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Abstract 

Housing prices are of crucial importance in financial stability management. 

The severe financial crises that originated in the housing market in the US and 

subsequently spread throughout the world highlighted the crucial role that the housing 

market plays in preserving financial stability.    

After the severe housing market crash, many financial institutions in the US 

suffered from high default rates, severe liquidity shortages, and even bankruptcy. 

Against this background, researchers have sought to use econometric models to 

capture and forecast prices of homes. Available empirical research indicates that 

nonlinear models may be suitable for modelling price cycles. Accordingly, this thesis 

focuses primarily on using nonlinear models to empirically investigate cyclical 

patterns in housing prices. More specifically, the content of this thesis can be 

summarised in three essays which complement the existing literature on price 

modelling by using nonlinear models. The first essay contributes to the literature by 

testing the ability of regime switching models to capture and forecast house prices. 

The second essay examines the impact of banking factors on house price fluctuations. 

To account for house price characteristics, the regime switching model and 

generalised autoregressive conditionally heteroscedastic (GARCH) in-mean model 

have been used. The final essay investigates the effect of structural breaks on the unit 

root test and shows that a time-varying GARCH in-mean model can be used to 

estimate the housing price cycle in the UK. 
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Chapter One  

Introduction  

 

It is common knowledge that business cycles are constituted by expansion and 

contraction phases. For policymakers and investors, accurate modelling of business 

cycles is crucially important to preserving financial stability and managing financial 

risk. Historically, a burst housing bubble has resulted in regional or global recessions. 

Therefore, an important issue for econometricians is accurately modelling and 

forecasting business cycles in order to inform policymakers and investors and 

hopefully prevent unsustainable fluctuations.  

In the literature, nonlinearity has been found in business cycles (see, for example, 

Terasvirta and Anderson, 1992). Accordingly, researchers have developed nonlinear 

models for modelling business cycle fluctuation. For example, Hamilton (1989) 

developed a Markov switching model for the US GNP, and Terasvirta, Dijk, and 

Medeiros (2005) applied a smooth transition autoregressive (STAR) model to 

forecasting macroeconomic variables in G7 countries. This thesis contributes to the 

investigation of the usefulness of several types of nonlinear models and their 

implementation in modelling the housing market.  

Academics are interested in modelling the housing market due to the fact that 

housing markets play an important role in financial stability. However, most previous 

empirical works have used linear models to estimate house prices, although 

nonlinearity in house prices has been identified in numerous studies (e.g., see 

Muellbauer and Murphy, 1997; Miles, 2008; and Balcilar et al., 2015). Furthermore, 

house price cycles also exhibit asymmetrical properties. Igan and Loungani (2012) 

found that house price cycles have longer lasting expansion than contraction phases in 

most countries. Accordingly, we believe that nonlinear models may exhibit more 



9 
 

 

capacity in modelling house prices. More specifically, this thesis examines a range of 

regime switching models to capturing the cyclical patterns of house prices, and we 

test the volatility patterns in housing markets by GARCH in-mean models. We believe 

that the cyclical modelling provides useful information for macro-economic 

researcher and policy makers. Meanwhile, the volatility modelling shows lots of 

econometric evidence for investors who try to understand on house price returns.  

Nonlinear time series mainly cater to three types of nonlinearity, namely 

nonlinearity in mean, nonlinearity in variance and discrete time series
1
. In relation to 

linear models, the nonlinear counterpart augments linear models with nonlinear terms 

in a conditional mean equation specification so that the conditional mean becomes 

nonlinear in the lagged dependent variables and disturbances. These models have a 

better ability to capture jumps and asymmetrical adjustments across cycles. Against 

this background, this thesis tests three types of regime switching models. Namely, the 

momentum threshold autoregressive (M-TAR) model used by Enders and Granger 

(1998), the Markov switching time-varying transition probability (MS-TVTP) model 

proposed by Kim and Nelson (1999) and Filardo (1994), and the STAR model 

developed by Terasvirta (1994).  

We believe that the regime switching models, broadly defined, are well fitted to 

capture house price cycles due to their mechanism, which is consistent with the 

characteristics of house price cycles. However, only a few types of research focus on 

applying nonlinear models to the housing market. For example, Kim and Chung 

(2016) investigated the linkage between house prices and business cycles in the UK 

and US using a Markov switching model. Nneji, Brooks, and Ward (2015) also used 

the Markov switching model to investigate the US housing market. Further, Chen, 

Cheng, and Mao (2014) studied housing returns in the US with an application of the 

Markov switching model. In addition, Simo-Kengne et al. (2013) examined the 

impact of monetary policy on the South African housing market by employing a 

Markov switching vector autoregressive model. Finally, Ricci-Risquete, Ramajo, and 

                                                             
1
 Discrete time series situation is not considered in this thesis because the house price is a continuous 

random variable.  
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de Castro (2016) investigated the effect of house prices on fiscal policy in Spain using 

an adjusted Markov switching model. The above research all estimates house price 

cycles within a Markov switching framework; however, as Crawford and Fratantoni 

(2003) point out, the Markov regime model is suitable for modelling house prices in 

regions with high volatility but fails to capture house price characteristics in more 

stable markets. Also, an important issue with the aforementioned studies is that they 

do not give suggestions as to which model is the best fit for modelling housing 

markets. 

In addition to nonlinear models in the conditional mean equation, nonlinearities 

can be considered when modelling the conditional variance equation.  

Nonlinearity in variance is a crucial aspect of many financial areas, such as 

portfolio construction, risk management, and derivatives pricing. In this thesis, the 

particular nonlinear variance specification investigated is the autoregressive 

conditionally heteroscedastic (ARCH) model. The ARCH was introduced by Engle 

(1982), and it is widely used for financial modelling. In 1986, Bollerslev developed 

the GARCH model. The GARCH model captures the autocorrelation properties in the 

variance, which simulates a more real-world context for financial modelling. 

In previous studies, some researchers also tested GARCH-class models on the 

housing market. Dolde and Tirtiroglu (1997) examined changes in price volatility with 

a GARCH in-mean (GARCH-M) model. Further, Miller and Peng (2006) used 

GARCH models to analyse the volatility in US home prices. Miles (2008) tested 

GARCH models for all fifty states in the US and found that more than half of the 

states had GARCH effects. Miles (2011) further examined GARCH models for 

forecasting prices in US metropolitan areas. Crawford and Fratantoni (2003) tested 

the GARCH model at the regional level in the US and compared the forecasting 

abilities of the GARCH, autoregressive integrated moving average (ARIMA), and 

regime switching models. However, since house prices may have a GARCH effect, it 

is important to note that researchers have found that a strong GARCH effect leads to 

error estimation in the unit root test. Therefore, it is crucial to investigate the power of 

the unit root test under the GARCH effect in house price modelling.  
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Our research, which is in line with the aforementioned problems, includes three 

empirical studies. Specifically, the first essay tests nonlinearity in the conditional 

mean equation of house price series in the UK. In particular, the first essay compares 

two types of regime switching models: the MS-TVTP and STAR models. The second 

essay investigates the relationship between house price and bank lending by 

estimating an LSTAR model and between house price and the loan-to-value (LTV) 

ratio by estimating a GARCH model. In the third essay, we investigate nonlinearity in 

the conditional variance equation of a first order autoregressive - GARCH-M (AR (1)-

GARCH-M) model, and consider the size and power of commonly used unit root tests 

in the case of structural breaks. An outline of the thesis is given below. 

Chapter 2 adds to the literature that examines cyclical fluctuations in real estate 

prices. In the extant studies, researchers found that nonlinear models are better fitted 

for capturing house price cycles. For example, Crawford and Fratantoni (2003) and 

Miles (2008) examined several nonlinear models for US regional house prices. 

However, they concurred that nonlinear models, such as the Markov switching model, 

are ill-suited for stable markets. Moreover, nonlinear models’ forecasting abilities are 

generally inferior to more standard forecasting techniques. Against this background, a 

critical problem still exists in terms of which model is most fit for capturing stable 

housing market cycles and forecasting prices. Given this, in this chapter, we 

contribute to the literature by comparing two nonlinear models in order to investigate 

performance for the housing market in the UK. We will first test the MS-TVTP 

model. We expect that this approach will capture the asymmetric dynamic of house 

price cycles more accurately than the traditional Markov switching model. Moreover, 

the Markov switching model shows changes from one regime to another as just a 

sudden transition without capturing the often gradual nature of such changes, such as 

those of stable house prices. Consequently, we also contemplate using the STAR 

model to capture the dynamic behaviour of regime change. 

As previously mentioned, in Chapter 2, we will use data from the UK housing 

market. In the literature, Muellbauer and Murphy (1997) indicated that the UK 

housing price data contains non-linearity in house price dynamics. Further, Tsai, Chen 
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and Ma (2010) found that the UK house prices are relatively stable. From our 

empirical tests, we find that the STAR model is more suitable for capturing house 

price cycles. In addition, we test the STAR model out-of-sample forecasting ability 

against a linear AR model. Unfortunately, our result shows that the STAR model does 

not outperform its linear model counterpart. 

Chapter 3 innovates with respect to the literature by investigating the 

determinants of house price fluctuations, with a special focus on the effect of the 

banking sector on housing markets. More specifically, we investigate how bank 

lending and the LTV ratio affect house prices. Over-borrowing and loose loan policies 

in good times can lead to bank failure when housing market bubbles burst. In this 

context, it is critically important to investigate the relationship among house prices, 

bank lending and the LTV. 

 A common methodology used to investigate the relationship between economic 

variables is the co-integration test and Granger causality. In Chapter 3, we raise three 

hypotheses and empirically test them using nonlinear econometric models. First, we 

use the STAR model to investigate whether or not house price fluctuations are 

affected by bank lending. We chose the STAR model due to the fact that this model 

has a strong ability to capture house price cycles. A standard STAR model specifies 

the transition variable as part of the explanatory variables or trend. We consider using 

an exogenous variable as the transition variable in the transition function in order to 

investigate the impact of the credit market on the housing market. Second, we take the 

volatility of house price cycles into account and use a GARCH model to examine the 

linkage between house prices and the LTV. In our estimation, we allow the LTV to be 

an exogenous variable. Finally, we test the long-run equilibrium relationship between 

house prices and bank lending, and house prices and the LTV ratio. Due to house 

prices exhibiting nonlinear behaviour, our co-integration test is based on the threshold 

autoregressive (TAR) and M-TAR models.  

For the empirical application, we use the housing market in Hong Kong. We 

chose the Hong Kong housing market as it has experienced two severe bubble bursts 

in recent years. Also, since the 1990s, the regulation of the credit market via the LTV 
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ratio has played a crucial role in the Hong Kong housing market.  

The empirical findings of Chapter 3 suggest that bank lending significantly 

affects house price fluctuations and that LTV strongly affects house price behaviour. 

With respect to the co-integration test, we find empirical evidence that illustrates the 

long-run relationship between house prices and bank lending and between house 

prices and the LTV.   

In Chapter 4, the results of a Monte Carlo experiment to investigate the size and 

power properties of commonly used unit root test statistics in the presence of 

structural breaks are presented. It is found that the location and magnitude of the 

breaks strongly affect the size and power properties of the test statistics. Also, the 

presence of an in-mean effect severely affects the performance of the test statistics. In 

particular, when the magnitude of the in-mean term becomes large, conventional unit 

root tests tend to indicate falsely that the underlying process is integrated of order 1 (I 

(1)). 

 To illustrate the empirical relevance of the results, an example of a structural 

break in house price cycles is also presented. In particular, accurate modelling of 

house price volatility is crucially important, especially after the subprime mortgage 

crisis in 2008. After 2008, housing markets in many countries experienced large and 

frequent swings. In Chapter 4, it is shown that house price can be modelled using a 

time-varying AR (1)-GARCH-M model, where house price volatility is transmitted to 

house price levels.  

Chapter 5 provides the conclusions of this thesis. We analyse the results and 

contribution. We also provide suggestions for future research. 
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Chapter Two 

Nonlinear Modelling of UK House Prices 

 

2.1 Introduction:  

The profound crisis in the US sub-prime mortgage market highlighted the crucial 

role that the housing market plays in undermining financial stability. Starting in the 

late 1990s, there was a sharp increase in subprime mortgages fuelled by low-interest 

rates and lax lending standards. However, while the quality of bank loan portfolios 

was deteriorating due to the constant growth in the subprime mortgages, default rates 

remained artificially low due to the large appreciation in house prices. The housing 

market boom and low default rates encouraged banks to invest heavily in the real 

estate market. A substantial increase in real estate lending by banks led to the creation 

of a real estate market bubble which eventually burst in 2005. The collapse of the 

housing market was the primary cause of the onset of financial instability in the US, 

and instability rapidly spread throughout the world. As were many other countries, the 

UK was hit heavily by the shockwave generated by the US as the economy 

experienced one of the worst recessions seen in recent times. In the light of this, it is 

clear that understanding how real estate prices affect the quality of loan portfolios is 

of crucial importance for financial institutions and financial regulators interested in 

maintaining financial stability.    

This paper adds to the literature that examines cyclical fluctuations in real estate 

prices. Accurate econometric estimation and forecasting of house price cycles are 

crucial for housing market regulators and market participants interested in an early 

warning of an impending financial crisis. Available empirical works mainly use linear 

models. For example, Abraham and Hendershott (1996) described an equilibrium 

price level to which the housing market tends to adjust. The authors divided the 

determinants of house price appreciation into two groups: one that explains changes in 
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the equilibrium price and another that accounts for the adjustment mechanism in the 

equilibrium process. Slow adjustment toward the equilibrium can be regarded as an 

indication of asymmetries in real estate cycles. Muellbauer and Murphy (1997) 

explored the behaviour of house prices in the UK. The authors suggested that the 

presence of transaction costs associated with the housing market cause important 

nonlinearity in house price dynamics. Further, Holly, Peseran, and Yamagata (2010) 

(see also Holly et al. (2011)) extended the analysis to the spatiotemporal diffusion of 

shocks in the housing market. 

House prices modelling has long been the object of interest in applied and 

theoretical research. It is therefore not surprising to find a significant body of 

literature on this topic. For example, Crawford and Fratantoni (2003) compared the 

performances of the Markov switching and ARIMA models to test the dynamic 

behaviour of home price growth rate. However, as the authors pointed out, although 

the Markov switching model is useful for characterising house price volatility 

patterns, it fails to beat the linear models’ accuracy when it comes to forecasting. This 

case may be associated with the misclassification of future regimes, as Bessec and 

Bouabdallah pointed out (2005). Other researchers extended the work by Crawford 

and Fratantoni. For example, Miles (2008) adopted the generalised autoregressive 

(GAR) model. The GAR model performs better in forecasting house price cycles with 

high home-price volatility, but it does not add much forecasting ability when the 

housing market is stable. A possible reason could be that the discrete changes of the 

Markov switching process are not consistent with the realities of house price 

movement.  

This chapter contributes to the existing literature on house price modelling in two 

ways. First, we compare several types of nonlinear models in order to investigate the 

cyclical patterns of the UK housing market. In particular, the MS-TVTP model 

proposed by Kim and Nelson (1999) and Filardo (1994) has been used to estimate the 

time series of house price changes in the UK. With respect to the Markov switching 

model developed by Hamilton (1989), the innovation of MS-TVTP is that the 

transition probabilities evolve over time, and, therefore, it may be more accurate in 

terms of capturing expansion and contraction phases of the housing market than 

Hamilton’s model. Although the MS-TVTP can provide extra flexibility and 

information than the traditional MS model. However, like the traditional Markov 

switching model, the MS-TVTP model assumes sudden transitions between one state 
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and the next and may not be suitable for capturing the gradual nature of regime shifts 

in the UK housing market. Consequently, we compare the performance of the MS-

TVTP model to the STAR model introduced by Teräsvirta (1994). The STAR model is 

considered due to its smooth transition between regimes has the good fitness to 

capture house price dynamics. In order to compare the goodness of fit of the two 

models, the Akaike information criterion (AIC), the Schwarz criterion (SC), and the 

Hannan–Quinn information criterion (HQ) are used. Using these criteria, the STAR 

model is identified as the most suitable model for capturing house price cycles in the 

UK.   

Having identified the STAR model as suitable, it is of interest to investigate the 

forecasting properties of the selected model versus a simple linear autoregressive 

model. Accordingly, the second aim of this chapter is to investigate the forecasting 

performance of regime switching models compared to a linear model. Previous 

studies, such as Crawford and Fratantoni (2003), Miles (2008), and so on, have found 

the forecasting performance of nonlinear models to be poorer than that of linear 

models. Therefore, we compare the STAR model with an AR model in their out-of-

sample forecast. In order to investigate the forecasting ability, our comparison relies 

on the following criterion: mean forecast error (MFE) and root mean square forecast 

error (RMSFE). We also consider the median relative absolute error (mRAE) and 

symmetric mean absolute percentage error (sMAPE) because they are associated more 

closely with nonlinearity (Tashman, 2000).  In a similar fashion, we consider four 

scoring rules, such as the logarithmic (Logs), for the same forecasting exercise. More 

details can be found in the forecasting experiment section on this thesis. Our results 

indicate that the STAR model may not add much forecastability in relatively stable 

markets, such as the UK’s.  

The remainder of this chapter is organised as follows. Section 2 reviews literature 

concerning UK house price cycles. Next, Section 3 provides the fundamental 

theoretical framework of all the models examined. Further, Section 4 discusses the 

details of our modelling process, including model selection, estimation and diagnosis, 

as well as analysing empirical results based on the estimations. Finally, Section 5 

provides the concluding remarks. 
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2.2 Modelling house price cycles in the UK  

Early house price models were mainly developed using a linear framework. For 

example, Giussani and Hadjimathrou (1990), Mayes (1979), and Hendry (1984) 

developed linear models to investigate the determinants of house prices, such as 

supply-demand for housing. Darke and Leigh (1993) analysed the long-run 

equilibrium of UK house prices using the Johansen co-integration test. In addition, 

Holly and Jones (1997) found that real income is the most important determinant of 

house prices. Meen (1996) claimed that the UK regional market might be better 

characterised than national data, and the author tested the nature of spatial interactions 

in the UK regional housing market. Similar studies, such as Alexander and Barrow 

(1994) and Drake (1992), also analysed the UK housing market at the regional level 

relying on co-integration and causality tests. However, as Brown, Song, and 

McGillivray (1997) pointed out, UK housing data contains structural changes. 

Therefore, the supply-demand based models and the asset market approach proved to 

be poor forecasters. Accordingly, recent empirical studies have turned to nonlinear 

models for house prices modelling.  

Given the asymmetric nature of housing prices, nonlinear models seem 

intuitively well suited for capturing house prices and forecasting future trends. 

Therefore, it seems natural that some researchers have turned to nonlinear models to 

explain recent developments in the housing market. For example, Muellbauer and 

Murphy (1997), using UK annual house price data, found that there have been 

substantial shifts in housing price dynamics over time and important nonlinearities in 

house price dynamics. More recently, Ihlanfeldt and Mayock (2014) found a strong 

correlation between house price movements and new construction during the prior US 

housing market bust in 2005.  

In a similar vein, Cook and Vougas (2009) applied a smooth transition 

momentum threshold autoregressive model to test the unit root of the UK housing 

market. In general, consensus evidence suggests that models that take into account 

nonlinear, asymmetric house price cycles perform better than their linear counterparts. 

The relationship between features of the housing market and business cycles has 

been empirically discussed in a vast amount of literature. For example, Leamer (2007) 

identified housing as an important precursor of the US business cycle. Moreover, 
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Dufrénot and Malik (2012) suggested that house prices can provide significant 

informational content for modelling business cycles and that house prices develop 

asymmetrically when using UK data. To compare with prices with business cycles, 

Cunningham and Kolet (2011) tested the duration of housing market cycles in North 

America, and they found that house prices have a shorter expansion period than that 

of business cycles, while contractions are substantially longer. Kim and Chung (2016) 

investigated the role of UK house prices in business cycles using a Markov switching 

model, and they found that house prices significantly affect business cycles. 

    Another strand of the literature has related house price cycles to consumption, 

and credit and monetary policies. For example, Attanasio et al. (2009) found evidence 

that common causality is the most significant explanation for the co-movement of 

house prices and consumption growth in the UK from 1970 to 2006. Furthermore, 

Attanasio, Leicester, and Wakefield (2011) indicated the synchronisation between 

house price cycles and consumption in the last 30 years in the UK has been relatively 

strong. In a similar vein, Gerlach and Peng (2005) identified that bank lending has 

been closely correlated with the real estate market. Some countries’ governments also 

regulate the real estate market by using bank lending policies.        

Against this background, we introduce two types of regime switching models 

below that have been used to model the UK housing market.  

2.3 Econometric model 

In this section, we briefly introduce the two nonlinear models used in this 

chapter, namely the MS-TVTP and STAR models. Below, we analyse them in turn.   

2.3.1 The MS-TVTP model  

The traditional Markov switching model is well known and widely used to model 

business cycles. However, it is too restrictive for many empirical settings due to its 

transition probability matrix remaining constant over time. Hence, we consider, 

instead, an MS-TVTP model, which allows the transition probabilities to vary over 

time. Let the house price 𝑦𝑡 be defined as:  

 

𝑦𝑡 = {
𝜇1 + 𝜖1 ,              𝑓𝑜𝑟 𝑅𝑒𝑔𝑖𝑚𝑒 1
𝜇2 + 𝜖2 ,              𝑓𝑜𝑟 𝑅𝑒𝑔𝑖𝑚𝑒 2

                                  (2.1) 
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where 𝜖~𝑁(0, 𝜎𝑡
2), and the subscripts 1 and 2 represent contractionary and 

expansionary phases of the house price cycle, respectively.  

In the MS-TVTP model, the transition between regimes is stochastic. In general, 

MS-TVTP (i.e., more than two regimes) uses a recursive time-varying probability 

generating function for each probability cell. Mathematically, for a k-state system, we 

have (𝑘 − 1)𝑘  independent time varying probability components that need to be 

estimated, given by: 

 

𝑄𝑡 =

{
 
 

 
 

𝑞11,𝑡        𝑞12,𝑡        ⋯       𝑞1𝑘,𝑡

𝑞21,𝑡        𝑞22,𝑡        ⋯       𝑞2𝑘,𝑡

⋮               ⋮            ⋱            ⋮
𝑞𝑘−1,𝑡      𝑞𝑘−2,𝑡       ⋯      𝑞𝑘−1,𝑡

1             1          ⋯             1 }
 
 

 
 

.                              (2.2)          

 

For each probability cell (i, j) where (i =  1, 2…  k − 1, j = 1, 2…  k) we specify 

a probability generating function as follows: 

 

𝑄𝑖𝑗,𝑡 = 𝜙(𝑋𝑖𝑗,𝑡𝑏𝑖𝑗),                                                    (2.3) 

 

where  𝜙(∙) is the cumulative normal density function, 𝑋𝑖𝑗,𝑡 is the state variable vector 

for cell (i, j), and 𝑏𝑖𝑗  is the parameters to be estimated. The state variables can be 

different for different cells. We generate an auxiliary matrix 𝑅𝑡 based on 𝑄𝑡 given by: 

 

𝑅𝑡 =

{
 
 
 
 

 
 
 
 

1                           1                        ⋯                      1
1 − 𝑞11,𝑡            1 − 𝑞12,𝑡                ⋯            1 − 𝑞1𝑘,𝑡

⋮                           ⋮                           ⋱                       ⋮

∏(1 − 𝑞𝑖1,𝑡)

𝑘−2

𝑖=1

   ∏(1 − 𝑞𝑖2,𝑡)

𝑘−2

𝑖=1

    ⋯    ∏(1 − 𝑞𝑖𝑘,𝑡)

𝑘−2

𝑖=1

∏(1 − 𝑞𝑖1,𝑡)

𝑘−1

𝑖=1

   ∏(1 − 𝑞𝑖1,𝑡)

𝑘−1

𝑖=1

    ⋯    ∏(1 − 𝑞𝑖𝑘,𝑡)

𝑘−1

𝑖=1

 

}
 
 
 
 

 
 
 
 

.        (2.4) 

 

The final time-varying transition probability matrix can be constructed as 

follows: 

 

𝑃𝑡 = 𝑄𝑡 ∘ 𝑅𝑡 = {

𝑝11,𝑡        𝑝12,𝑡        ⋯       𝑝1𝑘,𝑡

𝑝21,𝑡        𝑝22,𝑡        ⋯       𝑝2𝑘,𝑡

⋮               ⋮            ⋱            ⋮
𝑝𝑘−1,𝑡      𝑝𝑘−2,𝑡       ⋯      𝑝𝑘−1,𝑡

},                       (2.5) 
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where ∘ stands for the element-wise matrix Hadamard product. The matrix (2.5) can 

be expressed as: 

 

               𝑝1𝑗,𝑡 = 𝑞1𝑗,𝑡, 

               𝑝2𝑗,𝑡 = (1 − 𝑞1𝑗,𝑡)𝑞2𝑗,𝑡, 

                         ⋮                                                                                                        (2.6) 

           𝑝𝑘−1,𝑗,𝑡 = (1 − 𝑞1𝑗,𝑡)(1 − 𝑞2𝑗,𝑡)⋯ (1 − 𝑞𝑘−2,𝑗,𝑡)𝑞𝑘−1,𝑗,𝑡, 

               𝑝𝑘𝑗,𝑡 = (1 − 𝑞1𝑗,𝑡)(1 − 𝑞2𝑗,𝑡)⋯ (1 − 𝑞𝑘−2,𝑗,𝑡)(1 − 𝑞𝑘−1,𝑗,𝑡), 

 

for j = 1,2, … , k. Each column will sum to 1 by construction. The matrix 𝑃𝑡  is the 

transition probability from regime j  to regime i . These transition probabilities are 

allowed it vary over time. 

In this paper, the MS-TVTP model is estimated by Maximum Likelihood. 

Considering equation (2.1), the log likelihood is given by: 

 

ln 𝐿 = ∑ln

(

 
 1

√2𝜋𝜎𝑆𝑡

2

𝑒𝑥𝑝 (−
𝑦𝑡 − 𝜇𝑆𝑡

2𝜎𝑆𝑡

2 )

)

 
 

,                            (2.7)

𝑇

𝑡=1

 

 

where  𝑆𝑡 = (1,… , 𝑘)  is the numbers of regimes. However, equation (2.7) represents 

the case where the states are known. When the states of the MS-TVTP model are 

unknown, consider 𝑓(𝑦𝑡|𝑆𝑡 = 𝑗, 𝜃) as the likelihood function for state 𝑗 conditional on 

a set of parameters(𝜃), then the log likelihood function is given by:  

 

ln 𝐿 = ∑ln∑(𝑓(𝑦𝑡|𝑆𝑡 = 𝑗, 𝜃))Pr (𝑆𝑡 = 𝑗)).

2

𝑗=1

                         (2.8)

𝑇

𝑡=1

 

  

As the state’s probabilities are not observed, we use Hamilton’s filter (1989) to 

make an inference on the probabilities in (2.8). Considering 𝜑𝑡−1 as the matrix at time 

t-1 , the Hamilton’s filter for the estimation of 𝑃𝑟 (𝑆𝑡 = 𝑗)  is available using the 

following iterative algorithm:  
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1. Make an assumption for the starting probabilities at 𝑡 = 0 of each regime, 

Pr (𝑆0 = 𝑗) for𝑗 = 1,2. For example, assume the initial 𝑃𝑟(𝑆0 = 𝑗) = 0.5, then the 

probabilities of 𝑆𝑡: 

  

𝑃𝑟 (𝑆0 = 1|𝜑0) =
1 − 𝑝11

2 − 𝑝11 − 𝑝22
,                                  (2.9) 

𝑃𝑟 (𝑆0 = 2|𝜑0) =
1 − 𝑝22

2 − 𝑝22 − 𝑝11
.                               (2.10) 

 

 

2. Set 𝑡 = 1 and estimate the probabilities of each regime up to time 𝑡 − 1: 

 

𝑃𝑟 (𝑆𝑡 = 𝑗|𝜑𝑡−1) = ∑𝑝𝑖𝑗(Pr (𝑆𝑡−1 = 𝑖|𝜑𝑡−1),                       (2.11)

2

𝑖=1

 

 

where the 𝑝𝑖𝑗 are the transition probabilities from the Markov chain in equation (2.5). 

3. For time 𝑡 , we have parameters for each regime. Based on this new 

information from time 𝑡, we can update the probability of each regime. This can be 

accomplished by: 

 

𝑃𝑟 (𝑆𝑡 = 𝑗|𝜑𝑡) =
𝑓(𝑦𝑡|𝑆𝑡 = 𝑗, 𝜑𝑡−1)𝑃𝑟 (𝑆𝑡 = 𝑗|𝜑𝑡−1)

∑ 𝑓(𝑦𝑡|𝑆𝑡 = 𝑗, 𝜑𝑡−1)𝑃𝑟 (𝑆𝑡 = 𝑗|𝜑𝑡−1)
2
𝑗=1

.       (2.12) 

 

 

4. Set 𝑡 = 𝑡 + 1 and re-apply stages 2 and 3 until 𝑡 = 𝑇. Then we have all the 

estimation observations 

Finally, we obtain the probabilities by estimating the log likelihood of the model 

as a function of the set of parameters: 

 

ln 𝐿 = ∑ln∑(𝑓(𝑦𝑡|𝑆𝑡 = 𝑗, 𝜃))𝑃𝑟 (𝑆𝑡 = 𝑗|𝜑𝑡)).

2

𝑗=1

              (2.13)

𝑇

𝑡=1

 

 

The estimation of the MS-TVTP model is obtained by maximizing equation 

(2.13). For further details, see Hamilton (1994), Perlin (2014), and Bazzi et al. (2017). 
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2.3.2 The STAR model 

The STAR model allows house price to move according to a smooth transition 

between regimes. Teräsvirta (1994) specified the estimation of the STAR model. The 

author suggested that the modelling procedure be started by considering a linear 

model, then nonlinear extensions should be considered, if necessary. In a housing 

price study, movements between two regimes are smooth. Accordingly, for modified 

stationary housing price index 𝑦𝑡, we specify the following STAR model of order p to 

capture the nonlinearities that are characterized by asymmetries in price growth 

dynamics: 

 

𝑦𝑡 = ,𝜑0 + ∑ 𝜑𝑖𝑦𝑡−𝑖
 
𝑖=1 - + , 0 + ∑  𝑖𝑦𝑡−𝑖

 
𝑖=1 - ∙  (𝑦𝑡− ) +  𝑡                        

                        = ,𝜑0 + 𝜑(𝐿)𝑦𝑡- + , 0 +  (𝐿)𝑦𝑡- ∙  (𝑦𝑡− ) +  𝑡,                  (2.14) 

  

where 𝜑  and   are the parameter vectors,  (𝑦𝑡− )  is the transition function that 

determines the change between regimes,  (𝐿) is an autoregressive coefficient  that 

controls change smoothly along with lagged house prices, the past-realized house 

price index 𝑦𝑡−  is the transition variable, d is the delay parameter that indicates the 

number of the state that the transition variable causes to be switched, and  𝑡  is a 

sequence of independent identically distributed (iid) errors. 

The STAR model has different specifications depending on the form of the 

transition function. Namely, it can be specified as the logistic smooth transition 

autoregressive (LSTAR) model or the exponential smooth transition autoregressive 

(ESTAR) model. In this chapter, we will consider the LSTAR model to cater to the 

fact that the UK house price cycle appears to be asymmetric with long expansions 

followed by short, steep contraction phases. The ESTAR model would not be able to 

capture this behaviour as this model assumes a symmetric cycle. The transition 

function F (∙) of the LSTAR model is specified as follows: 

 

 (𝑦𝑡− ) = (1 +   p *− (𝑦𝑡− −  )+)−1,   0,                   (2.15) 

 
where γ is the slope parameter which measures the speed of transition between 

regimes.  
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In particular, the larger the magnitude of the parameter  , the faster the transition 

between two regimes. When    , the STAR model will converge to a Markov 

switching type of model. On the other hand, as   0, the STAR model degenerates 

into a linear model. The vector c is the vector of location parameters. Before 

presenting the estimation results, we discuss the model specification, estimation, and 

evaluation in detail below.  

Model Specification: 

The model selection procedure used to estimate the LSTAR model involves two 

steps:  

 

i. Testing linearity against STAR. If the test does not reject the null hypothesis 

of linearity, it is not necessary to estimate a nonlinear model. However, if the linearity 

test rejects the null against the alternative hypothesis of STAR or another type of 

transition function, then step (ii) below follows. 

ii. Choosing the best transition function according to the strongest rejection of the 

null hypothesis and selecting the suitable type of nonlinear model, such as the LSTAR 

or ESTAR model, based on auxiliary regression with the appropriate transition 

function.  

 

In order to test for linearity against a STAR model, we start by considering the 

AR model with the maximum lag order. Then, to select the most parsimonious model 

that still describes the data, we rely on the Bayesian information criterion (BIC). 

 Following Teräsvirta (1994), we use the Lagrange Multiplier (LM) test for 

testing linearity. The auxiliary regression for the UK house price index 𝑦𝑡 is: 

  

𝑦𝑡 = 𝜑0 + ∑𝜑1,𝑖 ∙ 𝑦𝑡−𝑖

 

𝑖=1

+ ∑ 𝜑2,𝑖 ∙ 𝑦𝑡−𝑖𝑦𝑡− + ∑𝜑3,𝑖 ∙ 𝑦𝑡−𝑖𝑦𝑡− 
2 + ∑𝜑4,𝑖 ∙ 𝑦𝑡−𝑖𝑦𝑡− 

3

 

𝑖=1

+  𝑡 .   (2.16)

 

𝑖=1

 

𝑖=1

 

 

The null hypothesis is: 

 

 01 𝜑2𝑖 = 𝜑3𝑖 = 𝜑4𝑖 = 0 for all i. 

 

For example, if the BIC indicates the maximum lag is 𝑆  𝑁, then for transition 

function  (𝑡 − 1)… (𝑡 − 𝑆), the linearity test is repeated for each predetermined 
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transition variable. If linearity is rejected against a STAR model by a unique variable, 

then this variable will certainly be used for the following estimation. However, if 

there are two or more transition variables that reject linearity against a STAR model, 

then we should first consider the variable with the lowest 𝑝 −   l  , which indicates 

the strongest rejection of the null hypothesis. In practice, predetermined variables may 

have similar 𝑝 −   l   . If this is the case, then we need to test each of them.  

As noted in the transition function (2.15), the difference between LSTAR and 

ESTAR lies in the transition function. The parameters change monotonically for the 

LSTAR model and symmetrically for the ESTAR model. One of the most commonly 

used tests for selecting either an LSTAR or ESTAR model is the sequence of ordinary 

F-test introduced by Teräsvirta (1994). The following decision rule is based on the 

nested sequence of the null hypothesis for the order of the polynomial in the auxiliary 

regression (2.16): 

 

1. Test  04 𝜑  = 0 

2. Test  03 𝜑  = 0|𝜑  = 0                                                                                                                                                                 

3. Test  02 𝜑  = 0|𝜑  = 𝜑  = 0 

where i=1,…, P. 

 

Here, we should choose the model with the strongest rejection of the null 

hypothesis by the F-test. Accordingly, if the calculated value of the test statistic under 

 04 has the lowest 𝑝-value, then the LSTAR model should be selected. Otherwise, if 

the calculated value of the test statistic under  03  has the smallest 𝑝  –value, one 

should choose the ESTAR model. Also, if the calculated value of the test statistic 

under   02  has the smallest p-value, then the LSTAR model should be selected.  In 

case none of the tests gives a clear indication, one may fit more than one model. 

Teräsvirta (1994) recommends postponing the choice between models until a later 

stage and proceeding by estimating both models. Then he suggests using diagnostic 

tests to evaluate the selected model. 

Model Estimation 

The conditional maximum likelihood method is used to estimate the STAR 

model. As Teräsvirta (1998) points out, it maximises numerically the log-likelihood 
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and provides the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with 

numerical derivatives. For the BFGS algorithm, it is essential to find a good starting 

value; this can be done by grid-search. 

Model Evaluation 

The estimated model needs to be evaluated before it can be used for forecasting 

prices. Furthermore, as noted previously, testing is also helpful when making a choice 

between variables when the p-values of the linearity tests are similar. 

Terasvirta (1998) suggested several types of misspecification tests for STAR 

models. In this chapter, we use the LM test of no error autocorrelation, which involves 

testing for residual correlation after estimating the STAR model by regressing the 

residuals and partial derivatives of the log-likelihood function with the model’s 

parameters. Terasvirta (1998) assumes that  (𝑦𝑡−𝑖  ) is at least twice continuously 

differentiable with respect to the parameters everywhere in the series and that:  

 

𝑦𝑡 =  (𝑦𝑡−𝑖  ) + 𝑢𝑡,        𝑡 = 1,… , 𝑇,                              (2.17)  

 

where 𝑢𝑡 =   𝑣𝑡 +  𝑡  with  = ( 1, … ,   )
 

, 𝑣𝑡 = (𝑢𝑡−1, … , 𝑢𝑡− ) , and 

 𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎2). The null hypothesis of the test is  0  no error autocorrelation against 

the alternative of   1  autocorrelation of at most order 𝑞 in 𝑢𝑡 in (2.17) is  = 0. 

Furthermore, we also test no additive nonlinearity, which measures the model 

characterising most of the nonlinearity. According to Terasvirta (1998), the 

 ( 2, 𝑐2, 𝑦2(𝑡− )) is defined as another transition function of equation (2.14). Then the 

null hypothesis  0 of no additive nonlinearity, which is the same as the linearity test 

that  𝜑2𝑖 = 𝜑3𝑖 = 𝜑4𝑖 = 0,  is tested against the alternative  1  paremeters of 

 ( 2, 𝑐2, 𝑦2(𝑡− )) are identified. 

2.4 Data and empirical result 

We begin the empirical investigation with a preliminary analysis of the UK 

quarterly house price index from the year 1970 to 2013
2
. From Figure 2.1, it appears 

that the house price index tends to increase, as a whole, from 7.05 in 1970 to 338.88 

in 2013. From the plot of the data, a typical characteristic of house price cycles, i.e., 

                                                             
2 Source: Office for National Statistics. 
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long-term expansions and short-term contractions, can be noted. It should be noted as 

well that, during the 90s, house prices had several phases of minor contractions and 

expansions.  

 

Figure 2.1 Index of all dwelling residential property prices from the year 1970 to 2013 of 

the UK 

Note: Index 1995=100 

Figure 2.2 First difference and log logarithmic transformation  
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To test to see if the series is stationary, we use a logarithmic transformation of the 

first order for the preliminary analysis of the variable in levels suggesting that the 

series contains a unit root. Table 2.1 shows the basic statistics and results of the ADF 

test, and the lower part of the table illustrates that the series is stationary after 

modified. The ADF test shows that the unit root test rejects the null hypothesis by less 

than a 1% significant level. The top section of Table 2.1 provides the mean, median 

and standard deviation. It appears that the mean and median are very close, and the 

small standard deviation indicates that the data points tend to be close to the mean of 

the series. Below we describe the estimation results in detail for each model, then give 

a more detailed comparison between the MS-TVTP and STAR models. 

 

Table 2.1 Basic statistics and Augmented Dickey-Fuller test statistic 

Mean 0.022 

Median 0.019 

Std.Dev. 0.029 

ADF statistic -5.37***  

Prob. 0.0001 

The ADF test contains trend and constant. *** indicates smaller than the 
critical values at the 1% levels 

 

Table 2.2 provides the result of AR model based on AIC and BIC. We examined 

the maximum lag of 6 for the AR term. The AR result will help us to select lag terms 

for MS-TVTP and STAR model. The result shows lag at 5 is the minimum value but it 

is not significant enough in our MS-TVTP and STAL estimation. The optimization 

will be described in following estimation. 

 

Table 2.2 AR model result of the AIC and BIC   

Delay 

 1 2 3 4 5 6 

AIC -4.700 -4.715 -4.726 -4.762 -4.930 -4.927 

BIC -4.664 -4.661 -4.653 -4.671 -4.819 -4.798 
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2.4.1 The Markov switching model 

Below we consider the estimation of the MS-TVTP model with two regimes 

(𝑆𝑡 = 1, 2) given by: 

 

 𝑦𝑡 = 𝜇𝑆𝑡
+ 𝜖𝑡,   𝜖𝑡~𝑁(0, 𝜎2).                                     (2.18) 

 

Table 2.3 reports the estimated parameters. The top section of Table 2.3 describes 

the coefficients for the specific regime. It appears that the house price series 𝑦𝑡 can be 

classified into two regimes. However, the coefficients of the switching parameters  𝜇1 

and  𝜇2 are 0.014 and 0.062, respectively, with both being very small and positive. 

The average index in the expansionary phase of the house price cycles is 𝜇1 + 𝜇2 = 

0.076 per quarter, compared to the average index in the co ntractionary phase of the 

cycles, which is 𝜇1 = 0.014 per quarter. The distribution parameter 𝜎2  is not 

switching, and the value is constant at 0.0004.  

 

Table 2.3 MS-TVTP model estimation results 

Variable Coefficient 

 𝜇1 
0.014*** 
(0.002) 

 𝜇2 
0.062*** 
(0.005) 

 𝜎2 
4.843e-4*** 

(0.058) 

   

 𝑃11, 𝜇 
4.404*** 
(0.991) 

 𝑃11, 𝑦(𝑡−3) 
-30.214 
(27.883) 

 𝑃21, 𝜇 
-5.441** 
(2.546) 

 𝑃21, 𝑦(𝑡−3) 
52.474* 
(32.667) 

Note: ***), **), *) indicate statistical significance at 1%, 5% and 10%, respectively. ( ) is Standard Error. 

 

The bottom panel of Table 2.3 shows the estimated results for the TVTP matrix 



29 
 

 

parameters. We see that the transition probabilities’ parameters change over time. This 

is also evident from the plot in Figure 2.3. However, it should be noted that 𝑦(𝑡−3) at 

𝑃11  is not statistically significant, while the other p-values from the TVTP matrix 

estimation are all statistically significant. Moreover, all terms have large standard 

errors. Therefore, the goodness of fit of the MS-TVTP model for the UK house price 

series is questionable.   

 

Figure 2.3 Time-varying Markov Transition Probabilities 
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Base on the values in Table 2.3, we can obtain the matrix of MS-TVTP as 

follows: 

 

m  n  0
0.966            0.034
0.040            0.960

1                      Std. D    0
0.047            0.047
0.102            0.102

1  

 
The time-varying expected durations of the mean are 59.39 quarters and 190.52 

quarters for regimes one and two, respectively, and the standard deviations are 53.46 

quarters and 398.19 quarters, respectively. Even these estimates suggest that there is 

significant evidence of regimes one and two, but the MS-TVTP model over-estimates 

the asymmetry of UK house price cycles. Figure 2.4 plots the filtered and smoothed 
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regime probabilities for each state. We can see that regime one has a short period and 

that regime two is of long duration. 

Figure 2.4 Filtered and Smoothed States Probabilities of MS-TVTP 
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Figure 2.5 shows the actual and fitted series. We can see that the MS-TVTP 

model captures some periods with large swings, for example, around the years 1970, 

80 and 90. However, it cannot estimate small fluctuation phases.  

 

Figure 2.5 Actual and fitted series 
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2.4.2 The STAR model 

We use the logarithmic and first order difference transformation for the UK 

house price index. Table 2.4 shows the estimates of the p-values for the F test in 

auxiliary regression. In the table, we find that the linearity hypothesis is rejected for 

the AR (1) and AR (3) models at 5% significance. In order to select the type of 

transition function, we see in the first row that the hypothesis  04 is associated with 

the lowest p-value. LSTAR appears to be the model that best fit the data. Looking at 

the row for t-3, the  03  has the smallest p-value corresponding to the transition 

function of the ESTAR model. Despite the lag 3 with the strongest linearity rejection 

suggesting an ESTAR model, we prefer to estimate a LSTAR model with lag 1. 

Because the UK house prices exhibit asymmetric character, the LSTAR model is 

preferred to the ESTAR model. Moreover, preliminary estimation results found that 

the ESTAR model did not fit the data well. 
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Table 2.4 Result of testing linearity and selection of model 

Transition variable   0   04   03   02 

t-1 0.047 0.016 0.112 0.906 

t-2 0.218 0.033 0.881 0.499 

t-3 0.014 0.071 0.006 0.744 

 

Note that, in the estimation process, the starting values were generated by grid-

search. As far as the results are concerned, Table 2.5 shows the estimated parameters 

and model diagnostic tests. We set restrictions making the linear part 𝜑2 and nonlinear 

part  3 be zero. In the top part of Table 2.5, the estimation results for the LSTAR 

model appear. We can see that most of the coefficients are statistically significant and 

the estimated parameter for   is small. Following the literature, we investigate the 

validity of the estimated model using the misspecification tests described in the 

previous section. Namely, the tests for no remaining autocorrelation and no remaining 

nonlinearity. The middle part of Table 2.5 reports the calculated F-value and relative 

p-value of the autocorrelation test. As already specified, under the null hypothesis 

there is no error autocorrelation in the residuals. We find that the p-values for  the 

columns lag 1 and 2  are not sufficiently small enough to cause misspecification.  

The results of testing for no additive nonlinearity and Jacques-Bera tests can be 

found in the bottom part of Table 2.5. The results in the second column do not 

indicate substantially significant rejection of linearity. Therefore, we can conclude 

that the LSTAR model captured the nonlinearity in the series well. However, we do 

need to mention that, in row t-3, nonlinearity is rejected at around the 5% significant 

level, but this is not strong enough justification to add more STAR components to the 

model. Considering that we selected the LSTAR instead of the ESTAR model above, 

we consider just one rejection acceptable. The Jacques-Bera test shows that it fails to 

reject of null hypothesis of residuals are normal distribution. We also give the 

skewness and kurtosis value with 0.126 and 3.329, which also support the normal 

distribution. 
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Table 2.5 Result of LSTAR and model diagnoses 

variable estimate SE 

 𝝋𝟎 0.007*** 0.002 

 𝝋  0.543*** 0.096 

 𝝋  0.111* 0.068 

  𝟎 0.274** 0.113 

    -2.725*** 1.067 

    0.660 0.938 

 𝜸 3.490*** 0.000 

c 0.094*** 0.000 

  

lag 1 2 

F-value 0.397 0.325 

`p-value 0.530 0.723 

    

Transition variable   0   04   03   02 

t-1 0.686 0.580 0.251 0.726 

t-2 0.698 0.194 0.693 0.793 

t-3 0.057 0.123 0.014 0.074 

     

Jacques-Bera tests Statistic p-Value skewness kurtosis 

 1.231 0.540 0.126 3.329 

Note: ***), **), *) indicate statistical significance at 1%, 5% and 10%, respectively. 

 

From Figure 2.1, it is clear that house price change in the UK from 1970 to 2013 

was quite smooth. Therefore, the magnitude of the estimated transition parameter   is 

justified. In Figure 2.6, we can see the transition function in equation (2.15) as a 

function of observations, where each dot corresponds to an observation. The transition 

variable is 𝑦𝑡−1. As seen from Figure 2.6, the transition is indeed smooth. Note that 

most observations are located near the x-axis due to small estimates of the location 

parameter c and a small standard deviation.  
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Figure 2.6 LSTAR model transition function versus transition variable 

 

 

In term of the goodness of fit, comparing the fitted and original data from Figure 

2.7, it appears that the LSTAR model captures the feature of house price changes well 

during the period under consideration. However, we should notice that around large 

swing periods, such as 1988, the LSTAR model cannot capture the peak point.     

 

Figure 2.7 Plot of estimated series and original series 

 

 

Overall, we can conclude that the LSTAR model has no error autocorrelation and 
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no remaining nonlinearity, confirming that the LSTAR model describes the data well. 

The following section discusses the comparison of estimated models as the main 

contribution of this paper. 

 2.4.3 Model comparison  

Our preliminary analysis suggests that the MS-TVTP model shows some ability 

to capture the expansionary and contractionary phases of the UK housing price cycles.  

From Figure 2.3, it appears that the transition probabilities are time-varying.  

However, the p-values of the standard errors of the transition probabilities are high 

and non-significant. In this respect, the LSTAR model appears to fit the data better. 

Comparing Figures 2.5 and 2.7, it is clear that the estimated LSTAR model fits the 

data better than the MS-TVTP model. In order to further compare the goodness of fit 

of the two models, the AIC, SC, and HQ criterion have been calculated, and the 

results reported in Table 2.6. 

A comparison of AIC, SC, and HQ levels across the MS-TVTP, LSTAR and AR 

models clearly suggest that the LSTAR model better fits the data since, no matter the 

criteria under consideration, the LSTAR model should be preferred. 

 

Table 2.6 Summaries of the parameters of the estimation result 

 MS-TVTP LSTAR   AR 

AIC -4.455 -7.556 -4.921 

SC -4.328 -7.409 -4.483 

HQ -4.403 -7.496 -4.488 

 

2.4.4 Forecasting result 

In the previous sections, the models are estimated for capturing house price 

cycles. In this section, we investigate the forecasting ability of the estimated models.  

Our experiment is done in the spirit of the work by Crawford and Fratantoni (2003) 

and Miles (2008). As the LSTAR model fits the data better than the Markov switching 

model, we consider the former and discard the latter below.  
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The out-of-sample predictive properties of the estimated models are investigated 

via a rolling forecast experiment. In the forecasting exercise, the performance of the 

LSTAR model is compared with the simple AR model. In particular, in our 

forecasting experiment of series 𝑦𝑡, we compared the h-steps-ahead forecast with the 

test period, which is going from time 𝑇  to T where 𝑇 = 𝑡 + 𝑕. This design allows us 

to quantify 𝑇 − 𝑕 − 𝑇 + 1  out-of-sample forecasts. Accordingly, we denote the 

corresponding realization of the series as 𝑦𝑡 , 𝑦𝑇,
  and 𝑦𝑇 , and the corresponding 

density forecasts as 𝑓𝑡 , 𝑓𝑇,
  and 𝑓𝑇 . The forecasting horizon considered is   =

 *1, 2, 4, 8+. The forecasting performances of STAR and AR models are investigated 

with the following measures: MFE, sMAPE, mRAE, and RMSFE.  

 

   𝑗, =
1

𝑇 − 𝑕 − 𝑇 + 1
∑.𝑦𝑡  − 𝑦̂𝑡  |𝑡

𝑗
/

𝑇− 

𝑡=𝑇 

,                             (2.19) 

 

𝑠  𝑃 𝑗, =
100|𝑦𝑡  − 𝑦̂𝑡  

𝑗
|

0.5(𝑦𝑡  − 𝑦̂𝑡  |𝑡
𝑗

)
 ,                                             (2.20) 

 

𝑚𝑅  𝑗, =
|𝑦𝑡  − 𝑦̂𝑡  

𝑗
|

𝑦𝑡  − 𝑦̂𝑡  
(1)

 ,                                                   (2.21) 

 

𝑅 𝑆  𝑗, =
1

𝑇 − 𝑕 − 𝑇 + 1
∑.𝑦𝑡  − 𝑦̂𝑡  |𝑡

𝑗
/

𝑇− 

𝑡=𝑇 

2

.                      (2.22) 

 

We also considered four scoring rules for the forecasting period of 𝑇 − 𝑕 − 𝑇 +

1,  which are explained as follows: 

 

The logarithmic score (LogS) (Good, 1952): 

 

𝐿𝑜𝑔𝑆𝑗, =
1

𝑇 − 𝑕 − 𝑇 + 1
∑ 𝑙𝑜𝑔𝑓𝑡  |𝑡

𝑗

𝑇− 

𝑡=𝑇 

.                         (2.23) 

 

It corresponds to a Kullback-Liebler distance from the true density. This scoring 

rule is preferred for models with a higher value LogS. 
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The quadratic score (QS) (Brier, 1950), defined as: 

 

𝑄𝑆𝑗, =
1

𝑇 − 𝑕 − 𝑇 + 1
∑ ∑(𝑓𝑡  |𝑡

𝑗
− 𝑑𝑘𝑡)

2,                 (2.24)

 

𝑘=𝑖

𝑇− 

𝑡=𝑇 

 

 

where 𝑑𝑘𝑡 = 1 if k=t and 0 otherwise. This score rule is preferred for models with 

lower QS. 

  

The (aggregate) continuous-ranked probability score (CRPS) (Epstein, 1969), 

defined as: 

 

 𝑅𝑃𝑆𝑗, =
1

𝑇 − 𝑕 − 𝑇 + 1
∑ .|𝑓𝑡  − 𝑓𝑡  |𝑡

𝑗
| − 0.5|𝑓𝑡  − 𝑓𝑡  

 |/ ,

𝑇− 

𝑡=𝑇 

(2.25) 

 

where f and 𝑓  are independent random draws from the predictive density and 𝑓𝑡  |𝑡, 

the observed value. This score rule is preferred for models with lower CRPS. 

 

The quantile score (qS) (Cervera and Munoz, 1996), defined as: 

 

𝑞𝑆𝑗, =
1

𝑇 − 𝑕 − 𝑇 + 1
∑ 𝑞𝑡  |𝑡

 

𝑇− 

𝑡=𝑇 

.                                  (2.26) 

 

This score is used in risk analysis because it provides information about 

deviations from the true tail of the distribution. 

 

Tables 2.7 and 2.8 reports the results of the forecasting exercise. From Table 2.7, 

it appears that the AR model has better point forecasting properties than the nonlinear 

model for most of the forecast horizon, according to the sMAPE and RMSFE criteria. 

The LSTAR model only has better forecasting performance at a short horizon, 

according to the one horizon of the MFE. This result is entirely in line with the 

literature (see Balcilarm, Gupta, and Miller, 2015), as is well known that nonlinear 

models do not outperform their linear counterpart when it comes to forecasting. 
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Table 2.7 Point Forecast Accuracy 

point predictive performances 

Forecast horizon Forecast Error Measure AR STAR 

 
MFE 

  

1 
 

-0.1777 0.1431 

2 
 

-0.1954 0.2066 

4 
 

-0.2068 -0.2182 

8 
 

-0.2111 -0.2533 

 
sMAPE 

  

1 
 

0.0035 0.0126 

2 
 

0.0035 0.0128 

4 
 

0.0036 0.0132 

8 
 

0.0038 0.0137 

 
mRAE 

  

1 
 

1.0000 0.4419 

2 
 

1.0000 0.4373 

4 
 

1.0000 0.5495 

8 
 

1.0000 0.7219 

 
RMSFE 

  

1 
 

0.3147 0.8385 

2 
 

0.3166 0.8473 

4 
 

0.4213 0.8671 

8 
 

0.9319 0.9067 

 

The density forecasting results are shown in Table 2.8. The results are mixed. 

According to LogS and QS, the LSTAR shows higher forecasting accuracy. However, 

according to the CRPS and qS, the AR model outperforms the LSTAR model for all 

horizons. This result is also consistent with the work done by Balcilarm, Gupta, and 

Miller (2015). The authors found the AR and LSTAR models produce similar 

performances in density forecasting of US house prices.  

 



39 
 

 

Table 2.8 Density Forecast Accuracy 

Density predictive performances 

Forecast horizon Scoring Rule AR STAR 

 
LogS 

  

1 
 

0.0168 0.0176 

2 
 

0.0169 0.0177 

4 
 

0.0175 0.0178 

8 
 

0.0173 0.0179 

 
QS 

  

1 
 

0.1646 0.1709 

2 
 

0.1620 0.1709 

4 
 

0.1621 0.1690 

8 
 

0.1655 0.1657 

 
CRPS 

  

1 
 

21.1533 18.4129 

2 
 

21.3889 18.5984 

4 
 

25.4515 18.9910 

8 
 

26.4635 19.6639 

 
qS 

  

1 
 

0.5077 0.4870 

2 
 

0.5096 0.4910 

4 
 

0.5000 0.4992 

8 
 

0.5328 0.5315 

 

2.5 Conclusion 

A large number of recent papers have highlighted the crucial importance of 

modelling house prices. Models that capture house price behaviour can give market 

regulators and investors insights into house price direction and inform decision 

making processes.  

This chapter considers several issues. First, a model that captures the UK housing 
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market cycles is estimated by using a nonlinear specification. In particular, two 

different types of nonlinear models are considered. Namely, the MS-TVTP and 

LSTAR models. The empirical investigation reveals that the LSTAR model better fits 

the data.  

Second, the forecasting properties of the LSTAR model are also investigated. The 

empirical analysis reveals that the LSTAR model does not outperform the AR model 

for point prediction in out-of-sample forecasting. However, the LSTAR and AR 

models produce similar evidence with regard to density prediction. Nevertheless, we 

still believe the STAR-type models can be used to accurately forecast house price 

cycles due to the fact that we have examined the mechanism of STAR model, and it 

does well in capturing stable house price cycles. Also, work done by Canepa and 

Chini (2016) indicates that the generalised STAR model performs well in forecasting 

exercises. 

 Since downturns in house prices have consequences for the economy, 

understanding the asymmetric cycles of UK house prices alerts market participants to 

the possibility that a downturn in the housing market may happen. Against this 

background, our results have significant consequences for housing market regulators 

and researchers. In particular, our findings in this chapter empirically illustrate that the 

STAR model we have fitted to the UK house prices does well in stable housing 

market research.   
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Chapter Three 

Bank Lending and House Price: The Hong Kong 

Experience 

 

3.1 Introduction 

It is now common knowledge that the subprime mortgage crisis had a major role 

in, but was not the sole cause of, the worldwide financial crisis during the last decade. 

Loose bank lending and the over-borrowing of households played a significant role in 

the collapse of the housing market. As a result, central banks and financial authorities 

in many countries have introduced more stringent risk management standards. For 

example, the Third Basel Accord imposed regulations in order to strengthen bank 

capital requirements, leverage ratios, and liquidity requirements.  

 The fact that the collapse of the housing market leads to bank failures has been 

observed several times in the past. For example, since 2008, the US subprime 

mortgage crisis has led to the failure of more than 400 banks across the US.
3
 These 

banks had housing loans and mortgages as their primary business, but underestimated 

the risk of falling house prices. As a consequence, high default rates on subprime 

mortgages and loans and the collapse of the secondary market for mortgage-backed 

securities led to severe liquidity shortages.  

 Against this background, it is crucially important to investigate the 

relationship between banking sectors and house prices. Accordingly, this chapter 

complements the existing literature by investigating the effect on house prices by 

financial institutions’ lending policies by empirical testing three hypotheses 

formulated as follows. 
                                                             
3
 The Federal Deposit Insurance Corporation (FDIC) is often appointed as receiver for failed banks in 

the US, and the following page shows that 465 banks failed from 2008 to 2012: 

https://www.fdic.gov/bank/individual/failed/banklist.html 

https://www.fdic.gov/bank/individual/failed/banklist.html
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Hypothesis 1. House prices are severely affected by bank lending swings.  

 

Available empirical work focuses primarily on the linear framework to 

investigate the relationship between house prices and banking sectors. For example, 

Gimeno and Martínez-Carrascal (2010) used a vector error-correction model to 

investigate the relationship between Spanish housing loans and house prices. Their 

results illustrate the strong relation between house prices and housing loans in Spain. 

Oikarinen (2009) found similar results when considering house prices and household 

borrowing in Finland. However, numerous empirical studies have found that 

nonlinearity exists in house price cycles. For example, Kim and Bhattacharya (2009) 

contributed to the literature by using a STAR-type model for US house prices. The 

authors found that the STAR-type models estimated the house prices for markets 

characterised by large price fluctuations well. Consequently, we empirically examine 

the relationship between house price movement and bank lending with a STAR 

model. 

The STAR model developed by Teräsvirta (1994) has been widely used in 

nonlinear time series, see, for example, Skalin and Teräsvirta (1999, 2002). We 

believe the STAR model can be used to test Hypothesis 1 for three main reasons. 

First, the STAR model allows for switching between regimes with the transition 

function. Therefore, by using bank lending as the transition variable in the transition 

function of the STAR model, one can investigate the impact of the credit market on 

house price cycles. If bank lending has a strong impact on the housing market cycle, 

one should observe a switch from one phase to the other in relation to the sign and 

magnitude of the change in the credit market. If, on the other hand, the statistical 

significance of bank lending as a transition variable is not supported by the data, then 

one should not observe such a switch in relation to changes in the credit market. 

Second, the STAR model describes a smooth transition process which can well 

characterise the movement of house prices cycles. Finally, the lag of the transition 

variable in the transition function in the STAR model can provide information on the 

speed of house price change in response to variation in bank lending, and this 

information is of interest to policymakers and financial regulators, alike.   

 

Hypothesis 2. The loan-to-value (LTV) ratio can be used to reduce large house 
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prices swings and, therefore, foster financial stability. 

 

In the aftermath of the 2008-09 global financial crisis, there is a growing 

consensus that monetary policy is not effective in preventing systemic risks. Central 

banks around the world became aware the LTV ratio is a crucial factor in lending risk 

assessment (e.g., Hungary, Norway, Sweden, and the UK). In spite of the fact that 

lowering the LTV ratio could raise liquidity constraints for property buyers, several 

empirical studies show that the LTV is significantly associated with the default risk 

(see, e.g., Otero-Gonzalez et al., 2016; Gete and Reher, 2016; Qi and Yang, 2009). 

However, a critical issue remains: How effective is the LTV ratio in avoiding large 

swings in house prices? 

Accordingly, the objective of this chapter is to investigate this issue. In particular, 

we are interested in investigating if, and to what extent, the LTV ratio can be used to 

prevent large house price volatility. In order to address this issue, we estimate an AR-

GARCH-M model with the LTV ratio as an explanatory variable. In a related paper, 

Tillmann and Peter (2015), using a structural VAR model, found that lowering the 

LTV ratio reduces the appreciation of house prices (see also Guirguis et al., 2005; 

Miles and William, 2008, 2011; Tsai et al., 2010).  

 

Hypothesis 3. House prices have a long-run equilibrium relationship with bank 

lending and the LTV ratios. 

 

In relation to Hypothesis 1 and 2, it is essential to investigate if house price, bank 

lending, and the LTV are related by a long-run equilibrium relationship. If house 

prices and bank lending or house prices and LTV ratios have a long-run equilibrium, 

then the error correction parameter may provide information on the speed of 

adjustment towards the equilibrium, and this information may be useful to 

policymakers. 

The traditional way to test for long-run equilibrium relationships is by testing for 

co-integration between variables. For example, Gerlach and Peng (2003) analyzed the 

long-run relationship of Hong Kong house price and bank credit by a VAR 

cointegration. They found Granger causality evidence of the direction of influence 

goes from property prices to bank credit. Wong, Tsang and Kong (2014) also found 

that a weak direct pass-through of LTV policy to the property market. However, 
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traditional co-integration tests are well known to have low power when structural 

breaks occur (see Banerjee, 1999). To overcome this problem, Enders and Siklos 

(2012) introduced the co-integration and TAR adjustment approach to extend the 

Engle-Granger test in the case of structural breaks in time series processes. The 

authors point out that this nonlinear approach out-performed the Engle-Granger test 

when there were asymmetric departures from equilibrium. In this context, considering 

that the house prices also exhibit asymmetric, nonlinear behaviour, we apply the co-

integration test based on the TAR and M-TAR models in order to investigate 

Hypothesis 3. 

 

The above-mentioned hypotheses were empirically tested using data from Hong 

Kong. As a major financial centre, Hong Kong has house prices that have undergone 

large and frequent swings over the last three decades. In particular, the Hong Kong 

housing market experienced two major collapses that led to a banking system crisis in 

the past three decades. Therefore, it is a significant case study with which to 

investigate the relationship between bank lending policy and house price cycles. In 

our empirical test, we use data for total lending rather than just mortgage lending. The 

reasons are as follows: First, bank lending reflects lending policy changes and the 

economic situation more directly than mortgages. Second, the majority of loans are 

used in the housing market directly and measures other participants in the real estate 

market as well, such as developers and corporate investors, who use a lot of loans that 

effect property prices. In contrast, the demand for mortgages is caused mainly by the 

demand for properties. Kim and Bhattacharya (2001), for example, found strong 

Granger causality from mortgages to house prices. However, this does not provide 

enough information to prove how bank lending policy affects the housing market. 

Gerlach and Peng (2005) found that the direction of influence in Hong Kong goes 

from house prices to bank credit rather than the converse, whereas, after 2008, Hong 

Kong house prices and bank lending are much more closely related to each other than 

they were in the 80’s and 90’s. We believe that cyclical bank lending is the cause of 

the house price cycles. Meanwhile, in the past 25 years, introducing the maximum 

LTV ratio is the main tool used in Hong Kong for housing market regulation.  

The empirical results of this chapter reveal several insights into the relationship 

between house prices, bank lending, and the LTV ratio. More specifically, the 

empirical results show that house prices are driven by bank lending, which narrows 
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the gap in knowledge concerning the influence of bank lending on house prices 

(Gerlach and Peng, 2005). We also discover the impact of the LTV ratio on house 

price volatility from the estimation of an AR-GARCH-M model. In fact, the 

conditional heteroscedasticity effect may imply higher risk to financial stability. In 

this context, it is important to consider the volatility of house prices when we 

investigate the relationship between house prices and the LTV ratio. Furthermore, 

unlike prior studies, our co-integration test is based on the TAR model framework. 

More specifically, it has been shown that nonlinear models have a stronger ability to 

capture house price cycles and, therefore, more comprehensively describe the long-

run relationship between house prices, bank lending, and the LTV ratio. 

 This chapter is organised as follows. Section 2 reviews the past trends in house 

price cycles, bank lending policy, and the LTV policy in Hong Kong from 1980 to 

2014. Section 3 introduces the proposed models, namely the STAR model, GARCH-

M model, and the co-integration test with TAR adjustment. Section 4 provides the 

empirical results. Finally, Section 5 provides some concluding remarks.   

3.2 House price cycles and bank lending policy in Hong Kong 

The experience of the Hong Kong housing market in the last three decades offers 

a useful case study for house prices, bank lending, and LTV ratios. In particular, the 

house prices and growth of bank lending underwent extraordinarily large swings 

around 1997 in relation to the Asian financial crisis. Hong Kong is particularly prone 

to large fluctuations in house prices due to severe supply-demand mismatches. More 

specifically, Hong Kong covers a land area of 1,104 square kilometres that includes 

Hong Kong Island, Lantau Island, the Kowloon Peninsula, the New Territories, and 

262 other outlying islands. However, more than 75% of this land is too hilly for 

residential purposes. Thus, a very limited land area is home to more than 7 million 

citizens. This, in turn, leads to frequent housing market overheating.  

Besides the severe supply-demand unbalance in real estate market, the Hong 

Kong housing market is subject to investment for speculative purposes. As a result, 

mortgage lending is extremely risky.  The official figures show that most bank loans 

in Hong Kong are used directly in the real estate market and that more than half of 

these loans are mortgages. Mortgage lending has never been lower than 20% of all 

loans issued in Hong Kong since 1991, and it peaked at 37% in September 2002. In 
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general, the increases in house prices in the last thirty years have been accompanied 

by increases in bank credit, but this left banks exposed to adverse conditions in the 

housing market (IMF Report, 2000). For example, Hong Kong had a major housing 

market crash in the early 80's. Mortgage lending grew 34% of total loans in 1979 and 

increased to 56% in 1980. However, in 1981 the property market collapsed. This 

event caused great financial instability in the following years.  

To prevent a recurrence of the over-heating of the housing market and to lower 

the financial risk level, the government set a restriction that all bank’s residential 

mortgages were to have an LTV ratio of no more than 70% in 1991. International 

experience shows that limiting the LTV ratio in bank lending can be a macro-

prudential policy with which to address systemic risk: consider, for example, 

Hungary, Norway, Sweden, and the UK. Theoretically, the LTV ratio should have a 

significant effect on the housing market because the demand for mortgage loans is 

associated with the demand for properties. The LTV ratio restriction has been the 

main regulatory measure for Hong Kong’s for the past two decades.  

The LTV ratio limit has been adjusted four times since the 1990s. The first time 

the Hong Kong government reduced the maximum LTV ratio in 1991. It was lowered 

from 90% to 70%. Nevertheless, lending in the real estate market continued rising 

rapidly between 1991 and 1994. To counter this situation, a 40% benchmark property 

lending policy was introduced to Hong Kong banks. Around 1995, property prices 

dropped, and the maximum LTV ratio of 70% was confirmed as a long-term 

regulatory policy. Prior to 1997, the Hong Kong housing market experienced another 

major expansion, with both bank lending and house prices increasing rapidly in a 

couple of months. The Hong Kong Monetary Authority (HKMA) then reduced the 

LTV ratio a second time, to 60% for properties with a market price of 12 million HKD 

and above. At the same time, it was required that borrowers be assessed for their 

repayment ability for a residential mortgage. Furthermore, borrowers’ monthly 

repayments could not exceed 50%-60% of their monthly income. In 1997, when the 

Asian financial crisis hit, properties prices fell more than 20%. Although the Hong 

Kong government removed the 40% benchmark for bank lending for properties in 

1998 and withdrew the 60% LTV ratio limit for luxury properties in 2001 to stimulate 

the housing market, the housing market did not recover from the crash. The bank 

lending amount also did not go up. Until 2003, Hong Kong house prices remained at 

the 1991 level, which was 60% lower than the peak in 1997. Likewise, bank lending 
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was down 15% in the period between 1997 and 2003. House prices and bank lending 

recovered in the years following 2003, but both did not reach levels seen before 1997. 

The third lowering of the LTV ratio occurred in 2009, along with quantitative easing 

by major central banks. In October, the LTV ratio limit was reduced from 70% to 60% 

for properties priced at HKD 20 million and above. After 2010, both house prices and 

bank lending increased rapidly and achieved another relative peak. On this occasion, 

regulators reacted by introducing an LTV ratio limit of 60% for properties valued at 

HKD 12 million and above that are not intended for personal use. Banks were also 

instructed to introduce stress tests for borrowers’ repayment abilities. In November 

2010, the maximum LTV ratio allowed for properties priced at HKD 12 million and 

above was reduced from 60% to 50%. For properties priced at HKD between 8 

million and 12 million, the maximum allowed LTV ratio was reduced from 70% to 

60%, and the maximum loan amount set at HKD 6 million. For properties priced 

lower than HKD 8 million, the maximum loan amount was set at 4.8 million. For non-

owner-occupied properties, company-held properties, and industrial and commercial 

properties, the LTV ratio limit was set at 50%. Finally, after February 2015, a new 

supervisory measure was introduced by the HKMA; there were fewer restrictions for 

first-time borrowers than for other borrowers.  At the same time, different LTV ratio 

limits were introduced for different value properties and non-owner-occupied 

properties. All of these new measures were used by the government to try to tamp 

down the boom in the housing market to prevent the banking risks.  

 The LTV ratio is the main tool used by the HKMA to regulate the housing 

market.  In this respect, the Hong Kong experience provides a significant case for 

studying the relationship between house prices and bank lending or LTV ratios. 

However, most of the previous research on the Hong Kong housing market does not 

pay much attention to this issue. For example, Monkkonen, Wong, and Begley (2012) 

examined house price response to economic and population changes in Hong Kong 

and found spatial dynamics in the Hong Kong housing market. Further, Mak, Choy, 

and Ho (2010) used a quantile regression to estimate Hong Kong house prices and 

provide a relationship between housing characteristics and prices. In addition, Hui and 

Zheng (2012) found that the correlations between house prices and rental are time-

varying. Funke and Paetz (2013) tested the house price and business cycles in Hong 

Kong, and showed that property prices are mainly driven by intratemporal preference 

perturbations. Finally, Chan, Lee, and Woo (2001) examined the misspecification 
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errors and rational bubbles in the Hong Kong housing market. To fill the gap, we 

attempt to provide insight into the relationships between house prices, bank lending, 

and the LTV ratios through econometrics. In the following section, we introduced the 

models used for our empirical study. 

3.3 The Model 

In this chapter, we consider three models, which are: the STAR model for 

Hypothesis 1, the AR-GARCH-M model for Hypothesis 2, and the TAR models co-

integration test for Hypothesis 3. The economic motivation for these three models can 

be concluded as follow: First, the house prices and bank lending exhibit evident 

economic cyclic patterns and the regime switching model has good fitness. Second, 

the volatility also found in the level of returns of first order differenced date series. 

Thus, this chapter also uses GARCH in mean model to estimate house prices by 

LTV’s mean returns and its conditional variance.  Finally, using a TAR model to 

examine the cyclic long run relationship for house prices, bank lending and the LTV. 

We introduce the three models in turn below. 

3.3.1 The STAR model 

The STAR model was discussed in Chapter 2. In this chapter, we use the model 

in equation (2.14) but replace the transition variable 𝑦𝑡−  with the bank lending series 

𝑆𝑡− . Let 𝑦𝑡  be a realization of the house price series, then the STAR model is 

specified as:  

 

 𝑦𝑡 = ,𝜑0 + 𝜑(𝐿)𝑦𝑡- + , 0 +  (𝐿)𝑦𝑡- ∙  (𝑆𝑡− ) +  𝑡,              (3.1)    

     

and the transition function for an LSTAR is specified as: 

 

                            (𝑆𝑡− ) = ,1 +   p*− (𝑆𝑡− − 𝑐)+-−1,   0.                       (3.2) 

 

Similarly, for the ESTAR model, the transition function is:  
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              (𝑆𝑡− ) = ,1 −   p *− (𝑆𝑡− − 𝑐)2+-,   0.                       (3.3) 

The STAR model used in this chapter has been described in section 2.3.2.  

Following Teräsvirta (1994), we use the Lagrange Multiplier (LM)-type tests for 

testing linearity and follow the steps described in the previous chapter for the choice 

of transition function. However, in the auxiliary regression, the transition variable 

( 𝑆𝑡) is now a proxy for bank lending. Hence, the auxiliary regression in now given by:  

 

𝑦𝑡 = 𝜑0 + ∑ 𝜑1,𝑖 ∙ 𝑦𝑡−𝑖

 

𝑖=1

+ ∑𝜑2,𝑖 ∙ 𝑦𝑡−𝑖𝑆𝑡− + ∑ 𝜑3,𝑖 ∙ 𝑦𝑡−𝑖𝑆𝑡− 
2 + ∑ 𝜑4,𝑖 ∙ 𝑦𝑡−𝑖𝑆𝑡− 

3

 

𝑖=1

+  𝑡.   (3.4)
 

𝑖=1

 

𝑖=1

 

 

where 𝑆𝑡−  is the time series for “bank lending” in Hong Kong.  

 

 

The null hypothesis is: 

 

 01 𝜑2𝑖 = 𝜑3𝑖 = 𝜑4𝑖 = 0 for all i. 

 

The decision rule for the transition function to decide between LSTAR and 

ESTAR models follows that in Section 2.3.2. We evaluate the goodness of fit of the 

model by testing for no error autocorrelation and no remaining nonlinearity. 

3.3.2 The GARCH-M model 

The basic GARCH model was proposed by Bollerslev (1986) and Taylor (1986) 

and this model is often interpreted in various branches of econometrics, especially in 

financial time series where the study of volatility is of primary interest. For example, 

Baillie and DeGennaro (1990) estimated the GARCH in mean model for examining 

the stock returns and volatility. Baillie and Chung (2001) found that the minimum 

distance estimator methodology does a good job of estimating a GARCH model for 

exchange rate returns. The GARCH model expresses a conditional mean equation and 

a conditional variance equation. This model is commonly used for capturing 
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autocorrelation structure of the variance.  In house price modelling, Crawford and 

Fratantoni (2003) argue that there is strong evidence of persistent volatility dynamics 

for US home price series.  

This study considers the GARCH in-mean model which measures conditional 

volatility have an impact on the level of the time series variable. For example, in 

financial modelling, the relationship between the risk and the expected return of an 

asset depends upon the attitudes toward risk of asset holders.  

In our house price study, we use the LTV ratio as an exogenous variable, and it is 

included in the conditional mean equation. This indicates that the estimated 

coefficient on the LTV ratio is a measure of house prices. Given that house prices are 

highly persistent, we include an autoregressive term in the conditional mean equation. 

Also, since we are interested in investigating if house price volatility affects the 

conditional mean equation, we estimate an AR(1)-GARCH(1,1)-M model given by: 

 

𝑦𝑡 = 𝜗𝑋𝑡
 + 𝛿𝑦𝑡−1 + 𝜆𝜎𝑡 +  𝑡,                                              (3.5) 

 

𝜎𝑡
2 = 𝜔 +  𝜖𝑡−1

2 + 𝛽𝜎𝑡−1
2 ,                                             (3.6) 

  

where 𝑋𝑡
  is the LTV ratio on return level, 𝑦𝑡−1 is the lagged measure of first order 

difference and log transformed house price changes, 𝜔 is a constant term, 𝜎𝑡
2 is the 

conditional variance, 𝜖𝑡−1
2  is the ARCH term that measured as the lag of the squared 

residual from the mean equation, and 𝜎𝑡−1
2  is the GARCH term.                  

Notably, prior to estimating the GARCH model and afterwards, we use an LM 

test for checking whether or not the standardised residuals exhibit additional ARCH. 

The LM test is commonly used for testing for the ARCH effect. If equations (3.5) and 

(3.6) are correctly specified, there should be no ARCH left in the residuals (Engle, 

1982). The null hypothesis is no ARCH up to order q in the residuals, and the LM test 

auxiliary regression is given by: 

 

𝑒𝑡
2 = 𝛽0 + (∑𝛽 𝑒𝑡− 

2

 

 =1

) + 𝑣𝑡 ,                                        (3.7) 
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where 𝑒 is the residual. The ARCH test result is reported by an F-statistic.  

3.3.3 Co-integration test 

In order to investigate the long-run relationship among bank lending, the LTV 

ratio, and house prices, we consider testing for co-integration in this section. Co-

integration implies a set of dynamic long-run equilibria. Considering that house prices 

and bank lending in Hong Kong are closely related, it is interesting to test if there is 

an equilibrium relationship between these two variables so that any short-run 

deviation would be corrected over time. Moreover, since the LTV ratio is the key tool 

used in housing market policy, it is also of interest to test for co-integration between 

house prices and the LTV ratio.  

Standard models of co-integrated variables assume linearity and symmetric 

adjustment. For example, the methodologies developed by Johansen (1996) and Stock 

and Watson (1998) and a similar alternative hypothesis in the Engle and Granger 

(1987) test assumes symmetric adjustment. In a simple case, the error-correction co-

integration test and its extensions are misspecified if adjustment is asymmetric. 

Considering that the Hong Kong house price series are nonlinear and asymmetric, we 

use an alternative nonlinear model to test for co-integration. Enders and Siklos (2001) 

suggested testing co-integration with the threshold autoregressive model. They 

modified the basic TAR as below: 

 

                          ∆𝜇𝑡 = 𝐼𝑡 1𝜇𝑡−1 + (1 − 𝐼𝑡) 2𝜇𝑡−1 + ∑  𝑖∆𝜇𝑡−1

𝑝−1

𝑖=1

+  𝑡,                      (3.8) 

 

where 𝜇𝑡  is the serially correlated disturbance term,   represents the estimated 

parameters, and 𝐼𝑡 is the Heaviside indicator function: 

 

                                                       𝐼𝑡 = { 
1       𝑖𝑓 𝜇𝑡−1 ≥ 𝜏,
0       𝑖𝑓 𝜇𝑡−1 < 𝜏,

                                           (3.9) 

 

where 𝜏 is the value of the threshold, and  𝑡~IID(0,𝜎2). 

However, the TAR has low power when the adjustment is asymmetric. Enders 
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and Siklos (2001) also provide an alternative adjustment specification which is called 

momentum-threshold autoregressive models. The authors suggested that the M-TAR 

adjustment is very useful for attempting to smooth out large structural breaks in the 

series. According to Enders and Siklos (2001), the M-TAR is given by: 

 

𝑥1𝑡 = 𝛽0 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 + ⋯+ 𝛽𝑛𝑥𝑛𝑡 + 𝜇𝑡,                       (3.10) 

∆𝜇𝑡 = 𝐼𝑡 1𝜇𝑡−1 + (1 − 𝐼𝑡) 2𝜇𝑡−1 +  𝑡,                                    (3.11) 

 𝑡 = {
1              if  ∆𝜇𝑡−1 ≥ 𝜏

 0              if  ∆𝜇𝑡−1 < 𝜏,
                                                  (3.12) 

                                                            

where 𝛽𝑖 are the estimated parameters, and 𝑥𝑖𝑡 are the individual I(1) components of 

𝑥𝑖.  

In such circumstances, it is necessary to estimate the threshold value 𝜏 along with 

the values of  1  nd  2, two types of t-statistics for the null hypotheses  1 = 0 and 

 2 = 0 also used in the F statistic for the joint hypothesis  1 =  2 = 0. The largest of 

the individual t-statistics is called t-Max, the smallest is denoted t-Min, and the F 

statistic is called F-joint.  

To use the statistics, we follow three steps: 

1. Regress one of the variables on a constant and the other variables and save the 

residuals in the sequence *𝜇̂𝑡+. Next, depending on the type of asymmetry under 

consideration, set the indicator function  𝐼𝑡  using the threshold value. Estimate a 

regression equation in the form of (3.8) and record the larger of the t-statistics for the 

null hypothesis  i = 0  along with the F-statistic for the null hypothesis 

  1 =  2 = 0. Compare these sample statistics with the appropriate critical values. 

2. If the alternative hypothesis of stationery is accepted, it is possible to test for 

asymmetric adjustment. For example,  1 =  2. 

3. Diagnostic checking of the residuals should be undertaken to ascertain whether 

or not the  𝑡̂ series can reasonably be characterized by a white-noise process. 

3.4 Empirical result 

In this section, we empirically test the three hypothesises described in section 
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3.1. We first test Hypothesis 1 using the STAR model, and then we test Hypotheses 2 

and 3 using GARCH-M model and TAR (M-TAR) models, respectively. First, we 

provide some basic descriptions of the data. Second, we report on the full estimation 

procedures and results.   

3.4.1 Data and descriptive statistics 

The empirical data were collected from the HKMA. Due to the fact that house 

prices, and bank lending and LTV ratio data are released in different times and 

formats, we construct two datasets to reconcile quarterly and monthly data. The first 

dataset for investigating house prices and bank lending consists of quarterly indexes 

for all types of properties in Hong Kong and all loans used in Hong Kong over the 

period 1980: q1 to 2014: q4. The second dataset for investigating house prices and the 

LTV ratio consists of monthly indexes from June 1998 to November 2016.  

Looking at the data in Figure 3.1, it appears that both the housing market and 

bank lending in Hong Kong have experienced significant cyclical volatility over the 

last thirty-four years. Before 1997, the housing market was subject to cyclical 

variations, but the market suffered a major contraction in 1997 when house prices 

entered a six years’ long recession that resulted in an average loss of more than 60% 

compared with 1997. A second major contraction occurred in 2007 after the subprime 

crisis in the US market and the European sovereign debt crisis. The house prices in 

the Hong Kong market decreased by approximately 20 percent in one year. Similarly, 

bank lending contracted approximately 20 percent from 1997 to 2003 and 10 percent 

in 2008.   

Figure 3.2 shows the LTV ratio and house prices. The LTV ratio does not have a 

similar trend with house prices but is inversely related. In particular, around 2000 the 

house prices fall to the bottom, and the LTV ratio achieves its peak. In addition, after 

2008, higher house prices are associated with a lower LTV ratio. 
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Figure 3.1 House price and bank lending in Hong Kong 
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Figure 3.2 House price and LTV in Hong Kong 
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Prior to estimating the STAR model, it is necessary to test for stationary house 

prices, bank lending and LTV series. First, we transform the series using first-order 

difference. The house price dataset for Hypothesis 1 and 2 are denoted as House 

price-1 and House price-2, respectively. For testing to see if the data is stationary, we 

use the ADF unit root test, and the results are reported in Table 3.1. From the ADF 

unit root results, it can be seen that the values of the t-Statistic are lower than the 1% 

critical value with p-value near zero. This means that the series is stationary. 
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Table 3.1 ADF Unit Root test 

 t-Statistic Prob. 

House price-1 -5.179*** 0.0000 

House price-2 -7.305*** 0.0000 

Bank lending -3.898*** 0.0027 

LTV -17.003*** 0.0000 

Note: *** indicate statistical significance at 1% 

3.4.2 STAR model result 

The modelling procedure adopted follows the steps described in Section 3.3.1. 

Table 3.2 reports the results of the linearity test and corresponding F-statistics of the 

null hypothesis based on equation (3.4). The dependent variable 𝑦𝑡 represents Hong 

Kong house prices, and the auxiliary regression is applied in the case of 𝑆𝑡,  which is 

bank lending. The maximum lags are determined by an initial analysis of the AIC of 

VAR model estimation. We set the maximum lags at 10 for both endogenous and 

exogenous, and the result indicates that the maximum lag is 2 for 𝑦𝑡−𝑖  and 9 for 

transition variables 𝑆𝑡− . However, our test indicates that the optimal lag for transition 

variable 𝑆𝑡−  is zero. We denote the dependent variable house price as HP, and the 

transition variable bank lending as BL. The null hypothesis of linearity is  0 𝛽1 =

𝛽2 = 𝛽3 = 0 in equation (3.4). 

Table 3.2 Linearity test in equation (3.4) 

  HP-BL 

  0  𝛽1 = 𝛽2 = 𝛽3 = 0  

Transition 
Variable 

  

 𝑆𝑡  0.000 

 𝑆𝑡−1  0.027 

TREND  0.220 

Table 3.2 indicates that the strongest linearity rejection happened at 𝑆𝑡 at the 1% 
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significance level, and Table 3.3 shows the estimated p-values of the auxiliary 

regression equation (3.4).  

 

Table 3.3 Choosing the Type of Model 

 
 HP-BL 

   04   03   02 

Transition 
variable 

  

 𝑆𝑡 

 

0.001 0.997 0.004 

 𝑆𝑡−1 0.163 0.009 0.553 

TREND 0.354 0.170 0.306 

 

Table 3.3 shows the test result for transition function selection. The hypotheses 

 04 ,   03,  and  02  are the null hypotheses for the order of the polynomial in the 

auxiliary regression (3.4). The null hypotheses and decision rules are as same as the 

sequence given in Section 2.3.2. The test results are reported by p-values of the F-

statistics. Looking at the second column of Table 3.3, at lag 0, the  04 is rejected at 

the 1% level of significance, which indicates a logistic transition function. 

Accordingly, we will estimate an LSTAR model with 𝑆𝑡 as the transition variable.  

The start values are created using the grid-search method. The grid search creates 

a linear grid in c and a log-linear grid in  . We set the grid for c between 0.1 and 10.0, 

and for   in [0.5, 100.0].  

Table 3.4 presents the estimation results for Hypothesis 1. The top panel reports 

estimated parameters of the LSTAR models, and R squared and adjusted R squared 

values. The models have been reduced in size by eliminating redundant variables, 

more specifically, 𝑦𝑡−2 in the linear part and 𝑦𝑡−1 in the nonlinear part. The middle 

and bottom sections of Table 3.4 report the results of the LSTAR model diagnostic 

tests, i.e., the tests for “no error autocorrelation” and “no remaining nonlinearity,” 

respectively. 
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Looking at the top section of Table 3.4, it appears that the LSTAR model captures 

the house price cycles well when using bank lending as the transition variable. All 

parameters are statistically significant, except for the constant in the linear part. The 

estimated   parameter indicates a slow speed of regime switching between contraction 

and expansion phases.  

Looking at the middle section of Table 3.4, which reports the results for the test 

for error autocorrelation (the null hypothesis for this test is that there is “no error 

autocorrelation”), we see that we do not reject the null hypothesis. This indicates that 

there is no misspecification in our estimated model. The bottom section of Table 3.4 

shows the results of tests with the null hypothesis of “no remaining nonlinearity,” and 

there is no rejection at 1% significance of the null hypothesis in rows 𝑆𝑡 and 𝑆𝑡−1, 

which means that there is no need to add another STR component to the model. 

However, rejection occurs at 5% and 10% significance, respectively, which is not 

very strong rejection. Hence, we think the nonlinearities are captured by our models. 
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Table 3.4 LSTAR model estimation statistics  

  HP-BL 

Variable Coefficient 

Linear Part   

Constant  
-1.918 
(1.316) 

 𝜑1  
0.587*** 
(0.079) 

Nonlinear Part   

Constant  
7.713*** 
(2.259) 

  2  
-0.418*** 

(0.155) 

    
2.874* 
(1.577) 

c  
3.193** 
(1.374) 

   

R2  0.515 

Adjusted R2  0.518 

   
lag 

 

F-value df1 df2 p-value 

1 1.113 1 126 0.294 

2 0.701 2 124 0.498 

    

Transition variable 

 

  0   04   03   02 

 𝑆𝑡 0.071 0.120 0.622 0.005 

 𝑆𝑡−1 0.049 0.147 0.125 0.011 

Note: ***), **), *) indicate statistical significance at 1%, 5% and 10%, respectively. ( ) is standard deviations. 

 

Figure 3.3 provides the graph of the transition function versus the function of the 

transition variable  (𝑆𝑡). In Figure (3.3), each dot corresponds to an observation. We 

can see that the transition process between the two regimes is indeed smooth. Figure 

3.3 also shows the speed of transition between states and illustrates that the LSTAR 

model captures the cycles well.  
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Figure 3.3 Plot of transition function versus function of transition variable 

 

Figure 3.4 plots the transition function (𝑠𝑡,  , 𝑐) . From Figure 3.4, it appears that 

the regimes change with high frequency in the period 1989 to 1993 and after 2005. 

This corresponds to large fluctuation in the Hong Kong housing market and bank 

lending in those periods.  

 

Figure 3.4 Plot of transition function 

 

Figure 3.4 shows the estimated and original series. From the figure, we can see 

that the estimated series is close to the original series and that most fluctuations have 

been estimated. However, for big swing periods, the estimated series does not reach 

the peaks and valleys of the original series, such as around the years 1997 and 1998. 
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Figure 3.5 Plot of LSTAR estimated series and original series 

 

 

Overall, our estimation indicates that the LSTAR model supports Hypothesis 1. 

In other words, credit cycles have a significant impact on house price cycles. In the 

estimated model, it is also clear that the reaction is quite fast, as the adjustment takes 

place within one quarter. 

3.4.3 GARCH model result 

In order to test Hypothesis 2, we specify an AR (1)-GARCH-M model, which is 

given in equations (3.5) and (3.6). 

We first check the suitability of the GARCH model by estimating the conditional 

mean equation only using the OLS method and testing for heteroscedasticity of the 

residuals using the LM test. Note that for all series under consideration, the log 

transformation of the first differences has been considered in the estimation process.  

 The null hypothesis of the LM-ARCH test is that there is no ARCH up to a 

specified order in the residuals. The top part of Table 3.5 reports on the LM 

heteroscedasticity test. We specify the lag order as 1, 4, 8, and 12. The reported F- 

statistic is for an omitted variable test for the joint significance of all lagged squared 

residuals. In the OLS row of the top panel, we can see that all of the lags reject the 

null hypothesis. This indicates that the data series has a strong ARCH effect. In the 
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row GARCH-M, all the considered lags fail to reject the null hypothesis that the AR 

(1)-GARCH (1, 1)-M model captures the volatility in house prices well. The middle 

and bottom panels of Table 3.5 report the estimated parameters for the AR (1)-

GARCH-M model. From Table 3.5, it appears that all coefficients are statistically 

significant. Our estimation result indicates that the LTV ratio affects house prices, 

which is consistent with Hypothesis 2. 

 

Table 3.5 ARCH model estimation statistics 

 lag 

 1 4 8 12 

 F-statistic 

OLS 79.862*** 21.172*** 10.988*** 7.897*** 

     

GARCH-M 0.068 0.579 1.012 1.116 

     

Variable Coefficient 

  

 𝜆 
0.128** 
(0.066) 

 𝜗 
19.856*** 

(6.962) 

 𝛿 
0.732*** 
(0.043) 

 𝜔 
0.254* 
(0.152) 

   
0.175*** 
(0.065) 

 𝛽 
0.762*** 
(0.073) 

  

R-squared 0.520 

Adjusted R-
squared 

0.515 

Note: ***), **), *) indicate statistical significance at 1%, 5% and 10%, respectively. 

 

Figure 3.6 plots the fitted and actual series for the conditional mean equation. We 

can see the AR (1)-GARCH-M model accurately captures the characteristics of house 

prices in Hong Kong. All in all, our empirical test strongly supports Hypothesis 2, 
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which postulated that house price changes are affected by the LTV ratios imposed by 

financial authorities. 

  

Figure 3.6 Plot of GARCH estimated series and actual series 
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3.4.4 TAR co-integration test for long-run relationship 

The series of the house prices, LTV ratios, and bank lending are logarithms 

transferred. Endogenous variables are denoted as LHP, LLTV and LBL. The threshold 

and lags are determined by the data we use. According to Enders and Siklos (2001), 

the length of lag is determined by AIC and BIC, and the threshold value follows the 

methodology of Chan (1993). The 5% significance level of critical values are from 

10,000 Monte Carlo simulations. Base on Section 3.3.3, we set the hypothesis as 

 0  ρ1 = ρ2 = 0 in equations (3.8) and (3.11). 

The co-integration with TAR and M-TAR results are shown in Table 3.6. Looking 

at the results in Column 2, the estimated parameters  1  nd  2 are negative suggest 

faster convergence for negative than for positive discrepancies from long-run 

equilibrium. The positive value of the 𝜇𝑡−1indicates a random-walk behavior occurs. 

The threshold value is estimated by the Chan’s (1993) methodology. From the bottom 

panel of Table 3.6 it appears that the calculated F-equal for the null hypothesis of 
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symmetric adjustment ( ρ1 = ρ2) given in the second column exceeds the 5% critical 

value (given in the []). Hence, at conventional significance level, one can reject the 

null hypothesis of symmetric adjustment. This is consistent with the asymmetric 

behaviours of house prices and bank lending in Hong Kong. The estimates’ F-joint-

statistic at the bottom of Table 3.6 indicates that the null hypothesis that   1= 2=0 can 

be rejected near the 5% level (note that the critical values of the test are given in []), 

meaning that house prices and bank lending in Hong Kong are co-integrated. Note 

that the point estimate for T-Max is only -0.861. Hence, we cannot reject the null 

hypothesis of no co-integration, according to the T-max test. Therefore, the two test 

statistics produce contradictory results. However, according to Enders and Siklos 

(2001), the T-Max statistic has lower power than the F-joint-statistic. Accordingly, we 

rely on the latter test and discard the former.   

Column 3 of Table 3.6 reports the results of estimated M-TAR co-integration test 

for house prices and the LTV ratio. The M-TAR model uses the consistently estimated 

threshold of 0.056. The AIC and BIC selected a model using three-lagged changes of 

*∆𝜇𝑡+ . Note that the | 1| < | 2|  and ∆𝜇𝑡−1 < 0 . According to Enders and Siklos 

(2001), the M-TAR model exhibits substantial decay. Once again the test rejects the 

symmetric hypothesis at the 5% level, and the T-max statistic fails to reject the null 

hypothesis that ρ1 = ρ2 = 0,  whereas the F-joint-statistic rejects it. Under these 

circumstances, we conclude that the house prices and LTV ratio in Hong Kong also 

have a long-run relationship. 
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Table 3.6 TAR and M-TAR co-integration results  

 LHP-LBL LHP-LLTV 

Variable Coefficient Coefficient 

 1 
-0.094 
(0.025) 

0.064 
(0.052) 

 2 
-0.016 
(0.019) 

-0.122 
(0.032) 

∆𝜇𝑡−1 
0.567 

(0.068) 
-0.066 
(0.068) 

∆𝜇𝑡−2 - 
-0.076 
(0.067) 

∆𝜇𝑡−3 - 
-0.035 
(0.067) 

𝜏 0.302 0.056 

F-equal 
6.420 

[6.302]* 
9.865 

[8.284]* 

T-Max -0.861 
[-1.887]* 

1.243 
[-1.809]* 

F-joint 7.699 
[7.101]* 

8.275 
[8.041]* 

*() are the standard errors; *+ are the 10,000 Monte Carlo simulated critical values for the 5% 

significance level.    

3.4.5   Empirical test result analysis 

In this section, we empirically tested the three hypotheses of interest in this 

chapter. Regarding Hypothesis 1, we find that bank lending from financial institutions 

heavily affects house price cycles. The magnitude of the transition parameter reflects 

the smooth swings between boom and bust phases. The fact that the transition variable 

has no lags implies that changes in bank lending policy are promptly transmitted to 

the housing market. The LSTAR model captures all of these characteristics. With 

respect to Hypothesis 2, we found a strong ARCH effect in the conditional variance 

equation of house prices, and the in-mean parameter in the conditional mean equation 

implies that the volatility of house prices also affect the conditional mean equation. 

Furthermore, the house prices also react changes in the LTV ratio. Finally, in our co-

integration test for Hypothesis 3, we also found the long-run equilibrium relationship 
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between house prices and bank lending as well as house prices and the LTV ratio. In 

light of these results, we conclude that bank lending fluctuations and LTV ratios 

significantly affect house prices.   

3.5 Conclusion 

This chapter considers the relationship between house prices, bank lending, and 

the LTV ratio in Hong Kong. As the Hong Kong housing market experienced two 

major collapses, it is a significantly useful case to study. In particular, we have 

empirically tested three hypotheses. Hypothesis 1 aims to investigate if the house 

price changes are affected by bank lending. We estimate an LSTAR model that uses 

the bank lending as transition variable. The rationale of the model specification is that 

the re-specified LSTAR model is capable of capturing the smooth and asymmetric 

nonlinear behaviours in house prices and bank lending. Our results highlight that 

house prices are severely affected by bank lending policies. According to the 

estimation results, when the lending standard is relaxed, house prices will experience 

a boom phase. Additionally, when financial institutions tighten their lending, the 

house price cycles will enter a contraction phase. Also, the speed of adjustment of the 

housing market to changes in lending policies is rapid as house prices will fall within 

one-quarter of a tightening.  

The purpose of Hypothesis 2 is to investigate the linkage between house prices 

and the LTV ratios. We find the ARCH effect in the house price series, and, therefore, 

we estimate a GARCH-M model. In order to test the LTV ratio’s impact on house 

prices, we allow the LTV ratio as an explanatory variable in our GARCH-M model. 

Our empirical test found that a strong effect directly from the LTV ratio to house 

prices. In addition, we also found that the GARCH-M model describes the volatility in 

our data well.  

Finally, the results for Hypothesis 3 indicates that house prices and bank lending 

are co-integrated. Similarly, house prices and the LTV ratio have a long-run 

equilibrium relationship based on the M-TAR co-integration test.  

Our research has several important implications. Firstly, in the aftermath of the 

global crisis, house prices play a more important role in financial stability. Our finding 

can be a useful reference for market regulators and investors. They should be aware 
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that bank lending and the LTV ratio are capable of regulating house prices in order to 

promote financial stability effectively. For example, when the regulator anticipates 

that the housing market is facing a recession or accumulated bubbles, an effective way 

to head such an event off is to change the bank lending policy or introduce a new LTV 

ratio standard. In the meantime, with regard to the signs of these policy changes, 

investors can predict the rough trend.  

Secondly, research in the future may consider testing more factors that may be 

associated with house prices. In spite of this chapter illustrating that the banking 

sector strongly affects house prices, we believe other factors are also associated with 

house price swings. For example, personal income, consumption, and different 

regions or countries may influence house price swings.  

Finally, we are interested in proposing a STAR-GARCH type model in house 

prices modelling in the future. Previous research in the housing market has found that 

regime switching models capture structural changes well, and the GARCH model 

describes the volatility well. Therefore, we think the combination of these two 

mechanisms could have more capacity in house price modelling and forecasting.  
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Chapter Four 

Investigating the performance of the unit root test in the 

presence of the in-mean term: the Monte Carlo 

Experiment 

 

4.1 Introduction 

Unit root tests have been widely used to classify time series as being either 

stationary or nonstationary. However, it is well known that these tests tend to over-

reject the null hypothesis in the presence of heteroscedastic errors. For example, an 

early study by Kim and Schmidt (1993) is one of the first works to investigate this 

issue, and they found that the unit root tests are generally not robust in the face of 

non-normal innovations. In particular, the authors conduct a Monte Carlo experiment 

to investigate the Dickey-Fuller (DF) test when the innovations admit a GARCH-type 

process. According to their experimental results, the DF test over-rejects the null 

hypothesis frequently in the presence of conditional heteroscedasticity. In addition, 

the DF tests also appear to be seriously inaccurate when the ratio of the GARCH 

intercept to the initial variance is near zero and the volatility parameter is larger. 

Haldrup (1994), Ling et al. (2003), and Valkanov (2005) considered the DF test and 

also found that this commonly used inference procedure is oversized when GARCH 

innovations are included in the data generating process.  

To understand this problem, Seo (1999) studied the asymptotic distribution of the 

AR unit root test when the error term follows a GARCH process. The author found 

that the power of the unit root test increased when the GARCH effect increases. Ling 

and Li (1998) compare the maximum likelihood and least squares estimators for 

various types of random walk processes. They indicated that the maximum likelihood 

estimator of unit roots is significantly more efficient than ordinary least squares 
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estimation. Against this background, Cook (2008) further explored the work done by 

Seo (1999) and considered the local-to-unity detrending of the unit root testing 

procedure to increase the power of unit root test with GARCH process. The author 

concluded that the proposed test increases the power compared to the traditional DF 

test. Similar results are found in Li and Shukur (2011). Here, the authors used the 

wavelet method to address the over-rejection issue and indicated that the proposed 

method improves the unit root test in finite samples. According to Perron and Ng 

(1996), the two main problems of unit root tests are: i)  low power when the root of 

the AR polynomial is close to one; ii) severe size distortions when the MA polynomial 

of the first-differenced series has a large negative root.  

This chapter contributes to the literature by investigating the performance of 

commonly used unit root tests in the presence of non-normal innovations. However, it 

is not easily observed in real world and not been widely investigated. Thus, we hope 

that our research will fill this gap. In particular, we focus on an AR (1)-GARCH-M 

process and consider the effects of structural breaks on the size and power properties 

of these tests. The inference procedures under consideration are the DF test proposed 

by Dickey and Fuller (1979) and the M-test proposed by Stock (1999) and Perron and 

Ng (1996). The M-test is a kind of modified unit root test which ought to be more 

robust in the presence of structural breaks in time series processes. 

In order to investigate the properties of these tests in the presence of structural 

breaks, an extensive Monte Carlo experiment has been undertaken. The Monte Carlo 

experimental design allows for structural breaks in the conditional variance equation. 

For the DF test and M-test, we consider using both the ordinary least squared method 

and the generalized least squared method to estimate the autoregressive parameter. In 

addition, we consider an empirical application of the AR-GARCH-M model to UK 

house prices. The empirical test will investigate how the in-mean term affects house 

prices estimation. 

Summarizing our results, we find that the in-mean parameter significantly affects 

the size and power properties of the test. More specifically, the size and power of two 

considered unit root tests perform well when the in-mean parameter is fixed at a small 

value and severely deviated when the in-mean parameter increased. Furthermore, our 

empirical findings indicate that the in-mean term significantly increases the 

estimation. In particular, the GARCH model is severe inaccurate, but the GARCH in-

mean model captures house price volatility well.   
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This chapter proceeds as follows. Section 4.2 introduces the unit root test and the 

over-rejection problem. Next, Section 4.3 introduces the data generation process used 

for the Monte Carlo analysis. Further, Section 4.4 reports on the Monte Carlo 

experiment and our estimation results. In addition, Section 4.5 provides an implication 

for housing price. The final section, Section 4.6, is the conclusion.    

4.2 Unit root tests 

To test for a unit root in 𝑦𝑡, consider the following two equations: 

 

            𝑦𝑡 = 𝜑 +  𝑡 + 𝑢𝑡 ,                                              (4.1) 

                   𝑢𝑡 =  𝑢𝑡−1 + 𝑣𝑡,                                                (4.2) 

 

where 𝑣𝑡~𝑖𝑖𝑑(0, 𝜎2). The 𝜑 +  𝑡 is a linear trend used for capturing the deterministic 

trend of 𝑦𝑡.  

Equation (4.2) captures the stochastic trend properties of 𝑦𝑡 , and  = 1 

corresponds to 𝑢𝑡 having a unit root. In other words, to verify that 𝑦𝑡 is nonstationary, 

it is necessary to verify that 𝑢𝑡  contains a unit root. The null hypothesis and 

alternative hypothesis of the unit root tests are: 

 

 0 ∶   = 1 ⟹ Non  t tion ry 

                                     1 ∶    < 1 ⟹ St tion ry                                                (4.3)  

 

To implement the unit root test, we use a two-step approach, which includes 

detrending and testing  

4.2.1 Detrending 

The detrending method is considered using both OLS and GLS. Applying a lag 

operator (1 -  L) to both sides of (4.1) and using (4.2) to replace 𝑢𝑡, 𝑦𝑡 is: 

 

     (1 −  𝐿)𝑦𝑡 = 𝜑(1 −  ) +  (1 −  𝐿)𝑡 + 𝑢𝑡 .                      (4.4) 
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Let  =  ∗, where  ∗ is a constant, then estimate the remaining parameters with 

the full sample of 𝑡 = 1,2, … , 𝑇. Then (4.4) can be written by using the filter (1 −

 ∗𝐿) as follows: 

  

𝑦𝑡 −  ∗𝑦𝑡−1 = 𝜑(1 −  ∗) +  (𝑡 −  ∗(𝑡 − 1)) + 𝑢𝑡 −  ∗𝑢𝑡−1.         (4.5) 

 

Using matrices, we can re-express equation (4.5) as: 

 

𝑦∗ = 𝑥∗𝛽∗ + 𝑢∗,                                              (4.6) 

 

where  𝛽∗ = ,𝜑  -  is a (2 x 1) vector, 𝑢∗ is the disturbance term in (4.6), and the 

𝑦∗  nd 𝑥∗ are:  

 

  𝑦∗ =

[
 
 
 
 

𝑦1

𝑦2 −  ∗𝑦1

𝑦3 −  ∗𝑦2

⋮
𝑦𝑟 −  ∗𝑦𝑇−1]

 
 
 
 

,    𝑥∗ =

[
 
 
 
 

1               1
1 −  ∗             2 −  ∗

1 −  ∗             3 − 2 ∗

⋮ ⋮
1 −  ∗ 𝑇 − (𝑇 − 1) ∗ ]

 
 
 
 

.             (4.7)  

 

The choice of 𝜙∗ in (4.6) is considered in two methods as follows: 

 

                                             1.  𝑂𝐿𝑆             ∗ = 0  

                                             2.  𝐺𝐿𝑆             ∗ = 1 +
𝑐̅

𝑇
 ,  

 

where 𝑐̅ < 0 is fixed by the deterministic variable in (4.7).   

4.2.2 Testing 

The OLS estimator of   in (4.2) can be obtained by: 

 

                                            ̂ =
∑ 𝑢𝑡𝑢𝑡−1

𝑇
𝑡=2

∑ 𝑢𝑡−1
2𝑇

𝑡=2
.                                                (4.8)  

 

A Dickey-Fuller test is given by: 
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                          𝐷 𝑡 =
𝜌̂−1

 𝑒(𝜌̂)
.                                                         (4.9) 

 

The M-tests are given by: 

 

                      𝑍 =
𝑇−1𝑢𝑇

2−𝜎2

2𝑇−2 ∑ 𝑢𝑡−1
2𝑇

𝑡=2
 ,                                                   (4.10)                    

                      𝑆𝐵 = .𝑇−2 ∑
𝑢𝑡−1

2

𝜎̂2
𝑇
𝑡=2 /

1

2
,                                            (4.11) 

                       𝑍𝑡 =  𝑍 ×  𝑆𝐵 =
1

2
(𝑇−1𝑢𝑇

2−𝜎̂2)

𝜎̂(𝑇−2 ∑ 𝑢𝑡−1
2𝑇

𝑡=2 )
1/2 ,                (4.12) 

 

where 𝜎̂2 is an autoregressive estimator of the spectral density of 𝜇𝑡, given by: 

 

               𝜎̂2 =
1

𝑇−1
∑ 𝑣𝑡

2𝑇
𝑡=2 ,                                                 (4.13) 

 

where 𝑣𝑡 are the residuals. 

The M-tests in (4.10) and (4.11) are very closely related to the DF test in (4.9).  

4.2.3 The over-rejection problem of the unit root tests 

In the next section, a comprehensive study of the DF test and M-test is 

undertaken by Monte Carlo experiment in order to investigate the performance of 

these inference procedures in the presence of the in-mean term in the conditional 

mean equation and structural breaks in the conditional variance equation.  

The DGP under consideration is an AR-(1)-GARCH in-mean model. We first 

consider the size properties of the tests statistics under consideration and then the 

analysis is extended to consider the power.   

4.3 The data generating process 

In order to investigate the performance of unit root tests in the presence of the in-

mean term and structural break, we consider the following model: 

 

                                    𝑦𝑡 = 𝜑 + 𝜙𝑦𝑡−1 + ϑ𝑕𝑡

𝛿
2 +  𝑡,                                 (4.14) 

 

where 𝜑 = 1, 𝜙 = 1 are the AR parameters measuring the intrinsic persistence in the 
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level of 𝑦𝑡−1. The 𝑕𝑡

𝛿
2  is the power transformed conditional variance. The  𝑡  and 𝑕𝑡

𝛿
2 

follows the GARCH (1, 1) process: 

 

                                                    𝑡 = 𝜂𝑡√𝑕𝑡  ,                                                     (4.15) 

                                       𝑕𝑡

𝛿
2 = 𝜔 +   𝑡−1 + 𝛽𝑕𝑡−1

𝛿
2  ,                                      (4.16) 

 

where 𝛿 = 1, 𝜔 = 1 −  − 𝛽, 𝜂𝑡 is a sequence of i.i.d ∼ N (0, 1). The 𝑕𝑡

𝛿
2  in the mean 

equation and the lagged 𝑦𝑡−1  in the conditional variance equation are the two 

variables in our test.  

In this model, the term 𝑕𝑡

𝛿
2 is referred to as the in-mean effect in the unit root test. 

In order to investigate the performance of the unit root test when there is an unknown 

break point in the lagged innovation term  𝑡−1, the conditional variance is augmented 

as: 

 

              𝑕𝑡

𝛿
2 = 𝜔 + ( +  ∆𝑡) 𝑡−1 + 𝛽𝑕𝑡−1

𝛿
2 ,                               (4.17) 

 

where   is a constant denoting the magnitude of the break and ∆𝑡 is a break dummy 

variable standing for the timing of the break, given by: 

 

                   ∆𝑡= {
0,               𝑡 ≤ 𝜏𝑇𝐵

1,               𝑡  𝜏𝑇𝐵
},                                        (4.18) 

 

where 𝜏 is the unknown fraction of the simulated series which indicates the location 

of the break point. 

Similarly, we investigate the effect of the unknown breakpoint in the transformed 

conditional variance 𝑕𝑡−1

𝛿
2  and augment the 𝛽 in euquation (4.16) as follow: 

  

              𝑕𝑡

𝛿
2 = 𝜔 +   𝑡−1 + (𝛽 +  ∆𝑡)𝑕𝑡−1

𝛿
2 .                               (4.19)  

 

In the Monte Carlo experiment, we considered the DGP with different values of 

  and 𝛽 to test the performance of the unit root tests. For example, we extend the 
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work by Kim and Schmidt (1993) by considering the case where the GARCH 

variance process is being near integrated ( + 𝛽  1).  

4.4 Monte Carlo Experiment 

The DGP for the Monte Carlo simulation analysis is specified by equations 

(4.14), (4.15), and (4.16), and the simulation experiment is conducted using GAUSS 9 

software. In the estimation, the autoregressive parameter is estimated with both OLS 

and GLS. In total, four tests are considered, which are denoted as 𝐷 𝑂𝐿𝑆 , 𝐷 𝐺𝐿𝑆 , 

 𝑂𝐿𝑆,, and  𝐺𝐿𝑆, respectively.  

All simulations are based on 10,000 replications and use sample size T=1,000. 

We also created further 50 initial observations and discarded, in order to avoid the 

influence of the initial values. The GARCH in-mean parameters are specifically set as 

𝜏 = *0.25, 0.5, 0.75+ and  = *0, 0.05, 0.07, 0.1+. For each 𝜏, we test with the full set 

of  . At the same time, both 𝜏  and   are tested under different values of ϑ =

*0, 0.3, 0.5, 0.7+. Test results are shown in Tables 4.1 and 4.2. In particular, Table 4.1 

reports the simulations with the parameters    nd 𝛽 set in equation (4.16) as (0.85, 

0.1), (0.5, 0.1), and (0.1, 0.1), and Table 4.2 reports the result of the Monte Carlo 

when    nd 𝛽 are set as (0.1, 0.5), (0.45, 0.5), and (0.1, 0.85). We summarize the 

results for empirical sizes of the tests for the 5% nominal significant level.  

Firstly, from Table 4.1, it appears that with the in-mean parameter fixed at ϑ = 0, 

both the DF test and M-test have good size properties. However, when the magnitude 

of ϑ in r     , the empirical sizes of all statistics under consideration are severely 

affected. Among the four statistics, the 𝐷 𝑂𝐿𝑆 has the best size properties.  

Secondly, for any given ϑ , the values of the    nd 𝛽  have an effect on the 

performance of the test statistics. In particular, when  +  𝛽 is close to 1, the test 

statistics become severely undersized. Table 4.1 reports empirical sizes for ( +  𝛽) 

as 0.95, 0.60, and 0.25, respectively. It can be seen that the empirical size of the test 

for 0.95 is much less than the nominal 5% significant level. In addition, we cannot 

find large differences in the influence of the parameters    nd 𝛽 , but it is still 

indicated that the small value of   performs better than the small value of 𝛽, see Table 

4.1, rows 3-6. For different values of 𝑎  nd 𝛽, the four statistics do not appear to have 

large differences. Finally, it is of interest to note that the over-rejection problem is 
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affected by break size   and break point 𝜏. Our results indicate that increasing the 

value of the parameter   greatly impacts the performance of the test statistics, as the 

size distortion of the tests become larger and larger. While, for a given  , increasing 

the value of 𝜏 has a positive effect on the performance of the unit root test.  
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Table 4.1 Size result of the Monte Carlo simulation 

  
 DF-OLS DF-GLS MZt-OLS MZt-GLS  DF-OLS DF-GLS MZt-OLS MZt-GLS  DF-OLS DF-GLS MZt-OLS MZt-GLS 

Conditional 
Variance 

               

 𝑕𝑡

𝛿
2 = 𝜔 + 0.85 𝑡−1 + 0.1𝑕

𝑡−1

𝛿
2   𝑕𝑡

𝛿
2 = 𝜔 + 0.5 𝑡−1 + 0.1𝑕

𝑡−1

𝛿
2   𝑕𝑡

𝛿
2 = 𝜔 + 0.15 𝑡−1 + 0.1𝑕

𝑡−1

𝛿
2  

       

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 +  𝑡 

τ=0.25 γ=0.00  0.070 0.080 0.078 0.078  0.052 0.056 0.058 0.054  0.052 0.054 0.046 0.052 
τ=0.25 γ=0.05  0.114 0.088 0.122 0.086  0.072 0.048 0.052 0.048  0.058 0.042 0.048 0.042 
τ=0.25 γ=0.07  0.104 0.092 0.122 0.092  0.058 0.050 0.058 0.050  0.054 0.058 0.046 0.058 
τ=0.25 γ=0.10  0.086 0.092 0.116 0.092  0.048 0.054 0.032 0.054  0.042 0.046 0.038 0.044 

                 
τ=0.50 γ=0.00  0.070 0.080 0.078 0.078  0.052 0.056 0.058 0.054  0.052 0.054 0.046 0.052 
τ=0.50 γ=0.05  0.120 0.096 0.118 0.096  0.074 0.046 0.050 0.044  0.058 0.042 0.048 0.042 
τ=0.50 γ=0.07  0.102 0.092 0.114 0.090  0.052 0.052 0.060 0.052  0.052 0.058 0.050 0.056 
τ=0.50 γ=0.10  0.090 0.076 0.112 0.074  0.048 0.062 0.040 0.062  0.040 0.046 0.036 0.044 

                 
τ=0.75 γ=0.00  0.070 0.080 0.078 0.078  0.052 0.056 0.058 0.054  0.052 0.054 0.046 0.052 
τ=0.75 γ=0.05  0.118 0.090 0.114 0.088  0.072 0.044 0.046 0.044  0.058 0.044 0.050 0.042 
τ=0.75 γ=0.07  0.100 0.088 0.118 0.088  0.058 0.048 0.052 0.046  0.052 0.058 0.046 0.056 
τ=0.75 γ=0.10  0.080 0.070 0.092 0.070  0.046 0.058 0.042 0.058  0.046 0.048 0.036 0.048 

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 + 0.3𝑕𝑡 +  𝑡 

τ=0.25 γ=0.00  0.080 0.058 0.060 0.058  0.042 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.25 γ=0.05  0.080 0.034 0.050 0.034  0.026 0.000 0.000 0.000  0.004 0.000 0.000 0.000 
τ=0.25 γ=0.07  0.084 0.048 0.046 0.048  0.016 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.25 γ=0.10  0.050 0.040 0.050 0.040  0.010 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

                 
τ=0.50 γ=0.00  0.080 0.058 0.060 0.058  0.042 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.50 γ=0.05  0.092 0.030 0.062 0.030  0.026 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.50 γ=0.07  0.094 0.042 0.054 0.042  0.016 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.50 γ=0.10  0.046 0.046 0.046 0.046  0.010 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

                 
τ=0.75 γ=0.00  0.080 0.058 0.060 0.058  0.042 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.75 γ=0.05  0.100 0.042 0.066 0.042  0.028 0.000 0.000 0.000  0.004 0.000 0.000 0.000 
τ=0.75 γ=0.07  0.100 0.044 0.058 0.044  0.026 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.75 γ=0.10  0.078 0.042 0.060 0.042  0.020 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 + 0.5𝑕𝑡 +  𝑡 

τ=0.25 γ=0.00  0.070 0.038 0.050 0.036  0.042 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.25 γ=0.05  0.086 0.044 0.044 0.042  0.024 0.000 0.000 0.000  0.004 0.000 0.000 0.000 
τ=0.25 γ=0.07  0.076 0.032 0.026 0.030  0.016 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.25 γ=0.10  0.048 0.024 0.032 0.024  0.008 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

                 
τ=0.50 γ=0.00  0.070 0.038 0.050 0.036  0.042 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.50 γ=0.05  0.096 0.042 0.046 0.042  0.026 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.50 γ=0.07  0.086 0.040 0.030 0.040  0.018 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.50 γ=0.10  0.052 0.034 0.036 0.034  0.010 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

                 
τ=0.75 γ=0.00  0.070 0.038 0.050 0.036  0.042 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.75 γ=0.05  0.100 0.046 0.044 0.044  0.032 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.75 γ=0.07  0.102 0.046 0.046 0.046  0.022 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.75 γ=0.10  0.064 0.046 0.050 0.044  0.016 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 + 0.7𝑕𝑡 +  𝑡 

τ=0.25 γ=0.00  0.076 0.036 0.046 0.034  0.044 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.25 γ=0.05  0.082 0.032 0.026 0.032  0.026 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.25 γ=0.07  0.074 0.024 0.026 0.024  0.016 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.25 γ=0.10  0.040 0.028 0.026 0.028  0.008 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

                 
τ=0.50 γ=0.00  0.076 0.036 0.046 0.034  0.044 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.50 γ=0.05  0.094 0.038 0.038 0.038  0.028 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.50 γ=0.07  0.076 0.032 0.030 0.032  0.018 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.50 γ=0.10  0.050 0.028 0.032 0.028  0.008 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

                 
τ=0.75 γ=0.00  0.076 0.036 0.046 0.034  0.044 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.75 γ=0.05  0.102 0.038 0.040 0.036  0.034 0.000 0.000 0.000  0.002 0.000 0.000 0.000 
τ=0.75 γ=0.07  0.086 0.036 0.038 0.036  0.024 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
τ=0.75 γ=0.10  0.062 0.038 0.038 0.036  0.014 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
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Table 4.2 shows more Monte Carlo experimental results. Once again, it appears 

that the size properties of the unit root tests are significantly affected by the in-mean 

term ϑ. It can be seen that when the ϑ increases to 0.3, all the empirical sizes are far 

away from the nominal 5% size. Comparing Table 4.2, rows 11 to 14, with Table 4.1, 

rows 3 to 6, while both show the results of  +  𝛽 = 0.95, it can clearly be seen that 

the smaller value of  =0.1 in Table 4.2 has slightly better size properties than the case 

when the 𝛽 = 0.1 in the Table 4.1. Another set of simulation results for  +  𝛽 = 0.95 

are shown in Table 4.2, rows 7 to 10, but this time  = 0.45  nd 𝛽 = 0.5. From the 

simulation results, it appears that the test statistics have similar size properties as the 

case when  = 0.85  nd 𝛽 = 0.1 in Table 4.1.  
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Table 4.2 Size result of the Monte Carlo simulation 

  
 DF-OLS DF-GLS MZt-OLS MZt-GLS  DF-OLS DF-GLS MZt-OLS MZt-GLS  DF-OLS DF-GLS MZt-OLS MZt-GLS 

Conditional 
Variance 

               

 𝑕𝑡

𝛿
2 = 𝜔 + 0.1 𝑡−1 + 0.5𝑕

𝑡−1

𝛿
2   𝑕𝑡

𝛿
2 = 𝜔 + 0.45 𝑡−1 + 0.5𝑕

𝑡−1

𝛿
2   𝑕𝑡

𝛿
2 = 𝜔 + 0.1 𝑡−1 + 0.85𝑕

𝑡−1

𝛿
2  

       

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 +  𝑡 

τ=0.25 γ=0.00  0.056 0.054 0.048 0.052     0.070 0.080 0.090 0.080  0.056 0.060 0.052 0.056 
τ=0.25 γ=0.05  0.056 0.044 0.054 0.044  0.096 0.096 0.116 0.096  0.056 0.094 0.088 0.094 
τ=0.25 γ=0.07  0.044 0.046 0.046 0.046  0.094 0.086 0.114 0.084  0.100 0.178 0.152 0.178 
τ=0.25 γ=0.10  0.040 0.058 0.044 0.056  0.072 0.116 0.114 0.116  0.252 0.372 0.298 0.372 

                 
τ=0.50 γ=0.00  0.056 0.054 0.048 0.052  0.070 0.080 0.090 0.080  0.056 0.060 0.052 0.056 
τ=0.50 γ=0.05  0.058 0.048 0.056 0.048  0.110 0.088 0.120 0.084  0.076 0.102 0.102 0.100 
τ=0.50 γ=0.07  0.048 0.044 0.050 0.044  0.108 0.086 0.110 0.084  0.114 0.172 0.158 0.172 
τ=0.50 γ=0.10  0.042 0.050 0.046 0.050  0.082 0.108 0.112 0.108  0.248 0.372 0.304 0.370 

                 
τ=0.75 γ=0.00  0.056 0.054 0.048 0.052  0.070 0.080 0.090 0.080  0.056 0.060 0.052 0.056 
τ=0.75 γ=0.05  0.062 0.044 0.050 0.044  0.110 0.076 0.110 0.076  0.078 0.072 0.084 0.072 
τ=0.75 γ=0.07  0.052 0.046 0.042 0.044  0.112 0.078 0.112 0.078  0.124 0.158 0.168 0.156 
τ=0.75 γ=0.10  0.042 0.054 0.046 0.054  0.084 0.088 0.096 0.086  0.248 0.324 0.290 0.320 

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 + 0.3𝑕𝑡 +  𝑡 

τ=0.25 γ=0.00  0.008 0.002 0.002 0.002  0.060 0.054 0.046 0.054  0.050 0.056 0.054 0.054 
τ=0.25 γ=0.05  0.004 0.002 0.000 0.002  0.052 0.026 0.024 0.024  0.006 0.008 0.002 0.008 
τ=0.25 γ=0.07  0.004 0.002 0.000 0.002  0.042 0.024 0.028 0.022  0.002 0.000 0.000 0.000 
τ=0.25 γ=0.10  0.000 0.000 0.000 0.000  0.024 0.010 0.016 0.010  0.000 0.000 0.000 0.000 

                 
τ=0.50 γ=0.00  0.008 0.002 0.002 0.002  0.060 0.054 0.046 0.054  0.050 0.056 0.054 0.054 
τ=0.50 γ=0.05  0.006 0.002 0.000 0.002  0.056 0.022 0.028 0.022  0.016 0.022 0.020 0.022 
τ=0.50 γ=0.07  0.006 0.000 0.000 0.000  0.056 0.026 0.048 0.026  0.002 0.000 0.004 0.000 
τ=0.50 γ=0.10  0.000 0.000 0.000 0.000  0.030 0.020 0.016 0.018  0.000 0.000 0.000 0.000 

                 
τ=0.75 γ=0.00  0.008 0.002 0.002 0.002  0.060 0.054 0.046 0.054  0.050 0.056 0.054 0.054 
τ=0.75 γ=0.05  0.008 0.000 0.000 0.000  0.070 0.020 0.036 0.020  0.028 0.028 0.030 0.028 
τ=0.75 γ=0.07  0.010 0.000 0.002 0.000  0.082 0.032 0.066 0.032  0.014 0.014 0.016 0.014 
τ=0.75 γ=0.10  0.004 0.000 0.000 0.000  0.052 0.038 0.044 0.038  0.002 0.002 0.002 0.002 

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 + 0.5𝑕𝑡 +  𝑡 

τ=0.25 γ=0.00  0.002 0.000 0.000 0.000  0.078 0.046 0.048 0.046  0.058 0.066 0.056 0.066 
τ=0.25 γ=0.05  0.004 0.000 0.000 0.000  0.044 0.014 0.014 0.014  0.010 0.004 0.008 0.004 
τ=0.25 γ=0.07  0.000 0.000 0.000 0.000  0.036 0.010 0.014 0.010  0.002 0.000 0.000 0.000 
τ=0.25 γ=0.10  0.000 0.000 0.000 0.000  0.016 0.000 0.004 0.000  0.000 0.000 0.000 0.000 

                 
τ=0.50 γ=0.00  0.002 0.000 0.000 0.000  0.078 0.046 0.048 0.046  0.058 0.066 0.056 0.066 
τ=0.50 γ=0.05  0.002 0.000 0.000 0.000  0.048 0.016 0.018 0.016  0.008 0.006 0.006 0.006 
τ=0.50 γ=0.07  0.000 0.000 0.000 0.000  0.048 0.020 0.024 0.020  0.000 0.000 0.000 0.000 
τ=0.50 γ=0.10  0.000 0.000 0.000 0.000  0.028 0.016 0.012 0.016  0.000 0.000 0.000 0.000 

                 
τ=0.75 γ=0.00  0.002 0.000 0.000 0.000  0.078 0.046 0.048 0.046  0.058 0.066 0.056 0.066 
τ=0.75 γ=0.05  0.004 0.000 0.000 0.000  0.066 0.022 0.026 0.020  0.024 0.026 0.028 0.026 
τ=0.75 γ=0.07  0.000 0.000 0.000 0.000  0.080 0.032 0.048 0.032  0.006 0.004 0.006 0.004 
τ=0.75 γ=0.10  0.000 0.000 0.000 0.000  0.048 0.030 0.030 0.030  0.002 0.002 0.002 0.002 

Conditional 
Mean 

 𝑦𝑡 = 1 + 𝑦𝑡−1 + 0.7𝑕𝑡 +  𝑡 

τ=0.25 γ=0.00  0.002 0.000 0.000 0.000  0.078 0.038 0.048 0.038  0.056 0.060 0.054 0.058 
τ=0.25 γ=0.05  0.002 0.000 0.000 0.000  0.044 0.008 0.012 0.008  0.006 0.004 0.004 0.004 
τ=0.25 γ=0.07  0.000 0.000 0.000 0.000  0.028 0.006 0.008 0.006  0.002 0.000 0.000 0.000 
τ=0.25 γ=0.10  0.000 0.000 0.000 0.000  0.014 0.002 0.002 0.002  0.000 0.000 0.000 0.000 

                 
τ=0.50 γ=0.00  0.002 0.000 0.000 0.000  0.078 0.038 0.048 0.038  0.056 0.060 0.054 0.058 
τ=0.50 γ=0.05  0.002 0.000 0.000 0.000  0.052 0.020 0.016 0.018  0.006 0.004 0.006 0.004 
τ=0.50 γ=0.07  0.000 0.000 0.000 0.000  0.048 0.018 0.024 0.018  0.000 0.000 0.000 0.000 
τ=0.50 γ=0.10  0.000 0.000 0.000 0.000  0.024 0.008 0.006 0.008  0.000 0.000 0.000 0.000 

                 
τ=0.75 γ=0.00  0.002 0.000 0.000 0.000  0.078 0.038 0.048 0.038  0.056 0.060 0.054 0.058 
τ=0.75 γ=0.05  0.004 0.000 0.000 0.000  0.068 0.018 0.016 0.018  0.016 0.022 0.018 0.022 
τ=0.75 γ=0.07  0.000 0.000 0.000 0.000  0.068 0.034 0.032 0.034  0.004 0.004 0.002 0.004 
τ=0.75 γ=0.10  0.000 0.000 0.000 0.000  0.046 0.014 0.020 0.014  0.000 0.000 0.000 0.000 
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Figures 4.1-4.4  show the empirical power of the unit root tests to reject the null 

hypothesis when it is not correct. In particular, Figure 4.1- 4.4 focus on examining the 

power of the inference procedures to reject the null hypothesis of 𝜙 = 1 when, in fact, 

the process is stationary, i.e., −1 < 𝜙 < 1. 

The tests investigate the power properties of the test statistics, across the range of 

local breaks of magnitude  = *0.05, 0.07, 0.1+ with the set of 

 = *0.1, 0.25, 0.5, 0.75+ , 𝛽 = *0.1, 0.25, 0.5, 0.75+, and 𝜗 = *0, 0.3, 0.5, 0.7+ for 

asymptotic local power functions at the 0.05 nominal level.  

Moreover, in order to model the sequence of stationary alternatives that near the 

null hypothesis of two unit root tests, we also consider the DGP for equation (4.14) to 

(4.16) with 𝜙 = 1 −
𝑐

𝑇
 in equation (4.15), where c = −30, −29, -28,...,-2, −1, 0 is 

controlling the size of the departure from a unit root. 

In Figures 4.1-4.4, columns 1-2 report the in-mean term 𝜗 with values of 0, 0.3, 

0.5, and 0.7, respectively. From rows 1 to 3 in Figure 4.1 and Figure 4.2, the   is fixed 

with value of 0.1 and 𝛽 increases from 0.25 to 0.5 to 0.75. Similarly, in rows 1 to 3 of 

Figure 4.5 and Figure 4.6, the 𝛽 is fixed at 0.1 and   is 0.25, 0.5 and 0.75. From the 

simulated results, it can be seen easily that the ability of the test to reject the null 

hypothesis is significantly sensitive to the in-mean parameter 𝜗 , and the statistics 

𝐷 𝐺𝐿𝑆 and  𝐺𝐿𝑆 are more affected by the  parameter 𝜗. Among the four statistics, the 

𝐷 𝑂𝐿𝑆 has the best power properties and the  𝑂𝐿𝑆 performs most stable in our test. 

Now, looking at the Figures 4.1 and 4.2, in the top and bottom panel, for 

given    nd 𝜗, increasing 𝛽 has a negative impact on the power in all of inference 

procedures taken into consideration. But comparing the effect of an increase in   in 

Figures 4.3 and 4.4 with fixed 𝛽 (top and bottom panel), it is clear that the power of 

the tests is more sensitive to the increasing values of the parameter  .  
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Figure 4.1 Power simulation results of Monte Carlo simulation 
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Figure 4.2 Empirical power function 
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Figure 4.3 Power simulation results of Monte Carlo experiment 
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Figure 4.4 Power simulation results  
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4.5  An empirical application 

In this section, we consider an empirical application to UK house prices. The 

house price fluctuations may have a negative impact on indicators of financial 

stability, such as defaults, foreclosures, the value of mortgage-backed securities, and 

the value of derivatives related to house prices. Therefore, investigating the volatility 

of the housing market is essential for investors, municipalities, and policymakers to 

manage risk and stabilize the economy.  We consider using an AR (1)-GARCH-M 

model with structural breaks to estimate UK house prices. The data are from a 

quarterly all-transaction index from 1970: Q1 to 2013: Q4 presented by the Bank for 

International Settlements (BIS). The log transformation of the first order differences 

for the house prices is considered. We identify one break for the series, and the 

breakpoints were determined by using the procedure of Bai and Perron (1998). 

Accordingly, the breakpoint for UK housing prices was set at 1989: Q3 using a 

dummy variable taking value zero before the breakpoint and one otherwise. 

Let 𝑦𝑡 denote the log house price index changes, according to equations (4.14) 

and (4.16), then the mean equation and the conditional variance can be written as: 

 

                                    𝑦𝑡 = 𝜑 + 𝜙𝑦𝑡−1 + (ϑ + ∆𝜏)𝑕𝑡

𝛿
2 +  𝑡,                             (4.20)     

            

𝑕𝑡

𝛿
2 = 𝜔 + ( + ∆𝜏) 𝑡−1 + (𝛽 + ∆𝜏)𝑕𝑡−1

𝛿
2 ,                     (4.21) 

 

where 𝛿 = 1 and ∆𝜏 are dummy variables that take value 1 for break point and 0 for 

the rest.  

Table 4.3 reports the empirical result for an AR (1)-GARCH-M model and an AR 

(1)-GARCH model. The top part of the table reports the estimated coefficients for the 

mean equation (4.20), whereas the estimated coefficients for the conditional variance 

are reported in the bottom panel of Table 4.3. Looking at the estimated parameters for 

the AR (1)-GARCH-M model, in the second column of the table, the estimated 

coefficients are all significant, which indicates the data can well be modelled using 

the model at hand. The dummy variable for the in-mean parameter is statistically 
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significant at the 1% level. In addition, the in-mean parameter is positive, which 

means a positive shock to house price volatility will also increase the conditional 

mean of house prices. The lower part of the table reports the estimated coefficients for 

the conditional variance in equation (4.21). It appears that all the parameters for the 

break in the conditional variance are significantly different from zero. The sum of the 

ARCH and GARCH coefficients is approximately 0.92; this indicates that the 

volatility shocks are quite persistent.  

Now looking at the third column where the estimated parameters of the AR (1)-

GARCH model, it appears that the parameters estimated in the mean equation are all 

statistically significant. However, none of the parameters in the variance equation are 

statistically significant. Comparing the result of AR (1)-GARCH-M and AR (1)-

GARCH, the in-mean term highly improved the performance of the GARCH model 

for house price estimation. All in all, there is strong evidence of persistent volatility 

dynamics in UK housing prices, and the in-mean terms, especially, strongly affect 

house prices. 
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Table 4.3 Results of AR (1)-GARCH in-mean with a single break 

 AR(1)-GARCH-M AR(1)-GARCH 

Mean Equation   

 𝜑 
-0.043** 

(0.021) 
0.011** 
(0.005) 

 𝜙 
0.452*** 

(0.069) 
0.664*** 
(0.102) 

 𝜗 
2.499*** 

(0.953) 
- 

Variance Equation   

 𝜔 
0.000** 
(0.000) 

0.000 
(0.001) 

   
-0.026** 

(0.012) 
-0.015 
(0.136) 

 𝛽 
0.945*** 

(0.028) 
0.584 

(0.835) 

 ∆𝜏 
-0.000* 
(0.000) 

-0.001 
(0.002) 

() indicates standard error; ***, **, * indicate statistical significance at 1%, 5%, and 10%, 

respectively. 

4.6 Conclusion 

This chapter contributes to the literature by investigating the performance of the 

unit root test in the presence of the GARCH in-mean term and structural breaks. We 

have focused on the DF and M-type unit root tests. Results of a Monte Carlo 

simulation experiment have shown that the strong presence of structural breaks in the 

time series leads to over-rejection of the unit root when inference procedures are 

taken into consideration. In order to further investigate this issue, we extend the 

GARCH model with the in-mean parameter. The Monte Carlo simulation evidence for 

the case of a single break in volatility indicates that the in-mean term significantly 

affects the size and power properties of unit root tests. More specifically, the size and 

power properties severely deteriorate when the in-mean parameter increases. In 

addition, we also test the near-integrated unit root process in the mean equation. Our 

results indicate that the size and power properties of the unit root test perform badly 

when increasing the parameters of the ARCH and GARCH terms and that the ARCH 

term has a stronger effect than the GARCH term.  
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Finally, in this chapter, the validity of the AR (1)-GARCH in-mean process in 

describing the UK housing market is investigated. It is found that the model with 

time-varying parameters is better suited to describe the data at hand.  
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Chapter Five 

Concluding Remarks 

 

Nonlinear time series modelling has been receiving more and more attention in 

both academic and industry spheres, especially after the global financial crisis of 

2008, when the market experienced large swings. In recent years, regulators have 

established more comprehensive regulations to improve risk management. The major 

markets recovered from the negative effects of the financial crisis gradually, but 

sharply swings remain and are the cause of financial instability. Around 2016, the 

Chinese equity market lost nearly 50% of its index and the market value of most listed 

companies. Against this background, a model which can capture and forecast market 

swings well would help policymakers to define financial stability and protect 

investors. In this respect, a lot of empirical work has been done in the literature. For 

example, Peel and Speight (1998) proposed a bilinear generalized-quadratic ARCH 

model for several countries’ business cycles. Garcia and Perron (1996) applied a 

Markov switching model with three regimes for the US real interest rate, McKay and 

Reis (2016) constructed a business-cycle model for the US, and Miles (2011) tested 

the C-GARCH model for estimating US home price volatility.  

In spite of numerous researchers making significant contributions to empirical 

studies, gaps still exist. For example, the 2008 US sub-mortgage crisis once again 

gave us a lesson on the importance of the housing market and banking policy. 

Therefore, econometricians are keen to model the housing market. For example, Baldi 

(2014) investigated the impact of a central bank on house prices; Leung (2014) tested 

error correction dynamics of house prices; Nneji, Brooks, and Ward (2013) 

investigated house price dynamics and their reaction to macroeconomic changes; Park 

and Bae (2015) used machine learning algorithms for house price forecasting; and 

Yang, Liu, and Leatham (2013) examined dynamic relationships among housing 

prices.  

In essence, asymmetric nonlinearity has been found in house price cycles. 



88 

 

 

Therefore, a large body of studies focused on using nonlinear models to estimate and 

forecast house prices. The nonlinear research themes may be summarized as 

nonlinearity in mean and nonlinearity in variance. Researchers have applied both 

groups of nonlinear models to estimating house prices. For example, Cabrera, Wang, 

and Yang (2011), Huang (2012), and Tsai, Lee, and Chiang (2012) investigated house 

prices by using nonlinear in-mean models. Miles and William (2011), and Chang and 

Liang (2010) applied nonlinear in-variance models, such as the GARCH model, to 

house prices. However, some problems have still not been addressed. For example, 

modelling and forecasting house prices in a steady market, the effect of bank lending 

policy on the housing market, and the over-rejection problem of unit root test when 

modelling house prices. Accordingly, this thesis aims to address the abovementioned 

problems. Notably, regime switching models are used to capture and forecast house 

prices in the UK. In particular, the LSTAR model is used to investigate the linkage 

between house price and bank lending policy, and the AR(1)-GARCH-M model is 

used to investigate the unit root test and estimate house price volatility. 

Chapter 2 contributes to the literature by using a regime switching model to 

estimate house prices in a stable housing market. In the previous research, Crawford 

and Fratantoni (2003) found that the regime switching model has a good performance 

in the US housing market. Miles (2008) tested models that were complementary to 

Crawford and Fratantoni’s. However, both indicated that the regime switching model 

captures large swings in house prices well, but failed to capture more stable markets. 

In addition, their research also found that the forecasting ability of the considered 

regime switching model is lower than expected. In contrast, the linear model shows 

more accuracy than nonlinear models. Therefore, in Chapter 2, we consider two 

regime switching models, the STAR and MS-TVTP models, for UK house prices as a 

complement to the above literature.   

The empirical study in Chapter 2 uses UK housing market data due to the fact 

that UK house prices were moving gently most of the time in the last forty years (a 

stable market). In this chapter, we found that UK house prices exhibited asymmetric 

nonlinearity. We empirically compared the capacity of the MS-TVTP and STAR 

models to capture house price cycles. The results indicate that the LSTAR model is 

better fitted to capturing UK house price cycles than the MS-TVTP model. 

Furthermore, we test the LSTAR forecasting ability against an AR model. However, 

we found that the forecasting ability of LSTAR model does not outperform than the 
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AR model.  

The findings of Chapter 2 have several important implications for house price 

researchers. First, the nonlinearity test suggests nonlinear models are better fitted to 

estimate house prices than a linear model. Second, we found the STAR model 

captures smooth house prices well. This, in turn, indicates that the regime switching 

model has a high capacity to estimate house prices. Last, the STAR model may not 

add much more forecastability in stable markets than linear models. We believe that 

the form of the STAR model provides a more real-world context than other forms. 

Therefore, econometricians may consider some adjustments when trying to predict 

house price cycles based on a STAR frame. 

In Chapter 3, we empirically tested the linkage between the banking sector and 

house prices. Historically, house price collapse has linked to several financial crises, 

such as when the Hong Kong housing market bubble bust in 1997 following the start 

of the Asian financial crisis, and when the US sub-mortgage crisis led to a worldwide 

financial crisis. Since the housing market is extremely crucial to managing financial 

stability, housing market risk management has become an important function for 

many central banks. By way of illustration, Hungary, Norway, Sweden, the UK, and 

China have all introduced bank lending policies, such as imposing a maximum on the 

LTV ratio, to reduce the risk to housing markets and banking systems. In spite of the 

LTV ratio help in limiting housing bubble growth, econometric studies still leave 

some gaps that require further investigation of house prices, bank lending, and the 

LTV ratio. In the literature, some studies investigated the house price and bank 

lending by focusing on integration, or ,alternatively, by using linear models. Examples 

of this can be found in Koetter and Poghosyan (2010); Landier, Sraer, and Thesmar 

(2017); Mandell and Wilhelmsson (2015); Milcheva and Zhu (2016); and Tajik, 

Aliakbari, Ghalia, and Kaffash (2015). Some researchers also found that house prices 

influenced bank lending (see Gerlach and Peng, 2005). Considering that numerous 

studies and the last chapter of this thesis have found nonlinearity in house prices, we 

investigate the relationship between house prices and bank lending with a STAR 

model and between the LTV ratio and house prices with a GARCH in-mean model. 

Firstly, the STAR model, introduced in Chapter 2, is considered once again in 

Chapter 3 due to the transition function illustrating that the transition variable leads to 

changes in the dependent variable. In other words, we can verify whether or not bank 

lending impacts house prices by estimating an adjusted STAR model. Secondly, the 
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GARCH in-mean model estimated with the LTV ratio as an explanatory variable and 

house price as the dependent variable measures the LTV ratio effect on house prices. 

Lastly, in order to verify the long-run equilibrium relationship between bank lending 

and house prices, we used a nonlinear TAR model to test co-integration.  

The empirical test is applied to a dataset of Hong Kong house prices, bank 

lending, and the LTV ratio. The Hong Kong housing market experienced high 

frequency and large swings in the last three decades due to a severe supply-demand 

mismatch in the housing market and low financial immunity. On the other hand, bank 

lending moved closely with house prices in Hong Kong due to the large amount of 

bank lending in the real estate market. Meanwhile, the LTV ratio has been used as a 

key tool in housing market regulation. Against this background, the Hong Kong 

market is an ideal case for studying the linkage between bank lending and house 

prices.   

Chapter 3 provides several important insights of cyclical patterns in house prices. 

Our main findings indicate that bank lending strongly impacts house prices in Hong 

Kong. More specifically, the LSTAR model illustrates that bank lending affects house 

price fluctuations. Furthermore, we find the strong ARCH effect in house prices and 

the GARCH-M model well describes the volatility of house prices. Our estimation 

also illustrates that the LTV ratio is significantly associated with house price 

fluctuation. In the TAR co-integration test, we find a long-run equilibrium relationship 

between house prices and bank lending as well as between house prices and the LTV 

ratio. This chapter provides important indications for academic researchers and 

policymakers. Since we found econometric support for the direction of influence 

going from bank lending and the LTV ratio to house prices, house prices studies or 

regulations can be set by more banking sectors. 

Chapter 4 tests the nonlinear in-variance model. We used the GARCH in-mean 

model for investigating the robustness of unit root test in the presence of the in-mean 

term and structural breaks. The unit root test is a common test used in time series 

analysis. However, the unit root test over-rejects the null hypothesis, which has been 

indicated in a great deal of previous research. Kim and Schmidt (1993) first found the 

problem, and recent research, for example, that of Su (2011); Gospodinov and Tao 

(2011); Conrad and Karanasos (2015); Harvey, Leybourne, and Taylor (2011&2012); 

Narayan and Popp (2013); Atil, Fellag, and Sipols (2014); examined the size and 

power of unit root tests in structural breaks. This chapter follows the research in line 
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with these studies, and we contribute to testing the size and power properties of two 

unit root tests in the case of the GARCH in-mean model. Our study shows how the in-

mean parameters affect the unit root tests based on a Monte Carlo simulation. 

Furthermore, in the empirical test, we apply an AR(1)-GARCH-M model to estimate 

UK house prices with structural breaks.  

The estimation results of this chapter indicate that the in-mean parameter 

severely affects the size and power properties of the DF unit root test and M-test. 

Specifically, when the in-mean parameter increased, the size and power properties 

heavily deviate from nominal significant level. From the empirical study, we find that 

the AR-GARCH-M model captures UK house prices well in the case of one break 

point. In addition, the in-mean parameter strongly affects the house prices. Overall, 

this chapter suggests that attention needs to be paid to the GARCH in-mean effect 

when analysing time series. Otherwise, unit root tests may lead to biased estimates. 

All in all, this thesis investigates several nonlinear models and their application 

to the housing market. This research area mainly has three problems. Firstly, the 

forecasting accuracy of nonlinear models is lower than that of linear models. 

Secondly, some linkages between economics and finance can be verified in the real 

world, but it is difficult to find econometric support. Lastly, some mechanisms may be 

ignored during the estimation that may lead to biased estimates. Therefore, future 

work can be developed in several directions. For instance, the forecasting mechanism 

of nonlinear models can be reconsidered. Since the nonlinear model has a high 

capacity for time series modelling, we have a strong belief that nonlinear models 

could produce a better performance in forecasting. At the same time, the exploration 

and development of econometric models will continue, and the future will have more 

models and technologies to push social and academic research forward. 

 

 

 

 

 

 



92 

 

 

References 

Abraham, J.M. and Hendershott, P.H. (1996) 'Bubbles in metropolitan housing 

markets', Journal of Housing Research, 7, pp. 191-206.  

ALEXANDER, C. and BARROW, M. (1994) 'Seasonality and Cointegration of 

Regional House Prices in the Uk', Urban Studies, 31(10), pp. 1667-1689.  

Atil, L., Fellag, H. and Garcia Sipols, A. (2014) 'Behavior of the Size in the Unit Root 

Testing Under Contamination', Communications in Statistics-Simulation and 

Computation, 43(4), pp. 790-803.  

Attanasio, O.P., Blow, L., Hamiltonww, R. and Leicester, A. (2009) 'Booms and 

Busts: Consumption, House Prices and Expectations', Economica, 76(301), pp. 

20-50.  

Attanasio, O., Leicester, A. and Wakefield, M. (2011) 'Do House Prices Drive 

Consumption Growth? the Coincident Cycles of House Prices and Consumption 

in the Uk', Journal of the European Economic Association, 9(3), pp. 399-435.  

Bai, J.S. and Perron, P. (1998) 'Estimating and testing linear models with multiple 

structural changes', Econometrica, 66(1), pp. 47-78.  

Baille, R. and Chung, H. (2001) 'Estimation of larch models from the autocorrelations 

of the squares of a process', Journal of Time Series Analysis, 22(6), pp. 631-650.  

Baillie, R.T. and Degennaro, R.P. (1990) 'Stock Returns and Volatility', Journal of 

Financial and Quantitative Analysis, 25(2), pp. 203-214.  

Balcilar, M., Gupta, R. and Miller, S.M. (2015) 'The out-of-sample forecasting 

performance of nonlinear models of regional housing prices in the US', Applied 

Economics, 47(22), pp. 2259-2277.  

Baldi, G. (2014) 'The economic effects of a central bank reacting to house price 

inflation', Journal of Housing Economics, 26, pp. 119-125.  

Banerjee, A. (1999) 'Panel data unit roots and cointegration: An overview', Oxford 

Bulletin of Economics and Statistics, 61, pp. 607-629.  

Bazzi, M., Blasques, F., Koopman, S.J. and Lucas, A. (2017) 'Time-Varying 

Transition Probabilities for Markov Regime Switching Models', Journal of Time 

Series Analysis, 38(3), pp. 458-478.  



93 

 

 

Bessec, M. and Bouabdallah, O. (2005) 'What causes the forecasting failure of 

Markov-switching models? A Monte Carlo study', Studies in Nonlinear 

Dynamics and Econometrics, 9(2), pp. 6.  

Bollerslev, T. (1986) 'Generalized Autoregressive Conditional Heteroskedasticity', 

Journal of Econometrics, 31(3), pp. 307-327.  

Brier, G. (1950) 'Verification of the forecasts Expressed in Terms of Probability', 

Monthly Weather Review, 78, pp. 1-3.  

Brown, J., Song, H. and McGillivray, A. (1997) 'Forecasting UK house prices: a                                                                         

time varying coefficient approach', Economic Modelling, 14(4), pp. 529-548.  

Cabrera, J., Wang, T. and Yang, J. (2011) 'Linear and Nonlinear Predictability of 

International Securitized Real Estate Returns: A Reality Check', Journal of Real 

Estate Research, 33(4), pp. 565-594.  

Canepa, A. and Chini, E.Z. (2016) 'Dynamic asymmetries in house price cycles: A 

generalized smooth transition model', Journal of Empirical Finance, 37, pp. 91-

103.  

Cervera, J. and Munoz, J. (1996) 'Proper Scoring Rules for Fractiles', in Bernardo, J., 

Berger, J., Dawid, A. and Smith, A. (eds.) Bayesian Statistics. 5th edn. Oxford, 

UK: Oxford University Press, pp. 513-519.  

Chan, H.L., Lee, S.K. and Woo, K.Y. (2001) 'Detecting rational bubbles in the 

residential housing markets of Hong Kong', Economic Modelling, 18(1), pp. 61-

73.  

CHAN, K. (1993) 'Consistency and Limiting Distribution of the Least-Squares 

Estimator of a Threshold Autoregressive Model', Annals of Statistics, 21(1), pp. 

520-533.  

Chang, K. (2010) 'House price dynamics, conditional higher-order moments, and 

density forecasts', Economic Modelling, 27(5), pp. 1029-1039.  

Chen, N., Cheng, H. and Mao, C. (2014) 'Identifying and forecasting house prices: a 

macroeconomic perspective', Quantitative Finance, 14(12), pp. 2105-2120.  

Conrad, C. and Karanasos, M. (2015) 'On the Transmission of Memory in Garch-in-

Mean Models', Journal of Time Series Analysis, 36(5), pp. 706-720.  

Cook, S. (2008) 'Maximum likelihood unit root testing in the presence of GARCH: A 

new test with increased power', Communications in Statistics-Simulation and 

Computation, 37(4), pp. 756-765.  



94 

 

 

Cook, S. and Vougas, D. (2009) 'Unit root testing against an ST-MTAR alternative: 

finite-sample properties and an application to the UK housing market', Applied 

Economics, 41(11), pp. 1397-1404.  

Crawford, G. and Fratantoni, M. (2003) 'Assessing the forecasting performance of 

regime-switching, ARIMA and GARCH models of house prices', Real Estate 

Economics, 31(2), pp. 223-243.  

Cunningham, R. and Kolet, I. (2011) 'Housing market cycles and duration dependence 

in the United States and Canada', Applied Economics, 43(5), pp. 569-586.  

Dickey, D.A. and Fuller, W.A. (1979) 'Distribution of the Estimators for 

Autoregressive Time-Series with a Unit Root', Journal of the American 

Statistical Association, 74(366), pp. 427-431.  

Dolde, W. and Tirtiroglu, D. (1997) 'Temporal and spatial information diffusion in 

real estate price changes and variances', Real Estate Economics, 25(4), pp. 539-

565.  

DRAKE, L. (1993) 'Modeling Uk House Prices using Cointegration - an Application 

of the Johansen Technique', Applied Economics, 25(9), pp. 1225-1228.  

Dufrenot, G. and Malik, S. (2012) 'The changing role of house price dynamics over 

the business cycle', Economic Modelling, 29(5), pp. 1960-1967.  

Enders, W. and Granger, C.W.J. (1998) 'Unit-root tests and asymmetric adjustment 

with an example using the term structure of interest rates', Journal of Business & 

Economic Statistics, 16(3), pp. 304-311.  

Enders, W. and Siklos, P. (2001) 'Cointegration and threshold adjustment', Journal of 

Business & Economic Statistics, 19(2), pp. 166-176.  

ENGLE, R. (1982) 'Autoregressive Conditional Heteroscedasticity with Estimates of 

the Variance of United-Kingdom Inflation', Econometrica, 50(4), pp. 987-1007.  

Epstein, E. (1969) 'A scoring system for probability forecasts of ranked categories', 

Journal of Applied Meteorology, 8, pp. 985-987.  

Filardo, A.J. (1994) 'Business-Cycle Phases and their Transitional Dynamics', Journal 

of Business & Economic Statistics, 12(3), pp. 299-308.  

Funke, M. and Paetz, M. (2013) 'Housing prices and the business cycle: An empirical 

application to Hong Kong', Journal of Housing Economics, 22(1), pp. 62-76.  

Garcia, R. and Perron, P. (1996) 'An analysis of the real interest rate under regime 

shifts', Review of Economics and Statistics, 78(1), pp. 111-125.  



95 

 

 

Gerlach, S. and Peng, W. (2005) 'Bank lending and property prices in Hong Kong', 

Journal of Banking & Finance, 29(2), pp. 461-481.  

Gete, P. and Reher, M. (2016) 'Two Extensive Margins of Credit and Loan-to-Value 

Policies', Journal of Money Credit and Banking, 48(7), pp. 1397-1438.  

Gimeno, R. and Martinez-Carrascal, C. (2010) 'The relationship between house prices 

and house purchase loans: The Spanish case', Journal of Banking & Finance, 

34(8), pp. 1849-1855.  

Giussani, B. and Hadjimatheou, G. (1991) 'Modeling regional house prices in the UK', 

Regional Science, 70(2), pp. 201-219.  

Good, I. (1952) 'Rational Decisions', Journal of Royal Statistical Society, B(14), pp. 

107-114.  

Gospodinov, N. and Tao, Y. (2011) 'Bootstrap Unit Root Tests in Models with 

GARCH(1,1) Errors', Econometric Reviews, 30(4), pp. 379-405.  

Guirguis, H., Giannikos, C. and Anderson, R. (2005) 'The US housing market: Asset 

pricing forecasts using time varying coefficients', Journal of Real Estate Finance 

and Economics, 30(1), pp. 33-53.  

Haldrup, N. (1994) 'Heteroscedasticity in Nonstationary Time-Series, some Monte-

Carlo Evidence', Statistical Papers, 35(4), pp. 287-307.  

Hamilton, J.D. (1994) Time Series Analysis. Princeton, New Jersey.: Princeton 

University Press.  

Hamilton, J.D. (1989) 'A New Approach to the Economic-Analysis of Nonstationary 

Time-Series and the Business-Cycle', Econometrica, 57(2), pp. 357-384.  

Harvey, D.I., Leybourne, S.J. and Taylor, A.M.R. (2014) 'On infimum Dickey-Fuller 

unit root tests allowing for a trend break under the null', Computational Statistics 

& Data Analysis, 78, pp. 235-242.  

Harvey, D.I., Leybourne, S.J. and Taylor, A.M.R. (2012) 'Unit root testing under a 

local break in trend', Journal of Econometrics, 167(1), pp. 140-167.  

Hendry, D. (1984) 'Econometric modelling of house prices in the United Kingdom', in 

Hendry, D. and Wallis, K. (eds.) Econometrics and Quantitative Economics. 

Basil Blackwell, pp. 211-252.  

Holly, S. and Jones, N. (1997) 'House prices since the 1940s: cointegration, 

demography and asymmetries', Economic Modelling, 14(4), pp. 549-565.  



96 

 

 

Holly, S., Pesaran, M.H. and Yamagata, T. (2011) 'The spatial and temporal diffusion 

of house prices in the UK', Journal of Urban Economics, 69(1), pp. 2-23.  

Holly, S., Pesaran, M.H. and Yamagata, T. (2010) 'A spatio-temporal model of house 

prices in the USA', Journal of Econometrics, 158(1), pp. 160-173.  

Huang, M. (2012) 'Forecasts and implications of the current housing crisis: switching 

regimes in a threshold framework', Applied Economics Letters, 19(6), pp. 557-

568.  

Hui, E.C. and Zheng, X. (2012) 'The dynamic correlation and volatility of real estate 

price and rental: an application of MSV model', Applied Economics, 44(23), pp. 

2985-2995.  

Igan, D. and Loungani, P. (2012) Global Housing Cycles. Washington, DC: 

International Monetary Fund.  

Ihlanfeldt, K. and Mayock, T. (2014) 'Housing Bubbles and Busts: The Role of 

Supply Elasticity', Land Economics, 90(1), pp. 79-99.  

Johansen, S. (1996) Likelihood-based inference in cointegrated vector autore-gressive 

models. Oxford: Oxford University Press.  

Kim, C. and Nelson, C.R. State-Space Models With Regime Switching. Cambridge: 

The MIT Press.  

Kim, J.R. and Chung, K. (2016) 'House prices and business cycles: The case of the 

UK', International Area Studies Review, 19(2), pp. 131-146.  

Kim, K.W. and Schmidt, P. (1993) 'Unit-Root Tests with Conditional 

Heteroskedasticity', Journal of Econometrics, 59(3), pp. 287-300.  

Kim, S. and Bhattacharya, R. (2009) 'Regional Housing Prices in the USA: An 

Empirical Investigation of Nonlinearity', Journal of Real Estate Finance and 

Economics, 38(4), pp. 443-460.  

Koetter, M. and Poghosyan, T. (2010) 'Real estate prices and bank stability', Journal 

of Banking & Finance, 34(6), pp. 1129-1138.  

Landier, A., Sraer, D. and Thesmar, D. (2017) 'Banking integration and house price 

co-movement', Journal of Financial Economics, 125(1), pp. 1-25.  

Leamer, E.E. (2007) 'Houseing IS the Business Cycle', NBER Working Paper, 13428.  

Leung, C.K.Y. (2014) 'Error correction dynamics of house prices: An equilibrium 

benchmark', Journal of Housing Economics, 25, pp. 75-95.  



97 

 

 

Li, Y. and Shukur, G. (2011) 'Wavelet Improvement of the Over-Rejection of Unit 

Root Test Under GARCH Errors: An Application to Swedish Immigration Data', 

Communications in Statistics-Theory and Methods, 40(13), pp. 2385-2396.  

Ling, S. and Li, W. (1998) 'Limiting distributions of maximum likelihood estimators 

for unstable autoregressive moving-average time series with general 

autoregressive heteroscedastic errors', Annals of Statistics, 26(1), pp. 84-125.  

Mak, S., Choy, L. and Ho, W. (2010) 'Quantile Regression Estimates of Hong Kong 

Real Estate Prices', Urban Studies, 47(11), pp. 2461-2472.  

Mandell, S. and Wilhelmsson, M. (2015) 'Financial infrastructure and house prices', 

Applied Economics, 47(30), pp. 3175-3188.  

Mayes, D. (1979) The Property Boom: The Effects of Building Society Behaviour on 

House Prices. Martin Robertson.  

McKay, A. and Reis, R. (2016) 'The Role of Automatic Stabilizers in the US Business 

Cycle', Econometrica, 84(1), pp. 141-194.  

Meen, G. (1996) 'Spatial aggregation, spatial dependence and predictability in the UK 

housing market', Housing Studies, 11(3), pp. 345-372.  

Milcheva, S. and Zhu, B. (2016) 'Bank integration and co-movements across housing 

markets', Journal of Banking & Finance, 72, pp. S148-S171.  

Miles, W. (2008) 'Boom-bust cycles and the forecasting performance of linear and 

non-linear models of house prices', Journal of Real Estate Finance and 

Economics, 36(3), pp. 249-264.  

Miles, W. (2011) 'Long-Range Dependence in U.S. Home Price Volatility', Journal of 

Real Estate Finance and Economics, 42(3), pp. 329-347.  

Miles, W. (2008) 'Volatility clustering in US home prices', Journal of Real Estate 

Research, 30(1), pp. 73-90.  

Miller, N. and Peng, L. (2006) 'Exploring metropolitan housing price volatility', 

Journal of Real Estate Finance and Economics, 33(1), pp. 5-18.  

Monkkonen, P., Wong, K. and Begley, J. (2012) 'Economic restructuring, urban 

growth, and short-term trading: The spatial dynamics of the Hong Kong housing 

market, 1992-2008', Regional Science and Urban Economics, 42(3), pp. 396-406.  

Muellbauer, J. and Murphy, A. (1997) 'Booms and busts in the UK housing market', 

Economic Journal, 107(445), pp. 1701-1727.  



98 

 

 

Narayan, P.K. and Popp, S. (2013) 'Size and power properties of structural break unit 

root tests', Applied Economics, 45(6), pp. 721-728.  

Nneji, O., Brooks, C. and Ward, C.W.R. (2015) 'Speculative Bubble Spillovers across 

Regional Housing Markets', Land Economics, 91(3), pp. 516-535.  

Nneji, O., Brooks, C. and Ward, C.W.R. (2013) 'House price dynamics and their 

reaction to macroeconomic changes', Economic Modelling, 32, pp. 172-178.  

Oikarinen, E. (2009) 'Interaction between housing prices and household borrowing: 

The Finnish case', Journal of Banking & Finance, 33(4), pp. 747-756.  

Otero-Gonzalez, L., Duran-Santomil, P., Lado-Sestayo, R. and Vivel-Bua, M. (2016) 

'The impact of loan-to-value on the default rate of residential mortgage-backed 

securities', Journal of Credit Risk, 12(3), pp. 1-13.  

Park, B. and Bae, J.K. (2015) 'Using machine learning algorithms for housing price 

prediction: The case of Fairfax County, Virginia housing data', Expert Systems 

with Applications, 42(6), pp. 2928-2934.  

Peel, D. and Speight, A. (1998) 'Modelling business cycle nonlinearity in conditional 

mean and conditional variance: Some international and sectoral evidence', 

Economica, 65(258), pp. 211-229.  

Perlin, M. MS Regress - The MATLAB Package for Markov Regime Switching Models. 

Available at: http://ssrn.com/abstract=1714016; 

http://dx.doi.org/10.2139/ssrn.1714016 .  

Perron, P. and Ng, S. (1996) 'Useful modifications to some unit root tests with 

dependent errors and their local asymptotic properties', Review of Economic 

Studies, 63(3), pp. 435-463.  

Qi, M. and Yang, X. (2009) 'Loss given default of high loan-to-value residential 

mortgages', Journal of Banking & Finance, 33(5), pp. 788-799.  

Ricci-Risquete, A., Ramajo, J. and de Castro, F. (2016) 'Do Spanish fiscal regimes 

follow the euro-area trends? Evidence from Markov-Switching fiscal rules', 

Economic Modelling, 59, pp. 484-494.  

Seo, B. (1999) 'Distribution theory for unit root tests with conditional 

heteroskedasticity', Journal of Econometrics, 91(1), pp. 113-144.  

Simo-Kengne, B.D., Balcilar, M., Gupta, R., Reid, M. and Aye, G.C. (2013) 'Is the 

relationship between monetary policy and house prices asymmetric across bull 

and bear markets in South Africa? Evidence from a Markov-switching vector 

autoregressive model', Economic Modelling, 32, pp. 161-171.  

http://ssrn.com/abstract=1714016;
http://dx.doi.org/10.2139/ssrn.1714016


99 

 

 

Skalin, J. and Terasvirta, T. (2002) 'Modeling asymmetries and moving equilibria in 

unemployment rates', Macroeconomic Dynamics, 6(2), pp. 202-241.  

Skalin, J. and Terasvirta, T. (1999) 'Another look at Swedish business cycles, 1861-

1988', Journal of Applied Econometrics, 14(4), pp. 359-378.  

Stock, J.H. and Watson, M.W. 'A comparison of linear and nonlinear univariate 

models for forecasting macroeconomic time series', NBER Working Paper, 

(6607).  

Su, J. (2011) 'On the Oversized Problem of Dickey-Fuller-Type Tests with GARCH 

Errors', Communications in Statistics-Simulation and Computation, 40(9), pp. 

1364-1372.  

Tajik, M., Aliakbari, S., Ghalia, T. and Kaffash, S. (2015) 'House prices and credit 

risk: Evidence from the United States', Economic Modelling, 51, pp. 123-135.  

Tashman, J. (2000) 'Out-of-sample tests of forecasting accuracy: an analysis and 

review', International Journal of Forecasting, 16(4), pp. 437-450.  

Taylor, S. (1986) Modelling Financial Time Series. New York: John Wiley & Sons.  

TERASVIRTA, T. (1998) 'Modelling economic relationships with smooth transition 

regressions', in Handbook of Applied Economic Statistics. , pp. 507-552.  

TERASVIRTA, T. (1994) 'Specification, Estimation, and Evaluation of Smooth 

Transition Autoregressive Models', Journal of the American Statistical 

Association, 89(425), pp. 208-218.  

TERASVIRTA, T. and ANDERSON, H. (1992) 'Characterizing Nonlinearities in 

Business Cycles using Smooth Transition Autoregressive Models', Journal of 

Applied Econometrics, 7, pp. S119-S136.  

Terasvirta, T., van Dijk, D. and Medeiros, M. (2005) 'Linear models, smooth 

transition autoregressions, and neural networks for forecasting macroeconomic 

time series: A re-examination', International Journal of Forecasting, 21(4), pp. 

755-774.  

Tillmann, P. (2015) 'Estimating the effects of macroprudential policy shocks: A Qual 

VAR approach', Economics Letters, 135, pp. 1-4.  

Tsai, I., Chen, M. and Ma, T. (2010) 'Modelling house price volatility states in the UK 

by switching ARCH models', Applied Economics, 42(9), pp. 1145-1153.  



100 

 

 

Tsai, I., Lee, C. and Chiang, M. (2012) 'The Asymmetric Wealth Effect in the US 

Housing and Stock Markets: Evidence from the Threshold Cointegration Model', 

Journal of Real Estate Finance and Economics, 45(4), pp. 1005-1020.  

Valkanov, R. (2005) 'Functional Central Limit Theorem approximations and the 

distribution of the Dickey-Fuller test with strongly heteroskedastic data', 

Economics Letters, 86(3), pp. 427-433.  

Wong, E., Tsang, A. and Kong, S. (2014) 'How Does Loan-To-Value Policy 

Strengthen Banks’ Resilience to Property Price Shocks – Evidence from Hong 

Kong', HKIMR Working Paper, No.03/2014 

Yang, J., Liu, H. and Leatham, D.J. (2013) 'The multi-market analysis of a housing 

price transmission model', Applied Economics, 45(27), pp. 3810-3819.  

 


