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Abstract 

Even experts routinely miss infrequent targets, such as weapons in baggage scans or 

tumors in mammograms because the visual system is not equipped to notice the unusual. To 

date, limited progress has been made towards improving human factors that mediate such critical 

diagnostic tasks. Here we present a novel framework for pairing individuals’ estimates to 

increase target detection. Using a “wisdom of crowds” approach capitalizing on the visual 

systems’ ability to efficiently combine information, we demonstrate how averaging two, non-

interacting individuals’ continuous estimates of whether a briefly presented image contained a 

pre-specified target can significantly boost detection across a range of tasks. Furthermore, we 

show how pairing individuals’ estimates to maximize decorrelated patterns of performance in 

one task can optimize performance on a separate task. Results make significant advances towards 

combating severe deficits in target detection, with straightforward applications for maximizing 

performance within limited pools of observers.  
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Despite spectacular developments in image processing and automated search algorithms 

(Liu et al., 2017), humans still perform the majority of critical visual search tasks such as breast 

cancer and airport baggage screenings. In stark contrast to a growing class of computer vision 

algorithms which input the entire image in parallel (Itti & Koch, 2001; Serre, Oliva, & Poggio, 

2007) the human visual system is only capable of processing a few objects in detail at any given 

moment (Luck & Vogel, 1997). To circumvent these capacity restrictions, the visual system acts 

like a “statistician,” averaging out redundant and specific information, “filling in” details based 

on spatiotemporal context, and leaving us with a representation of abstract, statistical regularities 

to efficiently represent the maximum amount of information (Attneave, 1954; Baddeley, 1997; 

Barlow, 1961; Kersten, 1987; Olshausen & Field, 1996; Simoncelli & Olshausen, 2001). 

However, relying heavily on current and prior context means that we are designed not to notice 

targets that are out of the ordinary (Simons & Chabris, 1999). For example, even experts are 

prone to missing infrequent targets, such as weapons in baggage scans or tumors in routine 

mammograms (Wolfe, Horowitz, & Kenner, 2005).  

For over a decade since Wolfe and colleagues’ initial discovery that we miss 

approximately 30% of rare targets (Wolfe et al., 2005), researchers have struggled to develop 

new methods to improve the detection of unusual and important targets (Van Wert, Horowitz, & 

Wolfe, 2009; Wolfe et al., 2007; Wolfe, Brunelli, Rubinstein, & Horowitz, 2013; Wolfe et al., 

2005). Such attempts have mainly been aimed at increasing individual observers’ “vigilance,” for 

example, by interspersing bursts of frequent targets into otherwise rare target searches (Wolfe et 

al., 2007, 2013). Instead of trying to augment the performance of a system equipped to function 

optimally within its biological and computational constraints, our approach is grounded in 

observations abstracted from the visual system’s inherent structure and function. Although it 
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may seem that a system with restricted capacity for detail is destined for failure in complex 

search tasks, these apparent weaknesses can be translated into strengths if we approach this 

problem from the understanding that the visual system capitalizes on regularities by sampling the 

most unique, decorrelated aspects of visual input. For example, individual neurons coding for the 

most discrepant information in an image (Barlow, 1961) mimic the “wisdom of crowds” 

approach of asking multiple individuals for different ground truth guestimates (Galton, 1907; 

Hogarth, 1978). Both cases take advantage of regression towards the mean, such that the more 

independent the samples, the more information that is accrued from averaging, and therefore the 

greater the reduction in error. Along these lines, studies of the “crowd within” have focused on 

similar methods for averaging guesses from a single individual to improve performance on a 

range of cognitive and perceptual tasks (Corbett, Fischer, & Whitney, 2011; Herzog & Hertwig, 

2009; Vul & Pashler, 2008). All of these findings point to the intriguing and potentially life-

saving possibility of even greater benefits of independence from combining two estimates from 

different observers. To these ends, we developed and tested the novel framework illustrated in 

Figure 1 for pairing individuals’ continuous estimates of target presence to increase detection 

performance across a range of tasks.  
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Figure 1. Framework for improving performance by averaging individuals’ estimates. For each image, 
individuals provide a continuous estimate (from 0=No, to 100=Yes) about whether a pre-specified target is present. 
Individuals perform the task independently. Each row represents hypothetical responses to a single image. The first 
column corresponds to the specific image number (Image #), and the number inside the square in the second column 
indicates whether a target is present (1) or absent (0) in that image. Numbers inside gray circles in the third and 
fourth columns represent the corresponding continuous responses of the two observers in the hypothetical dyad, and 
red and green 0’s and 1’s to the right of these estimates represent how that continuous response translates into a 
binary response. Responses less than 50 are scored as 0=Absent, and responses greater than 50 are scored as 
1=Present. Green numbers indicate correct responses and red numbers indicate incorrect responses, such that green 
1’s correspond to Hits and red 1’s correspond to False alarms (FAs). Numbers inside green circles in the final 
column represent the dyad’s average estimate (the average of Indiv1 and Indiv2’s continuous responses), and the red 
and green 0’s and 1’s to the right of these estimates represent the dyad’s corresponding binary response. Each 
individual’s d’ (d’1 and d’2) is calculated by subtracting their normalized FA rates (FAs1 and FAs2) from their 
respective normalized Hit rates (Hits1 and Hits2), and the dyad’s d’ (d’Dyad; green text) is calculated by subtracting 
the dyad’s normalized FA rate (FAsDyad) from the dyad’s normalized Hit rate (HitsDyad). The average d’ for the dyad 
(d’Indiv; gray text) is calculated as the average of the two individuals’ d’s (the mean of d’1 and d’2). Indiv2 (gray 
circles outlined in blue) had a higher d’ than Indiv1 (d’2>d’1), and is therefore used as the d’ of the better observer in 
the dyad (d’Better; blue text). Overall, averaging individuals’ estimates results in lower error rates (Hits and FAs) and 
therefore a higher rate of target detection (d’) than the average of the individuals’ detection rates or the detection rate 
of the better individual in the dyad.  
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Using this framework, we conducted two experiments to test the predictions that: 1) 

pairing individuals’ estimates will result in better performance compared to the performance of 

either individual (Experiments 1 & 2), and 2) pairing estimates from individuals with the most 

decorrelated performance on one task will result in the greatest improvements on a separate task 

(Experiment 2).  

 

In a first experiment, we investigated how averaging independent estimates from two 

different individuals might improve target detection. We presented naïve observers with 

unilateral mammography x-rays verified as having either an abnormality (a tumor) or consisting 

of normal, healthy tissue. Observers’ task was to rate the extent to which they thought a tumor 

was present on a pseudo-continuous scale ranging from 0 (No) to 100 (Yes), excluding 50. 

Participants completed two “Mammos” conditions in which either 5% or 50% of the total 

number of trials contained tumor present images (see Methods and Figure 2a for more details). 

Given the noted benefits of combining independent information (Barlow, 1961; Corbett et al., 

2011; Galton, 1907; Herzog & Hertwig, 2009; Hogarth, 1978; Vul & Pashler, 2008), we 

predicted that the average of two observers’ estimates would result in higher d’ values (a signal 

detection measure that accounts for both types of possible miss and false alarm errors) than 

either of their individual estimates.  

 
  

Page 6 of 31Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 7

Methods  
 

 
Fig. 2. a. Trial Sequence. On each trial, observers were presented with a search display for 500 ms, followed by a 
response slider to indicate the extent to which they thought the image should be called back for containing a pre-
specified target. Feedback about the points earned on the trial and the total points accumulated over the entire 
duration of the experimental block was displayed after a response was made. Mammos (Exp. 1): Observers were 
presented with a unilateral mammogram and their task was to decide whether a tumor was present. They completed 
two conditions in which either 5% or 50% of the trials contained tumor present images (5% Mammos and 50% 
Mammos) in a blocked design. Tools (Exp 2): In the Tools task, observers were presented with a display of nine 
objects and their task was to decide if a tool target was present. They completed two conditions (blocked) with a tool 
target present on either 5% or 50% of trials (5% Tools and 50% Tools). Local Gabors (Exp 2): On each trial in the 
Local Gabors condition, observers were presented with an image of nine Gabors, and their task was to decide 
whether or not to call the image back for containing a target Gabor that was larger or smaller than all the other 
Gabors. Global Gabors (Exp 2): On each trial in the Global Gabors condition, observers were presented with two 
successive displays of nine Gabors, temporally separated by a 1000 ms blank screen, and their task was to decide 
whether to call back the sequence for having a “target” difference in global mean size between the first and second 
images. In both Gabors conditions, 50% of trials contained a target. b. Objects used in the Tools tasks. As in 
Wolfe and colleagues (Wolfe et al., 2005), gray-scaled objects (Brodeur, Dionne-Dostie, Montreuil, & Lepage, 
2010; Konkle, Brady, Alvarez, & Oliva, 2010) from five different stimulus categories (including tools) were used to 
create the stimulus displays in the Tools task. Each category consisted of 12 exemplars. 

   

a

b

Mammos Tools Local Gabors Global Gabors

Time

Would you call back this image?

50

NO YES

0 10 20 30 40 50 60 10080 9070

Trial Points = -120

TOTAL POINTS = 280

(Press space to start the next trial)
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Participants: There were 25 participants in Experiment 1, and 23 participants in 

Experiment 2. All participants were students at Bilkent University, participated in only one of the 

experiments, had normal or corrected-to-normal vision, and volunteered to take part in the 

experiment either for course credit or money. In each experiment, the participant with the highest 

points won an additional 50 Turkish Lira (see Points/Feedback). Seven participants were 

dismissed from each experiment for failing to pass a pre-established performance threshold 

during practice blocks (see Points/Feedback). Only the data from the remaining 18 observers in 

Experiment 1 (11 female, mean age=20.56 years, age range=19-25), and 16 observers in 

Experiment 2 (14 female, mean age=21.25 years, age range=18-25) were included in subsequent 

analyses. We had to restrict our sample size to 16 participants in Experiment 2, as this was the 

maximum number of individuals for which we could generate all possible paired combinations 

given computational limitations (see Decorrelated Dyads). All procedures and protocols were in 

accordance with the guidelines of Bilkent University’s ethical review board.  

 

Task & Trial sequence: Participants were instructed to act like radiologists (Experiment 

1) or airport baggage screeners (Experiment 2), and estimate whether they detected the presence 

of a target item from a pre-specified category (e.g., a tumor, a tool) in a briefly presented image. 

On each trial in Experiment 1, participants were presented with a unilateral mammogram for 500 

ms. On each trial in Experiment 2, participants were presented with an image of nine objects for 

500 ms. In both experiments, the target screen was followed by a response slider ranging from 0-

100 (adapted from Evans, Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013; Evans, 

Haygood, Cooper, Culpan, & Wolfe, 2016). Participants used the mouse to adjust the slider to 

indicate whether to call back the image based on whether they detected a target (Figure 2a). To 
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implement a modified version of a two-alternative forced-choice task (2AFC), we restricted the 

slider responses so that participants could choose any value from 0-100 except 50. After they 

finished adjusting the slider, participants were presented with feedback on their points for the 

given trial and their total points for the block until they pressed the space bar to continue to the 

next trial.  

 

Stimuli & Procedure: All participants performed the tasks individually and 

independently, in a dimly lit room. Participants had no knowledge that their performance would 

be paired with another individual offline after the experiment, nor did they receive any feedback 

that had any relationship to the performance of any other participant. An HP PC was used to 

present stimuli at a viewing distance of 57 cm, on a 21.3” NEC LCD monitor with a 60-Hz 

refresh rate and a resolution of 1600 x 1200 pixels. MATLAB (Version 2016a) and the 

Psychophysics Toolbox (PTB-3; Brainard, 1997; Pelli, 1997) controlled all presentation, timing, 

response functions, and data collection. See the Supplementary Material available online for 

details of the training and practice blocks associated with each experiment. 

 

Experiment 1: Each participant completed two experimental conditions (5% and 50% 

target prevalence) in a single, one-hour experimental session. The two conditions were run in 

separate blocks, and the order of blocks was counterbalanced over participants. In each 

condition, observers were presented with a unilateral mammogram centered in the middle of a 

black screen. Mammograms were acquired from the University of South Florida Digital 

Database for Screening Mammography (DDSM; Heath et al., 1998; Heath, Bowyer, Kopans, 

Moore, & Kegelmeyer, 2001), and presented in native pixel resolution (subtending 

Page 9 of 31 Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 10 

approximately 10o x 18o of visual angle). There were 400 unique images in each condition. In the 

5% condition, a tumor was present in 20 of the 400 images. In the 50% condition, a tumor was 

present in 200 of the 400 images. All participants saw the same set of 400 images in the 5% 

condition and another set of 400 images in the 50% condition. The order of the images in each 

set was randomized, and each participant saw each image only once throughout the experiment. 

See the Supplementary Material available online for a detailed description of the mammogram 

stimuli and the corresponding supplementary image database. 

 

Participants completed two stages of training before beginning the experimental blocks. 

First, they were presented with 50 of the target present mammograms and 50 of the target absent 

(healthy) mammograms, in random order. Participants were not required to make a response, but 

only to study the images so that they became familiarized with typical target present and absent 

images. Each image remained on the screen until the participant pressed the space bar. If the 

image contained a target, the original mammogram was re-presented with an overlay showing 

the region identified as abnormal circled in red. The 100 trials in the second training stage were 

identical to trials in the main 50% experimental condition, except: 1) the training images were 

presented simultaneously with the response slider and remained on the screen until the 

participant responded, and 2) if the image contained a target, the image was re-presented with the 

corresponding overlay of the abnormality. None of the images used in the training and practice 

blocks were used in the experimental blocks. 

 

Experiment 2: Each participant completed four experimental conditions (Local Gabors, 

Global Gabors, 5% Tools, and 50% Tools; Figure 2) in a single experimental session lasting 
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approximately 2 hours. The two Gabors conditions and the two Tools conditions were run in 

immediate succession, but the order of these two types of conditions and the order of the 

individual conditions within each type were counterbalanced over observers. In each condition, 

observers were presented with nine stimuli arranged equidistantly in a 3 x 3 grid, subtending 

approximately 16o x 16o of visual angle and centered in the middle of a gray screen.  

• Local Gabors: Participants were presented with a total of 288 images, with a target 

defined as a Gabor that was smaller or larger than the other eight Gabors present in 

50% of the images. For each image, the size, spatial frequency, contrast, and 

orientation of the nine individual Gabors were pseudo-randomly assigned from two 

possible sets of nine values per dimension (chosen based on the results of previous 

pilot studies). The small size set ranged in diameter from 1.9o to 2.1o in 0.02o steps, 

and the large size set ranged from 3.4o to 3.6o, also in 0.02o steps. The low spatial 

frequency set ranged from 1.2 cycles per degree (cpd) to 2 cpd in 0.1 cpd steps, and 

the high spatial frequency set ranged from 6 cpd to 6.8 cpd in 0.1 cpd steps. The low 

contrast set ranged from 73% to 81% contrast relative to the gray background, and the 

high contrast set ranged from 83% to 91% contrast. The left-tilted orientation set 

ranged from -49o to -41o of tilt from vertical, and the right-tilted set ranged from 41o 

to 49o of tilt from vertical.  

144 target absent images were generated by factorially combining the 2 Sizes x 2 

Spatial frequencies x 2 Contrasts x 9 Locations, with two repetitions of each of the 

combinations. The set of leftward or rightward orientations was randomly selected for 

the nine Gabors in each image. For each target absent image, a corresponding target 

present image was constructed from an identical set of parameters except that the 
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Gabor representing the mean size of the set in the target absent condition was 

replaced by a Gabor representing the mean size of the opposite set in the target 

present condition. With the exception of the target size and location in target present 

images, the individual values in each dimension were randomly assigned to the nine 

possible locations in each image.   

 

• Global Gabors: Participants were presented with a total of 256 pairs of successive 

images of nine Gabors each. The target was present in 50% of the pairs, and was 

defined as a difference between the mean size of the items in the first image of nine 

Gabors and the mean size of the nine Gabors in the second image. There were nine 

possible sets of nine individual Gabor sizes, constructed by multiplying a base set 

ranging from 1.3o to 1.7o in 0.05o steps by a constant value from 0 to 8. In target 

present pairs, the sizes of the Gabors in the first or second image (determined 

randomly for the pair) were taken from sets 1, 2, 3, 4, 6, 7, 8, or 9. The sizes of the 

Gabors in the other image were taken from set 5, for a total of eight possible mean 

size differences between the two images in each pair. In 50% of target absent pairs, 

the sizes of both images were taken from the same set (“repeated pairs”; 1, 2, 3, 4, 6, 

7, 8, or 9). In the other half of target absent pairs, the sizes of Gabors in both images 

were taken from set 5 (“set 5 pairs”). This manipulation guarded against the tendency 

to call back the pair of images on a given trial as having a target difference present if 

either of the images in the pair contained the set 5 sizes. The same spatial frequencies, 

contrasts, and orientations were used as in the Local Gabors condition. The entire set 

of 256 image pairs was constructed from two repetitions of the full factorization of 
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the 8 possible Mean size differences x 2 Present/Absent conditions x 2 Spatial 

frequencies x 2 Contrasts x 2 Absent pair types (repeated pairs/set 5 pairs). Each 

target present image had a corresponding target absent image with all of the same 

parameters except that both target absent images contained the same nine sizes (either 

repeated pairs or set 5 pairs). As in the Local Gabors condition, the set of leftward or 

rightward orientations for the nine Gabors was randomly selected for each pair of the 

128 target present images, and the same orientation set was used for the 

corresponding target absent pair of images. In all images in all sequential pairs, the 

individual values in each dimension were randomly assigned to the nine possible 

locations. 

 

• 5% Tools: There were a total of 360 images, each comprised of nine objects. A single 

tool target was present in 5% of the images, and the other eight items were drawn 

from one of four categories (Clothing, Fruit, Toiletries, and Toys; Figure 2b). There 

were 12 objects per category (including Tools), for a total of 60 possible items. The 

images for individual items were taken from open-source databases published in 

previous work (Brodeur et al., 2010; Konkle et al., 2010). Each item subtended 2.5o x 

2.5o (the average size of the individual Gabors). Individual items were presented at 

60% transparency, each item in each image was tilted a random ±15o from vertical in 

1o steps, and a pink noise mask was added to the entire image in attempt to better 

equate the task to a real-world baggage screening task (Wolfe et al., 2005). There 

were 18 target present images (two per location) and 342 target absent images. For 

each target present image, there were 19 corresponding target absent images, each 
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containing the same nine non-tool objects drawn randomly from one of the four non-

tool categories. Although the same nine items were used in the target absent images, 

the individual items were placed randomly in the nine locations in each image. In the 

corresponding target present image, a tool was randomly selected to replace the non-

tool item in the target location, with the locations of the eight other non-tool items 

randomly determined.  

 

• 50% Tools: A tool target was present in half of the 360 total images. All parameters 

were identical to those used in the 5% Tools condition, except that there were 180 

target present images (20 per location) and 180 target absent images, with target 

absent images containing nine randomly selected items from the four non-tool 

categories and the corresponding target present image containing a tool randomly 

selected to replace one of the non-tool items and presented in the target location.  

 

Points/Feedback: On each trial, participants earned points for a correct response or lost 

points for an incorrect response (adapted from Wolfe et al., 2005). In all 50% conditions, 

participants could earn a maximum of 40 points when there was a target present and they 

correctly called back the image (i.e., adjusted the slider to a value above 50%; Hit), and 2.5 

points when there was no target present and they correctly did not call back the image (Correct 

rejection). They could lose a maximum of 40 points if there was a target and they did not call the 

image back (Miss), and 75 points if there was no target and they incorrectly called back the 

image (False alarm). In the 5% conditions, participants could earn a maximum of 400 points for 

a Hit, and a maximum of 2.5 points for a Correct rejection. They could lose a maximum of 400 

Page 14 of 31Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 15 

points for a Miss and a maximum of 75 points for a False alarm. We calculated the specific 

number of points earned or lost on each trial as a function of the extremeness of the given 

response using the following formula:  

 

Points = (x *MaxPoints) * (1-((2*Response)/100)) 

 

where x = -1 for signal present trials, x = 1 for signal absent trials, MaxPoints was the maximum 

number of points that could be earned or lost, and Response was the participant’s estimate 

between 0 and 100 made via the slider adjustment on the trial.  

In replicating the rare target deficit originally reported by Wolfe and colleagues (2007, 

2005), it was necessary to implement a points system that prevented participants from simply 

responding 0 on each trial in the 5% prevalence condition (which would result in 95% accuracy), 

or simply hovering in the middle of the response range without actually performing the detection 

task. Along these lines, the points system allowed us to better equate participants’ response 

criteria (tendency to say yes or no more frequently) across the two types of conditions (Healy & 

Kubovy, 1981; Wolfe & Van Wert, 2010), such that there was a greater penalty for a bias to 

respond “YES” in the 50% conditions when targets were frequent, but a greater penalty for a bias 

to respond “NO” in the 5% conditions when targets were rare. Participants were informed of the 

specific points for each type of response at the start of each block, and required to have a positive 

score (points > 0) at the end of every block.  

 

Results 
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 Dyads versus individuals: To gauge whether pairing individuals’ estimates yielded 

improved detection performance, we first paired the 18 (Experiment 1) and 16 (Experiment 2) 

participants in n-1 unique arrangements of pairings. Each arrangement included all 18 or 16 

participants. Only the pairings of the participants into nine (Experiment 1) and eight (Experiment 

2) dyads was different over arrangements, such that each possible dyad was present only once in 

the resultant 17 (Experiment 1) and 15 (Experiment 2) arrangements. For example, the dyad 

formed by participants 1 and 2 only appeared in one of the 17 possible arrangements of nine 

dyads in Experiment 1. In other words, all participants were included in each arrangement of 

pairings, but each dyad was unique across all pairings such that the combination of the two 

individuals forming a dyad was never repeated (see Table S1 for an illustration of this 

procedure). As we planned the statistical comparisons illustrated in Figure 3 and Table S2 

between three groups, we conducted our analysis using only these unique arrangements of 

pairings based on multiple combinations of the individual participants.  

As illustrated in Figure 3a, averaging individual estimates from two observers improved 

signal detection (d’) over estimates obtained from the corresponding individuals in both the 5% 

Mammos condition (12.89% average improvement) and the 50% Mammos condition (10.81% 

average improvement). In both conditions, pairing estimates also improved performance relative 

to the performance of the better individual in each dyad. We conducted a follow-up analysis to 

explicate how pairing estimates affected both types of miss and false alarm errors. Although 

pairing always decreased both misses and false alarms compared to estimates made by the 

corresponding individuals, there was a noteworthy trade-off between misses and false alarms in 

the 5% Mammos condition, suggesting that estimates made by the better of the two observers in 

each dyad were less prone to misses whereas dyad estimates were less likely to result in false 
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alarms (Figure 3b&c). In all reported analyses, paired comparisons refer to two-tailed t-tests that 

were Bonferroni-corrected for multiple comparisons. Table S2 in the Supplemental Material 

available online presents the full results of all planned comparisons.  

 

 
Figure 3. Dyad versus individual results. Experiment 1 (Mammos): n=9 dyads; Experiment 2 (Gabors & Tools): 
n=8 dyads. a. Detection performance (d’): For each task, dyads’ (green) average d’ was significantly higher 
compared to the average d’ of the corresponding individuals (gray) as well as the d’ of the better of the two 
individuals (blue). b. Misses: Also for each task, the miss rate was significantly lower for dyads compared to 
individuals, and for dyads compared to the better of the two individuals, with the exception of the 5% Mammos 
condition. c. False alarms: False alarms were significantly lower for dyads versus individuals in all tasks except the 
Global Gabors and 50% Tools conditions, false alarms were significantly lower for dyads versus the better of the 
two individuals in the 5% Mammos condition, and false alarms were significantly greater for dyads versus the better 
of the two individuals in the Global Gabors and 50% Tools conditions. Asterisks represent significant differences, 
with α = 0.0125 using the Bonferroni correction for four multiple comparisons. Error bars represent the 95% within-
subjects confidence intervals for the two-way interaction depicted in each graph (Loftus & Masson, 1994).  

  

Decorrelated dyads: After confirming the significant benefits of pairing individuals’ 

independent estimates of the likelihood of tumor presence in mammography images, we sought 

to generalize this benefit using other types of visual search tasks in Experiment 2. In particular, 
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we first replicated the results of Experiment 1 using a tool detection task in Experiment 2 that is 

typically used with naïve observers as a proxy for weapons detection in baggage scans (Fleck & 

Mitroff, 2007; Wolfe et al., 2005; Figure 2). Given that previous findings suggest greater benefits 

of averaging as estimates become more independent (Corbett et al., 2011; Herzog & Hertwig, 

2009; Hogarth, 1978; Vul & Pashler, 2008), we further extended our investigation to examine 

whether pairing estimates from observers with the most independent, decorrelated patterns of 

performance in separate Gabors tasks could maximize performance in the main Tools search 

tasks. Given previous findings that suggest detection might be based in part on a global “gist” 

signal (Drew, Evans, Võ, Jacobson, & Wolfe, 2013; Evans et al., 2013, 2016; Rensink, 2004), 

we used local and global versions of the Gabors task (Figure 2). This resulted in 4 main 

conditions: Local 5%, Global 5%, Local 50%, and Global 50%. We expected the improvement in 

d’ from averaging dyads’ performance in the Tools tasks to increase with their decreasingly 

correlated performance in the Gabors tasks.  

 

Similar to real-world situations like airport baggage screenings where a pair of security 

officers typically work at one of several stations, we sought to optimize overall group 

performance in the Tools tasks by pairing individuals into eight dyads, such that performance on 

the Gabors task was maximally decorrelated over the entire group of 16 individuals. Importantly, 

and unlike the analysis used in both Experiments 1 and 2 to compare the performance of dyads 

and individuals (Figure 3 and Table S2), we only compared dyad performance as a function of 

correlation on the Gabors tasks and did not restrict this analysis to only one unique occurrence of 

a particular dyad. Instead, we began by constructing all possible pairings of the 16 individuals 

using a custom-written recursive MATLAB function, such that one set of the eight dyads was 
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distinct relative to any other combination (the only consideration was the uniqueness of the 

dyads within a combination relative to the dyads in all previous combinations. Dyads could 

repeat over different combinations of pairings, but not within the same combination.). For n=8 

possible dyads of the 16 observers, this resulted in 

 
����!

�!
∗
�

��
 = 2,027,025 unique combinations of 16 observers into 8 dyads 

Using this approach, the number of unique combinations increased exponentially with each 

additional dyad, such that standard computational power limited our analysis to a maximum of 

16 individuals grouped into eight dyads.  

Next, separately for the Local and Global Gabors tasks, we calculated the average 

correlation between dyads’ responses for the individual images (the 288 images in the Local 

Gabors condition and the 256 images in the Global Gabors condition) for each set of 2,027,025 

combinations. More specifically, the average correlation in responses for each set of eight dyads 

was found by summing the eight correlations between each pair of individuals (Indiv1 and 

Indiv2), then dividing by the total number of (8) dyads. After finding the average correlation for 

each set of combinations, the combinations were sorted from most decorrelated to most 

correlated. We then used these combinations on each of the Local and Global Gabors tasks to 

compute dyad performance for each of the 2,027,025 combinations in the 5% and 50% Tools 

tasks, resulting in four main conditions (Local 5%, Global 5%, Local 50%, and Global 50%). 

Finally, we averaged the data from the 2,027,025 combinations over 9,009 bins of 225 pairings 

each to facilitate graphical and statistical comparisons.  

 Although participants’ responses were not speeded, their average response times for both 

rare (5% Tools: M=2020 ms, SD=1332 ms) and frequent (50% Tools: M=1902 ms, SD=1076 ms) 

target detection were similar to those previously reported by Wolfe and colleagues (2005).  
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 After first replicating the improved rates of target detection for dyad versus individual 

estimates observed in the mammogram task in Experiment 1 for both Gabors and Tools 

conditions in Experiment 2 (E2: 16.06% – 22.14% average improvement from averaging; Figure 

3 and Table S2), we tested the prediction that pairing estimates from observers such that their 

overall performance was maximally decorrelated in the Gabors tasks would result in the greatest 

improvements from averaging in the Tools tasks. In support of this hypothesis, we observed a 

strong negative correlation (r=-0.972), such that d’ values on the 5% Tools task increased as the 

average correlation over a given set of pairings in the Global Gabors task decreased (Global 5%). 

On the contrary, there was no evidence of a relationship between d’ on the 5% Tools task and the 

average correlation over a set of pairings in the Local Gabors task (Local 5%; r=0.196). 

Improved performance in the 50% Tools task was also well-predicted by observers’ decorrelated 

performance in the Global (Global 50%; r=-0.937) and Local (Local 50%; r=-0.972) Gabors 

tasks. Taken together, these patterns of results in Figure 4a suggest that pairing estimates from 

individuals with decorrelated performance on a simple global detection task can maximize 

performance in a separate, more complex rare target detection task, whereas pairing estimates 

from individuals with the most decorrelated patterns of performance regardless of the local or 

global scale of the simple task may optimize the detection of frequently occurring targets in a 

more complex task.  

These conclusions are further supported by the different patterns of improvement in miss 

and false alarm rates in the two Tools tasks that resulted from pairing the most decorrelated 

observers in the two Gabors tasks. In the 5% Tools condition where dyads showed the lowest 

miss and false alarm rates (Figure 3b&c), the more decorrelated the dyads’ performance in the 

Global Gabors condition, the lower their miss and false alarm rates (Figure 4b&c). In the 50% 
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Tools condition, dyads showed the lowest miss rates (Figure 3b) but higher false alarm rates than 

the better of the two individuals in each dyad (Figure 3c). Also in the 50% condition, the more 

decorrelated the dyads performed in the Global and especially the Local Gabors conditions, the 

greater the improvement in false alarm rates (Figure 4c) with little change in the miss rates 

(Figure 4b), such that the greatest improvements from averaging decorrelated dyads were 

observed where improvements were most needed. Further evidence of the benefits of capitalizing 

on the more fine-grained information available in participants’ continuous estimates are 

illustrated by the inferior results from the same analyses using participants’ dichotomized 

estimates in the Gabors tasks instead of their continuous responses (Figure S1). 
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Figure 4. Decorrelated dyads results. a. Detection performance (d’): For all conditions except Local 5%, there 
was a strong negative correlation between dyads’ correlated performance on the Gabors task and their corresponding 
d’ values on the Tools task. b. Misses: Whereas dyads’ miss rate in the 5% Tools task decreased with increasingly 
correlated performance in the Local Gabors task, it decreased with decreasingly correlated performance in the 
Global Gabors task. There was no strong relationship between dyads’ correlated performance in either of the Gabors 
tasks and dyads’ miss rates in the 50% Tools task. c. False alarms: In the 5% Tools condition, false alarms slightly 
increased as dyads’ performance became increasingly correlated in both the Local and Global Gabors conditions. In 
the 50% Tools condition, there was a strong positive correlation between dyads’ false alarm rates and correlated 
performance in both Local and Global Gabors tasks. All plots depict the results of simple regression analyses with 
all Fs(1,9008)>360 and all ps<0.001.  
 

 

Discussion 

The current framework represents a significant advancement towards improving human 

factors that mediate target detection. Building on parallels between the visual system’s ability to 
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capitalize on the variance inherent in the surrounding environment (e.g., Barlow, 1961) and 

findings that the “wisdom of crowds” (e.g., Galton, 1907) can be approximated by aggregating 

the most conflicting estimates from the same individual (e.g., Corbett et al., 2011; Herzog & 

Hertwig, 2009; Vul & Pashler, 2008) the present study demonstrated that averaging estimates 

from individuals with the most decorrelated patterns of performance can improve detection 

across a range of visual tasks.  

Several critical differences set the current framework apart from methods used in 

previous work (Van Wert et al., 2009; Wolfe et al., 2007, 2013, 2005). First, given evidence that 

observers can rapidly detect but not localize changes (Rensink, 2004), and that experts can detect 

but not localize the presence of abnormalities in mammography images within a fraction of a 

second (Drew et al., 2013; Evans et al., 2013, 2016), we used brief 500 ms stimulus presentations 

in attempt to engage the nonselective visual pathway thought to be responsible for the rapid 

extraction of global, statistical information (Drew et al., 2013; Evans et al., 2013, 2016; Rensink, 

2004; Wolfe, Võ, Evans, & Greene, 2011). Second, instead of having observers provide a binary 

present/absent judgment or a binary judgement followed by a confidence rating, we required 

them to make a continuous response by adjusting a slider to indicate the extent to which they 

thought an image should be called back for further inspection because it contained a target. This 

allowed us to average individuals’ estimates for each of the unique images, instead of limiting us 

to multiplying their average error rates to obtain a measure of paired performance (Wolfe et al., 

2007) or calculating a separate measure of metacognitive confidence from binary responses and 

confidence ratings (e.g., Maniscalco & Lau, 2012). Third, the current framework does not 

require people to interact to reach a joint decision. Human interaction decreases the 

independence of individuals’ judgements and results in joint performance that is sub-optimal 
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(e.g., Bang et al., 2017), as it can be no greater than improvements obtained from relying on the 

answers of the more confident (Bahrami et al., 2010) and/or accurate (e.g., Erev, Gopher, Itkin, 

& Greenshpan, 1995) member of each dyad. Instead, observers performed all tasks individually 

without interacting or any knowledge that their responses would be combined with those of other 

participants. Finally, we used performance on a basic visual task (Gabors) to pair individuals’ 

estimates on a separate, more complex detection task (Tools). Averaging estimates from 

individuals with the most decorrelated patterns of performance in either the Local or Global 

Gabors task lead to the greatest improvements in detecting frequent Tools targets. In contrast, 

only averaging estimates from individuals with the most decorrelated performance on the Global 

Gabors task lead to improvements in detecting rare Tools targets. Whereas previous attempts to 

improve rare target detection have interspersed bursts of frequent targets into searches for 

infrequent targets (Wolfe et al., 2007, 2013), the present results suggest that the optimal solution 

is to pair estimates from observers using different cognitive strategies.  

The most straightforward applications of our results are to begin employing continuous 

bounded response scales in safety-critical signal detection tasks and averaging individuals’ 

estimates. For example, in-line with a recent report by Mayo clinic researchers underscoring the 

importance of second opinions in increasing the accuracy of medical diagnoses (Van Such, Lohr, 

Beckman, & Naessens, 2017), different radiologists can quickly scan through mammograms and 

continuous estimates from the individuals with the most decorrelated patterns can be combined 

offline. Importantly, our framework can be applied without requiring any communication 

between individuals and without requiring the delay between estimates that is necessary to obtain 

similar benefits from aggregating repeated estimates from the same individual (Corbett et al., 

2011; Herzog & Hertwig, 2009; Vul & Pashler, 2008). Therefore, estimates made by an expert at 
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one location (e.g., a transportation security officer at an airport checkpoint) could be paired in 

real-time with estimates made by a second person viewing the same images at an offsite location. 

In the future, it may even be possible to simulate a decorrelated pattern of performance that can 

be averaged online with an existing individual’s performance, which could be particularly cost-

effective and useful when personnel or data is sparse. Although we note several possible 

applications in human and computer vision, the potential application domain extends broadly 

across a diverse range of fields from navigation to engineering to economic forecasting.  

In conclusion, we have demonstrated a simple yet effective method for capitalizing on the 

diversity afforded by averaging continuous estimates of target presence from different 

individuals to boost target detection. Not only does this method yield benefits from combining 

independent samples in a range of different visual tasks, but our results strongly suggest that 

detection in complex tasks can be optimized by pairing estimates from individuals with the most 

diverse patterns of performance on a secondary basic detection task.  

 

Acknowledgements: We thank Bahar Aykut, Miray Kapan, Elif Beyza Koş, Sümeyra Özçalık, 

and the members of the Visual Perception and Attention Lab (VPAL) for their help with data 

collection. We also thank Aaron Clarke for supplying the code for pre-processing the 

mammography images and for his help rating the initial set of mammogram stimuli. Many 

thanks to Chris Oriet for helpful comments on earlier versions of this work.  

  

Page 25 of 31 Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 26 

References 

Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 

61(3), 183–193. https://doi.org/10.1037/h0054663 

Baddeley, R. (1997). The Correlational Structure of Natural Images and the Calibration of 

Spatial Representations. Cognitive Science, 21(3), 351–372. 

https://doi.org/10.1207/s15516709cog2103_4 

Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith, C. D. (2010). Optimally 

interacting minds. Science (New York, N.Y.), 329(5995), 1081–1085. 

https://doi.org/10.1126/science.1185718 

Bang, D., Aitchison, L., Moran, R., Herce Castanon, S., Rafiee, B., Mahmoodi, A., … 

Summerfield, C. (2017). Confidence matching in group decision-making. Nature Human 

Behaviour, 1(6), 0117. https://doi.org/10.1038/s41562-017-0117 

Barlow, H. (1961). Possible principles underlying the transformations of sensory messages. In 

W. Rosenblith (Ed.), Sensory Communication (pp. 217–234). MIT Press. 

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. 

https://doi.org/10.1163/156856897X00357 

Brodeur, M. B., Dionne-Dostie, E., Montreuil, T., & Lepage, M. (2010). The Bank of 

Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used 

as Visual Stimuli in Cognitive Research. PLOS ONE, 5(5), e10773. 

https://doi.org/10.1371/journal.pone.0010773 

Corbett, J. E., Fischer, J., & Whitney, D. (2011). Facilitating stable representations: Serial 

dependence in vision. PloS One, 6(1), e16701. 

Drew, T., Evans, K., Võ, M. L.-H., Jacobson, F. L., & Wolfe, J. M. (2013). Informatics in 

Radiology: What Can You See in a Single Glance and How Might This Guide Visual 

Page 26 of 31Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 27 

Search in Medical Images? Radiographics, 33(1), 263–274. 

https://doi.org/10.1148/rg.331125023 

Erev, I., Gopher, D., Itkin, R., & Greenshpan, Y. (1995). Toward a Generalization of Signal 

Detection Theory to N-Person Games: The Example of Two-Person Safety Problem. 

Journal of Mathematical Psychology, 39(4), 360–375. 

https://doi.org/10.1006/jmps.1995.1034 

Evans, K. K., Georgian-Smith, D., Tambouret, R., Birdwell, R. L., & Wolfe, J. M. (2013). The 

gist of the abnormal: Above-chance medical decision making in the blink of an eye. 

Psychonomic Bulletin & Review, 20(6), 1170–1175. https://doi.org/10.3758/s13423-013-

0459-3 

Evans, K. K., Haygood, T. M., Cooper, J., Culpan, A.-M., & Wolfe, J. M. (2016). A half-second 

glimpse often lets radiologists identify breast cancer cases even when viewing the 

mammogram of the opposite breast. Proceedings of the National Academy of Sciences of 

the United States of America, 113(37), 10292–10297. 

https://doi.org/10.1073/pnas.1606187113 

Fleck, M. S., & Mitroff, S. R. (2007). Rare Targets Are Rarely Missed in Correctable Search. 

Psychological Science, 18(11), 943–947. https://doi.org/10.1111/j.1467-

9280.2007.02006.x 

Galton, F. (1907). Vox populi (The wisdom of crowds). Nature, 75(7), 450–451. 

Healy, A. F., & Kubovy, M. (1981). Probability matching and the formation of conservative 

decision rules in a numerical analog of signal detection. Journal of Experimental 

Psychology: Human Learning and Memory, 7(5), 344–354. https://doi.org/10.1037/0278-

7393.7.5.344 

Page 27 of 31 Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 28 

Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., Moore, R., Chang, K., & Munishkumaran, 

S. (1998). Current Status of the Digital Database for Screening Mammography. In Digital 

Mammography (pp. 457–460). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-

5318-8_75 

Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, P. (2001). The Digital Database 

for Screening Mammography. In Proceedings of the Fifth International Workshop on 

Digital Mammography (pp. 212–218). Medical Physics Publishing. 

Herzog, S. M., & Hertwig, R. (2009). The Wisdom of Many in One Mind: Improving Individual 

Judgments With Dialectical Bootstrapping. Psychological Science, 20(2), 231–237. 

https://doi.org/10.1111/j.1467-9280.2009.02271.x 

Hogarth, R. M. (1978). A note on aggregating opinions. Organizational Behavior and Human 

Performance, 21(1), 40–46. https://doi.org/10.1016/0030-5073(78)90037-5 

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews 

Neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500 

Kersten, D. (1987). Predictability and redundancy of natural images. JOSA A, 4(12), 2395–2400. 

https://doi.org/10.1364/JOSAA.4.002395 

Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness supports 

detailed visual long-term memory for real-world objects. Journal of Experimental 

Psychology: General, 139(3), 558–578. https://doi.org/10.1037/a0019165 

Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E., Kohlberger, T., Boyko, A., … Stumpe, M. C. 

(2017). Detecting Cancer Metastases on Gigapixel Pathology Images. ArXiv:1703.02442 

[Cs]. Retrieved from http://arxiv.org/abs/1703.02442 

Page 28 of 31Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 29 

Loftus, G. R., & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. 

Psychonomic Bulletin & Review, 1(4), 476–490. https://doi.org/10.3758/BF03210951 

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and 

conjunctions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846 

Maniscalco, B., & Lau, H. (2012). A signal detection theoretic approach for estimating 

metacognitive sensitivity from confidence ratings. Consciousness and Cognition, 21(1), 

422–430. https://doi.org/10.1016/j.concog.2011.09.021 

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by 

learning a sparse code for natural images. Nature, 381(6583), 607–609. 

https://doi.org/10.1038/381607a0 

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers 

into movies. Spatial Vision, 10(4), 437–442. https://doi.org/10.1163/156856897X00366 

Rensink, R. A. (2004). Visual Sensing Without Seeing. Psychological Science, 15(1), 27–32. 

https://doi.org/10.1111/j.0963-7214.2004.01501005.x 

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid 

categorization. Proceedings of the National Academy of Sciences, 104(15), 6424–6429. 

https://doi.org/10.1073/pnas.0700622104 

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. 

Annual Review of Neuroscience, 24, 1193–1216. 

https://doi.org/10.1146/annurev.neuro.24.1.1193 

Simons, D. J., & Chabris, C. F. (1999). Gorillas in Our Midst: Sustained Inattentional Blindness 

for Dynamic Events. Perception, 28(9), 1059–1074. https://doi.org/10.1068/p281059 

Page 29 of 31 Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 30 

Van Such, M., Lohr, R., Beckman, T., & Naessens, J. M. (2017). Extent of diagnostic agreement 

among medical referrals. Journal of Evaluation in Clinical Practice. 

Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, some types 

of rare targets are frequently missed. Attention, Perception, & Psychophysics, 71(3), 541–

553. https://doi.org/10.3758/APP.71.3.541 

Vul, E., & Pashler, H. (2008). Measuring the crowd within: probabilistic representations within 

individuals. Psychological Science, 19(7), 645–647. https://doi.org/10.1111/j.1467-

9280.2008.02136.x 

Wolfe, J. M., Brunelli, D. N., Rubinstein, J., & Horowitz, T. S. (2013). Prevalence effects in 

newly trained airport checkpoint screeners: Trained observers miss rare targets, too. 

Journal of Vision, 13(3), 33–33. https://doi.org/10.1167/13.3.33 

Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Cognitive psychology: rare items often 

missed in visual searches. Nature, 435(7041), 439–440. https://doi.org/10.1038/435439a 

Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). 

Low target prevalence is a stubborn source of errors in visual search tasks. Journal of 

Experimental Psychology. General, 136(4), 623–638. https://doi.org/10.1037/0096-

3445.136.4.623 

Wolfe, J. M., & Van Wert, M. J. (2010). Varying Target Prevalence Reveals Two Dissociable 

Decision Criteria in Visual Search. Current Biology, 20(2), 121–124. 

https://doi.org/10.1016/j.cub.2009.11.066 

Wolfe, J. M., Võ, M. L.-H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes 

involves selective and nonselective pathways. Trends in Cognitive Sciences, 15(2), 77–

84. https://doi.org/10.1016/j.tics.2010.12.001 

Page 30 of 31Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 31 

 

Page 31 of 31 Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


