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Validating TAFEI:  

reliability and validity of a human error prediction technique 

 

 Abstract 

This paper reports on the theoretical and empirical developments for an error prediction 

methodology called Task analysis For Error Identification (TAFEI).  Other researchers have 

noted the need for theoretically-driven approaches that are able to provide practical utility in 

error prediction.  Theoretical developments include the concept of ‘rewritable routines’, that 

describes the loop between cognitive processing, action and devices states.  This has been 

proposed as a way of unifying ideas from systems theory and cognitive psychology.  The 

empirical research shows that TAFEI is superior to heuristic methods, which supports the idea 

that structured methods assist in error prediction.  The validation study shows that TAFEI 

reaches acceptable levels in terms of test-retest reliability and concurrent validity.  It is believed 

that the method has reached a level of maturity after ten years of development work.  This is 

demonstrated by the many uses that the method has been put, including that of a design tool. 
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1.  FOUNDATIONS OF TAFEI 

 

In 1994, we introduced a technique for predicting human error when people use devices (Baber 

and Stanton 1994).  The technique was called Task Analysis For Error Identification (TAFEI).  

The theoretical foundation for this approach was based upon the unification of ideas from 

general systems theory (von Bertalanffy 1950) and human problem solving (Miller et al. 1960, 

Hayes-Roth and Hayes-Roth 1979, Suchman 1987, Simon and Young 1988) resulting in a state-

space search with boundaries between human and device elements.  Initial attempts at validating 

the approach suggested that the errors predicted using TAFEI were relatively consistent with 

errors observed when people used the devices under consideration (Baber and Stanton 1996).   

 

During the past decade, our efforts have been directed towards consolidating the theory that 

underlies TAFEI.  At the heart of this theory are the ideas of 'relevance' and 'rewritable routines': 

we posit that in order to move from current to relevant states, eliminating other possible states, 

the user needs to retain some (temporary) record of the interaction and to have some means of 

assigning relevance to states (Baber and Stanton 1998).  At each state, this record will be 

modified.  We assume that the record will be held in working memory, presumably in the 

articulatory loop which has a limited duration (e.g., around two seconds, Baddeley 1986).   This 

means that unless the record is updated, it will decay or be disrupted.  This could result from 

distraction, e.g., interrupting the activity, or competition, e.g., having more than one option that 

appears relevant. As the record will also guide the next action, we see this as a rewritable 

routine.  The current routine will be performed and the results used to update the record, in 

preparation for the next routine.  To some extent this notion is similar to the ‘partial provisional 

planning’ hypothesis of Simon and Young (1988) and also resonates with the idea of a 
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'scratchpad' held in working memory (although the 'scratchpad' has normally been associated 

with visuo-spatial processing, Baddeley 1986).  Figure 1 presents a simple schematic of this 

process.  The possible states (interpreted by the user from the machine) are compared against 

states which could lead to the goal.  The comparator has a two-way connection to the rewritable 

routines (with the routines influencing the comparator, i.e., by defining relevance, and taking the 

output to define action).  

 

INSERT FIGURE 1 ABOUT HERE 

 

Figure 1: Simple Schematic of Rewritable Routines 

 

We feel that the role of the comparator could draw upon the psychological theory of the 

perceptual cycle put forward by Niesser (1976), as it should direct activity, sample the 

environment and modify stored information.  The comparator is the mechanism that engages the 

environment and is therefore the interactive part of the process.  In this model, the 'environment' 

will largely be confined to the 'System Image' presented by the device.  By System Image, we 

are following the lead of Norman (1988) who proposed that the physical appearance of a product 

(together with feedback received through other senses, such as hearing or touch) constituted the 

Image of the product, and that the user will use this Image to guide activity.  Thus, the device 

might contain a small Liquid Crystal Display (LCD) and three buttons; the user might then 

assume that pressing any of the three buttons might lead to changes on the LCD.   

 

The theory draws upon the ideas of scripts and schema.  We can imagine that a person 

approaching a ticket-vending machine might draw upon a 'vending machine' or 'ticket kiosk' 
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script when using a ticket machine.   From one script, the user might expect the first action to be 

'Insert Money', but from the other script, the user might expect the first action to be 'Select Item'.   

The success, or failure, of the interaction would depend on how closely the user was able to 

determine a match between the script and the actual operation of the machine.  The role of the 

comparator is vital in this interaction.  If it detects differences from the expected states, then it is 

able to modify the routines.  Failure to detect any differences is likely to result in errors.  

Following Bartlett’s (1932) lead, the notion of schema is assumed to reflect a person’s “…effort 

after meaning.” [Bartlett 1932: 20], arising from the active processing (by the person) of a given 

stimulus.  This active processing involves combining prior knowledge with information 

contained in the stimulus.  While schema theory is not without its critics (see Brewer 2000) for a 

review, the notion of an active processing of stimuli clearly has resonance with our proposal for 

rewritable routines.  It might be assumed that there are similarities between the notion of 

rewritable routines and some of the research on mental models that was popular in the 1980s (see 

Rogers et al. 1992 for a review).  However, we would like to point out the following differences 

between rewritable routines and mental models: 

 

i. comparison need not involve rule-based or knowledge-based reasoning, i.e., it could 

consist of skill-based activity.  An example of this would direction of motion 

stereotypes (see Sanders and McCormick 1992 for a review); 

 

ii. comparison requires the interaction between the user’s schema and the System Image, 

i.e., the current state of the device; 

 

iii. Any model developed will only be needed for the current state, which means that 

Page 5 



Validating TAFEI  6 

users might recruit a whole host of models during their interaction. 

 

The theory is potentially useful in addressing the interaction between sub-components in systems 

(i.e., the human and the device).  It also assumes a hierarchical order of system components, i.e., 

all structures and functions are ordered by their relation to other structures and functions, and 

any particular object or event is comprised of lesser objects and events.  General systems theory 

describes a system in dynamic terms: 

 

 •  activity results from continual adaptation of the system components 

 •  changes in one component affect other components and the whole system 

 •  systems components become linked by exchanges (inputs and outputs) 

 •  within a component an internal conversion occurs 

 •  each type of input has a corresponding output 

 •  errors become apparent at boundaries between components 

 

The input~conversion~output  cycle of a human-machine system is of particular interest here, as 

are the boundaries between humans and machines, as this is where errors become apparent. In 

other words, errors arise from transitions between states and can only be identified when a 

transition has failed to lead to the expected state.   We believe that it is essential for a method of 

error prediction to examine explicitly the nature of the interaction.  Many methods appear to do 

this in an implicit way, but leave consideration of the interaction to the judgment of the analyst.  

Whilst expert analysts, with a good understanding of the domain, may be able to do this task 

satisfactorily on most occasions, it does not make the analysis as objective as it could be 

(Stanton and Baber 1996).  TAFEI explicitly analyses the interaction between people and 
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machines and is concerned with task-based scenarios.  This is done by mapping human activity 

onto machine states.   

 

2.  HOW TAFEI WORKS 

 

TAFEI attempts to predict errors with device use by modelling the interaction between user and 

device.  It assumes that people use devices in a purposeful manner, such that the interaction may 

be described as a “cooperative endeavour”, and it is by this process that problems arise.  

Furthermore, the technique makes the assumption that actions are constrained by the state of the 

product at any particular point in the interaction, and that the device offers information to the 

user about its functionality.  Thus, the interaction between users and devices progresses through 

a sequence of states.  At each state, the user selects the action most relevant to their goal, based 

on the System Image. 

 

Procedurally, TAFEI is comprised of three main stages – see figure 2.  Firstly, an Hierarchical 

Task Analysis (HTA) is performed to model the human side of the interaction.  It is, of course, 

possible to employ any technique to describe human activity.  However, HTA suits our purposes 

for the following reasons: i. it is related to Goals and Tasks; ii. it is directed at a specific goal; iii. 

it allows consideration of task sequences (through ‘plans’).  As will become apparent, TAFEI 

focuses on a sequence of tasks aimed at reaching a specific goal.  Next, State-Space Diagrams 

(SSDs) are constructed to represent the behaviour of the artifact.  Plans from the HTA are 

mapped onto the SSD to form the TAFEI diagram.  Finally, a transition matrix is devised to 

display state transitions during device use. TAFEI aims to assist the design of artifacts by 

illustrating when a state transition is possible but undesirable (i.e., illegal).  Making all illegal 
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transitions impossible should facilitate the cooperative endeavour of device use. 

 

INSERT FIGURE 2 ABOUT HERE 

 

Figure : 2 The series of decision stages involved in the TAFEI technique. 

 

The first step in a TAFEI analysis is to obtain an appropriate HTA for the device, as shown in 

figure 3.  As TAFEI is best applied to scenario analyses, it is wise to consider just one specific 

goal, as described by the HTA (e.g., a specific, closed-loop task of interest) rather than the whole 

design.  Once this goal has been selected, the analysis proceeds to constructing State-Space 

Diagrams (SSDs) for device operation. 

 

INSERT FIGURE 3 ABOUT HERE 

 

Figure 3: Hierarchical Task Analysis. 

  

A SSD essentially consists of a series of states that the device passes from a starting state to the 

goal state.  For each series of states, there will be a current state, and a set of possible exits to 

other states.  At a basic level, the current state might be “off”, with the exit condition “switch 

on” taking the device to the state “on”.  Thus, when the device is “off” it is ‘waiting for…’ an 

action (or set of actions) that will take it to the state “on”.  It is very important to have, on 

completing the SSD, an exhaustive set of states for the device under analysis.  Numbered plans 

from the HTA are then mapped onto the SSD, indicating which human actions take the device 

from one state to another.  Thus the plans are mapped onto the state transitions (if a transition is 
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activated by the machine, this is also indicated on the SSD, using the letter ‘M’ on the TAFEI 

diagram).  This results in a TAFEI diagram, as shown in figure 4. 

 

INSERT FIGURE 4 ABOUT HERE 

 

Figure 4:  State-space TAFEI diagram 

 

The most important part of the analysis from the point of view of improving usability is the 

transition matrix.  All possible states are entered as headers on a matrix – see figure 5.  The cells 

represent state transitions (e.g., the cell at row 1, column 2 represents the transition between state 

1 and state 2), and are then filled in one of three ways.  If a transition is deemed impossible (i.e., 

it is simply not possible to go from one state to another state), a “-” is entered into the cell.  If a 

transition is deemed possible and desirable (i.e., it progresses the user towards the goal state - a 

correct action), this is a legal transition and “L” is entered into the cell.  If, however, a transition 

is both possible but undesirable (a deviation from the intended path - an error), this is termed 

illegal and the cell is filled with an “I”.  The idea behind TAFEI is that usability may be 

improved by making all illegal transitions (errors) impossible, thereby limiting the user to only 

performing desirable actions.  

 

INSERT FIGURE 5 ABOUT HERE 

 

Figure 5:  Transition matrix 

 

Examples of applications of TAFEI include prediction of errors in boiling kettles (Baber and 
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Stanton 1994, Stanton and Baber 1998), comparison of word processing packages (Stanton and 

Baber 1996, Baber and Stanton 1999), withdrawing cash from automatic teller machines 

(Burford, 1993), medical applications (Baber and Stanton 1999, Yamaoka and Baber 2000), 

recording on tape-to-tape machines (Baber and Stanton 1994), programming a menu on cookers 

(Crawford et al 2001), programming video-cassette recorders (Baber and Stanton 1994, Stanton 

and Baber 1998), operating radio-cassette machines (Stanton and Young 1999b), recalling a 

phone number on mobile phones (Baber and Stanton 2001), buying a rail ticket on the ticket 

machines on the London Underground (Baber and Stanton 1996), and operating high-voltage 

switchgear in substations (Glendon and McKenna 1995).    

 

All of these examples of applying of TAFEI share common features, which define the 

operational parameters of the technique.  First, they are all applied to the analysis of a scenario 

of device use.  The technique assumes purposeful use of the device, drawn from the goals of a 

tasks analysis.  Second, each of the devices offers a clear and logical sequence of activity.  The 

tasks are discrete, step-by-step, rather than continuous and concurrent.  Third, there are clear 

system boundaries between the device and human elements.  Given these requirements, it is no 

wonder that most of the analyses have tended toward single user, single device systems.  

Theoretically it should be possible to take a nested systems approach, to analyse systems of 

greater complexity by addressing different levels and different scenarios.  Some movement in 

this direction has begun with the analysis of operating high-voltage switchgear in substations 

(Glendon and McKenna 1995).  Before analyzing complex systems (such as the case of the 

substation case study) any further, it would be ideal to assess the performance of the TAFEI 

technique on relatively simple systems first. 
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3.  VALIDATION OF HUMAN ERROR IDENTIFICATION TECHNIQUES 

 

Whilst there are very few reports of validation studies on ergonomics methods in general 

(Stanton and Young 1999a), the few validation studies that have been conducted on Human 

Error Identification (HEI) are quite optimistic (e.g. Kirwan 1992a, b, Baber and Stanton 1996).   

It is encouraging that in recent years the number of validation studies has gradually increased.  

Empirical evidence of a methods worth should be one of the first requirements for acceptance of 

the approach by the ergonomics and human factors community.  Stanton and Stevenage (1998) 

suggest that ergonomics should adopt similar criteria to the standards set by the psychometric 

community, i.e. research evidence of reliability and validity before the method is widely used.  It 

may be that the ergonomics community is largely unaware of the lack of data (Stanton and 

Young 1998) or assumes that the methods provide their own validity (Stanton and Young 

1999b). 

 

Hollnagel et al. (1999) argue that either we are faced with elegant theory without error prediction 

(e.g. Reason 1990) or error prediction without any underpinning theory (e.g. Kirwan 1994).  

Hollnagel et al. (1999) call for a bridge between theory and practice.  We certainly sympathise 

with this call and it is central to the aims of the present paper.  In analysing the Cognitive 

Reliability and Error Analysis Method (CREAM), Hollnagel et al. (1999) claim a 68.6% match 

between predicted outcomes and actual outcomes.   

 

Stanton and Stevenage (1998) raise several methodological concerns with some of the 

approaches used in previous validation studies.  These concerns comprise: the number of 

assessors using each technique is typically very small (e.g. between 1 and 3 assessors) and the 
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use of subjective rating scales rather than some objective measure of performance (i.e. the 

comparison of predicted errors with actual errors).  In an earlier study, Baber and Stanton (1996) 

aimed to provide a more rigorous test of the predictive validity of TAFEI.  Predictive validity 

was tested by comparing the errors identified by an expert analyst with those observed during 

300 transactions with a ticket machine on the London Underground.  Baber and Stanton (1996) 

suggest that TAFEI provides an acceptable level of sensitivity based on the data from two expert 

analysts (r = 0.8).  Stanton and Stevenage (1998) developed this approach and proposed a more 

formal method of benchmarking the performance of HEI techniques.  This approach has been 

followed in the current study. 

 

One possible way of benchmarking HEI techniques is through comparison with popular 

evaluation approaches, such as heuristic evaluation.  It has been proposed that heuristic 

evaluation can be performed by relatively small numbers of assessors, e.g., between five and 

eight assessors can uncover up to 80% of usability problems (Virzi 1992, Nielsen 1993, 

Landauer 1995).  The idea of heuristics represents an interesting benchmark for this work, in that 

such evaluation is proposed to be ‘quick and dirty’, but to yield useful results.  If it can be shown 

that HEI techniques are as quick and as reliable, then their use in product evaluation could be 

considered seriously.  We propose further that HEI offers benefits over heuristic evaluation in 

that one can evaluate products when they are in their conceptual design stage (rather than having 

more detailed prototypes for evaluation).  Furthermore, much of the heuristic evaluation 

literature appears to validate predictions against the predictions themselves, i.e., when writers 

speak of 80% of usability problems being found, they mean either 80% of the total number of 

problems identified by the technique or 80% of the problems identified by an expert (also using 

heuristic techniques).  This notion of self-validating a method strikes us as somewhat odd, and in 
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our work we seek to validate the method using an external data source.  Finally, while the use of 

less than 10 evaluators might be attractive for time and cost, it is not easy to see that this small 

sample size can produce statistically meaningful data (the power of any test applied to such data 

will be relatively weak).  Consequently, in experiment one, we set ourselves the following goals: 

to compare HEI with heuristic evaluation, to use an external data source for validation (in this 

case, data produced by actual user trials), and to use a sample size in excess of 30. 

 

4.  EXPERIMENT ONE 

 

4.1.  Method for Experiment One 

 

4.1.1.  Participants 

Two groups of participants were involved in this study.  The first group consisted of 36 

undergraduate students aged 19-45 years (modal age, 20 years).  Of these 24 were female and 12 

were male.  These participants formed the control group and received no human error 

identification (HEI) training.   

 

The second group consisted of 36 participants drawn to match the pool as above.  These 

participants acted as novice analysts using Task Analysis For Error Identification (TAFEI).  All 

participants were equally familiar with the machine upon which the human error analysis was 

conducted. 

 

4.1.2.  Materials 

No materials were provided for the control participants, although their training allowed them to 
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develop heuristics for the task (see below).  However, all TAFEI analysts were provided with 

three items.  First, they received a hierarchical task analysis (HTA) chart describing the action 

stages involved when using a vending machine to obtain a bar of chocolate (see Figure 3).  

Second, they received a state-space diagram of machine states (see Figure 4).  Finally, 

participants were provided with a proforma for recording their error predictions.  The external 

provision of the HTA and SSD can be justified by keeping the methodology as closely as 

possible to that developed by Stanton and Stevenage (1998).   

 

4.1.3.  Selection of device 

When considering heuristic evaluation, it is often important to distinguish different types of 

expertise.  Thus, one could be an expert in the task, the technology or the methodology (Nielsen 

1993).  Consequently, it was decided that we required task and technology that could be assumed 

to be familiar to participants, so that we could assume some level of expertise on these 

dimensions.  A confectionary vending machine was chosen.  This was familiar to all participants 

and had been used by all of them.   

 

4.1.4.  Procedure 

For both groups, participants were given the scenario of buying one item (a Lion Bar, costing 

24p) from the vending machine using a 50p coin and thus requiring change.  They were required 

to try to predict the errors that would occur during this operation.  To this end, all participants 

received training by means of a two hour lecture and video on human error.  The training began 

with a general introduction to human error research based upon the work of Reason (1990).  A 

classification system for analysis of human error was presented to distinguish between slips, 

lapses and mistakes.  These error types were defined in terms of an Information Processing 
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Model (Wickens 1992) and examples of each error type were discussed in various contexts.  In 

particular, the link was made between product design and human error (Norman 1988, 

Thimbleby 1991).  This was followed by a forty-five minute video on human error which related 

everyday errors to those errors found in a more unforgiving environment (i.e., the errors 

contributing to the Tenerife runway disaster of March, 1977).  It is proposed that this training 

(and the classification of human error) constituted a set of heuristics that participants in the 

Heuristic condition could apply in their evaluation.  Finally, participants using the TAFEI 

technique received specific instructions in the use of the technique via a one-hour training 

session.  This comprised an introduction to hierarchical task analysis and an explanation of the 

staged approach of the TAFEI technique as outlined earlier.  A worked example was provided 

and participants then proceeded to generate their own analysis of errors using a familiar 

everyday device (i.e., a kettle).  

 

4.1.5.  Error prediction 

Participants in the heuristic group were required to indicate the errors which they thought would 

occur during this scenario.  Participants using the TAFEI method of error prediction received 

verbal and written training in the use of the method.   

 

4.1.6.  Error classification: 

The error predictions from all participants were compared to the errors actually observed in 75 

independent transactions with the machine.  Observation of the 75 transactions revealed 11 

discrete types of error and it was possible for more than one error type to occur within a single 

transaction.  These error types are listed in Appendix 1 and errors were identified by a 

combination of observation and interview with the users of the machine.  The transactions were 
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observed without the prior knowledge of the user and these 75 transactions provided a sample of 

errors that contained all the error types that were likely from a larger set of observations.  In an 

independent study by Baber and Stanton (1996), it was shown that a data set of over 300 person-

machine interactions revealed 90% of the error types within the first 20 interactions.  Moreover, 

no novel error types were evident after 75 interactions.  The comparison of predicted and 

observed errors yielded three dependent variables: 

 

 (a) hits (predicted errors that were seen to occur) 

 (b) false alarms (predicted errors that did not occur), and  

 (c) misses (errors that occurred but were not predicted)  

 

The frequency of misses was obtained by subtracting the number of hits from the total number of 

errors observed (n = 9).  These three dependent variables formed the basis for subsequent 

analyses. 

 

4.2.  Results for experiment one 

 

For each participant, the frequency of hits, misses and false alarms when predicting errors with a 

vending machine were calculated.  Table 1 summarises these data across the control group and 

the group using the TAFEI method for human error identification. 

 

INSERT TABLE 1 ABOUT HERE 

 

From Table 1, the participants using the TAFEI technique correctly predicted more errors and 
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missed fewer errors than the heuristic group.  The TAFEI group predict a mean of 4.3 of the 11 

errors (39%), while the heuristic group predicted 2.8 of the 11 errors (25%).  Three independent 

samples t-tests examined whether these differences were significant.  The results revealed a 

significant difference in hit rate (Zcorrected = -4.3972, df = 70, p < 0.001), and also in miss rate, 

(Zcorrected = -4.3972, df = 70, p < 0.001) in favour of participants using the TAFEI method.  

The results also showed that there were no statistical differences in false alarms (Zcorrected = 

0.1968, df = 70, p = NS).   
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4.3.  Discussion for experiment one 

 

These results suggest that when participants first use the TAFEI method of human error 

identification, they are able to correctly predict more errors, and hence, miss fewer errors, than 

participants who use a heuristic technique.  In this respect, using TAFEI seems to be better than 

an heuristic approach to error prediction.  These gains associated with using TAFEI do not 

appear to be at the expense of generating significantly more false alarms.  Thus we are able to 

confirm that using structured methods to predict human error results in greater accuracy than 

using a heuristic approach, despite some claims to the contrary regarding the benefits of 

heuristics (Nielsen and Mollich, 1990).  The study reported by Stanton and Stevenage (1998), 

using SHERPA, resulted in significantly more false alarms (mean false alarm rate of 15.4 + 6.1 

vs. 1.5 + 1.3 from this study).  The relatively low rate of false alarms generated by using TAFEI 

in this study may be due the inherent differences in the way the two methods work.  SHERPA is 

a divergent error prediction method: it works by associating up to 10 error modes with each 

action.  In the hands of a novice, it is typical for there to be an over-inclusive strategy for 

selecting error modes.  The novice user would rather play-safe-than-be-sorry and they tend to 

predict many more errors than actually occur.  This might be problematic; 'crying wolf' too many 

times might ruin the credibility of the approach.  TAFEI, by contrast, is a convergent error 

prediction technique: it works by identifying the possible transitions between the different states 

of a device and uses the normative description of behaviour (provided by the HTA) to identify 

potentially erroneous actions.   Even in the hands of a novice the technique seems to prevent the 

individual generating too many false alarms, certainly no more than they do using heuristics.  In 

fact, by constraining the user of TAFEI to the problem space surrounding the transitions between 

device states, it should exclude extraneous error prediction.  Indeed, this was one of the original 
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aims for the technique when it was originally developed (Baber and Stanton 1994). 

 

 

5.  EXPERIMENT TWO  

 

While Experiment One has suggested that TAFEI out-performs an heuristic technique, the ‘hit’ 

rate of 39% was quite low.  Having said this, any technique that identifies errors with sufficient 

reliability (i.e., few false alarms and no unpredicted errors) could prove beneficial in the early 

analysis of product designs.  In the next experiments, we wanted to see how practice might 

improve performance. 

 

5.1.  Method for experiment two 

 

5.1.1.  Participants 

The 36 participants who used the TAFEI method in the previous study, were also employed in 

this study. 

 

5.1.2.  Materials 

As for the TAFEI group in Experiment One (see Figures 1, 2 and 3).  

 

5.1.3.  Error prediction 

The procedure matched that of Experiment One as closely as possible.  However, there were 

several important differences.  First, there were no untrained control participants.  Instead, 

participants acted as controls for themselves in that the sensitivity of their error prediction could 
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be compared within participants over time.  A second important methodological difference 

between the first study and the present ones arises from the fact that across the three occasions, a 

repeated measures design was used.  A one week gap was allowed between the time that data 

was collected from participants.  Consequently, all participants had practice using their error 

detection method and had immediate feedback in the form of access to the observational data.  

This was considered to be an important factor given our desire to mirror the procedures used in 

recent training regimes (see Patrick, 1992).  Furthermore, whilst being familiar with the 

methodological concerns of common method variance, a tradition established in the 

psychometric arena is to hold as many factors of the testing situation constant as possible.  The 

introduction of different machines would cloud the issue because it would not be possible to 

determine whether differences in sensitivity of error prediction over time were due to learning, 

or due to the ease of predicting errors with the various machines.  For these reasons, participants 

made predictions of errors when using one particular machine and this allows us to determine the 

learnability of the error prediction technique without the confusion of error prediction on 

different machines.  Apart from these conditions of testing, all other methodological details 

remained unchanged. 

 

5.1.4.  Error classification 

As in Experiment One, the frequency of hits, misses and false alarms were computed and 

compared with predicted error rates.  In addition, the frequency of correct rejections (where 

errors that did not occur were correctly not predicted) was calculated by subtraction of the 

number of hits, misses and false alarms from a theoretical maximum (number of cells in 

transition matrix as generated by the SSD).  The four measures that resulted were entered into 

the signal detection grid below.  
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INSERT FIGURE 6 ABOUT HERE 

 

Figure 6:  Signal Detection Grid recording the frequency of hits, misses, false alarms and 

correct rejections. 

 

From these four measures, an index of sensitivity (S) was calculated according to the formula 

below (from Stanton and Stevenage 1998).  This gives a value between 0 and 1 with higher 

values indicating greater sensitivity of error prediction. 

 

 

Hit

Hit + Miss

False Alarm

False Alarm  +  Correct Rejection
1 -

2

+

 

 

The four frequency measures plus this index of sensitivity formed the basis of the subsequent 

analyses. 

 

5.2.  Results for experiment two 

 

For the purposes of the following section the data from all of the experiments are pooled in order 

to examine the effects of time on the validity and reliability of the TAFEI technique.  At each of 

the three times, the frequency of hits, misses, false alarms and correct rejections were recorded 

and from these an index of sensitivity was calculated.  These are summarised in table 2. 
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INSERT TABLE 2 ABOUT HERE 

 

As shown in table 2, there is a statistically significant increase in the number of hits (χ22 = 

12.2639, p<0.005) and consequently a statistically significant decrease in the number of misses  

(χ22 = 12.2639, p<0.005).  By conducting comparisons between the hits over time we find that 

hits increase from time one to time two (Z=-3.1322, p<0.005) and from time one to time three 

(Z=-3.3474, p<0.001), but are stable between time two and time three (Z=-0.365, p=NS).  This 

effect is mirrored in the misses, which shows a decrease from time one to time two (Z=-3.1322, 

p<0.005) and from time one to time three (Z=-3.3474, p<0.001), but are stable between time two 

and time three (Z=-0.365, p=NS). 

 

There are no statistical differences in false alarms (χ22 = 3.2917, p=NS) or correct rejections (χ22 

= 3.2917, p=NS). 

 

There are statistically significant differences in sensitivity over time (χ22 2 = 7.722, p<0.05).  As 

with the hits, there is an increase in sensitivity from time one to time two (Z=3.2312, p<0.005) 

and from time one to time three (Z=-2.9833, p<0.005), but sensitivity is stable between time two 

and time three (Z=-0.624, p=NS). 

 

In order to compute reliability of the TAFEI method, correlations of sensitivity were undertaken.  

These show moderate, but statistically significant, correlations of sensitivity between time one 

and two (r = 0.46, p< 0.01) and between time one and three (r = 0.36, p< 0.05).  There is a much 
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higher correlation of sensitivity between time two and three (r = 0.67, p< 0.001). 

 

 

5.3.  Discussion for experiment two 

 

The data presented in table 2 suggest an early plateau of performance (at time two) for the 

TAFEI participants, albeit for a relatively simple task.  The level of reliability achieved between 

time two and time three is perfectly acceptable.  The study shows that some level of practice 

needed to improve performance, which is to be expected.  By time three, the participants are 

obtaining the levels of performance on the sensitivity index that Baber and Stanton (1996) report 

of expert analysts, although the reliability coefficients are somewhat lower.    

 

TAFEI compares favourably with the reliability (ranging between 0.32 and 0.65) and validity 

(ranging between 0.73 and 0.76) of SHERPA, as reported by Stanton and Stevenage (1998).  

Both seem to offer acceptable, and to some extent comparable, levels of performance.  The 

studies of SHERPA and TAFEI provide a baseline from which other techniques could be 

compared using the standardised HTA and error data. 

 

Where TAFEI performs rather better than SHERPA is over the number of false alarms 

generated.  Whilst participants in the study reported by Stanton and Stevenage (1998) were 

generating a false alarm rate of around 20%, participants in this study were closer to 3%.  We 

believe that is an artifact of the way in which the two methods work in the hands of novices.  It is 

much easier to generate false alarms with SHERPA than with TAFEI (Stanton and Baber 2002). 

 

Page 23 



Validating TAFEI  24 

GENERAL DISCUSSION 

 

This paper has presented a theory-based human error identification technique.  Since its initial 

development over ten years ago (Baber and Stanton 1994), it has developed some degree of 

maturity, in terms of the theoretical development and the applications to which it has been put.  

Both the applied and academic study have been mutually beneficial.  Specifically, the theory of 

rewritable routines has supported methodological development and vice versa (Baber and 

Stanton, 1997).   Parallel developments have been testing the theory in more detail to determine 

how people employ rewritable routines in their interaction with devices (Baber and Stanton 

2001, Stanton and Baber 2002) which relates to some of the contemporary developments in 

human-computer interaction research (Diaper and Stanton 2004).  Developments of rewritable 

routines theory include attempts to understand the relationship between user experience, system 

image, human activity and devices states.  It is proposed that there is a cyclical relationship 

between these system interaction elements, whereby the user draws upon prior experience to 

interpret the system image, which then drivers human action, which determine the device state 

and the new system image.  Then the cycle begins again, where the user draws upon previous 

experience to interpret the new system image.   Some devices (or some states of some devices) 

may have more powerful system images, which draw on analogies, metaphors, syllogisms, 

semantics, affordances, stereotypes and cues that are meaningful to the user.  If the actions 

allowed by the device are compatible with these inferred meanings, then interaction is likely to 

be successful and vice versa.  Current research is looking at the role of system image in the 

recruitment of appropriate rewritable routines, and the relationship between global (an aspect of 

the routine that is pertinent to the whole episode of interaction) and local routines (an aspect of 

the routine that is only pertinent to a sub-episode of interaction). 
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An initial attempt to present validation data early on with expert users (Baber and Stanton 1996) 

has led to the study of addressing the performance of TAFEI in the hands of novice users.  In 

comparison to error prediction using a heuristic approach, TAFEI is clearly superior.  A major 

claim for heuristics approaches is their speed of use.  Experiment One suggests that, given equal, 

time an heuristic approach is less productive than the structured HEI approach of TAFEI.  HEI 

asks analysts to consider human activity (rather than device characteristics).  This means that we 

are asking our assessors to consider how potential users might experience problems with the 

device (rather than focusing on device specifics).  We feel that this is of benefit for two reasons: 

i. It forces the analyst to consider human activity, and to consider problems in the light of this 

activity; ii. it forces the focus of attention away from device features.  This means that it is 

possible to suggest radical revisions to a design (in order to reduce predicted errors), rather than 

seeking to modify specific features.  Finally, HEI techniques do not need real users performing 

real tasks with real products; thus, the techniques are applicable to very early stages of design 

(see Baber and Stanton 1999 for a discussion of how this approach can be applied as a design 

tool and Stanton and Young 1999b for examples how this could form part of an overall approach 

to analytical prototyping in product development). 

 

Participants also showed performance improvement over the first two experiments, increasing 

the hits and reducing the misses without compromising the false alarms.  Both reliability and 

validity achieved acceptable levels, and the data compare well with previous studies (Stanton 

and Stevenage 1998).  The signal detection paradigm is a useful way of coding error prediction 

data, and the present study reinforces this approach.   One might argue that a ‘hit’ rate of 5.4 out 

of 11 (49%) is relatively poor, but as argued above, any technique that can predict human error 
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reliably can prove useful in product design and evaluation.  Furthermore, Baber and Stanton 

(1996) have shown that expert performance with TAFEI reaches 90%. 

 

There are a number of other criticisms that need to be addressed, however.  Stanton and 

Stevenage (1998) propose that clearer documentation on the methodologies needs to be 

provided, and that cross validation studies should be undertaken.  Certainly both of these issues 

have been addressed to some extent with respect to TAFEI.  A recent handbook of human factors 

and ergonomics methods shows how the reporting of methods in the literature could be rather 

more structured (Stanton et al. 2005).   The other validation study presents data from skilled 

analyst with a more complex device (Baber and Stanton 1996).  Further studies with different 

levels of skill and different complexity of devices surely need to be undertaken in due course.  

One such study by Stanton and Young (1999b), suggests that novice analysts have some difficult 

assessing complex devices within a limited amount of time.   The factors of analyst's expertise 

and device complexity are likely to interact (Stanton and Young 2003).   With the growing 

number of studies using TAFEI, as outlined in the introduction, the documentation on the 

method is growing and freely available, which overcomes another of the criticisms of such 

methods.   

 

To conclude, the reliability and validity of TAFEI for novices applying the technique to a 

relatively simple system looks encouraging.  The next question is, do the results generalise and 

scale up?  We suspect that, as with most ergonomics methods, there is an element of craft-skill 

associated with successful practice.  Whilst experts can analyse complex systems and novices 

can analyse simple systems, we doubt that a novice will be able to analyse a complex system 

successfully.  This seems self-evident, as there is both domain knowledge and mastery of the 
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technique to be possessed.  Whilst it has been popular in the usability literature to give the 

impression that most system problems can be detected quite quickly with unstructured 

techniques, we feel that this is misguided.  The use of structured techniques such as SHERPA 

and TAFEI have clear benefits in terms of error prediction but need to be used in combination 

with other methods if broader aspects of performance are to be addressed. 
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Table 1:  The mean frequency of hits, misses and false alarms for TAFEI and 

untrained participants. 

 

 

 

    UNTRAINED  TAFEI 

    PARTICIPANTS  PARTICIPANTS 

 

 No. Participants  36    36 

 

    Mean sd  Mean sd 

 hits   2.8    1.2  4.3     1.5 

 misses  6.2    0.9  4.7     1.5 

 false alarms  1.8    0.9  1.5    1.3

Page 31 



Validating TAFEI  32 

Table 2:  The mean frequency of hits, misses, false alarms and correct rejections and the 

index of sensitivity of SHERPA over time . 

 

   TIME ONE  TIME TWO  TIME THREE 

 

 participants  36   36   36 

 

   Mean sd Mean sd Mean sd 

 hits  4.3    1.5 5.4    1.8 5.4    1.5 

 misses  4.7    1.5 3.6    1.8 3.6    1.5 

 false alarms 1.5   1.3 1.9    1.3 2.2   1.7 

 correct rejs 67.5    1.3 67.1    1.3 66.8   1.7 

 

 sensitivity 0.73    0.1 0.78    0.1 0.79   0.1 
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Figure 1: Simple Schematic of Rewritable Routines 
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Figure 2:  State-space diagram 
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Figure 3:  The series of decision stages involved in the TAFEI technique.
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Figure 4:  Transition matrix 

 

Page 36 



Validating TAFEI  37 

 

Figure 6:  Signal Detection Grid recording the frequency of hits, misses, false alarms and 

correct rejections. 
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Appendix One 

 

Frequency of prediction of each error type using TAFEI  

(based on responses of a set of 36 participants taking part at all three testing phases.) 

 

Error Type   Freq at  Freq at  Freq at  

     time 1   time 2   time 3 

 

 

Put wrong coins in*   13  11  14 

Leave after inserting coins  11  14  19 

Fail to put coins in*   16  21  18 

Not enough money in*  8  13  12 

Pressed wrong character*  27  28  30 

Fail to press character*   19  26  18 

Pressed wrong number*  25  27  28 

Fail to press number   9  10  2 

Push flap too early*   1  11  14 

Fail to turn handle at all*  19  12  15 

Fail to pick up change*  29  30  29 

Fail to pick up item   13  16  15 
 
 
 
*indicates error observed
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