

β(1− β)jE[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))(C(X (tm−j

k )− X̂ (tm−j
k |tk))))⊤]

+ (1− β)NE[(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(tik) + G̃1X (tik)S̃1(t
i
k))(C((X (tm−N

k )− X̂ (tm−N
k |tk))))⊤]

= β(Ãi−m+1P̄ (tmk |tk)C⊤ −
m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k )G̃⊤

1 )(Ã
r)⊤C⊤)

+
N−1∑

j=1

β(1− β)jE[Ã(Ãi−m(X (tmk )− B̃ − (X̂ (tmk |tk)− B̃))+

m−i−2∑

r=0

Ã−(m−i−r)(−ŨmW̃(tm−(r+1)
k )− G̃1 diag(Xj(t

m−(r+1)
k ))S̃1(t

m−(r+1)
k )))

(C(Ã−j(X (tmk )− B̃ − (X̂ (tmk |tk)− B̃))+

j−1∑

l=0

A−(j−l)(−B̃ − ŨwW̃(tm−(l+1)
k )− G̃1 diag(X (tm−(l+1)

k ))S̃1(t
m−(l+1)
k ) + B̃)))⊤]+
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(1− β)NE[(Ã(Ãi−m(X (tmk )− B̃)− (X̂ (tmk |tk)− B̃))+

m−i−2∑

r=0

Ã−(m−i−r)(−ŨmW̃(tm−(r+1)
k )− G̃1 diag(Xj(t

m−(r+1)
k ))

S̃1(t
m−(r+1)
k ))))(C(Ã−N (X (tmk )− B̃ − (X̂ (tmk |tk)− B̃))+

N−1∑

l=0

Ã−(N−l)(−ŨwW̃(tm−(l+1)
k ))− G̃1 diag(X (tm−(l+1)

k ))S̃1(t
m−(l+1)
k )))⊤]

= β(Ãi−m+1P̄ (tmk |tk)C⊤ −
m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k )G̃⊤

1 )(Ã
r)⊤C⊤)

+
N−1∑

j=1

β(1− β)jÃi−m+1(P̄ (tmk |tk)Ã−jC⊤ +

min{j−1,m−i−2}∑

s=0

A−(m−i−s)+1(ŨwŨ
⊤
w

+ G̃1q(t
m−(s+1))
k )G̃⊤

1 )(A
−(j−s))⊤C⊤ + E[(Ãi−m+1X (tmk ))(C

j−1∑

l=0

A−(j−l)(−ŨwW̃(tm−(l+1)
k )

− G̃1 diag(X (tm−(l+1)
k ))S̃1(t

m−(l+1)
k ))))⊤] + E[(

m−i−2∑

r=0

Ã−(m−i−r)+1(−ŨmW̃(tm−(r+1)
k )

− G̃1 diag(Xj(t
m−(r+1)
k ))S̃1(t

m−(r+1)
k )))(CÃ−j(X (tmk ))⊤] + (1− β)N (Ãi−m+1P̄ (tmk |tk)(̃A−N )⊤C⊤+

min{N−1,m−i−2}∑

s=0

A−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1))
k )G̃⊤

1 )(A
−(N−s))⊤C⊤+

E[(Ai−m+1X (tmk ))(C(
N−1∑

l=0

Ã−(N−l)(−ŨwW̃(tm−(l+1)
k ))− G̃1 diag(X (tm−(l+1)

k ))S̃1(t
m−(l+1)
k ))))⊤]+

E[(
m−i−2∑

r=0

Ã−(m−i−r)+1(−ŨmW̃(tm−(r+1)
k )− G̃1 diag(Xj(t

m−(r+1)
k ))S̃1(t

m−(r+1)
k )))(CÃ−N (X (tmk )))⊤]

= β(Ãi−m+1P̄ (tmk |tk)C⊤ −
m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k )G̃⊤

1 )(Ã
r)⊤C⊤)

+
N−1∑

j=1

β(1− β)jÃi−m+1(P̄ (tmk |tk)(Ã−j)⊤C⊤ +

min{j−1,m−i−2}∑

s=0

A−(m−i−s)+1(ŨwŨ
⊤
w

+ G̃1q(t
m−(s+1))
k )G̃⊤

1 )(A
−(j−s))⊤C⊤ −

j−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1))
k )(Ã−(j−l))⊤C⊤
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−
m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k )G̃⊤

1 )(Ã
−(j−r))⊤C⊤)+

(1− β)N (Ãi−m+1(P̄ (tmk |tk)(Ã−N )⊤C⊤ +

min{N−1,m−i−2}∑

s=0

Ã−(m−i−s)+1(ŨwŨ
⊤
w+

G̃1q(t
m−(s+1))
k )G̃⊤

1 )(A
−(N−s))⊤C⊤ −

N−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(N−l))⊤C⊤

−
m−i−2∑

r=0

Ã−(m−i−r)+1(ŨwŨ
⊤
w + G̃1q(t

m−(r+1)
k )G̃⊤

1 )(Ã
−(N−r))⊤C⊤

(A.55)

and

E[(Z(tk+1)− Ẑ(tk+1|tk))(Ã(X (tik)− X̂ (tik|tk)) + ŨmW̃(ti+1
k ) + G̃1X (tik)S̃1(t

i+1
k ))⊤]

= β(CP̄ (tmk |tk)(Ãi−m+1)⊤ −
m−i−2∑

r=0

CÃr(ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k G̃⊤

1 )(Ã
−(m−i−r)+1)⊤)+

N−1∑

j=1

β(1− β)j(CÃ−j(P̄ (tmk |tk)(Ãi−m+1)⊤ +

min{j−1,m−i−2}∑

s=0

CÃ−(j−s)(ŨwŨ
⊤
w

+ G̃1q(t
m−(s+1))
k )G̃⊤

1 )(Ã
−(m−i−s)+1)⊤ −

j−1∑

l=0

CÃ−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1))
k )(Ã−(m−i−l)+1)⊤

−
m−i−2∑

r=0

CÃ−(j−r)((ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k )G̃⊤

1 )(Ã
−(m−i−r)+1)⊤)

+ (1− β)N (CÃ−N (P̄ (tmk |tk)(Ãi−m+1)⊤ +

min{N−1,m−i−2}∑

s=0

CA−(N−s)(ŨwŨ
⊤
w+

G̃1q(t
m−(s+1))
k )G̃⊤

1 )(Ã
−(m−i−s)+1)⊤ −

N−1∑

l=0

CÃ−(N−l)(ŨwŨ
⊤
w+

G̃1q(t
m−(l+1)
k )G̃⊤

1 )(Ã
−(m−i−l)+1)⊤ −

m−i−2∑

r=0

CÃ−(N−r)(ŨwŨ
⊤
w

+ G̃1q(t
m−(r+1)
k )G̃⊤

1 )(Ã
−(m−i−r)+1)⊤) (A.56)
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Substituting (A.54)- (A.56) at (A.42) we have

P̄ (ti+1
k |tk+1) = P̄ (ti+1

k |tk) + K̄(tik+1)χ̂(tk)K̄(tik+1)
⊤ − (β(Ãi−m+1P̄ (tmk |tk)C⊤−

m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k )G̃⊤

1 )(Ã
r)⊤C⊤) +

N−1∑

j=1

β(1− β)jÃi−m+1×

(P̄ (tmk |tk)(Ã−j)⊤C⊤ +

min{j−1,m−i−2}∑

s=0

A−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1))
k )G̃⊤

1 )(A
−(j−s))⊤C⊤−

j−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1))
k )(Ã−(j−l))⊤C⊤ −

m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w+

G̃1q(t
m−(r+1))
k )G̃⊤

1 )(Ã
−(j−r))⊤C⊤) + (1− β)N (Ãi−m+1(P̄ (tmk |tk)(Ã−N )⊤C⊤+

min{N−1,m−i−2}∑

s=0

Ã−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1))
k )G̃⊤

1 )(A
−(N−s))⊤C⊤−

N−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(N−l))⊤C⊤−

m−i−2∑

r=0

Ã−(m−i−r)+1(ŨwŨ
⊤
w + G̃1q(t

m−(r+1)
k )G̃⊤

1 )(Ã
−(N−r))⊤C⊤))K̄(tik+1)

⊤−

K̄(tik+1)(β(CP̄ (tmk |tk)(Ãi−m+1)⊤ −
m−i−2∑

r=0

CÃr(ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k G̃⊤

1 )(Ã
−(m−i−r)+1)⊤)

+
N−1∑

j=1

β(1− β)j(CÃ−j(P̄ (tmk |tk)(Ãi−m+1)⊤ +

min{j−1,m−i−2}∑

s=0

CÃ−(j−s)(ŨwŨ
⊤
w

+ G̃1q(t
m−(s+1))
k )G̃⊤

1 )(Ã
−(m−i−s)+1)⊤ −

j−1∑

l=0

CÃ−(j−l)(ŨwŨ
⊤
w + G̃1q(t

m−(l+1))
k )(Ã−(m−i−l)+1)⊤

−
m−i−2∑

r=0

CÃ−(j−r)((ŨwŨ
⊤
w + G̃1q(t

m−(r+1))
k )G̃⊤

1 )(Ã
−(m−i−r)+1)⊤)+

(1− β)N (CÃ−N (P̄ (tmk |tk)(Ãi−m+1)⊤ +

min{N−1,m−i−2}∑

s=0

CA−(N−s)(ŨwŨ
⊤
w+
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G̃1q(t
m−(s+1))
k )G̃⊤

1 )(Ã
−(m−i−s)+1)⊤ −

N−1∑

l=0

CÃ−(N−l)(ŨwŨ
⊤
w+

G̃1q(t
m−(l+1)
k )G̃⊤

1 )(Ã
−(m−i−l)+1)⊤ −

m−i−2∑

r=0

CÃ−(N−r)(ŨwŨ
⊤
w

+ G̃1q(t
m−(r+1)
k )G̃⊤

1 )(Ã
−(m−i−r)+1)⊤) (A.57)

where

P̄ (ti+1
k |tk) = ÃP̄ (tik|tk)Ã⊤ + ŨmŨ⊤

m + G̃1q(t
i
k)G̃

⊤
1 ,

P̄ (tmk |tk) is as defined in equation (4.26).

To find the value of K̄(k + 1) that minimizes the trace of the estimation error

covariance matrix P̄ (ti+1
k |tk+1) we differentiate the trace of the above expression

with respect to the filter gain matrix K̄(k + 1) and set the derivative to zero.

∂trP̄ (ti+1
k |tk+1)

∂K̄(tik+1)
= −2(β(Ãi−m+1P̄ (tmk |tk)C⊤ −

m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w+

G̃1q(t
m−(r+1))
k )G̃⊤

1 )(Ã
r)⊤C⊤) +

N−1∑

j=1

β(1− β)j(Ãi−m+1P̄ (tmk |tk)(Ã−j)⊤C⊤+

min{j−1,m−i−2}∑

s=0

A−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1))
k G̃⊤

1 )(A
−(j−s))⊤C⊤−

j−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1))
k )(Ã−(j−l))⊤C⊤ −

m−i−2∑

r=0

Ã−(m−i−r)+1(ŨwŨ
⊤
w+

G̃1q(t
m−(r+1))
k G̃⊤

1 )(Ã
−(j−r))⊤C⊤) + (1− β)N (Ãi−m+1(P̄ (tmk |tk)(Ã−N )⊤C⊤+

min{N−1,m−i−2}∑

s=0

Ã−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1))
k )G̃⊤

1 )(A
−(N−s))⊤C⊤−

N−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(N−l))⊤C⊤−

m−i−2∑

r=0

Ã−(m−i−r)+1(ŨwŨ
⊤
w + G̃1q(t

m−(r+1)
k )G̃⊤

1 )(Ã
−(N−r))⊤C⊤) + 2K̄(tik+1)χ̂(tk).

(A.58)
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Then

K̄(tik+1) = (β(Ãi−m+1P̄ (tmk |tk)C⊤ −
m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w+

G̃1q(t
m−(r+1))
k )G̃⊤

1 )(Ã
r)⊤C⊤) +

N−1∑

j=1

β(1− β)j(Ãi−m+1(P̄ (tmk |tk)(Ã−j)⊤C⊤+

min{j−1,m−i−2}∑

s=0

A−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1))
k )G̃⊤

1 )(A
−(j−s))⊤C⊤−

j−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1))
k )(Ã−(j−l))⊤C⊤ −

m−i−2∑

r=0

Ã−(m−i−r)+1((ŨwŨ
⊤
w+

G̃1q(t
m−(r+1))
k )G̃⊤

1 )(Ã
−(j−r))⊤C⊤) + (1− β)N (Ãi−m+1(P̄ (tmk |tk)(Ã−N )⊤C⊤+

min{N−1,m−i−2}∑

s=0

Ã−(m−i−s)+1(ŨwŨ
⊤
w + G̃1q(t

m−(s+1))
k )G̃⊤

1 )(A
−(N−s))⊤C⊤−

N−1∑

l=0

Ã−(m−i−l)+1(ŨwŨ
⊤
w + G̃1q(t

m−(l+1)
k )G̃⊤

1 )(Ã
−(N−l))⊤C⊤−

m−i−2∑

r=0

Ã−(m−i−r)+1(ŨwŨ
⊤
w + G̃1q(t

m−(r+1)
k )G̃⊤

1 )(Ã
−(N−r))⊤C⊤)χ̂(tk)

−1 (A.59)

which is the required result.

Proof of Theorem 6

The proof follows along the same lines as the proof of earlier theorems. The

filtering estimates of the state covariance is obtained by combining the equations

(5.1)-(5.5) as follows

P̄ (k + 1|k + 1) = E[f(X (k))− f(X̂ (k|k))(⋆)⊤] + UwU
⊤
w+

K̄(k + 1)(E[(1− pk+1)
2]E[(Y(k + 1)− Ŷ(k + 1|k))(⋆)⊤]

+ E[(pk+1)
2]E[(Y(k)− Ŷ(k|k))(⋆)⊤] + E[((1− pk+1)− β)2]

(Ŷ(k + 1|k))(⋆)⊤ + E[(pk+1 − (1− β))2](Ŷ(k|k))(⋆)⊤
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+ E[(1− pk+1)(Y(k + 1)− Ŷ(k + 1|k))(pk+1(Y(k)− Ŷ(k|k))⊤]︸ ︷︷ ︸
equals zero

+ E[pk+1(Y(k)− Ŷ(k|k))(1− pk+1)(Y(k + 1)− Ŷ(k + 1|k))⊤]︸ ︷︷ ︸
equals zero

+ E[((1− pk+1)− β)(pk+1 − (1− β))(Ŷ(k + 1|k)Ŷ(k|k)⊤+

Ŷ(k|k)Ŷ(k + 1|k)⊤)])K̄(k + 1)⊤ − K̄(k + 1)(E[(f(X (k)−

f(X̂ (k|k)) + UwW(k)((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k))+

pk+1(Y(k)− Ŷ(k|k)) + ((1− pk+1)− β)Ŷ(k + 1|k)+

(pk+1 − (1− β))Ŷ(k|k))⊤] + E[((1− pk+1)(Y(k + 1)−

Ŷ(k + 1|k)) + pk+1(Y(k)− Ŷ(k|k)) + ((1− pk+1)− β)

Ŷ(k + 1|k) + (pk+1 − (1− β))Ŷ(k|k))

(f(X (k))− f(X̂ (k|k)) + UwW(k). (A.60)

We can derive the following easily:

E[f(X (k))− f(X̂ (k|k))(⋆)⊤]

= E[f(X̂ (k|k)) +A(k)X̃ (k|k) +Q1(k)X̃ (k|k)R1(k)− f(X̂ (k|k))(⋆)⊤]

= A(k)P̄ (k|k)A(k)⊤ +Q1(k)P̄ (k|k)Q1(k)
⊤

and

E[h(X (k + 1))− h(X̂ (k + 1|k))(⋆)⊤]

= E[(h(X̂ (k + 1|k)) + C(k + 1)X̃ (k + 1|k) +Q2X̃ (k + 1|k)R2(k)− h(X̂ (k + 1|k)))(⋆)⊤]

= (C(k + 1)P̄ (k + 1|k)(C(k + 1)⊤ +Q2(k + 1)P̄ (k + 1|k)Q2(k + 1)⊤, (A.61)

Next, we need (A.9) and the following covariance terms in evaluating P̄ (k+1|k+1):

E[(Y(k + 1)− Ŷ(k + 1|k))(⋆)⊤]

= C(k + 1)P̄ (k + 1|k)C(k + 1)⊤ +Q2(k + 1)P̄ (k + 1|k)Q2(k + 1)⊤ + UvU
⊤
v ,

E[(Y(k)− Ŷ(k|k))(⋆)⊤]

= C(k)P̄ (k|k)C(k)⊤ +Q2(k)P̄ (k|k)Q2(k)
⊤ + UvU

⊤
v

where P̄ (k + 1|k) = A(k)P̄ (k|k)A(k)⊤ +Q1(k)P̄ (k|k)Q1(k) + UwU
⊤
w . (A.62)

and Ŷ(k + i|k) = h(X̂ (k + i|k)), i = 0, 1. For further notational brevity, denote
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ψi(k + 1) = Ŷ(k + i|k), i = 0, 1

and ψ̃i(k + 1) := ψi(k + 1)ψi(k + 1)⊤. (A.63)

We also need to evaluate some cross covariance terms, whose expressions are de-

rived next:

E[(f(X (k)− f(X̂ (k|k)) + UwW(k))((1− pk+1)(Y(k + 1)−

Ŷ(k + 1|k)) + pk+1(Y(k)− Ŷ(k|k))+

((1− pk+1)− β)Ŷ(k + 1|k) + (pk+1 − (1− β))Ŷ(k|k))⊤]

= E[(f(X (k))− f(X̂ (k|k)) + UwW(k))((1− pk+1)(Y(k + 1)

− Ŷ(k + 1|k)))⊤] + E[(f(X (k))− f(X̂ (k|k)) + UwW(k))

(pk+1(Y(k)− Ŷ(k|k)))⊤] + E[(f(X (k))− f(X̂ (k|k)) + UwW(k))

((1− pk+1)− β)Ŷ(k + 1|k)⊤] + E[(f(X (k))− f(X̂ (k|k))+

UwW(k))(pk+1 − (1− β))Ŷ(k|k))⊤]

(A.64)

E[(f(X (k))− f(X̂ (k|k)) + UwW(k))((1− pk+1)

(Y(k + 1)− Ŷ(k + 1|k)))⊤]

= E[1− pk+1]E[(f(X̂ (k|k)) +A(k)X̃ (k|k) +Q1(k)X̃ (k|k)

×R1(k)− f(X̂ (k|k)) + UwW(k))(h(X̂ (k + 1|k))+

C(k + 1)X̃ (k + 1|k) +Q2(k + 1)X̃ (k + 1|k)R2(k + 1)

+ UvV(k + 1)− h(X̂ (k + 1|k)))⊤]

= βE[(A(k)X̃ (k|k)) +Q1(k)X̃ (k|k)R1(k) + UwW(k))×

(C(k + 1)(A(k)X̃ (k|k) +Q1(k)X̃ (k|k)R1(k) + UwW(k))+

Q2(k + 1)X̃ (k + 1|k)R2(k + 1) + UvV(k + 1))⊤]

= β(A(k)P̄ (k|k)A(k)⊤ +Q1(k)P̄ (k|k)Q1(k)
⊤ + UwU

⊤
w )C(k + 1)⊤

= βP̄ (k + 1|k)C(k + 1)⊤ (A.65)
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and

E[(f(X (k))− f(X̂ (k|k)) + UwW(k))(pk+1(Y(k)− Ŷ(k|k)))⊤]

= (1− β)E[(f(X̂ (k|k)) +A(k)X̃ (k|k) +Q1(k)X̃ (k|k)R1(k)+

UwW(k)− f(X̂ (k|k)))(h(X̂ (k|k)) + C(k)X̃ (k|k) +Q2(k)X̃ (k|k)R2(k)

+ UvV(k)− h(X̂ (k|k)))⊤)]

= (1− β)A(k)P̄ (k|k)C(k)⊤ (A.66)

Substituting (A.65) and (A.66) in (A.64)

E[(f(X (k)− f(X̂ (k|k)) + UwW(k))

((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k)) + pk+1(Y(k)− Ŷ(k|k))

+ ((1− pk+1)− β)Ŷ(k + 1|k) + (pk+1 − (1− β))Ŷ(k|k))⊤]

= βP̄ (k + 1|k)C(k + 1)⊤ + (1− β)A(k)P̄ (k|k)C(k)⊤. (A.67)

Similarly,

E[((1− pk+1)(Y(k + 1)− Ŷ(k + 1|k)) + pk+1(Y(k)−

Ŷ(k|k)) + ((1− pk+1)− β)Ŷ(k + 1|k) + (pk+1 − (1− β))

Ŷ(k|k))(f(X (k)− f(X̂ (k|k)) + UwW(k))⊤]

= βC(k + 1)P̄ (k + 1|k) + (1− β)C(k)P̄ (k|k)A(k)⊤ (A.68)

Substituting (A.62)-(A.68) in (A.60), we have

P̄ (k + 1|k + 1) = A(k)P̄ (k|k)A(k)⊤ +Q1(k)P̄ (k|k)Q1(k)
⊤+

UwU
⊤
w + K̄(k + 1)(β(C(k + 1)P̄ (k + 1|k)C(k + 1)⊤+

Q2(k + 1)P̄ (k + 1|k)Q2(k + 1)⊤ + UvU
⊤
v )+

(1− β)(C(k)P̄ (k|k)C(k)⊤ +Q2(k)P̄ (k|k)Q2(k)
⊤ + UvU

⊤
v )+

β(1− β)(ψ̃0(k + 1) + ψ̃1(k + 1))− β(1− β)(ψ0(k + 1)ψ1(k + 1)⊤

+ ψ1(k + 1)ψ0(k + 1)⊤))K̄(k + 1)⊤ − (βP̄ (k + 1|k)C(k + 1)⊤

+ (1− β)A(k)P̄ (k|k)C(k)⊤)K̄(k + 1)⊤−

K̄(k + 1)(βC(k + 1)P̄ (k + 1|k) + (1− β)C(k)P̄ (k|k)A(k)⊤)
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To find the value of K̄(k+1) that minimizes the trace of the covariance P̄ (k+1|k+1)

we differentiate the trace of the above expression with respect to the filter gain

matrix K̄(k + 1)and set the derivative to zero.

K̄(k + 1) = (βP̄ (k + 1|k)C(k + 1)⊤ + (1− β)A(k)P̄ (k|k)C(k)⊤)

× [β(C(k + 1)P̄ (k + 1|k)C(k + 1)⊤ +Q2(k + 1)P̄ (k + 1|k)Q2(k + 1)⊤ + UvU
⊤
v )+

(1− β)(C(k)P̄ (k|k)C(k)⊤ +Q2(k)P̄ (k|k)Q2(k)
⊤ + UvU

⊤
v ) + β(1− β)(ψ̃0(k + 1)

+ ψ̃1(k + 1))− β(1− β)(ψ0(k + 1)ψ1(k + 1)⊤ + ψ1(k + 1)ψ0(k + 1)⊤)]−1

(A.69)

which is the required expression.
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