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ABSTRACT

There are many mathematical and engineering methods, problems and experiments which

make use of the finite element method. For any given use of the finite element method we

get an approximate solution and we usually wish to have some indication of the accuracy

in the approximation. In the case when the calculation is done to estimate a quantity

of interest the indication of the accuracy is concerned with estimating the difference

between the unknown exact value and the finite element approximation. With a means

of estimating the error, this can sometimes be used to determine how to improve the

accuracy by repeating the computation with a finer mesh. A large part of this thesis

is concerned with a set-up of this type with the physical problem described in a weak

form and with the error in the estimate of the quantity of interest given in terms of a

function which solves a related dual problem. We consider this in the case of modelling

the large deformation of thin incompressible isotropic hyperelastic sheets under pressure

loading. We assume throughout that the thin sheet can be modelled as a membrane,

which gives us a two dimensional description of a three dimensional deformation and this

simplifies further to a one space dimensional description in the axisymmetric case when

we use cylindrical polar coordinates. In the general case we consider the deformation

under quasi-static conditions and in the axisymmetric case we consider both quasi-static

conditions and dynamic conditions, which involves the full equations of motion, which

gives three different problems. In all the three problems we describe how to get the finite

element solution, we describe associated dual problems, we describe how to solve these

dual problems and we consider using the dual solutions in error estimation. There is hence

a common framework. The details however vary considerably and much of the thesis is

in describing each case.
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1. INTRODUCTION

The finite element method (f.e.m) is one of the most powerful and widely used numerical

methods for finding approximate solutions to mathematical problems formulated so as

to simulate the responses of physical systems to various forms of excitation. It is used

in various branches of engineering and science, such as elasticity, heat transfer, fluid

dynamics, electromagnetics, acoustics, biomechanics etc.

In the f.e.m the solution domain is subdivided into elements of simple geometrical

shape, such as triangles, squares, tetrahedra, hexahedra where a set of basis functions are

constructed such that each basis function is non-zero over a small number of elements only.

This is called discretization. The most popular method based on the discretization process

is the Galerkin method which we introduce in chapter 2 and which we use throughout the

thesis. In chapter 2 we just give a brief description of the finite element method. More

analysis and description of the f.e.m can be found in the books of [5], [30], [9] and many

others.

In this thesis, we focus on the formulation and solution of the discrete equations

for nonlinear problems that are of principal interest in applications of the f.e.m to solid

mechanics and structural mechanics. A typical approach of the nonlinear analysis as it is

given in [9] can be described as follows.

1 Development of the model;

2 Formulation of the governing equations;

3 Discretization of the equations;

4 Solution of the equations;

5 Interpretation of the results.

The computational modelling of many engineering problems in solid mechanics involves

the approximate finite element solution of the displacement field and, possibly also the

– 1 –



1. INTRODUCTION

velocity field. Then, by using these f.e. approximations we are able to estimate some

engineering quantities of interest (QoI). In this thesis, we consider the case of a thin sheet

under pressure loading, which we model as a membrane. The QoI can be, for example,

the localized stress in part of the sheet, the average thickness over a region, the potential

energy of the deformed structure or the kinetic energy associated with the motion. To

get to the stage when we have computed something sufficiently accurately we need a way

of estimating the error in any given solution and a refinement procedure to attempt to

determine how to repeat the procedure with a finer mesh in order to reach some desired

level of accuracy. The details of what is done depends on whether we are most interested

in the error in the primary function that we are approximating (e.g. the displacement

field) or of some quantity of interest which is the goal of the computation. It is goal

orientated techniques in the case of a deformation of a membrane under pressure loading

which is the main topic of this thesis. More analysis of the error estimation techniques

that can be used and adaptive mesh refinement can be found in the books of [5] and [1].

The goal oriented technique that is used in this thesis is based on the methods produced

by Rannacher and his co-workers, see e.g. [6] and papers by Oden and his co-workers as

in [19], [20], [17] and [18].

In the thesis we describe the physical problems being considered which is that of

the inflation of a membrane under pressure loading. This is done in the general non-

axisymmetric case under quasi-static conditions, the axisymmetric version also under

quasi-static conditions and the axisymmetric case again but with the full equations of

motion which we refer to as the dynamic case. For each of these three cases we describe

the problem in a weak form and in each case we apply a technique, which we briefly

describe shortly, which leads to a related dual problem which is the key to the goal

orientated approach. There are different orders in which the material can be presented

as, for example, whether all the equations related to the membrane model are given

first and all the dual problem material is given later on or whether there is a different

self-contained chapter for each of the three problems. The order that is chosen here is

closer to the second of these possibilities although there is a separate chapter just on

the creation of a dual problem in an abstract way in order to be able to represent the

error in the approximation of a QoI. This is done so that the overall technique is clear

before any specific case is described. With the membrane model already described at

this stage the chapter then ends with the first of the three cases that we consider. The

details of applying the technique to each cases is highly problem dependent which is why

these parts are mostly separated. The contributions of the thesis is in showing how the

technique can be applied and the results obtained for situations not considered in related

work in [28]. There are hurdles to overcome in the non-axisymmetric case but otherwise

– 2 –



1. INTRODUCTION

things worked out close to what might have been predicted. The dynamic case proved

more difficult than first envisaged and the use of a high order scheme in time is needed

when high accuracy is required.

The thesis is organized as follows. First, in chapter 2, we start with a brief descrip-

tion of the f.e.m, where we introduce many of the basic terms and we give preliminary

material which is used later. There is material on one-dimensional basis functions and

Legendre polynomials which are needed in the axisymmetric problems in the quasi-static

and dynamic cases and there are details for two-dimensional problems including how to

deal with the refinement of triangular meshes.

The description of the physical problem starts in chapter 3. In chapter 3, we move to

the description of the f.e.m for a nonlinear problem, which involves a vector of unknowns.

We consider the use of a membrane model of a thin sheet under pressure loading. For

computational purposes, the membrane theory gives us a 2-dimensional description of a

3-dimensional deformation. In addition we assume that the membrane is composed of

a homogeneous, isotropic, incompressible hyperelastic material. Our aim here is to first

find a f.e. approximation of the displacement field (u) of the membrane deforming under

quasi-static conditions when a pressure is applied and from this to compute a QoI. The

actual nonlinear problem that we wish to solve can be described as follows.

Find u ∈ V such that

A(u;α) = 0 ∀α ∈ V, (1.0.1)

with V being the Hilbert space. It is written in this way with 0 on the right hand side

as the pressure loading term depends on the displacement field u that we are trying to

find and, as we show, the expression for A(u;α) contains two parts which are respectively

at term corresponding to the stress in the membrane and a terms corresponding to the

pressure loading. The Hilbert space V is a subspace of H1(Ω) where Ω is the undeformed

membrane mid-surface or to be a bit more precise each component of u is in a subspace of

H1(Ω). This does fit in with the framework of what is done in of chapter 4 when we allow

for a non-zero right hand side vector. We assume that (1.0.1) admits a unique solution

u ∈ V . The detail in chapter 3 is in setting up the membrane problem in (1.0.1), some

detail relates to how to obtain the approximate solution by the finite element method.

Chapter 4 is where, in an abstract setting, we describe how to represent the error in

a QoI involving a function which solves a related dual problem and we get an estimate of

an error by approximating the exact dual problem. To be a bit more specific, let u ∈ V

satisfy

A(u;ψ) = F (ψ), ∀ψ ∈ V, (1.0.2)

– 3 –



1. INTRODUCTION

where V is an infinite dimensional function space. A(·; ·) represents a semi-linear form

which is such that it is linear in arguments to the right of the semicolon and nonlinear in

arguments to the left of the semicolon and F (·) represents a linear functional. Also let

J(u) denote the QoI we wish to compute with J(·) being a functional. If we obtain an

approximation uh to u from a finite element space then we can represent the error in the

form

J(u)− J(uh) = F (z)− A(uh; z) (1.0.3)

where z is from an infinite dimensional space and satisfies

∫ 1

0

A′(uh + seh;α, z) ds =

∫ 1

0

J ′(uh + seh;α) ds ∀α ∈ V, (1.0.4)

where A′(·; ·, ·) and J ′(·; ·) denote Gâteaux derivatives and where eh = u−uh. We cannot

obtain z as it is from an infinite dimensional space and the problem involves the unknown

exact error eh. However we can consider approximating the problem given in (1.0.4) and

the simplest approximation is to consider finding zh ∈ V̂h such that

A′(uh;α, zh) = J ′(uh;α) ∀α ∈ V̂h (1.0.5)

for a suitable space V̂h from which we get the estimate

J(u)− J(uh) ≈ F (zh)− A(uh; zh). (1.0.6)

This is described further in chapter 4 with details in specific cases described in later

chapters. References for this material can be found in the work of [22]. The general

framework for nonlinear problems was advanced by [8]. See also [28] which contains work

that we extend in this thesis. With the abstract setting given the chapter ends with the

details with one if the three cases that is considered in this thesis. In particular, in the

case of the problem described in chapter 3 there is detail relating to dual problems in that

we give details of A′(·; ·, ·) and J ′(·; ·) for various QoI. In the dual problem set-up we get

the estimate

J(u)− J(uh) ≈ −A(uh; zh) ∀zh ∈ V̂h (1.0.7)

and we then investigate if this helps in which elements to refine in an adaptive refinement

procedure. Most of the results in such tests are given in chapter 5.

In chapter 6, we give the description of the simplified nonlinear pressure model in the

case of a hyperelastic axisymmetric circular disk. By using cylindrical polars, we describe

the membrane model which is now reduced to one dimension and where the unknowns

depend only on the radial dimension. We first consider the quasi-static case where, per-

– 4 –



1. INTRODUCTION

haps not too surprisingly, it is comparatively easy to get high accuracy compared with

the other cases presented in the thesis. Extending to the dynamic case is more involved

as we have a description which has an expression for A(·; ·) which involves integrating in

both space and time and the finite element scheme gives us an approximation uh and vh

to respectively the displacement u and the velocity v. In the scheme the velocity vh and

time derivative of uh only match in a weak sense. The detail in chapter 6 is in giving the

expressions involved so that the exact solution can be described as follows.

Find

(
u

v

)
∈ V such that

A

((
u

v

)
;

(
ψ

θ

))
= F

((
ψ

θ

))
(1.0.8)

where A(·; ·) is a semilinear form on the Hilbert space V and F (·) is a linear functional

on V . It is described in this way with the “test vector” in this context given in two parts

in the expressions and we describe these as ψ and θ.

Next in chapter 7 we move to the goal-oriented technique which involves dual problems

associated with the problems described in chapter 6 and in particular the detail involves

the expression for the term A′(·; ·, ·). As we show we get a problem which is backward

in time. Much of the chapter is concerned with the details that this involves. In [28] the

dependence of uh(r, t) and vh(r, t) on time t is a degree 1 polynomial in t on an interval

tj−1 ≤ t ≤ tj and we describe this case here and we can also do this in the corresponding

dual problem. However, for the QoI considered much of the error is due to the time

discretization and a very large number of time steps are needed which makes it quite

expensive to get high accuracy. To improve the situation a higher order in time scheme

is described for the approximations uh and vh and also for the unknowns in the related

dual problem. Most of the results of these studies are given in chapter 8. An outcome of

the work is that we can get high accuracy and the estimate of the error via the solution

of a dual problem is a good estimate when the approximations to u and v are sufficiently

good although the entire computation can be quite expensive.

– 5 –



2. BACKGROUND FINITE ELEMENT MATERIAL

2.1 Introduction

This chapter contains a collection of topics related to the finite element method which

are needed later in the thesis. A reader already familiar with the topics should be able

to skip all or much of the material and just refer back to specific things when the finite

element method is being described for the three different cases of the membrane inflation

problem considered in later chapters.

We start the detail with the idea of describing a problem in a weak form which is

needed throughout the thesis and with the Galerkin method which is used to get an

approximate solution. This is first done in an abstract way and then specific detail is

given for one-dimensional and two-dimensional problems considered later.

In the preliminaries for the one-dimensional problems much of the detail is about the

basis functions with details about Legendre polynomials which are used to describe basis

functions in both space and time at various places in the thesis.

There is more preliminary material related to the two dimensional case with specific

detail involving Poisson’s problem and piecewise linears and piecewise quadratics on a

triangular mesh. Piecewise linears and quadratics are both used when we later approxi-

mately solve the membrane inflation problems. We include known a-priori error estimates

in order to describe how fast a sequence of finite element solutions converge to the exact

solution using various norms as a mesh is refined. To improve a given approximation

we refine the mesh and to do this in an efficient way we need appropriate a-posteriori

error indicators to drive an adaptive refinement technique. A-posteriori error estimation

in terms of a norm of the error in the primary unknown is not exactly the topic of this

thesis but it is close to the goal orientated techniques that we consider in later chapters.

Hence the detail of such techniques is kept brief. Given any estimates of how the error

in something varies throughout a domain we need to cope with the detail of generating

– 6 –



2. BACKGROUND FINITE ELEMENT MATERIAL

a finer mesh from the coarser mesh and towards of the chapter we describe how this can

be done and present some numerical results for a model problem to show how this works

in practice.

2.2 Weak Formulation

2.2.1 General case of the weak form

First we give the general case of the weak form of a linear elliptic differential equation,

given by a bilinear form a(·, ·) in a Hilbert space V .

Let Ω ⊂ R
n for n = 1, 2 be a simply connected open set and let V be the Hilbert

space of real valued functions defined on Ω.

Let f : Ω → R be a sufficiently continuously differentiable function such that we can

consider the following differentiable equation

Lu = f in Ω, (2.2.1)

with L being a linear elliptic differentiable operator. To able to uniquely solve we also

have boundary conditions on u on the boundary ∂Ω of Ω.

Now, by multiplying the equation (2.2.1) with a suitable smooth test function v and

integrating over the domain we end up with the exact solution u being a solution of the

following weak form in the case of Dirichlet boundary conditions:

Find u ∈ V such that

a(u, v) = (f, v) v ∈ V, (2.2.2)

where a(·, ·) represents the bilinear form which depends on L, (·, ·) represents an inner

product and V being the Hilbert space. The Hilbert space has a weaker continuity re-

quirements than is required in (2.2.1). We can also use this technique when we have a mix

of boundary conditions with Dirichlet conditions on part of ∂Ω and Neumann boundary

conditions on the rest of ∂Ω with a typical problem described in the form of finding u

satisfying the following conditions. We let ∂Ω = ∂ΩD ∪ ∂ΩN being the boundary of our

domain Ω, with ∂ΩD being the Dirichlet boundary part and ∂ΩN being the Neumann
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boundary part. Then our problem becomes

Lu = f in Ω, (2.2.3)

u = φ on ∂ΩD ,
∂u

∂n
= g on ∂ΩN , (2.2.4)

with φ, g being suitable given functions. Now our extended weak form of the differential

problem becomes as follows.

Find u ∈ V such that

a(u, v) = (f, v)+ < g, v > v ∈ V, (2.2.5)

where < ·, · > represents an inner product on the boundary with the precise details

depending on the form of the operator L.

2.2.2 Abstract variational problems

We start by defining some terms with a general function space V and to be precise

about the function spaces we take the following for one-dimensional problems with (·, ·)
denoting an inner product and with ‖·‖ denoting the induced norm, i.e. ‖v‖ = (v, v)1/2.

An inequality that fairly quickly follows when we use this norm is the Cauchy-Schwartz

inequality, see e.g. [27, p.77]:

|(u, v)| ≤ ‖u‖ ‖v‖ ∀u, v ∈ V. (2.2.6)

Definition 1: The spaces L2(0, 1) and H1(0, 1)

The spaces L2(0, 1) and H
1(0, 1) are inner product spaces with inner products and norms

as follows:

Space Inner product Norm

L2(0, 1) (u, v) =

∫ 1

0

uvdx ‖v‖ =

(∫ 1

0

v2dx

) 1

2

<∞

H1(0, 1) (u, v) =

∫ 1

0

uv + u′v′dx ‖v‖ =

(∫ 1

0

v2 + v′
2
dx

) 1

2

<∞

Definition 2: Bilinear Form

We say a : V × V → R if

a(u, sv + tw) = sa(u, v) + ta(u, w), a(su+ tv, w) = sa(u, w) + ta(v, w)
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for all s, t ∈ R and for all u, v, w ∈ V .

A bilinear form a(·, ·) in V × V is called symmetric if:

a(u, v) = a(v, u) ∀u, v ∈ V (2.2.7)

The bilinear form is bounded if there is a constant M such that

a(u, v) ≤M ‖u‖ ‖v‖ ∀u, v ∈ V (2.2.8)

The bilinear form is coercive if there exists a constant c > 0 such that

a(v, v) ≥ c ‖v‖2 for all v ∈ V (2.2.9)

Remark

These spaces are examples of Hilbert spaces (V, ‖.‖). The finite element functions

that we consider in one-dimensions when the region is [0, 1] are continuous with the first

derivative being piecewise continuous and are such that they are in H1(0, 1). In the

context of expressing a problem in a weak form the following theorem is important.

Theorem: Lax-Milgram

Let V be a Hilbert Space. We consider a : V × V → R be a bounded bilinear form which

is coercive. Then for every bounded linear form F : V → R the weak problem:

Find u ∈ V

a(u, v) = F (v) ∀v ∈ V (2.2.10)

has a unique solution.

Proof and details can be found in [11].

When the bilinear form a(·, ·) is symmetric and positive definite on the Hilbert space V ,

i.e.

a(v, v) > 0, ∀v ∈ V with v 6= 0, (2.2.11)

it defines an inner product on the space V known as the energy inner product. There-

fore, we can define a norm associated with this inner product by:

|||v||| := a(v, v)
1

2 (2.2.12)

which is known as the energy norm.

– 9 –



2. BACKGROUND FINITE ELEMENT MATERIAL

2.3 Galerkin Method

The Galerkin method is a mathematical method used to obtain an approximate solution

of the exact solution of partial differential equations. It uses a discretization process by

which a mathematical problem is defined that can be solved on digital computers. In

principle, it is the equivalent of applying the method of variation of parameters to a

function space, by converting the equation to weak form. Typically, the f.e.m is based on

the Galerkin method in which a finite set of basis functions are constructed using bases

of continuous piecewise polynomial functions defined on meshes, of a finite number of

non-overlapping elements. This thesis is based on the Galerkin method, which is used

to find approximate solutions to the considered problems in two space dimensions, see

chapter 3, and the simplified case of a one space dimensional problem, see chapter 6, and

in chapter 6 we also consider a space-time problem.

2.3.1 Galerkin Orthogonality

The following remarks are based on [2], where you can find more analysis with the corre-

sponding theorems and proofs for the f.e.m and the Galerkin approximation.

Let Vh denote a finite element subspace of the Hilbert space V where the weak problem

is defined.

We consider the following weak problems: Find u ∈ V and uh ∈ V such that

a(u, v) = F (v) ∀v ∈ V (2.3.1)

a(uh, v) = F (v) ∀v ∈ Vh ⊂ V (2.3.2)

Then we subtract one equation from the other and we get:

a(u− uh, v) = 0 ∀v ∈ Vh (2.3.3)

The equation (2.3.3) is known as Galerkin orthogonality. This means that the error

u − uh in the Galerkin approximation is orthogonal to all functions in Vh in the energy

inner product. Another way of saying this is that the approximation solution uh is the

projection of the exact solution u in the energy inner product.

Galerkin orthogonality is used in many places when we are considering the error u− uh,

e.g. in the lemma below, and it will appear later in the thesis when we consider the error
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in a QoI and we consider the function spaces that can be used in our approximate dual

problems. The best approximation property of the Galerkin approximation is given next.

Lemma 2.3.1: The approximation uh ∈ Vh is the best approximation to the exact solution

u in the energy norm. Thus we have the following result:

|||u− uh||| ≤ |||u− v||| ∀v ∈ Vh. (2.3.4)

Proof

|||u− uh|||2 = a(u− uh, u− uh)

= a(u− uh, u− uh) + a(u− uh, uh − v)

= a(u− uh, u)− a(u− uh, uh) + a(u− uh, uh)− a(u− uh, v)

= a(u− uh, u− v)

≤ |||u− uh||||||u− v||| ∀v ∈ Vh

where the last step is by Cauchy Schwartz inequality.

Remark

In particular, when Vh ⊂ V is a space of piecewise polynomials defined with respect to a

finite element mesh of Ω and uI ∈ Vh denotes an interpolant of u on the mesh then the

best approximation property in the energy norm means that

|||u− uh||| ≤ |||u− uI |||. (2.3.5)

Results concerning how well polynomials interpolate functions on each element in a mesh

can be used to show that |||u− uI ||| → 0 as h → 0 as the mesh is refined and hence

|||u− uh||| → 0 as h→ 0.

2.4 Mathematical preliminaries for problems involving one variable

The previous subsection was mostly about a weak problem in general. In the case of

approximating a function u by a piecewise polynomial function U we need suitable basis

functions. We present next two possibilities for such basis functions when u = u(x)

depends on just one variable.
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2.4.1 Lagrange polynomials as basis functions

Given a set of n+1 data points (x0, y0), . . . , (xj , yj), . . . , (xn, yn) where no two xj are the

same, the Lagrange polynomial interpolation form is a linear combination

L(x) :=
n∑

j=0

yjlj(x) (2.4.1)

of Lagrange basis polynomials l0(x), . . . , ln(x) where

lj(x) :=
∏

0≤m≤n
m6=j

x− xm
xj − xm

=
(x− x0)

(xj − x0)
. . .

(x− xj−1)

(xj − xj−1)
.
(x− xj+1)

(xj − xj+1)
. . .

(x− xn)

(xj − xn)
. (2.4.2)

Each function lj(x) is a polynomial of degree n. By construction these functions have the

property

lj(xi) =




1, i = j,

0, i 6= j
(2.4.3)

and hence L(xj) = yj.

Let u ∈ Cn+1[a, b] and assume now that the distinct points x0, x1, . . . , xn are in [a, b]. Let

Ln(x) be given by:

Ln(x) =

n∑

j=0

u(xj)lj(x). (2.4.4)

From what is given above this is a polynomial of degree at most n which interpolates u(x)

at the n + 1 distinct points. It is the unique polynomial of degree at most n with this

property as if two polynomials exist with this property then the difference between then

is a polynomial of degree at most n with n + 1 distinct zeros and hence the difference is

identically zero. The error in this approximation is defined by

en(x) = u(x)− Ln(x) (2.4.5)

and the error can be expressed in the form

en(x) =
1

(k + 1)!
u(n+1)(c)

n∏

j=0

(x− xj) (2.4.6)

for some c ∈ (a, b) with c depending on x and the n + 1 points.

Proof of the above error and more details can be found in [16, p.315].

In the context of a finite element computation and with an element being [x0, xn] with
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x0 < x1 < · · · < xn the piecewise polynomial finite element basis functions can be defined

in terms of the Lagrange polynomials l0(x), . . . , ln(x) when x0 ≤ x ≤ xn. The piecewise

polynomial which corresponds to lj(x), 1 ≤ j ≤ n−1 on [x0, xn] is taken to be zero outside

of the element and is thus continuous at the join points of x0 and xn. These piecewise

polynomials are are hence only non-zero on one element. The piecewise polynomial which

corresponds to l0(x) or ln(x) on [x0, xn] is also non-zero in a neighbouring element.

2.4.2 Basis functions using Legendre Polynomials

Another way of representing the polynomial approximation on an element is to use a basis

expressed in terms of Legendre polynomials and before we give this basis we first briefly

introduce some important properties that we need about Legendre polynomials and, until

we say otherwise, the interval involved is [−1, 1].

There are a number of equivalent ways that Legendre polynomials can be defined with

common ones being as follows. The Legendre polynomial Pn(x) of degree n satisfies the

Legendre differential equation

d

dx

(
(1− x2)

d

dx
Pn(x)

)
+ n(n+ 1)Pn(x) = 0 (2.4.7)

and it is given by Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
. (2.4.8)

The polynomials are also the coefficients in the Maclaurin series

1√
1− 2xt + t2

=
∞∑

n=0

Pn(x)t
n. (2.4.9)

In the context of needing to be able to compute these polynomials the most convenient

definition is the recursive definition

P0(x) = 1, P1(x) = x and Pk+1(x) =
(2k + 1)xPk(x)− kPk−1(x)

k + 1
, k = 1, 2, . . .

(2.4.10)

An important property of the Legendre polynomials is that they are orthogonal with
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respect to the L2-norm on the interval −1 ≤ x ≤ 1, i.e.

∫ 1

−1

Pm(x)Pn(x)dx =





2
2n+ 1 , when m = n,

0, otherwise.
(2.4.11)

This property is used later in the thesis when higher order schemes in time are described

to attempt to accurately solve the inflation of hyperelastic membranes under dynamic

conditions. Another important property of Legendre polynomials is that they are odd or

even, that is

Pn(−x) = (−1)nPn(x). (2.4.12)

In addition, at the end points −1 and 1 we have

Pn(1) = 1 Pn(−1) = (−1)n. (2.4.13)

This last property is useful in setting up basis functions which vanish at the ends of an

interval as we can take as basis functions the following for an interval −1 ≤ s ≤ 1.

b0(s) =
1− s

2
, bn(s) =

1 + s

2
, (2.4.14)

bk(s) = Pk+1(s)− Pk−1(s), k = 1, 2, . . . , n− 1.

With this set-up the intermediate functions b1(s), . . . , bn−1(s) are 0 at s = ±1. In compu-

tations we typically also need to be able to evaluate the derivatives of the basis functions

and there is another property of Legendre polynomials which can be used here which is

that

b′k(s) = P ′
k+1(s)− P ′

k−1(s) = (2k + 1)Pk(s), k ≥ 1. (2.4.15)

This property of Legendre polynomials follows quite quickly by using (2.4.9) and (2.4.10)

as follows. By partially differentiating (2.4.9) with respect to x and also with respect to t

gives respectively

t(1− xt + t2)−3/2 =
∞∑

k=0

P ′
k(x)t

k, i.e. (1− xt + t2)−3/2 =
∞∑

k=0

P ′
k(x)t

k−1,

and

(x− t)(1− xt+ t2)−3/2 =
∞∑

k=0

Pk(x)kt
k−1

and combining these last two results gives

(x− t)

∞∑

k=0

P ′
k(x)t

k−1 =

∞∑

k=0

Pk(x)kt
k−1.
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Equating the coefficient of tk−1 gives

xP ′
k(x)− P ′

k−1(x) = kPk(x). (2.4.16)

Now if we differentiate the recurrence relation (2.4.10) then we also have

(k + 1)P ′
k+1(x) = (2k + 1)(xP ′

k(x) + Pk(x))− kP ′
k−1(x). (2.4.17)

By using the expression for xP ′
k(x) from (2.4.16) in (2.4.17) and simplifying

(k + 1)P ′
k+1(x) = (2k + 1)(P ′

k−1(x) + kPk(x) + Pk(x))− kP ′
k−1(x)

= (k + 1)P ′
k−1(x) + (2k + 1)(k + 1)Pk(x)

By simplifying we get

P ′
k+1(x) = P ′

k−1(x) + (2k + 1)Pk(x),

thus

P ′
k+1(x)− P ′

k−1(x) = (2k + 1)Pk(x),

which gives the result (2.4.15).

Everything above has involved the standard interval [−1, 1]. In the case of an actual

interval [x0, xn] that we had before and a mapping

x : [−1, 1] → [x0, xn], x(s) =

(
x0 + xn

2

)
+

(
xn − x0

2

)
s (2.4.18)

a polynomial of degree less than or equal to n can be expressed in the form

u(x(s)) =

n∑

k=0

ckbk(s)

with c0 = u(x0) and cn = u(xn) being the value of the function u(x) at x0 and xn

respectively. Assuming that the polynomial u(x(s)) is given is given in some way so that

we can evaluate it at the end points to obtain c0 and cn as above there is more effort to
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get the other coefficents when n ≥ 2 as we next show. From the relations above

d

ds
(u(x(s))− c0b0(s)− cnbn(s)) =

n−1∑

k=1

ckb
′
k(s) (2.4.19)

=
n−1∑

k=1

ck
(
P ′
k+1(s)− P ′

k−1(s)
)

(2.4.20)

=
n−1∑

k=1

ck(2k + 1)Pk(s). (2.4.21)

If we multiply this relation by Pj(s) and integrate over −1 ≤ s ≤ 1 and use the orthogo-

nality properties of the Legendre polynomials then we get

2cj =

∫ 1

−1

Pj(s)
d

ds
(u(x(s))− c0b0(s)− cnbn(s)) ds. (2.4.22)

2.5 Mathematical preliminaries for problems with two space dimensions

Now, we consider the case when our functions are of two space variables.

• The divergence theorem

We define Ω = Ω∪ ∂Ω where Ω ⊂ R
2, is a simply connected open bounded domain,

with a piecewise smooth boundary ∂Ω. Let a = (a1, a2)
T be a vector field with

a1 and a2 being continuously differentiable in a domain containing Ω ∪ ∂Ω and let

n = (n1, n2)
T be the unit outward normal vector to ∂Ω. Then, the divergence

theorem is defined as:

∫∫

Ω

∇ · a dxdy =

∫

∂Ω

a · n ds (2.5.1)

where

∇ · a =
∂a1
∂x

+
∂a2
∂y

and a · n = a1n1 + a2n2

and the line integral is in the positive sense.

• The Green’s Theorem

The Green’s Theorem is a particular case of the divergence theorem when we take

a = v∇u and states that

∫∫

Ω

∇u∇vdxdy =
∫

∂Ω

v
∂u

∂n
ds−

∫∫

Ω

v∆u dxdy (2.5.2)
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where u, v ∈ H1(Ω).

• Transforming a double integral

We consider here how to transform an area integral, when we map from a standard

element to a general element. In R
2 the situation involves a one-to-one and onto

mapping x : T → T̃ . We now consider the details concerning how we can change the

region of integration from T̃ in the (x, y) plane to the region T in the (s, t) plane.

In order to change the region of integration from T̃ in the (x, y) plane to the region

T in the (s, t) plane we have to transform (s, t) → (x(s, t), y(s, t)) by computing the

absolute value of the determinant of the Jacobian matrix. The Jacobian matrix is

given by

J =

(
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

)
(2.5.3)

and its determinant by

det(J) =
∂x

∂s

∂y

∂t
− ∂x

∂t

∂y

∂s
. (2.5.4)

Then, we get the transformation of a double integral by

∫∫

T̃

f(x, y)dxdy =

∫∫

T

f(x(s, t), y(s, t))| det(J)|dsdt. (2.5.5)

2.6 The Finite Elements Method in 2D

The following description of the f.e.m in 2D is used for the implementation of the general

case of the membrane model in Chapter 3, which we refer to as the non-axisymmetric

case.

2.6.1 Mesh in 2D

Let Ω denote a polygonal domain and let Ω ≡ Ω ∪ ∂Ω and we suppose that the region is

partitioned into ne triangular elements which we refer to as a triangular mesh of Ω. In

mathematical notation we have non-overlapping triangles Ω1,Ω2, . . . ,Ωne so that:

Ω =
ne⋃

1

Ωi, Ωi ∩ Ωj = ∅, i 6= j (2.6.1)

The individual triangles Ω̄1, . . . , Ω̄ne can have vertices and edges in common but they do

not overlap.
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The finite element spaces Vh are defined with respect to a mesh of the domain Ω of

the problem.

Suppose that there are m vertices x̂1, . . . , x̂m in total in the mesh and to know

which 3 vertices refer to which element we construct a matrix of size 3 × ne with col-

umn r containing the 3 numbers ir1, ir2, ir3which gives the 3 nodes associated with the rth

element. Therefore x̂ir1, x̂ir2, x̂ir3 are the 3 vertices describing the rth triangle which we

illustrate in figure 2.1. The matrix of size 3×ne gives what is known as the connectivity

information. To illustrate what this involves the mesh shown in Figure 2.2 has the ele-

ment/node connectivity information given in Table 2.6.1. The sequence of node numbers

for any element can start with any node, and it helps at many parts if we arrange for the

numbering to be such that the boundary is traversed in the counterclockwise direction

although this can always be automatically arranged to be the case in a program.

x̂ir1

x̂ir2

x̂ir3

Ωr

Fig. 2.1: The rth triangle Ωr in a mesh.

Tab. 2.6.1: Element/node table

ne ne ne
1 (1,5,6) 7 (5,9,10) 13 (9,13,14)
2 (1,6,2) 8 (5,10,6) 14 (9,14,10)
3 (2,6,7) 9 (6,10,11) 15 (10,14,15)
4 (2,7,3) 10 (6,11,7) 16 (10,15,11)
5 (3,7,8) 11 (7,11,12) 17 (11,15,16)
6 (3,8,4) 12 (7,12,8) 18 (11,16,12)

In Figure 2.2 we can see an example of a uniform mesh of a rectangle with the node

numbers and the element numbers displayed. We can see that each element number has

3 node numbers. It is also shows that each node is associated with a patch of elements.

We can see, for example, that node 6 is a node of elements 2,1,8,9,10 and 3.
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Fig. 2.2: A mesh with the nodes and elements

2.6.2 Implementation of the mesh

For the mesh implementation in Matlab, the data of the mesh is stored in two matrices

with their name and shape indicated by

• nodes(3,ne): which stores the 3 nodes of all the elements (ne).

The 3 node numbers for the rth element are given by nodes(:, r).

• coor(2,m): which stores the x and y coordinates of all the nodes of the mesh. The

constant m denotes the total number of the nodes.

The coordinates of the ith node are given by coor(:,i).

When adaptive refinement is done we later describe briefly other matrices which can be

determined from nodes(.,.) and coor(.,.) matrices which helps in the implementation of

this process.
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2.6.3 The finite element with piecewise linear functions

A surface plot of a piecewise linear basis function φ̂i(x) resembles a pyramid as we show

in figure 2.3; that is they are piecewise linear functions that are linear in each element,

satisfying:

φ̂i(x̂j) =




1, j = i,

0, j 6= i
for i, j = 1, . . . , m (2.6.2)

where x̂i are the nodes. With these functions the finite element space can be represented

as:

Vh
′ = span

{
φ̂1, . . . , φ̂m

}
. (2.6.3)

Here, we have one basis function associated with each node in the mesh when we have one

unknown parameter at each node, i.e. we can associate the function φ̂i with the unknown

at the point x̂i.

Fig. 2.3: Mesh of 4 triangles (left plot) and pyramid shape surface plot (right plot) of the
piecewise linear basis function which is 1 at the centre node and 0 at the other 4 nodes.

Remark

For the definition of weak problem, which we use in our implementations, we use the

subspace Ṽh ⊂ Vh
′ which involves the test functions that vanish on the boundary ∂Ω on

which there is a Dirichlet boundary condition. Therefore we define the following set

ID = {i : xi is on the ∂ΩD}, (2.6.4)

and note that uh(xi), i ∈ ID is known. For the other values of i, i.e. for i ∈ {1, . . . , m}/ID
the values uh(xi) are not known at the start. Then the Galerkin method approximation
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is of the form:

uh(x) =
∑

i∈{1,...,m}/ID

uh(xi)φ̂i(x) +
∑

i∈ID

uh(xi)φ̂i(x) (2.6.5)

and in the method we need to set-up equations to determine the unknown parameters.

2.6.4 The Galerkin method in 2D

As before, let Ω be a bounded domain in R
2. We assume that in the two-dimensional case

the boundary ∂Ω is a polygon, and that ∂Ω ≡ ∂ΩD ∪ ∂ΩN , with ∂ΩD ∩ ∂ΩN = ∅ where

∂ΩD and ∂ΩN represent the Dirichlet and Neumann boundary condition respectively.

We define the subspace Ṽh ⊂ V ′
h as follows:

Ṽh = {v(x, y) ∈ V ′
h : v(x, y) = 0 ∀(x, y) ∈ ∂ΩD}. (2.6.6)

Then, we consider the Poisson’s equation

−∆u = −∇2u = −
(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y) ∀(x, y) ∈ Ω ⊂ R

2, (2.6.7)

u(x, y) = ϕ(x, y) ∀(x, y) ∈ ∂ΩD ,
∂u

∂n
(x, y) = g(x, y) ∀(x, y) ∈ ∂ΩN . (2.6.8)

where f, g1, g2 are given functions.

Now, we compute the variational form of this problem. By multiplying the equation (2.6.7)

with a test function v, integrate over the region and then applying Green’s Theorem (2.5.2)

we have

∫∫

Ω

fvdxdy =

∫∫

Ω

−v∆udxdy =

∫∫

Ω

∇u∇vdxdy −
∫

∂Ω

v
∂u

∂n
ds (2.6.9)

where v ∈ Ṽh.

Since v(x, y) = 0 ∀(x, y) ∈ ∂ΩD , we have

∫∫

Ω

∇u∇vdxdy =
∫∫

Ω

fvdxdy +

∫

∂ΩN

vgds. (2.6.10)

The weak problem in two-dimensions, has the following form:

Find ũh ∈ Ṽh such that

a(ũh, v) = (f, v)+ < g, v > ∀v ∈ Ṽh. (2.6.11)
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The Galerkin method approximation is of the form

ũh =

m∑

i=1

ũh(xi)φ̂i. (2.6.12)

The values at the nodes on the boundary ∂ΩD are known and we need equations to

determine the other values and these are given by

a(ũh, φ̂i) = (f, φ̂i)+ < g, φ̂i >, i = {1, . . . , m}/ID. (2.6.13)

If we substitute the expression for ũh in (2.6.12) into (2.6.13) then for i = {1, . . . , m}/ID
we get that the unknown nodal parameters satisfy

∑

j∈{1,...,m}/ID

a(φ̂j , φ̂i)ũh(xj) = (f, φ̂i)+ < g, φ̂i > −
∑

j∈ID

a(φ̂j, φ̂i)ũh(xj)

For the two-dimensional problems we need to do some extra computations, compared

with one-dimensional problems. This happens because in this case we have to compute

a(φ̂i, φ̂j) and (f, φ̂i) for several elements instead of just 1 or 2 neighbouring elements as

in the one-dimensional case. These computations are always organised in an element-by-

element way as follows:

We define

a(u, v)r =

∫∫

Ωr

∇u · ∇v dxdy (2.6.14)

(f, v)r =

∫∫

Ωr

fv dxdy and < g, v >r=

∫

ΩNr

gv ds (2.6.15)

for all r = 1, . . . , ne. Then we compute the sum of these elements contributions in order

to compute a(u, v),(f, v) and < g, v >. Thus we get

a(u, v) =
ne∑

r=1

a(u, v)r, (f, v) =
ne∑

r=1

(f, v)r and < g, v >=
ne∑

r=1

< g, v >r . (2.6.16)

The element-by-element way of organizing things is to do all the calculations for each

Ωr and then put them all together according to Equation(2.6.16). The calculations to

consider on element Ωr involve all the basis functions which are non-zero on Ωr. For this

case, the corresponding situation involves a one-to-one and onto mapping x : T → Ωr,

where T is the standard element in (s, t) plane and Ωr the general element in (x, y) plane.

Each point (s, t) is associated with a unique point x(s, t). The related basis functions
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φ̃i(x) defined on Ωr have the following form:

φ̃i(x(s, t)) = φi(s, t) i = 1, . . . , me. (2.6.17)

whereme is the number of basis functions associated with element Ωr and where φ1, . . . , φme

are the basis functions defined on T . In the case of linear triangles me=3 and we later

consider 6-noded triangles when me=6.

2.6.5 Affine transformation

In this section we define the mapping x : T → Ωr, which is needed in order to compute

the element matrix Kr and the element vector br. Let T denote the right angled triangle

which has vertices (0, 0), (1, 0), (0, 1) which we also refer to as s1, s2 and s3 respectively

when that is convenient. Linear basis functions satisfying the Lagrange interpolation

condition defined on this standard triangle are given by:

φ1(s, t) = 1− s− t, φ2(s, t) = s, φ3(s, t) = t. (2.6.18)

Let uh1 = uh(x1), uh2 = uh(x2), and uh3 = uh(x3). Then we have

x(s, t) = x1φ1(s, t) + x2φ2(s, t) + x3φ3(s, t) (2.6.19)

= x1 + (x2 − x1)s + (x3 − x1)t, (2.6.20)

uh(x(s, t)) = uh1φ1(s, t) + uh2φ2(s, t) + uh3φ3(s, t) (2.6.21)

= uh1 + (uh2 − uh1)s+ (uh3 − uh1)t. (2.6.22)

We can observe that si → xi, i = 1, 2, 3, which means that the sides of T map to the sides

of Ωr and the interior of ∂T maps to the interior of ∂Ωr. This mapping form is known

as an affine transformation , that is a combination of a linear transformation followed

by a translation. Now, we define the global functions φ̃i, i = 1, 2, 3 on the global triangle

Ωr by the relation

φ̃i(x(s, t)) = φi(s, t), i = 1, 2, 3 (2.6.23)

where φi denote the basis functions on the standard triangle T .

The element matrix
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The element matrix (also commonly known as the element stiffness matrix) has the form:

Kr =




a(φ̃1, φ̃1)r a(φ̃1, φ̃2)r a(φ̃1, φ̃3)r

a(φ̃2, φ̃1)r a(φ̃2, φ̃2)r a(φ̃2, φ̃3)r

a(φ̃3, φ̃1)r a(φ̃3, φ̃2)r a(φ̃3, φ̃3)r


 (2.6.24)

In order to compute the element matrix, we need to find the integrals

a(φ̃i, φ̃j)r =

∫∫

Ωr

(
∂φ̃i
∂x

∂φ̃j
∂x

+
∂φ̃i
∂y

∂φ̃j
∂y

)
dxdy, i, j = 1, 2, 3. (2.6.25)

We let

B =




∂φ̃1
∂x

∂φ̃2
∂x

∂φ̃3
∂x

∂φ̃1
∂y

∂φ̃2
∂y

∂φ̃3
∂y


 (2.6.26)

which is constant on Ωr, since we have linear basis functions (Equation(2.6.18)).

Then we can describe the element matrix by

Kr = (area of Ωr)B
TB. (2.6.27)

Now we need to change the region of integration from the global element Ωr in the (x, y)

plane to the standard element T in the (s, t) plane. Therefore we have to transform

(s, t) → (x(s, t), y(s, t)) by computing the Jacobian matrix. Thus we have

J =

(
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

)
=

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
(2.6.28)

where (x1, y1), (x2, y2), (x3, y3) are the vertices of the global triangle Ωr.

The magnitude | det(J)| of the determinant of J gives the ratio of an area increment in

Ωr to the corresponding increment in T and since J is constant on T and the area of T

is 1/2 we get that:

(area of Ωr) =
| det(J)|

2
(2.6.29)

Now, for the relation between the derivatives from the standard element to the actual

element, by using the chain rule we get:

B =




∂φ̃1
∂x

∂φ̃2
∂x

∂φ̃3
∂x

∂φ̃1
∂y

∂φ̃2
∂y

∂φ̃3
∂y


 = J−T




∂φ1
∂s

∂φ2
∂s

∂φ3
∂s

∂φ1
∂t

∂φ2
∂t

∂φ3
∂t


 = J−T

(
−1 1 0

−1 0 1

)
(2.6.30)
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Therefore, the element matrix Kr has the form

Kr =
| det(J)|

2
BTB =

| det(J)|
2




−1 −1

1 0

0 1


 J−1J−T

(
−1 1 0

−1 0 1

)
. (2.6.31)

The element vector

The element vector (also commonly known as the load vector) has the form

br =




(f, φ̃1)r

(f, φ̃2)r

(f, φ̃3)r


 . (2.6.32)

Therefore we have to compute the following integrals in the global region Ωr:

(f, φ̃i)r =

∫∫

Ωr

fφ̃i dxdy, i = 1, 2, 3. (2.6.33)

In order to do these computations we first have to map from the region of integrations Ωr

to the standard triangle T and then use a quadrature rule to get an approximate solution.

Thus we have

br =

∫∫

T

f(x(s, t))




φ1(s, t)

φ2(s, t)

φ3(s, t)


 | det(J)| dsdt (2.6.34)

= | det(J)|
∫ t=1

t=0

∫ s=1−t

s=0

f(x(s, t))




1− s− t

s

t


 dsdt (2.6.35)

≈ | det(J)|
nq∑

k=1

wkf(x(sk, tk))




1− sk − tk

sk

tk


 (2.6.36)

where (sk, tk) ∈ T, k = 1, . . . , nq are the quadrature points and w1, . . . , wnq are the weights.

See Table 2.6.2 for the 1,3 and 7 point quadrature rules.

Tab. 2.6.2: Quadrature points and weights for integrating in 2D
nq Points Weights
1 (1/3,1/3) 1/2
3 (1/2,0),(1/2,1/2),(0,1/2) 1/6,1/6,1/6
7 (0,0),(0.5,0),(1,0),(0.5,0.5), 1/40, 1/15, 1/40, 1/15,

(0,1),(0,0.5),(1/3,1/3) 1/40, 1/15, 9/40
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Neumann boundary condition

For the Neumann boundary condition, from the Equation (2.6.10), we have to compute

the integrals ∫

∂ΩN

vg ds (2.6.37)

for each of the basis functions v which are connected with an element which has an edge

on ∂ΩN .

Suppose i1, i2 are the node numbers of an edge of a triangle which is on ∂ΩN . To ease

the description suppose that all the nodes on the triangle are i1, i2, i3 (in this order) in

the anti-clockwise direction. In terms of the local basis functions, the edge corresponds

to t = 0 for 0 < s < 1, therefore we have

φ1(s, 0) = 1− s, φ2(s, 0) = s, φ3(s, 0) = 0. (2.6.38)

The contribution from this edge is given by

bi1,i2 =

∫ 1

0

g(x(s, 0))

(
φ1(s, 0)

φ2(s, 0)

) ∣∣∣∣
∂x(s, 0)

∂s

∣∣∣∣ ds (2.6.39)

=
∣∣xi2 − xi1

∣∣
∫ 1

0

g(x(s, 0))

(
1− s

s

)
ds. (2.6.40)

To approximate these integrals using Gauss Legendre quadrature we transform the interval

0 ≤ s ≤ 1 to the standard interval −1 ≤ t ≤ 1 for Gauss Legendre quadrature with

s(t) = (1 + t)/2 and this gives

bi1,i2 =
∣∣xi2 − xi1

∣∣
∫ 1

−1

g(x(s(t), 0))

(
φ1(s(t), 0)

φ2(s(t), 0)

)
dt (2.6.41)

≈
∣∣xi2 − xi1

∣∣
2

nq∑

k=1

wkg(x(sk, 0))

(
1− sk

sk

)
(2.6.42)

where sk = s(tk), and where tk, k = 1, . . . , nq are the Gauss Legendre quadrature points

and w1, . . . , wnq are the weights. For this case we used Gauss Legendre quadrature points

and weights as given in Table 2.6.3. We note here that the above approximation in one

space dimension by using Gauss Legendre quadrature in 1D is also used for the simplest

axisymmetric membrane case which is described in Chapter 6.
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Tab. 2.6.3: Quadrature points and weights for integrating in 1D

nq Points Weights

2 (1/
√
3),(-1/

√
3) 1,1

3 (-
√
0.6),(0),(

√
0.6) 5/9,8/9,5/9

4 ((−
√

525 + 70
√
30)/35), ((−

√
525− 70

√
3)/35), (18−

√
30)/36, (18 +

√
30)/36,

((
√
525− 70

√
30)/35), ((

√
525 + 70

√
30)/35) (18 +

√
30)/36, (18−

√
30)/36

5 0 128
225

± 1
21

√
245− 14

√
70 1

900
(322 + 13

√
70 )

± 1
21

√
245 + 14

√
70 1

900
(322− 13

√
70 )

2.6.6 Assembling and solving the system

Global matrix K̂

In order to compute the global stiffness matrix K̂ of size m ×m we have to sum up all

the element matrices Kr for all r = 1, . . . , ne in an appropriate way. This process is called

the assembly of K̂.

Algorithm 1

K̂ =zero matrix of size m×m.

For r = 1, . . . , ne

q = nodes(:, r), the 3 node numbers of element r in matlab syntax

Compute the 3× 3 element matrix Kr.

Replace K̂(q, q) by K̂(q, q) +Kr.

End for loop

Remark

The global stiffness matrix K̂ is a sparse matrix with the non-zero entries depending on

how the nodes have been numbered and in an efficient implementation the matrix is stored

in a sparse way. The entries on row i are all connected with the function φ̂i and this is

non-zero only on the elements which have i as one of the nodes. It is the collection of all

the nodes on all of these elements which gives the possible non-zero entries on row i of

the K̂ matrix.

Global vector b̂
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Similar to the global matrix K̂, in order to get the global load vector b̂ we have to sum up

all the element vectors br; for r = 1, . . . , ne in appropriate way. The assembling algorithm

for the b̂ vector is the following

Algorithm 2

b̂ =zero column vector of length m.

For r = 1, · · · , ne

q = nodes(:, r), the 3 node numbers of element r

Find the nodes that are on the boundary,

by identifying by those that are on the Dirichlet or Neumann condition.

Compute the 3× 1 element vector br.

Compute the 3× 1 element vector bNr

for the Neumann boundary condition, if there is an edge on ∂ΩN .

Replace b̂(q) by b̂(q) + br + bNr
.

End for loop

Finally, in order to get the finite elements solution we have to solve the system K̂c = b̂

for the coefficients c of the finite element function uh and in matlab syntax we have:

c = K̂\b̂ (2.6.43)

2.6.7 The finite element method with piecewise quadratic functions

Later in this thesis we also use quadratic defined on triangles and in this case there are

6 nodes and 6 basis functions on each triangle. To describe these let Ωr denote an actual

element with vertices x1, x2 and x3 and let, as before,

x(s, t) = x1 + (x2 − x1)s+ (x3 − x1)t

be a mapping from the standard triangle to Ωr. The 3 additional nodes are mid-side

points and are given by

x4 =
x2 + x3

2
, x5 =

x3 + x1
2

and x6 =
x1 + x2

2
.
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With respect to the standard triangle the mid-side points are the images of (0.5, 0.5),

(0, 0.5) and (0.5, 0) with the standard triangles case shown below.

s

t

1 2

3

45

6

(0, 0) (0.5, 0) (1, 0)

(0, 0.5)

(0, 1)

(0.5, 0.5)

Using the standard triangle the 6 basis functions are given below.

φ1(x(s, t)) = (1− s− t)(1− 2s− 2t). (2.6.44)

φ2(x(s, t)) = s(2s− 1), (2.6.45)

φ3(x(s, t)) = t(2t− 1), (2.6.46)

φ4(x(s, t)) = 4st, (2.6.47)

φ5(x(s, t)) = 4t(1− s− t), (2.6.48)

φ6(x(s, t)) = 4s(1− s− t). (2.6.49)

The main difference in an implementation when quadratics are used is that the con-

nectivity matrix is of size 6 × ne with the element matrices being of size 6 × 6 and the

element vector is of size 6× 1.

2.7 A-Priori error Estimates for the Finite Element Method

In this section we present a few of the known error estimates for the finite element method

and in all cases the term “error” usually means some norm of the error function e given
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by

e := u− uh (2.7.1)

where, as defined earlier, u is the exact solution and uh is the finite element approximation.

There are two types of error estimates which are a priori and a posteriori estimates.

The a priori estimates is based on analytical knowledge of the solution of the boundary

value problem. The goal of these estimates is to give us a reasonable measure of the

efficiency of a given method by telling us how fast the error decreases as we decrease

the mesh size. In contrast, a posteriori estimates requires no a priori knowledge of the

solution and is able to estimate the elemental errors in the mesh based on the finite

element solution uh. These estimates give us a much better idea of the actual error in a

given finite element computation than do a priori estimates. Also, such estimates can be

used to control adaptive mesh refinement. In adaptive mesh refinement, a posteriori

error estimators are used to indicate where the error is particularly high, and more mesh

intervals are then placed in those locations. A new finite element solution is computed,

and the process is repeated until a satisfactory error tolerance is reached.

As this thesis is about estimating the error and improving the accuracy in approxima-

tions to functionals of u instead of to u itself we limit the detail to stating a few known

results which influence how things are computed later and which help to justify the tech-

niques that are done. A’priori estimates are discussed in this section and a posteriori

error estimators are briefly mentioned in the next section where the emphasis at that

stage is in describing the detail in constructing the adaptively refined mesh.

Many parts of the following are described in more detail in the book by Claes John-

son [15, Chapter 4].

By Lemma 2.3.1 uh is the best approximation to u in the energy norm from the finite

element space Vh of piecewise linear polynomials defined on a triangular mesh of Ω, i.e.

|||u− uh||| < |||u− v||| ∀v ∈ Vh. (2.7.2)

Let v = πhu ∈ Vh be the nodal interpolant of u using the nodes in the triangular mesh.

By estimating the interpolation error |||u− πhu||| we obtain a bound on the true error

|||u− uh|||.

Let πv denote the degree 1 polynomial interpolant to v on a triangle with the inter-

polation being at the nodal points.
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To bound the energy norm of v − πv on each element we need to consider both

v(x) − (πv)(x) and ∇v(x) − ∇(πv)(x) on each triangle and the bounds depend on the

size of the triangle and also on the angles of the triangle when the gradient is considered.

For the size of the bounds to be small when the triangle is small we need to ensure that

the mesh is such that no triangle Ωr is arbitrarily thin which means that no angles can

be allowed to be arbitrarily close to 0 or 180◦. For the bounds we need the following

quantities for Ωr.

hr = the length of the longest side of Ωr, (2.7.3)

ρr = the diameter of the largest circle which can be put in Ωr. (2.7.4)

Both hr and ρr are illustrated in Figure 2.4.

x̂ir1

x̂ir2

x̂ir3hr

ρr
Ωr

Fig. 2.4: Quantities for Ωr

When the gradient is considered we need the meshes to be such that there exists a

positive constant β, which is independent of h and which is such that

ρr
hr

≥ β for all triangles in the mesh. (2.7.5)

Meshes which satisfy this property are said to be quasi-uniform.

To obtain the bounds for a function v ∈ C2(Ωr) we need suitable representations for

v − πv and ∇v − ∇(πv) and the details are a bit longer than in the much simpler one-

dimensional case and are given in [15, Chapter 4]. Here we just state the results with

comments added in some cases.

To avoid awkward notation involving double subscripts we let aj = xij , j = 1, 2, 3 when

we consider the triangle Ωr. A point (s, t) in the standard triangle gives the following
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point x(s, t) ∈ Ωr.

x(s, t) = a1(1− s− t) + a2s+ a3t = a1φ̃1(x) + a2φ̃2(x) + a3φ̃3(x). (2.7.6)

Also, recall that the 3 basis functions on Ωr can be expressed in the form

φ̃1(x(s, t)) = 1− s− t, (2.7.7)

φ̃2(x(s, t)) = s, (2.7.8)

φ̃3(x(s, t)) = t (2.7.9)

and note in particular that for x ∈ Ωr we have 0 ≤ φ̃j(x) ≤ 1.

In the interpolation error results we need the following.

Lemma 2.7.1: Let φ̃1, φ̃2 and φ̃3 be as defined in (2.7.7)–(2.7.9) and let ρr be as defined

in (2.7.4).

1.

φ̃1 + φ̃2 + φ̃3 = 1. (2.7.10)

2.

∇(φ̃1 + φ̃2 + φ̃3) = 0. (2.7.11)

3. For i = 1, 2, 3 and j = 1, 2 we have

∣∣∣∣∣
∂φ̃i
∂xj

∣∣∣∣∣ ≤
1

ρr
. (2.7.12)

The first two results follow immediately from the definition of the 3 basis functions.

To prove (2.7.12) you first need to note that all the first partial derivatives are constant

on the triangle and if we take two points p and q in Ωr then the ratio |φ̃i(p)− φ̃i(q)|/|p−q|
is the same for any other two points on the same line. As we can take two points on the

line to be at least a distance ρr part and as |φ̃i(p)− φ̃i(q)| ≤ 1 the bound follows.

The following two theorems, which use the previous lemma in their proofs, can alse

be found in the same reference as the lemma and in particular see [15, p.85].

Theorem 2.7.1: Let Ωr be a triangle with vertices a1, a2 and a3 in a quasi-uniform mesh

with hr and ρr defined in (2.7.3) and (2.7.4) respectively. Let v ∈ C2(Ωr) and let πv ∈
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span
{
φ̃1, φ̃2, φ̃3

}
denote the interpolant to v with a1, a2 and a3 being the interpolation

points. We have the following.

|v(x)− πv(x)| ≤ 2h2r max

{∣∣∣∣
∂2v

∂xi∂xj

∣∣∣∣ : 1 ≤ i, j,≤ 2

}
, (2.7.13)

∣∣∣∣
∂v

∂xk
(x)− ∂πv

∂xk
(x)

∣∣∣∣ ≤ 6

(
h2r
ρr

)
max

{∣∣∣∣
∂2v

∂xi∂xj

∣∣∣∣ : 1 ≤ i, j,≤ 2

}
(2.7.14)

for k = 1, 2.

The theorem thus says that the pointwise error in the interpolant is O(h2r) and the point-

wise error in the gradient is O(hr) provided the triangle is such that (2.7.5) holds.

Theorem 2.7.2: Under the assumptions of Theorem 2.7.1 there is an absolute constant C

such that

‖v − πv‖L2(Ωr) ≤ Ch2r|v|H2(Ωr), (2.7.15)

‖∇v −∇πv‖L2(Ωr) ≤ C
h2r
ρr

|v|H2(Ωr), (2.7.16)

|v − πv|H1(Ωr) ≤ C
h2r
ρr

|v|H2(Ωr). (2.7.17)

Note: |.|Hr(Ω) denotes a seminorm, since we may have |v|Hr(Ω) = 0 even if v 6= 0.

These two Theorems 2.7.1 and 2.7.2 have exactly the same structure, the only differ-

ence being the norm involved, either L∞ or the L2-norm. Now, we are going to apply

Theorem 2.7.2 to get the interpolation error estimates on the entire domain Ω in the case

of ‖u− πhu‖L2(Ω), ‖∇u−∇πhu‖L2(Ω) and |u− πhu|H1(Ω).

By summing the estimates above over all the triangles Ωr ∈ T for each case we get the

following:

• for ‖u− πhu‖L2(Ω):

‖u− πhu‖2L2(Ω) =
∑

Ωr∈ T

‖u− πhu‖2L2(Ωr) ≤
∑

Ωr∈ T

C2h4r|u|2H2(Ωr)
(2.7.18)

≤ C2h4
∑

Ωr∈ T

|u|2H2(Ωr)
= C2h4|u|2H2(Ω). (2.7.19)

Therefore we get

‖u− πhu‖L2(Ω) ≤ Ch2|u|H2(Ω) (2.7.20)
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• for ‖∇u−∇πhu‖L2(Ω):

Similarly by using hr
ρr

≤ 1
β
, by (2.7.5) we get

‖∇u−∇πhu‖2L2(Ω) ≤
∑

Ωr∈ T

C2h
4
r

ρ2r
|u|2H2(Ωr) ≤

∑

Ωr∈ T

C2h2r
β2

|u|2H2(Ωr) (2.7.21)

≤ C2h2

β2
|u|2H2(Ω) (2.7.22)

so that

‖∇u−∇πhu‖L2(Ω) ≤
Ch

β
|u|H2(Ω). (2.7.23)

The bound is of the form

Ch|u|H2(Ω)

if the constant C is redefined to include β.

• for |u− πhu|H1(Ω):

Similarly to the previous case we have:

|u− πhu|2H1(Ω) ≤
∑

Ωr∈ T

C2h
4
r

ρ2r
|u|2H2(Ωr)

≤
∑

Ωr∈ T

C2h2r
β2

|u|2H2(Ωr
(2.7.24)

≤ C2h2

β2
|u|2H2(Ω) (2.7.25)

therefore

|u− πhu|H1(Ω) ≤
Ch

β
|u|H2(Ω). (2.7.26)

The bound is of the form

Ch|u|H2(Ω),

if the constant C is redefined to include β.

Remarks

(i) We can observe from the results above, that all bounds of global interpolation errors

depend on the second partial derivatives of the exact solution u, on the constant C

and on the mesh size h.

(ii) In principle a bound on C can be determined but |u|H2(Ωk) is not known and here we

cannot compute the quantities in (2.7.20), (2.7.23) or (2.7.26) to drive a refinement

procedure.
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2.8 A-posteriori error indicators and adaptive mesh refinement

There are many a-posteriori error indicators described in the book by Ainsworth and

Oden [1] and in the book by Babuška, Whiteman and Strouboulis [5]. For the purpose

of this section we just describe how to compute one of these which is due to Bank and

Weiser [7] which gives us quantities to drive an adaptive refinement procedure which we

describe. We need a problem to consider which we take here as the following Poisson

problem.

Let Ω be a polygonal domain with boundary ∂Ω and assume that the set-up is such

that there is a unique solution u of the Poisson problem given in (2.6.7)-(2.6.8) which we

repeat here in slightly abbreviated form as

−∆u = f in Ω, (2.8.1)

u = φ on ∂ΩD,
∂u

∂n
= g on ∂ΩN , (2.8.2)

where ∂Ω = ∂ΩD ∪ ∂ΩN is a partition of ∂Ω and where f , φ and g are suitable given

functions.

2.8.1 Computing one of the Bank Weiser error indicators

There are several error indicators described in [7] and we just consider one of these here.

Roughly, the indicators are derived in order to attempt to solve for the error or more

precisely with quantities which are consistent with the error. To describe the estimator

that we compute we need the following function spaces for functions defined on a triangle

Ωr.

V̄Ωr
= {v : v is a degree≤ 2 polynomial on Ωr} , (2.8.3)

V̆Ωr
=

{
v ∈ V̄Ωr

: v = 0 at the 3 nodes of Ωr
}
. (2.8.4)

On the triangle Ωr we have a basis for V̆Ωr
by using 3 of the basis functions given in

section 2.6.7, i.e.

V̆Ωr
= span {φ4, φ5, φ6} .

Let uh denote the piecewise linear finite element solution of (2.8.1)-(2.8.2), as before, let

e = u− uh denote the error. One of the quantities that we need to compute for functions
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v ∈ V̆Ωr
is the following

Fr(v) :=

∫∫

Ωr

fv dx1dx2 +

∫

∂Ωr∩∂ΩN

v

(
g − ∂uh

∂n

)
ds+

1

2

∫

∂Ωr/∂Ω

v

[
∂uh
∂n

]

J

ds (2.8.5)

where [
∂uh
∂n

]

J

:=
(
∇uh|Ωr′

−∇uh|Ωr

)
· nr (2.8.6)

is the jump in the normal derivative of uh across an edge in the mesh. (In this description

Ωr′ denotes the triangle on the other side of an edge to Ωr.) Also for functions ĕ and v in

V̆Ωr
let

a(ĕ, v)r =

∫∫

Ωr

∇ĕ · ∇v dx1dx2. (2.8.7)

The Bank Weiser estimator that we compute is defined as the function ĕ ∈ V̆Ωr
such that

a(ĕ, v)r = Fr(v) ∀v ∈ V̆Ωr
. (2.8.8)

With the basis that we have for V̆Ωr
we have

ĕ = c4φ4 + c5φ5 + c6φ6 (2.8.9)

where c4, c5 and c6 satisfy the equations

K̆



c4

c5

c6


 =



Fr(φ4)

Fr(φ5)

Fr(φ6)


 , where K̆ =



a(φ4, φ4)r a(φ4, φ5)r a(φ4, φ6)r

a(φ5, φ4)r a(φ5, φ5)r a(φ5, φ6)r

a(φ6, φ4)r a(φ6, φ5)r a(φ6, φ6)r


 . (2.8.10)

Once we have c = (c4, c5, c6)
T we compute

a(ĕ, ĕ)r = cT K̆c (2.8.11)

as the estimate of a(e, e)r.

2.8.2 Adaptive Mesh Refinement

General discussion

The previous section described how to compute an error indicator and in this section we

describe a strategy in which we use it as the basis for our refinement decision to attempt

– 36 –



2. BACKGROUND FINITE ELEMENT MATERIAL

to get a desired accuracy. We only consider h-refinement here. When a triangle is marked

for refinement it is replaced by 4 similar triangles in the next mesh. The knock-on effect

of this is that sides of the neighbouring triangles also need refining. If this gives triangles

with just 2 sides which need refining then such a triangle is marked for full refinement

which can have a further knock-on effect of more neighbouring triangles also needing

some refinement. As a consequence a small number of steps is typically needed before a

situation is reached where the refinement decision on every triangle is one of the following.

• The triangle is to be divided into 4 similar triangles which involves 3 new nodes at

the mid-point on each side.

• The triangle is to be divided into 2 triangles which involves 1 new node at the

mid-point of one of the sides. A triangle in this category is next to exactly one

triangle which needs refining and it is sometimes referred to as a transition triangle.

A subdivision of a triangle into two parts is done provided no new angle is created

which is too small and if the division of the triangle in this way would cause this

then it is instead divided into 4 similar triangles.

The set-up is such that there are no hanging nodes in the new mesh. We illustrate the two

cases in figures 2.5 and 2.6 and we shortly give some information about the bookkeeping

needed to do refinement in this way.

Fig. 2.5: A triangle which is fully refined into 4 similar triangles

Which elements to refine?

Before the bookkeeping part is given we describe an algorithm which uses the estimators

a(ĕ, ĕ)r, r = 1, · · · , ne to attempt to get a given accuracy in the energy norm. If ǫ > 0

and the aim is to attempt to get an approximation uh such that in the energy norm

|||u− uh||| < ǫ (2.8.12)
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Fig. 2.6: A triangle which is divided into 2 triangles

then we compute until our estimate of the error in the energy norm satisfies

ne∑

r=1

a(ĕ, ĕ)r < ǫ2. (2.8.13)

A possible algorithm is as follows.

Algorithm 3

1. With an initial mesh, which is not too coarse, we calculate the finite element solution

which we denote by uoldh .

2. We compute the error estimate |||ĕ|||Ωr
on each element.

3. We compute our estimate of |||u− uh||| and stop if the estimate satisfies (2.8.13).

4. We mark for refinement all triangles for which a(ĕ, ĕ)r is ‘large’ and we create a new

mesh. We discuss what large means in a moment.

5. Using the new mesh we calculate the finite element approximation which we denote

by unewh and we replace uoldh with unewh .

6. Repeat items 2-6 until the condition in item 3 has been satisfied or we have reached

a bound on the number of elements that we will consider.

In item 4 there are different possibilities for deciding that the contribution of the rth

element to the global error is too large. Now if the mesh and the approximation uh are

such that

|||ĕ|||2Ωr
≤ ǫ2

ne
, for r = 1, . . . , ne, (2.8.14)
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then, by summing up over all triangles we get

|||ĕ|||2Ω =

ne∑

r=1

|||ĕ|||2Ωr
≤ ǫ2 (2.8.15)

and the decision in item 3 is to stop the calculation. Hence one criteria for marking a

triangle for refinement is to take all triangles Ωr for which

|||ĕ|||2Ωr
>
ǫ2

ne
. (2.8.16)

Comments on the bookkeeping in the refinement

With ne triangles involving m nodal points we have already mentioned in section 2.6.2

that the data about the mesh is stored in a Matlab program in matrices nodes and coor

which are of size 3 × ne and 2 × m respectively and we write them as nodes(3,ne) and

coor(2,m). From ne, m, nodes and coor we can generate other quantities and these are

all listed in the following table.
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ne Number of elements.

m Number of nodes.

ns Number of sides.

nodes(3,ne) The rth column contains the 3 node numbers for the rth trian-

gle. If we denote here the numbers as i1, i2 and i3 then it is

convenient to arrange these so that the closed path i1 to i2 to

i3 to i1 is anti-clockwise.

coor(2,m) The ith column contains the x and y coordinates of the ith

node.

sides info(4, ns) In the ith column there are 4 numbers with the first two numbers

being the 2 node numbers of the side and the last two numbers

being the element numbers for which this is a side. If the side

is on the edge of the domain then the 4th entry is set to −1 to

indicate this.

sid el(3, ne) The rth column of this gives the 3 side numbers associated with

the rth triangle. If these 3 numbers are denoted by j1, j2 and

j3 and as shown in figure 2.7 and if i1, i2 and i3 denote the

3 node numbers for this element then the numbers are arranged

so that side j1 is i1 to i2, side j2 is i2 to i3, and side j3 is i3

to i1.

ibc(m) This is not needed to describe the mesh but is useful to mention

here. The ith entry is set to 0 for an interior node, it is set to 1

for a node on the boundary where there is a Dirichlet boundary

condition and it is set to 2 on the boundary where there is a

Neumann boundary condition.

Briefly, to obtain ns and sides info(4, ns) from ⁀nodes we loop through the ne

elements to construct an intermediate matrix of size 3 × (3ne) with the rth triangle

contributing 3 columns of the following form.

min([i1, i2]), min([i2, i3]), min([i3, i1]),

max([i1, i2]), max([i2, i3]), max([i3, i1]),

r, r, r

Then with sorting the entries from all the triangles we determine the number of dif-

ferent sides ns and we get the 1 or 2 triangles associated with each side to create

sides info(.,.). The matrix sid el(.,.) is then generated by looping through the

columns of sides info(.,.) to collect the side numbers for each triangle. The remaining
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i1 j1 i2

j3

i3

j2

Ωr

Fig. 2.7: Nodes and sides of the rth triangle with the 3 nodes being stored as
nodes(:, r) and with the 3 side numbers being stored as sid el(:, r).

operations are concerned with tidying-up so that the quantities in each column are in the

order indicated in the table.

With the extra information above we have all the information to quickly determine for

each triangle which triangle shares each edge which is needed when we consider the jump

in the gradient vector of the approximate solution from one triangle to its neighbouring

triangles when we compute the error estimator. We also have the information needed to

be able to set-up the matrices nodes and coor in the next finer mesh. When a triangle is

marked for refinement all 3 sides are marked for refinement and we iterate, if necessary,

until we get to a state that each triangle needs either 1 side or all 3 sides to be refined.

The vertices in the finer mesh which were not in the coarser mesh and are the mid-points

of all the sides which are being refined.

2.9 Numerical Results

For the implementation of the finite element method in 2D, we used the following problem.

We let the square domain

Ω = {(x, y) : |x| < 1, |y| < 1} . (2.9.1)
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For the boundary ∂Ω = ∂ΩD ∪ ∂ΩN we use the following: For the Neumann boundary

condition ∂ΩN we used:

∂ΩN = {(−1, y) : |y| < 1} (2.9.2)

therefore, for the Dirichlet boundary condition we have:

∂ΩD = ∂Ω\∂ΩN . (2.9.3)

−∆u = f in Ω (2.9.4)

u = x4 + y4 on ∂ΩD (2.9.5)

∂u

∂n
= g on ∂ΩN (2.9.6)

where f = 12(x2 + y2) and g is set so that u = x4 + y4 is the solution everywhere for all

choices of the domain Ω.

In the computations we use the Bank Weiser estimator ĕ for the mesh refinement decisions.

In Figures 2.8–2.11 we show 4 meshes with the adaptive refinement done via the

calculation of ĕ with computation done until the mesh and the approximation are such

that |||ĕ||| < 10−2. In table 2.9.4 we show the estimates that are obtained and we also

compare with the exact error which we can compute in this example as we know the exact

solution. The values in the last column of the table correspond to

|||ĕ|||
|||u− uh|||

. (2.9.7)

The table only suggests that the estimator is consistent with the true error which is all that

is shown in the theory. The refinement around the edge of Ω which are the parts furthest

from (0, 0) would have been predicted as this is where the second partial derivatives of

u are largest in magnitude. By looking the figures we can observe that on the left hand

side edge, see Figure 2.11, we have more refined elements. The additional refinement on

this side edge is because this is where we have a Neumann boundary condition where we

are estimating u whereas on the other sides u is known as it is given by the Dirichlet

boundary condition.
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Tab. 2.9.4: Numerical Results
ne m |||u− uh||| |||ĕ||| ratio
162 100 9.757581e-002 2.852447e-001 2.923314e+000
550 312 1.278624e-002 5.546608e-002 4.337952e+000
1042 594 6.250652e-003 1.901255e-002 3.041690e+000
1343 763 5.815998e-003 9.232490e-003 1.587430e+000

Fig. 2.8: Starting Mesh with ne=162, m=100.
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Fig. 2.9: The next refinement mesh with ne=550, m=312.
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Fig. 2.10: The next refinement mesh with ne=1042, m=594.
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Fig. 2.11: The last mesh considered with ne=1343, m=763
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3. THE MEMBRANE MODEL FOR A QUASI-STATIC

DEFORMATION

3.1 Introduction

In this chapter we will give a full description of the finite inflation of a thin sheet modelled

as a hyperelastic membrane. This is a non-linear problem, where the computational

modelling of this involves finding, by using f.e.m., approximations to the displacement

field, denoted by u, of the deformed membrane under a given pressure loading. Then,

these f.e. approximations are used in order to estimate some quantities of physical interest

derived from the solution u by applying a functional J . For this case we consider as

quantities of interest (i) the averaged thickness stretch ratio of the membrane over part

of the domain and (ii) the potential energy of the deformed membrane.

As was described in the previous chapter, in order to get an estimate of the error in

the given functional J , we set-up and solve a so-called dual problem, which is related to

the given QoI and the weak problem A(·; ·) which describes the membrane model. This

is done near the end of the chapter.

First we start with the description of a general 3D solid in order to get the weak form

of the equations of equilibrium. Later, in section 3.4, we describe the membrane model

for how the thin sheet deforms and in particular give the weak form of the equations of

equilibrium under pressure loading in this simplified case. To complete the description

of the mathematical model we give in section 3.5 some standard hyperelastic constitu-

tive relations for the incompressible case and in all cases these hyperelastic models are

expressed in the Ogden form [21], which we use in all our implementations in this thesis.

The final sections of the chapter are concerned with describing the numerical scheme

and some aspects of the finite element implementation in order to solve the nonlinear

problem for the membrane case under pressure. For the implementation of the problem
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we used Newton’s method for each system of nonlinear equations encountered in order to

get an approximate solution uh for the displacement u. With an approximation uh to u

obtained we then move to the goal-oriented error estimation, where the error is measured

with respect to a specific quantity of interest. Our numerical scheme for the error in

the given QoI extends a little what is given in [28] to the non-axisymmetric situation

described in this chapter. In section 4.6 we describe the dual problem which is based

on the Gâteaux derivatives of the expression A in the weak problem (see later) and the

given functional J which describes our QoI. In this chapter we restrict the detail to the

expressions involved with examples of using the technique and various numerical results

given in the next chapter.

3.2 The membrane assumptions and the weak form

In this section we consider the assumptions used in a membrane model of a thin sheet

and we introduce the expressions in the weak form of the problem with the details of their

derivation done in later sections.

The situation at the start of the process involves a thin sheet of uniform thickness h0

which is initially flat and which is clamped at its edge as indicated below. This is the

undeformed state of the body. The thin sheet deforms when a pressure is applied.

Clamp Clamp

h0

Pressure P = P (t)

A thin sheet which is initially flat

For later reference we let N = be the direction normal to the sheet at this stage. 2e assume

that the body is composed of homogeneous, isotropic, incompressible, elastic material. We

will assume that the thin sheet deforms according to membrane theory. One of the basic

assumptions for the membrane theory is that the material fibers which are orthogonal to

the sheet deform in such a way that they are always orthogonal to the sheet. In addition,

the stress components in the direction of the normal are much smaller in magnitude than

the stress components in the tangential directions. We consider both these aspects next.

In membrane theory the deformation of the sheet under pressure can be described by

quantities which are related to the tangential directions to the mid-surface. The region
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of the undeformed body of the flat sheet can be represented by

B =

{
(x1, x2, x3) : (x1, x2) ∈ Ω, |x3| <

h0
2

}

with x3 = 0, x = (x1, x2) ∈ Ω being the mid-surface of the membrane. The mid-surface

will deform as

(x1, x2, 0) → (x1 + u1, x2 + u2, u3) =: w

where ui(x) for i = 1, 2, 3 denotes the displacement values, w denotes the deformed

mid-surface. In the membrane model we only consider the mid-surface and the theory

gives a 2D model of a 3D deformation.

The assumption about the stress in the membrane theory is that

σn = 0,

where n =normal direction to the deformed state of the membrane, and σ =

the membrane Cauchy stress. Further details about the assumptions about fibres

normal to the sheet remain normal to the mid-surface and the assumption that σn = 0

are considered in the later sections. To be specific here, σ refers to the membrane stress

and it relates to what we refer to as σ3D evaluated on the mid-surface in a full three

dimensional description. In a full three dimensional description without any simplifying

assumptions the stress σ3D varies through the thickness and satisfies traction boundary

conditions on the lower and upper sides of the sheet. As already mentioned, the membrane

model gives us a 2D model of the 3D deformation and in this context the pressure loading

has a role of a “body force type term” in the membrane context and this should be more

evident towards the end of section 3.4.2 when the weak form in the membrane case is first

given.

The membrane deformation is described by the displacement u(x), x ∈ Ω and the

equations that determine the displacement field for a given loading in the case of a quasi-

static deformation are the equations of equilibrium and the hyperelastic constitutive model

for an incompressible material. As we will see, the material being incompressible is easily

handled when we have a membrane deformation as the membrane stress σ is actually

determined by the mid-surface displacement in order to be consistent with σn = 0. A

weak form of these equations is needed in this chapter and an outline of how these are

obtained is as follows.

For a general 3D body the equations of equilibrium in the absence of body forces
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are given by

3∑

j=1

∂σji
∂wj

= 0 i = 1, 2, 3 or in vector form as ∇ · σ3D = 0. (3.2.1)

Note that the partial derivatives are with respect to the deformed configuration. To

relate everything to the known undeformed configuration leads to the use of the first

Piola stress which we explain later. A weak form of the system of equations can be

obtained by taking the scalar product with a test vector v from an appropriate space and

integrating over the domain. This is the general idea in all cases that we consider. When

the undeformed thickness of the sheet, denoted by h0, and the membrane assumptions

for an incompressible body are taken into account we show later that the following is

obtained.

For a given pressure P (t) at a time t let Π denote the membrane nominal stress and let

ΠT denote the membrane first Piola stress, which depends on the the displacement u,

and let the test space be given by

V = {v : vi ∈ H1
0 (Ω), i = 1, 2, 3}, (3.2.2)

where

H1
0 (Ω) = {v : v ∈ H1(Ω) and v = 0 on ∂Ω}.

Also let

a1(u; v) = h0

∫

Ω

ΠT : ∇v dΩ, a2(u; v) =

∫

Ω

v ·
(
∂w

∂x1
× ∂w

∂x2

)
dΩ. (3.2.3)

The notation a1(·; ·) and a2(·; ·) indicates that each of these is a semi-linear form which

means that it is linear for the term to the right of the semi-colon, i.e. the expressions

are nonlinear in u but linear in v. For fixed time t, we then consider the following weak

problem.

Find the displacement u ∈ V of the deformed membrane mid-surface, such that

A(t)(u; v) = a1(u; v)− P (t)a2(u; v) = 0 ∀v ∈ V. (3.2.4)
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3.3 Background theory for a 3D solid

3.3.1 Membrane deformation and strain tensors

In this section we introduce some standard quantities used to describe the large deforma-

tion of a general body. More theory and material can be found in various sources such as

[14], [25], [26], [12], [29] and many others.

We start by considering how line, surface and volume elements deform and in this part of

the description we use the notation x ≡ (x1, x2, x3) for a general point.

In the deformation, a point x ∈ B moves to x + u(x), where u ≡ (u1, u2, u3)
T is the

displacement vector. Therefore we have the following mapping

x −→ x+ u(x) ≡ w, (3.3.1)

where w denotes the deformed position.

The deformation gradient in 3D involves all the first partial derivatives of the com-

ponents of u and is defined by

F3D = I+∇u, (3.3.2)

where I is the identity tensor. In cartesian components I and ∇u are given by

I =



1 0 0

0 1 0

0 0 1


 and ∇u =




∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3


 . (3.3.3)

Here, F3D corresponds to the Jacobian matrix of the mapping (3.3.1). It is an important

quantity for measuring large deformation. By using F3D we are able to define the 3D

Right Cauchy Green deformation tensor given by

C3D = FT
3DF3D. (3.3.4)

Finally we have the Left Cauchy Green deformation tensor which is denoted by

B3D = F3DF
T
3D, (3.3.5)

from which it follows that

B−1
3D = (F−1

3D)
TF−1

3D. (3.3.6)
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We use the notation F3D, C3D andB3D here as we use the notation F, C for corresponding

quantities in the membrane description. Now, by using the mapping (3.3.1) we have in

terms of infinitesimals the following representation

∆w = w(x+∆x)− w(x) = F3D∆x (3.3.7)

The above represents the infinitesimal line segment ∆x which deforms to the line segment

∆w = F3D∆x.

Let e1, e2, e3 denote the unit base vectors with respect to the x1, x2, x3 directions.

We start by considering the particular line segments ∆x1 = ∆x1e1, ∆x2 = ∆x2e2, ∆x3 =

∆x3e3 having directions coinciding with the coordinate directions. In this case the surface

element ∆x1 ×∆x2 and the volume element (∆x1 ×∆x2) ·∆x3 transform respectively to

∆w1 ×∆w2 and (∆w1 ×∆w2) ·∆w3 as follows.

∆w1 ×∆w2 = ∆x1∆x2F3De1 × F3De2 (3.3.8)

= ∆x1∆x2(detF3D)F3D
−T e1 × e2 (3.3.9)

= (detF3D)F3D
−T∆x1 ×∆x2 (3.3.10)

and

(∆w1 ×∆w2) ·∆w3 = (detF3D)(∆x1 ×∆x2)F3D
−1F3D∆x3 (3.3.11)

= (detF3D)(∆x1 ×∆x2) ·∆x3. (3.3.12)

Note that here we used the result that

F3De1 × F3De2 = (detF3D)F3D
−T e1 × e2. (3.3.13)

Proof of eq.(3.3.13)

(detF3D)F3D
−T = the matrix of cofactors

Since e1 × e2 = e3,

(detF3D)F3D
−T e1 × e2 = (detF3D)F3D

−T e3 =



F21F32 − F31F22

F12F31 − F32F11

F11F22 − F12F21


 . (3.3.14)
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By using the cross product F3De1 × F3De2 we get

F3De1 × F3De2 =

∣∣∣∣∣∣∣

e1 e2 e3

F11 F21 F31

F21 F22 F32

∣∣∣∣∣∣∣
=



F21F32 − F31F22

F12F31 − F32F11

F11F22 − F12F21


 . (3.3.15)

Combining eq.(3.3.14) and (3.3.15) we get the desired result eq.(3.3.13).

The above relations for the surface and volume elements can be generalised and given

in terms of line segments in arbitrary directions. More precisely, we get the following

relationships between the undeformed and deformed line segments ∆x and ∆w, the unde-

formed and deformed surface elements N∆S and n∆s and the undeformed and deformed

volume elements ∆V and ∆v.

∆w = F3D∆x (3.3.16)

n∆s = (detF3D)F
−T
3DN∆S (3.3.17)

∆v = (detF3D)∆V. (3.3.18)

3.3.2 Decomposition of a deformation and principal axes

By using the polar decomposition theorem, the deformation tensor F3D can be expressed

in the following polar forms

F3D = R ·U = V ·R (3.3.19)

where R is an orthogonal tensor and U,V are both symmetric positive definite tensors.

If ρ0 denotes the density in the undeformed configuration and ρ denotes the density in the

deformed configuration then the conservation of mass and the relation (3.3.18) implies

that detF3D = ρ0/ρ > 0, and therefore F3D is a proper orthogonal tensor.

By using the polar forms and the definitions of C3D and B3D we get the following

relation

C3D = FT3DF3D = (RU)TRU = UTRTRU = UTU = U2 (3.3.20)

and

B3D = F3DF
T
3D = VR(VR)T = VRRTVT = VVT = V2 (3.3.21)

where we used RTR = RRT = I since R is orthogonal matrix. Also we can define the

following relations for U and V

U = RTF3D = RTVR and V = F3DR
T = RURT . (3.3.22)
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That is U and V are similar and therefore they have the same positive eigenvalues

λ1, λ2, λ3 known as the principal stretches. We let v1, v2, v3 be eigenvectors of U of

unit length with the corresponding eigenvalues λ1, λ2, λ3. It follows that the eigenvectors

of V are v̂1 = Rv1, v̂2 = Rv2, v̂3 = Rv3. The eigenvectors of U and V give the principal

directions of stretch in the undeformed and deformed configurations respectively.

Since C3D = U2, the eigenvectors of C3D coincide with those of U and its eigenvalues

are just λ21, λ
2
2, λ

2
3. Similarly, since B3D = V2, the eigenvectors of B3D coincide with those

of V and its eigenvalues are just λ21, λ
2
2, λ

2
3. Using these eigenvalues and eigenvectors, we

have the following spectral decompositions and singular-valued decompositions:

F3D = λ1v̂1v
T
1 + λ2v̂2v

T
2 + λ3v̂3v

T
3 (3.3.23)

C3D = λ21v1v
T
1 + λ22v2v

T
2 + λ23v3v

T
3 (3.3.24)

U = λ1v1v
T
1 + λ2v2v

T
2 + λ3v3v

T
3 (3.3.25)

B3D = λ21v̂1v̂
T
1 + λ22v̂2v̂

T
2 + λ23v̂3v̂

T
3 (3.3.26)

V = λ1v̂1v̂
T
1 + λ2v̂2v̂

T
2 + λ3v̂3v̂

T
3 (3.3.27)

Remark: In the case of an incompressible deformation we have

detF3D = λ1λ2λ3 = 1. (3.3.28)

Strain Invariants

Here, we define the principal strain invariants I1, I2, I3 which are related to the 3

principal stretches λ1, λ2, λ3 and are given by

I1 = λ21 + λ22 + λ23 (3.3.29)

I2 = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 (3.3.30)

I3 = λ21λ
2
2λ

2
3. (3.3.31)

Since λ21, λ
2
2 and λ23 are the principal values of both C3D and B3D we have the following
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alternative expressions.

I1 = tr(C3D) = tr(B3D) (3.3.32)

I2 =
1

2

(
(tr(C2

3D)− tr(C2
3D)
)
=

1

2

(
(tr(B2

3D)− tr(B2
3D)
)

(3.3.33)

I3 = det(C3D) = det(B3D) (3.3.34)

In addition, since

I3 = det(C3D) = det(FT
3DF3D) = (detF3D)

2 =

(
dv

dV

)2

=

(
ρ0
ρ

)2

,

we have for an incompressible material that I3 = 1. We do not actually make use of I1,

I2 and I3 much in this thesis as we always work with λ1, λ2 and λ3 and use a hyperelastic

model in an Ogden form but some of the hyperelastic models that are mentioned involve

expressions in I1 and I2. We note here that, assuming incompressibility, we have the

following relation between the principal values

λ3 = 1/ (λ1λ2) .

3.3.3 Stress tensors

First we start with the definition of a stress, which is the force acting on an interior point,

of a continuous body B from its neighbouring parts. We consider a surface element area

∆s with unit normal n, on which the material outside exerts a force ∆f such that

∆f = τn∆s, (3.3.35)

where τn denotes the mean surface traction across the element of area ∆s. By taking the

limit as ∆s→ 0, it is assumed that τn tends to a finite limit. The traction vector, at the

point, on the surface ∆s with normal n is given by

τn = lim
∆s→0

∆f

∆s
. (3.3.36)

An infinite number of traction vectors act at a point with each acting on different surfaces

through the point, defined by different normals.

Cauchy’s Law states that there exists a Cauchy stress tensor σ3D which maps the
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normal vector to a surface to the traction vector acting on that surface, i.e. we have

τ = σ3Dn or τi = σijnj, (3.3.37)

assuming the summation connection. In full we have

τ1 = σ11n1 + σ12n2 + σ13n3 (3.3.38)

τ2 = σ21n1 + σ22n2 + σ23n3 (3.3.39)

τ3 = σ31n1 + σ32n2 + σ33n3 (3.3.40)

The components of the stress tensor σ3D with respect to a Cartesian coordinate system

are

σij = ei · σ3Dej = ei · τ ej (3.3.41)

which is the ith component of the traction vector acting on a surface with normal ej.

The three traction vectors acting on the surface elements whose outward normals point

in the directions of the three base vectors ej are

τ ej = σ3Dej, j = 1, 2, 3 (3.3.42)

or in full

τ e1 = σ11e1 + σ21e2 + σ31e3 (3.3.43)

τ e2 = σ12e1 + σ22e2 + σ32e3 (3.3.44)

τ e3 = σ13e1 + σ23e2 + σ33e3 (3.3.45)

The proof of the Cauchy’s Law and more details about the stress components can be found

in [29]. Although the Cauchy stress tensor is defined in the deformed configuration, in our

membrane model we used stress tensors which are defined in the undeformed configuration.

By using Cauchy’s Law, a surface element n∆s in the deformed configuration has a force

on it given by σ3Dn∆s. Using eq. (3.3.17) we have that

σ3Dn∆s = σ3D(detF3D)F
−T
3DN∆S = ΠT

3DN∆S (3.3.46)

where

ΠT
3D = σ3D(detF3D)F

−T
3D = The First Piola stress tensor. (3.3.47)
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If we take the transpose of the first Piola stress tensor we get the following stress tensor

Π3D = (detF3D)F
−1
3Dσ3D = Nominal stress tensor. (3.3.48)

3.3.4 The equations of motion and the weak form

By applying the Cauchy’s Law τ = σ3Dn and the divergence theorem (2.5.1) we get the

global form of the equations of motion,

∂σij
∂ωj

+ bi = ρ
du̇i
dt

or ∇ · σ3D + b = ρ
du̇

dt
, (3.3.49)

where b represents the body forces and
du̇
dt

is the acceleration at a point.

Now for the special case when the acceleration is zero, the equations reduce to the

equations of equilibrium which have the following form

∂σij
∂ωj

+ bi = 0 or ∇ · σ3D + b = 0. (3.3.50)

In our applications we consider the case of the quasi-static deformation with no body

forces (b = 0).

The equilibrium equations involve the partial derivatives of the Cauchy stress with

respect to the components wj of the deformed position. In order to convert this relation

to quantities which relate to the undeformed configuration we do the following.

For the case of no body forces (b = 0) and an incompressible deformation (detF3D = 1)

we have

∇ · σ3D = 0 (3.3.51)

As this holds at every point in the domain this implies that for any volume v with surface

s we have ∫

s

σ
T
3Dn ds = 0. (3.3.52)

Then, by using the identity (3.3.46), which defines the relationship between the surface

elements in the deformed and the undeformed configuration we get

∫

S

ΠT
3DN dS = 0. (3.3.53)
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As the regions involved are arbitrary, the equilibrium equations can be written as

DivΠ3D =




∂Π11

∂x1
+ ∂Π21

∂x2
+ ∂Π31

∂x3
∂Π12

∂x1
+ ∂Π22

∂x2
+ ∂Π32

∂x3
∂Π13

∂x1
+ ∂Π23

∂x2
+ ∂Π33

∂x3


 = 0. (3.3.54)

Weak formulation for the 3D case

In order to obtain the weak form of the eq. (3.3.54), we do the following.

First we define the following function space

V =
{
v : vi ∈ H1

0 (Ω3D), vi(x) = 0 on ∂B i = 1, 2, 3
}
.

Then, by taking the dot product with a test vector v ∈ V , integrating over the region,

using the divergence theorem (2.5.1) and the following identity

Div(Π3Dv) = DivΠ3D · v +ΠT
3D : ∇v, ∀ v ∈ V,

we end up with the following weak form in 3D

∫

B

ΠT
3D : ∇v dV −

∫

∂B

vTΠT
3DNdS = 0 ∀v ∈ V, (3.3.55)

where B represents the region of the undeformed body and where : denotes the double

dot product operation to get a scalar by combining ΠT
3D and ∇v. Note that when u is

given on the boundary ∂B, the space V is such that v = 0 on ∂Ω and thus the boundary

integral term vanishes.

3.4 Simplifications for the membrane model

In the previous sections we described the general case of the deformation of an arbitrary

3D body. However, for this project we only need to consider how thin sheets deform

under pressure loading. According to the membrane theory, the material fibres which

are normal to the mid-surface Ω in the undeformed state and remain normal to whatever

the deformed mid-surface is, but they will usually change in length by the factor λ = λ3

which is known as the thickness stretch ratio. When we have incompressibility λ3 is

determined by the stretch ratios in directions tangential to the mid-surface. This suggests

that the deformation of the sheet can essentially be described in terms of quantities which

just relate to the tangential directions which is what is done in membrane theory. With
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σ3D being the stress in the 3D model evaluated on the mid-surface and with σ being the

membrane stress, the basic assumption is that

σ3Dn ≈ 0,

with n being the unit outward normal to the mid-surface. Approximately 0 is in the sense

that it is much smaller in magnitude than σ3Dd for any unit vector d tangential to the

mid-surface. In the membrane idealization the membrane stress σ is such that

σn = 0.

It is this assumed behaviour concerning how the sheet deforms in the normal direction

which leads from a 3D problem to a 2D problem and a 3D axisymmetric problem to

be reduced to a 1D problem. The axisymmetric case of the unconstrained inflation of

membranes is considered later in the thesis. More details about the membrane theory can

be found in [13].

3.4.1 Membrane quantities and weak formulation in 2D

The membrane deformation gradient in 2D evaluated on the mid-surface is given by

F =



1 0

0 1

0 0


+∇u =



1 + ∂u1

∂x1
∂u1
∂x2

∂u2
∂x1

1 + ∂u2
∂x2

∂u3
∂x1

∂u3
∂x2


 , (3.4.1)

where Fe1 and Fe2 represent the tangential vectors of the model.

The membrane Right Cauchy Green deformation tensor is given by

C = FTF (3.4.2)

and we let λ21, λ
2
2 denote the eigenvalues of C.

To describe instead the membrane deformation in the terms used to describe a general

3D deformation can be done as follows. The thickness stretch ratio

λ = λ3 = 1/(λ1λ2),
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and the 3D version of the deformation gradient is given by

F3D = (F, λn) =



1 + ∂u1

∂x1

∂u1
∂x2

λn1

∂u2
∂x1

1 + ∂u2
∂x2

λn2

∂u3
∂x1

∂u3
∂x2

λn3


 (3.4.3)

with n1, n2 and n3 being the components of the unit outward normal vector n. The vector

n is orthogonal to Fe1 and Fe2 and the connection between these vectors is that

n = λFe1 × Fe2.

By using F3D we are able to define the 3D Right Cauchy Green deformation tensor given

by

C3D = FT
3DF3D =



c11 c21 0

c21 c22 0

0 0 λ2


 . (3.4.4)

For an incompressible material detC3D = λ2(c11c22 − c221) = 1, which gives λ in terms of

other components of C3D. The eigenvalues of C3D are λ21, λ
2
2 and λ2.

A few other relations in a 3D description worth mentioning here quickly follow. Firstly,

since C3D = U2, U is of the form

U =



U11 U21 0

U21 U22 0

0 0 λ


 . (3.4.5)

In addition from the polar decomposition of F3D, we have

F3De3 = RUe3 = λRe3,

which implies that the third column of R is the unit vector in the normal direction

to the mid-surface Ω, i.e. n = Re3. If we let v1 and v2 be normalised eigenvectors

of C3D corresponding to eigenvalues λ21 and λ22 respectively and we let v̂1 = Rv1 and

v̂2 = Rv2 then the spectral decompositions and singular valued decompositions mentioned

in (3.3.23) and (3.3.24) are given by

F3D = λ1v̂1 v
T
1 + λ2v̂2 v

T
2 + λn eT3 , (3.4.6)

C3D = λ21v1 v
T
1 + λ22v2 v

T
2 + λ2e3 e

T
3 . (3.4.7)
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and it is worth noting here that we also have

F−T
3D =

1

λ1
v̂1 v

T
1 +

1

λ2
v̂2 v

T
2 +

1

λ
n eT3 (3.4.8)

and in particular we have that n is given via

F−T
3D e3 =

1

λ
n. (3.4.9)

In the case of the stress, in the full 3D model we have σ3Dn ≈ 0, which implies that

σ3Dn = σ3DRe3 ≈ 0

and the membrane version of this is that σn = 0, which implies that

σn = σRe3 = 0,

and therefore for the symmetric tensor RT
σR we have that

RT
σR =



σ̃11 σ̃21 0

σ̃21 σ̃22 0

0 0 0


 , (3.4.10)

which involves only 3 independent stress components. Further, it is worth noting that

the condition σ3Dn ≈ 0 on the Cauchy stress corresponds to the condition

ΠT
3De3 ≈ 0 (3.4.11)

on the 3D version of the first Piola stress for the undeformed configuration of the mem-

brane.

3.4.2 Membrane deformation under pressure loading

We consider now the quasi-static equilibrium when there is an applied pressure P on the

lower side of the sheet. On this side of the sheet we consider the following conditions

N low = −e3 and nlow ≈ −n,
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which denote the normals to the undeformed and the deformed lower side of the sheet.

In the 3D case the traction boundary condition is

σ
T
3Dnlow = σ3Dnlow = −Pnlow.

Re-writing in terms of the undeformed coordinates gives

ΠT
3DN low = σ

Tnlow
ds

dS
= −Pnlow

ds

dS
≈ −P (−n)/λ = Pn/λ = PF−T

3D e3. (3.4.12)

Next we define the reduced form of the weak form which in the full 3D case is given

in (3.3.55). By using the relation (3.4.12) we are able to approximate the boundary part

of the weak form by the following expression

∫

∂B

vTΠT
3DN dS ≈ P

∫∫

Ω

(
vTF−T

3D e3
)
dx1dx2, (3.4.13)

which is what we call the pressure term of our model.

The term involving the region of the undeformed body B can be written as

∫

B

ΠT
3D : ∇v dV ≈ h0

∫∫

Ω

ΠT : ∇v dx1dx2 (3.4.14)

which involves the thickness of the membrane and the mid-surface Ω. Here ΠT is 3 × 2

in shape and represents the membrane first Piola Stress.

Finally we are able to define the weak form of the membrane case which has the

following form.

Find u ∈ V such that

A(t)(u; v) = a1(u; v)− Pa2(u; v) = 0 ∀v ∈ V, (3.4.15)

a1(u; v) = h0

∫∫

Ω

ΠT : ∇v dx1dx2 ∀v ∈ V, (3.4.16)

a2(u; v) =

∫∫

Ω

v ·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2 ∀v ∈ V, (3.4.17)

with the test space V given by

V = {v : vi ∈ H1
0 (Ω), vi(x1, x2) = 0 when (x1, x2) ∈ ∂Ω i = 1, 2, 3}.

Note, from the representation of the weak form, we observe that the membrane deforma-

tion depends only on the ratio P/h0.
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There are other ways the pressure loading term in the weak form can be written and we

give these next. For the pressure term (3.4.17) we used the following relations. Possibly

the simplest relation is to note that

F−T
3D e3 =

1

λ
n = Fe1 × Fe2 =

(
∂w

∂x1
× ∂w

∂x2

)
.

In the weak form we have the scalar product of this with the test vector v and for the

integral of this over Ω we have the following, which we will use at several points of this

thesis.

∫∫

Ω

v ·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2 =

1

3

∫∫

Ω

v ·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2

+
1

3

∫∫

Ω

w ·
(
∂v

∂x1
× ∂w

∂x2

)
dx1dx2 +

1

3

∫∫

Ω

w ·
(
∂w

∂x1
× ∂v

∂x2

)
dx1dx2. (3.4.18)

Although this is a longer expression, it enables the expression in the weak form to be

written in a more symmetrical way which we comment on later when some computational

details are described.

Proof of the expression eq. (3.4.18)

We start with the following quantity

I =

∫∫

Ω

w ·
(
∂v

∂x1
× ∂w

∂x2
+
∂w

∂x1
× ∂v

∂x2

)
dx1dx2, (3.4.19)

which is part of the second version and we show that

I = 2

∫∫

Ω

v ·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2 (3.4.20)

to get the desired result.

By using an invariance properties of the scalar triple product when the terms are

re-ordered, the integrand of the quantity eq.(3.4.19) can be written as

w ·
[(

∂v

∂x1
× ∂w

∂x2

)
+

(
∂w

∂x1
× ∂v

∂x2

)]
=

∂v

∂x1
·
(
∂w

∂x2
× w

)
+

∂v

∂x2
·
(
w × ∂w

∂x1

)
.

The main step to get the result is to use the divergence theorem appropriately and to see

how that can be done first let

a =
∂w

∂x2
× w = a1e1 + a2e2 + a3e3 and b = w × ∂w

∂x1
= b1e1 + b2e2 + b3e3.
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With v1, v2 and v3 being the components of v, the integrand in the right hand side

of (3.4.19) can be written as

(a1e1 + b1e2) · ∇v1 + (a2e1 + b2e2) · ∇v2 + (a3e1 + b3e2) · ∇v3.

As v = 0 on the boundary ∂Ω the divergence theorem gives

∫∫

Ω

(ake1 + bke2) · ∇vk dx1dx2 = −
∫∫

Ω

vk

(
∂ak
∂x1

+
∂bk
∂x2

)
dx1dx2, k = 1, 2, 3.

Summing these results for k = 1, 2, 3 gives

I = −
∫∫

Ω

v ·
[
∂

∂x1

(
∂w

∂x2
× w

)
+

∂

∂x2

(
w × ∂w

∂x1

)]
dx1dx2

= −
∫∫

Ω

v ·
[(

∂2w

∂x1∂x2
× w +

∂w

∂x2
× ∂w

∂x1

)
+

(
w × ∂2w

∂x1∂x2
+
∂w

∂x2
× ∂w

∂x1

)]
dx1dx2,

= −2

∫∫

Ω

v ·
(
∂w

∂x2
× ∂w

∂x1

)
dx1dx2 = 2

∫∫

Ω

v ·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2.

In the above the property of the cross product that interchanging the terms changes the

sign is used two times.

3.5 Some hyperelastic constitutive relations for the incompressible case

A hyperelastic material is a type of constitutive model for ideally elastic material which

uses a strain energy function W for the stress-strain relationship, this is how the term is

defined in Wikipedia. Ronald Rivlin and Melvin Mooney developed the first hyperelastic

models, the neo-Hookean and Mooney Rivlin solids. Many other hyperelastic models have

since been developed. A widely used way of representing W is the Ogden form which we

use throughout this thesis. The expression of these models are given shortly and more

details can be found in [4],[24], [21].

3.5.1 Stress-strain relations

The strain energy function W depends only on the deformation of the given model.

Throughout this thesis we only consider isotropic and incompressible materials and in

these cases W can be expressed in terms of the strain invariants I1, I2 given in (3.3.29)

and (3.3.30). It can also be expressed in terms of the principal stretches λ1 and λ2. In

– 62 –



3. THE MEMBRANE MODEL FOR A QUASI-STATIC DEFORMATION

some situations that we need it is also convenient to consider W in other ways as for

example a function of the full 3D deformation gradient F3D, or just of the membrane

deformation gradient F and possibly of all 3 stretch ratios λ1, λ2 and λ3. The meaning of

partial derivatives depends on which version we are using and if we keep the same letter

W for each of the functions then we can write

W =W (F) =W (F3D) = W (I1, I2) =W (λ1, λ2, λ3) =W (λ1, λ2). (3.5.1)

We consider next the stress-stretch relations for our incompressible case for these different

ways of representing W .

• The strain energy function W = W (F3D)

With W considered as a function of all 9 components of F3D we have

ΠT
3D =

∂W

∂F3D

. (3.5.2)

This notation means that in components

(ΠT
3D)ij =

∂W

∂(F3D)ij
.

• The strain energy function W = W (F)

WithW considered as a function of the 6 components of the membrane deformation

gradient F for the incomprerssible membrane deformations being considered it can

be shown that

ΠT =
∂W

∂F
. (3.5.3)

Unlike in other situations where the stress is not completely determined by the

deformation when the deformation is incompressible it is in the membrane case as

a consequence of the membrane assumption. We do not give details here to explain

this further here but they are similar to the details given below when we consider

how to obtain the version involving W = W (λ1, λ2) from the version involving W =

W (λ1, λ2, λ3). Accepting that we have (3.5.3) it follows that the stress term (3.4.16)

in the weak form of the membrane case can be expressed as follows

∫∫

Ω

ΠT : ∇v dx1dx2 =
∫∫

Ω

∂W

∂F
: ∇v dx1dx2. (3.5.4)

We note here that the above expression is used in our implementations for the

pressure model.
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• The strain energy function W = W (I1, I2)

In several text books the incompressible and isotropic case is described with W =

W (I1, I2). To give the stress-stretch relation in a compact form we use the following

notation for the first partial derivatives.

W1 =
∂W

∂I1
and W2 =

∂W

∂I2
. (3.5.5)

The constitutive equation can be expressed in either of the following forms

σ3D = −pI + 2(W1 + I1W2)B3D − 2W2B
2
3D (3.5.6)

σ3D = −pI + 2W1B3D − 2W2B
−1
3D (3.5.7)

with, as before, σ3D being the general 3D version of the Cauchy Stress tensor and

B3D being the Left Cauchy Green deformation tensor as it was described

in (3.3.5). In these relations p is a hydrostatic pressure term as a consequence of the

incompressibility assumption and for a general incompressible deformation p has to

be determined as part of computation. The proof of the above form can be found

in [29, p.141]. We do not repeat the details of the proof but it is worth commenting

on why an incompressible deformation does not completely determine the stress for

a general 3D hyperelastic body. The origins of this is a power balance requirement

for a body to be elastic with in addition the property that we have a hyperelastic

assumption with a strain energy function W . The power balance requirement is

that

ρ
dW

dt
= σ3D : D, (3.5.8)

where ρ is the deformed density and D is the rate of deformation tensor, i.e.

D = (Dij), Dij =
1

2

(
∂ẇi
∂wj

+
∂ẇj
∂wi

)
.

Here w = x + u is the deformed position and ẇ = (ẇi) is the velocity. The term

σ3D : D is known as the stress power. For non-elastic materials we do not have a W

and there are other terms in (3.5.8) concerned with dissipation. When a material

can only deform in an incompressible way we have det F3D = 1 and this can be

equivalently written in the form

∇ · ẇ = trD =
∂ẇ1

∂w1

+
∂ẇ2

∂w2

+
∂ẇ3

∂w3

= 0.

When the only possible deformations are incompressible deformations the condi-

tion (3.5.8) is unchanged if we add or subtract any multiple of the identity I from
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an expression for σ3D, That is, σ3D is only determined up to the addition of a term

such as −pI. The derivation in [29] to get the expressions given in (3.5.6) and (3.5.7)

is to first derive the relations for general I1, I2 and I3 and then to set things up to

get the form of the equations in the limit I3 → 1. In the case of a membrane model

we have σ ≈ σ3D evaluated on the mid-surface with σ being such that σn = 0.

As this must be satisfied the term p in (3.5.6) and (3.5.7) is determined in terms of

other quantities, i.e. by using (3.4.4) and (3.4.10) we have

0 =
(
RT

σR
)
= −p + 2W1λ

2 − 2W2λ
−2, (3.5.9)

which implies that

p = 2(W1λ
2 −W2λ

−2).

• The strain energy function W = W (λ1, λ2, λ3)

In the incompresible case

σ1 = −p+ λ1
∂W

∂λ1
, σ2 = −p + λ2

∂W

∂λ2
, σ3 = −p + λ3

∂W

∂λ3
(3.5.10)

where, as in the previous case, p is a hydrostatic pressure.

• The strain energy function W = W (λ1, λ2)

This is the version that we usually use when describing a strain energy function and

leads to the two non-zero principal stresses σ1 and σ2 being given by

σ1 = λ1
∂W

∂λ1
and σ2 = λ2

∂W

∂λ2
(3.5.11)

for our incompressible and isotropic membrane deformation. To understand how

these relations follow from (3.5.10) can be done as follows.

It is convenient here to distinguish between the cases by using the letter W for this

case and W̃ for the previous case with

W (λ1, λ2) = W̃ (λ1, λ2, λ3) = W̃ (λ1, λ2, 1/(λ1λ2)). (3.5.12)

As σ3 = 0 we have

p = λ3
∂W̃

∂λ3
. (3.5.13)

For the other two principal stresses we have the following. By taking the derivative
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of W = W (λ1, λ2) with respect to λ1 and λ2 respectively we get

∂W

∂λ1
=

∂W̃

∂λ1
+
∂W̃

∂λ3

∂λ3
∂λ1

=
∂W̃

∂λ1
+
∂W̃

∂λ3
(−λ−2

1 λ−1
2 ), (3.5.14)

∂W

∂λ2
=

∂W̃

∂λ2
+
∂W̃

∂λ3

∂λ3
∂λ2

=
∂W̃

∂λ2
+
∂W̃

∂λ3
(−λ−1

1 λ−2
2 ). (3.5.15)

Then by multiplying each of these equations (3.5.14) and (3.5.15) by λ1 and λ2

respectively we get the following

λ1
∂W

∂λ1
= λ1

∂W̃

∂λ1
− λ3

∂W̃

∂λ3
, (3.5.16)

λ2
∂W

∂λ2
= λ2

∂W̃

∂λ2
− λ3

∂W̃

∂λ3
. (3.5.17)

Therefore, by combining the equations (3.5.10) with the quantities (3.5.16), (3.5.17)

and (3.5.13) we have the following expressions for the principal stresses σ1 and σ2

in terms of λ1 and λ2 respectively

σ1 = −p + λ1
∂W̃

∂λ1
= −λ3

∂W̃

∂λ3
+ λ1

∂W̃

∂λ1
= λ1

∂W

∂λ1
, (3.5.18)

σ2 = −p + λ2
∂W̃

∂λ2
= −λ3

∂W̃

∂λ3
+ λ2

∂W̃

∂λ2
= λ2

∂W

∂λ2
. (3.5.19)

3.5.2 Examples of strain energy functions

We now give some examples of hyperelastic models by using strain energy functions in

terms of I1, I2 and/or λ1, λ2.

In terms of I1 and I2 we have the neo-Hookean and Mooney-Rivlin models, which

respectively have the following representations. The neo-Hookean model is given by

W = C(I1 − 3), where C > 0 is a constant (3.5.20)

The Mooney-Rivlin model is given by

W = C((I1 − 3) + a(I2 − 3)), where a, C are constants. (3.5.21)

In terms of λ1 and λ2 the Ogden form representation which involves W = W (λ1, λ2)
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is an expression of the form

W =

N∑

1

µp
νp

(λ
νp
1 + λ

νp
2 + λ

−νp
1 λ

−νp
2 − 3),

µp
νp

> 0 (3.5.22)

where µp and νp are constants. When W is written in the Ogden form it is easy to

compute the principal stresses σ1 and σ2 by using (3.5.11). An example of this form is

the Jones-Treloar hyperelastic model which has the following representation

W =
0.69

1.3
(λ1.31 + λ1.32 + λ−1.3

1 λ−1.3
2 − 3) (3.5.23)

+
0.01

4
(λ41 + λ42 + λ−4

1 λ−4
2 − 3) +

+
−0.0122

−2
(λ−2

1 + λ−2
2 + λ21λ

2
2 − 3).

In addition the neo-Hookean and Mooney Rivlin models given above can be also expressed

by using the Ogden form. For the neo-Hookean model given above we have

W = C(λ21 + λ22 + λ23 − 3) (3.5.24)

and for the Mooney Rivlin model we have

W = C((λ21 + λ22 + λ23 − 3) + a(λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 − 3)). (3.5.25)

The above presented hyperelastic models are used in this thesis when computational

results are presented.

3.6 The numerical scheme and the implementation of the pressure model

In this section we describe aspects of the finite element method to attempt to get an

approximation uh in a finite element space Vh of the displacement field u. The finite

element spaces used in this thesis involve piecewise polynomials of degree 1 or 2 defined

on a triangular mesh of Ω and give functions which are in C(Ω̄), i.e. they are continuous

in Ω̄, and are such that they are in H1(Ω). The finite element test functions used are

similarly in this space and they also vanish on the boundary ∂Ω. The detail given is of

the nonlinear equations involved and the computation that is required on each element

to get what we call the element residual and the element Jacobian matrix which, when

assembled, give the vector valued function in the nonlinear equations and the Jacobian

matrix of that function. Both of these are needed in a Newton iteration. As we show the
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Jacobian matrix is symmetric. As we also explain, care is needed at some stages to do

the computations in such a way that we avoid division by 0 in some intermediate steps.

3.6.1 A prestretch and getting a solution for the first non-zero pressure

In this section we briefly comment on the practical aspect of getting the solution at

the first non-zero pressure and leave to subsection 3.6.6 further theoretical comments to

justify things a bit further. The theoretical comments are done in a later section as they

need some of the expressions which are given in the next few subsections where Newton’s

method is described.

The details in these subsections are about the numerical scheme to approximately

solve the following nonlinear problem. Find the displacement field u from the appropriate

space which satisfies

A(u; v, P ) = 0, where A(u; v, P ) = a1(u; v)− Pa2(u; v), (3.6.1)

for all v from the appropriate space. The term A(u; v, P ) is the same as what we usually

write as A(u; v) and is used here to indicate explicitly that the solution u depends on the

pressure P . The flat undeformed starting state corresponding to u = 0 is the solution

throughout the domain Ω when the pressure P = 0 and we have u = 0 on ∂Ω as the

boundary condition. If we give the flat sheet a uniform prestretch, e.g.

u1(x1, x2) = βx1, u2(x1, x2) = βx2, u3(x1, x2) = 0, (3.6.2)

where β > 0 is a constant, then we also have a solution (3.6.1) when P = 0 but instead

in the case of appropriate non-zero boundary conditions on ∂Ω corresponding to the

prestretch values. As we show in subsequent sections, the Jacobian matrix of the nonlinear

equations that we have to solve is symmetric and there is a term which comes from the

a1(.; .) part and there is a term which comes from the a2(.; .) part. When we start from

a prestretched state, i.e. β > 0, the term which comes from the a1(.; .) term gives a

symmetric positive definite matrix whilst the term which comes from the a2(.; .) part is

just symmetric. For small values of P the Jacobian matrix is hence symmetric and positive

definite when we evaluate it at a displacement field corresponding to the prestretched

state. The positive definite property of the Jacobian matrix term which arises from the

a1(.; .) term is as a consequence of the linearised problem to get the solution close to the

prestretched state. This is a linear problem which has a coercive property and we give

some details about this in subsection 3.6.6. If we want to solve the problem corresponding
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to u = 0 on ∂Ω, i.e. we do not have a prestretch, then the contribution to the Jacobian

matrix from the a1(.; .) term is a singular matrix when we evaluate at a displacement field

corresponding to u = 0 everywhere. For a little more detail here, the rows and columns

corresponding to every component of (u)3 are identically zero and we give a few more

comments about this in subsection 3.6.6. Hence when we have a prestretch we can take

this as the starting point in a Newton iteration for a small pressure P1 > 0 to attempt

to get a displacement field corresponding to the flat prestretched state but we cannot do

this when we want the solution corresponding to β = 0.

There are no results in this thesis for the inflation problem corresponding to u = 0 on

∂Ω as the boundary condition, this corresponds to having no prestretch, but there is a

strategy involving not too many additional steps to deal with this situation. To describe

this we briefly use the notation u(x, P1, β) to denote the solution with pressure P1 when the

boundary conditions correspond to a prestretch β. To attempt to get u(x, P1, 0) we first

obtain u(x, P1, β) for some small β 6= 0. We then create a displacement field ũ(x, P1, 0)

from u(x, P1, 0) which is such that ũ(x, P1, 0) = 0 when x ∈ ∂Ω. This vector will not

satisfy the weak problem but it can be used as the starting vector in the Newton iteration

to attempt to get u(x, P1, 0). How we get a possible vector ũ(x, P1, 0) depends on the

shape of Ω. In the case of Ω = {(x1, x2) : −1 ≤ x1, x2 ≤ 1} we can for example define ũ

via the equation

x+ ũ(x, P1, 0) =

(
1

1 + β

)
(x+ u(x, P1, β)). (3.6.3)

If the iteration does not converge then we can use u(x, P1, β) to attempt to get the

solution u(x, P1, β̃) for some 0 < β̃ < β in a similar manner to the above. Provided

the solution varies continuously with the parameter β̃ and every Jacobian matrix on the

path is non-singular we can use a continuation strategy to attempt to get the desired

solution u(x, P1, 0).

3.6.2 The equations for different pressures 0 = P0 < P1 < . . .

In this section we assume that we start with a prestretched state corresponding to u3 = 0

and F 6= I being constant throughout the domain and as indicated in the previous section

this is the solution at the pressure P0 = 0.

Suppose that we have a mesh of Ω which gives us the finite element space involving

piecewise linear elements and suppose that the spaces can be described as

uh ∈ span {v1, . . . , vm} and Vh = span {v1, . . . , vm̃} , m̃ < m (3.6.4)
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with the functions with index values m̃+ 1, . . . , m corresponding to points on ∂Ω where

uh is known. At any given pressure Pk the finite element problem involves determining

uh such that

Ai(uh;Pk) = a1(uh; vi)− Pka2(uh; vi) = 0, i = 1, . . . , m̃. (3.6.5)

Let A = (Ai) and let c(j) denote the unknown parameters of a candidate function u
(j)
h in a

Newton iteration to attempt to solve (3.6.5) with the Newton iteration being of the form

c(j+1) = c(j) − JA(c
(j);Pk)

−1A(u
(j)
h ;Pk), j = 0, 1, 2, . . . (3.6.6)

where JA(c
(j);Pk) is the Jacobian matrix associated with A(u

(j)
h ;Pk) in terms of how it

depends on c(j). The element-by-element details of constructing contributions to A and

JA are discussed later in section 3.6.3 and this might be considered as the finer details.

It is also important to have an overall set-up so that it is likely that the Newton iteration

in (3.6.6) will converge when the system of equations has a solution. This can usually be

done by considering the problem at a sequence of pressures

0 = P0 < P1 < · · · < Pk < · · ·

If P1 is close to P0 then the solution at P0 is likely to be close to the solution at P1 and

this generates a good starting vector for the Newton iteration. This approach is repeated

in an attempt to get a solution at pressure Pk given that we have obtained a solution at

pressure Pk−1. If the Newton iteration does not converge at pressure Pk then we replace

Pk by a pressure closer to Pk−1. We summarize this next as an algorithm when we attempt

increase the pressure in steps of magnitude Pstep.

Algorithm

1. Let k = 1, P0 = 0 and get the prestretch state to be used.

2. Set Pk = Pk−1 + Pstep.

3. Attempt to find the approximate solution uh with the pressure Pk starting the

Newton iteration with the solution at Pk−1.

4. If the iteration converges then replace k by k + 1.

5. If the iteration does not converge then replace Pstep by Pstep/2.

6. Goto step 2 or stop if all the required solutions have been obtained.
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This procedure works when the geometry and the constitutive model are such that

there is a solution and in the following we show graphically the deformed membranes

which are obtained in a few cases. In the case of a Mooney Rivlin model corresponding

to W = C((I1 − 3) + a(I2 − 3)) with C = 0.5 a = 0.1 we show in figure 3.1 the flat

sheet at the start, an intermediate state and the deformed sheet at the final pressure

considered which gives a height at the centre which is just above 2. At the start of the

deformation there is a prestretch of 0.2 and the mesh is a uniform mesh of 512 elements

which involves 289 nodes. A prestretch of magnitude 0.2 is used in all the examples shown

here. In the case of a neo-Hookean model corresponding to W = C(I1 − 3) with C = 1

we have a mesh which is approximately a 2:1 ellipse and has 311 elements and 180 nodes.

The starting state and the deformed sheet when the maximum height is just above 1 are

shown in Figure 3.2(a). In the case of the Jones Treloar model given in (3.5.23) we have

a mesh which is approximately the unit circle and which has 148 elements and 88 nodes.

The starting state and the state when the maximum height is just above 1.2 are shown in

Figure 3.3. In the case of the Jones Treloar model again we have a mesh of a square with

a circular hole which has 413 elements and 251 nodes. The starting state and the state

when the maximum height is just above 0.6 are shown in Figure 3.4. It is interesting to

compare the effect of doing essentially the same problem with the different hyperelastic

models and we do this in the case of the mesh used in Figure 3.1 and with the pressure

in each example adjusted so that we

(uh)3(0, 0)−H = 0, with H = 1.2. (3.6.7)

This is done by adding (3.6.7) to the set of equations to be solved and with adding

the pressure as an additional unknown. The 3 different deformed states are shown in

Figure 3.5, where we consider a square sheet. It is difficult when presented in this way

to easily detect that the deformed states are different and if you consider the differences

between the uh values at the 289 nodes the greatest difference is only about 0.047.

3.6.3 Computational details on the element level

In this section we describe some of the computations that we need to do on an element

to compute the residual A and the Jacobian matrix JA which appeared in (3.6.6). To

simplify the notation here we just write uh instead of u
(j)
h . On an element we let φ

i
denote

a basis function and we now let m denote the number of functions needed on the element.
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Fig. 3.1: Deforming a membrane in the shape of a square
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(b) Deformed ellipse

Fig. 3.2: The triangular mesh approximately represents a 2:1 ellipse. Fig. 3.2(a) show the
starting state and Fig. 3.2(b) show the deformed state when the pressure is such that the
height at the centre is just over 1
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(b) Circle mesh at the end

Fig. 3.3: Deforming a membrane in the shape of a circle
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Fig. 3.4: Deforming a membrane in the shape of a rectangle with a hole
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(a) Neo-Hookean model, the height at the centre is 1.2
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(b) Mooney Rivlin model, the height at the centre is
1.2
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(c) Jones Treloar model, the height at the centre is 1.2

Fig. 3.5: In each case the same mesh is used and the pressure P is determined so that the
height at the centre is 1.2.
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The finite element function uh has the form

uh =

m∑

i=1

uiφi. (3.6.8)

We consider triangles throughout and as there are 3 displacement components at each

point we have m = 9 with linear elements and m = 18 with quadratic elements. For

the description here we just consider the case m = 9. To describe a triangle we use

similar notation as it was used in chapter 2 and we let x1, x2, x3 denote the three nodes

of a triangle Ωr and we let N1, N2, N3 denote the scalar basis functions. Associated with

these 3 functions we have the 9 vector valued functions φ
1
, φ

2
, φ

3
, . . . , φ

9
as indicated by

(φ
1
, φ

2
, φ

3
, . . . , φ

9
) =



N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0

0 0 N1 0 0 N2 0 0 N3


 . (3.6.9)

These represent the test vectors on the element. Corresponding to this notation we

present the nodal displacement values in a similar way. We let uh(x1), uh(x2), uh(x3) be

the displacements at the nodes and then we define the corresponding vector

u = (ui) = ((uh(x1))1, (uh(x1))2, (uh(x1))3, (uh(x2))1, . . . , (uh(x3))3)
T ∈ R

9 (3.6.10)

which has all the nodal displacement values. Using this notation the function uh is given

by

uh(x1, x2) =

9∑

i=1

uiφi(x1, x2). (3.6.11)

If we let a1(·; ·)Ωr
and a2(·; ·)Ωr

mean the usual expressions for a1(·; ·) and a2(·; ·) with

instead the integrals taken over the element Ωr, i.e.

a1(uh;φi)Ωr
= h0

∫∫

Ωr

∂W

∂F
: ∇φ

i
dx1dx2, (3.6.12)

a2(uh;φi)Ωr
=

1

3

∫∫

Ωr

φ
i
·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2 +

1

3

∫∫

Ωr

w ·
(
∂φ

i

∂x1
× ∂w

∂x2

)
dx1dx2

+
1

3

∫∫

Ωr

w ·
(
∂w

∂x1
×
∂φ

i

∂x2

)
dx1dx2 (3.6.13)

then corresponding to the terms Ai(·; ·) which are in (3.6.5) the element version is defined

by

Ai(uh;Pk)r = a1(uh;φi)Ωr
− Pka2(uh;φi)Ωr

, 1 ≤ i ≤ 9. (3.6.14)
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On an element we thus have a 9×1 vector of nodal values and we have to compute a 9×1

element residual vector A(uh;Pk)r = (Ai(uh;Pk)r). To get the Jacobian matrix needed

in (3.6.6) we also need to compute the 9 × 9 element Jacobian matrix which we denote

by JA(uh;Pk). Some details about the element Jacobian matrix and why it is symmetric

are given in the next section.

3.6.4 The element Jacobian matrix

In the following, as the function uh is defined by its nodal values u ∈ R
9 we will write

a1(u;Pk)r and a2(u;Pk)r for a1(uh;Pk)r and a1(uh;Pk)r respectively and similarly we will

write A(u;Pk) for A(uh;Pk). For the Jacobian element matrix JA(u;Pk)r, we need to find

the partial derivatives of A(u;Pk)r with respect to parameters u1, . . . , u9.

Now, if you only wish to get the approximate solution and you are not so concerned

about the efficiency then the element Jacobian matrix JA(u;Pk)r can be approximated

column-by-column by using finite differences. For example, in the case of the rth column

we have

JA(u;Pk)er ≈
A(u+ hej ;Pk)− A(u;Pk)

h
for small h, (3.6.15)

where er denotes the rth column of the 9 × 9 identity matrix. Although this is a fairly

simple thing to do it does involve evaluating A(·;Pk)r at 10 different displacements when

we have linear triangles. The similar computation using the 6-noded quadratic triangles

involves evaluating at 19 different displacements. It is better to get the expression for

JA(u;Pk) and, as we will see later, the same expression also appears when the Gâteaux

derivatives are needed when dual problems are described.

The symmetry of the contribution from a1

In the double dot product operation

∂W

∂F
: ∇φ

i
(3.6.16)

both terms have shape 3× 2 which is the shape of F. It is convenient for the description,

and also for the implementation, to have a version of these which are reshaped as 6 × 1

and to refer to the individual entries with a single index accordingly. In each case the

6 entries are the entries in the first column followed by the entries in the second column.
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In the case of F we define F by

F =



F11 F12

F21 F22

F31 F32


 , F T = (F1, F2, F3, F4, F5, F6) = (F11, F21, F31, F12, F22, F32). (3.6.17)

In the case of ∇φ
i
we define ∇̄φ

i
to mean

(
∇̄φ

i

)T
=

(
∂φ

i

∂x1

T

,
∂φ

i

∂x2

T
)
. (3.6.18)

The double dot product operation can be expressed as the product of 6× 1 vectors as

∂W

∂F
: ∇φ

i
=

(
∂W

∂F

)T
∇̄φ

i
=

6∑

r=1

∂W

∂Fr

(
∇̄φ

i

)
r

i = 1, 2, . . . , 9. (3.6.19)

Now with F = F(u) the partial derivative with respect to a component of u gives, in

3× 2 terminology,
∂F

∂uj
= ∇φ

j
, j = 1, 2, . . . , 9. (3.6.20)

Hence if we partially differentiate (3.6.16) with respect to uj and use the chain rule we

have

∂

∂uj

(
∂W

∂F
: ∇φ

i

)
=

6∑

r=1

6∑

s=1

∂2W

∂Fs∂Fr

(
∇̄φ

i

)
r

(
∇̄φ

j

)
s
, i, j = 1, 2, . . . , 9. (3.6.21)

If we swap i and j we have the same quantity and thus we have symmetry in the contri-

bution of a1(·; ·) to the element Jacobian matrix.

The symmetry of the contribution from a2

The integrand in the a2 term is

φ
i
·
(
∂w

∂x1
× ∂w

∂x2

)
+ w ·

(
∂φ

i

∂x1
× ∂w

∂x2

)
+ w ·

(
∂w

∂x1
×
∂φ

i

∂x2

)
. (3.6.22)

Now as

w =



x1

x2

0


+

9∑

j=1

ujφj(x1, x2) (3.6.23)
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we have
∂w

∂uj
= φ

j
. (3.6.24)

Thus if we partially differentiate (3.6.22) with respect to uj then we have

φ
i
·
(
∂φ

j

∂x1
× ∂w

∂x2
+
∂w

∂x1
×
∂φ

j

∂x2

)

+ w ·
(
∂φ

i

∂x1
×
∂φ

j

∂x2
+
∂φ

j

∂x1
×
∂φ

i

∂x2

)
(3.6.25)

+ φ
j
·
(
∂φ

i

∂x1
× ∂w

∂x2
+
∂w

∂x1
×
∂φ

i

∂x2

)
.

If we swap i and j we have the same quantity and thus we have symmetry in the contri-

bution of a2(·; ·) to the element Jacobian matrix.

3.6.5 The computation of the derivatives of W

In this thesis we use throughout the constitutive model in the form W = W (λ1, λ2) and,

as has just been shown, we need the partial derivatives with respect to the components

of F in the expressions. To get the partial derivatives with respect to the components

of F just involves using the chain rule, as we describe next, although care is needed in

evaluating expressions when λ1 = λ2 and when these two stretch ratios are very close.

In the following we assume that W = W (λ1, λ2) has a representation in the Ogden

form, i.e.

W =

N∑

1

µp
νp

(λ
νp
1 + λ

νp
2 + λ

−νp
1 λ

−νp
2 − 3),

µp
νp

> 0. (3.6.26)

For shorthand in the expressions we now let

W1 =
∂W

∂λ1
and W2 =

∂W

∂λ2
. (3.6.27)

and for the second partial derivatives we let

W11 =
∂2W

∂λ21
, W12 =

∂2W

∂λ1∂λ2
, W22 =

∂2W

∂λ22
. (3.6.28)

By using the chain rule we get

∂W

∂Fs
= W1

∂λ1
∂Fs

+W2
∂λ2
∂Fs

. (3.6.29)
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For the second partial derivatives we have

∂2W

∂Fr∂Fs
= W11

∂λ1
∂Fr

∂λ1
∂Fs

+W22
∂λ2
∂Fr

∂λ2
∂Fs

+W12

(
∂λ1
∂Fr

∂λ1
∂Fs

+
∂λ2
∂Fr

∂λ2
∂Fs

)

+W1
∂2λ1
∂Fr∂Fs

+W2
∂2λ2
∂Fr∂Fs

. (3.6.30)

Although we can use (3.6.29) and (3.6.30) for most of the computations we need to adjust

when λ1 = λ2 as the second derivatives of λ1 and λ2 with respect to the components of

F tend to ∞ as λ1 → λ2 as we explain in a moment. The limit of the entire right hand

expression is however finite as λ1 → λ2 and we can overcome this difficulty by re-writing

as follows. For the last 2 terms in (3.6.30) we write

W1
∂2λ1
∂Fr∂Fs

+W2
∂2λ2
∂Fr∂Fs

=

(
W1 −W2

λ1 − λ2

)
(λ1−λ2)

∂2λ1
∂Fr∂Fs

+W2
∂2

∂Fr∂Fs
(λ1+λ2). (3.6.31)

Each of the terms

W1 −W2

λ1 − λ2
, (λ1 − λ2)

∂2λ1
∂Fr∂Fs

and
∂2

∂Fr∂Fs
(λ1 + λ2) (3.6.32)

have finite limits as λ1 → λ2.

The term (W1 −W2)/(λ1 − λ2)

With W given in (3.6.26) we have

W1 −W2

λ1 − λ2
=

N∑

p=1

µp

(
λ
νp
1 − λ

νp
2

λ1 − λ2

)
→

N∑

p=1

µpνpλ
νp−1
1 as λ1 → λ2. (3.6.33)

If we need to compute this accurately when λ1 6= λ2 but with λ1 and λ2 being very close

then we have

λ
νp
1 − λ

νp
2 =

∫ λ1

λ2

νpx
νp−1 dx, (3.6.34)

by letting x = λ2 + t(λ1 − λ2), 0 ≤ t ≤ 1, we get the following

λ
νp
1 − λ

νp
2 = (λ1 − λ2)νp

∫ 1

0

(λ2 + t(λ1 − λ2))
νp−1 dt. (3.6.35)

Therefore we end up we the following expression

λ
νp
1 − λ

νp
2

λ1 − λ2
= νp

∫ 1

0

(λ2 + t(λ1 − λ2))
νp−1 dt (3.6.36)
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and we can accurately approximate this using Gauss Legendre quadrature.

The first partial derivatives of λ1, λ2 and λ1 + λ2

λ21 and λ22 are the eigenvalues of C and we throughout we choose to take λ1 ≥ λ2. The

characteristic equation of C is

λ2 − (c11 + c22)λ+ (c11c22 − c212) = 0. (3.6.37)

Let ∆ ≥ 0 be such that

∆2 = (c11 + c22)
2 − 4(c11c22 − c212) = (c11 − c22)

2 + 4c212. (3.6.38)

Thus, we get the following expressions for λ21 and λ22

λ21 =
c11 + c22 +∆

2
and λ22 =

c11 + c22 −∆

2
. (3.6.39)

Now, for the first partial derivatives of λ1 and λ2, by using the chain rule, we get

∂λi
∂Fs

=
∂λi
∂c11

∂c11
∂Fs

+
∂λi
∂c22

∂c22
∂Fs

+
∂λi
∂c12

∂c12
∂Fs

, for i = 1, 2 and s = 1, . . . , 6. (3.6.40)

Since C = FTF,

(
c11 c12

c12 c22

)
=

(
F1 F2 F3

F4 F5 F6

)

F1 F4

F2 F5

F3 F6


 =

(
F 2
1 + F 2

2 + F 2
3 F1F4 + F2F5 + F3F6

F1F4 + F2F5 + F3F6 F 2
4 + F 2

5 + F 2
6

)
.

(3.6.41)

By using the above expression, we get the following partial derivatives with respect to F .

(
∂c11
∂F

)T
= 2(F1, F2, F3, 0, 0, 0), (3.6.42)

(
∂c22
∂F

)T
= 2(0, 0, 0, F4, F5, F6), (3.6.43)

(
∂c12
∂F

)T
= 2(F4, F5, F6, F1, F2, F3) (3.6.44)

Since

2∆
∂∆

∂c11
= 2(c11 − c22) we get

∂∆

∂c11
=
c11 − c22

∆
. (3.6.45)
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Similarly
∂∆

∂c22
= −

(
c11 − c22

∆

)
and

∂∆

∂c12
=

4c12
∆

(3.6.46)

The case λ1 = λ2 is when ∆ = 0 which is if and only if c11 = c22 and c12 = 0. Hence we

cannot evaluate in the form just given but it is sufficient to take the following

∂∆

∂c11
= 1,

∂∆

∂c22
= −1 and

∂∆

∂c12
= 0. (3.6.47)

Then, by using (3.6.39) we get the following partial derivatives with respect to c11

2λ1
∂λ1
∂c11

=
1

2

(
1 +

c11 − c22
∆

)
, 2λ2

∂λ2
∂c11

=
1

2

(
1− c11 − c22

∆

)
, (3.6.48)

Similarly we get the following partial derivatives with respect to c22

2λ1
∂λ1
∂c22

=
1

2

(
1− c11 − c22

∆

)
, 2λ2

∂λ2
∂c22

=
1

2

(
1 +

c11 − c22
∆

)
, (3.6.49)

For the partial derivatives with respect to c12 we have

2λ1
∂λ1
∂c12

=
4c12
∆

, 2λ2
∂λ2
∂c12

= −4c12
∆

. (3.6.50)

To be consistent with the above when considering the partial derivatives of ∆ when

λ1 = λ2 we take

2λ1
∂λ1
∂c11

= 1, 2λ2
∂λ2
∂c22

= 1, (3.6.51)

with all the other partial derivatives with respect to the components of C being 0, when

we use the values in (3.6.40).

In the case of the derivatives of a = λ1+λ2 the situation is a bit more straightforward

as

a2 = (λ1 + λ2)
2 = λ21 + λ22 + 2λ1λ2 (3.6.52)

= c11 + c22 + 2
√
c11c22 − c212. (3.6.53)
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The first partial derivatives satisfy

2a
∂a

∂c11
= 1 +

c22√
c11c22 − c212

, (3.6.54)

2a
∂a

∂c22
= 1 +

c11√
c11c22 − c212

, (3.6.55)

2a
∂a

∂c12
= −2

c12√
c11c22 − c212

. (3.6.56)

We then get the partial derivatives with respect to F by the chain rule, i.e.

∂a

∂Fs
=

∂a

∂c11

∂c11
∂Fs

+
∂a

∂c22

∂c22
∂Fs

+
∂a

∂c12

∂c12
∂Fs

. (3.6.57)

The second partial derivatives of λ1, λ2 and λ1 + λ2

We do not give every detail here and restrict to giving the main steps involved to get

something which we can evaluate to get the values needed in a computer program. If g

denotes either of λ1, λ2 or λ1 + λ2 then by partially differentiating with respect to Fr a

relation of the type (3.6.40) the product rule and chain rule gives

∂2g

∂Fr∂Fs
=

(
∂g

∂c211

∂c11
∂Fr

+
∂2g

∂c11∂c22

∂c22
∂Fr

+
∂2g

∂c11∂c12

∂c12
∂Fr

)
∂c11
∂Fs

+
∂g

∂c11

∂2c11
∂Fr∂Fs

+

(
∂2g

∂c22∂c11

∂c11
∂Fr

+
∂2g

∂c222

∂c22
∂Fr

+
∂2g

∂c22∂c12

∂c12
∂Fr

)
∂c22
∂Fs

+
∂g

∂c22

∂2c22
∂Fr∂Fs

+

(
∂2g

∂c12∂c11

∂c11
∂Fr

+
∂2g

∂c12∂c22

∂c22
∂Fr

+
∂2g

∂c212

∂c12
∂Fr

)
∂c12
∂Fs

+
∂g

∂c12

∂2c12
∂Fr∂Fs

. (3.6.58)

At a stage when these are needed the first derivative terms should have already been

obtained and the extra term needed to be able use this are all the second partial derivatives

of g with respect to c11, c22 and c12 and we need all the second partial derivatives of c11, c22

and c12 with respect all the components of F. The last part can be obtained from (3.6.42)–

(3.6.44) and the values are 2 or 0 depending on which term is being considered. The second

partial derivatives of g with respect to c11, c22 and c12 requires partially differentiating

the appropriate relation in (3.6.48)–(3.6.50) and (3.6.54)–(3.6.56). For example, partially
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differentiating the first relation in (3.6.48) with respect to c11 gives

4λ1
∂2λ1

∂c211
+ 4

(
∂λ1
∂c11

)2

=
1

∆
+ (c11 − c22)

∂

∂c11

(
1

∆

)

=
1

∆

(
1−

(
c11 − c22

∆

)2
)
. (3.6.59)

This is enough to indicate why the second partial derivative tends to ∞ in most ways in

which c11, c22 and c12 can vary with ∆ → 0 and it also indicates that

∆
∂2λ1

∂c211
and (λ1 − λ2)

∂2λ1

∂c211
=

(
∆

λ1 + λ2

)
∂2λ1

∂c211
(3.6.60)

each have finite limit as ∆ → 0.

3.6.6 Comments about the existence of the solution

In subsection 3.6.1 we discussed some aspects of starting from a prestretched state and

then in subsection 3.6.2 we described the procedure for attempting to get the solution

at a sequence of increasing pressures 0 = P0 < P1 < · · · . It depends on the shape of Ω

and the form of the strain energy function W as to whether or not we can only solve the

problem in this way for a limited range of pressures as the set-up can be such that we

reach the situation where we have a solution u at pressure Pk with the Jacobian matrix

JA(u;Pk) being singular. When this is the case we cannot use this solution to attempt

to get the solution at a nearby pressure Pk+1 and indeed there may not be a solution

at a pressure Pk+1 > Pk or at least there may not be a solution which is close to u.

This is a feature of nonlinear problems of this kind and the critical values of u and Pk

where this first occurs is typically a limit point and to proceed further needs some path

following technique which is not considered in this thesis. For the quasi-static problems

we restrict in this thesis to deformations for which JA is positive definite and recall that

in subsection 3.6.1 it was claimed that this is the case when we start with a prestretch.

The purpose of this subsection is to give some details as to why this is the case and we

give some justification for the existence of the solution for pressures which are not too

large.

Let u0 6= 0 denote the prestretched state at pressure P0 = 0 and let

A′(u;α, v, P ) =
d

ds
A′(u+ sα; v, P )

∣∣∣∣
s=0

(3.6.61)
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denote the first Gâteaux derivative of A. (We use Gâteaux derivatives much more in the

next chapter.) If we let P denote a very small pressure and we let d = u − u0 be the

change in the solution then

A′(u0 + d; v, P ) = A(u0; v, P ) + A′(u0; d, v, P ) + (smaller terms of magnitude ‖d‖2)
(3.6.62)

and what we refer to as the linearised problem about u0 is to find d such that

A′(u0; d, v, P ) = −A(u0; v, P ), ∀v = (vi), vi ∈ H1
0 (Ω). (3.6.63)

This is a linear problem for d and the finite element discretized version is the first step

of Newton’s method for the nonlinear problem. We consider next some properties of this

linear problem to justify why it has a solution. For the right hand side in (3.6.63) we have

−A(u0; v, P ) = −a1(u0; v) + Pa2(u0; v)

= −h0
∫∫

Ω

∂W

∂F
: ∇v dx1dx2

+P

∫∫

Ω

v ·
(
∂w0

∂x1
× ∂w0

∂x2

)
dx1dx2, (3.6.64)

where w0 = x+u0 is the prestretched state and where ∂W/∂F is evaluated at F0 = I+∇u0.
With the first Gâteaux derivatives of a1 and a2 defined in a similar way to that of Gâteaux

derivative of A we have for the left hand side of (3.6.63) that

A′(u0; d, v, P ) = a′1(u0; d, v)− Pa′2(u0; d, v) (3.6.65)

where

a′1(u0; d, v) = h0

∫∫

Ω

6∑

r=1

6∑

s=1

∂2W

∂Fs∂Fr
(∇̄d)r(∇̄d)s dx1dx2 (3.6.66)

and

a′2(u0; d, v) =

∫∫

Ω

v ·
(
∂d

∂x1
× ∂w0

∂x2
+
∂w0

∂x1
× ∂d

∂x2

)
dx1dx2 (3.6.67)

=
1

3

∫∫

Ω

v ·
(
∂d

∂x1
× ∂w0

∂x2
+
∂w0

∂x1
× ∂d

∂x2

)
dx1dx2

+
1

3

∫∫

Ω

w0 ·
(
∂v

∂x1
× ∂d

∂x2
+

∂d

∂x1
× ∂v

∂x2

)
dx1dx2

+
1

3

∫∫

Ω

d ·
(
∂v

∂x1
× ∂w0

∂x2
+
∂w0

∂x1
× ∂v

∂x2

)
dx1dx2. (3.6.68)

The expression in the integrand of (3.6.66) corresponds to what is given in (3.6.21) and
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the expression in the integrand of the symmetric version in (3.6.67) corresponds to what

is given in (3.6.26). To be able to use the Lax-Milgram theorem to show that (3.6.63) has

a unique solution when P is sufficiently small we need to verify that the conditions of the

theorem hold.

Firstly, the vector d = d(x1, x2) that we seek is 0 on ∂Ω and thus the function space

is V = H1
0 (Ω) and a norm on this space is such that

‖v‖2H1
0
=

∫∫

Ω

(
∂v1
∂x1

)2

+

(
∂v2
∂x1

)2

+

(
∂v3
∂x1

)2

+

(
∂v1
∂x2

)2

+

(
∂v2
∂x2

)2

+

(
∂v3
∂x2

)2

dx1dx2.

(3.6.69)

It is useful to also give other similar notation here for the norms of vector valued function

defined on Ω.

‖v‖2L2
=

∫∫

Ω

v21 + v22 + v23 dx1dx2, (3.6.70)

‖v‖2H1 = ‖v‖2L2
+ ‖v‖2H1

0

. (3.6.71)

By Friedrich’s inequality, see e.g. [10, p.104], the norm ‖.‖H1
0

for functions in H1
0 is equiv-

alent to the norm of H1(Ω) and this equivalence of norms means that if we show that the

linear functional on the right hand side of (3.6.63) is bounded in one norm then it is also

bounded in the other norm. Similarly, if we get a lower bound for A′(u0; v, v, P ) in one

of the norms, when P is sufficiently small, then there is also a similar bound in the other

norm.

We consider now bounding the linear functional given in (3.6.64). Now recall that the

term ∂W/∂F is evaluated at the prestretch state and does not vary in Ω and ∂W/∂F : ∇v
is of the form

k11
∂v1
∂x1

+ k21
∂v2
∂x1

+ k31
∂v3
∂x1

+ k12
∂v1
∂x2

+ k22
∂v2
∂x2

+ k32
∂v3
∂x2

.

If we let

km = max {|kij| : 1 ≤ i ≤ 3, 1 ≤ j ≤ 2}

then by using the triangle inequality and the Cauchy Schwarz inequality

∣∣∣∣h0
∫∫

Ω

∂W

∂F
: ∇v dx1dx2

∣∣∣∣ ≤ h0km

∫∫

Ω

∣∣∣∣
∂v1
∂x1

∣∣∣∣+ · · ·+
∣∣∣∣
∂v3
∂x2

∣∣∣∣ dx1dx2

≤ h0km
√
(area of Ω)

(∥∥∥∥
∂v1
∂x1

∥∥∥∥
L2

+ · · ·+
∥∥∥∥
∂v3
∂x2

∥∥∥∥
L2

)

≤ 6h0km
√

(area of Ω) ‖v‖H1
0
. (3.6.72)
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For the part in the expression in (3.6.64) involving the cross product we let k̂m denote

the largest of the magnitudes of the entries of the vector
∂w0
∂x1

× ∂w0
∂x2

. By the triangle

inequality and the Cauchy Schwarz inequality we have

∣∣∣∣P
∫∫

Ω

v ·
(
∂w0

∂x1
× ∂w0

∂x2

)
dx1dx2

∣∣∣∣ ≤ P k̂m

∫∫

Ω

|v1|+ |v2|+ |v3| dx1dx2

≤ P k̂m
√
(area of Ω)

(
(‖v1‖L2

+ ‖v2‖L2
+ ‖v3‖L2

)

≤ 3P k̂m
√

(area of Ω) ‖v‖L2
. (3.6.73)

From (3.6.72) and (3.6.73) we define Cm to be the larger of the constants, i.e. Cm =

max
{
6h0km, 3P k̂k

}
(area of Ω) so that we have

|A(u0; v, P )| ≤ Cm ‖v‖H1 (3.6.74)

and we have verified that the right hand side of (3.6.63) defines a bounded linear func-

tional.

We now consider the left hand side term in (3.6.63). With suitable properties for the

strain energy density W similar reasoning to what has been given above shows that the

bilinear form satisfies a bounded property of the form

|A′(u0;α, v, P )| ≤ (const.) ‖α‖H1 ‖v‖H1 . (3.6.75)

We just consider some details to justify that the bilinear form satisfies a coercivity property

when the pressure P is sufficiently small. Now from (3.6.65) we have when d = v

A′(u0; v, v, P ) = a′1(u0; v, v)− Pa′2(u0; v, v). (3.6.76)

For the a′1 term we need properties of the 6 × 6 matrix (∂2W/∂Fr∂Fs). For the strain

energy density functions that are considered this matrix is positive definite when the

sheet is in tension corresponding to the stretch ratios λ1 ≥ λ2 > 1 which is what we have

when we have a prestretch. We could give fairly lengthy details to verify this but the

details are already available in [3]. In [3] it is shown that (∂2W/∂Fr∂Fs) when evaluated

at a general deformation (F1, F2, F3, F4, F5, F6)
T is positive definite if and only if the

corresponding matrix evaluated at a diagonal F with the same principal values λ1, λ2 is

positive definite. In this context the diagonal F in 3× 2 form is



λ1 0

0 λ2

0 0
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and in 6× 1 vector form corresponds to (λ1, 0, 0, 0, λ2, 0)
T . As given in [3] the expression

for the 6 × 6 matrix when evaluated with such an F is a relatively short expression and

is given by




W11 0 0 0 W12 0

0 G 0 H 0 0

0 0 W1/λ1 0 0 0

0 H 0 G 0 0

W12 0 0 0 W22 0

0 0 0 0 0 W2/λ2




, G =
λ1W1 − λ2W2

λ21 − λ22
, H =

λ2W1 − λ1W2

λ21 − λ22
.

(3.6.77)

When λ1 ≥ λ2 > 1 the positive definite property is thatW1 > 0,W2 > 0 and the following

two 2× 2 matrices (
W11 W12

W12 W22

)
,

(
G H

H G

)
,

are positive definite. With a prestretch as described this is constant throughout Ω and if

we let µ1 > 0 denote the smallest eigenvalue then we have

a′1(u0; v, v) ≥ µ1 ‖v‖2H1
0
. (3.6.78)

This is the coercivity property of the first part on the left hand side of (3.6.63).

When P is sufficiently small the a′2 term cannot change much the lower bound for

A′(u0; v, v, P ) provided we can show that the a′2 term is suitably bounded. Now, as given

in (3.6.67) and (3.6.68), we have two ways to represent a′2(u0; v, v) and for the bound we

can just take the shorter version (3.6.67). Let

q =
∂v

∂x1
× ∂w0

∂x2
+
∂w0

∂x1
× ∂v

∂x2
(3.6.79)

and in the following we use |.| for the Euclidean length of a vector. By the triangle

inequality for vectors and properties of the cross product we have

∣∣q
∣∣ ≤

∣∣∣∣
∂v

∂x1
× ∂w0

∂x2

∣∣∣∣ +
∣∣∣∣
∂w0

∂x1
× ∂v

∂x2

∣∣∣∣

≤
∣∣∣∣
∂v

∂x1

∣∣∣∣
∣∣∣∣
∂w0

∂x2

∣∣∣∣+
∣∣∣∣
∂w0

∂x1

∣∣∣∣
∣∣∣∣
∂v

∂x2

∣∣∣∣ .

Let

k̃m = max

{∣∣∣∣
∂w0

∂x1

∣∣∣∣ ,
∣∣∣∣
∂w0

∂x2

∣∣∣∣
}
.
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Using this we have

∣∣q
∣∣ ≤ k̃m

(∣∣∣∣
∂v

∂x1

∣∣∣∣+
∣∣∣∣
∂v

∂x2

∣∣∣∣
)
,

∣∣q
∣∣2 ≤ k̃2m

(∣∣∣∣
∂v

∂x1

∣∣∣∣
2

+

∣∣∣∣
∂v

∂x2

∣∣∣∣
2

+ 2

∣∣∣∣
∂v

∂x1

∣∣∣∣
∣∣∣∣
∂v

∂x2

∣∣∣∣

)

≤ 2k̃2m

(∣∣∣∣
∂v

∂x1

∣∣∣∣
2

+

∣∣∣∣
∂v

∂x2

∣∣∣∣
2
)
.

By the Cauchy Schwarz inequality we then have that

a′2(u0; v, v) ≤ 2k̃m
(
‖v1‖L2

‖q1‖L2
+ ‖v2‖L2

‖q2‖L2
+ ‖v3‖L2

‖q3‖L2

)

≤ 6k̃m ‖v‖L2
‖v‖H1

0
.

As ‖v‖L2
≤ ‖v‖H1 and ‖v‖H1

0
≤ ‖v‖H1 we have a bound

a′2(u0; v, v) ≤ 6k̃m ‖v‖2H1 . (3.6.80)

From the earlier comment about the equivalence of the norms ‖.‖H1 and ‖.‖H1
0
for functions

in H1
0 (Ω) ⊂ H1(Ω) it follows from (3.6.78) and (3.6.80) that when P > 0 is sufficiently

small there exists a constant c1 > 0 such that

A′(u0; v, v, P ) ≥ c1 ‖v‖2H1
0
. (3.6.81)

This completes the details to verify that the conditions of the Lax-Milgram theorem hold

for the linear problem in (3.6.63) to have a unique solution in H1
0 (Ω).

We finish this subsection with comments about the situation when there is no pre-

stretch which corresponds to u0 = 0, w0 = x, F = I and λ1 = λ2 = 1. When this is the

case W1 = W2 = 0 and all components of the stress Π are 0. We do not have the coer-

civity property and in particular if v = (0, 0, v3)
T with v3 = v3(x1, x2) not being identical

zero on Ω then a′1(0; v, v) = 0. We have a similar situation with the a′2 term since we have

a′2(0; v, v) =

∫∫

Ω

v3e3 ·
(
∂v3
∂x1

e3 × e2 + e1 ×
∂v3
∂x2

e3

)
dx1dx2 = 0. (3.6.82)

In the numerical scheme the rows of the Jacobian matrix associated with entries in the e3

direction are all zero when we evaluate it at u = 0 and thus it is a singular matrix. Hence,

as already mentioned, we cannot start a Newton iteration with a vector corresponding

to u = 0.
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4.1 Introduction and some of the notation

This chapter is mainly concerned with describing, in an abstract way, how to represent

the error in an approximation to a QoI when the problem which determines the primary

unknown is a weak form description of a system of nonlinear PDEs. The first of the specific

weak forms that is considered is the membrane problem given in (3.4.15)–(3.4.17), once a

strain energy function has been specified, and this is considered further in the last section

of this chapter. The other two weak forms that are considered are given in chapter 6

when the axisymmetric membrane problem is considered in the quasi-static case and in

the dynamic cases. The estimation of the error in a QoI for the problems in chapter 6

and considered in chapter 7.

In the abstract description, we show that the difference between the QoI we wish to

compute and the approximate value we actually compute can be represented in terms of

a function which satisfies a related dual problem and we cannot in general solve the dual

problem exactly. If we refer to the dual problem which gives the exact representation as

the exact dual problem then we discuss different ways in which it might be approximated

which gives us different possible computable schemes.
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To describe the main problem and the QoI we use the following notation.

V = infinite dimensional Hilbert space of functions defined on Ω,

Vh = finite element space involving piecewise polynomials where Vh ⊂ V ,

U = exact solution in V to the weak problem,

Uh = finite element approximation in Vh ,

eh = U − Uh = error in the approximation of Uh to U,

J = QoI functional,

J(U) = the quantity we wish to compute,

J(Uh) = our estimate of the QoI,

A(·; ·) = semi-linear form on V × V in the problem defining U , (see comment below),

F (·) = linear functional on V in the problem defining U (see comment below).

Notes

(i) h denotes a mesh size and when convergence is mentioned we mean as h→ 0.

(ii) Ω denotes a generic domain in both space and time region which we define later

appropriately.

(iii) The semi-linear form A(·; ·) is linear in terms after the semi-colon and in all our

cases it is nonlinear in terms before the semi-colon. The argument before and after

the semi-colon are functions in the Hilbert space V being considered. Similarly the

the argument of the linear functional F (·) is also for a function in the Hilbert space

V being considered. Thus in particular if U, v1, v2 ∈ V and α1, α2 ∈ R then

A(U ;α1v1 + α2v2) = α1A(U ; v1) + α2A(U ; v2), (4.1.1)

F (α1v1 + α2v2) = α1F (v1) + α2F (v2). (4.1.2)

In cetain places in what follows we will need a degree of smoothness of the semi-linear

form A(·; ·) involving Gâteaux derivatives be bounded and we define a Gâteaux

derivative in section 4.2. Another property that we require in some places later

in the chapter is that the first Gâteaux derivative satisfies a coercive property and

what we explain what this means in this context when the property is needed.

We not not consider details sufficient to guarantee the existence of a solution in an

abstract setting and restrict to introducing the problems which we assume have solutions.
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We assume that we have a Hilbert space V an appropriate semi-linear form A(·; ·) and a

linear functional F (· · · ) such that there exists a unique solution U ∈ V satisfying

A(U ;ψ) = F (ψ), ∀ψ ∈ V. (4.1.3)

Similarly we assume that there exists a unique solution Uh ∈ Vh satisfying

A(Uh;ψ) = F (ψ), ∀ψ ∈ Vh. (4.1.4)

We refer to the solution U satisfying (4.1.3) as the exact solution and we refer to Uh

as the finite element approximation of U . The aim of a computation is to compute an

estimate J(Uh) of J(U) of sufficient accuracy and in the next section we show a way of

representing the error J(U)− J(Uh).

Furthermore, when Vh ⊂ V the subtraction of (4.1.4) from (4.1.3) gives

A(U ;ψ)− A(Uh;ψ) = 0 ∀ψ ∈ Vh. (4.1.5)

which is similar to the Galerkin orthogonality result in the linear case.

As a final point here, it is worth noting that for quasi-static membrane inflation problems

considered in this thesis the term F (ψ) = 0 as we have already given in (3.6.1). This is

not really any significant simplification or special case but is just as a consequence of the

pressure loading term being part of the A(·; ·) term. As two of the three weak problems

being considered in this thesis are of this type it is worth indicating here how the problems

will appear in these cases. Specifically, in these case the weak forms will appear as follows.

We need to find the solution U ∈ V that satisfies

A(U ;ψ) = 0, ∀ψ ∈ V (4.1.6)

Similarly when F (ψ) = 0, the finite element solution Uh ∈ Vh satisfies

A(Uh;ψ) = 0, ∀ψ ∈ Vh. (4.1.7)

4.2 A representation of J(U)− J(Uh) and a dual solution ψ

Many of the details presented can be found in [17] and [28] and see also [8].

In the case of a differentiable function g : R → R, the fundamental theorem of calculus
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gives us a representation for the difference between two function values as

g(c)− g(b) =

∫ c

b

g′(s) ds.

We can extend this idea to functionals with the derivative of a function replaced by the

Gâteaux derivative of a functional in the direction of another function which we next

define. Let ψ ∈ V be fixed. The first Gâteaux derivatives of J(·) and A(·;ψ) in the

direction of α ∈ V are defined as follows.

J ′ (u;α) :=
d

ds
J (u+ sα)

∣∣∣∣
s=0

and A′
(
u;α, ψ

)
:=

d

ds
A
(
u+ sα;ψ

)∣∣∣∣
s=0

. (4.2.1)

Now if we take the direction α = eh = U − Uh and we let

g(s) = J(Uh + seh), 0 ≤ s ≤ 1, (4.2.2)

then

g′(s) = J ′(Uh + seh; eh), 0 ≤ s ≤ 1, (4.2.3)

and

J(U)− J(Uh) = g(1)− g(0) =

∫ 1

0

g′(s) ds =

∫ 1

0

J ′(Uh + seh; eh) ds. (4.2.4)

We can similarly write

A(U ;ψ)− A(Uh;ψ) =

∫ 1

0

A′(Uh + seh; eh, ψ) ds (4.2.5)

and since U satisfies (4.1.3) we have

F (ψ)− A(Uh;ψ) =

∫ 1

0

A′(Uh + seh; eh, ψ) ds. (4.2.6)

As we do not know the error direction eh we consider all possible directions α, which will

include eh, and we now let ψ ∈ V be such that

∫ 1

0

A′
(
Uh + seh;α, ψ

)
ds =

∫ 1

0

J ′ (Uh + seh;α) ds ∀α ∈ V. (4.2.7)

This is a linear problem and it is what we refer to as the exact dual problem partly

because the first argument in the terms A′(·; ·, ·) and J ′(·; ·) involve the exact solution

U . We assume that the set-up is such that there exists a unique solution to this dual

problem and, without going into details, sufficient conditions for this would be a coercive
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and bounded property of A′(Uh + seh; ·, ·) for all 0 ≤ s ≤ 1, a bounded property of

J ′(uh + seh) for all 0 ≤ s ≤ 1 and continuity of both terms with respect to s. Accepting

that there is such a φ it follows that by using (4.2.5) and (4.2.4) the representation of the

error in the approximation of the functional is given by

J(U)− J(Uh) = F (ψ)− A(Uh;ψ). (4.2.8)

The solution to the exact dual problem hence gives us an exact representation of the error.

There are other ways we can write (4.2.8) as a consequence of the function Uh satis-

fying (4.1.4), e.g.

J(U)− J(Uh) = F (ψ − vh)− A(Uh;ψ − vh) ∀vh ∈ Vh. (4.2.9)

Now for the problems considered in the thesis, and these are covered in section 4.6 and

chapter 7, the expression for F (·) and A(·; ·) involve integrating over a domain Ω and in

the finite element method Ω is partitioned into elements Ω1, . . . ,Ωne. If we let F (·)k and

A(·; ·)k denote the versions of F (·) and A(·; ·) when we just integrate over the element Ωk

then we have

J(U)− J(Uh) =
ne∑

k=1

F (ψ − vh)k −
ne∑

k=1

A(Uh;ψ − vh)k ∀vh ∈ Vh. (4.2.10)

If we take vh = ψ
I
to be the interpolant of ψ in Vh, or we take some other projection of

ψ in the function space, then quantities such as

F (ψ − ψ
I
)k − A(Uh;ψ − ψ

I
)k, k = 1, . . . , ne (4.2.11)

are taken as the element contributions to the value J(U) − J(Uh) and when we can

adequately approximate ψ the corresponding quantities may be used to drive an adaptive

scheme.

4.3 The rate at which J(U)− J(Uh) tends to 0 as h→ 0

With a representation of the error we can now make some theoretical comments about

how rapidly it decreases as a mesh is refined.

From the representation and the Galerkin orthogonality type property given in (4.1.5)
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we have that for all ψ
h
∈ Vh

J(U)− J(Uh) = F (ψ)−A(Uh;ψ)

= A(U ;ψ)− A(Uh;ψ)

= A(U ;ψ − ψ
h
)− A(Uh;ψ − ψ

h
)

=

∫ 1

0

A′(Uh + seh; eh, ψ − ψ
h
) ds. (4.3.1)

The expression A′(Uh+ seh; eh, ψ−ψ
h
) is linear in the terms eh and ψ−ψ

h
which appear

after the semi-colon and thus we have a product of the components of such terms. Now

it depends on the expression for A(·; ·) which generates A′(·; ·, ·) what can be said and in

the case that A′(Uh + seh; ·, ·) is bounded for all s ∈ [0, 1] and the terms to the right of

the semi-colon involve function values and first derivative values this leads to

|J(U)− J(Uh)| ≤ (const) ‖eh‖H1(Ω)

∥∥∥ψ − ψ
h

∥∥∥
H1(Ω)

∀ψ
h
∈ Vh. (4.3.2)

When piecewise polynomials of degree p are used in the finite element approximation the

best that we can have for the error is that ‖eh‖H1 is O(hp) as discussed in the preliminary

chapter, see also [10, p.102]. Also, when A′(·; ·, ·) and J ′(·) are such that ψ is sufficiently

smooth we know that there exists ψ
h
∈ Vh such that

∥∥∥ψ − ψ
h

∥∥∥
H1(Ω)

is O(hp) (a suitable

interpolant has this property, see e.g. [10, p.109]). As we have the product of two terms

which are each O(hp) we deduce that when all the conditions are met

J(U)− J(Uh) = O(h2p). (4.3.3)

If ψ is not sufficiently smooth then the rate of convergence is less which is the case, for

example, if the functional J(·) involves pointwise values of the components of U . More

details of the above result can be found in [23].

4.4 Possible dual problems to solve

From the representation of the error given in (4.2.8) it follows that we need an approx-

imation to ψ which is from a different space than Vh as otherwise our estimate of the

error will just be 0 and in this thesis our different space V̄h involves piecewise polynomials

of one degree higher than is used for Vh. That is if Vh involves piecewise polynomials

of degree p then V̄h involves piecewise polynomials of degree p + 1. With this choice V̄h
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is thus a larger space than Vh. Now in the representation in (4.2.7) we only know the

quantities in the integrands when s = 0 and this leads to the following dual problem.

Find ψ
h
∈ V̄h such that

A′(Uh;α, ψh) = J ′(Uh;α) ∀α ∈ V̄h (4.4.1)

which leads to the estimate

J(U)− J(Uh) ≈ F (ψ
h
)− A(Uh;ψh). (4.4.2)

The discussion about the existence and uniqueness of a solution that followed (4.2.7)

similarly applies here and we comment later in this section about the accuracy of the

estimate.

Although the problem just described is a linear problem it more computationally

demanding than any step in a Newton iteration to get Uh as V̄h is a larger function space

than Vh. Now given the effort involved to get ψ
h
, we can also consider getting Ūh ∈ V̄h

satisfying

A(Ūh;α) = F (α) ∀α ∈ V̄h. (4.4.3)

In the quasi-static problems described later the approximation Uh ∈ Vh can be used to get

the starting point in the Newton iteration used to get the coefficients of the approximation

Ūh. With Ūh usually being a better approximation to U than is Uh we can use it to create

a dual problem which is closer to the exact dual problem as follows. By using the mid-

point approximation rule, let

Um
h =

1

2
(Ūh + Uh) (4.4.4)

and then let ψ̄
h
∈ V̄h satisfy

A′
(
Um
h ;α, ψ̄h

)
= J ′ (Um

h ;α) ∀α ∈ V̄h. (4.4.5)

The estimate of the QoI in this case is

J(U)− J(Uh) ≈ F (ψ̄
h
)− A(Uh; ψ̄h). (4.4.6)

To explain why the estimate (4.4.6) is likely to be a good estimate when the mesh

size h is sufficiently small and Vh and V̄h involve polynomials of degree p and p + 1

respectively can be done as follows given some assumptions about A′(·; ·, ·). We assume

that A′(Uh + seh; ·, ·) is coercive and bounded for all data in a region containing Uh and
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U , i.e. there exists constants 0 < c0 ≤ c1 such that

c0 ‖v‖2H1(Ω) ≤
∫ 1

0

A′ (Uh + seh; v, v) ds, ∀v ∈ V, (4.4.7)

∣∣∣∣
∫ 1

0

A′ (Uh + seh; v1, v2) ds

∣∣∣∣ ≤ c1 ‖v1‖H1(Ω) ‖v2‖H1(Ω) ∀v1, v2 ∈ V, (4.4.8)

where here V = H1
0 (Ω). As already stated the exact dual solution ψ satisfies (4.2.7) and

as an intermediate problem to compare with, let ψ̃
h
∈ V̄h be such that

∫ 1

0

A′
(
Uh + seh;α, ψ̃h

)
ds =

∫ 1

0

J ′ (Uh + seh;α) ds ∀α ∈ V̄h. (4.4.9)

When α ∈ V̄h we can subtract (4.4.9) from (4.2.7) and use the linearity of the A′(·; ·, ·)
terms after the semi-colon to write

∫ 1

0

A′
(
Uh + seh;α, ψ − ψ̃

h

)
ds = 0 ∀α ∈ V̄h. (4.4.10)

We will use this Galerkin like orthogonality result in a moment. Now the coercive property

with α = ψ − ψ̃
h
gives

c0

∥∥∥ψ − ψ̃
h

∥∥∥
2

H1(Ω)
≤
∫ 1

0

A′
(
Uh + seh;ψ − ψ̃

h
, ψ − ψ̃

h

)
ds. (4.4.11)

If we take the Galerkin orthogonality result (4.4.10) with α = ψ
h
−ψ

I
, where ψ

I
∈ V̄h is

a suitably defined interpolant of ψ ∈ V from the finite element space V̄h, and add this to

the right hand side of (4.4.11) then the inequality can be written as

c0

∥∥∥ψ − ψ̃
h

∥∥∥
2

H1(Ω)
≤

∫ 1

0

A′
(
Uh + seh;ψ − ψ

I
, ψ − ψ̃

h

)
ds (4.4.12)

≤ c1

∥∥∥ψ − ψ
I

∥∥∥
H1(Ω)

∥∥∥ψ − ψ̃
h

∥∥∥
H1(Ω)

. (4.4.13)

Thus we get ∥∥∥ψ − ψ̃
h

∥∥∥
H1(Ω)

≤
(
c1
c0

)∥∥∥ψ − ψ
I

∥∥∥
H1(Ω)

, (4.4.14)

which implies that ∥∥∥ψ − ψ̃
h

∥∥∥
H1(Ω)

= O(hp+1). (4.4.15)

As the next intermediate problem we replace the exact error eh by ēh = Ūh − Uh and
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let ψ̂
h
∈ V̄h be the solution to

∫ 1

0

A′
(
Uh + sēh;α, ψ̂h

)
ds =

∫ 1

0

J ′ (Uh + sēh;α) ds ∀α ∈ V̄h. (4.4.16)

Both (4.4.9) and (4.4.16) involve the same test space V̄h but they have different data and

to compare them it helps to define δ1(α) and δ2(α) via the relations

∫ 1

0

A′(Uh + seh;α, ψ̃h) ds =

∫ 1

0

A′(Uh + sēh;α, ψ̃h) ds+ δ1(α), (4.4.17)

∫ 1

0

J ′(Uh + seh;α) ds =

∫ 1

0

J ′(Uh + sēh;α) ds+ δ2(α). (4.4.18)

By using the equation that each of ψ̃
h
and ψ̂

h
satisfy we have

∫ 1

0

A′(Uh + sēh;α, ψ̃h) ds =

∫ 1

0

A′(Uh + seh;α, ψ̃h) ds− δ1(α) (4.4.19)

=

∫ 1

0

J ′(Uh + seh;α) ds− δ1(α) (4.4.20)

=

∫ 1

0

J ′(Uh + sēh;α) ds+ δ2(α)− δ1(α) (4.4.21)

=

∫ 1

0

A′(Uh + sēh;α, ψ̂h) ds+ δ2(α)− δ1(α).(4.4.22)

By the linearity of A(·; ·, ·) in terms after the semi-colon we can collect the A′ terms

together and write

∫ 1

0

A′(Uh + sēh;α, ψ̃h − ψ̂
h
) ds = δ2(α)− δ1(α). (4.4.23)

As the difference ψ̃
h
− ψ̂

h
∈ V̄h the result holds with α = ψ̃

h
− ψ̂

h
∈ V̄h and by using the

coercivity property we have

c0

∥∥∥ψ̃
h
− ψ̂

h

∥∥∥
2

H1
≤

∫ 1

0

A′(Uh + sēh; ψ̃h − ψ̂
h
, ψ̃

h
− ψ̂

h
) ds

= δ2(ψ̃h − ψ̂
h
)− δ1(ψ̃h − ψ̂

h
). (4.4.24)

We separately bound the terms δ1 = δ1(ψ̃h − ψ̂
h
) and δ2 = δ2(ψ̃h − ψ̂

h
) after first giving

expressions for each. By expressing the difference between two function values as by the
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integral of the derivative we have

δ1 =

∫ 1

0

A′(Uh + seh; ψ̃h − ψ̂
h
, ψ̃

h
)− A′(Uh + sēh; ψ̃h − ψ̂

h
, ψ̃

h
) ds (4.4.25)

=

∫ 1

0

∫ 1

0

A′′(Uh + seh + ts(eh − ēh); s(eh − ēh), ψ̃h − ψ̂
h
, ψ̃

h
) dtds (4.4.26)

and

δ2 =

∫ 1

0

J ′(Uh + seh; ψ̃h − ψ̂
h
)− J ′(Uh + sēh; ψ̃h − ψ̂

h
) ds (4.4.27)

=

∫ 1

0

∫ 1

0

J ′′(Uh + seh + ts(eh − ēh); s(eh − ēh), ψ̃h − ψ̂
h
) dtds. (4.4.28)

We assume that the A′′ and J ′′ terms are bounded which specifically means that there

are constants c2 > 0 and c3 > 0 such that for all 0 <≤ s, t ≤ 1 and for all v1, v2, v3 ∈ H1

|A′′(Uh + seh + t(eh − ēh); v1, v2, v3)| ≤ c2 ‖v1‖H1 ‖v2‖H1 ‖v3‖H1 , (4.4.29)

|J ′′(Uh + seh + t(eh − ēh); v1, v2)| ≤ c3 ‖v1‖H1 ‖v2‖H1 . (4.4.30)

Then from how δ1 and δ2 are defined it follows that

|δ1(ψ̃h − ψ̂
h
)| ≤ c2 ‖eh − ēh‖H1

∥∥∥ψ̃
h
− ψ̂

h
)
∥∥∥
H1
, (4.4.31)

|δ2(ψ̃h − ψ̂
h
)| ≤ c3 ‖eh − ēh‖H1

∥∥∥ψ̃
h
− ψ̂

h
)
∥∥∥
H1
. (4.4.32)

From these last two inequalities and (4.4.24) it follows that

∥∥∥ψ̃
h
− ψ̂

h

∥∥∥
H1

≤ (const) ‖eh − ēh‖H1 = (const)
∥∥U − Ūh

∥∥
H1 . (4.4.33)

When the set-up of the problem defining U is sufficiently smooth such that a sequence

of finite element approximations converge at their maximal rate it follows that when we

have piecewise polynomials of degree p+ 1 for the space V̄h we have

∥∥∥ψ̃
h
− ψ̂

h

∥∥∥
H1

= O(hp+1). (4.4.34)

Finally we compare the function ψ̄
h
which satisfies (4.4.5) with the function ψ̂

h
which

satisfies (4.4.16) which we have just considered. For the comparison we define δ3(α) and
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δ4(α) via the relations

∫ 1

0

A′(Uh + sēh;α, ψ̂h) ds = A′(Um
h ;α, ψ̂h) + δ3(α), (4.4.35)

∫ 1

0

J ′(Uh + sēh;α) ds = J ′(Um
h ;α) + δ4(α). (4.4.36)

By the equation satisfied by ψ̄
h
we can re-write (4.4.36) as

∫ 1

0

J ′(Uh + sēh;α) ds = A′(Um
h ;α, ψ̄h) + δ4(α). (4.4.37)

By the property of ψ̂
h
we can equate (4.4.35) and (4.4.37) to give

A′(Um
h ;α, ψ̂h) + δ3(α) = A′(Um

h ;α, ψ̄h) + δ4(α) (4.4.38)

which, by the linearity of A′ after the semi-colon, gives

A′(Um
h ;α, ψ̂h − ψ̄

h
) = δ4(α)− δ3(α). (4.4.39)

Now if we take α = ψ̂
h
− ψ̄

h
∈ V̄h and use coercivity we have

c0

∥∥∥ψ̂
h
− ψ̄

h

∥∥∥
2

H1
≤ A′(Um

h ; ψ̂h − ψ̄
h
, ψ̂

h
− ψ̄

h
) = δ4(ψ̂h − ψ̄

h
)− δ3(ψ̂h − ψ̄

h
). (4.4.40)

We separately bound the δ3 and δ4 terms next which are both concerned with the error

in the mid-point rule approximation of an integral.

Now for a 2-times continuously differentiable function φ : [0, 1] → R Taylor’s series

with remainder gives

φ(s) = φ(1/2) + φ′(1/2)(s− 1/2) +
1

2
φ′′(ξ(s))(s− 1/2)2

for some 0 < ξ(s) < 1. It then follows that

∫ 1

0

(φ(s)− φ(1/2)) ds =
1

2

∫ 1

0

φ′′(ξ(s))(s− 1/2)2 ds

=
1

2
φ′′(η)

∫ 1

0

(s− 1/2)2 ds =
1

24
φ′′(η) (4.4.41)

for some 0 < η < 1. The main point here is that the mid-point rule is exact for de-

gree 0 and 1 polynomials and the error depends on the second derivative. In the case of
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bounding δ3(ψ̂h − ψ̄
h
) the function φ(s) is

φ(s) = A′(Uh + sēh; ψ̂h − ψ̄
h
, ψ̂

h
)

and, in terms of higher Gâteaux derivatives,

φ′′(s) = A′′′(Uh + sēh; ēh, ēh, ψ̂h − ψ̄
h
, ψ̂

h
). (4.4.42)

Similarly in the case of bounding δ4(ψ̂h − ψ̄
h
) the function φ(s) is

φ(s) = J ′(Uh + sēh; ψ̂h − ψ̄
h
)

and in this case

φ′′(s) = J ′′′(Uh + sēh; ēh, ēh, ψ̂h − ψ̄
h
). (4.4.43)

We assume that A′′′ and J ′′′ are bounded which specifically means that there are constants

c4 > 0 and c5 > 0 such that for all 0 ≤ s ≤ 1 and for all v1, v2, v3, v4 ∈ H1

|A′′′(Uh + seh; v1, v2, v3, v4)| ≤ c4 ‖v1‖H1 ‖v2‖H1 ‖v3‖H1 ‖v4‖H1 ,(4.4.44)

|J ′′′(Uh + seh + t(eh − ēh); v1, v2, v3)| ≤ c5 ‖v1‖H1 ‖v2‖H1 ‖v3‖H1 . (4.4.45)

Using this assumption with the definitions of δ3 and δ4 and the result about the error in

the mid-point rule gives the inequalities

|δ3(ψ̂h − ψ̄
h
)| ≤ c4 ‖ēh‖2H1

∥∥∥ψ̂
h
− ψ̄

h

∥∥∥
H1
, (4.4.46)

|δ4(ψ̂h − ψ̄
h
)| ≤ c5 ‖ēh‖2H1

∥∥∥ψ̂
h
− ψ̄

h

∥∥∥
H1
. (4.4.47)

Using these last 2 inequalities in (4.4.40) gives

∥∥∥ψ̂
h
− ψ̄

h

∥∥∥
H1

≤ (const) ‖ē‖2H1 (4.4.48)

and hence ∥∥∥ψ̂
h
− ψ̄

h

∥∥∥
H1

= O(h2p). (4.4.49)

As

ψ − ψ̄
h
= (ψ − ψ̃

h
) + (ψ̃

h
− ψ̂

h
) + (ψ̂

h
− ψ̄

h
)

the triangle inequality and p+ 1 ≤ 2p for p ≥ 1 gives

∥∥∥ψ − ψ̄
h

∥∥∥
H1

≤
∥∥∥ψ − ψ̃

h

∥∥∥
H1

+
∥∥∥ψ̃

h
− ψ̂

h

∥∥∥
H1

+
∥∥∥ψ̂

h
− ψ̄

h

∥∥∥
H1

= O(hp+1). (4.4.50)
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The other dual problem given in (4.4.1) computes instead ψ
h
and to consider how well

this approximates ψ can be done by replacing the mid-point rule step above with the left

hand approximation rule to the integral the accuracy is less. Firstly, when s > 0,

φ(s) = φ(0) + φ′(ξ(s))s

for some 0 < ξ(s) < s < 1 and

∫ 1

0

φ(s)− φ(0) ds =

∫ 1

0

φ′(ξ(s))s ds = φ′(η)

∫ 1

0

s ds =
1

2
φ′(η) (4.4.51)

for some 0 < η < 1. The rule is exact for degree 0 polynomials but not for degree 1

polynomials. Instead of getting the terms (4.4.42) and (4.4.43) we have to consider

A′′(Uh + sēh; ēh, ψ̂h − ψ̄
h
, ψ̂

h
) and J ′′(Uh + sēh; ēh, ψ̂h − ψ̄

h
).

and for the corresponding terms δ3 and δ4 we get for some constants c6 > 0 and c7 > 0

that

|δ3(ψ̂h − ψ̄
h
)| ≤ c6 ‖ēh‖H1

∥∥∥ψ̂
h
− ψ̄

h

∥∥∥
H1
, (4.4.52)

|δ4(ψ̂h − ψ̄
h
)| ≤ c7 ‖ēh‖H1

∥∥∥ψ̂
h
− ψ̄

h

∥∥∥
H1
. (4.4.53)

Thus instead of (4.4.48) we get

∥∥∥ψ̂
h
− ψ

h

∥∥∥
H1(Ω)

≤ (const) ‖ēh‖H1(Ω) = O(hp), (4.4.54)

so that overall we have ∥∥∥ψ − ψ
h

∥∥∥
H1(Ω)

= O(hp). (4.4.55)

We consider now what the results (4.4.50) and (4.4.55) mean for our estimates. In the

case of ψ
h
we have

J(U)− J(Uh)−
(
F (ψ

h
)−A(Uh;ψh)

)

=
(
F (ψ)− A(Uh;ψ)

)
−
(
F (ψ

h
)−A(Uh;ψh)

)

= F (ψ − ψ
h
)− A(Uh;ψ − ψ

h
)

= A(U ;ψ − ψ
h
)− A(Uh;ψ − ψ

h
)

=

∫ 1

0

A′(Uh + seh; eh, ψ − ψ
h
) ds. (4.4.56)
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When A′(Uh + seh; ·, ·) is bounded for all s ∈ [0, 1], the expression involves a product of

terms in the components of eh and ψ − ψ
h
and this leads to

J(U)− J(Uh)−
(
F (ψ

h
)− A(Uh;ψh)

)
= O(h2p), (4.4.57)

since ‖eh‖H1 and
∥∥∥ψ − ψ

h

∥∥∥
H1

are both O(hp). The estimate F (ψ
h
) − A(Uh;ψh) hence

tends to 0 at the same rate as J(U)− J(Uh). Similar reasoning in the case of ψ̄
h
gives

J(U)− J(Uh)−
(
F (ψ̄

h
)− A(Uh; ψ̄h)

)
=

∫ 1

0

A′(Uh + seh; eh, ψ − ψ̄
h
) ds. (4.4.58)

In this case the expression involves a product of terms in the components of eh and ψ− ψ̄h
and this leads to

J(U)− J(Uh)−
(
F (ψ̄

h
)− A(Uh; ψ̄h)

)
= O(h2p+1). (4.4.59)

Thus we have asymptotic exactness when we go the extra computational expense of

obtaining ψ̄
h
.

4.5 Comments about a Taylor’s series representation of J(U)− J(Uh)

For the computational problems considered later we have already given the results that

we need in an abstract setting about the dual problems that are going to be considered.

As background it is useful to present one further result which is often given as a way of

representing J(U)−J(Uh) by using a Taylor series type expression with a remainder, see

e.g. Oden and Prudhomme in [17]. The result involves yet another dual problem which

uses the exact solution U as data. The result can be described as follows.

Let ψ
U
∈ V satisfy

A′(U ;α, ψ
U
) = J ′(U ;α) ∀α ∈ V (4.5.1)

and to repeat what has been given before let ψ
h
∈ V̄h satisfy

A′(Uh;α, ψh) = J ′(Uh;α) ∀α ∈ V̄h. (4.5.2)

Also, as before, let

eh = U − Uh and now define eψ = ψ
U
− ψ

h
. (4.5.3)
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If we let

g0(s) = J(Uh + seh) + F (ψ
h
+ seψ)− A(Uh + seh;ψh + seψ) (4.5.4)

then the derivative of this with respect to s is

g′0(s) = J ′(Uh + seh; eh) + F (eψ)−A′(Uh + seh; eh, ψh + seψ)−A(Uh + seh; eψ). (4.5.5)

Then we get the following

g0(1) = J(U) and g0(0) = J(Uh) + F (ψ
h
)−A(Uh;ψh) (4.5.6)

g′0(1) = 0 and g′0(0) = J ′(Uh; eh) + F (eψ)−A′(Uh; eh, ψh)−A(Uh; eψ).(4.5.7)

Using (4.5.6) we get

J(U)− J(Uh) = F (ψ
h
)− A(Uh;ψh) + g0(1)− g0(0). (4.5.8)

This brings in the estimate in the first scheme described and the difference between the

true value and the estimate can be written as

g0(1)− g0(0) =

∫ 1

0

g′0(s) ds =
1

2
(g′0(0) + g′0(1)) +

1

2

∫ 1

0

s(s− 1)g′′′0 (s) ds (4.5.9)

by using the trapezoidal rule with an integral form of the remainder. The term involving

g′′′0 (s) involves the product of 3 terms. Now, by using (4.5.7) and with a little manipula-

tion, it can be shown that

1

2
(g′0(0) + g′0(1)) =

(
F (eψ)− A(Uh; eψ)

)
+ χ (4.5.10)

where

χ =
1

2

∫ 1

0

J ′′(Uh + seh; eh, eh)− A′′(Uh + seh; eh, eh, ψh + seψ)− A′(Uh + seh; eh, eψ) ds.

(4.5.11)

By using the equation (4.5.1) the first term

F (eψ)−A(Uh; eψ) = A(U ; eψ)−A(Uh; eψ) (4.5.12)

=

∫ 1

0

A′(Uh + s(U − Uh);U − Uh; eψ) ds. (4.5.13)

Assuming that A′(·; ·, ·) is bounded implies that

|F (eψ)− A(Uh; eψ)| ≤ (const) ‖U − Uh‖H1

∥∥eψ
∥∥
H1
. (4.5.14)
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When we use degree p polynomials we have that ‖U − Uh‖H1 is O(hp). The reasoning

of section 4.4 shows that when we change the data in the dual problem by O(hp) the

solution changes by this order in the H1 norm and thus
∥∥eψ
∥∥
H1(Ω)

is also O(hp). Thus

the expression in (4.5.10) decays like O(h2p) which is what has already been deduced.

4.6 A dual problem for the non-axisymmetric inflation problem

In this section we give more computational details for the description of the dual problem

for the non-axisymmetric inflation problem for the quasi-static case. We describe how we

solve the problem using the element-by-element way, similarly with the weak problem,

and how we apply the Gâteax derivatives of the weak form A(·; ·) and the functional J(·)
for this case.

In the earlier parts of this chapter we outlined the set-up in an abstract way in creating

a dual problem to be used to assess the accuracy in an estimate J(uh) of a QoI J(u)

where J denotes the QoI functional. At that stage it was mentioned that the details in

any given case can be highly problem dependent and we consider here these details in the

case of the quasi-static inflation of a non-axisymmetric membrane which is the topic of

this chapter.

In (4.4.1) and (4.4.5) we gave the dual problems to be considered in a computation

and for the description here we let ũh be where we evaluate the expressions. That is, ũh

is uh or it is the average of uh and a better approximation and its role here is as the data

for the dual problem. The complete expressions involve an integral over the domain Ω

and we get contributions to this from each element Ωr which we consider in a moment.

When these element quantities have been determined and assembled the dual solution ψ

in a space V̄h is such that

A′(ũh;α, ψ) = J ′(ũh;α), ∀α ∈ V̄h. (4.6.1)

With piecewise linears being used to get uh we use 6-noded quadratics on the same

triangular mesh of Ω which defines the space V̄h. We set-up the finite element calculation

for (4.6.1) in an element-by-element way and we consider next the element contribution

to the left hand side in (4.6.1). Later we indicate the expressions for J ′(·; ·) for two QoI

consider in this thesis.

– 106 –



4. THE DUAL PROBLEM FOR ERROR ESTIMATION IN A QOI

4.6.1 The element matrix for the dual problem

On an element Ωr the dual solution ψ can be described in the form

ψ(x1, x2) =

m∑

i=1

ciφ̂i(x1, x2) (4.6.2)

with φ̂
1
, . . . , φ̂

m
being the basis functions on an element and for the 6-noded quadratics

m = 18. Corresponding to a1 and a2 given in (3.6.12) and (3.6.13) we define

A′(ũh; φ̂j , φ̂i)r = a′1(ũh; φ̂j, φ̂i)Ωr
− Pa′2(ũh; φ̂j , φ̂i)Ωr

, 1 ≤ i, j ≤ m, (4.6.3)

where a′1(ũh; φ̂j , φ̂i)Ωr
and a′2(ũh; φ̂j, φ̂i)Ωr

are respectively the Gâteaux derivatives in the

direction of φ̂
j
of

a1(uh; φ̂i)Ωr
= h0

∫∫

Ωr

∂W

∂F
: ∇φ̂

i
dx1dx2, (4.6.4)

a2(uh; φ̂i)Ωr
=

1

3

∫∫

Ωr

φ̂
i
·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2 +

1

3

∫∫

Ωr

w ·
(
∂φ̂

i

∂x1
× ∂w

∂x2

)
dx1dx2

+
1

3

∫∫

Ωr

w ·
(
∂w

∂x1
×
∂φ̂

i

∂x2

)
dx1dx2 (4.6.5)

Apart from how functions are labelled, we have effectively already given what is needed

to evaluate the Gâteaux derivatives from the description given to determine the element

Jacobian contributions in the Newton iteration. In (3.6.21) and (3.6.22) the expressions

correspond to changes to the finite element approximation in the direction of the basis

function φ
j
used at that stage. In the dual problem considered here the direction now cor-

responds to the basis functions φ̂
j
in the larger finite element space V̄h. These expressions

in the dual problem case are as follows.

a′1(ũh; φ̂j, φ̂i) = h0

∫∫

Ωr

6∑

r=1

6∑

s=1

∂2W

∂Fs∂Fr

(
∇̄φ̂

i

)
r

(
∇̄φ̂

j

)
s
dx1dx2 (4.6.6)
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and

a′2(ũh; φ̂j, φ̂i) =

∫∫

Ωr

φ̂
i
·
(
∂φ̂

j

∂x1
× ∂w

∂x2
+
∂w

∂x1
×
∂φ̂

j

∂x2

)

+w ·
(
∂φ̂

i

∂x1
×
∂φ̂

j

∂x2
+
∂φ̂

j

∂x1
×
∂φ̂

i

∂x2

)

+φ̂
j
·
(
∂φ̂

i

∂x1
× ∂w

∂x2
+
∂w

∂x1
×
∂φ̂

i

∂x2

)
dx1dx2 (4.6.7)

4.6.2 Examples of J and the J ′ expression

The right hand side in (4.6.1) involves the Gâteaux derivative of the QoI functional J

being considered and we can handle expressions of the form

J(u) =

∫∫

Ω∗

{
expressions in u,

∂u

∂x1
,
∂u

∂x2

}
dx1dx2 (4.6.8)

where Ω∗ ⊂ Ω. Two cases of this type are the following.

1.

J1(u) =
1

area(Ω∗)

∫∫

Ω∗

λ dx1dx2 (4.6.9)

where Ω∗ ⊂ Ω. The above expression gives the average thickness stretch ratio

over the domain Ω∗.

2.

J2(u) = h0

∫∫

Ω

W dx1dx2 −
P

3

∫∫

Ω

w ·
(
∂w

∂x1
× ∂w

∂x2

)
dx1dx2. (4.6.10)

The above expression gives the potential energy of the deformed membrane.

We complete this section and this chapter by deriving the expressions for J ′
1 and J ′

2.

The Gâteaux derivative of J1

As has already shown in section 3.4.1, the incompressibility assumption can be written as

det(C3D) = λ2(c11c22 − c221) = 1 and thus λ = (c11c22 − c221)
−1/2. (4.6.11)
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Recall that the first Gâteaux derivative of λ in the direction of α is defined by

λ′(u;α) =
d

ds
λ(u+ sα)

∣∣∣∣
s=0

. (4.6.12)

Each of c11, c22 and c12 depend on the partial derivatives of u. Thus by combining (4.6.11)

and (4.6.12) we get

λ′(u;α) = −1

2

(
c11c22 − c221

)−3/2
(c11c

′
22(u;α) + c′11(u;α)c22 − 2c21c

′
21(u;α))

= −λ
3

2
(c11c

′
22(u;α) + c′11(u;α)c22 − 2c12c

′
12(u;α)) .

Let f
1
and f

2
denote respectively columns 1 and 2 of F and recall that F is given by

F =



1 0

0 1

0 0


 +∇u =



1 0

0 1

0 0


+

(
∂u

∂x1
,
∂u

∂x2

)
.

Now as

c11 = fT
1
f
1
, c22 = fT

2
f
2

and c12 = fT
1
f
2

it follows that

c′11(u;α) = 2fT
1

∂α

∂x1
, c′22(u;α) = 2fT

2

∂α

∂x2
, and c′12(u;α) = fT

1

∂α

∂x2
+fT

2

∂α

∂x1
. (4.6.13)

Putting things together gives

λ′(u;α) = −λ3
(
(c22f

T

1
− c12f

T

2
)
∂α

∂x1
+ (c11f

T

2
− c12f

T

1
)
∂α

∂x2

)
. (4.6.14)

The Gâteaux derivative of J2

To get the Gâteaux derivative of J2 let

Ψ = h0W − P

3

(
w ·
(
∂w

∂x1
× ∂w

∂x2

))
, where w =



x1

x2

0


+



u1

u2

u3


 . (4.6.15)

When we consider W in the form W = W (F) it follows that

d

ds
W (F(u+ sα))

∣∣∣∣
s=0

=
∂W

∂F
: ∇α. (4.6.16)
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Thus by the product rule

Ψ′(u;α) = h0
∂W

∂F
: ∇α

−P
3

(
α ·
(
∂w

∂x1
× ∂w

∂x2

)
+ w ·

(
∂α

∂x1
× ∂w

∂x2

)
+ w ·

(
∂w

∂x1
× ∂α

∂x2

))
.(4.6.17)

By comparing with (3.4.15)–(3.4.18) this shows that

J ′
2(u;α) = A(u;α), (4.6.18)

the expression in the weak form which defines u.
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QUASI-STATIC CASE

5.1 Introduction and the problems

In this chapter we give some numerical examples to test the theory presented in the

previous chapter concerning when the method involving solving a dual problem enables

us to determine the error in a quantity of interest. We consider the two functionals given

in section 4.6.2 involving the average thickness over part of the domain and involving the

potential energy of the deformation. J1 denotes the average thickness and J2 denotes the

potential energy. We consider two different domains Ω for the region of the undeformed

mid-surface and these are a square and a L-shape. In all the examples the Mooney-Rivlin

strain energy function, which we express in in the Ogden form (3.5.22),

W =
(
λ21 + λ22 + λ23 − 3

)
+

(−0.1

−2

)(
λ−2
1 + λ−2

2 + λ−2
3 − 3

)

=
(
λ21 + λ22 + λ23 − 3

)
+ 0.05

(
λ−2
1 + λ−2

2 + λ−2
3 − 3

)
(5.1.1)

is used and we start with a prestretch such that the membrane deformation gradient is

F =



1.2 0

0 1.2

0 0


 . (5.1.2)

To complete the description for each case of Ω we need to indicate the pressure P involved

and we select this to get a moderate amount of stretching based on the solutions obtained

with the “first mesh” used in the computation. More specifically we do the following.
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When Ω is a square

When Ω is a square a symmetrical mesh of 8 triangles is given in figure 5.1(a) This is

uniformly refined 2 times to give the mesh of 8×4×4 = 128 elements shown in figure 5.1(b)

and this is the first mesh in the computations. We then solve at pressures P = 0.05, 0.1,

0.15 . . . , until we get a solution with max {u3(x1, x2) : (x1, x2) ∈ Ω} > 1. This first occurs

with P = 1.8 and we use this pressure with the finer meshes. The deformed membrane

at this stage is shown in figure 5.3(a).

When Ω is a L-shape

When Ω is a L-shape we can describe the domain with 6 triangles as shown in figure 5.2(a).

This mesh is then uniformly refined 3 times to give the mesh of 6 × 4 × 4 × 4 = 384

elements shown in figure 5.2(b) and this the “first mesh” for this geometry in the com-

putations. We then solve at pressures P = 0.05, 0.1, 0.15 . . . , until we get a solution

with max {u3(x1, x2) : (x1, x2) ∈ Ω} > 1 and this first occurs with P = 3.2 and we use

this pressure with all the finer meshes. The deformed membrane at this stage is shown in

figure 5.3(b).

The regions Ω∗ when Ω is a square

With Ω just defined it is convenient at this point to introduce the parts of Ω which are used

in the next section when we define the quantities of interest that are considered and in par-

ticular Ω∗ is the part of Ω where we consider the average thickness over this part as is given

in (4.6.8). When we consider a part Ω∗ of the square Ω = {(x1, x2) : −1 ≤ x1, x2 ≤ 1} we

take the following two cases

Ω∗
1 = {(x1, x2) : −0.25 ≤ x1, x2 ≤ 0.25} (5.1.3)

and

(5.1.4)

Ω∗
2 = {(x1, x2) : |x1| ≥ 0.75, |x2| ≥ 0.75} . (5.1.5)
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(a) Symmetric mesh of 8 triangles for a square

(b) The first mesh of 128 triangles used in the computations

Fig. 5.1: Symmetric meshes of a square
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(a) Mesh of 6 triangles for a L-shape

(b) The first mesh of 384 triangles used in the computations

Fig. 5.2: Symmetric meshes of a L-shape
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(a) Deformed sheet with first mesh of a square when P = 1.8
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(b) Deformed sheet with first mesh of a L-shape when P = 3.2

Fig. 5.3: Deformed sheets with max {u3(x1, x2) : (x1, x2) ∈ Ω} just above 1.
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5.2 Experiments with uniform refinement

We consider uniform refinement for 3 cases when Ω is a square as follows. We take J = J1

with Ω∗ = Ω∗
1, we take J = J1 with Ω∗ = Ω∗

2 and we take J = J2. When Ω is the

L-shape we just consider J = J2. In each case when a solution uh with linear triangles is

obtained we also compute the likely better solution ubh using 6-noded triangles (with the

same triangular mesh) in order to compute

umh =
1

2
(uh + ubh).

When the data for the dual problem is uh we denote the dual solution by ψ
h
and when

the data is umh we denote the dual solution by ψm
h
. If we take the most accurate estimates

of J(u) to be J(ubh) for the finest of the meshes used then these are given in table 5.2.1.

In tables 5.2.2, 5.2.3 and 5.2.4 we show 3 estimates of the true error and these are

−a(uh;ψh), −a(uh;ψmh ) and J(ubh)− J(uh). (5.2.1)

The column “Ratio using ψm
h
” is the ratio of successive estimates using ψm

h
from the

uniform refinement. For the square domain successive steps of uniform refinement reduces

the error by about 4 which is the expected rate of convergence. Comparison of the columns

−a(uh;ψmh ) and J(u
b
h)− J(uh) show that these two estimates are very close. The easier

to compute estimate −a(uh;ψh) is reasonably close for all the cases when J = J1 but it

appear to over estimate the error by a factor close to 2 in the case of J = J2.

For the L-shape domain the regularity of the solution is not high enough to get a

decrease by a factor close to 4 but it is still a bit more than 3 and again −a(uh;ψmh ) and
J2(u

b
h)− J2(uh) are very close. The easier to compute estimate −a(uh;ψh) overestimates

the actual error by a factor close to 2 as it did in the case when Ω is a square.

The results of all the tables demonstrates that for these test problems the prediction

of the error in an estimate of a quantity of interest is good with a relatively small number

of elements. A major criticism of the overall set-up is however the amount of effort

to estimate the error especially for the larger values of the number of elements ne. In

the largest case presented ne=24576 and when 6-noded quadratic elements are used this

involves 148995 unknowns and 5105673 entries in a sparsely stored Jacobian matrix or

for the matrix in the dual solution. From a practical point of view some of computation

can quite easily be avoided by considering the ratios a(uh;ψh)/a(uh;ψ
m

h
) as the mesh size

varies and we show these in table 5.2.6. In each case as ne varies, the ratios do not change
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Tab. 5.2.1: Estimates of the QoI with the finest meshes used and 6-noded triangular elements

Domain ne J QoI estimate J(ubh)
Square, Ω∗ = Ω∗

1 8192 J1 3.272310533e-01
Square, Ω∗ = Ω∗

2 8192 J1 4.956794633e-01
Square 8192 J2 -1.779109466e+00
L-shape 24576 J2 -2.798976431e+00

Tab. 5.2.2: Estimates of the error J1(u)− J1(uh) for a square when Ω∗ = Ω∗
1, i.e. an average of

λ3 close to the centre, with uniform refinement.

ne −a(uh;ψh) −a(uh;ψmh ) J(u
b
h)− J1(uh) Ratio using ψm

h

128 -1.451803e-02 -1.577692e-02 -1.565002e-02
512 -3.926582e-03 -4.257620e-03 -4.250058e-03 3.705573e+00
2048 -1.007150e-03 -1.093677e-03 -1.093207e-03 3.892941e+00
8192 -2.537830e-04 -2.758147e-04 -2.757853e-04 3.965260e+00

Tab. 5.2.3: Estimates of the error J1(u)− J1(uh) for a square when Ω∗ = Ω∗
2, i.e. an average of

λ3 close to the edge, with uniform refinement.

ne −a(uh;ψh) −a(uh;ψmh ) J1(u
b
h)− J(uh) Ratio using ψm

h

128 -2.152254e-02 -2.205487e-02 -2.194325e-02
512 -6.138624e-03 -6.341243e-03 -6.335320e-03 3.478004e+00
2048 -1.608791e-03 -1.669629e-03 -1.669276e-03 3.797995e+00
8192 -4.096752e-04 -4.260730e-04 -4.260511e-04 3.918645e+00

Tab. 5.2.4: Estimates of the error J2(u) − J2(uh), i.e. the potential energy, for a square with
uniform refinement.
ne −a(uh;ψh) −a(uh;ψmh ) J2(u

b
h)− J2(uh) Ratio using ψm

h

128 -2.528180e-01 -1.275640e-01 -1.267430e-01
512 -6.786452e-02 -3.410450e-02 -3.403597e-02 3.740386e+00
2048 -1.736280e-02 -8.696848e-03 -8.691775e-03 3.921478e+00
8192 -4.370589e-03 -2.186427e-03 -2.186091e-03 3.977653e+00

Tab. 5.2.5: Estimates of the error J2(u)− J2(uh), i.e. the potential energy, for a L-shape with
uniform refinement.
ne −a(uh;ψh) −a(uh;ψmh ) J2(u

b
h)− J2(uh) Ratio using ψm

h

384 -5.718256e-01 -2.806478e-01 -2.772122e-01
1536 -1.841024e-01 -9.065824e-02 -9.010840e-02 3.095668e+00
6144 -5.699727e-02 -2.817260e-02 -2.805969e-02 3.217958e+00
24576 -1.813532e-02 -8.958059e-03 -8.919452e-03 3.144945e+00
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very much. We have not tried to analyse whether or not this is generally the case but if

it is then it would appear reasonable to first compute everything to get the first two rows

in the tables to get a number

γH =
a(uH ;ψH)

a(uH ;ψ
m

H
)
, (5.2.2)

where H denotes the mesh size for the row considered. For larger values of ne we can then

just compute uh, ψh and −a(uh;ψh) and take the following as our improved estimate of

the error
−a(uh;ψh)

γH
. (5.2.3)

Tab. 5.2.6: The ratio a(uh;ψh)/a(uh;ψ
m
h
) of the error estimates in the following 4 cases.

ne J1 with Ω∗
1 J1 with Ω∗

2 J2 (square) ne J2 (L-shape)
128 9.202069e-01 9.758634e-01 1.981891e+00 384 2.037520e+00
512 9.222481e-01 9.680474e-01 1.989899e+00 1536 2.030730e+00
2048 9.208843e-01 9.635620e-01 1.996447e+00 6144 2.023146e+00
8192 9.201214e-01 9.615141e-01 1.998964e+00 24576 2.024470e+00

5.3 Non-uniform refinement with the L-shape

Experiments when Ω is a square and adaptive refinement based on the element values

−a(uh; ψ̃h − ψ̃
I
)k, k = 1, 2, . . . , ne, (5.3.1)

where ψ̃
h
is either ψ

h
or ψm

h
of the dual solutions in V̄h and where ψ̃

I
∈ V̄h is the interpolant

of ψ̃
h
, has mostly led to uniform convergence or very close to uniform convergence as the

decision as to which triangles to refine to get a more accurate solution. As a consequence

we only give the results in the case when Ω is a L-shape.

In the case of the L-shape, if we take as our aim to get an estimate J2(uh) to be

within ǫ = 10−2 of the true value then table 5.2.5 shows that this is only first the case

when ne=24576 elements when we uniformly refine. Part of the difficulty of getting

high accuracy with the L-shape is the re-entrant corner and this it helps to start with a

mesh with smaller triangles near the corner and thus before the computations start we

successively refine all the triangles which has (0, 0) as one of the nodes. If we do this

once then we get the mesh of 408 triangles shown in figure 5.4(a) and in we do this in

total 4 times then we get the mesh of 480 triangles shown in figure 5.4(b). We use the

mesh of 480 triangles as the first mesh in the computations. From table 5.2.1 the value
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J2(u
b
h) ≈ −2.8 and the accuracy of the error estimate J2(u

b
h)− J2(uh) with 480 elements

is about −2.3 × 10−1, see table 5.3.7. We need to reduce this by a factor of about 23 to

get the desired accuracy.

A difficulty with using the numbers

ǫk = −a(uh; ψ̃h − ψ̃
I
)k, k = 1, 2, . . . , ne, (5.3.2)

to decide which elements to refine is that they are not all of the same sign for many

quantities of interest and this is the case with the L-shape. If we want to compute until

∣∣∣∣∣

ne∑

k=1

ǫk

∣∣∣∣∣ < ǫ (5.3.3)

then a condition such as refining all triangles for which

|ǫk| >
ǫ

ne
(5.3.4)

can typically lead to all or almost all triangles being refined. Also, the outcome when

we refine all the triangles is to reduce the error by a factor close to 4 at best and if we

only refine some of the triangles then we are likely to reduce the error by less than 4.

If, for example, two refinements are done which each reduce the error by about a factor

of 2 then this needs to involve less overall computation than one uniform refinement to

be worthwhile. As we need to reduce the error by about 23, we thus need at least 3

refinement steps. So far we do not have any strategy which works well enough to be

clearly better than uniform refinement until we are close enough to the target accuracy.

The outcome with 2 steps of uniform refinement is shown in table 5.3.7 with the error

reduced to about −1.7× 10−2 with 7680 = 16× 480 elements. At this stage we should be

able to get below 10−2 without refining all the triangles. If for the description we assume

that the numbering of the triangles are such that

|ǫ1| ≥ |ǫ2| ≥ · · · ≥ |ǫne| (5.3.5)

then we wish to select K, 1 ≤ K ≤ ne such that we just refine elements 1, 2, . . . , K. A

fairly crude reasoning is that if we just refine these K triangles then error may be about

qK =

(
1

4

K∑

k=1

ǫk

)
+

ne∑

k=K+1

ǫk. (5.3.6)
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This would suggest selecting K such that

ǫ < |qK−1| and |qK | ≤ ǫ. (5.3.7)

Unfortunately this prediction of what to refine to get the required accuracy has never been

enough but instead refining elements 1, 2, . . . , 2K seems generally to be enough and this

is what is done when refining the mesh of 7680 to get the mesh of 17182 elements given

in table 5.3.7. It is actually a big saving to just use 17182 elements compared with 24576

in table 5.2.5 or to use 30720 = 4 × 7680 if we were to uniformly refine the last mesh.

A recommendation from these experiments is not to try to refine too few elements when

attempting an adaptive refinement step. Also, as in the case of uniform refinement at

each step, we can save a lot of computation by just using −a(uh;ψh)/γH once we have a

suitable estimate for the ratio estimates γH as defined in (5.2.2).

Tab. 5.3.7: Non-uniform refinement in the last step with the L-shape domain and the QoI is the
total potential energy J2(u). The column “Ratio” is the ratio of successive estimates
of −a(uh;ψmh ) as ne is increased.

ne −a(uh;ψh) −a(uh;ψmh ) a(uh;ψh)/a(uh;ψ
m

h
) J2(u

b
h)− J2(uh) Ratio

480 -4.633590e-01 -2.288500e-01 2.024728e+00 -2.268550e-01
1920 -1.304188e-01 -6.478859e-02 2.012990e+00 -6.458486e-02 3.532
7680 -3.399703e-02 -1.695775e-02 2.004808e+00 -1.693907e-02 3.821
17182 -1.939180e-02 -9.679853e-03 2.003316e+00 -9.673313e-03 1.752
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(a) Mesh of 408 triangles for the L-shape.

(b) Mesh of 480 triangles for the L-shape.

Fig. 5.4: Meshes of the L-shape with refinement about the re-entrant corner at (0, 0). In
the top figure the refinement is done once and it is done 4 times in the bottom figure.
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QUASI-STATIC AND DYNAMIC CASES

6.1 Introduction

In this chapter we simplify the geometry to circular disks deforming under axisymmetric

conditions. In the quasi-static case, the problem now is reduced to one dimension with

all the unknowns depending on the radial direction r in a cylindrical polar coordinate

system. This is the simplest of the cases described in this thesis. However much of the

chapter is about the more difficult case when the model involves the equations of motion

with quantities now depending on both r and the time t and this is what we refer to

the dynamic case. In the quasi-static case we just have the displacement u = u(r) as

the unknown but in the dynamic case we have a weak form description of the problem

with both the displacement u(r, t) and the velocity v(r, t) as unknowns. The weak form

descriptions are described in sections 6.3 and 6.4. The remainder of the chapter is about

a basic finite element scheme to approximately solve the problem described in the weak

form.

The applications of the techniques are described in chapter 8.

6.2 The membrane deformation in the axisymmetric case

Here, we describe the problem of the inflation of a circular membrane which initially

has uniform thickness h0, which is clamped around its circumference. First we give the

equations for a general three-dimensional body. Then we show how the axisymmetry

with the membrane properties reduce the problem to one space dimension in which the

unknowns depend only on the radial dimension in a cylindrical polar coordinate system.

The region of the undeformed body of an axisymmetric shape, with respect to cylindrical
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polars, can be represented by

{(r, θ, x3) : 0 ≤ r < 1, −π < θ ≤ π, |x3| < h0/2} .

This is deformed by a time-dependent pressure P (t) applied to the lower side of the

circular sheet. We let Ω be the undeformed mid-surface and, for this case, this is just

Ω = [0, 1) with respect to r. The deformation of the midsurface now simplifies to

(r, θ, 0) → (r + u1, θ, u3) =: w

where u1 = u1(r) is the radial displacement and u3 = u3(r) is the vertical displacement.

As before, w denotes the deformed midsurface for the axisymmetric case. In everything

that follows in this section, we consider the membrane model of how the sheet deforms

with the details essentially being the axisymmetric version of what was given in section 3.4.

At the start of the process when the sheet is flat the membrane is uniformly pre-stretched

and then clamped at the edge r = 1 so that u(1, t) does not vary with t, i.e.

u1(r, 0) = u1(1, 0)r, u3(r, 0) = 0 and u(1, t) = u(1, 0) for all t > 0.

The density of the material is denoted by ρ and we assume that the body is composed of

homogeneous, isotropic, incompressible, hyperelastic material. Thus, in particular, if ρ0

is the density initially then ρ = ρ0 is the density throughout the deformation.

In the following description the symbol ′ is used to denote differentiation with respect

to r and we now let e1 and e3 denote the base vectors in the radial and vertical directions

respectively. The base vector e2 = eθ = e3× e1 denotes the base vector in the θ direction.

6.2.1 The principal stretches for the axisymmetric membrane case

The membrane deformation gradient evaluated on the midsurface, by using cylindri-

cal polars, is given by

F =



1 + u′1 0

0 1 + u1
r

u′3 0


 .

We also define the right Cauchy Green deformation tensor by

C = FTF
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and let

λ21 = (1 + u′1)
2 + u′23 , λ2 = 1 +

u1
r
.

As before, λ1 and λ2 denote the principal stretches which correspond to the directions

t := b1 =

(
1 + u′1
λ1

)
e1 +

(
u′3
λ1

)
e3 and b2 = eθ,

with the unit normal n being

n := b3 = −
(
u′3
λ1

)
e1 +

(
1 + u′1
λ1

)
e3, (6.2.1)

where b1, b2, b3 denote the three principal directions with respect to the deformed config-

uration.

Other useful relations to give are the membrane deformation gradient in 3D and its

polar decomposition, which are given by

F3D = RU, R = (t, eθ, n), U =



λ1 0 0

0 λ2 0

0 0 λ3


 ,

where λ3 = 1/(λ1λ2) which denotes the thickness stretch ratio (assuming incompress-

ibility).

It is worth commenting on what happens to some of these terms as r → 0 with r = 0

being the pole of the circular disk. Firstly, for λ2 to have a finite limit as r → 0 we require

that u1(0) = 0 and this gives

λ2(0) = lim
r→0

λ2(r) = 1 + u′1(0). (6.2.2)

The curvatures of the deformed surface are concerned with changes in the unit normal n

as we move on the deformed surface. If for the moment we consider n = n(r, θ) then

∂e1
∂θ

= e2 which gives
∂n

∂θ
= −u

′
3

λ1
e2

and when we consider the change relative to the change of the positions of points on the

surface we have

n(r, θ +∆θ)− n(r, θ)

(r + u1(r))∆θ
→ −u′3(r)

(r + u1(r))λ1
e2 as ∆θ → 0. (6.2.3)
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For the right hand side to have a finite limit as r → 0 requires that u′3(0) = 0 and as a

consequence

λ1(0) = λ2(0) = 1 + u′1(0). (6.2.4)

6.2.2 The principal stresses for the axisymmetric membrane case

In a membrane approximation of how a thin sheet deforms we assume that in the normal

direction

σn = 0

where σ denotes the Cauchy stress. With the axisymmetric deformation we also have

that in the eθ direction

σeθ = σ2eθ

where σ2 is a principal stress. Finally the other direction of principal stress is t with

σt = σ1t

where σ1 is the other principal stress. Hence since R = (t, eθ, n), by using the directions

of principal stresses we have the following

RT
σR =



σ1 0 0

0 σ2 0

0 0 0


 . (6.2.5)

This is the axisymmetric case of (3.4.10).

Next we define the nominal stress Π3D and the first Piola stress ΠT
3D for a three

dimensional deformation, which have the following representation respectively.

Π3D = (detF3D)F
−1
3Dσ,

ΠT
3D = σ(detF3D)F

−T
3D = σF−T

3D = σRU−1 = R(RT
σR)U−1 =

(
σ1
λ1
t,
σ2
λ2
eθ, 0

)
,

where detF3D = λ1λ2λ3 = 1 assuming incompressibility and RRT = RTR = I since R

is orthogonal matrix. For the membrane simplification for the axisymmetric case we get

the following

ΠT =

(
σ1
λ1
t,
σ2
λ2
eθ

)
=




(1+u′1)σ1
λ2
1

0

0 σ2
λ2

u′3σ1
λ2
1

0


 (6.2.6)

– 125 –



6. THE AXISYMMETRIC MEMBRANE MODEL – THE QUASI-STATIC AND DYNAMIC CASES

which represents the membrane first Piola stress for the axisymmetric case.

To complete the mathematical description, we need to describe the constitutive rela-

tionship between stress and stretch that, in the case of a hyperelastic, incompressible and

isotropic material, as we assumed for this model, can be expressed as follows

ΠT =
∂W

∂F
and σi = λi

∂W

∂λi
i = 1, 2,

as we described in section 3.5, with W being the strain energy function.

6.3 The weak form for the quasi-static case

For the simpler quasi-static case the dependence on time t is only through the time-

dependent pressure loading. Therefore for fixed time a weak form is given by

AQ(t)(u;ψ) = 0, ∀ψ ∈ V (6.3.1)

where V = H1
0 (Ω) and t ∈ [0, T ] with T being the final time. As a consequence of what is

described in Chapter 3 the quasi-static problem in weak form, by using cylindrical polars,

involves the following.

For fixed time t ∈ [0, T ], find u ∈ V such that

AQ(t)(u;ψ) = h0a1(u;ψ)− P (t)a2(u;ψ) ∀ψ ∈ V

where

a1(u;ψ) =

∫ 1

0

ΠT : ∇ψ rdr, (6.3.2)

a2(u;ψ) =

∫ 1

0

λ1λ2n · ψ rdr, (6.3.3)

where for the second term we used F−T e3 = (1/λ)n = λ1λ2n.

There are other ways in which we can write the integrands in (6.3.2) and (6.3.3) which

we use in the computational schemes and these are described next.
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Expressions for the a1 term

For the first term a1(u;ψ) we have the following. With

ΠT =




(1+u′
1
)σ1

λ2
1

0

0 σ2
λ2

u′3σ1
λ2
1

0


 and ∇ψ =



ψ′
1 0

0 ψ1

r

ψ′
3 0


 , (6.3.4)

we get the following expression

ΠT : ∇ψ = Π11ψ
′
1 +Π13ψ

′
3 +Π22

ψ1

r

=
σ1
λ21

((1 + u′1)ψ
′
1 + u′3ψ

′
3) +

σ2
λ2

ψ1

r
.

Further, if we use the notation

W1 :=
∂W

∂λ1
, and W2 :=

∂W

∂λ2
,

which was used in (3.6.27), then our expression for a1(·; ·) becomes

ΠT : ∇ψ =
W1

λ1
((1 + u′1)ψ

′
1 + u′3ψ

′
3) +W2

ψ1

r
. (6.3.5)

Thus

a1(u;ψ) =

∫ 1

0

(
W1

λ1
((1 + u′1)ψ

′
1 + u′3ψ

′
3) +W2

ψ1

r

)
rdr. (6.3.6)

Expressions for the a2 term

For the second term a2(u;ψ) we have the following. By using (6.2.1) we get

λ1λ2n · ψ = λ2 (−u′3ψ1 + (1 + u′1)ψ3) , (6.3.7)

and hence

a2(u;ψ) =

∫ 1

0

λ2 (−u′3ψ1 + (1 + u′1)ψ3) rdr,

=

∫ 1

0

(r + u1)(−u′3ψ1 + (1 + u′1)ψ3)dr. (6.3.8)
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As in section 3.4.2 we refer to this term a2(·; ·) as the pressure term of the weak form.

Now in section 3.4.2 we gave a longer way of writing this enabled us to show that we had

symmetry in the matrices involved in a Newton iteration and in a related dual problem.

The corresponding version of this in this axisymmetric case is

a2(u;ψ) =
1

3

∫ 1

0

(r + u1)((1 + u′1)ψ3 − (r + u1)ψ
′
3)dr

+
1

3

∫ 1

0

(u3((r + u1)ψ
′
1 + (1 + u′1)ψ1)− 2(r + u1)u

′
3ψ1)dr. (6.3.9)

To verify that (6.3.7) and (6.3.9) are the same can be done as follows.

As it was described in chapter 3, the cartesian form of the long expression of the

pressure term is given by

a2(u;ψ) =
1

3

∫∫

Ω

(
ψ ·
(
∂w

∂x1
× ∂w

∂x2

)
+ w ·

(
∂ψ

∂x1
× ∂w

∂x2

)
+ w ·

(
∂w

∂x1
×
∂ψ

∂x2

))
dx1dx2.

(6.3.10)

Now, by using a cylindrical polar coordinate system, the above expression becomes

a2(u;ψ) =
1

3

∫ 1

0

(
ψ ·
(
∂w

∂r
× 1

r

∂w

∂θ

)
+ w ·

(
∂ψ

∂r
× 1

r

∂w

∂θ

)
+ w ·

(
∂w

∂r
× 1

r

∂ψ

∂θ

))
rdr.

(6.3.11)

Then, by using cylindrical polars we get the following expressions.

w = (r + u1)e1(θ) + u3e3 ψ = ψ1e1(θ) + ψ3e3, (6.3.12)

1

r

∂w

∂θ
=
(
1 +

u1
r

)
eθ

1

r

∂ψ

∂θ
=
ψ1

r
eθ, (6.3.13)

∂w

∂r
= (1 + u′1)e1 + u′3e3

∂ψ

∂r
= ψ′

1e1 + ψ′
3e3. (6.3.14)

By using the above expressions, we compute the cross products of the integral (6.3.11).

Thus we get the following quantities.

∂w

∂r
× 1

r

∂w

∂θ
=
(
1 +

u1
r

)
((1 + u′1)e3 − u′3e1) , (6.3.15)

∂ψ

∂r
× 1

r

∂w

∂θ
=
(
1 +

u1
r

)
(ψ′

1e3 − ψ′
3e1), (6.3.16)

∂w

∂r
× 1

r

∂ψ

∂θ
=
ψ1

r
((1 + u′1)e3 − u′3e1) . (6.3.17)

Finally, by using the above quantities and the expressions (6.3.12) we compute the dot

products of the integral (6.3.11) which give us the desired longer version for the pressure
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term as

a2(u;ψ) =
1

3

∫ 1

0

((ψ1e1(θ) + ψ3e3) ·
(
1 +

u1
r

)
((1 + u′1)e3 − u′3e1)

+ ((r + u1)e1(θ) + u3e3) ·
(
1 +

u1
r

)
(ψ′

1e3 − ψ′
3e1)

+ ((r + u1)e1(θ) + u3e3) ·
ψ1

r
((1 + u′1)e3 − u′3e1))rdr

=
1

3

∫ 1

0

(r + u1)((1 + u′1)ψ3 − ψ1u
′
3)

+ (r + u1)(u3ψ
′
1 − (r + u1)ψ

′
3) + ψ1((1 + u′1)u3 − (r + u1)u

′
3)dr,

which after some rearrangements we get the desired quantity (6.3.9).

6.4 The weak form for the dynamic case

In this section we represent the equations for the dynamic case, which are described by

the full equations of motion. In a PDE form and for a general 3D solid this can be written

as the following system

ρ0v̇ = DivΠ3D (6.4.1)

v = u̇, (6.4.2)

where ρ0 represents the undeformed density, v the velocity and v̇ is the acceleration. Here

Div gives the divergence operation with partial derivatives with respect to the undeformed

configuration. The complete description also requires initial conditions on u and v. Our

aim next is write the membrane version of the system (6.4.1) and (6.4.2) in a weak form.

As the equations (6.4.1) and (6.4.2) hold over a region in space and time this can be

written in the form

Ω3D × [0, T ]

where Ω3D denotes the spatial domain and where [0, T ] is the time interval with T denoting

the final time. Now, in order to get the weak form for the dynamic case, we take both the

displacement u and the velocity v as unknowns, since we consider the full equations of

motion, and we impose the relation v = u̇ weakly. Then, by multiplying the PDE (6.4.1)

and (6.4.2) with appropriate test vectors ψ and θ, integrating over space and time and

taking the membrane approximation property into account we get the following.
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With Ω denoting the undeformed mid-surface we introduce the space-time region as

Q = Ω× [0, T ], (6.4.3)

and we require that

a(u;ψ)Q + ρh0(v̇, ψ)Q + ρh0(u̇− v, θ)Q = 0, (6.4.4)

where

a(u;ψ)Q := h0

∫ T

0

∫ 1

0

a1(u;ψ) rdr dt−
∫ T

0

P (t)

∫ 1

0

a2(u;ψ) rdr dt (6.4.5)

for 0 ≤ t ≤ T , with as before h0 being the initial thickness of the membrane. Next, we

consider the initial conditions, i.e. the conditions at time t = 0, where we let the initial

displacement be denoted by u0 and we let the initial velocity be denoted v0. For this case,

we define the following

A

((
u

v

)
;

(
ψ

θ

))
=a(u;ψ)Q + ρh0(v̇, ψ)Q (6.4.6)

+ ρh0(u̇− v, θ)Q + ρh0(u
0, θ)Ω + ρh0(v

0, ψ)Ω (6.4.7)

F
((

ψ

θ

))
=ρh0(u

0, θ)Ω + ρh0(v
0, ψ)Ω. (6.4.8)

The weak form involves finding u and v such that

A

((
u

v

)
;

(
ψ

θ

))
= F

((
ψ

θ

))
∀ appropriate

(
ψ

θ

)
. (6.4.9)

Remarks

• We require u1(0, t), u1(1, t) and u3(1, t) be fixed and as a consequence the associated

test functions ψ satisfy the conditions ψ1(0, t) = ψ1(1, t) = ψ3(1, t) = 0. These have

to do with the axisymmetric condition associated with the pole where r = 0 and

the Dirichlet boundary conditions where r = 1.

• At the start, when the pressure is zero (t = 0), there is no difference between the

quasi-static case and the dynamic case. We start with a prestretch which fixes the

boundary value u1(1, 0) > 0 and is such that u1(r, 0) = u1(1, 0)r, 0 ≤ r ≤ 1 and for

the initial velocity we take v(r, 0) = 0.
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6.5 The finite element method in the quasi-static case

To approximately solve (6.3.1) by the finite element method is straightforward as we just

have a one dimensional problem. If we let 0 = r0 < r1 < · · · < rne = 1 denote a mesh of

0 ≤ r ≤ 1 and we use piecewise polynomials of degree p on each element [rk, rk+1] then,

as was described in section 2.4.2, our approximation to u1(r) and u3(r) are of the form

(uh(r(s)))i =

p∑

j=0

cijbj(s), i = 1 and 3, (6.5.1)

where

r(s) =
rk + rk+1

2
+

(
rk+1 − rk

2

)
s, −1 ≤ s ≤ 1, (6.5.2)

and where b0, . . . , bp are suitable basis functions as described in section 2.4.2. If we let

φ1, . . . , φn denote the piecewise polynomial basis function arising from considering all the

elements [r0, r1], . . . , [rne−1, rne] then we can write the approximations in the form

(uh(r))1 =
n∑

i=1

d2i−1φi(r), (6.5.3)

(uh(r))3 =
n∑

i=1

d2iφi(r). (6.5.4)

With degree p polynomials on each of the ne elements this gives n = p(ne) + 1. When we

consider both components this involves 2n parameters which we can collect as the column

vector

d = (d1, d2, . . . , d2n−1, d2n)
T .

For each function φi(r) we can associate the two vector valued functions

H2i−1(r) =

(
φi(r)

0

)
, H2i(r) =

(
0

φi(r)

)
, i = 1, . . . , n (6.5.5)

so that

uh(r) =

2n∑

i=1

diH i(r). (6.5.6)

As (uh(0))1 = 0 and uh(1) is given, it follows that 3 of the entries of d are known. The

other 2n− 3 parameters are determined by solving nonlinear equations arising from

AQ(t)(uh;ψ) = 0, ∀ψ ∈ Vh (6.5.7)
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where Vh is the span of 2n − 3 of the functions in (6.5.5). The nonlinear equations are

solved by a Newton iteration with the Jacobian matrix being banded with a bandwidth

of just 2p+ 1 which is a consequence of each element Jacobian contribution being of size

(2p+2)× (2p+2). The total amount of computational resources to get uh is thus modest

compared to the non-axisymmetric case described in previous chapters and the dynamic

problem described in later sections.

6.6 A basic finite element method in the dynamic case

Compared to the description in the quasi-static case, there is much more detail needed

to describe how to use the finite element method for the dynamic case. We do so here

in the case of one of the simpler ways of dealing with how the approximations vary in

time which was used in [28]. It is useful to have this described first before extensions are

given in sections 7.6 with higher degree polynomials used in the time domain. In some

places in this section we comment on how some of the detail here which is generalised in

section 7.6.

6.6.1 The mesh and the parameters

To approximately solve (6.4.9) we need a space-time mesh of Q. In the time direction

0 ≤ t ≤ T we take time levels 0 = t0 < t1 < · · · < tN = T and at each time level we have

a mesh of the space interval 0 ≤ r ≤ 1. We choose to take a mesh which is fixed in time,

i.e. we use the same space mesh at each time level tj . For notation we let

uj1(r) := u1(r, tj), uj3(r) := u3(r, tj), (6.6.1)

vj1(r) := v1(r, tj), vj3(r) := v3(r, tj) (6.6.2)

denote approximations at time tj to the components of the displacement and the velocity.

(We no longer use subscript h here for the approximation as this makes the notation too

messy.) To describe each of these functions, we need piecewise polynomial finite element
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basis functions which we denote by φ1(r), . . . , φn(r) such that

uj1(r) =

n∑

i=1

uj1,iφi(r), (6.6.3)

uj3(r) =
n∑

i=1

uj3,iφi(r), (6.6.4)

vj1(r) =

n∑

i=1

vj1,iφi(r), (6.6.5)

vj3(r) =
n∑

i=1

vj3,iφi(r) (6.6.6)

and this corresponds what was done in (6.5.3) and (6.5.4). When we refer to the displace-

ment vector and the velocity vector at time tj we mean

uj(r) :=

(
uj1(r)

uj3(r)

)
, vj(r) :=

(
vj1(r)

vj3(r)

)
. (6.6.7)

For each of these vectors there are 2n parameters and, as in the quasi-static case. We

collect these as column vectors

cj =
(
uj1,1, u

j
3,1, . . . , u

j
1,n, u

j
3,n

)T
, (6.6.8)

bj =
(
vj1,1, v

j
3,1, . . . , v

j
1,n, v

j
3,n

)T
. (6.6.9)

To indicate with more compact notation the dependence of the vectors uj(r) and vj(r)

on cj and bj respectively we associate with each function φi(r) the two vector valued

functions

H2i−1(r) =

(
φi(r)

0

)
and H2i(r) =

(
0

φi(r)

)
, (6.6.10)

as we did in the quasi-static case, so that

uj(r) =
2n∑

i=1

cjiH i(r), (6.6.11)

vj(r) =

2n∑

i=1

bjiH i(r). (6.6.12)
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Between time levels, i.e. tj−1 < t < tj we define the approximations as

u(r, t) =

(
tj − t

tj − tj−1

)
uj−1(r) +

(
t− tj−1

tj − tj−1

)
uj(r), (6.6.13)

v(r, t) =

(
tj − t

tj − tj−1

)
vj−1(r) +

(
t− tj−1

tj − tj−1

)
vj(r). (6.6.14)

It is this degree 1 polynomial in t behaviour which distinguishes what we mean by the

basic or standard approach in this thesis and it is this part that we replace by higher

degree polynomials in t in a time interval [tj−1, tj] in section 7.6.

6.6.2 The discrete nonlinear system to satisfy

Assuming that we start with a prestretch, as previously described, and we start with a

velocity of zero we have

u0(r) =

(
(const)r

0

)
, v0(r) =

(
0

0

)
, 0 ≤ r ≤ 1 (6.6.15)

and this determines c0 and b0 (i.e. in particular b0 = 0).

Once a solution is known at time tj−1 we know cj−1 and bj−1. The discrete version

of (6.4.9) to determine cj and bj depends on which test vectors ψ and θ are used at this

stage. In the case of ψ we take the vectors

ψ
k
(r, t) =




Hk(r), tj−1 < t < tj ,

0, otherwise,
(6.6.16)

and similarly in the case of θ we take

θk(r, t) =




Hk(r), tj−1 < t < tj,

0, otherwise.
(6.6.17)

In both cases we take all the values of k = 1, . . . , 2n except those corresponding to known
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boundary values at r = 0 or at r = 1. We separately have to satisfy

A

((
u

v

)
;

(
ψ
k

0

))
= 0 ∀ appropriate k, (6.6.18)

A

((
u

v

)
;

(
0

θk

))
= 0 ∀ appropriate k. (6.6.19)

Note that the test functions are constant in time t in the time interval. This is something

we generalise in section 7.6 when we have more unknowns related to the time interval

[tj−1, tj] and we need more test vectors so that the number of equations matches the

number of unknowns.

Terms that involve only θ-functions

We consider the “θk equations” given in (6.6.19) first as this gives a connection between

the vectors bj and cj (or equivalently between the displacement and the velocity) which

can be used in (6.6.18) to get a nonlinear system involving cj only. The details are as

follows.

The “θk equations” in terms of the functions are that

(u̇− v, θk)Q =

∫ ti

tj−1

∫ 1

0

(u̇(r, t)− v(r, t)) ·Hk(r) rdrdt = 0, ∀ appropriate k. (6.6.20)

For tj−1 < t < tj the term u̇ does not vary with t and the velocity varies with t as

described in (6.6.14) and we can do both of the integrals in time exactly to give

(tj − tj−1)

∫ 1

0

(
uj(r)− uj−1(r)

tj − tj−1

− 1

2

(
vj(r) + vj−1(r)

))
·Hk(r) rdr = 0. (6.6.21)

In terms of the parameters which define the displacements and velocities the integrand in

the above can be written as

uj(r)− uj−1(r)

tj − tj−1

− 1

2

(
vj(r) + vj−1(r)

)
=

2n∑

i=1

eiH i(r) (6.6.22)

where

ei =

(
cji − cj−1

i

tj − tj−1

)
− 1

2

(
bji + bj−1

i

)
. (6.6.23)

When the index i corresponds to a known boundary value we have ei = 0. This we
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consider for all appropriate k for which this must hold which gives

2n∑

i=1

ei

∫ 1

0

(H i ·Hk) rdr = 0, ∀ appropriate k. (6.6.24)

This is a homogeneous linear system involving a mass matrix and as a mass matrix is

positive definite and hence non-singular this implies that

ei = 0, i = 1, . . . , 2n, (6.6.25)

i.e. the displacement and velocity vectors are related by

uj(r)− uj−1(r)

tj − tj−1
=

1

2

(
vj(r) + vj−1(r)

)
. (6.6.26)

Thus in the discrete scheme the time derivative of the displacement matches the velocity

at the mid-times in [tj−1, tj] and in particular the connection between uj and vj is that

vj(r) = 2

(
uj(r)− uj−1(r)

tj − tj−1

)
− vj−1(r). (6.6.27)

The matching of the approximate velocity v with the time derivative of the displacement

in a weak sense does hence give identifiable points in time when they match in a pointwise

sense. This is generalised later in the higher order in time scheme.

Terms that involve only ψ-functions

Next we consider the “ψ
k
equations” and to shorten slightly what is written let

ã(u(r, t);ψ(r, t)) = h0a1(u(r, t);ψ(r, t))− P (t)a2(u(r, t);ψ(r, t)) (6.6.28)

where a1(·; ·) and a2(·, ·) are as in the quasi-static description. With this shorthand the

equations are of the form

∫ tj

tj−1

∫ 1

0

ã(u(r, t);Hk(r)) rdrdt

+ρh0

∫ tj

tj−1

∫ 1

0

(
vj(r)− vj−1(r)

tj − tj−1

)
·Hk(r) rdrdt = 0. (6.6.29)

The integrand in the second integral does not vary with t and the integral can be done

exactly but the first integral needs to be approximated and we choose to use the mid-point
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rule approximation in time, i.e.

∫ tj

tj−1

∫ 1

0

ã(u(r, t);Hk(r)) rdrdt ≈ (tj − tj−1)

∫ 1

0

ã(uj−1/2(r);Hk(r)) rdr (6.6.30)

where

uj−1/2(r) := u(r, tj−1/2) =
1

2

(
uj(r) + uj−1(r)

)
, with tj−1/2 := (tj + tj−1)/2. (6.6.31)

Now by using (6.6.27), the integrand in the second part of (6.6.29) can be expressed in

terms of uj(r) to be

(tj − tj−1)
2ρh0

(tj − tj−1)

∫ 1

0

(
uj(r)− uj−1(r)

tj − tj−1
− vj−1(r)

)
·Hk(r) rdr. (6.6.32)

Putting the two parts together gives the equations to solve which determine the parame-

ters cj of the function uj(r) can be written as

∫ 1

0

ã(uj−1/2(r);Hk(r)) rdr

+
2ρh0

(tj − tj−1)

∫ 1

0

(
uj(r)− uj−1(r)

tj − tj−1
− vj−1(r)

)
·Hk(r) rdr = 0 (6.6.33)

and these must apply for all appropriate k.

Note The term (tj − tj−1), for both integrals in (6.6.33), is omitted since the right hand

side of the system is equal to zero.

This is a system of nonlinear equations which we need to solve for cj by using Newton

iteration and we can start the Newton iteration to get cj with the vector cj−1. The

Jacobian matrix of the system has a similar structure to the quasi-static case with an

additional mass-matrix contribution arising from the last part of (6.6.33). Once the

Newton iteration has converged to give cj we get bj from (6.6.27), i.e. we have

bj = 2

(
cj − cj−1

tj − tj−1

)
− bj−1. (6.6.34)
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DEFORMATION

7.1 Introduction

Dual problems that arise in attempts to determine the error in an approximation to a

QoI and to have quantities which may help to drive goal orientated adaptive refinement.

As we show in section 7.3 the dual problem corresponding to the dynamic case involves

solving a problem which is backward in time. If we were to stop at this point then the

description would not go much beyond what is given in [28] when the aim in that paper

was to predict modelling error. What we might describe as the basic or standard finite

element schemes for the forward problem and the backward dual problem, which was used

in [28] and which we describe here in sections 6.6 and 7.5, is not sufficiently accurate with

respect to the time discretization to do well enough when the context is error estimation.

This can be shown from the numerical experiments, which we show in the next chapter

for the basic-scheme in time, in subsections (8.3.1) - (8.3.2). From the results, we can

conclude that we need to put a lot of effort for the time discretization which is very

computationally expensive.

As a consequence of this, we decided to go beyond of what was done in [28] by considering

finite element schemes which involve higher order polynomials in time, which is described

in the last part of this chapter.

7.2 The dual problem in the quasi-static case

As part of the technique to estimate the error in an approximation to a quantity of interest

J(u), where J denotes a quantity of interest functional, we need to set-up a related dual

problem and we consider here the dual problem in the quasi-static case which we write

in the following way.
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Find ψ such that

A′
Q(u;α, ψ) = J ′(u;α) ∀ suitable α. (7.2.1)

Similar to what is given in (4.6.8) in the non-axisymmetric case the functional J can

be of the form

J(u) =

∫

Ω∗

{expressions in u and u′} rdr. (7.2.2)

In the quasi-static case we have

A′
Q(u;α, ψ) = a′(u;α, ψ)Ω (7.2.3)

where

a′(u;α, ψ)Ω = h0

∫ 1

0

a′1(u;α, ψ) rdr − P (t)

∫ 1

0

a′2(u;α, ψ) rdr. (7.2.4)

The expressions for the Gâteaux derivatives of a1 and a2 are a bit shorter than the

corresponding ones in section 4.6 and we give these next.

The a′1(u;α, ψ) expression

We obtain a′1(u;α, ψ) by taking the Gâteaux derivative of a1(u;ψ) given in (6.3.5) and

it helps here to use the following notation for the partial derivatives of the strain energy

density W .

W1 =
∂W

∂λ1
, W2 =

∂W

∂λ2
, W11 =

∂2W

∂λ21
, W12 =

∂2W

∂λ1∂λ2
, W22 =

∂2W

∂λ22
.

By using the chain rule we get

a′1(u;α, ψ) = (W11λ
′
1(u;α) +W12λ

′
2(u;α))λ

′
1(u;ψ) +W1λ

′′
1(u;α, ψ)

+(W12λ
′
1(u;α) +W22λ

′
2(u;α))λ

′
2(u;ψ) +W2λ

′′
2(u;α, ψ),

= W11λ
′
1(u;α)λ

′
1(u;ψ) +W22λ

′
2(u;α)λ

′
2(u;ψ)

+W12(λ
′
1(u;α)λ

′
2(u;ψ) + λ′1(u;ψ)λ

′
2(u;α))

+W1λ
′′
1(u;α, ψ) +W2λ

′′
2(u;α, ψ), (7.2.5)

where the Gâteaux derivatives of the stretch ratios are given by

λ′1(u;ψ) =
(1 + u′1)ψ

′
1 + u′3ψ

′
3

λ1
, λ′1(u;α) =

(1 + u′1)α
′
1 + u′3α

′
3

λ1
,

λ′2(u;ψ) =
ψ1

r
, λ′2(u;α) =

α1

r
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along with

λ′′1(u;α, ψ) =
α′
1ψ

′
1 + α′

3ψ
′
3 − λ′1(u;α)λ

′
1(u;ψ)

λ1
and λ′′2(u;α, ψ) = 0. (7.2.6)

Thus we have

a′1(u;α, ψ)Ω =

∫ 1

0

(α1, α
′
1, α

′
3)G1



ψ1

ψ′
1

ψ′
3


 rdr, (7.2.7)

where

G1 =




W22

r2
W12
r

(1 + u′1)
λ1

W12
r

u′3
λ1

W12
r

(1 + u′1)
λ1

W11
(1 + u′1)

2

λ21
+W1

u′3
2

λ31

(1 + u′1)u
′
3

λ21

(
W11 − W1

λ1

)

W12
r

u′3
λ1

(1 + u′1)u
′
3

λ21

(
W11 − W1

λ1

)
W11

u′3
2

λ21
+W1

(1 + u′1)
2

λ31



. (7.2.8)

The a′2(u;α, ψ) expression

By using (6.3.7) we get the Gâteaux derivative of a2(u;ψ) as

a′2(u;α, ψ) =
(
1 +

u1
r

)
(−α′

3ψ1 + α′
1ψ3) +

α1

r
(−u′3ψ1 + (1 + u′1)ψ3). (7.2.9)

It is an integral of this that we need and by using integration by parts in the integral

involving r we can write this in a form which only involves α1, α
′
1, α

′
3 and ψ1, ψ

′
1, ψ

′
3, as

with the previous term, as follows.

ra′2(u;α, ψ) = ((r + u1)α1)
′ψ3 − (r + u1)α

′
3ψ1 − u′3α1ψ1. (7.2.10)

Integrating on 0 ≤ r < 1 and using α1(1) = 0 gives

∫ 1

0

a′2(u;α, ψ) rdr = −
∫ 1

0

(r + u1)α1ψ
′
3 + (r + u1)α

′
3ψ1 + u′3α1ψ1 dr

= −
∫ 1

0

(α1, α
′
1, α

′
3)G2



ψ1

ψ′
1

ψ′
3


 rdr (7.2.11)
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where

G2 =




u′3
r 0 λ2

0 0 0

λ2 0 0


 . (7.2.12)

Hence in what follows we re-define a′2(u;α, ψ) as

a′2(u;α, ψ) = −(α1, α
′
1, α

′
3)G2



ψ1

ψ′
1

ψ′
3


 . (7.2.13)

7.3 The dual problem for the dynamic case

The weak form description for the dynamic case is given by (6.4.6)- (6.4.8) and (6.4.9)

and to get a corresponding dual problem we need to get the Gâteaux derivative involving

changes in u and changes in v. As before we let the changes in u be in the direction of α

and we now let the change in v be in the direction of β with in components α = (α1, α3)
T

and β = (β1, β3)
T . By using these directions we can describe the dual problem as follows.

Find ψ and θ such that

A′

((
u

v

)
;

(
α

β

)
,

(
ψ

θ

))
= J ′

((
u

v

)
;

(
α

β

))
∀ suitable

(
α

β

)
. (7.3.1)

Here, u and v are data used for the dual problems and in the computational scheme they

are the finite element approximations uh and vh respectively, or of something derived from

these.

For the functional J we assume that is of the following form

J

((
u

v

))
=

∫ T

0

∫ 1

0

r{expression in u, v, u′} drdt

+

∫ 1

0

r{expression in u(·, T ), v(·, T )} dr. (7.3.2)
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This leads to a representation of the Gâteaux derivative of the form

J ′

((
u

v

)
;

(
α

β

))
=

∫ T

0

∫ 1

0

(α · Jα + β · Jβ + α′ · Jα′) rdrdt

+

∫ 1

0

(α(r, T ) · Jα(r, T ) + β(r, T ) · Jβ(r, T )) rdr (7.3.3)

where in the above the terms Jα, J
′
α and Jβ provide user-defined data to the dual problem

and may depend on u and v. Examples of functionals J considered in the next chapter

are the average of u3(r, T ) at the final time T near the pole and the average thickness

over a time interval [T − δ, T ] for some δ > 0 near the pole.

We consider next the expression for A′ and it helps here to introduce the notation

a′(u;α, ψ)Q =

∫ T

0

a′(u;α, ψ)Ω dt (7.3.4)

= h0

∫ T

0

∫ 1

0

a′1(u;α, ψ) rdrdt−
∫ T

0

P (t)

∫ 1

0

a′2(u;α, ψ) rdrdt. (7.3.5)

With this notation we can write the Gâteaux derivative as

A′

((
u

v

)
;

(
α

β

)
,

(
ψ

θ

))
= a′(u;α, ψ)Q + ρh0(β̇, ψ)Q (7.3.6)

+ρh0
(
(α̇− β, θ)Q + (α(·, 0), θ)Ω + (β(·, 0), ψ)Ω

)
. (7.3.7)

As given this involves time derivatives of α and β but there are no time derivatives of

these in (7.3.3). To get a matching form we use integration by parts for the integral in t

for the α̇ and β̇ terms and specifically this gives

(β̇, ψ)Q = (β(·, T )− β(·, 0), ψ)Ω − (β, ψ̇)Q, (7.3.8)

(α̇, θ)Q = (α(·, T )− α(·, 0), θ)Ω − (α, θ̇)Q. (7.3.9)

By using these relations we get

A′

((
u

v

)
;

(
α

β

)
,

(
ψ

θ

))
= a′(u;α, ψ)Q − ρh0(β, ψ̇)Q

−ρh0
(
(α, θ̇)Q + (β, θ)Q − (α(·, T ), θ)Ω − (β(·, T ), ψ)Ω

)
. (7.3.10)
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7.4 A finite element model for the dual problem in the quasi-static case

As stated a few times already in this thesis, the details in a dual problem can be highly

problem dependent. In the case being considered here of the axisymmetric case and a

quasi-static deformation much of the detail has already been given in section 7.2 and hence

this section is quite short. If the finite element solution uh is obtained by solving (6.5.7)

then the finite element dual problem involves solving a problem of the following form.

Find ψ
h
∈ V̄h such that

A′
Q(ũh;α, ψh) = J ′(ũh;α) ∀α ∈ V̄h, (7.4.1)

where ũh is uh or the average of uh and a better approximation and where the finite

element space V̄h needs to be different to the space Vh used to get uh. In our computation

our different space V̄h involves piecewise polynomials of one degree higher than is used

for Vh.

7.5 A basic finite element model for the dual problem in the

dynamic case

There is a lot more detail to give to describe a scheme to approximately solve the dual

problem given in (7.3.1) where A′(·; ·, ·) is given in (7.3.10) and J ′(·; ·) is of the form (7.3.3).

We do this in this section in a manner similar to [28] which uses degree 1 polynomials

in time t in the time intervals and we generalise this in section 7.6 when higher order

polynomials in time are used.

In the following we denote the time intervals as 0 = t0 < t1 < · · · < tN = T and

typically these are the same time levels as are used to get the finite element displacements

and velocity or they are finer discretization with time levels in common. It is important

to note that for the dual problem u and v are given, i.e. they are the data for the problem,

and the unknowns are now ψ(r, t) and θ(r, t). As in section 6.6 to get the finite element

displacement and velocity we let the spatial discretization be fixed in time and we let the

basis functions in space be denoted by H1(r), . . . , H2n(r). Then we define the following

approximations for each time level in the form

ψj(r) :=

2n∑

i=1

cjiH i(r), θj(r) :=

2n∑

i=1

bjiH i(r). (7.5.1)
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In our application here H1, . . . , H2n are usually higher degree piecewise polynomials than

was used to get u and v. As before, between time levels, i.e. tj−1 < t < tj we assume that

the dependence on t is of the form

ψ(r, t) =

(
tj − t

tj − tj−1

)
ψj−1(r) +

(
t− tj−1

tj − tj−1

)
ψj(r), (7.5.2)

θ(r, t) =

(
tj − t

tj − tj−1

)
θj−1(r) +

(
t− tj−1

tj − tj−1

)
θj(r). (7.5.3)

This is the degree 1 polynomial in t behaviour which we generalise in section 7.6.

One of the main differences between solving the dual problem compared to solving

the problem to get u and v is that we have to solve backward in time. Thus, we start

with the final time conditions at t = T which determine cT and bT . For this case when

the solution is known at time tj, and thus we know cj and bj, the unknowns are cj−1 and

bj−1. The discrete version of (7.3.1) to determine cj−1 and bj−1 depends on which test

vectors α and β which are used for each case. As in section 6.6, in the case of α we take

the functions

αk(r, t) =




Hk(r), tj−1 < t < tj ,

0, otherwise,
(7.5.4)

and for β we take

β
k
(r, t) =




Hk(r), tj−1 < t < tj ,

0, otherwise.
(7.5.5)

Note that these functions do not vary with t on the time interval. In both cases we take

all the values of k with k = 1, . . . , 2n except those corresponding to known boundary

values at r = 0 or at r = 1. We separately have to satisfy

A′

((
u

v

)
;

(
αk

0

)
,

(
ψ

θ

))
= J ′

((
u

v

)
;

(
αk

0

))
∀ appropriate k, (7.5.6)

A′

((
u

v

)
;

(
0

β
k

)
,

(
ψ

θ

))
= J ′

((
u

v

)
;

(
0

β
k

))
∀ appropriate k. (7.5.7)
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The different parts when solving the dual problem

The final time conditions at t = T

From the terms involving α(·, T ) and β(·, T ) we have the following two systems that we

need to solve for θ(·, T ) and ψ(·, T ) respectively.

To obtain θ(·, T ) we do the following. We consider the test vector with β
k
= 0 and

αk 6= 0 where we have the following system:

Find θ(·, T ) such that

ρh0(αk(·, T ), θ(·, T ))Ω = J ′

((
u

v

)
;

(
αk

0

))
∀ appropriate k. (7.5.8)

In full this gives

ρh0(α(·, T ), θ(·, T ))Ω =

∫ 1

0

(αk(r, T ) · Jα(r, T )) rdr. (7.5.9)

To obtain ψ(·, T ) we do the following.

We consider the test vector with β
k
6= 0 and αk = 0 where we have the following system:

Find ψ(·, T ) such that

ρh0(β(·, T ), ψ(·, T ))Ω = J ′

((
u

v

)
;

(
0

β
k

))
∀ appropriate β. (7.5.10)

Similar to the previous case this gives

ρh0(β(·, T ), ψ(·, T ))Ω =

∫ 1

0

β
k
(r, T ) · Jβ(r, T ) rdr. (7.5.11)
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Solving in the time interval tj−1 < t < tj

The equations involving the β test functions

From the terms involving β(·, tj) test functions, which are non-zero only on tj−1 ≤ t ≤ tj,

we get the following equations which involve ψ(·, tj) and θ(·, tj) for all the time intervals.

−ρh0(ψ̇ + θ, β
k
)Q = J ′

((
u

v

)
;

(
0

β
k

))
=

∫ tj

tj−1

∫ 1

0

β
k
· Jβrdrdt, ∀ appropriate k .

(7.5.12)

These “β
k
equations” give a connection between the vectors bj and cj similar to the

relation between the displacement and the velocity. In full these are

−ρh0
∫ ti

tj−1

∫ 1

0

(
ψ̇(r, t) + θ(r, t)

)
· β

k
(r) rdrdt =

∫ ti

tj−1

∫ 1

0

β
k
· Jβrdrdt ∀ appropriate k.

(7.5.13)

For tj−1 < t < tj the term ψ̇ does not vary with t and the θ(r, t) varies with t as described

in (7.5.3) and we can do both of the integrals in time exactly to give

−ρh0(tj − tj−1)

∫ 1

0

(
ψj(r)− ψj−1(r)

tj − tj−1
+

1

2

(
θj(r) + θj−1(r)

)
)

·Hk(r) rdr

= (tj − tj−1)

∫ 1

0

Hk · Jβ rdr.

In the simplest case when Jβ = 0 and the reasoning used which gave (6.6.26) gives here

that
ψj(r)− ψj−1(r)

tj − tj−1
+

1

2

(
θj(r) + θj−1(r)

)
= 0. (7.5.14)

In the examples considered in this thesis we only consider functionals J(·) such that

Jβ = 0. If Jβ 6= 0 then we construct a function

γj(r) =

2n∑

i=1

eiH i(r) (7.5.15)

such that ∫ 1

0

γj(r) ·Hkr dr =

∫ 1

0

β
k
· Jβr dr ∀appropriate k. (7.5.16)
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To satisfy (7.5.13) requires that (7.5.14) is replaced by

ψj(r)− ψj−1(r)

tj − tj−1

+
1

2

(
θj(r) + θj−1(r)

)
= γj(r) (7.5.17)

and in terms of components

(
cji − cj−1

i

tj − tj−1

)
+

1

2

(
bji + bj−1

i

)
= ei. (7.5.18)

A consequence of this is that when we are solving on [tj−1, tj] we already know ψj and θj

and we are trying to determine ψj−1 and θj−1 and we have

θj−1(r) = −2

(
ψj(r)− ψj−1(r)

tj − tj−1

)
− θj(r) + 2γj(r). (7.5.19)

We use this in a moment to get equations which are just in terms of ψj−1.

The equations involving the α test functions

Collecting the terms that involve α(·, tj) test functions, which are only non zero on tj−1 ≤
t ≤ tj we get the following

a′(u;αk, ψ)Q − ρh0(θ̇, αk)Q = J ′

((
u

v

)
;

(
αk

0

))
=

∫ tj

tj−1

∫ 1

0

(α · Jα + α′
k · Jα′)r drdt.

(7.5.20)

In full these are as follows.

∫ tj

tj−1

∫ 1

0

a′(u(r, t);αk(r), ψ(r, t))rdrdt− ρh0

∫ tj

tj−1

∫ 1

0

θ̇(r, t) · αk(r)rdrdt

=

∫ tj

tj−1

∫ 1

0

(αk · Jα + α′
k · Jα′)rdrdt. (7.5.21)

By using (7.5.19) we have

θj − θj−1 = 2θj + 2

(
ψj − ψj−1

tj − tj−1

)
− 2γj (7.5.22)
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and thus

−ρh0(θ̇, αk) = 2ρh0

∫ 1

0

(
−
(
ψj − ψj−1

tj − tj−1

)
− θj + γj

)
· αkr dr. (7.5.23)

Now for the term involving a′(·; ·, ·) we need to approximate the integrand in a′(u;αk, ψ)Q

and in our scheme we use the mid-point rule so we have the following approximation

a′(u;αk, ψ)Q =

∫ t

tj−1

∫ 1

0

a′(u(r, t);αk(r), ψ(r, tj))drdt (7.5.24)

≈(tj − tj−1)

∫ 1

0

a′(uj−1/2(r);αk(r), ψ
j−1/2(r))r dr, (7.5.25)

where as before tj−1/2 := (tj + tj−1)/2 and

uj−1/2(r) := u(r, tj−1/2) =
1

2
(uj(r) + uj−1(r)),

ψj−1/2(r) := ψ(r, tj−1/2) =
1

2
(ψj(r) + ψj−1(r))

where u is the data used in the dual problem and it is typically uh or something derived

from uh.

Solving the system to ψj−1 and getting θj−1

Now, by using (7.5.23) and (7.5.25) we get the following system which involves only αk-test

functions

(tj − tj−1)

∫ 1

0

a′
(
uj−1/2(r);αk(r), ψ

j−1/2(r)
)
r dr

+2ρh0

∫ 1

0

(
−
(
ψj − ψj−1

tj − tj−1

)
− θj + γj

)
· αkr dr.

=

∫ tj

tj−1

∫ 1

0

(αk · Jα + α′
k · Jα′)r drdt. (7.5.26)
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Collecting the terms which involve ψj−1 on the left hand side and putting all other terms

on the right hand side gives

tj − tj−1

2

∫ 1

0

a′
(
uj−1/2(r);αk, ψ

j−1(r)
)
r dr +

2ρh0
tj − tj−1

∫ 1

0

ψj−1 · αkr dr (7.5.27)

= −tj − tj−1

2

∫ 1

0

a′
(
uj−1/2(r);αk, ψ

j(r)
)
r dr + 2ρh0

∫ 1

0

(
ψj

tj − tj−1

+ θj − γj

)
· αkr dr

+

∫ tj

tj−1

∫ 1

0

(αk · Jα + α′
k · Jα′)r drdt. (7.5.28)

This gives a linear system the coefficients of ψj−1 and once these are obtained then we

substitute back to (7.5.19) to get θj−1.

Remark

The above approach for solving the linear dual problem for ψ and θ has a similar structure

to the problem of solving the equations of motion to determine the displacement u and

the velocity v, with the main difference being that for the dual problem we have final

time conditions (t = T ) instead of initial conditions (t = 0). The relationship between ψ

and θ (7.5.19) is similar to the relation between u̇ and v, see (6.6.27), where the condition

u̇ = v is imposed weakly.

7.6 A higher order finite element scheme in time for the dynamic case

The reason for setting up and solving a dual problem is to generate functions ψ and θ which

we will hopefully lead to a sufficiently good estimate of the error in an approximation to

a quantity of interest of the form

J

(
u

v

)
− J

(
uh

vh

)
≈ F

(
ψ

θ

)
− A

((
uh

vh

)
;

(
ψ

θ

))
. (7.6.1)

We would also like the approximations to be such that the error is small. Unfortunately,

with the basic schemes described in sections 6.6 and 7.5 the error is typically dominated

by the error due to how we approximate in the time t and to get good accuracy we either

have to use a large number of time steps or we need to consider a higher order scheme

in time, In this section we consider a higher order scheme in time which generalises what

was done in section 6.6.

When we approximate u and v our generalisation of the scheme in section 6.6 is to
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now use polynomials of degree n in time in an interval [tj−1, tj] and which we use the usual

piecewise polynomial finite element functions for the dependence on the radial dimension

r ∈ [0, 1] as before. The time scheme which was used before corresponds to the case n = 1

and the scheme described here is hence a generalisation.

As before, u(r, t) = (u1(r, t), u3(r, t))
T denotes the approximate displacement and v(r, t) =

(v1(r, t), v3(r, t))
T is the approximate velocity and in the scheme we impose the condition

between v and u̇ weakly which, as we show, requires that the difference v(r, t) − u̇(r, t)

can be described using a Legendre polynomial of degree n with respect to the interval

[tj−1, tj] for the time dependence. An outcome of this is that we can express the equations

that we have to solve in terms of only the parameters connected with u(r, t). A similar

set-up can also be done for the associated dual problem and brief details of this case are

given in section 7.7.

7.6.1 Representing u(r, t) and v(r, t) and the basis functions for the general case

For the description given here we consider the stage when we have the solution at time

tj−1 and we seek the solution in tj−1 ≤ t ≤ tj . As notation we let

uj−1(r) := u(r, tj−1), vj−1(r) := v(r, tj−1), (7.6.2)

uj(r) := u(r, tj), vj(r) := v(r, tj). (7.6.3)

To describe the time dependence of u(r, t) for tj−1 ≤ t ≤ tj when n > 1 needs additional

functions which we give in a moment.

The basis functions that we use for our approximation u(r, t) involve the product of

two functions, a function of r and a function of t and we start by defining these functions

of one variable and what is given here corresponds to the basis functions described in

section 2.4.2. In the case of the t dependence and degree n ≥ 1 polynomials we take

ηn0 (t) :=
tj − t

tj − tj−1
, ηnn(t) :=

t− tj−1

tj − tj−1
, ηni (t) = Pi+1(t)−Pi−1(t), i = 1, 2, . . . , n−1,

(7.6.4)

where here

Pi(t) = P̂i

(
2t− (tj−1 + tj)

tj − tj−1

)
,

where P̂i is the usual Legendre polynomial of degree i on [−1, 1]. In particular this choice

means that the functions ηn1 (t), . . . , η
n
n−1(t) are 0 when we evaluate at the times tj−1 and

tj . In the case of the r dependence and degree p ≥ 1 polynomials the functions that we
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use on an element [rs, rs+1] are similarly given as

ηp0(r) :=
rs+1 − r

rs+1 − rs
, ηpp(r) :=

r − rs
rs+1 − rs

, ηpi (r) = P̃i+1(r)−P̃i−1(r), i = 1, 2, . . . , p−1,

(7.6.5)

where here

P̃i(r) = P̂i

(
2r − (rs + rs+1)

rs+1 − rs

)

where, as above, P̂i is the usual Legendre polynomial of degree i on [−1, 1]. In the

notation in both cases the subscript indicates which function is being considered and the

superscript indicates the highest degree of all the functions in the basis. The use of the

superscript here is because we will also need a basis for polynomials of degree n− 1 in t

when the test functions are introduced. To cover all cases we hence also need the space

of degree 0 functions to cover the case when n = 1 and in this case we just have

η00(t) := 1, tj−1 < t < tj . (7.6.6)

When we are considering rs ≤ r ≤ rs+1 and tj−1 ≤ t ≤ tj the solution at time tj−1 is

already known and the functions uj−1(r) and vj−1(r) are such that

uj−1(r), vj−1(r) ∈ span

{(
ηp0(r)

0

)
,

(
0

ηp0(r)

)
, . . . ,

(
ηpp(r)

0

)
,

(
0

ηpp(r)

)}
. (7.6.7)

We are now ready to describe u(r, t) for any r, t on the space-time element as

u(r, t) = uj−1(r)ηn0 (t) +

p∑

i=0

ηpi (r)
n−1∑

l=0

(
c2(in+l)

c2(in+l)+1

)
ηnl+1(t). (7.6.8)

There are 2(p+1)n coefficients labelled as c0, c1, . . . , c2(p+1)n−1 which are not known when

we start the calculation in the time interval tj−1 ≤ t ≤ tj . The basis functions on the

element are

(
ηpi (r)η

n
l+1(t)

0

)
,

(
0

ηpi (r)η
n
l+1(t)

)
, l = 0, . . . , n− 1, i = 0, . . . , p.

These are also the basis for the unknown part of v(r, t) on the element at the same stage

of the computations although, as we describe, we will express v in terms of u̇ and other

terms.

As we explain further in the next section, we have the same number of non-zero test
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vectors on the element and these are similarly given by

(
ηpi (r)η

n−1
l (t)

0

)
,

(
0

ηpi (r)η
n−1
l (t)

)
, l = 0, . . . , n− 1, i = 0, . . . , p.

This corresponds to what is done in section 6.6 when it is degree n = 1 in time for u(r, t)

and v(r, t) and it is degree 0 in time for the test vectors.

To end this section on representing u(r, t) we consider now the number of parameters

involved when we consider the complete space region 0 ≤ r ≤ 1 when we have ne elements

0 = r0 < r1 < r2 < · · · < r
ne

= 1.

For functions such as uj−1(r) and vj−1(r) we need 2 scalar parameters at each node rs

and we need 2(p− 1) interior parameters in each interval (rs, rs+1). In total we have

2(ne+ 1) + 2(p− 1)ne = 2(p(ne) + 1). (7.6.9)

(This number was given when the quasi-static case was described in section 6.5.) For this

description with index values starting at 0, we store these so that the 2(p+1) parameters

on element [rs, rs+1] start as index position

s(2p), s = 0, 1, . . . , ne− 1.

For functions such as u(r, t) we need uj−1(r) to already be available, we need a further

2n scalar parameters at each point rs and we need 2n(p− 1) interior parameters in each

interval (rs, rs+1). In total this is n times what is given in (7.6.9), i.e. the storage of these

terms has size

2n(p(ne) + 1).

We store these in a column vector so that the 2n(p + 1) parameters on element [rs, rs+1]

start at index position

s(2np), s = 0, 1, . . . , ne− 1.

In the next section we discuss the equations that have to be solved and just note here

that once a solution is obtained we extract 2(p(ne) + 1) of the 2n(p(ne) + 1) parameters

to get the parameters describing uj(r) which is needed in the next time interval [tj , tj+1].

For the next time interval we also need the parameters describing vj(r) but before we can

discuss this we need the connection between u̇ and v in the approximate scheme and this

is the topic of the next section.

– 152 –



7. DUAL PROBLEMS FOR AXISYMMETRIC MEMBRANE DEFORMATION

7.6.2 The equations to solve for the dynamic problem

In the previous section we defined the form of the approximations u(r, t) and v(r, t) on

the region 0 ≤ r ≤ 1, tj−1 ≤ t ≤ tj with the t dependence being a polynomial of degree

less than or equal to n. In the description we also noted that u(r, tj−1) = uj−1(r) and

v(r, tj−1) = vj−1(r) are already known at this stage of the calculation and that there are

2n(p(ne) + 1) parameters to determine before we take account of boundary conditions at

r = 0 and at r = 1. We need a matching number of test vectors and these can be defined

element-by-element to involve on the element [rs, rs+1] the span of the functions

(
ηpi (r)η

n−1
l (t)

0

)
,

(
0

ηpi (r)η
n−1
l (t)

)
, l = 0, 1, . . . , n− 1, i = 0, 1, . . . , p. (7.6.10)

The functions corresponding to i = 0 when s > 0 and the functions corresponding to i = p

when s+1 < ne are part of the description of a function also non-zero on a neighbouring

element. In all cases the functions corresponding to 1 ≤ i ≤ p − 1 are only non-zero on

(rs, rs+1). A key point here is that the time dependence of the test functions involves all

polynomials of one degree lower than that which is used to describe u(r, t) and v(r, t). We

will refer to this property in a moment.

The equations to determine u(r, t) and v(r, t) in 0 ≤ r ≤ 1, tj−1 ≤ t ≤ tj are

∫ tj

tj−1

∫ 1

0

(v(r, t)− u̇(r, t)) · q(r, t)r drdt = 0, (7.6.11)

∫ tj

tj−1

∫ 1

0

(
ã(u(r, t); q(r, t)) + ρh0v̇(r, t) · q(r, t)

)
r drdt = 0, (7.6.12)

where in each case it is for all q in the test space as indicated (7.6.10). As it was described

in section 6.6 the first equation is concerned with imposing the condition between v(r, t)

and u̇(r, t) weakly. In the next section we show how this gives an explicit expression

between u̇ and v which we can differentiate to give an expression for v̇ in terms of ü and

other quantities and this enables us to set things up so that we just solve for u at any

given stage.
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7.6.3 Expressing v in terms of u̇

Equation (7.6.11) is concerned with imposing the condition between v(r, t) and u̇(r, t)

weakly. This can be solved explicitly by noting that for any r ∈ [0, 1] we satisfy

∫ tj

tj−1

(v(r, t)− u̇(r, t)) · q(r, t) dt = 0

for all q in the test space with

v(r, t)− u̇(r, t) = γ(r)Pn(t), (7.6.13)

where Pn(t) is the Legendre polynomial of degree n on [tj−1, tj]. This follows because each

of the components of the vector v(r, t)− u̇(r, t) is a polynomial in t of degree less than or

equal to n and it is orthogonal to all polynomials of degree n− 1. We consider next γ(r).

In an iteration to solve the nonlinear equations we have a candidate for the parameters

c0, c1, . . . , c2(p+1)n−1 on an element and, to repeat, we already know the parameters for

uj−1(r) and vj−1(r). Thus by considering (7.6.13) when t = tj−1 we have

vj−1(r)− u̇(r, tj−1) = γ(r)Pn(tj−1).

Now a property of the Legendre polynomial is that Pn(tj−1) = (−1)n and hence

γ(r) = (−1)n
(
vj−1(r)− u̇(r, tj−1)

)
= (−1)n+1

(
u̇(r, tj−1)− vj−1(r)

)
(7.6.14)

= (−1)n+1

(
uj−1(r)η̇0(tj−1)− vj−1(r)

+

p∑

i=0

ηpi (r)

n−1∑

l=0

(
c2(in+l)

c2(in+l)+1

)
η̇nl+1(tj−1).

)
(7.6.15)

From this we can get the parameters in a representation of γ(r) from the space described

in (7.6.7) if needed although as we give below we give explicit expressions for the quantities

we need to compute which are v̇(r, t) during the iteration and vj(r) after the iteration.

7.6.4 The form of v̇(r, t) on an element

Equation (7.6.12) involves v̇(r, t) and this can be written in the form

v̇(r, t) = ü(r, t) + γ(r)Ṗn(t). (7.6.16)
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On an element we can express this as

v̇(r, t) = uj−1(r)η̈n0 (t) +

p∑

i=0

ηpi (r)
n−1∑

l=0

(
c2(in+l)

c2(in+l)+1

)
η̈nl+1(t)

+(−1)n+1

(
uj−1(r)η̇n0 (tj−1)− vj−1(r)

+

p∑

i=0

ηpi (r)

n−1∑

l=0

(
c2(in+l)

c2(in+l)+1

)
η̇nl+1(tj−1)

)
Ṗn(t)

=

p∑

i=0

ηpi (r)

n−2∑

l=0

(
c2(in+l)

c2(in+l)+1

)
η̈nl+1(t)

+(−1)n+1

(
uj−1(r)η̇n0 (tj−1)− vj−1(r)

+

p∑

i=0

ηpi (r)

n−1∑

l=0

(
c2(in+l)

c2(in+l)+1

)
η̇nl+1(tj−1)

)
Ṗn(t)

where the final version is because the second time derivatives of the first and last basis

functions are 0. This shows explicitly the dependence of v̇(r, t) on c0, c1, . . . , c2(p+1)n−1

and we refer to this in the next section when we give the element Jacobian matrix needed

as part of the things to compute in a Newton iteration.

7.6.5 The element residual vector and the element Jacobian matrix

The detail so far has been about evaluating the functions involved that appear in (7.6.11)

and we now considering the integrals that appear in (7.6.12). On an element [rs, rs+1] we

need to compute a quadrature approximation to

∫ tj

tj−1

∫ rs+1

rs

(
ã(u(r, t); q(r, t)) + ρh0v̇(r, t) · q(r, t)

)
r drdt (7.6.17)

for

q =

(
ηpi (r)η

n−1
l (t)

0

)
,

(
0

ηpi (r)η
n−1
l (t)

)
, l = 0, 1, . . . , n− 1, i = 0, 1, . . . , p, (7.6.18)

to generate our element residual vector of length 2n(p + 1). For the two test vectors

in (7.6.18) these are respectively the 2(in + l) and 2(in + l) + 1 entries. The ne residual

vectors are assembled to form the global residual vector of length 2n(p(ne) + 1). The

Newton iteration that we are using needs a Jacobian matrix and we get the contributions
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to the full matrix element-by-element with each element Jacobian matrix having size

2n(p + 1)-by-2n(p + 1). With indexing starting from 0, row 2(in + l) corresponds to

using the first test vector shown and it obtained by partially differentiating with respect

to c0, c1, . . . , c2n(p+1)−1. Similarly row 2(in + l) + 1 corresponds to the other test vector

shown and with partially differentiating this with respect to c0, c1, . . . , c2n(p+1)−1. The kth

entry of one of the rows is described by

∫ tj

tj−1

∫ rs+1

rs

(
ã′(u(r, t);

∂u

∂ck
, q(r, t)) + ρh0

∂v̇(r, t)

∂ck
· q(r, t)

)
r drdt, (7.6.19)

where here ã′(·; ·, ·) is the Gâteaux derivative of ã(·; ·). When k = 2(̄in+ l̄) we have

∂u

∂ck
=

(
ηp
ī
(r)ηn

l̄+1
(t)

0

)
,

∂v̇

∂ck
=

(
ηp
ī
(r)η̈n

l̄+1
(t) + ηp

ī
(r)η̇n

l̄+1
(tj−1)Ṗn(t)

0

)
,

and when k = 2(̄in+ l̄) + 1 we have

∂u

∂ck
=

(
0

ηp
ī
(r)ηn

l̄+1
(t)

)
,

∂v̇

∂ck
=

(
0

ηp
ī
(r)η̈nl+1(t) + ηp

ī
(r)η̇n

l̄+1
(tj−1)Ṗn(t)

)
.

When the element Jacobian matrices are assembled we get a global Jacobian matrix with

2n(p(ne) + 1) rows and with a bandwidth of 2(p + 1)n − 1. As well as this degree n in

time case being more complicated than the n = 1 case we note here that when n > 1 the

Jacobian matrix of the nonlinear equations to solve is not symmetric.

7.6.6 Comments about the numerical quadrature

As mentioned a few times, the integrals which appear in (7.6.17) and (7.6.19) are approx-

imated using a quadrature rule and we now give brief details of what this involves. For a

mapping from a standard element to our actual element we have

r(x1) =

(
rs + rs+1

2

)
+

(
rs+1 − rs

2

)
x1, −1 < x1 < 1,

t(x2) =

(
tj−1 + tj

2

)
+

(
tj − tj−1

2

)
x2, −1 < x2 < 1.
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Hence for any given integrand g(r, t) we have

∫ tj

tj−1

∫ rs+1

rs

g(r, t)r drdt =

∫ tj

tj−1

∫ rs+1

rs

g(r(x1), t(x2))

∣∣∣∣
dr(x1)

dx1

∣∣∣∣
∣∣∣∣
dt(x2)

dx2

∣∣∣∣ r(x1) dx1dx2

=

(
rs+1 − rs

2

)(
tj − tj−1

2

)∫ 1

−1

∫ 1

−1

g(r(x1), t(x2))r(x1) dx1dx2.

In our case each integrand g involves a product of terms with each involving u (and various

derivatives) and also involving the test vector q. Based on the degree of polynomials that

this involves we use Gauss Legendre quadrature of degree n in the t direction and of

degree p+1 in the r direction. If for a m point Gauss Legendre rule on (−1, 1) the points

are denoted by ξmi , i = 0, . . . , m − 1 and the corresponding weights are denoted by wmi

then the approximation to the integral is given by

(
rs+1 − rs

2

)(
tj − tj−1

2

) n∑

i=1

p+1∑

l=1

wni w
p+1
l g(r(ξp+1

l ), t(ξni ))r(ξ
p+1
l ).

7.6.7 How to get uj(r) and vj(r)

Once we have solved the nonlinear equations to determine all the parameters describing

u(r, t) on 0 ≤ r ≤ 1, tj−1 ≤ t ≤ tj we need to get the parameters describing uj(r) and

vj(r) in a suitable format to be able to consider the next time interval tj ≤ t ≤ tj+1.

We have already mentioned how to get uj(r) from u(r, t) by extracting the appropriate

2(p(ne) + 1) parameters and specifically these are

c2(in+n−1), c2(in+n−1)+1, i = 0, 1, . . . , p(ne). (7.6.20)

In the case of vj(r) there is a bit more to do as we have to evaluate at time tj . As

Pn(tj) = 1 and using (7.6.13) we have

vj(r) = u̇(r, tj) + γ(r) = u̇(r, tj) + (−1)n
(
vj−1(r)− u̇(r, tj−1).

)
(7.6.21)

On an element we can write this as

vj(r) = (−1)nvj−1(r) + uj−1(r)
(
η̇0(tj) + (−1)n+1η̇0(tj−1)

)

+

p∑

i=0

ηpi (r)

n−1∑

l=0

(
c2(in+l)

c2(in+l)+1

)
(
η̇nl+1(tj) + (−1)n+1η̇nl+1(tj−1)

)
. (7.6.22)
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This shows how we get the coefficients in the representation of vj(r) using basis functions

given in (7.6.7).

7.6.8 A summary of the steps when solving in [tj−1, tj ]

We now summarize the solution process in the time interval [tj−1, tj] in the finite element

scheme with the full set of nonlinear equations described by

f(c) = 0

and with the solution process involving the Newton iteration starting with c(0) and then

continuing with

c(k+1) = c(k) − Jf(c
(k))−1f(c(k)), k = 0, 1, 2, . . .

where Jf(c
(k)) represents the Jacobian matrix corresponding to f(c(k)).

A pseudo code description of the computations is as follows.

For k = 0, 1, . . . until the maximum number of iterations allowed

For elements s = 0, 1, . . . , ne− 1

We compute quadrature approximations to the integrals in (7.6.17),

l = 0, . . . , n− 1, i = 0, . . . , p+ 1 to get the element residual.

We compute quadrature approximations to the integrals in (7.6.19)

to get the element Jacobian matrix.

We apply boundary conditions when s = 0 or s = ne− 1.

We assemble the element terms to partly get f(c(k)) and Jf(c
(k)).

End of element loop

We solve a banded system to enable us to get c(k+1).

We leave the loop if
∥∥f(c(k))

∥∥ is sufficiently small.

End of Newton iteration loop.

We extract the parameters which describe uj(r) as in (7.6.20).

We do the computations implied by (7.6.21) to get the parameters which describe vj(r).
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7.7 A higher order scheme in time for the dual problem

We keep this section brief and just concentrate on the main differences between what has

already been described in section 7.5 when we obtain the dual solution in a time interval

when polynomials of any degree in time are used in the approximation.

As before, in the dual problem the unknowns are denoted by ψ(r, t) and θ(r, t) and

we are solving backward in time. A higher order in time scheme can be described in a

similar way to that given earlier to get u(r, t) and v(r, t) with a few adjustments. To avoid

cumbersome notation we use again p and n to denote the degrees of polynomials on each

element in space and time respectively for the components of ψ and θ and these will need

to be at least as high as that used for the finite element displacement u and velocity v.

We also again use the notation

0 = t0 < t1 < · · · < tN = T

for the time levels and for the values at times tj and tj−1 we let, similar to (7.6.2)

and (7.6.3),

ψj−1(r) := ψ(r, tj−1), θj−1(r) := θ(r, tj−1), (7.7.1)

ψj(r) := ψ(r, tj), θj(r) := θ(r, tj). (7.7.2)

In all the implementations considered so far with the higher order scheme we have used

the same space mesh and the same time levels for the dual problem with the higher order

schemes as we have used for the problem to get the approximations to u and v. Similar

to what was given in the description to get u(r, t) and v(r, t) we now have the following

on an element rs ≤ r ≤ rs+1, tj−1 ≤ t ≤ tj.

ψj−1(r), θj−1(r) ∈ span

{(
ηp0(r)

0

)
,

(
0

ηp0(r)

)
, . . . ,

(
ηpp(r)

0

)
,

(
0

ηpp(r)

)}
, (7.7.3)

and

ψ(r, t) = ψj(r)ηnn(t) +

p∑

i=0

ηpi (r)
n−1∑

l=0

(
d2(in+l)

d2(in+l)+1

)
ηnl (t). (7.7.4)

It is written like this as when we are solving backward in time and we are considering this

time interval, we already know the solution at time tj and we are attempting to determine

the other parameters associated with the time interval.

As it was described in section 6.6 the equations to determine ψ(r, t) and θ(r, t) in

– 159 –



7. DUAL PROBLEMS FOR AXISYMMETRIC MEMBRANE DEFORMATION

0 ≤ r ≤ 1, tj−1 ≤ t ≤ tj are

−ρh0
∫ tj

tj−1

∫ 1

0

(
θ(r, t) + ψ̇(r, t)

)
· q(r, t)r drdt =

∫ tj

tj−1

∫ 1

0

q(r, t) · Jβr drdt,(7.7.5)
∫ tj

tj−1

∫ 1

0

(
ã′(u(r, t); q(r, t), ψ(r, t))− ρh0θ̇(r, t) · q(r, t)

)
r drdt (7.7.6)

=

∫ tj

tj−1

∫ 1

0

(
q(r, t) · Jα + q′(r, t) · Jα′

)
r drdt,

where ã′(·; ·, ·) represents the Gâteaux derivative of ã′(·; ·).
In each case it is for all q in the following span of the functions

(
ηpi (r)η

n−1
l (t)

0

)
,

(
0

ηpi (r)η
n−1
l (t)

)
, l = 0, 1, . . . , n− 1, i = 0, 1, . . . , p. (7.7.7)

For the first equation (7.7.5), we restrict to quantities of interest for which θ+ ψ̇ = 0 and

this now gives for our approximations that θ and ψ̇ are related by

θ(r, t) + ψ̇(r, t) = γ(r)Pn(t) (7.7.8)

where Pn(t) is the Legendre polynomial of degree n on [tj−1, tj]. As Pn(tj) = 1 it follows

that

γ(r) = θj(r) + ψ̇(r, tj). (7.7.9)

For the second equation (7.7.6), we need θ̇(r, t) and this is given by

θ̇(r, t) = −ψ̈(r, t) + γ(r)Ṗn(t). (7.7.10)

On an element this can be represented as follows.

θ̇(r, t) = −ψj(r)η̈nn(t)−
p∑

i=0

ηpi (r)
n−1∑

l=0

(
d2(in+l)

d2(in+l)+1

)
η̈nl (t)

+

(
θj(r) + ψj(r)η̇nn(tj) +

p∑

i=0

ηpi (r)
n−1∑

l=0

(
d2(in+l)

d2(in+l)+1

)
η̇nl (tj)

)
Ṗn(t)

= −
p∑

i=0

ηpi (r)
n−1∑

l=1

(
d2(in+l)

d2(in+l)+1

)
η̈nl (t)

+

(
θj(r) + ψj(r)η̇nn(tj) +

p∑

i=0

ηpi (r)
n−1∑

l=0

(
d2(in+l)

d2(in+l)+1

)
η̇nl (tj)

)
Ṗn(t)

where the last version is because the second time derivative of the first and last basis
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functions is zero.

Once a solution is obtained in the time interval tj−1 ≤ t ≤ tj we get the coefficients

d2in , d2in+1, i = 0, 1, . . . , p(ne).

needed for the function ψj−1(r) with respect to the basis

span

{(
ηp0(r)

0

)
,

(
0

ηp0(r)

)
, . . . ,

(
ηpp(r)

0

)
,

(
0

ηpp(r)

)}
.

For the coefficients of the function θj−1(r) = θ(r, tj−1) we have

θj−1(r) = (−1)nγ(r)− ψ̇(r, tj−1)

= (−1)n(θj(r) + ψ̇(r, tj))− ψ̇(r, tj−1)

= (−1)nθj(r) + ((−1)nψ̇(r, tj)− ψ̇(r, tj−1))

= (−1)nθj(r) + ψj(r)((−1)nη̇nn(tj)− η̇nn(tj−1)) (7.7.11)

+

p∑

i=0

ηpi (r)

n−1∑

l=0

(
d2(in+l)

d2(in+l)+1

)
((−1)nη̇nl (tj)− η̇nl (tj−1)). (7.7.12)

From this representation we get the coefficients of the function θj−1(r).
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MEMBRANE MODEL

8.1 Introduction

In this chapter we present results to test the theory described in chapter 6 to show how

the error estimate values for a quantity of interest (QoI) obtained via the solution of a

dual problem compare with the actual error, when this is possible. Here, the term actual

error will be in practice involve using the most accurate estimate of the QoI to serve as

the exact value. We also describe how we can use the error estimate expression to help us

to adaptively refine, in some cases, so that we have a goal orientated technique to get an

estimate of a QoI to a desired accuracy. This is straightforward to do in the quasi-static

case when the computational effort is never too great but in the dynamic case it is only

used to help guide us towards a more accurate result in terms of whether we should refine

in both space and time or in just one of these at each refinement step.

The order in which the results are presented corresponds to the order the theory was

given in chapter 6. We consider first the quasi-static case and then the dynamic case.

The section on the dynamic case is split into the parts when just the basic scheme in time

is used and when the higher order in time is used.

8.2 The quasi-static problem

We start with the quasi-static inflation problem, where the time-dependence is only

through the time-dependent pressure P (t). First we give the desired functionals J that

we want to approximate, we give the expression for the Gâteaux derivative J ′ needed in

a dual problem and then give some numerical results with different numbers of elements

and with different degrees for the piecewise polynomial approximations to the membrane

displacement u(r).
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8.2.1 The desired quantities of interest for the quasi-static case

First we will describe the desired quantities of interest J(u) which we use in our results

in this section and we also give details of the Gâteaux derivative J ′(u;α) which is needed

in the dual problem. To repeat what was given in (7.2.2) we consider functionals of the

form

J(u) =

∫

Ω∗

{expressions in u and u′} rdr,

where Ω∗ is Ω or it is part of Ω, which gives a Gâteaux derivative of the form

J ′(u;α) =

∫ 1

0

(α · Jα + α′ · J ′
α)r dr, (8.2.1)

=

∫ 1

0

(α1Jα1
+ α3Jα3

+ α′
1Jα′

1
+ α′

3Jα3
)r dr. (8.2.2)

We denote the particular functionals that we consider as J1 and J2 in the following.

The thickness stretch ratio over a part or all of the domain

Let

J1 (u) =

∫ b

0

λ(r)rdr =

∫ b

0

1

λ1(r)λ2(r)
rdr. (8.2.3)

with λ being the stretch ratio through the thickness. If we divide this quantity by b2/2

then we get the average of λ over the part of the domain considered. In the results we

consider this case when b = 1, which is the entire domain, and when b = 1/8. When

b = 1/8 we always use meshes with r = b being one of the nodes.

To get the Gâteaux derivative first consider the Gâteaux derivative of the integrand

λ which as a first step involves

λ′(u;α) = −(λ1λ2)
−2(λ′1(u;α)λ2 + λ1λ2(u;α)). (8.2.4)

Now as

λ21 = (1 + u′1)
2 + u′3

2
and λ2 = 1 +

u1
r

we get

λ′1 =
1

λ1
((1 + u′1)α

′
1 + u′3α

′
3) and λ′2 =

α1

r
. (8.2.5)
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Thus

J ′
1(u;α) =

∫ b

0

−(λ1λ2)
−2

(
λ1
α1

r
+
λ2
λ1

((1 + u′1)α
′
1 + u′3α

′
3)

)
rdr. (8.2.6)

This is of the form given in (8.2.2) with

Jα1
=− (λ1λ2)

−2λ1
r
, Jα3

= 0, (8.2.7)

Jα′

1
=− (λ1λ2)

−2λ2
λ1

(1 + u′1), Jα′

3
= −(λ1λ2)

−2λ2
λ1
u′3. (8.2.8)

The potential energy of the deformed membrane

Let

J2(u) = Ψ (u) =

∫ 1

0

Ψ̃(r)r dr (8.2.9)

where

Ψ̃(r) = h0W − P

3

(
1 +

u1(r)

r

)
(−(r + u1(r))u

′
3(r) + (1 + u′1(r))u3(r)) , (8.2.10)

with W being the strain energy function given by a hyperelastic model.

Now, the Gâteaux derivatives of this functional is such that J ′
2(u;α) = AQ(u;α), as

in the non-axisymmetric case, which we show here, and we give some details here as in

the dual problem we do need the expressions for Jα1
, Jα3

, Jα′

1
and Jα′

3
.

Let

g(u) =
(
1 +

u1
r

)
(−(r + u1)u

′
3 + (1 + u′1)u3)

so that

Ψ̃ = h0W − P

3
g.

By the chain rule the Gâteaux derivative of W is

W ′(u;α) = W1λ
′
1(u;α) +W2λ

′
2(u;α)

=
W1

λ1
((1 + u′1)α

′
1 + u′3α

′
3) +W2

α1

r
(8.2.11)

where we have used the expressions for λ′1 and λ
′
2 given in (8.2.5). For the term involving
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g the product rule gives

g′(u;α) =
α1

r
(−(r + u1)u

′
3 + (1 + u′1)u3)

+
(
1 +

u1
r

)
(−α1u

′
3 − (r + u1)α

′
3 + α′

1u3 + (1 + u′1)α3) (8.2.12)

=
α1

r
(−2(r + u1)u

′
3 + (1 + u′1)u3)

+
(
1 +

u1
r

)
(−(r + u1)α

′
3 + α′

1u3 + (1 + u′1)α3) . (8.2.13)

If we compare with (6.3.6) and (6.3.9) then we see that Ψ̃′(u;α) = h0a1(u;α)−(P/3)a2(u;α)

to verify that J ′(u;α) = AQ(u;α). For the expressions needed here we have

Jα1
=

h0W2

r
− P

3r
(u3(1 + u′1)− 2(r + u1)u

′
3) ,

Jα3
= −P

3

(
1 +

u1
r

)
(1 + u′1),

Jα′

1
= h0W1

(
1 + u′1
λ1

)
− P

3r

(
1 +

u1
r

)
u3,

Jα′

3
= h0W1

(
u′3
λ1

)
+
P

3r

(
1 +

u1
r

)
(r + u1).

Note: As the results only depend on the ratio P/h0, where P is the time-dependent ap-

plied pressure and h0 is the undeformed thickness, we can take h0 = 1 in the computations

and just report the value of P when indicating a particular solution.

8.2.2 The goal-oriented adaptive refinement technique for the quasi-static case

In this section, we present the goal-oriented adaptive refinement procedure, which is

used in this axisymmetric quasi-static case. This technique is based on the local error

contributions that we get when we consider a term of the form −A(uh; ψ̃h) where ψ̃
h

denotes one of the dual solutions that we consider. With Vh denoting the finite element

space that we use to get uh and with V̄h being the larger finite element space that we use

when we solve the approximate dual problem, we consider the following two possibilities

for ψ̃
h
when results are presented. When uh is the data in the dual problem we let ψ

h
∈ V̄h

be such that

A′(uh;α, ψh) = J ′(uh;α) ∀α ∈ V̄h. (8.2.14)
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When a better approximation ubh is available, e.g. the finite element solution for the

displacement using the space V̄h, we let

umh =
1

2
(uh + ubh) (8.2.15)

and we let ψm
h
∈ V̄h be such that

A′(umh ;α, ψ
m

h
) = J ′(umh ;α) ∀α ∈ V̄h. (8.2.16)

From what was discussed in chapter 4, we expect that the estimate −A(uh;ψmh ) to be

asymptotically exact in estimating the actual error and we expect that the estimate

−A(uh;ψh) just to be consistent in estimating the actual error. The examples that we

give in section 8.2.3 support this.

Before considering the values that we get we describe here how to use a quantity of

the form −A(uh; ψ̃h) to help determine which element to refine, and by how much to

refine, with the aim being to get to a desired level of accuracy. From the theory given in

chapter 4 we have the following

J(u)− J(uh) ≈ −A(uh; ψ̃h)
= −A

(
uh; ψ̃h − ψ

hI

)
∀ψ

hI
∈ Vh

= −
ne∑

k=1

A
(
uh; ψ̃ − ψ

hI

)
k
, ∀ψ

hI
∈ Vh

where A(·; ·)k means the expression for A(·; ·) but with the integration only over the kth

element Ωk. As we can subtract from ψ̃
h
any function in Vh we can do this by subtracting

the interpolant to ψ̃
h
from Vh and in the case of higher degree polynomials and a basis

constructed using Legendre polynomials we can have ψ
hI

such that ψ̃
h
−ψ

hI
has no lower

degree polynomial terms. Now, the quantities

A
(
uh; ψ̃h − ψ

hI

)
k
, k = 1, . . . , ne, (8.2.17)

are our local error estimators and they give an indication of the contribution to the error

from each element. We make use of this observation to determine how to refine the mesh

in an economical way in order to compute J(uh) which will eventually give us

|J(u)− J(uh)| < tol

where tol is our desired accuracy. In terms of the mesh itself, our aim is to ideally get to

– 166 –



8. RESULTS WITH A HYPERELASTIC AXI-SYMMETRIC MEMBRANE MODEL

the stage when ∣∣∣A
(
uh;ψ − ψ

hI

)
k

∣∣∣ ≈ tol

ne
, for k = 1, . . . , ne. (8.2.18)

If the error estimate for the kth element is larger than tol/ne then we need to refine the

kth element. Now, for the element refinement we use the following procedure which helps

us to reach our goal very fast in terms of the computational costs.

Element refinement procedure

For each kth element to determine by how much it needs to be divided we consider what is

needed if we are in the asymptotic convergence range. For example, if we are using degree

p polynomials in the approximation of the components of u then dividing the element

into qk equal elements should decrease the error estimate corresponding to the region of

the kth element by a factor of about q2pk . This suggest that we should select qk so that

q2pk ≈

∣∣∣A
(
uh;ψ − ψ

hI

)
k

∣∣∣
tol/ne

> 1. (8.2.19)

It is usually beneficial to take a slightly larger value for qk than this as otherwise the

strategy of aiming to almost exactly get to the required accuracy often results in a new

mesh which has an error which is slightly larger than the tol. Now if the value obtained

for qk, calculated by (8.2.19) is very large then we replace it by some fixed value with the

knock on the effect that more than one mesh refinement will probably be needed before

the accuracy of tol is reached. We give this next as an algorithm.

Algorithm

Step 1 Choose a mesh size h and calculate the approximating finite element solution uh. If

ψm
h

is required then we also need to solve a finite element problem to get ubh from

which we get umh = (uh + ubh)/2.

Step 2 Solve a dual problem to get ψ̃
h
which is ψ

h
or ψm

h
.

Step 3 Compute the error estimates A
(
uh; ψ̃h − ψ

hI

)
k
for k = 1, . . . , ne.

Step 4 Check for accuracy. If ∣∣∣A
(
uh; ψ̃h − ψ

hI

)
k

∣∣∣ ≤ tol

ne

then set qk = 1 and go to the next value of k. Otherwise refine the kth element as
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follows. Compute

qk = ceil



1.05

∣∣∣A
(
uh; ψ̃h − ψ

hI

)
k

∣∣∣
tol/ne




1/(2p)

where p represents the degree of the piecewise polynomials in the finite element

approximation uh. If qk > 16 then re-set qk = 16.

Step 5 Construct a new mesh by subdividing into qk + 1 elements each kth element that

needs refinement, based on error estimators.

Step 6 Replace the old mesh with the new mesh.

Step 7 Repeat the procedure until we obtain

∣∣∣∣∣

ne∑

k=1

A
(
uh; ψ̃h − ψ

hI

)
k

∣∣∣∣∣ ≤ tol.

Note: The factor 1.05 and the upper error bound of 16 that we used above were cho-

sen based on the computational results we got during the implementation of the mesh

refinement. Other values can also be considered.

8.2.3 Numerical examples for the quasi-static case

We present here a fairly comprehensive set of results to demonstrate numerically several

aspects of the theory in the case of the functionals J1 and J2 described in section 8.2.1.

We consider piecewise polynomial approximations of degree p = 1, p = 2 and p = 3, we

give the estimates of the error J(u)− J(uh) using −a(uh;ψh) and with using −a(uh;ψmh )
where ψ

h
and ψm

h
are indicated in (8.2.14)–(8.2.16), and we give results using the adaptive

refinement algorithm given at the end of section 8.2.2. In each of the results given, when

the finite element space Vh involves piecewise polynomials of degree p to get uh the space

V̄h used to get ψ
h
and ψm

h
involves piecewise polynomials of degree p + 1.

There are two deformations that we consider and these correspond to the outer profile

in figures 8.1(a) and 8.1(b). As the deformations just depend on the ratio P/h0 we take

h0 = 1. In figure 8.1(a) where the deformation is not too large the Jones-Treloar model is

used and the outer profile is at pressure P = 0.3. In figure 8.1(b) where the deformation
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is much larger, the Mooney-Rivlin model is used with the strain energy function given by

W =
1

2

(
λ21 + λ22 + λ23 − 3

)
+

0.1

2

(
λ−2
1 + λ−2

2 + λ−2
3 − 3

)
(8.2.20)

where, as before, λ1 and λ2 denote the principal stretch ratios with λ3 = 1/(λ1λ2). The

other profiles shown in the figures show some of the intermediate deformations obtained

with lower pressures. The other profile in figure 8.1(a) is at pressure P = 0.15 whilst in

figure 8.1(b) the other profiles are for pressures at the equally spaced values P = 0.3, 0.6,

. . . , 2.7. The quantities of interest that we wish to estimate are as follows. In the case

of figure 8.1(a) it is J1(u) when b = 1, i.e. an integral of the thickness over the entire

domain, it is J1(u) when b = 1/8, i.e. an integral of the thickness over a region near the

pole, and it is the potential energy given by J2(u). In the case of figure 8.1(b) it is also

these 3 cases. To get a value which we can treat as the exact value for the comparisons just

requires taking sufficiently many elements and/or a sufficiently high piecewise polynomial

approximation and it is more than sufficient to take here ne= 64 elements and a high

degree of p = 8 which gives the following values.

Tab. 8.2.1: Exact values for the Jones Treloar model, P = 0.3 as in figure 8.1(a)

Description of J(u) The value of J(u)
J1(u) with b = 1 3.25304427515041e-01

J1(u) with b = 1/8 4.92523975104043e-03

J2(u) 2.75959154012544e-02

Tab. 8.2.2: Exact values for the Mooney Rivlin model, P = 3 as in figure 8.1(b)

Description of J(u) The value of J(u)
J1(u) with b = 1 -1.96972631920304e+00

J1(u) with b = 1/8 4.01069441687288e-02

J2(u) 3.31383507600083e-04

As we explained in chapter 4, we expect the estimate −a(uh;ψh) to be consistent with

J(u)− J(uh) and we expect the estimate −a(uh;ψmh ) to be asymptotically exact, i.e. we

expect that
−a(uh;ψmh )
J(u)− J(uh)

→ 1 as h→ 0. (8.2.21)

To test for consistency and asymptotic exactness in all the tables we have a column

showing the value
−a(uh; ψ̃h)
J(u)− J(uh)

− 1, (8.2.22)
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(a) Jones Treloar model with P = 0.3
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(b) Mooney Rivlin model with P = 3

Fig. 8.1: The deformed profiles with modest deformation in the top figure and a large
deformation in the bottom figure.
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where ψ̃
h
is either of ψ

h
or ψm

h
. It is values tending to 0 which are the asymptotically

exact case. We refer to this as the asymptotic exactness value in the tables.

The order of the tables that we give corresponds to which part of the theory we wish

to illustrate most. Firstly we demonstrate that for each QoI functional J considered

J(u)− J(uh) = O(h2p), (8.2.23)

the estimate of the error given by −a(uh;ψh) is consistent with the actual error and the

estimate of the error given by −a(uh;ψmh ) is asymptotically exact. We then show results

when we adaptively refine to reach a specified accuracy using one of two refinement steps

and we also compare the exact error and the estimates of this in these adaptive refinement

cases.
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Uniform refinement when the degree p = 1

The next two tables are for the functional J1 when b = 1 and the deformation shown in
figure 8.1(a). In both cases the exact error column means values J1(u)− J1(uh) and the
column ratio has the ratio of successive error estimates. The asymptotic exactness value
is as given in (8.2.22).

Tab. 8.2.3: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with linears Asymptotic exactness value Ratios
10 -4.92587e-005 -4.92492e-005 -1.932016e-004
20 -1.23625e-005 -1.23616e-005 -7.505904e-005 3.984047
40 -3.09406e-006 -3.09400e-006 -1.876031e-005 3.995346
80 -7.73762e-007 -7.73758e-007 -4.689929e-006 3.998666

Tab. 8.2.4: The error estimate is −a(uh;ψh).
ne Exact error Estimates with linears Asymptotic exactness value Ratios
10 -4.92587e-005 -1.64796e-005 -6.654490e-001
20 -1.23625e-005 -4.12561e-006 -6.662810e-001 3.994464
40 -3.09406e-006 -1.03192e-006 -6.664837e-001 3.997994
80 -7.73762e-007 -2.58022e-007 -6.665360e-001 3.999349

The next two tables are for the functional J1 when b = 1/8 and the deformation shown in
figure 8.1(a). In both cases the exact error column means values J1(u)− J1(uh) and the
column ratio is the ratio of successive error estimates. The asymptotic exactness value is
as given in (8.2.22).

Tab. 8.2.5: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with linears Asymptotic exactness value Ratios
8 6.85176e-006 6.89246e-006 5.939109e-003
16 1.61568e-006 1.62114e-006 3.375673e-003 4.251613
32 3.96799e-007 3.97148e-007 8.790208e-004 4.081954
64 9.86544e-008 9.86764e-008 2.223581e-004 4.024752

Tab. 8.2.6: The error estimate is −a(uh;ψh).
ne Exact error Estimates with linears Asymptotic exactness value Ratios
8 6.85176e-006 7.65920e-006 1.178444e-001
16 1.61568e-006 1.84257e-006 1.404269e-001 4.156803
32 3.96799e-007 4.54915e-007 1.464622e-001 4.050361
64 9.86544e-008 1.13304e-007 1.484895e-001 4.014995
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The next two tables are for the functional J2 and the deformation shown in figure 8.1(a).
In both cases the exact error column means values J2(u) − J2(uh) and the column ratio
has the ratio of successive error estimates. The asymptotic exactness value is as given
in (8.2.22).

Tab. 8.2.7: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with linears Asymptotic exactness value Ratios
10 -3.25065e-005 -3.25064e-005 -3.451943e-006
20 -8.16542e-006 -8.16541e-006 -7.388602e-007 3.980988
40 -2.04420e-006 -2.04420e-006 -1.905278e-007 3.994428
80 -5.11255e-007 -5.11255e-007 -4.857968e-008 3.998396

Tab. 8.2.8: The error estimate is −a(uh;ψh).
ne Exact error Estimates with linears Asymptotic exactness value Ratios
10 -3.25065e-005 -6.50109e-005 9.999353e-001
20 -8.16542e-006 -1.63307e-005 9.999829e-001 3.980901
40 -2.04420e-006 -4.08840e-006 9.999956e-001 3.994399
80 -5.11255e-007 -1.02251e-006 9.999989e-001 3.998396

All the tables indicate that when we double the number of elements, which divides h
by 2, we decrease the error by about 22 = 4. The tables also show that we get asymp-
totic exactness when the estimate is −a(uh;ψmh ) but that the estimate −a(uh;ψh) is only
consistent with the actual error.
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Uniform refinement when the degree p = 2

The next two tables are for the functional J1 when b = 1 and the deformation shown in
figure 8.1(a). In both cases the exact error column means values J1(u)− J1(uh) and the
column ratio has the ratio of successive error estimates. The asymptotic exactness value
is as given in (8.2.22).

Tab. 8.2.9: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
10 -2.03137e-008 -2.03135e-008 -9.465689e-006
20 -1.27263e-009 -1.27263e-009 -3.156862e-006 15.961827
40 -7.95932e-011 -7.95934e-011 2.991101e-006 15.989140
80 -4.97535e-012 -4.97554e-012 3.663964e-005 15.996937

Tab. 8.2.10: The error estimate is −a(uh;ψh).
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
10 -2.03137e-008 -2.27888e-008 1.218432e-001
20 -1.27263e-009 -1.42773e-009 1.218696e-001 15.961561
40 -7.95932e-011 -8.92943e-011 1.218844e-001 15.989038
80 -4.97535e-012 -5.58197e-012 1.219250e-001 15.996915

The next two tables are for the functional J1 when b = 1/8 and the deformation shown in
figure 8.1(a). In both cases the exact error column means values J1(u)− J1(uh) and the
column ratio is the ratio of successive error estimates. The asymptotic exactness value is
as given in (8.2.22).

Tab. 8.2.11: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
8 -8.06079e-008 -8.05900e-008 -2.216413e-004
16 -5.41971e-009 -5.41974e-009 5.068628e-006 14.869717
32 -3.46655e-010 -3.46656e-010 1.249158e-006 15.634346
64 -2.18027e-011 -2.18027e-011 6.977139e-007 15.899682

Tab. 8.2.12: The error estimate is −a(uh;ψh).
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
8 -8.06079e-008 -8.08974e-008 3.591009e-003
16 -5.41971e-009 -5.43844e-009 3.457056e-003 14.875111
32 -3.46655e-010 -3.47817e-010 3.351171e-003 15.635923
64 -2.18027e-011 -2.18752e-011 3.324324e-003 15.90006
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The next two tables are for the functional J2 and the deformation shown in figure 8.1(a).
In both cases the exact error column means values J2(u) − J2(uh) and the column ratio
has the ratio of successive error estimates. The asymptotic exactness value is as given
in (8.2.22).

Tab. 8.2.13: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
10 -4.01198e-009 -4.01201e-009 9.311140e-006
20 -2.51143e-010 -2.51144e-010 2.308432e-006 15.974938
40 -1.57042e-011 -1.57042e-011 -1.000163e-006 15.992154
80 -9.81590e-013 -9.81657e-013 6.828389e-005 15.9976448

Tab. 8.2.14: The error estimate is −a(uh;ψh).
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
10 -4.01198e-009 -8.02435e-009 1.000100e+000
20 -2.51143e-010 -5.02293e-010 1.000025e+000 15.975437
40 -1.57042e-011 -3.14085e-011 1.000003e+000 15.992263
80 -9.81590e-013 -1.96331e-012 1.000138e+000 15.997728

All the tables indicate that when we double the number of elements, which divides h by
2, we decrease the error by about 24 = 16. The tables also show that we get asymptotic
exactness when the estimate is −a(uh;ψmh ) but that the estimate −a(uh;ψh) is only con-
sistent with the actual error. The results in table 8.2.13 indicate that we are getting close
to what is possible to show with usual floating point arithmetic as J2 is of order 10−4,
the exact error is about 10−12 when ne= 80 (i.e. about 8 digits of accuracy) and the
asymptotic exactness value is about 10−5. This is the most likely explanation as to why
the asymptotic exactness value with ne= 80 is larger than with ne= 40 although all the
values in that column are small.
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The next three tables are for the deformation shown in figure 8.1(b) and in all cases the
error estimate is −a(uh;ψmh ). In all cases the exact error column means values J1(u) −
J1(uh) or J2(u) − J2(uh) and the ratio of successive error estimates. The asymptotic
exactness value is as given in (8.2.22).

Tab. 8.2.15: This is for the functional J1 with b = 1.
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
8 -4.28303e-006 -4.25881e-006 -5.655006e-003
16 -2.60119e-007 -2.59627e-007 -1.891437e-003 16.403571
32 -1.61650e-008 -1.61568e-008 -5.048899e-004 16.069209
64 -1.00900e-009 -1.00887e-009 -1.282060e-004 16.014749

Tab. 8.2.16: This is for the functional J1 with b = 1/8.

ne Exact error Estimates with quadratics Asymptotic exactness value
8 -1.35479e-007 -1.35194e-007 -2.106686e-003
16 -8.93042e-009 -8.92635e-009 -4.553001e-004 15.145496
32 -5.67808e-010 -5.67744e-010 -1.118041e-004 15.722491
64 -3.56573e-011 -3.56563e-011 -2.781270e-005 15.922684

Tab. 8.2.17: This is for the functional J2.
ne Exact error Estimates with quadratics Asymptotic exactness value Ratios
8 -4.06492e-004 -4.04811e-004 -4.134425e-003
16 -2.58337e-005 -2.58068e-005 -1.040423e-003 15.686214
32 -1.62140e-006 -1.62098e-006 -2.606449e-004 15.920492
64 -1.01445e-007 -1.01439e-007 -6.529326e-005 15.979849

All these tables show that we get asymptotic exactness when the estimate is−a(uh;ψmh ).
Also,similar with the previous tables, when we double the number of elements we decrease

the error by about 24 = 16.
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Uniform refinement when the degree p = 3

For the deformation shown in figure 8.1(a) the approximation when p = 3 is very accurate

with a small number of elements and we only give one table which supports the high

accuracy and rapid convergence. The error estimate is −a(uh;ψmh ). The asymptotic

exactness value is as given in (8.2.22).

Tab. 8.2.18: The exact error column means values J1(u)− J1(uh) in the case b = 1/8. and the
column ratio has the ratio of successive error estimates.

ne Exact error Estimates with cubics Asymptotic exactness value Ratios
8 1.70229e-012 1.70829e-012 3.526218e-003
16 2.73063e-014 2.73211e-014 5.430333e-004 62.526400

From the above table, we can see that when we double the number of elements we

decrease the error by about 26 = 64.

Therefore all the tables, where we use uniform refinement, confirm the theory about the

estimate of the error which is about O(h2p), with p being the degree of the polynomials

in space.

Adaptive refinement when the degree p = 1

We now repeat the same set of problems considered when p = 1 and uniform refinement

was done with instead the adaptive refinement procedure described in section 8.2.2. In

all the cases we take tol= 10−7 as the accuracy we wish to obtain.
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The next two tables are for the functional J1 when b = 1 and the deformation shown in
figure 8.1(a). In both cases the exact error column means values J1(u) − J1(uh). The
asymptotic exactness value is as given in (8.2.22).

Tab. 8.2.19: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with linears Asymptotic exactness value
10 -4.92587e-005 -4.92492e-005 -1.932016e-004
144 -2.08504e-007 -2.08504e-007 -1.767264e-006
280 -5.58481e-008 -5.58481e-008 -7.310712e-007

Tab. 8.2.20: The error estimate is −a(uh;ψh).
ne Exact error Estimates with linears Asymptotic exactness value
10 -4.92587e-005 -1.64796e-005 -6.654490e-001
115 -3.24680e-007 -1.03432e-007 -6.814335e-001
161 -1.86455e-007 -6.00604e-008 -6.778818e-001

The next two tables are for the functional J1 when b = 1/8 and the deformation shown
in figure 8.1(a). In both cases the exact error column means values J1(u)− J1(uh). The
asymptotic exactness value is as given in (8.2.22).

Tab. 8.2.21: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with linears Asymptotic exactness value
8 6.85176e-006 6.89246e-006 5.939109e-003
78 5.61210e-008 5.61242e-008 5.689184e-005

Tab. 8.2.22: The error estimate is −a(uh;ψh).
ne Exact error Estimates with linears Asymptotic exactness value
8 6.85176e-006 7.65920e-006 1.178444e-001
77 4.43887e-008 5.98690e-008 3.487440e-001
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The next two tables are for the functional J2 and the deformation shown in figure 8.1(a). In
both cases the exact error column means values J2(u)−J2(uh). The asymptotic exactness
value is as given in (8.2.22).

Tab. 8.2.23: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with linears Asymptotic exactness value
10 -3.25065e-005 -3.25064e-005 -3.451943e-006
140 -1.47692e-007 -1.47692e-007 -2.334666e-007
253 -4.83168e-008 -4.83168e-008 -9.333399e-008

Tab. 8.2.24: The error estimate is −a(uh;ψh).
ne Exact error Estimates with linears Asymptotic exactness value
10 -3.25065e-005 -6.50109e-005 9.999353e-001
149 -1.34027e-007 -2.68055e-007 9.999993e-001
325 -2.78476e-008 -5.56951e-008 9.999997e-001

The results show that we can reach the required accuracy with 1 or 2 refinement steps
when the error estimate is −a(uh;ψmh ). When we just use the error estimate is −a(uh;ψh)
this does help to move towards the desired accuracy but we cannot guarantee that the
result to all the digits given when we are underestimating the actual error.
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Adaptive refinement when the degree p = 2

We now repeat the same same set of problems considered when p = 2 and uniform refine-

ment was done with instead the adaptive refinement procedure described in section 8.2.2.

In all the cases we take tol= 10−10 as the accuracy we wish to obtain.

The next two tables are for the functional J1 when b = 1 and the deformation shown in
figure 8.1(a). In both cases the exact error column means values J1(u) − J1(uh). The
asymptotic exactness value is as given in (8.2.22).

Tab. 8.2.25: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with quadratics Asymptotic exactness value
10 -2.03137e-008 -2.03135e-008 -9.465689e-006
42 -5.15373e-011 -5.15371e-011 -5.383017e-006

Tab. 8.2.26: The error estimate is −a(uh;ψh).
ne Exact error Estimates with quadratics Asymptotic exactness value
10 -2.03137e-008 -2.27888e-008 1.218432e-001
42 -5.15373e-011 -5.84564e-011 1.342536e-001

The next two tables are for the functional J1 when b = 1/8 and the deformation shown
in figure 8.1(a). In both cases the exact error column means values J1(u)− J1(uh). The
asymptotic exactness value is as given in (8.2.22).

Tab. 8.2.27: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with quadratics Asymptotic exactness value
8 -8.06079e-008 -8.05900e-008 -2.216413e-004
37 -5.85869e-011 -5.85871e-011 3.854325e-006

Tab. 8.2.28: The error estimate is −a(uh;ψh).
ne Exact error Estimates with quadratics Asymptotic exactness value
8 -8.06079e-008 -8.08974e-008 3.591009e-003
37 -5.85869e-011 -5.99856e-011 2.387330e-002
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The next two tables are for the functional J2 and the deformation shown in figure 8.1(a). In
both cases the exact error column means values J2(u)−J2(uh). The asymptotic exactness
value is as given in (8.2.22).

Tab. 8.2.29: The error estimate is −a(uh;ψmh ).
ne Exact error Estimates with quadratics Asymptotic exactness value
10 -4.01198e-009 -4.01201e-009 9.311140e-006
29 -4.97193e-011 -4.97193e-011 1.037262e-006

Tab. 8.2.30: The error estimate is −a(uh;ψh).
ne Exact error Estimates with quadratics Asymptotic exactness value
10 -4.01198e-009 -8.02435e-009 1.000100e+000
34 -2.52926e-011 -5.05854e-011 1.000010e+000

The next three tables are for the deformation shown in figure 8.1(b) and in all cases the
error estimate is −a(uh;ψmh ). In all cases the exact error column means values J1(u) −
J1(uh) or J2(u)− J2(uh). The asymptotic exactness value is as given in (8.2.22).

Tab. 8.2.31: This is for the functional J1 with b = 1.
ne Exact error Estimates with quadratics Asymptotic exactness value
8 -4.28303e-006 -4.25881e-006 -5.655006e-003
128 -6.30422e-011 -6.30403e-011 -3.036950e-005
418 -4.04239e-013 -4.04357e-013 2.909084e-004

Tab. 8.2.32: This is for the functional J1 with b = 1/8.

ne Exact error Estimates with quadratics Asymptotic exactness value
8 -1.35479e-007 -1.35194e-007 -2.106686e-003
126 -2.28389e-012 -2.28387e-012 -6.981137e-006
223 -3.01674e-013 -3.01673e-013 -5.942295e-006

Tab. 8.2.33: This is for the functional J2.
ne Exact error Estimates with quadratics Asymptotic exactness value
8 -4.06492e-004 -4.04811e-004 -4.134425e-003
128 -6.34203e-009 -6.34193e-009 -1.566206e-005
1109 -7.38520e-013 -7.24830e-013 -1.853723e-002

As in the case p = 1, all the results show that we can reach the required accuracy
with 1 or 2 refinement steps when the error estimate is −a(uh;ψmh ).
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Adaptive refinement when the degree p = 3

The next three tables are for the deformation shown in figure 8.1(a). In all cases the

exact error column means values J1(u)− J1(uh) or J2(u)− J2(uh). In all cases the error

estimate is −a(uh;ψmh ). The asymptotic exactness value is as given in (8.2.22). For the

adaptive refinement algorithm tol= 10−14.

Tab. 8.2.34: This is for the functional J1 with b = 1.
ne Exact error Estimates with cubics Asymptotic exactness value
10 -2.58460e-013 -2.58485e-013 9.797869e-005
18 5.55112e-016 5.51636e-016 -6.260532e-003

Tab. 8.2.35: This is for the functional J1 with b = 1.
ne Exact error Estimates with cubics Asymptotic exactness value
8 1.70229e-012 1.70829e-012 3.526218e-003
21 2.18402e-015 2.18819e-015 1.911335e-003

Tab. 8.2.36: This is for the functional J2.
ne Exact error Estimates with cubics Asymptotic exactness value
10 -1.65597e-014 -1.65582e-014 -9.040961e-005
15 -2.81025e-015 -2.83074e-015 7.290249e-003

In the cases here we can reach the required accuracy with 1 refinement step.
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8.3 The dynamic problem

8.3.1 Introduction

In this section we present results using the numerical methods described in chapter 6 for

the dynamic problem, i.e. when the full equations of motion are involved. The faster

the pressure is applied the greater the difference we can expect between the quasi-static

solution and the dynamic solution for the same pressure loading and we consider this first

before quantities of interest are considered. Let

Q = [0, 1]× [0, T ] = {(r, t) : 0 ≤ r ≤ 1, 0 ≤ t ≤ T}

denote the space-time domain and assume that the applied pressure varies with t according

to

P (t) = γt, 0 ≤ t ≤ T, (8.3.1)

where γ is a constant. To compare the solutions at the same pressure for different rates

we take different values of γ and T as follows. For the Jones Treloar model the values are

such that P (T ) = 1 and the profiles at time t = T in each case are shown in figure 8.2(a).

For the Mooney Rivlin model the values are such that P (T ) = 3 and the profiles at time

t = T in each case are shown in figure 8.2(b). In each of the figures the outermost curve

corresponds to the smallest value of γ. In the Mooney Rivlin case the outermost curve

is close to the outermost curve for the quasi-static case shown in figure 8.1(b) but apart

from this case there is a noticeable difference between most of the profiles.

As well as considering the profiles, which are at the fixed time t = T , it is also

interesting to show how some quantities vary with time t for a fixed value of r. In the

case of the profile corresponding to γ = 0.25 in figure 8.2(a) we show in figures 8.3(a)–

8.3(d) graphs of u3(r, t), 0 ≤ t ≤ T for r = 0, 0.25, 0.5 and 0.75. Similarly, in the case of

the profile corresponding to γ = 1 in figure 8.2(a) we show in figures 8.4(a)–8.4(d) graphs

of u3(r, t), 0 ≤ t ≤ T for r = 0, 0.25, 0.5 and 0.75. As the figures in 8.3(a)–8.3(d) show,

the vertical displacement does not always monotonically increase as the pressure increases

as it mostly does with the quasi-static inflations.
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(a) Jones Treloar material with P (T ) = 1 and for γ = 0.25, 0.5, 0.75, 1, 1.25,
1.5, 1.75, 2, 3
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(b) Mooney Rivlin material with P (T ) = 3 and for γ = 0.25, 0.5, 0.75, 1, 1.25,
1.5, 1.75, 2, 3

Fig. 8.2: In each figure all the profiles are at the same pressure but correspond to different
rates at which it has been applied.

– 184 –



8. RESULTS WITH A HYPERELASTIC AXI-SYMMETRIC MEMBRANE MODEL

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

u 3(0
, t

)

(a) A graph of u3(0, t), 0 ≤ t ≤ T .
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(b) A graph of u3(0.25, t), 0 ≤ t ≤ T .
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(c) A graph of u3(0.5, t), 0 ≤ t ≤ T .
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(d) A graph of u3(0.75, t), 0 ≤ t ≤ T .

Fig. 8.3: In each figure all the paths are for fixed values of r for the case γ = 0.25 and for
the Jones Treloar material.
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(a) A graph of u3(0, t), 0 ≤ t ≤ T .
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(b) A graph of u3(0.25, t), 0 ≤ t ≤ T .
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(d) A graph of u3(0.75, t), 0 ≤ t ≤ T .

Fig. 8.4: In each figure all the paths are for fixed values of r for the case γ = 1 and for
the Jones Treloar material.
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In this section we consider two quantity of interest functionals which are as follows.

J3

((
u

v

))
=

∫ b

0

u3(r, T )rdr, b = 0.1 (8.3.2)

and

J4

((
u

v

))
=

2

b2
1

0.01T

∫ T

0.99T

∫ b

0

λ(r, t)rdrdt b = 0.1. (8.3.3)

J3 involves the vertical displacement u3 near the pole at the final time and if we divide

by b2/2 then we get the average of u3 near the pole at time t = T . We cannot at present

cope with the thickness just at the final time but we can handle the expression for J4

which involves an average of the thickness stretch ratio near the final time and near the

pole. For the Gâteaux derivative of J3 we have

J ′
3

((
u

v

)
;

(
α

β

))
=

∫ b

0

α(r, T ) · Jα(r, T )rdr =
∫ b

0

α3(r, T )rdr. (8.3.4)

In the case of J4 we have, similar to (8.2.6) in the quasi-static case,

J ′
4

((
u

v

)
;

(
α

β

))

=
2

b2
1

0.01T

∫ T

0.99T

∫ b

0

−(λ1λ2)
−2

(
λ1
α1

r
+
λ2
λ1

((1 + u1)α
′
1 + u′3α

′
3)

)
rdrdt. (8.3.5)

Now to simplify the notation a little when both u and v are unknowns we write the

following.

U =

(
u

v

)
, Uh =

(
uh

vh

)
, U b

h =

(
ubh
vbh

)
, Um

h =

(
umh
vmh

)
and zmh =

(
ψm
h

θmh

)
.

In the examples considered here, we have the Jones Treloar form for W , h0 = 1, the

density ρ = 0.2, we start with a prestretch such that u1(1, t) = 0.1 and the pressure rate

γ and the final time T are such that P (T ) = 0.3. For one of the ways of approximating J3

and J4 we consider a range of the values γ and later we restrict to the case γ = 0.1. The

aims of the computations are to get accurate approximations, to test if we can accurately

estimate the error in an approximation and to help to determine what we need to do

to improve the accuracy. In this investigation we consider both the “basic scheme in

time” which uses degree n = 1 polynomials in t for uh(r, t) and vh(r, t) in a time interval

tj−1 < t < tj and we consider the higher order in time scheme described in the latter part
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of chapter 6 which use larger values of the degree n. For the larger space used to obtain

the dual solution ψm
h
(r, t) and θmh (r, t) we take the following.

(i) When we use the basic scheme for Vh with degree p polynomials on each of ne

elements in space and with nt time steps using degree n = 1 polynomials in each

time interval the larger space V̄h uses degree p + 1 polynomials on each of the ne

elements and it also uses degree n = 1 polynomials in each time interval but the

number of time intervals is doubled.

(ii) When for Vh we use degree p ≥ 1 polynomials on each of ne elements in space and

we use degree n > 1 polynomials in time on each of the nt time intervals the larger

space V̄h uses degree p+1 polynomials on each of the ne elements and it uses degree

n+ 1 polynomials on each of the nt time intervals.

The larger space V̄h is also the space used when we want to get a better solution ubh for

the displacement and vbh for the velocity in order to define the mid-point values

umh =
1

2

(
uh + ubh

)
, vmh =

1

2

(
vh + vbh

)
(8.3.6)

to use as data in the dual problem. When a better approximation is obtained we can

compare the dual solution estimate

J (U)− J (Uh) ≈ F (zmh )−A (Uh; z
m
h ) (8.3.7)

with the estimate

J (U)− J (Uh) ≈ J
(
U b
h

)
− J (Uh) . (8.3.8)

When a possibly better approximation ubh and vbh is available it is likely that the quantity

of interest value J
(
U b
h

)
is the best estimate that we have of the quantity of interest but we

have no information about its accuracy and we do not have too much information to help

determine what should be done in terms of refining to get a more accurate approximation.

Also, as some examples show, the value is only much more accurate when we are in

the asymptotic convergence range and in practice this has to be determined during the

computation.
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8.3.2 The basic scheme – results for different pressure rates

We investigate here the effect the rate at which the pressure is applied has on the quantity

of interest values and how well we estimate the error in the quantity of interest in each

case when we use the basic scheme in time. In each case we do this when at the the final

time P (T ) = 0.3 with the 4 rates γ = 0.1, 0.15, 0.2 and 0.5. The numerical approximation

is obtained in each case using ne=10 quadratic elements in space and nt=100 equal time

steps. The deformation is never too large in any of these cases and to be specific we

give the vertical displacement u3(0, T ) that we obtain in the table 8.3.37. The values for

J3 and J4 given to compute the column indicated as “exact error” were obtained with a

higher order scheme. In each case the error estimate obtained using the solution to a dual

problem always has a similar magnitude and sign as the exact error.

Tab. 8.3.37: The vertical displacement u3(0, T ) when P (T ) = γT = 0.3 for different values of
the rate γ.

γ u3(0, T )
0.1 0.2923733
0.15 0.3705022
0.2 0.4431038
0.5 0.1089220

Tab. 8.3.38: The exact value and the estimate of J3, the exact error and the error estimates
when ne=10, p = 2 and nt=100 with different inflation rates γ

γ J3 Estimates Exact error Error Estimates
0.10 1.455296e-03 1.453634e-03 1.661909e-06 1.237341e-06
0.15 1.842955e-03 1.843510e-03 -5.547729e-07 -4.147575e-07
0.20 2.202974e-03 2.202998e-03 -2.385906e-08 -1.547300e-08
0.50 5.446210e-04 5.446632e-04 -4.222632e-08 -3.483284e-08

Tab. 8.3.39: The exact value and the estimate of J4, the exact error and the error estimates
when ne=10, p = 2 and nt=100 with different inflation rates γ

γ J4 Estimates Exact error Error Estimates
0.10 7.511797e-01 7.511483e-01 3.137137e-05 1.819369e-05
0.15 7.069278e-01 7.068821e-01 4.574654e-05 3.098082e-05
0.20 6.851688e-01 6.851881e-01 -1.933876e-05 -1.773006e-05
0.50 8.211742e-01 8.211750e-01 -8.087841e-07 -1.928018e-06
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8.3.3 The basic scheme – results with increasing ne and nt

The tables 8.3.38 and 8.3.39 show that we get estimates of the error which we might regard

as acceptable although they are never very close to the exact error. The investigation here

is to determine, for a fixed value of the pressure rate γ, how the accuracy improves as we

uniformly refine in space and/or time. Eventually, to improve the accuracy it is necessary

to refine in both space and time although it may be wasteful to do this from the start

when the error may be mostly due to just one of the space discretization error and the

time discretization error. The rate γ = 0.1 is used in all the result in this section and to

be consistent with the tables 8.3.38 and 8.3.39 we take quadratics (i.e. p = 2) and we

start with ne=10 and nt=100 in most cases. The results that we get from first doubling

nt and then doubling ne are shown in tables 8.3.40 and 8.3.41.

Tab. 8.3.40: The estimates of J3 when p = 2 and n = 1, the exact error and the error estimates
where we perform one uniform refinement in space and one refinement step in time.
The exact QoI with the inflation rate of γ = 0.1 is J3 =1.45529590888099e-003.

ne nt Estimates of J3 Exact error Error Estimates
10 100 1.453634e-03 1.661909e-06 1.237341e-06
10 200 1.454858e-03 4.379089e-07 3.313185e-07
20 200 1.454864e-03 4.319089e-07 3.245756e-07

Tab. 8.3.41: The estimates of J4 when p = 2 and n = 1, the exact error and the error estimates
where we perform one uniform refinement in space and one refinement step in time.
The exact QoI with the inflation rate of γ = 0.1 is J4 =7.51179671367555e-001.

ne nt Estimates of J4 Exact error Error Estimates
10 100 7.511483e-01 3.137137e-05 1.819369e-05
10 200 7.511733e-01 6.371368e-06 3.637537e-06
20 200 7.511676e-01 1.207137e-05 8.662038e-06

Although the tables 8.3.40 and 8.3.41 do not contain many numbers there are enough

to strongly suggest that to improve the accuracy of J3 we need more time steps and the

error at this stage seems to be almost entirely due to the time discretization error. The

results for J4 are less clear. To get a better idea of how things change with ne and nt we

show in tables 8.3.42 and 8.3.43 more combinations of ne and nt with in each case just the

error estimate being shown. In the case of J3 the increase in accuracy is entirely due to

just taking more time steps and we have not detected a stage when we need to increase ne

from 10. In the case of J4 we need to increase ne from 10 to 20 but it is not necessary

to use ne=40 for the number of time steps given. As a consequence of these observations

we show in tables 8.3.44 and 8.3.45 the ratio of successive error estimates when we just

successively double nt with ne=10 for J3 and ne=20 for J4 and in all cases these are

about 4. For the examples considered, we need a large number of time steps compared
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with the number of elements in space when p = 2 and as doubling nt only reduces the

error by a factor of about 4, high accuracy with the basic scheme needs very large values

of nt. It is as a consequence of this that the higher order in time schemes were described

in chapter 6 and results for the higher order schemes are presented in subsequent sections.

Tab. 8.3.42: The estimates of J3, with a range of values for the number of time steps nt and
a range of values for the number of elements ne when p = 2 and the inflation
rate γ = 0.1

ne \ nt 50 100 200 400 800
10 8.058503e-006 1.237341e-006 3.313185e-007 7.563159e-008 1.691794e-008
20 8.090020e-006 1.250205e-006 3.245756e-007 8.013757e-008 2.067992e-008
40 8.093398e-006 1.257161e-006 3.163513e-007 8.026591e-008 2.009467e-008

Tab. 8.3.43: The estimates of J4, with a range of values for the number of time steps nt and
a range of values for the number of elements ne when p = 2 and the inflation
rate γ = 0.1

ne \ nt 100 200 400 800
10 1.819369e-005 3.637537e-006 -1.320211e-005 -1.813363e-005
20 2.573690e-005 8.662038e-006 1.915007e-006 4.808166e-007
40 2.690115e-005 9.484209e-006 2.408255e-006 5.785791e-007

Tab. 8.3.44: The estimates of J3 for number of elements of ne = 10, with different number of
time steps nt with the corresponding ratios.

nt 50 100 200 400 800
est 8.058503e-006 1.237341e-006 3.313185e-007 7.563159e-008 1.691794e-008
ratio 6.5128 3.7346 4.3807 4.4705

Tab. 8.3.45: The estimates of J4 for number of elements of ne = 20, with different number of
time steps nt with the corresponding ratios.

nt 100 200 400 800
est 2.573690e-005 8.662038e-006 1.915007e-006 4.808166e-007
ratio 2.971229 4.523241 3.982822
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8.3.4 The higher order scheme – experiments with different values of ne, nt, p and n

A reasonable deduction from the results with the basic scheme is that the error in ap-

proximating the quantity of interests considered in this section is influenced significantly

by how well or otherwise we approximate in time and with the basic scheme the accuracy

in time is low. With the basic scheme in the case of J3, p = 2 and ne=10 the successive

doubling of nt up to 800 was not sufficient to reach the stage that we need to also increase

ne to improve the accuracy. Similarly, in the case of J4, p = 2 and ne=20 the successive

doubling of nt up to 800 was also not sufficient to reach the stage that we need to also

increase ne to improve the accuracy. We consider both cases again here with again p = 2

for the degree of polynomials in r on each element but we now present results with n = 2,

n = 3 and n = 4 to attempt to get to the stage when we need to increase the number

of elements ne to improve the accuracy. This is done for J3 in tables 8.3.46 and 8.3.47

in respectively the cases ne=10 and ne=20 and for J4 in tables 8.3.48 and 8.3.49 in re-

spectively the cases ne=20 and ne=40. In the case of J3, ne=10 and n = 2 there is no

longer need to increase nt after nt=200, it is nt=100 when n = 3 and nt=50 is already

large enough when n = 4. The results for larger values of nt are unnecessary, as they do

not lead to any decrease in the error, although they do confirm that the computations are

likely to be correct. When we increase ne to 20 the smallest values of nt such that the

ratio is close to 1 are the same or a bit higher than they were with ne=10. It is a similar

pattern in the case of J4 where it is nt=400, 200, and 100 for n = 2, 3 and 4 respectively

when ne=20. When ne=40 these values of nt are instead 800, 400 and 100 for n = 2, 3

and 4 respectively.

As a final remark here, to have some confidence in the accuracy we want the value in

the ‘ratio’ column in the tables to be close to 1 and to avoid unnecessary computation we

should stop increasing nt at this stage. From the results it is also worth noting that in

most cases when the ratio value is not close to 1 both the dual solution estimate and the

estimate J(U b
h) − J(Uh) are far from the true error in that they are far from the value

obtained when nt is larger.
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Tab. 8.3.46: The QoI J3, ne=10 elements, p = 2 for the degree of the polynomials in space,
values of the dual solution estimate, the estimate J3(U

b
h)− J3(Uh) and the ratio of

these 2 estimates.
nt n Dual sol. estimate J3(U

b
h)− J3(Uh) Ratio

50 2 3.685873e-08 -6.311311e-10 -58.401060
100 2 -3.735936e-09 -4.797271e-09 0.778763
200 2 -2.258335e-09 -2.346515e-09 0.962421
400 2 -2.239576e-09 -2.245107e-09 0.997536
800 2 -2.239162e-09 -2.239516e-09 0.999842
50 3 -3.333265e-09 -4.365725e-09 0.763508
100 3 -2.206283e-09 -2.223503e-09 0.992256
200 3 -2.238295e-09 -2.238876e-09 0.999741
400 3 -2.239123e-09 -2.239139e-09 0.999993
800 3 -2.239136e-09 -2.239143e-09 0.999997
50 4 -2.185222e-09 -2.129653e-09 1.026093
100 4 -2.237262e-09 -2.238104e-09 0.999624
200 4 -2.239130e-09 -2.239139e-09 0.999996
400 4 -2.239136e-09 -2.239143e-09 0.999997
800 4 -2.239136e-09 -2.239143e-09 0.999997

Tab. 8.3.47: The QoI J3, ne=20 elements, p = 2 for the degree of the polynomials in space,
values of the dual solution estimate, the estimate J3(U

b
h)− J3(Uh) and the ratio of

these 2 estimates.
nt n Dual sol. estimate J3(U

b
h)− J3(Uh) Ratio

50 2 1.421935e-07 1.309190e-08 10.861180
100 2 1.659497e-08 -7.606752e-10 -21.816110
200 2 1.252540e-09 1.135255e-09 1.103311
400 2 9.859472e-10 9.765729e-10 1.009599
800 2 9.672640e-10 9.665601e-10 1.000728
50 3 -1.732789e-09 -2.286074e-10 7.579757
100 3 1.081486e-09 1.181619e-09 0.915258
200 3 9.692134e-10 9.662741e-10 1.003042
400 3 9.659856e-10 9.659745e-10 1.000011
800 3 9.659791e-10 9.659784e-10 1.000001
50 4 1.047201e-09 9.090907e-10 1.151922
100 4 9.760658e-10 9.726916e-10 1.003469
200 4 9.659004e-10 9.659488e-10 0.999950
400 4 9.659787e-10 9.659782e-10 1.000000
800 4 9.659789e-10 9.659785e-10 1.000000
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Tab. 8.3.48: The QoI J4, ne=20 elements, p = 2 for the degree of the polynomials in space,
values of the dual solution estimate, the estimate J4(U

b
h)− J4(Uh) and the ratio of

these 2 estimates.
nt n Dual sol. estimate J4(U

b
h)− J4(Uh) Ratio

100 2 -2.307075e-06 -2.527944e-07 9.126291
200 2 -3.731176e-07 4.262622e-07 -0.875324
400 2 6.240813e-07 6.212356e-07 1.004581
800 2 6.300560e-07 6.299383e-07 1.000187
100 3 3.020121e-07 5.442134e-07 0.554952
200 3 6.330231e-07 6.307151e-07 1.003659
400 3 6.304799e-07 6.304617e-07 1.000029
800 3 6.304522e-07 6.304522e-07 1.000000
100 4 6.355211e-07 6.317728e-07 1.005933
200 4 6.309598e-07 6.304821e-07 1.000758
400 4 6.304517e-07 6.304522e-07 0.999999
800 4 6.304520e-07 6.304520e-07 1.000000

Tab. 8.3.49: The QoI J4, ne=40 elements, p = 2 for the degree of the polynomials in space,
values of the dual solution estimate, the estimate J4(U

b
h)− J4(Uh) and the ratio of

these 2 estimates.
nt n Dual sol. estimate J4(U

b
h)− J4(Uh) Ratio

100 2 -8.720207e-06 1.488634e-08 -585.786000
200 2 9.052163e-07 -2.084614e-08 -43.423680
400 2 7.427578e-08 -5.415909e-08 -1.371437
800 2 -6.087182e-08 -6.039886e-08 1.007831
100 3 -6.081393e-08 -2.729508e-08 2.228018
200 3 -3.785711e-08 -5.904958e-08 0.641107
400 3 -6.070952e-08 -6.079825e-08 0.998541
800 3 -6.081567e-08 -6.081789e-08 0.999964
100 4 -5.605110e-08 -5.694790e-08 0.984252
200 4 -6.074129e-08 -6.079084e-08 0.999185
400 4 -6.084581e-08 -6.081838e-08 1.000451
800 4 -6.081814e-08 -6.081819e-08 0.999999
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8.3.5 The higher order scheme – attempts at refining to achieve a specified accuracy

When the much easier quasi-static problems were considered the theory and the examples

showed that when p = 2 and we are in the asymptotic convergence range the doubling

of the number of elements ne leads to a decrease in the error in the estimate of our

quantities of interest by a factor of about 22p = 16. We consider next a strategy to

attempt to get a similar reduction in the error in this more difficult dynamic case from

one or two refinement steps. From all the tables presented so far, this is only going to

happen when the error due to the time discretization is sufficiently small and also the

two error estimators only appear to be reliable when their ratio is close to 1. From the

experiments with different values of n when p = 2 given in tables 8.3.46–8.3.49 we get

ratios which are close to 1 quite quickly when n ≥ 3. Based on these observations we

choose to take n=3 when p = 2 and do the following.

Step 1: With an initial number of elements ne and time steps nt we compute all the

quantities and compute the ratio of the error estimates. If the ratio is in the interval

(0.7, 1.3) then we go to step 3.

Step 2: We successively replace nt by 2nt, we compute all the quantities and we compute

the ratio of the error estimates. When the ratio is in the interval (0.7, 1.3) then we

go to step 3.

Step 3: If the last value of the ratio of the error estimates is in (0.7, 1.3) then we replace

ne by 2ne, we replace nt by 2nt and we repeat all the computations.

Step 4: If the last value of the ratio of the error estimates is not in (0.7, 1.3) then we just

replace nt by 2nt and we repeat all the computations.

Step 5: Go to step 3 or stop the computations if a desired accuracy has been reached or

we have reached the limit of the number of elements or the number of time steps

we wish to use.

In the case of the functionals J3 and J4, γ = 0.1 and a maximum pressure of P (T ) =

γT = 0.3 we show the results of this approach in tables 8.3.50 and 8.3.51. In each

table there is just one stage when we just double nt in our attempt to get back into the

asymptotic convergence range and hence the strategy works well.

As already mentioned the deformation when γ = 0.1 and P (T ) = 0.3 is not too large

with the vertical displacement u3(0, T ) being just below 0.3 as given in table 8.3.37. We
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now consider a much larger deformation when we replace P (T ) = 0.3 by P (T ) = 0.95

which gives u3(0, T ) ≈ 1.7. The results for J3 and J4 are shown in tables 8.3.52 and 8.3.53.

In both cases there are more steps when we just double nt but again this crude strategy

works quite well.
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Tab. 8.3.50: The error estimates for the functional J3 when γ = 0.1, P (T ) = γT = 0.3, p = 2
for the degree of the polynomials in space and n = 3 for the degree of polynomials
in time. The most accurate approximation of J3(U) is 1.45529590910553e-03.

ne nt Dual sol. estimate J3(U
b
h)− J3(Uh) Ratio Near 1

10 50 -3.333265e-09 -4.365725e-09 0.763508 Y
20 100 1.081486e-09 1.181619e-09 0.915258 Y
40 200 6.351612e-11 3.848201e-11 1.650541 N
40 400 4.055883e-11 4.047279e-11 1.002126 Y
80 800 4.992943e-13 5.022619e-13 0.994092 Y
160 1600 1.401808e-13 1.398077e-13 1.002669 Y

Tab. 8.3.51: The error estimates for the functional J4 when γ = 0.1, P (T ) = γT = 0.3, p = 2
for the degree of the polynomials in space and n = 3 for the degree of polynomials
in time. The most accurate approximation of J4(U) is 7.51179671377779e-01.

ne nt Dual sol. estimate J4(U
b
h)− J4(Uh) Ratio Near 1

20 100 3.020121e-07 5.442134e-07 0.554952 N
20 200 6.330231e-07 6.307151e-07 1.003659 Y
40 400 -6.070952e-08 -6.079825e-08 0.998541 Y
80 800 -1.817206e-09 -1.787994e-09 1.016338 Y
160 1600 -7.710433e-11 -9.710333e-11 0.794044 Y

Tab. 8.3.52: The error estimates for the functional J3 when γ = 0.1, P (T ) = γT = 0.95, p = 2
for the degree of the polynomials in space and n = 3 for the degree of polynomials
in time. The most accurate approximation of J3(U) is 8.39753468720017e-03

ne nt Dual sol. estimate J3(U
b
h)− J3(Uh) Ratio Near 1

10 50 -3.283564e-06 -3.644651e-07 9.009270 N
10 100 -1.950239e-07 -5.868776e-08 3.323075 N
10 200 4.095176e-09 -5.278092e-09 -0.775882 N
10 400 -6.983998e-09 -6.862918e-09 1.017643 Y
20 800 8.508914e-09 8.504579e-09 1.000510 Y
40 1600 2.357069e-10 2.356552e-10 1.000220 Y
80 3200 6.428341e-12 6.446147e-12 0.997238 Y

Tab. 8.3.53: The error estimates for the functional J4 when γ = 0.1, P (T ) = γT = 0.95, p = 2
for the degree of the polynomials in space and n = 3 for the degree of polynomials
in time. The most accurate approximation of J4(U) is 1.04836176193406e-01

ne nt Dual sol. estimate J4(U
b
h)− J4(Uh) Ratio Near 1

20 100 4.170084e-07 -5.943337e-07 -0.701640 N
20 200 -8.150731e-07 -1.075281e-06 0.758010 Y
40 400 -5.730808e-08 -9.865345e-08 0.580903 N
40 800 -1.038427e-07 -1.044459e-07 0.994225 Y
80 1600 -7.655671e-09 -7.314915e-09 1.046584 Y
160 3200 -5.000234e-10 -5.090594e-10 0.982249 Y
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8.3.6 Concluding remarks about the results

From all the results presented we have demonstrated a way to get high accuracy and we

have demonstrated that the error estimate that we get after first solving a dual problem

is accurate once we get into the asymptotic convergence range. One of the most difficult

aspects to overcome is to get to the stage when we are in the asymptotic convergence

range and this has required a lot of effort into how we approximate in time as well as

taking significantly more time steps nt compared with the number of space elements ne.

We have not yet reached the stage of trying to refine in space and/or time in a non-uniform

way based on considering the expression for F (zmh ) − A(Uh; z
m
h ) with integrals just over

part of the space time domain although we need a problem where an adaptive refinement

is significant saving compared to refining all elements and all time intervals. The last

example in section 8.3.5 when P (T ) = 0.95 is a possible candidate problem to consider as

the inflation is more rapid near the final time t = T than it is for smaller times.

We have not tried too many quantities of interest in the dynamic case yet and we

are restricted to what we can handle when the quantity of interest only involves the final

time. For example, it would be reasonable to want to consider the functional

J5(U) =

∫ b

0

λ(r, T ) rdr (8.3.9)

instead of the functional J4 which involves the thickness near the final time. The difficulty

with J5 is that the Gâteaux derivative is of the form

J ′
5(U) =

∫ b

0

(
Jα1

α1 + Jα′

1
α′
1 + Jα′

3
α′
3

)
rdr (8.3.10)

and the equation to determine θ(·, T ) is thus of the form

ρh0

∫ b

0

(α1θ1(r, T ) + α3θ3(r, T )) rdr =

∫ b

0

(
Jα1

α1 + Jα′

1
α′
1 + Jα′

3
α′
3

)
rdr. (8.3.11)

This relation needs to hold for all appropriate α1 and α3 and the difficulty is that there

are terms in α′
1 and α′

3 on the right hand side but not on the left hand side. We cannot

use integration by parts as Jα′

1
and Jα′

3
are in terms of the finite element type function

umh are they are not smooth enough on 0 ≤ r ≤ 1. We could only consider this case if the

function umh is at least continuously differentiable.

The dual solution zmh that we obtain depends on the function Um
h used as data and the

functional J being considered. There is no obvious physical interpretation of the quantities
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ψ1(r, t), ψ3(r, t), θ1(r, t) and θ3(r, t) but it is interesting to show what is obtained during

the computation. In the case of the most accurate approximation obtained in tables 8.3.50

and 8.3.51 we show in figures 8.5(a) and 8.5(b) the profiles at the half-way stage time

t = T/2 in the case of J3 and we show in figures 8.6(a) and 8.6(b) the profiles at the

half-way stage time t = T/2 in the case of J4. There is highly oscillatory behaviour for θ1

and θ3 in both cases but this does not appear much in the expression F (zmh )− A(U ; zmh )

as a possible explanation why the estimate is still good in approximating the true error.
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(a) A graph of ψ1(r, T/2) and ψ3(r, T/2) with J3

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

r

θ 1, θ
3

QoI is J
3
, plot of θ

1
 and θ

3
 at time t=T/2

 

 

θ
1

θ
3

(b) A graph of θ1(r, T/2) and θ3(r, T/2) with J3

Fig. 8.5: This is for the functional J3 with profiles being of ψ1(r, T/2), ψ3(r, T/2) in the
top figure and it is of θ1(r, T/2), θ3(r, T/2), 0 ≤ r ≤ 1 in the bottom figure.
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Fig. 8.6: This is for the functional J4 with profiles being of ψ1(r, T/2), ψ3(r, T/2) in the
top figure and it is of θ1(r, T/2), θ3(r, T/2), 0 ≤ r ≤ 1 in the bottom figure.
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The objectives of this work were to apply the error estimation technique to physical

problems involving the inflation of a thin sheet which is assumed to satisfy a membrane

model. In each physical problem considered the equations describing the problem are

written in a weak form and an approximate solution is obtained using the finite element

method. As the physical problems have involved a large deformation, the weak form

description, which we write as

A(u;ψ) = F (ψ), ∀ψ ∈ V, (9.0.1)

is nonlinear with A(·; ·) denoting a semi-linear form, F (·) denoting a linear functional and

with V being an appropriate function space. If for the description here u denotes the

exact solution and J(u) denotes the quantity of interest we wish to compute then our

estimate is J(uh), where uh is our approximation to u, and the error estimation technique

considered throughout the thesis has involved setting up a related dual problem which

uses uh as data. The dual problem to solve is always linear and the dual solution z that

we obtain gives us an estimate of the error of the form

J(u)− J(uh) ≈ F (z)− A(uh; z). (9.0.2)

As we have described, there are in fact slightly different computational dual problems

that can be considered with the easiest one to set-up being of the following form. Find

z ∈ V̄h such that

A′(uh;α, z) = J ′(uh;α) ∀α ∈ V̄h, (9.0.3)

where V̄h is appropriate finite element space which is different to the space used to get

uh. When a better approximation ubh of u can be obtained and we let umh = (uh + ubh)/2

then the z which satisfies

A′(umh ;α, z) = J ′(umh ;α) ∀α ∈ V̄h, (9.0.4)
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leads to a better estimate in (9.0.2) in general. In the thesis we have demonstrated that

this abstract framework can be applied to the membrane inflation problems described,

provided we have a sufficiently close approximation uh to u. Specifically, when z satis-

fies (9.0.4) the theory only indicates that the estimate in (9.0.2) will be good when uh is

sufficiently close to u and for any given problem which is being considered for the first

time it is not clear in advance how close uh needs to be to u and this has been an issue in

the problems considered. When the physical problems involve a quasi-static deformation

and the unknown displacement just depends on space variables, everything works quite

well even with relatively coarse meshes. When the physical problem involves the equa-

tions of motion the scheme also works but only after sufficient effort has been put into

the time discretization. In fact, in the examples, we frequently do not get any reliable

estimate of the error in the dynamic case until the approximate solution is sufficiently

accurate. The effort needed for how the approximate solution varies in time is one of

the more surprising conclusions from the study although when we are attempting to es-

timate the error in a computation it is always going to be the case that this is likely to

be dominated by the least accurate part of the overall procedure. In summary we have

been successful in demonstrating that the error estimation technique does work for each

of the three problems considered although for future work ways to reduce the amount

of computation to estimate J(u) − J(uh) should be investigated. At present the larger

space V̄h used to get a dual solution has involved piecewise polynomials of one degree

higher that used to get uh and hence solving the dual problem typically involves more

computational effort than is used to get uh and J(uh). Perhaps higher degree polynomials

but on a coarser mesh might be a possibility to try for V̄h although this would complicate

a little the implementation with different meshes being involved at the same stage of the

procedure.

Two of the three problems considered just involved a quasi-static deformation and

a displacement field u = u(x1, x2) or u = u(r) which only depends on space variables

at a given applied pressure P = P (t). There is detail to cope with to get the Gâteaux

derivative A′(·; ·, ·) of the semi-linear form A(·; ·) in the weak form and care is needed in the

expressions when the two principal stretches λ1 and λ2 are the same but otherwise there

are not too many difficulties in applying the technique. This is partly because we have

kept to pressures low enough that we do not have a limit point in the nonlinear system at

which the Jacobian matrix at the solution is singular. The entries in the Jacobian matrix

can actually be expressed in terms of A′(·; ·, ·), i.e. the expression for A′(·; ·, ·) appears

in linear dual problems and in the Jacobian matrix and hence we effectively only need

to get the expressions correct once in an implementation. In the examples considered

the displacement u as result of the geometry of Ω and the pressure loading is mostly
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quite smooth and when using high degree polynomials is straightforward we can quite

easily get very accurate answers. There are several examples in the axisymmetric case to

demonstrate this and adaptive refinement based on element quantities of the form

F (z − zI)k − A(uh; z − zI)k, k = 1, . . . , ne (9.0.5)

works very well. For example, if we attempt to estimate by how much we need to refine to

reach a given accuracy then this is usually successful in getting the accuracy in one or two

steps. The axisymmetric quasi-static inflation problem is however only one dimensional

and it is the easiest of the problems considered. In the non-axisymmetric case things do

not work quite as well although with piecewise linears on triangular meshes to get uh and

with quadratics on the same triangles to get the dual solution does lead to an accurate

estimate of the error. The less clear aspect in the non-axisymmetric case is in deciding

which elements to refine based on the element indicators in (9.0.5) which are typically not

all of the same sign. In the examples in chapter 5 the quantities of interest considered,

have usually suggested that uniform refinement should be done and we only have one

example involving a L-shape where we have one non-uniform refinement step.

The dynamic problem is theoretically the most difficult of the three problems in the

thesis which in the axisymmetric case involves a space time region

{(r, t) : 0 ≤ r ≤ 1, 0 ≤ t ≤ T} .

In the numerical scheme we have time levels 0 = t0 < t1 < · · · tM = T and we solve forward

to time to get the approximate displacement and velocity on each time interval [tj−1, tj],

j = 1, . . . ,M . The related dual problem involves solving backwards in time, i.e. we start

with getting the solution at time t = tM = T and then we obtain z(r, t), t ∈ [tj−1, tj],

j =M, . . . , 2, 1. To improve the accuracy in a quantity of interest by a sufficient amount

we need, at some stage, to refine in both space and time in some way although we need

to first determine that stage. Before that stage is reached we may be able to reduce the

error by just refining in space or with just refining in time depending on the problem

being considered. Also, when we are at the stage that the error is decreasing, the rate

of the decrease will be determined by the least accurate part of the approximation. It is

this last observation that led us to try higher order schemes for the time dependence of

the approximation on each time interval [tj−1, tj ]. This is moderately complicated in the

detail but it becomes more manageable once it is noted that when degree n polynomials

in time are used on [tj−1, tj ] the difference between the approximate velocity vh(r, t) and

u̇h(r, t) involves the Legendre polynomial of degree n on [tj−1, tj ] with the scheme used.

With a way of using any degree p in space and any degree n in time there is a lot of choice
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as to what to try get both an accurate approximation and a reliable estimate of the error

in the approximation. In the thesis we do not reach the stage of determining the optimum

choice for p and n in terms of reaching a desired accuracy, with a reliable estimate of the

error with the least computational effort. However, we seem to be able to do quite well

in the examples with the space degree p = 2 and with the time degree of n ≥ 3.

In the larger context of modelling how thin sheets deform in an industrial process

known as thermoforming it should be appreciated which parts of the work described here

can be used and which parts cannot. To be able to use the technique described in this

thesis we need to be able to write the problem in a weak form and as presented this

excludes contact problems which is a key aspect of a forming process. To be able to

express the problem in a weak form may also restrict the constitutive model that can be

used if constitutive models other that hyperelastic models are to be considered. There is

no obvious reason however why we cannot consider the body as a general three dimensional

solid or to have a non-homogeneous body. The accuracy to attempt to achieve is such

cases is likely to be influenced by the accuracy for which the material data is known.
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