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Abstract

Quantile regression (QR) (Koenker and Bassett, 1978), as a comprehensive extension to

standard mean regression, has been steadily promoted from both theoretical and applied

aspects. Bayesian quantile regression (BQR), which deals with unknown parameter

estimation and model uncertainty, is a newly proposed tool of QR. This thesis aims to

make some novel contributions to the following three issues related to QR. First, whereas

QR for continuous responses has received much attention in literatures, QR for discrete

responses has received far less attention. Second, conventional QR methods often show

that QR curves crossing lead to invalid distributions for the response. In particular, given

a set of covariates, it may turn out, for example, that the predicted 95th percentile of

the response is smaller than the 90th percentile for some values of the covariates. Third,

mean-based clustering methods are widely developed, but need improvements to deal

with clustering extreme-type, heavy tailed-type or outliers problems.

This thesis focuses on methods developed over these three challenges: modelling quantile

regression with discrete responses, ensuring non-crossing quantile curves for any given

sample and modelling tails for collinear data with outliers. The main contributions are

listed as below:

• The first challenge is studied in Chapter 2, in which a general method for Bayesian

inference of regression models beyond the mean with discrete responses is devel-

oped. In particular, this method is developed for both Bayesian quantile regres-

sion and Bayesian expectile regression. This method provides a direct Bayesian

approach to these regression models with a simple and intuitive interpretation of

the regression results. The posterior distribution under this approach is shown to

not only be coherent to the response variable, irrespective of its true distribution,

but also proper in relation to improper priors for unknown model parameters.

• Chapter 3 investigates a new kernel-weighted likelihood smoothing quantile regres-

sion method. The likelihood is based on a normal scale-mixture representation of

an asymmetric Laplace distribution (ALD). This approach benefits of the same

good design adaptation just as the local quantile regression (Spokoiny et al., 2014)

does and ensures non-crossing quantile curves for any given sample.
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• In Chapter 4, we introduce an asymmetric Laplace distribution to model the re-

sponse variable using profile regression, a Bayesian non-parametric model for clus-

tering responses and covariates simultaneously. This development allows us to

model more accurately for clusters which are asymmetric and predict more accu-

rately for extreme values of the response variable and/or outliers.

In addition to the three major aforementioned challenges, this thesis also addresses other

important issues such as smoothing extreme quantile curves and avoiding insensitive to

heteroscedastic errors as well as outliers in the response variable. The performances

of all the three developments are evaluated via both simulation studies and real data

analysis.
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Chapter 1

Introduction

Quantile regression (QR), proposed by Koenker and Bassett (1978), provides a broad

approach to explore the relationships among different variables; see Koenker (2005), Yu

et al. (2003) and Cade and Noon (2003) for an overview. In contrast to mean-based

regression, quantile regression relies on the entire conditional distribution of a given

predictor variable. Simultaneously, quantile regression can fully depict the influence of

explanatory variables on the whole distribution of explanatory variables. Furthermore,

QR overcomes the limitation of only revealing the influence of the response variable

on the mean of explanatory variables, which is a problem that mean-based regression

faces. Hence, QR is more informative. A comparative review of statistical methods for

body mass index (BMI) has been discussed by Yu et al. (2016), where BMI is treated

as the response variable. If one fits quantile regression to BMI with age as one of the

covariates, then Figure 1.1 displays the typical age coefficient and its 95% confidence

bands against the BMI quantile τ . QR provides a more comprehensive way to illustrate

the effect of age on BMI than mean-based regression. Currently, QR is a very important

technique and has been profoundly recognised as a comprehensive extension to standard

mean regression (Koenker, 2005).

1
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Figure 1.1: Age coefficient plotted against the BMI quantile τ with 95% confidence
bands (The data (8151 observations) was obtained from UK data service: UK Data

Archive Study Number 7402 - Health Survey for England, 2011: Teaching Dataset)

To further highlight the importance of QR and demonstrate its application, we provide

a more elaborate way of visualising this by considering an example that superimposes

several estimated conditional quantile functions on the US Health Examination Surveys

(elaborated in Chapter 3). This dataset comes from the second and third health exami-

nation surveys of the USA (National Centre for US Health Examination Surveys, 1970;

1973). Taken together these provide data on the anthropometry of children between the

ages of 6 years and 18 years, with about 400 to 600 children of each sex seen in each

year of age (Cole, 1998). Here, along with Yu and Jones (1998), the weights and ages

of 4011 US girls are analysed. In the resulting Figure 1.2, the median regression line

is represented by a solid blue line, and the least squares line as a dashed red line. The

other quantile regression lines appear in grey. It can be observed that the conditional

median (the 0.50 quantile) and mean curves are different, and therefore the standard

mean regression estimate is insufficient to estimate the relationship between weights

and ages. In contrast QR models are flexible models and insensitive to heteroscedastic

errors and outliers in the response variable, which are also adapted in many real-world

applications (Yu et al., 2003; Koenker, 2005).
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Figure 1.2: The relationship between weights and ages of 4011 US girls (Cole,
1998). QR curve estimates from the highest to the lowest quantiles are plotted for
τ ∈ {95%, 90%, 75%, 50%, 25%, 10%, 5%}. The fitted standard mean regression curve is

illustrated by the dashed red line.

1.1 Quantile regression

Given a sample of observations (x1, y1), (x2, y2), · · · , (xn, yn), the τth quantile regression

equation can be denoted as:

Qy (τ |x) = xTβ(τ),

where yi(i = 1, ..., n) is the outcome of interest, xi is a p-dimensional vector denoting

the ith row of the n× p design matrix X, and the unknown quantity β(τ) is a vector of

coefficients. Let the conditional distribution function of y be Fy (y|x), and the inverse

function be Qy (τ |x) = inf {y : Fy (y|x) ≥ τ}.

Recall the classic least squares method. When y is a linear function of x, the regression

coefficient β can be optimized by

min
β

n∑
i=1

(
yi − xTi β

)2
, (1.1)
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where xTi β denotes the conditional mean of y. The least squares method is to estimate

the parameters by minimising the residual sum of squares, which reflects the average

effect of the variable x on the response variable y.

Similarly, to establish the linear function of the parameters for the τth quantileQy (τ |x) =

xTβ(τ), quantile regression can also be used to give a solution to a simple optimization

problem, such that the regression coefficient β(τ) can be optimized by

min
β

n∑
i=1

ρτ
(
yi − xTi β(τ)

)
, (1.2)

where τ is the quantile of interest, Qy (τ |x) is the sample condition τth-quantile, and

β(τ) = (β0(τ), β1(τ), ..., βp(τ)) is the regression coefficient vector dependent on τ . ρτ (·)

is an asymmetric loss function that satisfies

ρτ (u) =


τu u ≥ 0

(τ − 1)u u < 0.

(1.3)

Equivalently, Eq.(1.3) is sometimes expressed as:

ρτ (u) =
|u|+ (2τ − 1)u

2
.

Figure 1.3 shows the check function at three different quantiles, namely 0.50, 0.75 and

0.95.
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Figure 1.3: Check function in Eq.(1.3) at different τs.

Let τ ∈ (0, 1), define the objective function m(τ) =
∑n

i=1 ρτ (yi −Qy(τ |x)). Note that
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the objective function is a weighted sum of absolute deviations, so that the estimated

vector of parameters is insensitive to the observations at the outer or edge, which is

very effective for estimating the global distribution. According to Koenker and Bas-

sett (1978), the parameter estimation of the model can be obtained by optimizing the

following:

β̂(τ) = argmin
β

m(τ) = argmin
β

n∑
i=1

ρτ (yi −Qy(τ |xi)) , (1.4)

Considering the following standard linear model: yi = xTi β+ εi, Eq.(1.4) can be further

written as:

argmin

 ∑
yi≥xTi β

τ(yi − xTi β)−
∑

yi<xTi β

(1− τ)(yi − xTi β)

 . (1.5)

When τ = 0.5, Eq.(1.5) reduces to
∑n

i=1(0.5)
∣∣yi − xTi β(0.5)

∣∣, then ŷ(0.5) = xTi β̂(0.5)

is called the median regression equation, and β̂(0.5) is called the median regression

coefficient estimator.

1.1.1 Developments in quantile regression

Koenker and Bassett proposed the theory of QR in 1978. Following this, they introduced

quantile regression linear hypothesis test as well as heteroscedasticity robustness test in

1982. Koenker and Machado (1999) constructed the Wald test and the likelihood ratio

test to diagnose the significance of regression. These diagnostic tests proved the appli-

cability of QR methods. Moreover, the methodologies of QR have also been improved

constantly for decades. Bassett and Koenker (1986) investigated the strong consistency

of the regression quantiles. Buchinsky (1995) discussed the asymptotic covariance matrix

of the estimation of a quantile regression model and the truncated quantile regression by

Monte Carlo simulation and elaborated the estimation procedures, including the design

matrix bootstrap, error bootstrap, order statistics, homogeneous variance kernel and

heterogeneous variance kernel. Koenker and Xiao (2002) solved the issue of having to

address specific types of inferences when quantile regression is implemented. Kim and

Muller (2000) gave a study of the asymptotic nature of two-step quantile regression.

Tasche (2001) studied the unbiased properties of the minimum quantile regression. Kim

and White (2003) studied the consistency and asymptotic normality of estimators for
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nonlinear quantile regression and proposed the hypothesis test and statistical inference

of the quantile regression model. Koenker and Xiao (2006) imported the autoregres-

sive model into quantile regression framework and proposed the quantile auto-regression

(QAR) model, whereby the coefficients are dependent on quantiles.

Subsequent to the theory of quantile regression being developed, new and effective algo-

rithms for modelling quantile regression are also constantly developing. The most widely

used are: (1) Simplex method (Koenker and Bassett, 1978; Koenker and d’Orey, 1993;

Portnoy et al., 1997). Randomly pick a vertex and then search along the boundary of

the feasible solution to the polygon until the best point is found. The characteristics

of this algorithm make it suitable for cases with small sample sizes and few variables;

(2) Interior point method (Koenker and Park, 1996). It achieves optimization by going

through the middle of the solid defined by the problem rather than around its surface,

which further effectively solves the large-scale computing problems.

Advancements made in the aforementioned methods and technologies in modelling, com-

puting and related software packages (such as R, Splus, SAS and other programs), have

ensured the availability of quantile regression which is now widely applied in statistics

and numerously in other areas (Koenker and Hallock, 2001, Yu et al., 2003, Briollais and

Durrieu, 2014 and among others). For example, Machado and Mata (2005) proposed a

method to decompose the changes found in the distribution of wages over a period of

time into several factors contributing to those changes, which is based on the estimation

of marginal wage distributions consistent with a conditional distribution estimated by

quantile regression. Xu et al. (2016) developed a novel quantile auto-regression neural

network model, which is able to evaluate value-at-risk in practice and achieves high

prediction accuracy. Yu et al. (2016) provided a key resource and statistical library for

researchers in public health and medicine to deal with obesity and body mass index

data analysis, and especially elaborated on both classical and modern QR methods to

improve the understanding of the complex system of intercorrelated influences on BMI.

1.1.2 Nonparametric estimation of quantile regression

Since Koenker and Bassett (1978) proposed linear quantile regression under the para-

metric framework, these simple linear models have been refined to account for nonpara-

metric effects via additive models (Koenker and Hallock, 2001; Yu and Lu, 2004; Fenske
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et al., 2011). Further methods include local quantile regression (Yu and Jones, 1998;

Spokoiny et al., 2014), single-index quantile regression (Wu et al., 2010), semiparametric

quantile regression (Noh et al., 2015), nonparametric quantile regression (Horowitz and

Lee, 2007; Chernozhukov et al., 2008; Li and Racine, 2008; Li et al., 2013) and quantile

regression for time series (Chen et al., 2009; Xiao and Koenker, 2009).

Nonparametric quantile regression not only relaxes the assumption of linearity in the

regression parameters, it also avoids the need to specify a precise functional form for the

relationship between the response and regressors. In general, two types of methods are

conventionally used to solve nonparametric regression models: one is global approxima-

tion and the other is local approximation. Spline is the most commonly used method

for estimating the global approximation, which uses spline functions to approximate the

nonparametric model and transfer it to parametric estimation (De Boor et al., 1978).

The estimation result depends on the number and position of the spline nodes. Amongst

local approximation methods, local constant estimation and local linear estimation are

widely used, where the estimation accuracy depends on the kernel (weight) function

selection and bandwidth selection.

Consider the following nonparametric model:

yi = g(xi) + εi, i = 1, · · · , n, (1.6)

where y = (y1, · · · , yn)T is the response variable, X = (x1, · · · , xn)T is the dependent

variable, and the errors ε = (ε1, · · · , εn)T are assumed to be equally distributed.

1.1.2.1 Spline smoothing quantile

Polynomial splines are piecewise polynomials with the polynomial pieces joining to-

gether smoothly at a set of interior knot points (Huang et al., 2004). Hendricks and

Koenker (1992), Koenker et al. (1994), He et al. (1998) and He and Ng (1999) utilized

a smooth spline method to estimate nonparametric conditional quantiles. Kukush et al.

(2005) also explored the true conditional quantile function based on the local polynomial

approximation, and constructed the consistency, asymptotic normality and asymptotic

significance interval of the estimator.
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A polynomial spline of degree M ≥ 0 with knot sequence ξl, l = 1, · · · ,K is a piecewise-

polynomial of degree M , and globally has continuous M − 1 derivatives for M ≥ 1. A

piecewise constant function, linear spline, quadratic spline and cubic spline corresponds

to M = 0, 1, 2, 3, respectively.

Suppose that g(xi) in Eq.(1.6) can be approximated by some spline function:

g(xi) ≈
K+M+1∑

j

θjhj(xi),

where hj(x), j = 1, · · · ,K +M + 1 is a basis for the spline functions with a fixed degree

and knot sequence. Take a cubic spline as an example, Eq.(1.6) can be further treated as

a parametric model, where the position parameter can be estimated directly via quantile

regression. The quantile regression estimation for a cubic polynomial spline function can

be expressed as:

(b̂∗τ , Θ̂) = argmin
b∗τ ,Θ

n∑
i=1

ρτ

yi − b∗i − K+4∑
j=2

θjhj(xi)

 ,

where b̂∗τ is the τth-quantile of ε + θ1, where ε is the error in Eq.(1.6) and Θ̂ =

(θ̂2, · · · , θ̂K+4)T .

Therefore, the conditional quantile estimation of y|X is XT Θ̂ + b̂∗τ , with

XT =


h2(x1) . . . hK+4(x1)

...
. . .

...

h2(xn) . . . hK+4(xn)

 .

1.1.2.2 Kernel smoothing quantile

In addition to the spline function method, the local constant estimation (kernel estima-

tion) and local linear estimation for nonparametric regression models are also widely

used. For instance, Welsh (1996) and Yu and Jones (1998) considered the local poly-

nomial estimation of quantile regression and established conditions under which these

estimators achieve optimal rates of convergence. Yu and Lu (2004) considered non-

parametric additive regression estimation by kernel weighted local linear fitting to cope
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with multivariate covariates. Wu et al. (2010) further proposed the minimised aver-

age loss estimation for single-index quantile regression to cope with high-dimensional

nonparametric estimation problems involving multivariate covariates.

Recall Eq.(1.6), kernel quantile regression treats the conditional quantile of the explana-

tory variable as g(x) = Qτ (Y |X), hence nonparametric regression quantiles obtained by

inverting a kernel estimator of g(x) can be expressed as follows:

ĝ(x) = argmin
n∑
i=1

ρτ (yi − g(x))Kh(xi − x),

where h > 0 is the bandwidth, and Kh(xi−x) = K(xi−xh ) denotes a kernel function that

satisfies K(u) > 0,
∫
K(u)du = 1 and

∫
K(u)udu = 0.

Kernel estimation enjoys consistency and asymptotic normality. However, due to the

boundary effect, that is, the velocity converges to the actual function at the boundary

is slower than the convergence rate at the interior point, the local constant estimate is

not the optimal estimate. As it was pointed out in Yu and Jones (1997), local linear

estimation is thought to be superior to kernel regression. In general, local linear esti-

mation removes a bias term from the kernel estimator, therefore it behaves better near

the boundary of the explanatory variables and reduces the estimated error everywhere.

The idea of the local linear fit is to approximate the unknown τth quantile Qτ (x) by a

linear function Qτ (z) = Qτ (x) +Q′τ (x)(z − x) = a+ b(z − x), for z in a neighbourhood

of x. The local linear estimator of g(x) can be further derived as follows:

(ĝ(x), ĝ′(x)) = (â, b̂) = argmin
a,b

n∑
i=1

ρτ (yi − a− b(xi − x))Kh(xi − x).

1.2 Bayesian quantile regression

The application of traditional quantile regression has been widely acknowledged, yet

there are many issues that remain and can be tackled to a certain degree using Bayesian

inference. The key to estimating QR when using Bayesian inference is to let the error

terms follow an asymmetric Laplace distribution (ALD). Based on this, the maximum

likelihood function of the parameter can be constructed, and the transformation from
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the prior distribution of parameters to the posterior distribution can be further derived

according to Bayes’ theorem.

Bayesian inference is widely used in general linear or extended models, especially for

complex objective functions, and the posterior probability distribution of parameters

can be obtained by MCMC simulation. However, in the field of QR, there exists very

few pieces of literature based on Bayesian inference, only Fatti et al. (1998) before the

year 2000 has made a simple attempt to apply Bayesian quantile regression (BQR). Yu

and Moyeed (2001) first proposed that quantile regression can be incorporated into the

Bayesian inference framework by using ALD.

1.2.1 Asymmetric Laplace distribution

The density function of the Laplace distribution (LD) is

f(x) =
1√
2σ

exp

(
−
√

2
|x− µ|
σ

)
,

where −∞ < µ < ∞, σ > 0, µ and σ2 are the mean and variance, respectively. This

distribution is also known as type-1 LD, while the normal distribution can be treated as

type-2 LD. The classical ordinary least squares (OLS) regression is based on the type-2

LD with the goal of minimising the sum of squared deviations. Compared to the normal

distribution, type-1 LD presents features which are fat-tailed and leptokurtic.

ALD is proposed on the basis of LD. For a random variable X, if it follows an asymmetric

Laplace distribution, its density function can be written as:

f(x;µ, σ, τ) =
τ(1− τ)

σ
exp

{
x− µ
σ

[τ − I(x ≤ µ)]

}
, x ∈ (−∞,+∞), (1.7)

where 0 < τ < 1 is the skew parameter, σ > 0 is the scale parameter, and −∞ < µ <∞

is the location parameter. The corresponding distribution function and quantile function

are given respectively by:

F (x;µ, σ, τ) =


τ exp

{
1− τ
σ

(x− µ)

}
x ≤ µ,

1− (1− τ) exp
{
− τ
σ

(x− µ)
}

x > µ,

(1.8)
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and

F−1(x;µ, σ, τ) =


µ+

σ

1− τ
log
(x
τ

)
0 ≤ x < τ,

µ− σ

τ
log

(
1− x
1− τ

)
τ < x ≤ 1.

(1.9)

An important property of this quantile function is that the τth-quantile of random

variable x is equal to the location parameter µ, F−1(x;µ, σ, τ)|x=τ = µ, with the basis

that ALD is used as the error distribution of the quantile regression model.

Similar to a normal distribution, any ALD can be derived from a standard ALD. If

X ∼ ALD(0, 1, τ), then Y = µ+ σX ∼ ALD(µ, σ, τ). The normalised density function

can be written as:

f(x; 0, 1, τ) = τ(1− τ) exp {−ρτ (x)} , x ∈ (−∞,∞), (1.10)

where 0 < τ < 1 and ρτ (u) is as defined in Eq.(1.3). When τ = 0.5, Eq.(1.10) reduces to

the density function of a standard symmetric Laplace distribution. For all other values

of τ , the density in Eq.(1.10) is asymmetric. The mean of X is (1− 2τ)/τ(1− τ) and it

is positive only when τ > 0.5. The variance given by (1− 2τ + 2τ2)/τ2(1− τ)2 increases

quite rapidly as τ approaches 0 or 1. The skewness of standard asymmetric Laplace

density functions varies with τ , i.e. when τ = 0.05, ALD focuses more on the right tail;

when τ = 0.5, the distribution is symmetrical (see Figure 1.4).

Compared with normal distributions of exponential quadratic form, linear exponential

typed ALD always presents features which are fat-tailed and leptokurtic. In addition,

Yu and Zhang (2005) pointed out that ALD can be obtained by a linear combination of

two independent exponential random variables, such that if ξ and η follow standard ex-

ponential distribution independently, then ξ
τ −

η
1−τ ∼ ALD(0, 1, τ). Moreover, a mixture

representation of ALD based on exponential and normal distributions was proposed in

Reed and Yu (2009) and Kozumi and Kobayashi (2011), which stated that if a random

variable ε follows the ALD with density in Eq.(1.10), then ε can be represented as a

location-scale mixture of normals given by:

ε = µz + δ
√
ze,
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Figure 1.4: Density functions of asymmetric Laplace distribution at different τs.

where z is a standard exponential variable and e is a standard normal variable. µ =

1−2τ
τ(1−τ) and δ2 = 2

τ(1−τ) .

1.2.2 Bayesian quantile regression based on asymmetric Laplace dis-

tribution

Yu and Moyeed (2001) and Yu and Stander (2007) set the error terms of QR to follow

the ALD, and found that the maximum of the likelihood function is equivalent to the

minimum of the loss function of QR. Therefore, the traditional quantile regression op-

timization method can be replaced by Bayesian inference based on the ALD-likelihood.

Yu and Moyeed (2001) also verified the validity of the proposed method by MCMC sim-

ulation experiments and the analysis of two case studies. Yu and Moyeed (2001), with

the help of ALD, have opened the door for parameter estimation of Bayesian quantile

regression (BQR), which has received increasing attention.

Recall that quantile regression is a minimization of the loss function

min
β

n∑
i=1

ρτ (yi −Qy (τ |xi)) , (1.11)
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where Qy (τ |x) is the τth quantile given x and ρτ (u) = u(τ − I(u < 0)) is the loss

function, with I(·) is an indicator function.

Let ε ∼ ALD(0, σ, τ), then we have y ∼ ALD (Qy (τ |x) , σ, τ), where 0 < τ < 1 is the

skew parameter, σ is the scale parameter. Then, the density function of y can be written

as:

f (y;Qy (τ |x) , σ, τ)

=
τ(1− τ)

σ
exp

{
−ρτ (y −Qy (τ |xi))

σ

}
.

(1.12)

Therefore the likelihood function is derived as:

L (y;Qy (τ |x) , σ, τ)

=
τn(1− τ)n

σn
exp

{
− 1

σ

n∑
i=1

ρτ (yi −Qy (τ |xi))

}
.

(1.13)

According to Bayes’ theorem, the posterior density is proportional to the product of the

prior density and the sample likelihood function. Hence, the joint posterior density of

parameters can be presented as:

π(β, σ|y) ∝ L (y;Qy (τ |x) , σ, τ) f(β)φ(σ), (1.14)

where f(β) and φ(σ) are the prior densities of the coefficients and the scale parameters.

The maximization of the likelihood function in Eq.(1.13) is equivalent to the minimiza-

tion of the loss function in Eq.(1.11) for a given τ , so the parameter estimates for the

quantile regression can be optimized by Eq.(1.13). Thus, by using ALD, Bayesian para-

metric estimation for quantile regression can be easily implemented.

By basing Bayesian inference on MCMC, the sampling distributions of quantile regres-

sion parameters and convergence of the sampling test can be obtained effectively. Since

the likelihood function in Eq.(1.13) is continuous but not derivable, there is no analytic

solution for the parameter derivation. In this case, the MCMC simulation (detailed

in Section 1.2.4) can be effectively adopted to obtain the posterior distribution of the

parameters.
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Yu and Moyeed (2001) derived that if the prior distribution of the parameters is evenly

distributed, even though the choice is improper, the resulting joint posterior distribution

is still proper. The prior distribution in BQR can therefore be set as a non-informative

prior, such as a uniform distribution or normal distribution with large variance. However,

Alhamzawi et al. (2011) argued that the distributions of the parameters at the high or

low quantiles may be different in practice, and the distributions of the parameters at

various quantiles may therefore differ. Prior distributions for different quantiles should

be set accordingly using the Power Prior method. Sriram et al. (2013) provided an

asymptotic justification to the claim that the use of ALD is satisfactory even if it is

not the true underlying distribution in Yu and Moyeed (2001), by establishing posterior

consistency and deriving the rate of convergence under the ALD misspecification.

Yu et al. (2005) found that BQR has the following advantages in comparison to the

conventional methods: (1) The Bayesian approach has less standard errors than the

Frequentist method, although these two methods have similar point estimates, because

the traditional method is based on the “asymptotic property”; (2) BQR is a full posterior

distribution of the dependent variable, rather than a single value, and thus a more

comprehensive understanding of the estimated parameters could be proposed; (3) The

hypothesis test of Frequentists is based on the parameter distribution setting, whereas

BQR is based on the hypothesis test of the HPD (Highest Posterior Density) of the

parameter posterior distribution, which would provide higher efficiency.

Bayesian quantile regression for continuous responses has received increasing attention

from both theoretical and empirical viewpoints. The first Bayesian linear quantile re-

gression method by Yu and Moyeed (2001) is based on an ALD for likelihood and has

been implemented in SAS 1 and R (Alhamzawi, 2012; Benoit et al., 2014). This method

has been extended in many different contexts and applications. Yu and Stander (2007)

developed Bayesian inference Tobit quantile regression. Geraci and Bottai (2007) ex-

tended the method to random effect quantile regression. Yuan and Yin (2010) extended

the inference for longitudinal data. Li et al. (2010) discussed the prediction accuracy

of Bayesian quantile regression via regularization. Reed and Yu (2009) and Kozumi

and Kobayashi (2011) proposed a Gibbs sampling algorithm for the inference. Gerlach

et al. (2011) applied the method for financial Value-at-Risk analysis. Lee and Neocleous

(2010) combined the jittering approach and ALD inference for count data, and applied in

1http://support.sas.com/rnd/app/examples/stat/BayesQuantile/quantile.htm

http://support.sas.com/rnd/app/examples/stat/BayesQuantile/quantile.htm
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the field of environmental epidemiology. Lum and Gelfand (2012) extended the method

to spatial quantile regression, and among others. See a recent review by Yang et al.

(2016). Alternatively, Reich et al. (2010) applied a Bayesian infinite mixture of Gaus-

sian densities for quantile of interest. Yang and He (2012) used the empirical likelihood

for Bayesian quantile regression. But all these methods use likelihood functions from

continuous responses.

1.2.3 Semi and nonparametric estimation of Bayesian quantile regres-

sion

Bayesian quantile regression uses a parametric polynomial quantile regression function,

which performs better than parameter-based quantile regression in parameter estimation

and statistical inferences. However, there are drawbacks to this approach: it is suscep-

tible to outliers; the degree of the polynomial needs to be determined in advance; there

may be overfitting and misconvergence of MCMC for higher-degree polynomials, and

other issues. To address this, semi and nonparametric estimation of Bayesian quantile

regression has been further developed, and attention has been drawn to conduct further

research focusing on the regression function and error settings.

Walker and Mallick (1999) and Kottas and Gelfand (2001) examined the semi-parametric

estimation of Bayesian quantile regression for the median quantile. The median regres-

sion is parametrized, yet a nonparametric model is established for the error terms. The

model can be estimated by using the Polya tree or Dirichlet process (DP). Tsionas (2003)

proposed a Bayesian semi-parametric quantile regression model based on the scale mix-

ture of normal distributions. Chamberlain and Imbens (2003) and Dunson and Taylor

(2005) proposed a semi-parametric Bayesian inference for linear quantile models.

Kottas and Krnjajić (2009) argued that ALD-based Bayesian semi-parametric models

are parametric and linear in quantile regression functions, although they are relatively

flexible in the error distribution. They proposed an alternative Bayesian semi-parametric

model so that the error terms are subject to Dirichlet Process (DP) mixture. Approach-

ing this using the DP mixture allows the data to drive the shape of the error density and

thus provides more reliable predictive inference than models based on parametric error

distributions. Monte Carlo simulation results show that the Bayesian semi-parametric

approach prevents misspecification of the model, therefore being more robust than when
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the parametric Bayesian model is based on ALD and also more reliable in statistical in-

ferencing.

Bayesian semi-parametric regression models provide more flexibility than Bayesian para-

metric models, although these methods are simply based on linear quantile regression.

On the other hand, the use of MCMC involved in statistical inference is relatively com-

plex. In order to deal with the complexity of this method, Koenker et al. (1994) and

Koenker and Mizera (2004) proposed a nonparametric quantile regression method by

using the total variation regularization for univariate and bivariate smoothing. Yu and

Lu (2004), Horowitz and Lee (2005) and Cai and Xu (2008) also proposed a nonpara-

metric approach to quantile regression based on local polynomial fitting. Taddy and

Kottas (2010) proposed a nonparametric approach based on the Dirichlet process mix-

ture model (DPMM). This was developed on the basis of the parametric estimation

methods proposed by Yu and Moyeed (2001) and Tsionas (2003), using a mixed-scale

asymmetric Laplace distribution, therefore providing flexibility and enabling informa-

tion on the error distribution to be captured (such as skewness, leptokurtosis, and other

features).

Thompson et al. (2010) proposed Bayesian nonparametric quantile regression based on

natural cubic splines to improve the Bayesian parametric quantile regression of Yu and

Moyeed (2001). This method allows quantile regression curves to be fit with more

flexibility. In order to set up a more flexible quantile regression, Yue and Rue (2011)

proposed an additive mixed quantile regression model that allows the distribution of the

dependent variable to be non-linear with the independent variables. The function also

permits the addition of other conditions (random effects, time trends, seasonal changes,

etc) to be taken into consideration, and to adopt MCMC for statistical inference.

1.2.4 Bayesian sampling algorithm

When the function of the posterior distribution is of a familiar form (such as the Gaus-

sian, Gamma, or Beta distribution, etc.), the posterior distribution of relevant param-

eters can be easily simulated. However, generally speaking, the posterior distribution

of parameters is unknown. In this case, Bayesian sampling algorithms can be used to

simulate the unfamiliar (nonstandard) posterior distribution.
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The commonly used Bayesian sampling algorithms are as follows: (1) Metropolis-Hastings

(M-H) algorithm. Metropolis et al. (1953) first proposed the Metropolis algorithm, which

has been extended by Hastings (1970) to propose the use of M-H algorithm in the MCMC

process. Green (1995) proposed the reversible jump M-H to sample the parameters in

different dimensional spaces. A particular form of M-H is the random walk Metropo-

lis (RWM) algorithm, which effectively determines the accepting rate that reflects the

representative sample. Another is the independent sampler M-H algorithm, which is

based on the Laplace approximation, which was described in Erkanli (1994); (2) Gibbs

sampling (see details in Casella and George, 1992; Smith and Roberts, 1993); (3) Reject

sampling and important sampling (see details in Robert, 2004 and Givens and Hoeting,

2012).

1.2.4.1 Metropolis algorithm

Metropolis et al. (1953) first proposed the Metropolis algorithm. Suppose that we need to

sample from the target probability density function p(θ), while θ satisfies −∞ < θ <∞.

The Metropolis algorithm generates a sequence according to the Markov chain:

θ(1) → θ(2) → · · · → θ(t) →,

where θ(t) denotes the state of the Markov chain at t.

Let Q be a transition matrix for the Markov chain, a proposal distribution q
(
θ|θ(t−1)

)
denotes the transfer probability from state θ(t−1) to state θ(t). However, it may not

satisfy the balance condition:

p(θ(t))q
(
θ(t−1)|θ(t)

)
6= p(θ(t−1))q

(
θ(t)|θ(t−1)

)
.

Therefore, one may introduce an acceptance probability α:

α
(
θ(t)|θ(t−1)

)
= p(θ)q

(
θ(t−1)|θ(t)

)
.

Then it satisfies that

p(θ(t))q
(
θ(t−1)|θ(t)

)
α
(
θ(t−1)|θ(t)

)
= p(θ(t−1))q

(
θ(t)|θ(t−1)

)
α
(
θ(t)|θ(t−1)

)
.
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Now the Markov chain satisfies the detailed balance condition and q
(
θ(t−1)|θ(t)

)
α
(
θ(t−1)|θ(t)

)
denotes the transfer probability. Then the MCMC algorithm flow is as follows:

Algorithm 1.1

Step 1 : Initialize time t = 1.

Step 2 : Set u and initialize state θ(t) = u.

Step 3 : Repeat :

3.1. Let t = t+ 1

3.2. Generate θ(∗) from a proposal distribution q
(
θ(t)|θ(t−1)

)
3.3. Calculate the acceptance probability: α = p

(
θ(∗)) q (θ(t−1)|θ(∗))

3.4. Generate a random variable a from an uniform distribution: a ∼ U [0, 1]

3.5. If a ≤ α, accept θ(t) = θ(∗); otherwise θ(t) = θ(t−1)

Step 4 : Till t = T .

1.2.4.2 Metropolis-Hastings sampling

The acceptance probability of the Metropolis algorithm in 1.2.4.1 could be very small,

which requires a large number of iterations to converge to the stationary distribution

p(θ). Hastings (1970) extended the Metropolis algorithm to propose the use of Metropo-

lis Hastings (M-H) algorithm in the MCMC process. M-H sampling has since become

an important sampling method in the Monte-Carlo Markov chain.

The M-H algorithm takes a random value θ(1) in the parameter space as a starting point.

A new candidate state θ(∗) is then generated by using a proposal distribution q
(
θ|θ(t−1)

)
and the new value is subsequently accepted or rejected according to a certain probability.

In the M-H sampling algorithm, the probability is:

α = min

(
1,

p
(
θ(∗)) q (θ(t−1)|θ(∗))

p
(
θ(t−1)

)
q
(
θ(∗)|θ(t−1)

)) .
This process continues until the sampling process converges. After convergence, the

sample θ(t) is the sample in the target distribution p(θ).

Based on the above analysis, we can summarize the following M-H sampling algorithm

flow:
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Algorithm 1.2

Step 1 : Initialize time t = 1.

Step 2 : Set u and initialize state θ(t) = u.

Step 3 : Repeat :

3.1. Let t = t+ 1

3.2. Generate θ(∗) from a proposal distribution q
(
θ(t)|θ(t−1)

)
3.3. Calculate the acceptance probability: α = min

(
1,

p(θ(∗))q(θ(t−1)|θ(∗))
p(θ(t−1))q(θ(∗)|θ(t−1))

)
3.4. Generate a random variable a from an uniform distribution: a ∼ U [0, 1]

3.5. If a ≤ α, accept θ(t) = θ(∗); otherwise θ(t) = θ(t−1)

Step 4 : Till t = T .

1.2.4.3 Gibbs sampling

Gibbs sampling is the most commonly used MCMC algorithm and also a special case

of the Metropolis-Hastings algorithm, when the acceptance probability = 1. For high-

dimensional data sampling, Stuart Geman and Donald Geman proposed the Gibbs sam-

pling algorithm in 1984 (Geman and Geman, 1984). The detailed stationary condition

at this time can be expressed as

p(x1, y1)p(y2|x1) = p(x1, y2)p(y1|x1).

Then the transition matrix Q can be represented as p(y|x1), so in the n-dimensional

space the transition matrix can be defined for the probability distribution p(x1, x2, . . . , xn)

as follows:

Q ((xi, x−i)→ (x̂i, x−i)) = p(x̂i|x−i).

If the current state is x1, x2, . . . , xn, the transition can only be made along the axes.

The transition probability is defined by the conditional probability

p(xi|x1, x2, . . . , xi−1, xi+1, . . . , xn) when a transition is made along the x-axis, while other

transition probabilities are set equal to 0. Specifically, the Gibbs sampling algorithm

flow follows:
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Algorithm 1.3

Step 1 : Initialize xi : i = 1, 2, . . . , n.

Step 2 : Let t = 0, 1, 2, . . .,

2.1. xt+1
1 v p(x1|xt2, xt3, . . . , xtn)

2.2. xt+1
2 v p(x2|xt+1

1 , xt3, . . . , x
t
n)

2.3. . . .

2.4. xt+1
j v p(xj |xt+1

1 , . . . , xt+1
j−1, x

t
j+1, x

t
n)

2.5. . . .

2.6. xt+1
n v p(xn|xt+1

1 , xt+1
2 , . . . , xt+1

n−1)

1.3 Challenges in quantile regression methodologies

Quantile regression (QR) (Koenker and Bassett, 1978), as a comprehensive extension to

standard mean regression, has been steadily promoted from both theoretical and practi-

cal aspects. However, there exists many areas in QR methods that require improvement,

from which we select three recognized and intriguing challenges of QR methodologies

to investigate and develop. There are modelling quantile regression with discrete re-

sponses, ensuring non-crossing quantile for any given sample, and clustering collinear

data with outliers based on a quantile representation. The emerging challenges also

include quantile regression in big data, which is beyond the scope of this thesis.

1.3.1 Quantile regression modelling with discrete responses

Amongst numerous areas of application, discrete observations with integer values (e.g.,

-2, -1, 0, 1, 2, 3, etc.) on a response are easily collected. In particular, current big

data largely consists of data with discrete observations such as the number of online

transactions, the number of days in hospitals, the number of votes and so on. Classic

regression models for discrete responses include Poisson regression models and their

variants. However, variants of the Poisson regression model and the model itself are

often criticized for their inability to deal with large numbers of over-scattered zero-strain

variables. The difficulty of the problem lies in the distance between the corresponding

variables. Previously, the dependent variable would be conditioned using the conditional

density of the Lebesgue measure, but this is no longer suitable for the discrete dependent
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variables. Moreover, discrete responses are generally skewed, hence the mean-based

regression analysis would be insufficient for a complete analysis.

Machado and Santos Silva (2005) proposed a simple smoothing approach which allows

quantile regression to be applied to count data. We can imagine that in each of the

possible dependent variable values, the discrete distribution of the dependent variable is

replaced by a piecewise linear interpolation. Thus, the entire discrete distribution can

be represented by the constant density of the segments. Converting a set of discrete

integer value data into a continuous smoothing density can be achieved by vibration.

For integers Y = {yi, i = 1, ..., n}, consider

ỹi = yi + ui,

where ui is independent and identically distributed (i.i.d.) on an uniform distribution

U [0, 1]. It is possible to show that

QỸ (τ |x) = QY (τ |x) +
τ −

∑QY (τ |x)−1
y=0 Pr(Y = y|x)

Pr(Y = QY (τ |x)|x)
.

Hence, continuity is achieved by interpolating each jump in the conditional quantile

function of the counts using an integrated kernel (See Machado and Santos Silva (2005)

for more details).

Since Machado and Santos Silva (2005) proposed this conventionally used jittering ap-

proach, quantile regression modelling with discrete responses has been constantly devel-

oping. Bottai et al. (2010) described the use of logistic quantile regression and modelled

the probability of binary outcomes with the widespread use of logistic and probit regres-

sion. Quantile regression implemented in a Bayesian setting for binary data has been

proposed by Hewson and Yu (2008), which transformed the responses to pseudonormal

variables. Quantile regression for count data may also be achieved via density regres-

sion as showed in Canale and Dunson (2011), but this approach may result in a global

estimation of regression coefficients.

Using a Bayesian approach, Benoit and Van den Poel (2012) and Rahman (2016) com-

bined continuous latent variables and ALD-based likelihood for Bayesian inference of

ordinal regression, including binary responses. Smith et al. (2015) proposed a multilevel
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quantile function for modelling quantile functions of discrete responses via combining

continuous latent variables with a Pareto tail.

Consider the binary response model with the frequently used form:

Y ∗i = XT
i β + ui

Yi = 1 if y∗i ≥ 0, Yi = 0 otherwise,

where Y ∗i is a continuous latent variable that allows the dependent binary variable Yi to

be determined. Benoit and Van den Poel (2012) placed an ALD on the latent variable

Y ∗. Given the data Y and the quantile of interest τ , then joint posterior density of β

and Y ∗ is given by:

π(β, Y ∗|Y, τ) ∝ π(β)

n∏
i=1

{I(Y ∗i ≥ 0)I(yi = 1) + I(Y ∗i < 0)I(yi = 0)}×ALD
(
Y ∗i ;XT

i β, 1, τ
)
.

This posterior is of unknown form, thus Metropolis–Hastings was used for extracting this

posterior distribution (see Benoit and Van den Poel (2012) for more details). However,

note that using this approach would pose difficultly in interpretation due to the fact

that latent values were involved, and this method is also an indirect Bayesian approach

to binary responses.

Regardless of whether Bayesian inference has been applied, quantile regression has so far

been extended to discrete responses. However, none of these proposed methods provides

a direct Bayesian quantile regression for discrete responses.

1.3.2 Quantile regression with non-crossing curves

As Koenker and Bassett (1978) mentioned, since quantile regression curves are estimated

individually, conventional quantile regression methods often show that different quantile

regression curves intersect, which leads to an invalid distribution for the response vari-

able. In particular, it may turn out that for a given set of covariates, for example, that

the predicted 95th percentile of the response is smaller than the 90th percentile, which

is impossible. For example, Dette and Volgushev (2008) presented that spline estimates

(Koenker et al., 1994) of quantile curves (0.1, 0.2, · · · , 0.9) for the bone mineral density

data (Friedman et al., 2001) are intersected (Figure 1.5 (a), (b)).
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Figure 1.5: (a), (b) Spline (Friedman et al., 2001) and (c), (d) non-crossing estimates
of quantile curves (Dette and Volgushev, 2008) for the bone mineral density data: (a),

(c) females; (b), (d) males.

This problem is well known, however no simple and general solution currently exists.

Koenker (1984) proposed a parallel qubit method to avoid the problem of crossing, but

the hypothesis that hypoid planes are parallel is obviously too strict, therefore not repre-

sentative of the actual situation. He (1997) assumes that the model is a heteroscedastic

regression model so that covariates can influence the distribution of response variables by

changing the position and scale of the distribution, which in many cases is not true. Wu

and Liu (2009) proposed to estimate each quantile regression curve separately in order

to ensure that the curve to be estimated does not intersect with the previous one. How-

ever, the estimation results are affected by the estimation order. Hall et al. (1999) and

Dette and Volgushev (2008) (Figure 1.5 (c), (d)) achieved the non-crossing by estimat-

ing the conditional distribution function and then solving the method of each quantile.

However, such methods can only be used to estimate conditional quantiles, instead of

explicitly expressing the effects of covariates on the response variable, for example when

the model is a parametric model. Bondell et al. (2010) proposed a method for estimat-

ing different quantile functions simultaneously, which estimates the non-crossed quantile

functions of any sample. They also extended this method for nonparametric quantile

curve estimation.
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1.3.3 Clustering techniques based on quantile representation

The combination of quantile regression and widely used clustering methods are also of

great interest. Clustering models identify subgroups from the data with similar char-

acteristics. They can be useful for uncovering hidden patterns in the data, summaris-

ing data, data discovery, and learn about reoccurring patterns or underlying rules. In

general, the major fundamental clustering methods can be classified into the following

categories:

Table 1.1: Overview of commonly used clustering methods.

Method Example General Characteristics

Partitioning

Methods

k-means (MacQueen

et al., 1967)

k-medoids (Kaufman and

Rousseeuw, 2009)

- Finds mutually exclusive spherical clusters

- Distance-based

- May use mean or medoid (etc.) to determine

cluster centres

- Effective for small to medium sized data sets

Hierarchical

Method

Single-link (Gower and

Ross, 1969)

Complete-link (Späth,

1980)

- Clustering is a hierarchical decomposition

(i.e., multiple levels)

- Cannot correct erroneous merges or splits

- May incorporate other techniques like micro-

clustering or consider object “linkages”

Density-

based

methods

DBSCAN (Ester et al.,

1996)

OPTICS (Ankerst et al.,

1999)

DENCLUE (Hinneburg

et al., 1998)

- Can find arbitrarily shaped clusters

- Clusters are dense regions of objects in space

that are separated by low-density regions

- Cluster density: each point must have a min-

imum number of points within its “neighbour-

hood”

- May filter out outliers

Grid-based

methods

STING (Wang et al.,

1997)

CLIQUE (Agrawal et al.,

1998)

- Uses a multi-resolution grid data structure

- Fast processing time (typically independent

of the number of data objects, yet dependent

on grid size)

However, some of these traditional clustering methods require the number of clustering

or mixed components to be set in advance (Parente and Silva, 2015; Reich et al., 2010),

and the poor choices of these numbers will directly lead to overfitting or underfitting.

Moreover, these clustering models usually model the average points of the subgroups,
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which can result in overlooking outliers. Modelling the response variable with an asym-

metric Laplace distribution increases the accuracy of modelling clusters which are asym-

metric and makes predictions for extreme predictions for extreme values/outliers of the

response variable more accurate.

1.4 Thesis outline

Chapter 2 focuses on Bayesian regression beyond the mean for discrete responses. In

this chapter, we propose Bayesian inference quantile regression for discrete responses

by introducing a discrete version of ALD-based likelihood function. This approach not

only keeps the ‘local property’ of quantile regression, but also enjoys the coherency

and finite posterior moments of the posterior distribution. Following this, we then

introduce Bayesian expectile regression for discrete responses, which proceeds by forming

the likelihood function based on a discrete asymmetric normal distribution (DAND). The

performance of the method is evaluated via two simulation studies and the analysis of

data from two real case studies. (This chapter is a revised manuscript)

In Chapter 3, a new kernel-weighted likelihood smoothing quantile regression method is

proposed from a Bayesian perspective. The likelihood is based on a normal scale-mixture

representation of an asymmetric Laplace distribution (ALD). This approach enables

flexibility in its design, just as the local quantile regression (Spokoiny et al., 2014) does,

particularly for smoothing extreme quantile curves, and ensures non-crossing quantile

curves for any given sample. An analysis for a real world application is promising. (This

chapter is an accepted manuscript)

Chapter 4 illustrates how the complex relationships between the predictors can be de-

constructed and analysed within a Bayesian framework. In particular, we propose a

statistical approach to distinguish and interpret the complex relationship between sev-

eral predictors and a response variable in the presence of 1) high correlation between

the predictors and 2) the interest is in the extremes of the distribution of the response

variable. The mixture modelling approach is demonstrated on both simulated and real

data. (This chapter is an under review manuscript)

Finally, Chapter 5 summarizes the thesis and provides recommendations for future re-

searches in the QR area.
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Each chapter of this thesis is presented in the form of an article, thus enabling the

reader to clearly understand the aims, techniques, main findings and conclusions of each

chapter.

1.5 Real data

This section provides brief descriptions of the real data sets that will be used in this

thesis to illustrate the applications of the proposed methods throughout the thesis.

1.5.1 Length of stay (LoS) data

Data extracted from the Worcester Heart Attack Study (Hosmer et al., 2008) is used to

test the behaviour of the proposed methods in Chapter 2. Data used were collected dur-

ing 13 one-year periods beginning in 1975 and extending through 2001 on all MI patients

admitted to hospitals in the Worcester, Massachusetts Standard Metropolitan Statisti-

cal Area. Specifically, a subsample consisting of 500 observations on four independent

variables (age, gender, BMI (Body Mass Index) and hr (Initial Heart Rate)) plus an out-

come variable (LoS), taken an approximately 23 percent random sample from the cohort

years 1997, 1999, and 2001, are used. The data is available in R-package smoothHR.

1.5.2 Lidar data

In Chapter 3, we analysed the popular Lidar data available in the R-package SemiPar

to test the performance of the proposed kernel-weighted likelihood smoothing quantile

regression method. This data has 221 observations from a light detection and ranging

(LIDAR) experiment, and was originally reported by Sigrist (1994) and analysed by

many authors (Ruppert et al., 2003, Royston and Sauerbrei, 2008, Spokoiny et al., 2014,

among others). This data contains an explanatory variable ‘range’, which is the distance

travelled before the light is reflected back to its source; and a response variable ‘logratio’,

which is the logarithm of the ratio of received light from two laser sources.
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1.5.3 US girls weight data

The US girls weight data from US Health Examination Surveys (Cole, 1998), is used

to test the behaviour of the proposed methods in Chapter 3. This data describes the

relationship between the weight and age of 4011 individuals and was previously analysed

using various Bayesian and non-Bayesian approaches (Cole and Green (1992); Yu and

Jones (1998); Royston and Sauerbrei (2008), among others).

1.5.4 The English longitudinal study of ageing (ELSA) analysis

To test the performance of the proposed method in Chapter 4, we collected data from

the nurse visit conducted at Wave 2 of ELSA (2004-2005). A total of 7,666 people

took part in this visit where biological data were collected for the first time. The

data are available for download from the UK Data Service at http://dx.doi.org/10.

5255/UKDA-SN-5050-9. Specifically, a subsample consisting of 2,859 observations on 11

independent variables plus an outcome variable are used. The outcome variable is the

blood glucose levels.

http://dx.doi.org/10.5255/UKDA-SN-5050-9
http://dx.doi.org/10.5255/UKDA-SN-5050-9


Chapter 2

Bayesian Regression beyond the

Mean for Discrete Responses

For decades regression models beyond the mean for continuous responses have attracted

great attention in the literature. These models typically include quantile regression and

expectile regression. But there is little research on these regression models for discrete

responses, particularly from a Bayesian perspective. By forming the likelihood function

based on suitable discrete probability mass functions, this chapter introduces a general

method for Bayesian inference of these regression models with discrete responses. In

contrast to latent process based Bayesian inference of binary quantile regression in the

literature, this method provides a direct Bayesian approach of these discrete regression

models with natural and easy interpretation of the regression coefficients. In this chap-

ter, Bayesian quantile regression for discrete responses is first developed. Then this

method is extended to Bayesian expectile regression for discrete responses. The poste-

rior distribution under this approach is shown not only coherent irrespective of the true

distribution of the response but also proper with regarding to improper priors for the

unknown model parameters. The performance of the method is evaluated via extensive

Monte Carlo simulation studies and one real data analysis.

28
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2.1 Introduction

Regression models for dealing with responses following a non-normal distribution have

been drawing significant attention in the literature. For example, quantile regression

and expectile regression have been widely developed in the literature and increasingly

applied to a greater variety of scientific questions. See, Efron (1991), Koenker (2005),

Waltrup et al. (2015), Ehm et al. (2016), Delbaen et al. (2016), Ziegel (2016) among

others.

Typically, quantile regression estimates various conditional quantiles of a response or

dependent random variable, including the median (0.5th quantile). Putting different

quantile regressions together provides a more complete description of the underlying con-

ditional distribution of the response than a simple mean regression. This is particularly

useful when the conditional distribution is asymmetric or heterogeneous or fat-tailed or

truncated. Quantile regression has been widely used in statistics and numerous appli-

cation areas (Koenker and Hallock, 2001, Yu et al., 2003, Briollais and Durrieu, 2014

and among others), including environment modelling (Anderson, 2008, Cannon, 2011),

economics analysis (Coad and Rao, 2008, Fitzenberger et al., 2013), survival analysis

(Atella et al., 2008, Peng and Huang, 2010, Portnoy, 2003), medicine (Cole and Green,

1992, Wei et al., 2006, Bottai et al., 2010), finance and insurance (Tsai, 2012, Taylor

and Yu, 2016a, Sriram et al., 2016) and ultra-high dimensional data analysis (Wu and

Yin, 2015, Zhang et al., 2016), among others.

Amongst these numerous application areas, discrete observations such as integer values

(e.g., -2, -1, 0, 1, 2, 3, etc.) on a response are easily collected. In particular, many

big data nowadays contain discrete observations such as number of online transaction,

number of days of hospital stay, number of votes and so on. Classic regression models for

discrete responses include logistic, Poisson and negative Binomial regression. Discrete

responses are generally skewed, so the mean-based regression analysis would not be suffi-

cient for a complete analysis. However, quantile regression for discrete responses receives

far less attention than for continuous responses in the literature. A semi-parametric jit-

tering approach for quantile regression with count has been introduced (Machado and

Santos Silva 2005) but some degree of smoothness has to be artificially imposed on the

approach. Quantile regression for count data may be achieved via density regression as

showed in Canale and Dunson (2011) but this approach may result in a global estimation
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of regression coefficients. Benoit and Van den Poel (2012) and Rahman (2016) combined

continuous latent variables and asymmetric Laplace distribution (ALD) likelihood for

Bayesian inference of binary quantile regression, and also discussed variable selection of

binary quantile regression (Benoit et al., 2013). Smith et al. (2015) proposed a multilevel

quantile function for modelling quantile functions of discrete responses via combining

continuous latent variables with a Pareto tail. But these approaches via latent variables

would be hard to interpret. None of these used methods is a direct Bayesian quantile

regression for discrete responses.

Similarly, there is little research on expectile regression for discrete responses, let alone

from a Bayesian perspective (Kneib, 2013).

In this chapter we propose Bayesian inference quantile regression for discrete responses

via introducing a discrete version of ALD-based likelihood function. This approach not

only keeps the ‘local property’ of quantile regression, but also enjoys the coherency and

finite posterior moments of the posterior distribution. Along this line, we then intro-

duce Bayesian expectile regression for discrete responses, which proceed by forming the

likelihood function based on a discrete asymmetric normal distribution (DAND). Sec-

tion 2.2 introduces a discrete asymmetric Laplace distribution (DALD) and discusses its

natural link with quantile regression for discrete responses. Section 2.3 and 2.4 detail

this Bayesian approach for quantile regression and expectile regression with discrete re-

sponses, respectively. Section 2.5 illustrates the numerical performance and applications

of the proposed method. Section 2.6 concludes with a brief discussion.

2.2 Discrete Asymmetric Laplace Distribution

Let Y be a real-valued random variable with its τth (0 < τ < 1) quantile µ (−∞ <

µ < ∞), then it is well-known that µ could be found by minimizing the expected loss

of Y with respect to the loss function (or check function) ρτ (y) = y(τ − I(y < 0)), or

minµEF0(Y )ρτ (Y − µ), where F0(Y ) denotes the distribution function of Y , which is

usually unknown in practice.

When Y is a continuous random variable, the inference based on the loss function ρτ (y−

µ) was linked to a maximum likelihood inference based on an ALD(µ, τ) with local
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parameter µ and shape parameter τ :

f(y;µ, τ) = τ(1− τ) exp {−ρτ (y − µ)} . (2.1)

Now if Y is a discrete random variable, let Y take integer values in Z. We first derive a

discrete version of ALD or a DALD and then show that the τth quantile µ can also be

estimated via this DALD.

To this end, note that the corresponding cumulative distribution function (c.d.f.) of an

ALD in Eq.(2.1) can be written as:

F (y;µ, τ) =


1− (1− τ) exp {−τ(y − µ)} , y ≥ µ,

τ exp {(1− τ)(y − µ)} , y < µ.
(2.2)

Let S(y;µ, τ) be the survival function of this ALD, which is given by:

S(y;µ, τ) = 1− F (y;µ, τ) =


(1− τ) exp {−τ(y − µ)} , y ≥ µ,

1− τ exp {(1− τ)(y − µ)} , y < µ,
(2.3)

then, according to Roy (2003), the probability mass function (p.m.f.) of a DALD can

be defined as:

φ(y;µ, τ) =


S(y;µ, τ)− S(y + 1;µ, τ), y ∈ Z,

0, otherwise,
(2.4)

with S(y;µ, τ) in Eq.(2.3). It follows:

φ(y;µ, τ) = ρτ (−sgn(y − µ)) [exp{−ρτ (sgn(y − µ))} − 1] exp {−ρτ (y − µ)}

y = · · · ,−1, 0, 1, · · · ,
(2.5)

and the loss function (or check function) is

ρτ (u) =
|u|+ (2τ − 1)u

2
.
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Remark 2.1. One could also incorporate scale parameter σ in Eq.(2.5) to obtain

φ(y;µ, τ) = ρτ (−sgn(y − µ))

[
exp

{
−ρτ

(
sgn

(
y − µ
σ

))}
− 1

]
exp

{
−ρτ

(
y − µ
σ

)}
,

y = · · · ,−1, 0, 1, · · · .

According to Yang et al. (2016), any fixed σ can be utilised to obtain asymptotically valid

posterior inference and make the results asymptotically invariant. Here, we simply fix σ

as 1.

Given a sample Y = (Y1, Y2, · · · , Yn) of the discrete response Y whose distribution F0(y)

may be unknown, consider the DALD-based likelihood function for µ:

L(Y |µ) =

n∏
i=1

[
ρτ (−sgn(Yi − µ))

[
exp−ρτ (sgn(Yi−µ))−1

]
exp {−ρτ (Yi − µ)}

]
. (2.6)

Then we have

argmax
µ

L(Y |µ)

= argmax
µ

logL(Y |µ)

= argmax
µ

{
−

n∑
i=1

ρτ (Yi − µ)

}

= argmin
µ

n∑
i=1

ρτ (Yi − µ) .

This means that the estimation of the τth quantile µ of a discrete random variable Y

with respect to the loss function ρτ (·) is equivalent to maximization of the likelihood

function Eq.(2.6) based on the DALD. According to Bissiri et al. (2016), a Bayesian

inference of µ can be developed. That is, if π(µ) represents prior beliefs about the τth

quantile µ, and Y are observed data from the unknown distribution F0(Y ) of the discrete

random variable Y , then a posterior π(µ|Y ) which is a valid and coherent update of

π(µ) can be obtained via the DALD-based likelihood function Eq.(2.6) and is given by:

π(µ|Y ) ∝ π(µ)L(Y |µ). (2.7)
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Coherence here means if ν denotes a probability measure on the space of µ, then ν is

named coherent if

∫ ∫
ρτ (Y − µ)dF0(Y )ν(dµ) ≤

∫ ∫
ρτ (Y − µ)dF0(Y )ν1(dµ),

for all other probability measure ν1 on the space of µ in terms of expected loss of Y

given by EF0(Y )ρτ (Y − µ). This Coherence property aims to ensure the consistency of

posterior from the proposed inference even if the ‘working likelihood’ in Eq.(2.3)-(A.1)

is misspecified.

2.3 Bayesian Quantile Regression with Discrete Responses

Generalized linear models (GLMs) extend the linear modelling capability to scenarios

that involve non-normal distributions f(y;µ) or heteroscedasticity, with f(y;µ) specified

by the values of µ = E[Y |X = x] conditional on x, including to involve a known link

function g, g(µ) = xTβ. Specifically, GLMs also applies to the so-called ‘exponential’

family of models, which typically include Poisson regression with log-link function.

When we are interested in the conditional quantile QY (τ |x) of a discrete response,

according to Yu and Moyeed (2001), we could still cast the problem in the framework of

the generalized linear model, no matter what the original distribution of the data is, by

assuming that (i) f(y;µ) follows a DALD in the form of Eq.(2.5) or Eq.(A.1) and (ii)

g(µ) = xTβ(τ) = QY (τ |x) for any 0 < τ < 1.

When covariate information such as a covariate vector X is available, quantile regres-

sion denoted by QY (τ |X) for µ is introduced. Consider a linear regression model for

QY (τ |X): QY (τ |X) = XTβ, where β is the regression parameter vector, although the

quantile of a discrete random variable may not be unique.

Given observations Y = (Y1, Y2, · · · , Yn) of the discrete response Y , one of the aims in

regression analysis is the inference of β. Let π(β) be the prior distribution of β, then

the posterior distribution of β, π(β|Y ) is given by

π(β|Y ) ∝ π(β)L(Y |β), (2.8)
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where the likelihood function L(Y |β) is given by:

L(Y |β) =
n∏
i=1

[
ρτ (−sgn(Yi −XT

i β))
[
exp−ρτ (sgn(Yi−X

T
i β))−1

]
exp

{
−ρτ (Yi −XT

i β)
}]
.

The numerical computation of the posterior distribution can be carried out by the

Metropolis-Hastings algorithm. That is, we first generate a candidate β∗ according to

a random walk, then accept or reject β∗ for β according to the acceptance probability

p(β∗|β) = min

(
1,

L(y|β
∗
)

L(y|β)

)
.

Besides the coherent property discussed in Section 2.2 for posterior distribution π(β|Y ),

it is important to verify the existence of the posterior distribution when the prior of β

is improper, i.e,

0 < E {π(β|Y )} <∞,

or, equivalently,

0 < E {π(β)L(Y |β)} <∞.

Moreover, it is preferable to check that the existence of posterior moments of the regres-

sion parameters is entirely unaffected by improper priors and quantile index τ (Fernández

and Steel, 1998 and among others), i.e,

E

 m∏
j=0

|βj |rj

∣∣∣Y
 <∞, (2.9)

where rj denotes the order of the moments of βj .

To this end, we have the following conclusion:

Theorem 2.1. Assume the posterior is given by Eq.(2.8) and π(β) ∝ 1, then all poste-

rior moments of β in Eq.(2.9) exist.

The proof of Theorem 2.1 is available in the Appendix A.
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2.4 Bayesian Expectile Regression with Discrete Responses

Instead of defining the τ -th quantile of a response Y by argminµE (ρτ (Y − µ)), Newey

and Powell (1987) defined the θ-th expectile of Y by

Expectileθ(Y ) = argmin
µ

E
(
ρ

(E)
θ (Y − µ)

)
, (2.10)

in terms of an asymmetric quadratic loss function

ρ
(E)
θ (u) = u2 |θ − I(u < 0)| ,

where θ ∈ (0, 1) determines the degree of asymmetry of the loss function. Note that

θ is typically not equal to τ , although there is a one-to-one relationship between τ -th

quantile and θ-th expectile (Yao and Tong, 1996).

Corresponding to ρ
(E)
θ (u) and considering the case of continuous y, we can define an

asymmetric normal distribution (AND) whose density function is given by

f (E) (y;µ, θ) = k


exp

{
−θ (y − µ)2

}
, y ≥ µ,

exp
{

(θ − 1) (y − µ)2
}
, y < µ,

(2.11)

where k = 2√
π

√
θ(1−θ)√
θ+
√

1−θ , µ and θ are the location parameter and shape parameter,

respectively.

The corresponding c.d.f. of the AND can be written as:

F (E) (y;µ, θ) =


k
√

π
θΦ
(√

2θ (y − µ)
)

+ k
2

(√
π

1−θ −
√

π
θ

)
, y > µ,

k
√

π
1−θΦ

(√
2(1− θ) (y − µ)

)
, y ≤ µ,

(2.12)

where Φ(·) denotes the c.d.f. of the standard normal distribution.
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Therefore, based on the survival function S(E) (y;µ, τ) = 1−F (E) (y;µ, τ), we can derive

the p.m.f. of the DAND by following the same procedure as in Eq.(2.4):

φ(E) (y;µ, τ) = k

√
π

ρθ(sgn(y − µ))

[
Φ
(√

2ρθ(sgn(y − µ)) (y + 1− µ)
)

− Φ
(√

2ρθ(sgn(y − µ)) (y − µ)
)]
, y = · · · ,−1, 0, 1, · · · .

(2.13)

Now if Y is a discrete random variable with unknown distribution function F0(y), then

given a sample Y = (Y1, Y2, · · · , Yn) of Y , the θ-th expectile of Y is estimated by

the minimization of the loss function ρ
(E)
θ or argminµ

∑n
i=1 ρ

(E)
θ (Yi − µ). Consider the

DAND-based likelihood function:

L(E) (Y |µ) =
n∏
i=1

[
k

√
π

ρθ(sgn(Yi − µ))

[
Φ
(√

2ρθ(sgn(Yi − µ)) (Yi + 1− µ)
)

− Φ
(√

2ρθ(sgn(Yi − µ)) (Yi − µ)
) ]]

.

(2.14)

We can see that the expectile µ can also be estimated equivalently by the maximization

of the likelihood function L(E)(Y |µ) in Eq.(2.14). In fact,

argmax
µ

L(E)(Y |µ)

= argmax
µ

n∏
i=1

[
Φ
(√

2ρθ(sgn(Yi − µ)) (Yi + 1− µ)
)
− Φ

(√
2ρθ(sgn(Yi − µ)) (Yi − µ)

)]
= argmax

µ

n∏
i=1

∫ √2ρθ(sgn(Yi−µ))(Yi+1−µ)

√
2ρθ(sgn(Yi−µ))(Yi−µ)

ϕ(u)du

(According to Lagrange mean value theorem
∫ b
a φ(u)du = φ(ξ)(b− a),)

= argmax
µ

[
exp

{
−ρθ(sgn(Yi − µ))

n∑
i

(Yi − µ)2

}]

= argmax
µ

[
−ρθ(sgn(Yi − µ))

n∑
i

(Yi − µ)2

]

= argmin
µ

n∑
i=1

ρ
(E)
θ (Yi − µ) ,

where ϕ(·) denotes the p.d.f. of the standard normal distribution.
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Again, according to Bissiri et al. (2016), a Bayesian inference of the expectile µ can be

developed. That is, a coherent posterior π(µ|Y ) for the update of π(µ) exists and is

given by π(µ|Y ) ∝ π(µ)L(E)(Y |µ) with the likelihood function L(E) (Y |µ) in Eq.(2.14).

Along the same discussion as in Section 2.3, we can prove that the posterior distribution

under this Bayesian inference is proper with regarding to improper priors for regression

parameter β in the expectile regression model µ = XTβ, if covariate information X is

available. The corresponding proofs are available in the Appendix A.

2.5 Numerical Analysis

In this section, we implement the proposed method to illustrate the Bayesian quantile

regression for discrete responses via extensive Monte Carlo simulation studies and one

real data analysis, including comparisons of the fitted model to a latent process based

approach, named MQF (multilevel quantile function) (Smith et al. 2015). In all numer-

ical analyses, we discard the first 10000 of 20000 runs in every case of MCMC outputs

and then collect a sample of 10000 values from the posterior of each of the elements of β.

All numerical experiments are carried out on one Intel Core i5-3470 CPU (3.20GMHz)

processor and 8 GB RAM.

2.5.1 Multilevel quantile function (MQF)

From a Bayesian point of view, Smith et al. (2015) proposed a multilevel quantile func-

tion (MQF) for modelling quantile functions of discrete responses via combining contin-

uous latent variables with a Pareto tail.

The quantile distribution Q with a Pareto tail mentioned in Smith et al. (2015) is of the

form

Q∗(τ |X) =


Q(τL|X)− σL

ξL(X)

[
(τ/τL)−ξL(X) − 1

]
, τ < τL

Q(τ |X), τL ≤ τ ≤ τU

Q(τU |X) + σU
ξU (X)

[
( 1−τ

1−τU )−ξU (X) − 1
]
, τ > τU

where Q(τ |X) =
∑p

j=1Xjβj(τ); the scale parameters τL, τU are the density of the

Pareto distribution evaluated at the thresholds Q(τL|X), Q(τU |X).
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They further expanded this quantile function methodology to permit a discrete response

gi via interval-censored values of a continuous latent process. Specifically, they modelled

a continuous valueGi ∈ [gi, gi+1] and found the values U1i and U2i such thatQ(U1i|X) =

gi and Q(U2i|X) = gi + 1. Here we conduct the numerical analysis with comparison to

the MQF approach.

2.5.2 Simulated Example 1

Consider a simple regression model for which the sample Yi(i = 1, 2, · · · , n) are counts

and follow a Poisson distribution with parameter 3 and a Binomial distribution with

parameters 20 and 1/5, respectively. 500 simulations for each case of τ ∈ {0.05, 0.25,

0.50, 0.75, 0.95} and n ∈ {200, 1000} are performed.

In this example, the quantile regression Qτ (Y ) = β(τ) is a constant depending on τ

only. Table 2.1 compares the posterior means with the true values of β(τ) for each case

under 500 simulations. Moreover, the expectile regression Expectileθ(Y ) = β(θ) is also a

constant depending on the θ-th expectile. Table 2.2 compares the posterior means with

the true values of β(θ) obtained via an empirical estimation in Eq.(2.10) for different

cases. Figures 2.1-2.2 show that good convergence diagnostics can be obtained on the

trace for various parameters of both Bayesian quantile regression and Bayesian expectile

regression with discrete responses. It is encouraging to see that the results obtained by

the proposed Bayesian inference are reasonably accurate.
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Table 2.1: Posterior mean and posterior standard deviations (S.D.) of β(τ) from
simulated example 1.

n = 200 n = 1000

τ Mean S.D. Mean S.D. True value

Case 1 : Y ∼ Pois(3)

0.05 1.191 0.119 1.037 0.024 1

0.25 2.103 0.072 2.009 0.006 2

0.50 3.097 0.069 3.007 0.006 3

0.75 4.316 0.157 4.149 0.043 4

0.95 6.438 0.321 6.228 0.116 6

Case 2 : Y ∼ Binom(20, 1/5)

0.05 1.255 0.110 1.028 0.007 1

0.25 3.139 0.078 3.011 0.009 3

0.50 4.175 0.109 4.030 0.011 4

0.75 5.453 0.182 5.441 0.066 5

0.95 7.430 0.310 7.166 0.115 7
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Figure 2.1: Convergence diagnostics on the trace for Qτ (Y ) = β(τ) from simulated
example 1 (n = 1000).

Table 2.2: Posterior mean and posterior standard deviations (S.D.) of β(θ) from
simulated example 1.

n = 200 n = 1000

θ Mean S.D. Mean S.D. True value

Case 1 : Y ∼ Pois(3)

0.05 1.266 0.103 1.242 0.049 1.24

0.25 2.268 0.072 2.270 0.034 2.27

0.50 2.943 0.070 2.972 0.033 3

0.75 3.662 0.077 3.717 0.033 3.80

0.95 5.029 0.136 5.016 0.061 5.15

Case 2 : Y ∼ Binom(20, 1/5)

0.05 2.321 0.109 2.072 0.049 2.11

0.25 3.360 0.071 3.256 0.032 3.23

0.50 4.086 0.070 4.064 0.032 4

0.75 4.825 0.077 4.869 0.034 4.80

0.95 6.051 0.128 6.294 0.056 6.15
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Figure 2.2: Convergence diagnostics on the trace for Expectileθ(Y ) = β(θ) from
simulated example 1 (n = 1000).

2.5.3 Simulated Example 2

We consider a discrete quantile linear regression:

Yi = β0 +

p∑
k

βkXik + εi, i = 1, · · · , n; k = 1, · · · , p (2.15)

where n and p denote the number of observations and independent variables, respec-

tively. βk, k = 1, ..., p are the regression parameters. Let the random item εi follow a

Poisson distribution with parameter 3. In this particular simulated example, a discrete

distribution has to be artificially imposed to Xik in order to obtain discrete responses.

500 simulations for each case of τ ∈ {0.25, 0.50, 0.75} and n ∈ {300, 1500} are performed.

A more thorough comparison of the fitted model to a latent process based approach

MQF (Smith et al. 2015) is also provided. Furthermore, we illustrate the goodness of fit

with posterior predictive power check via a partition of data into training data and test

data and using the root mean square error (RMSE) and mean absolute error (MAE) of

the predicted values with respect to the true outcome. That is, the first sample n1 ∈

{200, 1000} are used as training data for model fitting via parameter estimation and the
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remaining sample n2 ∈ {100, 500} are left as test data for the out-of-sample evaluation.

Then, we compare the predictive power of the proposed method and the MQF approach.

These measures of goodness of fit are given by

RMSE =

√√√√ 1

n2

n2∑
i=1

(
Yi − E(M)(i)

)2
and

MAE =
1

n2

n2∑
i=1

|Yi − E(M)(i)|,

where E(M)(i) denotes the mean for the posterior predictive distribution for Yi.

2.5.3.1 Small p Case

Starting from a simple setting of Eq.(2.15), we set the number of independent variables

p = 2:

Yi = β0 + β1Xi1 + β2Xi2 + εi, i = 1, · · · , n,

where, covariate X1,i is generated from a Geometric distribution with probability 1/4,

and covariate X2,i is generated from a Poisson distribution with parameter 2. We gener-

ate the training data with βi = {6, 2,−4}, i = {0, 1, 2} and εi ∼ Pois(3). 500 simulations

for each case of τ ∈ {0.25, 0.50, 0.75} and n1 ∈ {200, 1000} are performed.

Therefore, the corresponding discrete quantile function is of the form

Qτ (Y |X) = β0(τ) + β1(τ)X1 + β2(τ)X2.

Under the proposed Bayesian inference in Section 2.3, Figure 2.3 shows the comparison

between the estimated and the true probability mass functions from this simulation with

different τs. The boxplots in Figure 2.4 compare the posterior mean of the regression

parameters β0(τ), β1(τ) and β2(τ), based on the proposed approach and MQF in Smith

et al. (2015), under 500 simulations with εi ∼ Pois(3). Table 2.3 presents the compu-

tational efficiency by reporting the running time of the proposed method and MQF for

discrete responses. MQF is implemented by function qreg in R package BSquare, with

parameter L = 4 (the number of basis functions in MQF) and base set as ‘Gaussian’.
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Clearly, the proposed method is competitive overall, particularly smaller bias and more

efficient when a large amount of data is to be processed.
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Figure 2.3: True probability mass functions (solid) with τ ∈ { 0.01, 0.05, 0.1, 0.25,
0.40, 0.50, 0.75, 0.9, 0.95} and their posterior mean estimates (dashed) from simulated

example 2.5.3.1 with n1 = 200.

Table 2.3: Computation efficiency (in secs) from simulated example 2.5.3.1.

n1 = 200 n2 = 1000

τ DALD MQF DALD MQF

0.25 2.94 3.51 4.79 16.06

0.50 2.87 3.51 5.02 16.58

0.75 2.82 3.47 5.04 16.8
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Figure 2.4: Boxplots of β(τ) at τ ∈ {0.25, 0.5, 0.75} from simulated example 2.5.3.1,
where horizontal dashed lines denote the corresponding true values.
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Moreover, although we have chosen improper flat priors in the above numerical experi-

ments, one may use other priors for analysis in a relatively straightforward fashion. For

example, along with Alhamzawi and Yu (2013), conditional conjugate prior distribution

in the Normal-Gamma Inverse form for the unknown parameters β can be obtained.

Given τ ∈ (0, 1), for any a > 0, the prior mean and covariance matrix for β are given,

respectively, by

E(β) = βaτ

Cov(β) = 2g(XVXT )−1

where βa are anticipated values, and g > 0 is a known scaling factor. Various values of

g have been used in the context of variable selection and estimation. Smith and Kohn

(1996) performed variable selection using splines and suggested that the value of g is in

the range 10 ≤ g ≤ 1000. Following the discussions in Chen et al. (2011) and Alhamzawi

and Yu (2013) among others, we set g = 100 in this chapter. Thus, given τ and βaτ ,

the conditional prior distribution for β is readily available. Here we suggest a particular

form of a conjugate Normal-Inverse Gamma family for β given by

β|V,X ∼ N(βa, 2g(XVXT )−1),

where the prior information are set to be obtained by the semi-parametric jittering

approach (Machado and Santos Silva, 2005), as presented in Table 2.4.

Table 2.4: The prior mean and covariance matrix for β.

τ βa Cov(β)

0.25 [1.882, 0.489, -3.344]


28.696 −27.642 224.511

−27.642 27.209 −221.267

224.512 −221.267 1802.613



0.50 [2.691, 0.349, -1.482]


0.107 0.007 −0.114

0.007 0.003 0.003

−0.114 −0.013 0.136



0.75 [2.320, 0.271, -0.674]


0.001 0.000 −0.0010

0.000 0.000 −0.001

−0.001 −0.000 0.002
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Under the proposed Bayesian inference in Section 2.2, Table 2.5 reports the poste-

rior mean, standard deviation and 95% credible interval for the regression parameters

β0(τ), β1(τ) and β2(τ), under 500 simulations with εi ∼ Pois(3), based on a conjugate

Normal-Inverse Gamma prior for β. It can be shown from both Figure 2.4 and Table 2.5

that under different prior settings, the regression coefficients obtained from the working

likelihood analysis are consistent.

Table 2.5: Posterior mean, standard deviation and 95% credible interval of βk(τ), k =
0, 1, 2 from simulated example 2.5.3.1 based on a conjugate Normal-Inverse Gamma

prior for β (εi ∼ Pois(3)).

βk(τ)
n = 200 n = 1000

CI Mean S.D CI Mean S.D value

β0(.25) (7.894, 8.308) 8.075 0.111 (7.678, 8.131) 7.733 0.111 8

β0(.50) (8.881, 9.277) 9.061 0.098 (9.009, 9.051 ) 9.025 0.016 9

β0(.75) (9.697, 10.483) 10.086 0.186 (9.980, 10.116) 10.031 0.036 10

β1(.25) (1.976, 2.050) 2.007 0.020 (1.897, 2.016) 2.007 0.030 2

β1(.50) (1.926, 2.036) 1.996 0.025 (1.998, 2.003) 2.000 0.002 2

β1(.75) (1.926, 2.070) 1.999 0.034 (1.995, 2.018) 2.004 0.006 2

β2(.25) (-4.043, -3.867) -3.977 0.042 (-4.006, -3.999 ) -4.004 0.004 -4

β2(.50) (-4.032, -3.881) -3.979 0.042 (-4.001, -3.983) -3.998 0.003 -4

β2(.75) (-4.072, -3.679) -3.930 0.101 (-4.014, -3.970) -3.996 0.010 -4

2.5.3.2 Moderate p case

In order to further investigate the performance of the proposed method coping with

relative complex settings, we consider different situations when p is moderate.

We generate training data from Eq.(2.15) with n1 = 200 and p = 20 from different

scenarios of β, associated with εi ∼ Pois(3), while validation data with n2 = 100. Xk,i

follows a Geometric distribution with probability 1/4. 500 simulations for each case of

τ ∈ {0.25, 0.50, 0.75} are performed. The corresponding discrete quantile function is of

the form

Qτ (Y |X) = β0(τ) +

p∑
k=1

βk(τ)Xj .

Here, we consider dense, sparse and very sparse as three different scenarios of β, pre-

sented in Table 2.6. We have chosen improper flat priors for simplicity.
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Table 2.6: Three different scenarios of β.

Scenarios of

coefficients

β

dense β0 = 2;βk = 2, k ∈ {1, 2, · · · , p}

sparse
β0 = 2;βm = 2, 4, 5, 4, 1,m ∈ 1, 2, 5, 9, 14

βn = 0, n ∈ {k}\{m}, k ∈ {1, 2, · · · , p}

very sparse β0 = 2;β1 = 5;βk = 0, k ∈ {k = 2, 3, · · · , p}

Table 2.7 compares the posterior mean, standard deviation and 95% credible interval

for the regression parameters to those obtained by MQF in Smith et al. (2015). Ta-

ble 2.7 reports a selective but representative result based on τ = 0.75 with different

k ∈ {0, 1, 2, 5, 9, 14}. It shows that as the number of covariates increases, the regres-

sion coefficients obtained from the working likelihood analysis are consistent. Table 2.8

presents the computational efficiency by reporting the running time of both DALD and

MQF for discrete responses at τ ∈ {0.25, 0.50, 0.75}. We ran 10,000 iterations of burn-in

and 10,000 iterations after that, MQF is implemented by function qreg in R package

BSquare, with parameter L = 4 (the number of basis functions in MQF) and base set

as ‘Gaussian’. Table 2.8 shows that DALD is less time-consuming than MQF. This

advantage is more pronounced when the sample size is larger.
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Table 2.7: Posterior mean, standard deviation and 95% credible interval of βk(τ), k ∈
{0, 1, 2, 5, 9, 14} from simulated example 2.5.3.2 (τ = 0.75).

β
DALD MQF

CI Mean S.D. CI Mean S.D. True value

Case 1 : Dense Scenario

β0 (4.832, 6.770) 5.737 0.500 (2.856, 5.856) 4.557 0.788 6

β1 (1.919, 2.142) 2.032 0.058 (1.950, 2.074) 2.014 0.032 2

β2 (1.918, 2.102) 2.012 0.046 (1.956, 2.053) 2.003 0.024 2

β5 (1.909, 2.116) 2.016 0.052 (1.920, 2.038) 1.976 0.030 2

β9 (1.908, 2.093) 2.003 0.048 (1.926, 2.061) 1.999 0.033 2

β14 (1.920, 2.160) 2.025 0.061 (1.926, 2.061) 1.999 0.033 2

Case 2 : Sparse Scenario

β0 (4.044,7.218) 5.561 0.803 (4.624, 7.002) 5.728 0.633 6

β1 (1.863,2.089) 1.964 0.063 (1.919, 2.048 ) 1.985 0.033 2

β2 (3.865,4.087) 3.981 0.053 (3.977, 4.130 ) 4.051 0.039 4

β5 (4.832, 5.086) 4.956 0.065 (4.975, 5.148) 5.060 0.043 5

β9 (3.917,4.098) 4.006 0.050 (3.985, 4.128 ) 4.054 0.036 4

β14 (0.955, 1.233) 1.088 0.069 (0.940, 1.070 ) 1.010 0.032 1

Case 3 : Very Sparse Scenario

β0 (4.506, 7.190) 5.946 0.722 (4.299, 6.419) 5.381 0.546 6

β1 (4.793, 5.073) 4.953 0.069 (4.988, 5.131) 5.055 0.036 5

β2 (-0.096,0.028) -0.008 0.049 (-0.139, 0.039) -0.048 0.045 0

β5 (-0.098, 0.129) -0.085 0.067 (-0.021, 0.146) 0.063 0.043 0

β9 (-0.232, 0.059) -0.011 0.070 (-0.022, 0.125) 0.054 0.038 0

β14 (-0.084, 0.091) 0.027 0.041 (0.012, 0.144 ) 0.077 0.033 0



Chapter 2. Bayesian Regression beyond the Mean for Discrete Responses 49

Table 2.8: Computation efficiency (in secs) from simulated example 2.5.3.2.

τ DALD MQF

Case 1 : Dense Scenario

0.25 45.54 138.19

0.50 43.23 136.00

0.75 46.67 137.53

Case 2 : Sparse Scenario

0.25 45.76 137.56

0.50 47.23 137.23

0.75 47.08 136.48

Case 3 : Very Sparse Scenario

0.25 44.33 136.68

0.50 44.67 138.12

0.75 46.91 137.95

In order to evaluate the prediction accuracy for simulated examples 2.5.3.1 and 2.5.3.2,

we separate the entire sample n ∈ {300, 1500} into training data n1 ∈ {200, 1000}

and validation data n2 ∈ {100, 500}. We compute the average root mean square error

(RMSE) and the average mean absolute error (MAE) for the prediction of Yi for the

validation data. The superiority of the proposed method is demonstrated in Table 2.9,

which summarises the simulation results for three representative values of τ : 0.25, 0.50

and 0.75. The value of the two prediction indices for DALD is always less than those

for MQF, which demonstrates that the proposed method outperforms MQF under both

simple settings and complex settings.
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Table 2.9: Average value of the prediction indices from simulated example 2. (εi ∼
Pois(3) for p = 2 and very sparse scenario for p = 20)

n = 300, p = 2 n = 1500, p = 2 n = 300, p = 20

τ Indices DALD MQF DALD MQF DALD MQF

0.25 RMSE 1.943 2.173 1.883 2.133 1.885 2.316

MAE 1.533 1.686 1.491 1.797 1.542 2.029

0.50 RMSE 1.946 1.948 1.876 1.887 1.491 1.970

MAE 1.522 1.542 1.523 1.549 1.112 1.503

0.75 RMSE 1.680 1.947 1.878 2.110 1.951 2.331

MAE 1.317 2.384 1.485 1.583 1.259 1.878

2.5.4 Simulated example 3

Alternatively, we simulate data from a Poisson distribution

Yi|Xi=xi ∼ Pois(exp(β0 + β1Xi1 + β2Xi2))

where Xi1 is generated from a beta distribution with parameters 5/3 and 5/3, and Xi2

is a dummy variable that equals 1 with probability 0.2 and 0 otherwise. We generate the

simulated data from βi ∈ {1, 1, 0}, i ∈ {0, 1, 2} with sample size n = 300. 500 simulations

for each case of τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90, 0.95} are performed.

Table 2.10 compares the posterior mean and standard deviation for the regression param-

eters β0(τ), β1(τ) and β2(τ) to those obtained by MQF in Smith et al. (2015). Figure

2.5 displays three boxplots of the posterior mean of the regression parameters under

500 simulations, where the horizontal dashed lines denote the true values. The out-

performance of the proposed method can be shown from both Table 2.10 and Figure

2.5. Moreover, the regression coefficients obtained from the working likelihood analysis

are always accurate.
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Table 2.10: Posterior mean and posterior standard deviations (S.D.) of β(τ) from
simulated example 3.

DALD MQF

τ Mean S.D. Mean S.D. True value

β0(.10) -0.031 0.379 -0.013 0.577 -0.265

β0(.25) 0.549 0.210 0.824 0.515 0.497

β0(.50) 0.904 0.110 2.193 0.616 0.952

β0(.75) 1.375 0.113 3.757 0.612 1.289

β0(.90) 1.734 0.135 5.396 0.726 1.585

β0(.95) 1.957 0.175 6.251 0.652 1.718

β1(.10) 1.635 0.418 4.468 0.692 1.773

β1(.25) 1.321 0.248 4.552 0.662 1.215

β1(.50) 1.032 0.115 4.501 0.706 1.046

β1(.75) 0.870 0.130 4.467 0.674 0.924

β1(.90) 0.793 0.204 4.456 0.709 0.802

β1(.95) 0.722 0.215 4.541 0.697 0.753

β2(.10) 0.031 0.202 -0.132 0.350 -0.018

β2(.25) -0.011 0.111 -0.118 0.327 -0.023

β2(.50) 0.093 0.062 -0.095 0.375 -0.011

β2(.75) 0.005 0.070 -0.127 0.314 0.001

β2(.90) -0.077 0.069 -0.156 0.394 -0.003

β2(.95) -0.140 0.088 -0.124 0.344 0.008
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Figure 2.5: Boxplots of β(τ) at τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90, 0.95} from simulated
example 3, where horizontal dashed lines denote the true values).

2.5.5 Analysis of Length of Stay (LoS) in Days

The data is extracted from the Worcester Heart Attack Study with 500 observations

(Hosmer et al. 2008). For simplicity but without loss of generality, we focus on explor-

ing the relationship of LoS associated with age, gender, BMI (Body Mass Index) and

hr (Initial Heart Rate), which are detailed in Table 2.11. The distribution of LoS is

skewed and one is usually more interested in long stay or short stay than an average

stay (Borghans et al., 2014, Wolkewitz et al., 2017 and among others). We aim to in-

vestigate how these factors affect the long LoS, so that we restrict the analysis under

τ ∈ {0.76, 0.78, · · · , 0.94, 0.96}.

Table 2.11: Statistical description of the factors in data.

Max. Min. Mean S.D. Skew. Kurt.

Age 104 30 69.85 14.491 -0.378 -0.637

Age × Gender 104 0 29.89 37.456 0.525 -1.600

BMI 44.839 13.045 26.614 5.406 0.527 0.378

hr 186 35 87.018 23.586 0.563 0.441
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Therefore, we fit a quantile regression model of the form

Qτ (Y |X) = β0(τ) + β1(τ)Age + β2(τ)(Age×Gender) + β3(τ)BMI + β4(τ)hr.

Figure 2.6 displays four boxplots of posterior regression parameters across τs. Overall,

the joint effect of gender and age on the outcome of interest is not significant. A closer

look at the boxplots reveals that BMI has an increasing negative effect on LoS with τ

towards extreme values, as the posterior mean of β3(τ) reaches −0.014,−0.120,−0.257

with τ = 0.92, 0.94, 0.96, respectively. That is, when BMI increases by 1 unit (kg/m2),

the distribution of LoS hasn’t been changed much until the extreme upper tail, where

LoS decreases with increase of τ . Similarly, heart rate has a significant and positive

effect on LoS. Particularly, the positive effect of heart rate on LoS is increasing with τ .
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Figure 2.6: Boxplots of posterior regression parameters for LoS data across τs with
τ ∈ {0.76, 0.78, 0.80, · · · , 0.92, 0.94, 0.96}.
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2.6 Chapter Summary

Discrete responses are common in many disciplines. Regression analysis of discrete re-

sponses has been an active and promising area of research. Data with discrete responses

are often analyzed incorrectly with ordinary least squares regression or regression for

mean. We propose Bayesian quantile regression and Bayesian expectile regression for

discrete responses. This is achieved by using a discrete asymmetric Laplace distribution

and discrete asymmetric normal distribution to form the likelihood function respectively.

The method is shown robust numerically and coherent theoretically. The Bayesian ap-

proach which is fairly easy to implement and provides complete univariate and joint

posterior distributions of parameters of interest. The posterior distributions of the un-

known model parameters are obtained by using M-H algorithm implemented in R. We

have shown the usefulness of this approach through two simulated examples and one real

data analysis. The extensions of the proposed approach to spatial and random effects

models would represent interesting areas of development.



Chapter 3

Improved Local Quantile

Regression

In this chapter we investigate a new kernel-weighted likelihood smoothing quantile re-

gression method. The likelihood is based on a normal scale-mixture representation of

the asymmetric Laplace distribution (ALD). This approach enjoys the same good de-

sign adaptation as the local quantile regression (Spokoiny et al., 2014), particularly

for smoothing extreme quantile curves, and ensures non-crossing quantile curves for any

given sample. The performance of the proposed method is evaluated via extensive Monte

Carlo simulation studies and one real data analysis.

3.1 Introduction

Parametric quantile regression (Koenker, 2005) has been used in a number of disciplines

to explore the relationship between the response and covariates at both the center and

extremes of the conditional distribution and obtain a more comprehensive analysis of

the relationship between variables. While a parametric model is possibly misspecified,

non-parametric models, on the other hand, require fewer assumptions about the data

and offer a more flexible way of modelling a relationship than parametric models, conse-

quently avoid model misspecification when a parametric model is not available, which is

common in wide applications (Wand and Jones, 1995; Fan and Gijbels, 1996; Takezawa,

2005). One of the popular nonparametric smoothing techniques is kernel smoothing.

55
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Nonparametric kernel smoothing quantile regression has attracted much attention in

the literature (Chaudhuri, 1991; Hardle and Mammen, 1993; Fan and Gijbels, 1996;

Yu and Jones, 1998; Cai and Xu, 2008; Dette and Volgushev, 2008; Dabo-Niang and

Laksaci, 2012; Schaumburg, 2012; Kong and Xia, 2015; among others).

However, the performance of kernel smoothing techniques, in spite of their advantages

over parametric models in dealing with model misspecification, depends on smoothing

parameter or bandwidth selection. While a global bandwidth such as the rule of thumb

(Yu and Jones, 1998) is generally useful, a point-wise bandwidth, which depends on the

values of covariate X or the design set should be considered for the complexity of the

underlying regression functions. In particular, bandwidth selection in nonparametric

smoothing quantile regression requires not only design adaption but also quantile adap-

tion. Spokoiny, Wang and Härdle (henceforth SWH) (Spokoiny et al., 2014) developed a

kernel-weighted likelihood quantile regression with point-wise bandwidth selection and

promising performance in practice.

But SWH’s approach may not guarantee non-crossing quantile curves for any given

sample (calculated for various percentile τ ∈ (0, 1)), which is a common problem in the

estimation of conditional and structural quantile functions due to lack of monotonic-

ity. Note that, monotonicity (for each x in the design set, it’s a monotone function of

percentile value τ) guarantees non-crossing quantile curves, but not vice versa. Such

a phenomenon violates the basic principle of probability theory, that is, the associated

distribution functions should be monotone increasing. Various methods were presented

to address or avoid the quantile crossing in parametric quantile regression, but with few

on nonparametric quantile regression. Recently, Jones and Yu (2007) improved double

kernel smoothing for quantile regression, Using spline-based constraints easily allows

us to incorporate non-crossing conditions, as in Bondell et al. (2010) or Muggeo et al.

(2013), for quantile estimation. Liu and Wu (2011) dealt with this issue via simultane-

ous multiple quantile smoothing, Qu and Yoon (2015) applied inequality constrains to

ensure the monotonicity over quantiles.

In this chapter, we explore a local quantile regression based on a normal scale-mixture

representation of asymmetric Laplace distribution (ALD) and show that this method

has the similar property of SWH’s procedure but much better-adaptive for smoothing

extreme quantile curves. Moreover, quantile function is monotone with respect to τ for
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all x, which is satisfied by the proposed method, but SWH’s method, which may also be

non-crossing practically but without theoretical justification. Therefore, the proposed

method enjoys both design adaptation and non-crossing quantile curves simultaneously.

This chapter is organized as follows. We first review SWH’s approach in Section 3.2, then

propose a new local likelihood smoothing based on a normal scale-mixture representation

of ALD and show that this approach satisfies the propagation condition (Spokoiny and

Vial, 2009) in Section 3.3. In Section 3.4 we elaborate the proposed adaptive bandwidth

selection rule and point out that the rule is able to avoid the problem of quantile curves

crossing, especially for estimating extreme quantiles. Section 3.5 illustrates the numerical

performance of the proposed method. Section 3.6 provides concluding remarks and

discusses future work.

3.2 Kernel-Weighted Likelihood for Local Quantile Regres-

sion

Spokoiny et al. (2014) developed an interesting nonparametric quantile regression method:

local quantile regression, which provides point-wise bandwidth selection and exhibits

promising performance in practice. SWH claimed that their bandwidth selection rule is

adaptive and novel, although the regression estimator named qMLE in their equation (8)

is simply equivalent to a local polynomial quantile regression or a type of kernel-based

weighting ‘check function’ approach, such as the local linear single-kernel approach of

Yu and Jones (1998).

Let (X,Y ) be the random variables, where Y is a continuous random variable and X is

a univariate regressor X ∈ R1. Let FY (Y |X) be the cumulative distribution function of

Y given X. Let Qτ (Y |X) = inf {Y : FY (Y |X) ≥ τ} be the inverse function, which is

also the value of a that minimizes the expected loss function:

Qτ (Y |X) = argmin
a

Eρτ (Y − a) , (3.1)

where, τ ∈ (0, 1) and ρτ (·) is an asymmetric loss function that satisfies ρτ (u) = u (τ − I(u < 0))

with I(·) an indicator function.
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Under the quantile non-parametric model Y = f(X) + ε, given data in the form

{Xi, Yi}ni=1, where Xi and Yi are independent scalar observations of X and Y , respec-

tively. The τth conditional quantile of Y given X is estimated by

f̂(X) = argmin
β

n∑
i=1

ρτ (Yi − f(Xi)) . (3.2)

SWH took advantage of the link between the minimization of the sum of the loss function

in Eq.(1.3) and the maximum likelihood theory is given by the asymmetric Laplace

distribution. For a random variable Y ∼ ALD(µ, σ, τ), its density function can be

written as

f(y;µ, σ, τ) =
τ(1− τ)

σ
exp

{
y − µ
σ

[τ − I(y ≤ µ)]

}
, y ∈ (−∞,+∞) (3.3)

where, 0 < τ < 1 is skew parameter, σ > 0 is scale parameter, and −∞ < µ < ∞ is

location parameter.

Based on a ALD log-likelihood, SWH considered

LSWH(θ) ≡ log {τ(1− τ)}
n∑
i=1

I −
n∑
i=1

ρτ (Yi − fθ(Xi)) , (3.4)

with 0 < τ < 1 the level of the quantile. Then they fit f(x) at point x by the local

polynomial approach Yi = ψTi θ+εi, with basis ψi = {1, (Xi−x), (Xi−x)2/2!, · · · , (Xi−

x)p/p!}T and θ = (θ0, ..., θp)
T . Therefore, the local log-likelihood at x is given by

LSWH(W,θ) ≡ log τ(1− τ)
n∑
i=1

wi −
n∑
i=1

ρτ
(
Yi −ψTi θ

)
wi, (3.5)

where the weights W are chosen via a kernel function wi = K
(
Xi−x
h

)
, where h is a

bandwidth controlling the degree of localization. Note that, Eq.(3.5) is similar to the

global log-likelihood in Eq.(3.4), but each summand in LSWH(W,θ) is multiplied with

the weight wi, so only the points from the local vicinity of x contribute to LSWH(W,θ).
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The corresponding local quantile MLE (they named it as qMLE) at x is then given via

the maximization of LSWH(W,θ) in Eq.(3.4)

θ̃SWH(x) ≡ argmax
θ∈Θ

LSWH(W,θ)

= argmin
θ∈Θ

n∑
i=1

ρτ
(
Yi −ψTi θ

)
wi. (3.6)

3.3 Local Quantile Regression with An Alternative Likeli-

hood for Smoothing

Figure 3.1 displays the performance of SWH’s approach, showing the bandwidth se-

quence (upper panel) and the smoothed 50% quantile curve (lower panel) based on the

Lidar dataset (available in R package ‘SemiPar’ ), which adapts the data well. And this

is also true for other moderate or central quantile curves. However, it can be seen from

smoothing extreme quantile curves in Figure 3.2 here, the proposed bandwidth selection

rule is lack of good adaptation and then results in the over-smoothing phenomenon.

Figure 3.2 displays the smoothed 99% and 1% quantile curves using SWH’s method

and shows that when the curves start to switch smoothness, the rule is not adaptive so

that the estimated curves are too smoothing out of the data ranges. A possibly the-

oretical interpretation for this problem is: when τ → 0, the weighted ‘check function’

ρτ (Yi−ψTi θ)wi takes constant 0 if Yi > ψ
T
i θ (also, when τ → 1 and if Yi < ψ

T
i θ). This

may result in that the proposed significant test always picks constant bandwidth for

smoothing extreme quantile curves although this is not a problem for the local quantile

regression estimation equation. We want to point out that this over-smoothing problem

will be solved by a new version of adaptive bandwidth selection rule.
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Figure 3.1: The bandwidth sequence (upper panel) and the adaptive estimation of
0.50 quantile (lower panel) for the Lidar dataset by SWH’s kernel-weighted likelihood

function.
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Figure 3.2: The bandwidth sequences (upper panels) and smoothed quantile curves
(lower panels) for the Lidar dataset using SWH’s kernel-weighted likelihood.

Moreover, there is no guarantee of this approach to avoid quantile crossing. Therefore

we propose an alternative adaptive bandwidth selection rule based on a normal scale-

mixture representation (henceforth NSM) of ALD and show that this alternative version

has the similar property of SWH’s procedure but adapts much better for smoothing

extreme quantile curves.

Reed and Yu (2009) and Kozumi and Kobayashi (2011) note that under the assumption

of ALD-based ‘working likelihood’, the quantile regression model error ε ∼ ALD(0, 1, τ)

can be represented as a scale mixture of normal variable, that is,

ε = µz + δ
√
ze, (3.7)
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where µ = 1−2τ
τ(1−τ) , δ2 = 2

τ(1−τ) , z ∼ Exp(1) and e ∼ N(0, 1), and z and e are independent.

Hence, SWH’s model (Yi = f(Xi) + εi) could be re-written as

Yi = f(Xi) + µzi + δ
√
ziei. (3.8)

That is, for given z = (z1, z2, ...., zn),

Yi ∼ N
(
f(Xi) + µzi, δ

2zi
)
, (3.9)

i.e., the joint conditional density of Y = (Y1, Y2, ..., Yn) is given by

l (Y |z, X) =

n∏
i=1

1√
2π δ
√
zi

exp

{
−(Yi − f(Xi)− µzi)2

2δ2zi

}
. (3.10)

Clearly, if z is fixed in advance, then the local log-likelihood (SWH’s Eq.(7)) can be

replaced by a normal scale-mixture representation of ALD :

LNSM (W,θ) ≡ − log(
√

2πδ)
n∑
i=1

wi −
1

2

n∑
i=1

log(zi)wi

− 1

2δ2

n∑
i=1

(Yi − f(Xi)− µzi)2

zi
wi −

n∑
i=1

ziwi, (3.11)

where the weights W are chosen via a kernel function wi = K
(
Xi−x
h

)
, while h is a

bandwidth controlling the degree of localization. Similar to Eq.(3.5), the local log-

likelihood in Eq.(3.11) depends on the central point x via the structure of the basis

vectors ψi and via the weights wi.

Now, once a local pth-degree polynomial ψTi θ is used to approximate f(x) at X = x,

the corresponding local qMLE at x could be defined via maximization of LNSM (W,θ)

above:

θ̃(x) ≡
(
θ̃0(x), θ̃1(x), ..., θ̃p(x)

)
= argmax

θ∈Θ
LNSM (W,θ)

= argmin
θ∈Θ

n∑
i=1

(Yi −ψTi θ − µzi)2

δ2zi
wi, (3.12)
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where θ̃0(x) estimates f(x), and θ̃m(x) estimates the mth derivative of f(x). Further,

let ψ = (ψ1, ..,ψn)T and wk = diag

(
w

(k)
1

δ2z1
, ..., w

(k)
n

δ2zn

)
, we have

θ̃k(x) =
(
ψwkψ

T
)−1

ψwk

(
Y + µz + δz1/2e

)
, (3.13)

where the design matrix ψ consists of the columns ψi = {1, (Xi−x), · · · , (Xi−x)p/p!}T .

We note that the LNSM (W,θ) involves the specification of vector z, and we point out

that z could be fixed in advance via a sample from a data-driven inverse Gaussian

distribution, and our extensive experiments in Section 3.5 show that the selection of the

sample has no effect on the estimation. In fact, note that the joint likelihood function

of (Y, z) is give by

f(Y, z|X) =
n∏
i=1

1√
2π τ
√
zi

exp

{
−(Yi − f(Xi)− µzi)2

2τ2zi

}
n∏
i=1

exp(−zi).

Therefore, the conditional density of f(z|Y ) is given by

f(z|Y ) ∝ f(Y, z)

∝
n∏
i=1

1
√
zi

exp

(
−1

2

[
(Yi − f(Xi))

2

δ2
z−1
i +

(
µ2

δ2
+ 2

)
zi

])
. (3.14)

That is, zi, z2, ...., zn are i.i.d. with a generalized inverse Gaussian (GIG) distribution:

f(z|Y ) ∝ z
− 1

2
i exp

(
−1

2

[
(Yi − f(Xi))

2

δ2
z−1
i +

(
µ2

δ2
+ 2

)
zi

])

∼ GIG

(
1

2
, ηi, ζi

)
, (3.15)

where η2
i = (Yi−f(Xi))

2

δ2
and ζ2

i = µ2

δ2
+ 2.
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3.4 Performance of Adaptive Bandwidth Selection and Non-

Crossing Estimation

3.4.1 Adaptive Bandwidth Selection

There are several methodologies for automatic smoothing parameter selection. One

class of methods chooses the smoothing parameter value to minimize a criterion that

incorporates both the tightness of the fit and model complexity. Such a criterion can

usually be written as a function of the error mean square, and a penalty function de-

signed to decrease with increasing smoothness of the fit. Examples of specific criteria

are generalized cross-validation (Craven and Wahba, 1979) and the Akaike information

criterion (AIC)(Akaike, 1973). These classical selectors have two undesirable properties

when used with local polynomial and kernel estimators: they tend to under-smooth and

tend to be non-robust in the sense that small variations in the input data can change

the choice of smoothing parameter value significantly. Hurvich et al. (1998) obtained

several bias-corrected AIC criteria that limit these unfavorable properties and perform

comparably with the plug-in selectors (Ruppert et al., 1995).

The adaptive bandwidth selection rule in SWH’s paper is different from the rule-of-

thumb rule of Yu and Jones (1998) and AIC rule of Cai and Xu (2008). It does add

a nice option to the bandwidth selection menu for practitioners. In this chapter, we

perform the local quantile curve estimation following the similar bandwidth selection

procedures, but based on a normal scale-mixture representation of ALD.

First, we fix a finite ordered set of candidates of bandwidth h1 < h2 < · · · < hK , where

h1 is very small. According to SWH, the bandwidth sequence can be taken geometrically

increasing of the form hk = abk with fixed a > 0, b > 1, and n−1 < abk < 1 for k =

1, · · · ,K. For each k ≤ K, an ordered weighting scheme W (k) =
(
w

(k)
1 , w

(k)
2 , · · · , w(k)

n

)
is chosen via a kernel function w

(k)
i = K

(
Xi−x
hk

)
leading to the local quantile estimator

at x, θ̃k(x), as:

θ̃k(x) = argmax
θ∈Θ

LNSM (W (k),θ)

= argmin
θ∈Θ

n∑
i=1

(Yi −ψTi θ − µzi)2

δ2zi
w

(k)
i . (3.16)
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Then, we start with the smallest bandwidth h1. For any k > 1, compute the local

qMLE θ̃k(x) and check whether it is consistent with all the previous estimators θ̃l(x) for

l < k. We use a localized likelihood ratio test, i.e. the difference LNSM

(
W (l), θ̃l(x)

)
−

LNSM

(
W (l), θ̃k(x)

)
to reject θ̃k(x), where θ̃l(x) maximize the log-likelihood LNSM

(
W (l), θ̃l(x)

)
=

supθ LNSM
(
W (l),θ

)
defined in Eq.(3.11) with bandwidth hl and LNSM

(
W (l), θ̃k(x)

)
is

the other local likelihood under θ̃k(x) with bandwidth hk(l < k). The difference checks

whether θ̃k(x) belongs to the confidence set εl(ζ) of θ̃l(x):

εl(ζ) :=
{
θ ∈ Θ : LNSM

(
W (l), θ̃l(x)

)
− LNSM

(
W (l), θ̃k(x)

)
≤ ζl

}
.

If the consistency check is negative, the procedure terminates and selects the latest

accepted estimator. The adaptation algorithm can be summarized as follows:

Algorithm 3.1

Step 1 : Start with θ̂1(x) = θ̃1(x).

Step 2 : For k ≥ 2, θ̃k(x) is accepted and θ̂k(x) = θ̃k(x), if θ̃k−1(x) was accepted

and

LNew

(
W (l), θ̃l(x)

)
− LNew

(
W (l), θ̃k(x)

)
≤ ζl, l = 1, ..., k − 1.

where the choice of critical values ζl, l = 1, ..., k − 1 are based on the propagating

conditions in Theorem 3.1 below.

Step 3 : Otherwise, θ̂k(x) = θ̂k−1(x).

The adaptive estimator θ̂(x) is the latest accepted estimator after all K steps:

θ̂(x) = θ̂K(x).

Moreover, all the estimators θ̃k(x) should be consistent to each other and the procedure

should not terminate at any intermediate step k < K. This effect is called as ‘propaga-

tion’. Hence, under the assumptions (A1)-(A3) in Appendix B, and then according to

Serdyukova (2012), the propagation conditions (PC) for this approach also satisfies:

Theorem 3.1. (Theoretical choice of the critical values.) Assume Assumptions B.1-

B.3, given α ∈ (0, 1] and r > 0, the critical values ζ1, · · · , ζK satisfy

E
∣∣∣∣(θ̃k(x)− θ̂k(x)

)T (
ψwk(x)ψT

) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r ≤ αC(p, r), (3.17)
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for all k = 2, · · · ,K, where C(p, r) = 2rΓ(r+p/2)/Γ(p/2), with the choice of the critical

values of the form

ζl =
4

a

{
r(K − l)logb+ log

K

α
− p

4
log(1− 4µ)− log(1− b−r) + C̄(p, r)

}
, l = 1, ..., k − 1

where a ∈ (0, 1/4) is an arbitrary constant, b > 1 and C̄(p, r) = log
{

22r[Γ(2r+p/2)Γ(p/2)]1/2

Γ(r+p/2)

}
.

The critical values are selected to ensure the desired propagation condition which effec-

tively means a ‘no alarm’ property, that is the selected adaptive estimator coincides in

the most cases that the estimator θ̃k(x) corresponding to the largest bandwidth. The

critical values enter implicitly in the propagation condition: if the false alarm event{
θ̃k(x) 6= θ̂k(x)

}
happens too often, it is an indication that some of the critical values

ζl are too small.

An advantage of the proposed alternative normal scale-mixture likelihood function over

SWH’s method is that the derived bandwidth has better adaptation when τ tends to 0

or 1. Figure 3.3 displays the bandwidth sequence (upper panel) and smoothed quantile

curves for quantiles 1% (3.3a) and 99% (3.3b) based on the Lidar dataset, which pro-

vides much better fitting than those curves presented in Figure 3.2. The dependency

structure changing on smoothness is more adaptive than the bandwidth sequence in

Figure 3.2. This alternative normal scale-mixture likelihood method also works well for

other moderate or central quantile curves. Figure 3.3 shows that the method gives quite

similar estimates to SWH’s method for τ = 0.5 (3.3c) and 0.9 (3.3d) quantile curves.
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Figure 3.3: The bandwidth sequences (upper panels) and smoothed quantile curves
(lower panels) for the Lidar dataset via the alternative normal scale-mixture likelihood.

3.4.2 Non-crossing Quantile Curve Estimation

The proposed bandwidth selection rule in SWH’s method seems to have no quantile

crossing phenomenon when several smoothed quantile curves are provided together.

This indicates the advantage of the local bandwidth selection rule. Whereas most of

published articles on this topic, which include constrained smoothing spline (He, 1997;

Bondell et al., 2010), double-kernel smoothing (Yu and Jones, 1998; Jones and Yu, 2007)

and monotone constraint on conditional distribution function (Hall et al., 1999; Dette

and Volgushev, 2008), among others, focus on the development of new methods rather

than adaptive bandwidth selection for avoiding quantile crossing. SWH showed that

the adaptive bandwidth selection rule may not suffer quantile crossing issue, even with

‘local constant’ kernel smoothing quantile regression

q̂τ (x) = argmin
a

n∑
i=1

ρτ (Yi − a)Kh (x−Xi) .
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This may be true practically, but without a theoretical justification. Under our proposed

approach, the justification of non-crossing quantiles could be outlined as below.

Recall the nonparametric quantile regression model Y = f(X) + ε, where Qτ (ε) = 0.

Given data {Xi, Yi}ni=1, and under the local polynomial approach, θ̃0(x) estimates f(x),

with

θ̃NSM ≡
(
θ̃0, θ̃1, · · · , θ̃p

)
= argmax

θ∈Θ
LNSM (W,θ),

where the likelihood function LNSM (W,θ) is expressed in Eq.(3.11) and θ̃m(x) estimates

the mth derivative of f(x).

That is, the derivative of LNSM (W,θ) over θ̃0(x) satisfies
∑n

i=1
wi
zi

(Yi−ψTi θ̃NSM−µzi) =

0. Therefore, θ̃0(x) can be expressed as,

θ̃0(x) =

∑n
i=1

wi
zi

(
Yi − µzi −

∑p
j=1 θ̃j

(Xi−x)j

j!

)
∑n

i=1
wi
zi

.

For each x, we aim to check the derivative of θ̃0(x) over τ ∈ (0, 1). If dθ̃0
dτ > 0, then θ̃0

is an increasing function of τ .

Note that µ = 1−2τ
τ(1−τ) , therefore, we have

dθ̃0(x)

dτ
=

1∑n
i=1

wi
zi

n∑
i=1

−ziwi dµdτ
zi

=
1∑n
i=1

wi
zi

n∑
i=1

−ziwi−2(τ−1/2)2−1/2
τ2(1−τ)2

zi

=
1∑n
i=1

wi
zi

n∑
i=1

wi
2(τ − 1/2)2 + 1/2

τ2(1− τ)2

> 0. (3.18)

That is, f̂(x) ≡ θ̃0(x) is a strictly monotonic function of τ over x.
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3.5 Numerical examples

In this section, we implement the proposed method via extensive Monte Carlo simulation

studies and one real data analysis. All numerical experiments are carried out on one

Inter Core i5-3470 CPU (3.20GMHz) processor and 8 GB RAM.

3.5.1 Simulation 1

In this simulation study, we aim to summarize our numerical results on choosing the

critical values by the propagation condition as described in Section 3.1. We check the

critical values at different quantile levels τ = 0.05, 0.25, 0.5, 0.75, 0.95, and for different

choices of α and r. We also study how bandwidth sequence affects the critical values.

Table 3.1 shows the critical values with several choices of α and r with τ = 0.2 and m =

5000 Monte Carlo samples, and a bandwidth sequence (5, 7, 10, 13, 17, 21, 24, 28, 36, 45)/365

scaled to the interval [0, 1].

Table 3.2 shows the critical values for different τs with α = 0.25, r = 0.5 and m = 5000

Monte Carlo samples, and a bandwidth sequence (5, 7, 10, 13, 17, 21, 24, 28, 36, 45)/365

scaled to the interval [0, 1].

Table 3.3 shows the critical values for the following alternative bandwidth sequences,

with α = 0.25, r = 0.5, τ = 0.8 and m = 5000 Monte Carlo samples.

η1 = (5, 7, 10, 13, 17, 21, 24, 28, 36, 45)/365

η2 = (10, 13, 17, 21, 24, 28, 36, 45, 49, 60)/365

η3 = (2, 3, 5, 7, 10, 13, 17, 21, 24, 28)/365

It is clear to show from Table 3.1 that critical values decrease when α increases, and

increase when r increases. Table 3.2 shows that critical values behave similarly for sym-

metric τ . Overall, although the critical values differ for different bandwidth sequences,

α, r and τ , they indicate the same patterns (finite and decreasing), which indicate that

the adaptation algorithm can be completed in maximum K = 6 steps, as the values of

critical values decrees to zero in 6-step.
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Table 3.1: Critical values with different α and r (τ = 0.2)

α r Critical values

0.25 0.5 16.971 11.539 8.133 3.584 0.044 0.000

0.25 0.75 20.218 13.743 9.336 3.131 0.000 0.000

0.25 1 24.676 16.270 9.308 4.214 1.561 0.000

0.5 0.5 12.823 9.619 7.205 3.703 0.949 0.000

0.75 0.5 11.249 7.222 4.244 0.181 0.000 0.000

Table 3.2: Critical values with different τ (α = 0.25, r = 0.5)

τ Critical values

0.05 10.357 7.605 4.888 1.248 0.000 0.000

0.25 15.782 11.332 8.440 4.354 0.908 0.000

0.50 21.714 15.427 10.351 3.594 0.000 0.000

0.75 15.283 10.932 8.396 3.949 0.840 0.000

0.95 10.789 7.686 4.943 1.208 0.000 0.000

Table 3.3: Critical values with different bandwidth sequences (α = 0.25, r = 0.5, τ =
0.8)

η Critical values

η1 11.002 6.508 3.089 0.000 0.000 0.000

η2 23.187 13.810 7.775 3.690 0.000 0.000

η3 6.871 4.737 2.046 0.389 0.000 0.000

3.5.2 Simulation 2

In this simulation study, we compare the performance of our proposed approach to

SWH’s method as well as two other bandwidth selection techniques. One proposal comes

from Ng and Maechler (2007), in which they considered constrained quantile estimations

using linear or quadratic splines (implemented with R function cobs in Package cobs),

and the other is from Yu and Jones (1998), in which they considered a rule of thumb

bandwidth (implemented with R function lprq in Package quantreg).

We generate one training data of size 2000 and 500 test data sets of size 500 from the

model

Y = m(X) + σ(X)ε, (3.19)
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where the univariate input X follows a uniform distribution on [4, 4] and m(X) is a

non-linear function of X

m(X) = (1−X + 2X2)e−0.5x2 ,

and the scale factor σ(X) is linearly increasing in X with the form

σ(X) =
1

5
(1 + 0.2x).

Therefore, Eq.(3.19) is a heteroskedastic model.

In this simulation, we consider three different types of random errors for ε: N(0, 1),

t(3) and χ2(3), respectively. Therefore, the true τ -th conditional quantile function of Y

given X = x can be expressed as

QY (τ |x) = m(x) + σ(x)F−1
τ (ε),

where F−1
τ (ε) is the τ -th quantile of ε. Fig. 3.4 presents the training data generated

under this scenario with their true τ -th conditional quantile functions QY (τ |x), τ ∈

c(0.05, 0.50, 0.95). Note that, the nonlinear function m(X) in the right figure is not

identical to the true conditional median function QY (0.50|x) as the random error χ2(3)

is an asymmetric distribution.
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Figure 3.4: Simulated training data and true conditional quantile functions with
τ ∈ c(0.05, 0.50, 0.95).

We aim to compare the prediction power of the above-mentioned four methods for the

prediction of the conditional quantile function by 500 test data sets, in terms of three

measurements, namely, the root mean square error (RMSE), the mean absolute errors

(MAE), and the Theil-U statistic, which is a relative accuracy measure that compares

the forecast results with the näıve forecast (Theil, 1966):

RMSE(τ) =

√√√√ 1

n

n∑
i=1

(
QYi(τ |x)− Q̂Yi(τ |x)

)2
,

MAE(τ) =
1

n

n∑
i=1

∣∣∣QYi(τ |x)− Q̂Yi(τ |x)
∣∣∣ ,

TheiU(τ) =

√√√√√√√
∑n

i=2

(
Q̂Yi (τ |x)−QYi (τ |x)

QYi−1
(τ |x)

)2

∑n
i=2

(
QYi (τ |x)−QYi−1

(τ |x)

QYi−1
(τ |x)

)2 ,
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where Q̂Yi(τ |x) is the prediction of the true conditional quantile QYi(τ |x). The smaller

the measurement value is, the better the method is. The three measurements are im-

plemented with R function av.res in package AnalyzeTS.

The superiority of the proposed normal-scale mixture approach is demonstrated in Table

3.4 which summarizes the results for three values of τs: 0.05, 0.50, and 0.95, based

on the 500 replications. Note that, Simulation 2 is implemented with critical values

simulated from ALD(0, 1, τ) (coincide with the likelihood) with α=0.25, r=0.5 and η=

(5,7,10,13,17,21,24,28,36,45)/365. The bold face values show that both SWH’s method

and the proposed normal scale-mixture approach are superior to LPQR and COBS,

while the proposed approach performs slightly better than SWH. It is encouraging to

see that the proposed approach approximates well under Gaussian error and also provides

excellent results under the circumstance of heavy tail and asymmetric distributions, such

as t(3) and χ2(3).

Table 3.4: Average value of the evaluation indices for 500 test data of size 500.

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ χ2(3)

Indices LPQR COBS SWH NSM LPQR COBS SWH NSM LPQR COBS SWH NSM

τ = 0.05

RMSE 0.364 0.254 0.168 0.157 0.399 0.274 0.226 0.213 0.432 0.239 0.162 0.154

MAE 0.234 0.176 0.128 0.121 0.273 0.205 0.173 0.163 0.269 0.162 0.121 0.116

Thei U 17.773 12.414 8.196 7.667 19.293 13.264 10.896 10.286 20.974 11.640 7.863 7.480

τ = 0.5

RMSE 0.178 0.184 0.163 0.140 0.184 0.172 0.141 0.139 0.210 0.198 0.176 0.170

MAE 0.140 0.144 0.128 0.114 0.144 0.137 0.107 0.103 0.171 0.161 0.139 0.132

Thei U 8.524 8.865 7.839 7.131 8.942 8.403 6.875 6.741 10.246 9.695 8.587 8.241

τ = 0.95

RMSE 0.258 0.210 0.159 0.157 0.283 0.245 0.205 0.195 0.367 0.324 0.331 0.326

MAE 0.193 0.153 0.125 0.123 0.226 0.190 0.162 0.153 0.272 0.261 0.250 0.261

Thei U 12.507 10.176 7.735 7.600 8.983 9.553 6.862 7.570 16.743 14.798 15.159 14.852

Note: The bandwidth hτ at τ that controls the complexity of the LPQR model is selected by

the rule of thumb in Fan and Gijbels (1996).

3.5.3 Real-world data application

In this section we demonstrate the efficacy of our the proposed alternative approach

with one benchmark example that comes from the second and third health examination

surveys of the USA (National Center for US Health Examination Surveys, 1970; 1973).

Taken together these provide data on the anthropometry of children between the ages
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of 6 years and under 18 years, with from 400 to 600 children of each sex seen in each

year of age (Cole, 1998). Here, along with Yu and Jones (1998), the weights and ages

of 4011 US girls were analysed.

Figure 3.5 displays weight against age for a sample of 4011 US girls, where age is a

univariate regressor X ∈ R1 for simplicity. From Figure 3.5, it is evident that the dis-

tribution is left-skewed and presents long tails, suggesting that focusing on the centre is

not sufficient for a comprehensive description of a weight distribution. Such observation

motivates the use of quantile regression, where a complete picture of weight distribution

is captured by conditional quantiles.
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Figure 3.5: US Health Examination Surveys data : weight against age for a sample
of 4011 US girls.

We then continue by inspecting the relation between weight and age in the sample. In

Figure 3.6, we display the bandwidth sequence (upper right panels), boxplot of adapted

bandwidth (lower right panels) showing the relationship between the adapted estimator

and the bandwidth index, and smoothed quantile curves for quantile 99% (3.6b) and 1%

(3.6a) respectively by using the alternative normal scale-mixture likelihood function.

Both adaptations show that the proposed bandwidth selection is well-adapted over the

data distribution, which provides smooth fitting and better adaptation when τ tends

to extreme quantiles. Furthermore, Figure 3.7 shows that the non-quantile crossing

property holds for the rule in Section 3.2, which is based on the alternative normal

scale-mixture likelihood function.



Chapter 3. Improved Local Quantile Regression 74

5 10 15 20

20
40

60
80

10
0

12
0

14
0

Age (years)

W
ei

gh
t (

kg
) 5 10 15 20

0.
02

0.
04

0.
06

1 2 3 4 5 6

10
20

30
40

Age (years)

Age (years)

W
ei

gh
t(

kg
)

Bandwidth index

(a) τ = 0.01

5 10 15 20

20
40

60
80

10
0

12
0

14
0

Age (years)

W
ei

gh
t (

kg
) 5 10 15 20

0.
02

0.
04

0.
06

1 2 3 4 5 6

20
60

10
0

Age (years)

W
ei

gh
t(

kg
)

Age (years)

Bandwidth index

(b) τ = 0.99

Figure 3.6: Smoothed quantile curves for US Health Examination Surveys with τ =
0.01 and τ = 0.99 via alternative normal scale-mixture likelihood. The bandwidth
sequence (upper right); boxplot of block residuals adaptive bandwidth (lower right).
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Figure 3.7: Smoothed quantile curves for US Health Examination Surveys with τ =
c(0.05, 0.25, 0.5, 0.75, 0.95) via alternative normal scale-mixture likelihood function.



Chapter 3. Improved Local Quantile Regression 75

3.6 Chapter Summary

The kernel-weighted likelihood function (3.5) in SWH’s paper is a local ALD-based

likelihood function. The ALD-based inference has nowadays become a powerful tool for

formulating different quantile regression techniques, particularly for the development of

different Bayesian inference techniques for quantile regression. The ALD-based inference

for non-Bayesian methods includes Taylor and Yu (2016b) in financial risk analysis,

Geraci and Bottai (2007) in longitudinal data analysis and among others.

The local ALD-based likelihood approach in this Chapter uses an alternative ALD-type

of likelihood. The resulting automatic bandwidth selection rule not only enjoys the

propagation condition of SWH (which postulates that the risk is smaller than the upper

bound for the risk of the estimator θ̃k(x)) but also guarantees non-quantile curve cross-

ing. Theoretical results also claim that the proposed adaptive procedure performs well,

which would minimize the local estimation risk for the problem at hand. We illustrate

the performance of the procedure by comparing the Lidar dataset with SWH’s approach

and analyzing an extended real data application. In particular, we show that the per-

formance of the adaptive procedure is promising in practice, especially for smoothing

extreme quantile curves.



Chapter 4

Modelling Tails for Collinear

Data with Outliers: Quantile

Profile Regression

In this chapter we present a statistical approach to distinguish and interpret the complex

relationship between several predictors and the tail of the distribution of a response

variable in the presence of high correlation between the predictors.

Covariates which are highly correlated create collinearity problems when used in a stan-

dard multiple regression model. Many methods have been proposed in the literature to

address this issue. A very common approach is to create an index which aggregates all

the highly correlated variables of interest, but it is more informative to look specifically

at each predictor to better understand their roles in the statistical analysis. In this paper

we illustrate how the complex relationships between the predictors can be de-constructed

and analysed using profile regression, a Bayesian non-parametric model for clustering

responses and covariates simultaneously. While profile regression is a powerful tool to

model the relationship between a response variable and covariates, there is no guarantee

that the standard approach of using a mixture of Gaussian distributions for the response

model will identify the underlying clusters correctly. In particular, the interest in many

practical problems lie in the tails of an asymmetric response, such as obesity in the

case of weight distribution, or the number of patients with high glucose levels. In this

chapter, we address this by modelling the response variable with an asymmetric Laplace

76
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distribution, allowing us to model more accurately for clusters which are asymmetric

and predict more accurately for extreme values of the response variable and/or outliers.

Our novel mixture modelling approach is demonstrated on both simulated and real data.

In these analyses, our method performs more accurately when compared to the Gaussian

mixture model for profile regression.

4.1 Introduction

A well known issue in many statistical applications, when trying to assess meaningful

relationships between predictors and response variables through regression models, is the

potential multicollinearity of the predictors. A common approach in this case is to ex-

amine each predictor separately, to avoid instability in the estimates, but compromising

the possibility of learning about the complex relationships involving several predictors

at the same time. An alternative approach is to combine the correlated variables into

summary indexes and to assess the relationship of these with the outcome of interest,

but this approach loses information on the single variables included in the summary.

Dirichlet process mixture models have been proposed as alternatives to regression mod-

els when dealing with multicollinearity (Dunson et al., 2008; Molitor et al., 2010). In

particular we will use profile regression, a semi-parametric Bayesian method where co-

variate profiles are allocated into clusters and associated via a regression model with a

relevant outcome. This method was implemented by Liverani et al. (2015) in the R pack-

age PReMiuM and applied in a variety of areas, including, for example, environmental

epidemiology (Pirani et al., 2015; Liverani et al., 2016) and genetics (Papathomas et al.,

2012).

In this chapter we propose a new profile regression model with a quantile regression

submodel to allow a careful modelling of the data when the interest is on lower or upper

tails of the distribution of the response profiles rather than their mean. We propose a new

quantile regression model. Quantile regression models were first introduced by Koenker

and Bassett (1978) and have been applied to a wide range of applications in biostatistics,

including survival analysis, ecology, earnings inequality and mobility, income and wealth

distribution, value at risk and mutual fund investment styles (Knight and Ackerly, 2002;

Geraci and Bottai, 2007). Quantile regression models aim at estimating either the
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conditional median or other quantiles of the response variable. Their main advantage

over least-squares regression is their flexibility for modelling data with heterogeneous

conditional distributions. Moreover, quantile regression models are robust to outliers.

We propose a new method that we named ‘quantile profile regression’. Quantile pro-

file regression includes a Bayesian mixture of asymmetric Laplace distributions (ALD),

which were proposed by Yu and Moyeed (2001) for Bayesian inference for quantile re-

gression based on a ‘working likelihood’. The closest work to ours are by Kottas and

Krnjajić (2009) and Taddy and Kottas (2010), which constructed general classes of

semiparametric and nonparametric distributions for likelihood using Dirichlet process

mixture models. However, Kottas and Krnjajić (2009)’s interests were in the error distri-

bution of a quantile regression and their mixture over the scale parameters, while Taddy

and Kottas (2010) used DPMM for the joint distribution of the response and covariates

but focused on the estimation of the regression parameters. Different from the above

methods, in this paper we are interested in using a mixture of ALDs for the response

which links covariate profiles to clusters (allocation parameters) and other poosible fixed

factors via a ‘regression’ model. The model is not a standard direct regression function of

covariates, but it allows the complex relationships between predictors and the response

variables to be explained.

Another close proposal is by Franczak et al. (2014). They proposed the use of shifted

asymmetric Laplace distributions for model-based clustering and provided an Expec-

tation Maximisation algorithm. Their mixture model was multivariate and aimed at

classical classification problems, and for certain selected examples they outperform the

Gaussian mixture models. They did not study the potential relationship between pre-

dictors and covariates, while we assume the distribution of the response variable and the

covariates to be cluster dependent.

The inference for quantile profile regression is carried out by Markov chain Monte Carlo

(MCMC) using the conjugate Gibbs sampler for different quantiles. Our novel mixture

modelling approach is demonstrated on both simulated and real data. In these analyses,

our mixture of asymmetric Laplace distributions performs favourably when compared

to the Gaussian mixture model for profile regression.

The chapter is organised as follows. Section 4.2 describes the Dirichlet process mixture

model for Bayesian clustering. Profile regression employing a likelihood function that is
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based on the asymmetric Laplace distribution is developed in Section 4.3. Section 4.4

and 4.5 conduct a simulation study and a real data example respectively to illustrate

the novel approach and compare the results to normal profile regression.

4.2 Dirichlet Process Mixture Model

Dirichlet process mixture models are defined for data Y = (Y1, Y2, . . . , Yn), regarded

as exchangeable or as independently drawn from an unknown distribution. This dis-

tribution is modelled as a mixture of distributions of the form F (θ), with the mixing

distribution over θ being G. The prior for this mixing distribution is a Dirichlet process

with concentration parameter α and base distribution G0 (Ferguson, 1973).

Yi|θi ∼ F (θ) (4.1)

θi|G ∼ G (4.2)

G ∼ DP (G0, α). (4.3)

An infinite mixture model will not face the misspecification of parameters in contrast

to finite models, especially when using a model structure which is far from the real one,

and hence will generate more stable solutions.

4.2.1 Profile Regression

We will focus on the Dirichlet process mixture model described in Liverani et al. (2015).

This model links a response vector Y with the covariate vector X = (X1,X2, . . . ,Xd)

non-parametrically through clustering. Also, the approach enables the potential supple-

mental fixed effects W, which have a global effect on the response. It is worth noting

that the allocated clusters are based on the joint effects of X and Y, implicitly handling

latent high dimensional interactions which would be quite challenging to capture via

classical approaches.

Consider a response variable Yi and a covariate profile Xi = (xi,1, ..., xi,d) for i in

1, 2, . . . , n. The observed data follows an infinite mixture distribution, where mixture

component c has density conditional on some component specific parameters Θc and

global parameters Λ. Therefore, the proposed model is given by the a joint probability
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model for the outcome Yi and profile Xi, where these probability models are condition-

ally independent:

f(Yi, Xi|Θ,Λ,Wi) =

∞∑
c=1

ψcf(Yi|Θc,Λ,Wi)f(Xi|Θc,Λ) (4.4)

where Θ = (ψ1,Θ1, ψ2,Θ2, · · · ), and the weight of mixture component c is given by ψc.

The mixture weights as ψ = {ψc, c ≥ 1} follow a stick breaking distribution which is

given by

ψc = Vc
∏
l<c

(1− Vl) for c ∈ Z+ \ {1} (4.5)

ψ1 = V1 (4.6)

Vc ∼ Beta(1, α) i.i.d. for c ∈ Z+. (4.7)

In order to make inference using mixture models, it is common and convenient to bring

in a vector of latent allocation variables Z = (Z1, . . . , Zn), such that Zi = c identifies

the allocation of individual i to cluster c. Posterior inference on Z then offers us with

information concerning the clustering of the observations. The inference is carried out

via Markov Chain Monte Carlo using the stick-breaking construction of the Dirichlet

process and the slice sampler.

There is a wide range of choices for the response sub-model f(Yi|ΘZi ,Λ,Wi) and the

profile sub-model f(Xi|ΘZi ,Λ), including normal, Bernoulli, Binomial, Poisson, Multi-

nomial and Weibull distributions (Liverani et al., 2015). We refer to the profile regression

model with the normal distribution for the response variable as ‘normal profile regres-

sion’.

The blocked infinite DPMM algorithm can now be defined using the following blocked

Gibbs updates to sample from the relevant conditionals. This sampler (Liverani et al.,

2015) uses a combination of Gibbs and Metropolis-within-Gibbs steps to sample from the

infinite mixture (only retaining the parameters of a finite number of mixture components

including all those to which individuals are allocated at each sweep).

Suppose we are at sweep t of the sampler. Update as follows:

1. Compute Z∗ and the set A.
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2. Sample (VA
t+1,Θ

A
t+1, Z̃,Ut+1) ∼ p(VA,ΘA,Z,U|VP

t ,V
I
t ,Θ

P
t ,Θ

I
t , αt,Λt,Θ0,D).

(a) Ṽ
A ∼ p(VA|Zt, αt)

(b) Θ̃
A ∼ p(ΘA|Zt,Λt,Θ0,D)

(c) (VA
t+1,Θ

A
t+1, Z̃) ∼ p(VA,ΘA,Z|VP

t ,Θ
P
t , αt,Λt,Θ0,D)

(d) Ut+1 ∼ p(U|VA
t+1, Z̃)

3. Compute U∗. Recompute Z∗ and the set A.

4. Sample (αt+1,V
P
t+1,V

I
t+1) ∼ p(α,VP ,VI |ΘP

t+1,V
P
t+1,Θ

A
t+1,Θ

I
t ,Ut+1, Z̃,Λt,Θ0,D),

computing C∗ and the set P in the process.

(a) αt ∼ p(α|VA
t+1, Z̃)

(b) VP
t+1 ∼ p(VP |αt+1,Ut+1, Z̃)

5. Sample (ΘP
t+1,Θ

I
t+1) ∼ p(ΘP ,ΘI |VA

t+1,V
P
t+1,V

I
t+1,Θ

A
t+1,Ut+1, Z̃,Λt,Θ0,D).

(a) ΘP
t+1 ∼ p(ΘP |Θ0)

6. Sample Λt+1 ∼ p(Λ|VA
t+1,V

P
t+1,V

I
t+1,Θ

A
t+1,Θ

P
t+1,Θ

I
t+1,Ut+1, Z̃,Λt,Θ0,D).

(a) Λ ∼ p(Λ|ΘA
t+1, Z̃,D)

7. Sample Zt+1 ∼ p(Z|VA
t+1,V

P
t+1,V

I
t+1,Θ

A
t+1,Θ

P
t+1,Θ

I
t+1,Ut+1, αt+1,Λt+1,Θ0,D).

(a) Zt+1 ∼ p(Z|VA
t+1,V

P
t+1,Θ

A
t+1,Θ

P
t+1,Ut+1,Λt+1,D)

Note that U = (U1, U2, · · · , Un) are introduced auxiliary variables and A, P and I are

disjoint sets that partition Z+, which are elaborated in the Appendix C. The key idea

is that by doing joint updates, we can marginalise out an infinite number of variables

when necessary, to ensure that we are always sampling from conditional distributions

that depend only upon a finite number of parameters. Moreover, although the sampler

is written as a blocked Gibbs sampler, where it is not possible to sample directly from

full conditionals (for example in the update of Θ , depending upon the choices of f and

PΘ0), Metropolis-within-Gibbs steps are applied.

Due to the problem of “label switching”, i.e the labels associated with each cluster

change during the MCMC iterations, we cannot simply assign each observation to the
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cluster that maximizes the average posterior probability. Methods that deal with label

switching, like the relabelling algorithm of Stephens (2000), require the number of clus-

ters K to be fixed. Using the Dirichlet process mixture models, we allow the number of

clusters to vary from one MCMC sample to the next. One possible solution is to choose

the partition based on a posterior similarity matrix. At each iteration of the sample, we

record pairwise cluster membership and construct a score matrix, with entries equal to

1 for pairs belonging to the same cluster and 0 otherwise. Averaging these matrices over

the whole MCMC run leads to a similarity matrix S, which can be then used to identify

an optimal partition.

4.3 Quantile Profile Regression

We extend profile regression to allow for asymmetric Laplace distributions for the re-

sponse variable. We name this model Bayesian profile quantile regression. Let the

response sub-model be

f(Yi; ΘZi ,Λ,Wi) = f(Yi|θZi , β, σY ,Wi) =
τ(1− τ)

σY
exp

{
−ρτ

(
Yi − λi
σY

)}
(4.8)

that is, Yi|Zi,ΘZi ,Λ,Wi ∼ ALD(λi, σY ; τ), where λi = θZi + βTWi and Λ = (β, σY )

contains the global parameters and Θ = (θ1, θ2, . . .) contains the cluster specific param-

eters. The parameter τ refers to the quantile of interest and it is set, not estimated

from the model, depending on the aims of the analysis. For example, if a population of

males has the 90% quantile of the weight distribution corresponding to obesity and we

aim to investigate how some correlated predictors are related to obesity, then we could

set τ = 0.9.

4.3.1 Inference Quantile Profile Regression

We discuss here the details of the sampling from the posterior distribution of the pa-

rameters of the ALD. See Liverani et al. (2015) for details of the samplers for all other

parameters of the model.
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The prior distributions of σY and λc are given by

σY ∼ IG(a, b) (4.9)

λc ∼ N(µ0, σ0). (4.10)

We can derive a Gibbs sampler. The joint posterior distribution of p(λi, σY |D), with

D = (Y,X), is given by:

f (λi, σY |D) ∝ 1

σY
exp

{
− 1

σY
(yi − λi) (τ − I(yi ≤ λi))

}
× 1

σa+1
Y

exp

{
− b

σY

}
× 1

σ0
exp

{
−(λi − µ0)2

2σ2
0

}
∝ 1

σa+2
Y

exp

{
− 1

σY
(b+ (yi − λi)(τ − I(yi ≤ λi)))

}
exp

{
−(λi − µ0)2

2σ2
0

}

where the prior distribution of σY is given by σY ∼ IG(a, b), and the prior distribution of

λc is λc ∼ N(µ0, σ0). From the joint posterior distribution, we derive the full conditional

density of σY which, conditional on λi, is proportional to

1

σa+2
Y

exp

{
− 1

σY
(b+ (yi − λi) (τ − I (yi ≤ λi)))

}

so that we have

σY |D, λi ∼ IG (a+ 1, b+ (yi − λi) (τ − I (yi ≤ λi))) (4.11)

The marginal posterior distribution of λi, conditional on σY is given by

f (λi|D, σY ) ∝ (yi − λi) (τ − I (yi ≤ λi)) +
1

σ2
0

(
λ2
i − 2λiµ0

)
∝

 −λiτ + 1
σ2
0

(
λ2
i − 2λiµ0

)
if yi ≥ λi

λi (1− τ) + 1
σ2
0

(
λ2
i − 2λiµ0

)
if yi < λi

∝


1
σ2
0
−
(
τ + 2µ0

σ2
0

)
λ if yi ≥ λi

1
σ2
0

+
(

1− τ − 2µ0
σ2
0

)
λ if yi < λi
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Therefore, the Gibbs sample for the posterior of λi can be sampled from the normal

distribution as follows:

λi|D, σY ∼

 N
(
µ0 +

τσ2
0

2 , σ2
0

)
· I (yi ≥ λi) if yi ≥ λi

N
(
−µ0 +

(1−τ)σ2
0

2 , σ2
0

)
· I (yi < λi) if yi < λi

(4.12)

4.3.2 Posterior Predictive Distribution

A common target of inference is not necessarily the partition itself, but how the estimated

parameters might allow us to make predictions for future observations. For example we

might want to group new observations with existing observations, or, in the case of

profile regression, make a prediction about the response if only the covariates of a new

observation had been observed. One way to do this is to use posterior predictions, where

posterior predictive distributions for quantities of interest can be derived from the whole

MCMC run, taking the uncertainty over clustering into account.

As for profile regression, we can sample the posterior predictive distribution of pseudo-

profiles. The pseudo-profiles are predictive scenarios determined by the covariates. At

each iteration the predictive subjects are allocated to one of the existing clusters in ac-

cordance with their own covariate profiles. We can then derive the posterior predictive

distribution of the response variable for each pseudo-profile. To compute these distribu-

tions, we implemented with computing the full posterior predictive distribution of the

pseudo-profiles and then identified the quantiles of interest, which is detailed below.

We compute the posterior probability p(Z̃rs = c|Xs,Θr, Yi, X1, ..., XN ) for each pseudo-

profile, where Z̃rs corresponds to each predictive scenario s at each sweep r of the MCMC

sampler. With these probabilities we construct a cluster-averaged estimate of θ for each

particular pseudo-profile at each sweep. Specifically,

θ̂rs =
∞∑
c=1

p(Z̃rs = c|Xs,Θr, Yi, X1, ..., XN )θrc . (4.13)

Looking at the density of these predictions over MCMC sweeps gives us an estimate

of the effect of a particular pseudo-profile, and its comparison to other pseudo profiles,

allowing us to derive a better understanding of the role of specific covariates.



Chapter 4. Modelling Tails for Collinear Data with Outliers: Quantile Profile
Regression 85

4.4 Simulation Study

In this section we provide the results of the implementation of quantile profile regression

for simulated data. First we simulate data from the ALD and show that the method

proposed is more effective than normal profile regression to retrieve generating parame-

ters for asymmetric data. Then we show that if we are interested in a specific quantile

of the distribution, even when the generating mechanism is Gaussian, quantile profile

regression makes more accurate predictions than normal profile regression.

Figure 4.1 shows the first set of simulated data. Five clusters were generated by drawing

independent samples from the asymmetric Laplace distribution (ALD) for the outcome

Y and the normal distribution for the covariate X as follows.

Yi ∼ ALD(θZi + βTWi, σY ; q) (4.14)

Xi ∼ normal(µZi , γ
2
Zi) (4.15)

with i = 1, 2, . . . , 2300. As the profile sub-model p(Xi|ΘZi ,Λ) is Gaussian with param-

eters µZi and γ2
Zi

, the cluster-specific parameters contained in Θ are (θ1, θ2, . . . , θ5) =

(−200, 0, 3, 40, 150), (µ1, µ2, . . . , µ5) = (0, 6,−8,−3, 5) and (γ2
1 , γ

2
2 , . . . , γ

2
5) = (6, 7, 4, 10, 17).

When the observation i belongs to cluster c the allocation variable Zi = c. The sizes of

the five simulated clusters were 600, 200, 400, 300 and 800 observations respectively. The

coefficients β were set equal to 0, therefore omitting the fixed effects. We set σY = 1.

We use quantile profile regression and normal profile regression, implemented in the R

package PReMiuM. We set the same priors for both models and keep the hyperparame-

ters constant. The parameters θc have a t-distribution with 7 degrees of freedom, mean 0

and scale 2.5. The shape and scale of σY and γ2 are 2.5 and 2.5. The prior on the mean

vector for µc has the empirical covariate means as mean and the inverse of the diagonal

matrix with elements equal to square of empirical range for each covariate, multiplied

by the number of covariates, as precision matrix. The Gamma prior on the Dirichlet

parameter α has a shape parameter of 2 and rate of 1. For all simulations below, we ran

20,000 iterations of burn-in and 20,000 iterations after that. We obtain good conver-

gence diagnostics on the trace, density and autocorrelation for various parameters (not

shown). See Hastie et al. (2015) for more details on convergence for this type of model.
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Figure 4.1: Data simulated by Eq.(4.14) and (4.15). The five generating clusters can
be identified by the different symbols used for the data points.

We initially simulated the ALD data with q = 0.05 and run the algorithm using different

settings of the parameter τ . Table 4.1 shows the mean of the posterior distributions of

θ applying the proposed quantile profile regression (with τ = 0.05 and 0.95) and normal

profile regression, as well as commonly-used clustering methods, such as classification

and regression trees (CART) and Density-based spatial clustering of applications with

noise (DBSCAN). The first row gives the generating values of the parameter θ for the five

clusters. The second row gives the posterior means for the five clusters obtained applying

quantile profile regression with parameter τ = 0.05, the third row applying normal profile

regression, the fourth row applying quantile profile regression with parameter τ = 0.95,

and the last two rows applying CART and DBSCAN. For the fourth, six clusters were

identified by the method, while only three clusters were identified by DBSCAN.

Quantile profile regression provides more accurate estimations of the generating param-

eters. On the other hand, when the data is generated with q = 0.95 (simulations and

results not shown), the reverse happens and the accuracy is highest for τ = 0.95. As

the choice of τ is driven by the application and chosen at priori, we only show results

for q = 0.05 below, without loss of generality.
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Table 4.1: Posterior means of θ.

1 2 3 4 5 6

θ -200.00 0.00 3.00 40.00 150.00

quantile τ = 0.05 -200.01 0.52 5.00 35.39 149.92

normal -181.40 16.52 21.72 51.50 167.89

quantile τ = 0.95 -164.21 28.87 32.97 59.71 89.63 209.15

CART -57.43 -8.14 26.86 82.78 138.04

DBSCAN -180.17 43.32 166.73

p=0.05 p=0.95 Normal
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Figure 4.2: Boxplots of the posterior mean of θ1 over 100 runs for quantile profile
regression with τ = 0.05, τ = 0.95 and normal profile regression. The horizontal line

marks the generating value θ1 = −200.

Therefore, as we are in a setting where our interest is in the lowest quantiles of the data,

we concentrate on the estimation of θ1, the parameter of the cluster corresponding to

the lowest values of the outcome Y . Figure 4.2 shows the boxplots of the posterior mean

of θ1 over 100 runs of quantile profile regression and normal profile regression against

its generating value of -200. Quantile profile regression consistently performs more

accurately than the alternative methods. This is not due to the unfair advantage that
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we know that q = 0.05, as Figure 4.3 shows that quantile profile regression outperforms

normal profile regression also for q = 0.1 and q = 0.025.

−2
00

−1
90

−1
80

−1
70

p=0.05 p=0.10 p=0.025

quantile
quantile

normal

q q q

quantile

normal

normal

Figure 4.3: Boxplots of the posterior mean of θ1 over 100 runs for quantile profile
regression with τ = 0.05 and normal profile regression, repeated for different generating
values of q = 0.05, 0.10, 0.025. The horizontal line marks the generating value θ1 =

−200.

Moreover, the results were also robust to the addition of an outlying observation which

took the values x = 15 and y = −320. This is shown in Figure 4.4.



Chapter 4. Modelling Tails for Collinear Data with Outliers: Quantile Profile
Regression 89

●−2
00

−1
95

−1
90

−1
85

−1
80

without outlier with outlier

normal normal

quantile quantile

Figure 4.4: Boxplots of the posterior mean of θ1 over 100 runs for quantile profile
regression with τ = 0.05 and normal profile regression, comparing the results on the
original data and adding an outlier at x = 15 and y = −320. The horizontal line marks

the generating value θ1 = −200.

We also simulated Y from a normal distribution as follows

Yi ∼ normal(θZi + βTWi, σ
2
Y ) (4.16)

Xi ∼ normal(µZi , γ
2
Zi) (4.17)

with i = 1, 2, . . . , 2300. The cluster-specific parameters contained in Θ are (θ1, θ2, . . . , θ5) =

(−6,−2, 0, 3, 6), (µ1, µ2, . . . , µ5) = (−3, 0, 6,−8, 5) and (γ2
1 , γ

2
2 , . . . , γ

2
5) = (10, 6, 7, 4, 17).

The sizes of the five simulated clusters were 300, 600, 200, 400 and 800 observations

respectively, as for the previous simulation. The coefficients β were set equal to 0, there-

fore omitting the fixed effects. We set σ2
Y = 1. The data is shown in Figure 4.5. We used

the same prior settings as above and for all simulations below we ran 20,000 iterations

of burn-in and 20,000 iterations after that. We obtain good convergence diagnostics on

the trace, density and autocorrelation for various parameters (not shown).
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Figure 4.5: The data simulated by two uncorrelated normal distributions. The circled
and the circled observations are the ones of interest for prediction by quantile profile

regression.

As expected, normal profile regression slightly outperforms quantile profile regression

when estimating the posterior distribution of θc and predicting the outcome Y (Table

4.2).

Table 4.2: Posterior means of θ.

1 2 3 4 5

θ -6.00 -2.00 0.00 3.00 6.00

quantile τ = 0.05 -5.97 -1.98 -0.12 3.03 5.94

normal -5.99 -1.80 -0.05 3.13 6.01

quantile τ = 0.50 -5.93 -2.10 -0.19 3.02 6.03

quantile τ = 0.95 -5.98 -1.94 -0.13 2.94 5.96

However, when the prediction concerns the lowest values of Y , quantile profile regression

outperforms normal profile regression. We compare the predictive power of quantile

profile regression against normal profile regression using the root mean square error

(RMSE) and mean absolute error (MAE) of the predicted values with respect to the
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observed outcome. These measures of goodness of fit are given by

RMSE =

√∑n
i=1

(
Yi − E(M)(i)

)2
n

MAE =

∑n
i=1 |Yi − E(M)(i)|

n

(4.18)

where E(i) denotes the mean for the posterior predictive distribution for Yi.

Firstly we separate the entire sample into training data and validation data, which is

referred as the points crossed in Figure 4.5. We compute the average root mean square

error and the average mean absolute error for the prediction of Y for the validation data.

They correspond to the lowest observations of Y for different values of X. We carry out

quantile profile regression, normal profile regression, CART and standard OLS regression

to predict the circled values of Y and repeat this 100 times. Parameters in CART are

set by default in R package ‘rpart’. See Table 4.3 for the results. These findings also

generalise to the lowest values of Y for different values of X. Quantile profile regression

outperforms normal profile regression, CART and standard OLS regression significantly

and consistently when predicting in the tails of the distribution.

Table 4.3: Average root mean square error and average mean absolute error over 100
repetitions of the predictions of observations marked by circles in Figure 4.5, obtained
using quantile profile regression with τ = 0.05, normal profile regression, CART and

standard OLS regression.

RMSE MAE

quantile 0.05 4.02 3.09

normal 5.69 5.03

OLS 5.55 4.86

CART 6.22 5.67

4.5 The English Longitudinal Study of Ageing (ELSA)

Analysis

We conducted an analysis with data from the English Longitudinal Study of Ageing

(ELSA). ELSA is a longitudinal cohort study of adults aged 50 or older which commenced
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in 1998, with data collection taking part every two years (Steptoe et al., 2012). The

data used in our study are from the nurse visit conducted at Wave 2 of ELSA (2004-

2005), a total of 7,666 people took part in this visit where biological data were collected

for the first time. The data are available for download from the UK Data Service at

http://dx.doi.org/10.5255/UKDA-SN-5050-9.

The aim of the applied portion of our study is to ascertain how cardiometabolic risk

factors might be associated with high blood glucose in people who do not currently

have a diagnosis of diabetes. Research has shown that high blood glucose levels are

an important predictor of incident diabetes (Tabák et al., 2012). However, it has been

shown that only considering high blood glucose in prediction of diabetes risk may be

overly simplistic as many other cardiometabolic risk factors that are highly correlated

with high blood glucose (Haffner et al., 1990; Li et al., 2009) are also associated with

diabetes risk (Ford, 2005; Kolberg et al., 2009). Thus we wanted to determine how

cardiometabolic risk predictors may cluster together with an outcome of high blood

glucose in people who do not have a current diagnosis of diabetes using quantile profile

regression modelling. In theory we would expect to see higher levels of blood glucose

associated with higher cardiometabolic risk factors.

We removed inaccurate data and missing values (n = 4,474) as we needed all rele-

vant information to conduct our analysis. We also removed data for people with a

current diagnosis of diabetes (n = 333), leaving data for 2,859 participants. The vari-

ables of interest were: mean systolic blood pressure (‘SYSVAL’), mean diastolic blood

pressure (‘DIAVAL’), mean arterial pressure (‘MAPVAL’), cholesterol level (‘CHOL’),

high-density lipoprotein level (‘HDL’), triglycerides level (‘TRIG’), low-density lipopro-

tein level (‘LDL’), C-reactive protein level (CRP: ‘HSCRP’), mean waist (‘WSTVAL’),

mean waist/hip ratio (‘WHVAL’) and valid BMI (‘BMIVAL’). See Table 4.4 for summary

statistics of the covariates.

http://dx.doi.org/10.5255/UKDA-SN-5050-9
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Table 4.4: Summary of covariate categories.

Min Mean Max

SYSVAL 80.00 133.74 214.00

DIAVAL 36.50 76.32 118.00

MAPVAL 51.50 95.46 144.00

CHOL 2.10 6.04 12.30

HDL 0.50 1.57 3.40

TRIG 0.40 1.52 4.50

LDL 0.70 3.78 9.20

HSCRP 0.20 3.51 151.00

WSTVAL 61.25 94.15 171.60

WHVAL 0.64 0.88 1.26

BMIVAL 16.02 27.52 55.97

These variables are all quantitative and continuous and they will be included in our

model as covariates. Variables used in this analysis are highly correlated, as shown

in Table 4.5, thus providing a strong rationale for the use of quantile profile regression.

Within our model we adjusted for gender by including it as fixed effect in the model. We

opted to focus on the 95% quantile because we wanted to determine how cardiometabolic

risk factors might link with high blood glucose.
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Table 4.5: Correlation of covariate categories.

S
Y

S
V

A
L

D
IA

V
A

L

M
A

P
V

A
L

C
H

O
L

H
D

L

T
R

IG

L
D

L

H
S

C
R

P

W
S

T
V

A
L

W
H

V
A

L

B
M

I

SYSVAL 1

DIAVAL 0.64@ 1

MAPVAL 0.89+ 0.92∗ 1

CHOL 0.08 0.12 0.11 1

HDL 0.00 0.02 0.02 0.42A 1

TRIG 0.10 0.12 0.12 0.25 −0.34A 1

LDL 0.06 0.09 0.08 0.94∗ 0.22 0.10 1

HSCRP 0.06 0.02 0.04 -0.04 -0.11 0.05 -0.02 1

WSTVAL 0.17 0.20 0.21 -0.10 −0.42A 0.31A -0.06 0.16 1

WHVAL 0.16 0.14 0.17 -0.13 −0.42A 0.27 -0.08 0.11 0.78@ 1

BMIVAL 0.16 0.22 0.21 -0.01 -0.28 0.27 0.00 0.16 0.79@ 0.35A 1

Note: A,@,+, ∗ denote the correlation between covariates under the significant level 30%, 60%,

80%, 90%, respectively.

We carry out the analysis using quantile profile regression and normal profile regression.

The response submodel is given by p(Yi|ΘZi ,Λ,Wi) ≡ ALD(θZi + βTWi, σY ; τ) for

quantile profile regression and by p(Yi|ΘZi ,Λ,Wi) ≡ normal(θZi + βTWi, σ
2
Y ) for nor-

mal profile regression. In both cases the profile sub-model is given by p(Xi|ΘZi ,Λ) ≡

normal(µZi , γ
2
Zi

). We used the same priors as for the simulated data above and our

results were not sensitive to the choice of prior. We ran 20,000 iterations of burn-in

and 20,000 iterations after that. We obtain good convergence diagnostics on the trace,

density and autocorrelation for various parameters.

Quantile profile regression identified four clusters of 1,432, 436, 760 and 231 observations

respectively. Figure 4.6 shows boxplots of the posterior distribution for θc while Table

4.6 shows the number of observations in each cluster and the posterior mean of θc and µc

for each of the four clusters. We can also look in more detail at the relationship between

the response variable and the covariates, as shown in Figure 4.7. We are interested in

high values of Y because they correspond to hyperglycemia. In particular the third

and fourth clusters have higher than average glucose levels. When examining values of

Y , values of blood glucose 5.6 mmol/L are considered as high risk for the development
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of diabetes (Centers for Disease Control and Prevention, 2011). The blood glucose

levels of clusters two, three and four (with credible intervals) were all higher than 5.6

mmol/L indicating these three groups could be considered high risk for diabetes. Figure

4.8 shows that the 95% credible interval for β, which quantifies the linear relationship

between gender and the response, is (-0.39, 0.10).
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Figure 4.6: Boxplots of the posterior distribution of θc for the 4 clusters identified by
quantile profile regression. The horizontal dashed line is the overall posterior mean.

Table 4.6: Size, posterior mean of θc and posterior mean of µc for each cluster.

size θc S
Y

S
V

A
L

D
IA

V
A

L

M
A

P
V

A
L

C
H

O
L

H
D

L

T
R

IG

L
D

L

H
S

C
R

P

W
S

T
V

A
L

W
H

V
A

L

B
M

IV
A

L

1 1432 5.82 130.35 75.47 93.76 6.00 1.65 1.24 3.78 1.57 90.26 0.87 26.06

2 436 5.99 139.77 76.82 97.80 6.18 1.60 1.55 3.87 4.85 95.95 0.88 29.04

3 760 6.22 135.28 77.25 96.59 6.09 1.43 1.97 3.76 3.12 98.24 0.91 28.50

4 231 6.40 138.20 77.76 97.93 5.88 1.47 1.73 3.63 14.23 101.57 0.90 30.52
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Figure 4.7: Boxplots of the posterior distribution of all covariates for the four clus-
ters identified by quantile profile regression. The horizontal dashed line is the overall

posterior mean for each covariate.
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Figure 4.8: Posterior distribution of β (gender).
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In assessing the cardiometabolic profile of each cluster we can look to Figure 4.7. Cluster

1 (lowest blood glucose levels) generally showed low cardiometabolic risk. Cluster 2 (who

had moderately high levels of blood glucose) showed a relatively high risk profile for other

cardiometabolic risk factors, with high levels of cholesterol, high/low-density lipoprotein

level and blood pressure with borderline/high anthropometric indicators. Cluster 3 (who

showed a high blood glucose profile) had borderline blood pressure and anthropometric

indicators but a high risk cholesterol and triglyceride profile. Cluster 4 (the highest

blood glucose levels) showed very high levels of all cardiometabolic indicators. These

results indicate that quantile profile regression modelling is able to discriminate between

different levels of blood glucose based on the presence of cardiometabolic risk factors

in a way that is theoretically sound (i.e., low blood glucose levels are associated with

low cardiometabolic risk and high blood glucose levels are associated with higher car-

diometabolic risk) while also being sensitive enough the reveal different groups that

could be of clinical interest (e.g., cluster 4 indicated levels of extremely high inflamma-

tion through raised CRP which could be of interest to clinicians).

These data indicate that quantile profile regression could be a useful tool for identifying

clusters of people based on shared cardiometabolic risk factors. As this analysis was

cross sectional we cannot infer whether these clusters would predict incidence of type

2 diabetes, however this modelling tool shows promise for application in the context of

illness risk.

We are interested in high values of Y because they correspond to hyperglycemia. First

we extract the observations with Y >= 6 as validation data, part of which are listed in

Table 4.7. We can show the higher accuracy of quantile profile regression over normal

profile regression when predicting values of Y in validation data. The RMSE and the

MAE obtained comparing these predictions to the observed values are given in Table

4.8. As for simulated data, quantile profile regression proves to be more accurate when

predicting values around the quantiles of interest.
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Table 4.7: A sample of the observations that Y >= 6.

S
E

X

S
Y

S
V

A
L

D
IA

V
A

L

M
A

P
V

A
L

C
H

O
L

H
D

L

T
R

IG

L
D

L

H
S

C
R

P

W
S

T
V

A
L

W
H

V
A

L

B
M

IV
A

L

F
G

L
U

1 116.50 60.50 79.00 3.30 1.10 0.60 1.90 4.10 88.20 0.78 27.12 6.00

0 112.50 71.00 84.50 4.40 1.10 2.50 2.20 0.60 102.85 0.91 28.18 6.10

1 127.50 62.50 84.00 6.70 1.20 4.00 3.70 7.00 88.40 0.83 27.74 6.10

0 142.00 78.00 99.50 4.50 1.40 1.80 2.50 6.80 122.20 1.03 30.84 6.10

0 142.50 87.00 105.50 3.20 1.20 1.00 1.50 2.10 117.50 0.97 34.61 6.10

1 150.50 97.50 115.00 6.60 1.40 2.70 4.00 4.80 115.70 0.97 36.06 6.20

0 172.50 90.00 117.50 5.80 1.50 1.00 3.80 38.30 97.60 0.93 27.07 6.60

0 106.00 77.00 86.50 4.80 1.00 1.10 3.30 11.10 83.60 0.84 20.07 6.40

0 132.50 78.50 96.50 6.20 1.50 2.30 3.70 2.10 107.75 1.02 30.42 6.20

Table 4.8: The RMSE and the MAE for the prediction of the Y values such that
Y >= 6 applying quantile profile regression and normal profile regression.

RMSE MAE

quantile 0.95 1.20 0.93

normal 1.89 1.73

4.6 Chapter Summary

We have proposed a new method for collinear data which is more accurate than existing

methods when the modelling interest is in the tails of the distribution. The method is

an extension of profile regression, a Bayesian clustering model, and it was applied to

simulated and real data and it provided a significant increase in accuracy with consid-

erable reduction in the residuals, especially under extreme quantiles, compared to an

estimation with the normal mixture model.

The method proposed is not a standard regression approach, so it does not allow to

estimate the effect of each predictor on the outcome, but it allows to explain the com-

plex relationships between predictors and the response variables. This is demonstrated

in Sections 4.4 and 4.5, and also explored more extensively by Molitor et al. (2010);
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Hastie et al. (2013); Molitor et al. (2014); Mattei et al. (2016); Liverani et al. (2016);

Coker et al. (2016). Profile regression is able to disentangle the complex relationships

between predictors and response variables and can be used to evaluate how changes in

the predictors might affect the response variable.

A limitation of the model proposed in its present form is that the asymmetric Laplace

distribution is included for the response variable but not for the predictors, so it does

not account for interest in the tails of the distribution of the covariates. This is the topic

of future work.



Chapter 5

Conclusions and Future Research

This thesis has proposed several new developments for quantile regression to address

common challenges such as discrete responses, quantile non-crossing, and clustering

problems. Clear advantages over existing methods include a coherent Bayesian approach,

a normal scale-mixture representation of ALD that theoretically guarantee quantile non-

crossing and a Bayesian clustering model that discover complex relationship among high

correlated covariates. The main contributions and future research topics are listed below.

5.1 Main Contributions

Bayesian regression beyond the mean for discrete responses are proposed in Chapter

2. This method is proposed via the development of discrete probability mass functions

for likelihood functions. Bayesian quantile regression for discrete responses is first de-

veloped. This method is then extended to Bayesian expectile regression for discrete

responses. This method provides a direct Bayesian approach to these regression models,

therefore interpretations of regression results becomes easy and intuitive. In particu-

lar, this approach has proven to be coherent irrespective of the true distribution of the

response and also proper with regarding to improper priors for unknown model param-

eters.

In Chapter 3, a new kernel-weighted likelihood smoothing method is proposed to address

important challenges that may arise in quantile regression, such as lack of accuracy at

extreme quantiles and quantile crossing problems. An automatic data-driven method for

100
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selecting these bandwidths is proposed, which not only enjoys the propagation condition

but also guarantees quantile non-crossing. Theoretical results claim that the proposed

adaptive procedure performs well, which would minimize the risk of localized estimation

for the problem at hand. Several advantages of the proposed approach over the existing

method are discussed.

In Chapter 4, quantile profile regression is provided to distinguish and interpret the com-

plex relationship between several predictors and the tail of the distribution of a response

variable in the presence of high correlation between the predictors. It allows the effects

of changes in predictors on the response variable to be evaluated. An MCMC-based com-

putation technique with an additional Gibbs sampler is developed. Several advantages

of the proposed approach over existing normal profile regression are discussed.

5.2 Recommendations for Future Research

The work considered in Chapter 2 opens the door to new research directions for dis-

crete responses in quantile regression by adopting discrete probability mass functions

for likelihood functions. There are many possible extensions such as extending the pro-

posed method to Bayesian semi-parametric quantile regression and expectile regression

for discrete responses. Taking quantile regression as an example, one could consider

a non-parametric mixture with a Dirichlet process prior, denoted by DP(α,G0), with

parameter α and base distribution G0, for the mixing distribution. Then one could in-

troduce a latent mixing scale parameter σ associated with response observation Y , with

the p.m.f of the DALD expressed:

φ(y;µ, σ, τ)

=


(τ − 1)

[
exp{− τ

σ} − 1
]

exp
{
−ρτ (y−µσ )

}
, y ≥ µ,

τ
[
exp{1−τ

σ } − 1
]

exp
{
−ρτ (y−µσ )

}
, y < µ.

Or,

φ(y;µ, p, q) =


log q [py−µ(p− 1)] , y ≥ µ,

log p
[
q−(y−µ)(q − 1)

]
, y < µ,
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where the parameters (p, q), (0 < p, q < 1), are related to τ and σ via the relationships

p = exp
{
− τ
σ

}
and q = exp

{
τ−1
σ

}
or τ = log p/ log(pq) and σ = −1/ log(pq).

Then, for i = 1, · · · , n, the model can be expressed in the hierarchical form:

Yi|β, σ ∼ DALD(Y ;XT
i β, σi, τ)

σi|G ∼ G

G|α, d ∼ DP(α,G0)

β ∼ π(β)

(5.1)

with a Gamma prior on α and an inverse Gamma distribution for G0 with mean d/c−

1(c > 1). Here, let c = 2, which yields an infinite variance for G0 and work with

a Gamma prior for d. In this case, the extension of methods for prior specification,

posterior inference can also be implemented based on MCMC techniques (Kottas and

Krnjajić 2009; Taddy and Kottas 2010).

The kernel-weighted likelihood smoothing quantile regression method reported in Chap-

ter 3 can be extended to the d-dimensional case X ∈ Rd, with d > 1, under the

non-parametric additive modelling framework (Yu and Lu, 2004). That is, let Y be

a real-valued dependent variable and X =
(
X(1), · · · , X(d)

)
∈ Rd as a vector of explana-

tory variables. Let f(x) be a d-dimensional τth quantile regression function of Y given

X = x. Suppose that the τth quantile function f(x) is modelled as an additive function

of
(
x(1), · · · , x(d)

)
,

f(x) =
d∑
l=1

f (l)(x(l)), (5.2)

where each f (l)(x(l)) can be fitted by the proposed approach in Section 3 and the whole

f(x) can be further derived via backfitting algorithm used in Yu and Lu (2004). Without

loss of generality, consider a local linear regression with p = 2, for l = 1, · · · , d:

(â(l), b̂(l)) = argmin
a,b

n∑
i=1

ρτ

(
Yi − a− b(X(l)

i − x
(l))
)(X(l)

i − x(l)

h(l)

)
.

where K(·) is a kernel function and h(l)(l = 1, · · · , d) is the bandwidth for estimating

f (l)(x(l)) in the setting above.

One can also extend the idea of quantile profile regression in Chapter 4 to account for

interest in the tails of the distribution of the covariates, also take account of the extension
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to discrete responses through the combination with the developments in Chapter 2 .
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Appendix A

Appendix A aims to show the proof of Theorem 2.1, that is, the posterior distribution

is proper with regards to improper priors for the unknown parameters.

Proof of Theorem 2.1 A parametrization of the DALD in Eq.(2.5) leads to the fol-

lowing alternative form,

φ(y;µ, p, q) =


py−µ(1− p) log q, y ≥ µ, y ∈ Z

qy−µ(1− q) log p, y < µ, y ∈ Z
(A.1)

where the parameters p and q (0 < p, q < 1) are related to τ via the relationships

p = exp {−τ} and q = exp {1− τ}.

Lemma A.1. The p.m.f. φ(t) defined in Eq.(A.1) is bounded by p|t|(1 − q) log p

and q|t|(1− p) log q.

Proof of Lemma A.1. Expand φ(t) as a mixture of g, consider 0 < q ≤ p < 1,

φ(t) = p|t|(1− p) log qI(t ≥ 0) + q|t|(1− q) log pI(t < 0)

≤ (1− q) log p
(
p|t|I(t ≥ 0) + q|t|I(t < 0)

)
≤ p|t|(1− q) log p.
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Also,

φ(t) = p|t|(1− p) log qI(t ≥ 0) + q|t|(1− q) log pI(t < 0)

≥ (1− p) log q
(
p|t|I(t ≥ 0) + q|t|I(t < 0)

)
≥ q|t|(1− p) log q.

Now, it is known that g(t; a) = a|t|(a−1) log a with 0 < a < 1 is a increasing func-

tion of t. Therefore, φ(t) has upper bound h(p, q)q|t| and lower bound h(q, p)p|t|.

The same procedure may be easily adapted to q ≥ p.

Lemma A.2. For any constant a(0 < a < 1) and sample size n > m,

∫ m∏
k=0

|βk|rk
n∏
i=1

exp{(log a)|Yi −XT
i β|}dβ <∞.

Proof of Lemma A.2. Without loss of generality and consider m = 1 for simplicity,

then XT
i β = β0 + β1X1i,

∫
R2

|β0|r0 |β1|r1 exp

{
(log a)

n∑
i=1

|Yi −XT
i β|

}
dβ0dβ1

≤
∫
R2

|β0|r0 exp {(log a)|β0 + β1X11 − Y1|} |β1|r1

× exp {(log a)|β0 + β1X12 − Y2|} dβ0dβ1.

Since the double-integration
∫
R2 |U |r0 exp(−|U + V + c1|)|V1|r1 exp(−|U + V +

c2)dUdV is finite for any constants c1, c2, r0 ≥ and r1 ≥ 0, Lemma 2 is proved.

Theorem 2.1 below establishes that in the absence of any realistic prior informa-

tion we could legitimately use an improper uniform prior distribution for all the

components of β.

Theorem 2.1 Assume the posterior is given by Eq.(2.8) and π(β) ∝ 1, then all

posterior moments of β in Eq.(2.9) exist.

Proof of Theorem 2.1. We need to prove that

∫
Rm+1

m∏
k=0

|βk|rk exp

{
(log a)

n∑
i=1

|Yi −XT
i β|

}
dβ,

is finite. According to Lemma A.1 and Lemma A.2, it suffices to be proved.
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Property in Section 2.4 Under Bayesian inference of expectile µ for the discrete ran-

dom variable Y , it can be proved that the posterior distribution is proper with

regards to improper priors for the unknown parameters.

Similar to Lemma 1, the p.m.f φ(E)(t) defined in Eq.(2.13) is bounded. Consider

θ ≤ 0.5,

φ(E)(t) = k

√
π

θ

[
Φ
(√

2θ(t+ 1)
)
− Φ

(√
2θt
)]

It>0

+ k

√
π

1− θ

[
Φ
(√

2(1− θ)(t+ 1)
)
− Φ

(√
2(1− θ)t

)]
It≤0

≤ k
√
π

θ

([
Φ
(√

2θ(t+ 1)
)
− Φ

(√
2θt
)])

It>0

+ k

√
π

θ

([
Φ
(√

2(1− θ)(t+ 1)
)
− Φ

(√
2(1− θ)t

)])
It≤0

≤ k
√
π

θ

[
Φ
(√

2(1− θ)(t+ 1)
)
− Φ

(√
2(1− θ)t

)]
= k

√
2π(1− θ)

θ
Φ′(t).

Also,

φ(E)(t) = k

√
π

θ

[
Φ
(√

2θ(t+ 1)
)
− Φ

(√
2θt
)]

It>0

+ k

√
π

1− θ

[
Φ
(√

2(1− θ)(t+ 1)
)
− Φ

(√
2(1− θ)t

)]
It≤0

≥ k
√

π

1− θ

([
Φ
(√

2θ(t+ 1)
)
− Φ

(√
2θt
)])

It>0

+ k

√
π

1− θ

([
Φ
(√

2(1− θ)(t+ 1)
)
− Φ

(√
2(1− θ)t

)])
It≤0

≥ k
√

π

1− θ

[
Φ
(√

2θ(t+ 1)
)
− Φ

(√
2θt
)]

= k

√
2πθ

1− θ
Φ′(t),

where k = 2√
π

√
θ(1−θ)√
θ+
√

1−θ , Φ(·) denotes the c.d.f. of the standard normal distribution.

Now, it is known that
√

θ
1−θ ≤

√
1−θ
θ for θ ≤ 0.5. Therefore, φ(E)(t) has upper

bound k

√
2π(1−θ)

θ Φ′(t) and lower bound k
√

2πθ
1−θΦ′(t) . The same procedure may

be easily adapted to θ ≥ 0.5.
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Then, for n > m, we also have

∫ m∏
k=0

|βk|rk
n∏
i=1

exp{−(Yi −XT
i β)2}dβ <∞.

Similarly, consider m = 1 for simplicity, then XT
i β = β0 + β1X1i,∫

R2

|β0|r0β1|r1 exp{−(Yi −XT
i β)2}dβ0dβ1

≤
∫
R2

|β0|r0 exp{−(β0 + β1X11 − Y1)2}|β1|r1

× exp{−(β0 + β1X12 − Y2)2}dβ0dβ1.

As is known to all that the double-integration is finite for any constants.

Therefore, assume the likelihood is given by Eq.(2.8) and π(β) ∝ 1, then it can be

proved that all posterior moments of β in Eq.(2.9) exist.
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Appendix B aims to elaborate the proof Theorem 3.1 in Chapter 3.

Recall: wk = diag

(
w

(k)
1

δ2z1
, ..., w

(k)
n

δ2zn

)
.

Assumption B.1. Consider a finite sequence of scales wk = diag
(
w

(k)
1 , · · · , w(k)

n

)
, the

p× n matrix ψTw1is of full row rank.

Assumption B.2. For any fixed x and the method of localization with w
(k)
i (x) ≥ 0, the

following relation holds:

w1(x) ≤ w2(x) ≤ · · · ≤ wK(x).

Assumption B.3. Assume that the true regression model

Yi = f0(Xi) + µ0z0,i + δ2
0
√
z0,iei,

considering the regression model (3.8), where Z0 = diag
(
δ2

0z0,1, · · · , δ2
0z0,n

)
stands for

the unknown true covariance matrix, with z0,i is the true value of Eq.(3.8), there exists

η ∈ [0, 1) such that

1− η ≤ δ2
0z0,i

δ2zi
≤ 1 + η for all i = 1, · · · , n.
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Assuming Assumption B.3, the true covariance matrix Z0 � Z(1 + η), and the condi-

tional variance of the estimate θ̃k(x) is bounded with
(
ψwkψ

T
)−1

: as follows :

Var
(
θ̃k(x)

)
=

(
ψwkψ

T
)−1

ψwkZ0wkψ
T
(
ψwkψ

T
)−1

� (1 + η)
(
ψwkψ

T
)−1

ψwkZwkψ
T
(
ψwkψ

T
)−1

= (1 + η)
(
ψwkψ

T
)−1

ψZ−1/2w2
kZ
−1/2ψT

(
ψwkψ

T
)−1

� (1 + η)
(
ψwkψ

T
)−1

ψZ−1/2wkZ
−1/2ψT

(
ψwkψ

T
)−1

= (1 + η)
(
ψwkψ

T
)−1 (

ψwkψ
T
) (
ψwkψ

T
)−1

= (1 + η)
(
ψwkψ

T
)−1

= (1 + η)

(
n∑
i=1

ψiψ
T
i

w
(k)
i

δ2zi

)−1

. (B.1)

According to the basic property of quadratic equation, consider a simple example
(

1
z1

+ 1
z2

)−1

and there always holds
(

1
z1

+ 1
z2

)−1
= z1z2

z1+z2
≤ z1 + z2, with z1, z2 > 0 . The same pro-

cedure may be easily adapted to Eq.(B.1) as follows:

Var
(
θ̃k(x)

)
� (1 + η)

n∑
i=1

ψiψ
T
i w

(k)
i δ2zi

= (1 + η)δ2
n∑
i=1

ψiψ
T
i w

(k)
i zi. (B.2)

Therefore, the unconditional variance of the estimate θ̃k(x) as follows is bounded with

ψwkψ
T

Vk(x) ≡ E
[
Varθ̃k(x)

]
= E

[
(1 + η)δ2

n∑
i=1

ψiψ
T
i w

(k)
i zi

]

= (1 + η)δ2
n∑
i=1

ψiψ
T
i w

(k)
i E [zi]

= (1 + η)δ2
n∑
i=1

ψiψ
T
i w

(k)
i

= (1 + η)δ2ψwkψ
T . (B.3)
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Assumption B.4. Let for some constants b0 and b such that 1 < b0 ≤ b for any

2 ≤ k ≤ K, the matrices Bk = ΨWkΨ
T satisfy

b0Ip � B
−1/2
k−1 BkB

−1/2
k−1 � bIp.

Proof. of Theorem 3.1.

E
∣∣∣∣(θ̃k(x)− θ̂k(x)

)T (
ψwk(x)ψT

) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r
=

k−1∑
m=1

E
∣∣∣∣(θ̃k(x)− θ̃m(x)

)T (
ψwkψ

T
) (
θ̃k(x)− θ̃m(x)

)∣∣∣∣r I {θ̂k(x) = θ̃m(x)
}
.(B.4)

The event
{
θ̂k(x) = θ̃m(x)

}
happens if for some l = 1, · · · ,m, Tl,m+1 > ζl, Hence,

{
θ̂k(x) = θ̃m(x)

}
⊆

m⋃
l=1

{Tl,m+1 > ζl},

where Tl,m+1 =
(
θ̃l(x)− θ̃m+1(x)

)T (
ψwl(x)ψT

) (
θ̃l(x)− θ̃m+1(x)

)
.

Further, combined with the Cauchy-Schwarz inequality, for any positive a:

E
∣∣∣∣(θ̃k(x)− θ̃m(x)

)T (
ψwkψ

T
) (
θ̃k(x)− θ̃m(x)

)∣∣∣∣r I {θ̂k(x) = θ̃m(x)
}

= E
∣∣∣2LNSM (W (k), θ̃k(x), θ̃m(x)

)∣∣∣r I {θ̂k(x) = θ̃m(x)
}

≤
m∑
l=1

e−
a
4
ζl

{
E
[∣∣∣2LNSM (W (k), θ̃k(x), θ̃m(x)

)∣∣∣2r]} 1
2

{
E
[
exp

{
aLNSM

(
W (k), θ̃l(x), θ̃m+1(x)

)}]} 1
2
. (B.5)

Among which,

E

[∣∣∣2LNSM (W (k), θ̃k(x), θ̃m(x)
)∣∣∣2r]

= 2r

∫ ∞
0

P
{

2LNSM

(
W (k), θ̃k(x), θ̃m(x)

)
≥ ζ
}
ζ2r−1dζ

≤ 2r

∫ ∞
0

P

{
γ ≥ ζ

[
2 (1 + η)

(
1 + b(k−m)

)]−1
}
ζ2r−1dζ

= 22r (1 + η)2r
(

1 + b(k−m)
)2r

E
∣∣χ2
p

∣∣r
= η = 0 22rC(p, 2r)

(
1 + b(k−m)

)2r
, (B.6)
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and

E
[
exp

{
aLNSM

(
W (k), θ̃l(x), θ̃m+1(x)

)}]
=

p∏
j=1

[
1− aλj

(
V
−1/2
l,m+1

(
ψwmψ

T
)
V
−1/2
l,m+1

)]−1/2

≤
[
1− aλmax

(
V
−1/2
l,m+1

(
ψwmψ

T
)
V
−1/2
l,m+1

)]−p/2
≤

[
1− 2a (1 + η)

(
1 + b−(m+1−l)

)]−p/2
= η = 0

[
1− 2a

(
1 + b−(m+1−l)

)]−p/2
. (B.7)

Therefore, we obtain

E

∣∣∣∣(θ̃k(x)− θ̂k(x)
)T (

ψwk(x)ψT
) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r
≤ 2r

√
C(p, 2r)(1− 4a)−p/4

k−1∑
m=1

m∑
l=1

e−
µ
4
ζl
(

1 + b(k−m)
)r

≤ 22r
√
C(p, 2r)(1− 4a)−p/4(1− b−r)

k−1∑
l=1

e−
µ
4
ζlbr(k−l). (B.8)

For any l < k < K, with an arbitrary constant a ∈ (0, 1/4) the choice of the threshold

of the form

ζl =
4

a

{
r(K − l)logb+ log

K

α
− p

4
log(1− 4µ)− log(1− b−r) + C̄(p, r)

}
,

where C̄(p, r) = log
{

22r[Γ(2r+p/2)Γ(p/2)]1/2

Γ(r+p/2)

}
provides the required PC bounds.

E

∣∣∣∣(θ̃k(x)− θ̂k(x)
)T (

ψwk(x)ψT
) (
θ̃k(x)− θ̂k(x)

)∣∣∣∣r ≤ αC(p, r), for all k = 2, · · · ,K.
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Appendix C

Appendix C shows the details of Notations for DPMM sampler in Chapter 4.

Given the allocation variables Z, define

Z∗ = max
1≤i≤n

Zi.

Similarly, given the auxiliary variable U = (U1, U2, · · · , Un) and the vector V, define

U∗ = min
1≤i≤n

Ui.

and

C∗ = min

{
c ∈ Z+ :

c∑
l=1

ψl > 1− U∗
}

= min

{
c ∈ Z+ :

c∑
l=1

[
Vl
∏
r<l

(1− Vr)

]
> 1− U∗

}

The purpose of the variable C∗ is to provide an upper limit on which mixture components

need updating at each sweep. Specifically, although there are infinitely many component

parameters in the model, since P (Zi = c|Ui > ψc) = 0, we need only concentrate our

updating efforts on those components c for which ψc > Ui for some i = 1, 2, · · · , n.
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With these definitions in place we make use of the following sets and vectors (which

again will change at each sweep)

A = {c ∈ Z+ : c ≤ Z∗},VA = (V1, V2, · · · , VZ∗),ΘA = (Θ1,Θ2, · · · ,ΘZ∗)

P = {c ∈ Z+ : Z∗ < c ≤ C∗},VP = (VZ∗+1, VZ∗+2, · · · , VC∗),ΘP = (ΘZ∗+1,ΘZ∗+2, · · · ,ΘC∗)

I = {c ∈ Z+ : Z∗ > C∗},VI = (VC∗+1, VC∗+2, · · · ),ΘI = (ΘC∗+1,ΘC∗+2, · · · )
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