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Abstract
Survival rates in cancers have improved vastly over the years. However, some survival rates
remain extremely low, as is the case for ovarian and lung cancer. The lack of robust and
reliable biomarkers is strongly reflected in the absence of pre-screening programs, and as
such, most patients in these cancer types are diagnosed only in advanced stages, leaving few
treatment options. Moreover, relapse and resistance to therapies adds to the complexities of
treating these diseases, even in the era of targeted drug development.

Research has shown the presence of cancer material, in the form of circulating cancer
cells (CTCs) and genomic material in the blood of patients, opening the possibility of ‘liquid
biopsies’. Liquid biopsies allow sampling of the disease to provide phenotypic and genomic
data on the cancer in real-time and on a routine basis. Moreover, they overcome obstacles
currently faced by conventional tissue biopsies.

In this work we evaluate the use of a novel CTC imaging flow-cytometry platform, and
report the ability to characterise and quantify these cells in blood samples. Moreover, we
report significantly higher levels of CTCs in cancer patients compared to controls, and found
them to be associated with a poorer prognosis. In particular, in lung cancer we observe these
findings even in the early stages, suggesting a potential diagnostic use for this assay. We
detect a similar trend in when analysing the ctDNA and suggest the possibility of using this
technique with a prognostic value in the advanced setting.

We also report on the analysis of existing microarray data by use of unique gene regula-
tory networks to identify biomarkers of interest. RAD51AP1 was identified by this process.
Clinical validation revealed an over-expression of this gene in both tissue and blood of ovar-
ian and lung cancers. Moreover, the gene over-expression was associated with a poor over-
all survival. Functional analysis in vitro revealed silencing RAD51AP1 suppressed tumour
growth, in addition, various tumorigenic proteins were down-regulated, whilst apoptotic
and immune genes were up-regulated. These results suggest a role for RAD51AP1 as a
potential therapeutic target.

In this study, we also demonstrate the ability to further exploit tumour genomic material
in the blood by means of RNAseq, cancer panels, and CNI scoring to identify novel mark-
ers, that play an important role in disease genesis and evolution. RNAseq analysis identified
XIST as a gene up-regulated in the blood and tissue of lung cancers. The ovarian cancer pan-
els revealed 2 unique gene signatures in the ovarian cancer patients. With the CNI analyses
also highlighting chromosomal aberrations from plasma analysis of cancer patients.

Collectively, the use of all these techniques and exploitation of available blood based
biomarkers could see significant improvements to survival rates in these, currently devas-
tating diseases.
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Chapter 1

Introduction

1.1 Prolegomenon

Cancer diagnosis and treatment has come a long way over the past four decades; despite
this, survival rates in some cancers remain poor. This is particularly true in lung and ovar-
ian cancers, where ten-year survival rates are only 5 and 35%, respectively (CRUK, 2017). An
important contributing factor to these poor survival rates is the late diagnosis. Even for the
advanced disease, the symptoms are often vague which results in the majority of patients
being diagnosed only at late stages (e.g. III and IV). Moreover, it is well known that progno-
sis in cancer is related to staging, with earlier diagnosis offering more treatment options and
better chances of survival. To complicate things further, the limited knowledge of interpa-
tient variability, which defines the disease and modulates response to therapeutics, is also
an important issue clinicians’ face when treating patients. In light of this, much interest is
now focused on ‘precision medicine’ or personalised therapy, whereby individual patients
are given a treatment tailored specifically to their disease, taking into account their individ-
ual genetic profile and potential responses to therapeutics. This allows the identification of
the best treatment regime for the patient based on their exact needs.

In support of precision medicine, much research is currently being channelled in to the
development of robust ‘liquid biopsy’ biomarkers. ‘Liquid biopsy’, is an innovative tech-
nology that comes to improve and potentially replace the classic invasive tumour biopsy.
It consists of exploiting blood samples for various biomarkers, that can reflect the genetic
diversity of the tumour profile, and act as a surrogate biomarker to aid in cancer diagnosis
and treatment. Several such biomarkers have been identified, including circulating tumour
cells (CTCs), circulating nucleic acids (ctNAs) (i.e. DNA and RNA), and genomic material
in whole blood. Here, we look holistically at these biomarkers, evaluate their efficacy, and
judge their clinical utility and relevance to identify a robust biomarker that can be used in
‘liquid biopsy’, in the move towards personalised treatments.
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1.2 Ovarian cancer

1.2.1 Incidence of ovarian cancer

Over 7,000 new ovarian cancer cases are diagnosed in the UK every year, making it the fifth
most common cancer in the UK (CRUK, 2017). Despite a slight decrease in the number of
new cases per year in the UK over the past 20 years, the gap between incidence and deaths
remains unchanged, suggesting little or no improvement in overall survival rates, Fig 1.1.
As a result, ovarian cancer is still a deadly disease, with a cure rate of only 30% (Lengyel,
2010).
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FIGURE 1.1: Incidence and deaths of Ovarian cancer by year. Rate of ovarian
cancer incidence and deaths per 100,000 by year from 1989 to 2009 in UK. Data

sourced from Poole and Nordin, 2012.

Poor survival is partly contributed to the late diagnosis, where treatment options become
limited, and metastatic spread adds a new level of complexity. On average, 70% of patients
are being diagnosed at stages III and IV (Buys et al., 2011), with 47% being classed as distant
due to cancer spread, Fig 1.2. This has far implications and can be associated with eventual
relapses despite the use of conventional treatment approaches (surgery, chemotherapy) (Li
et al., 2004).

Typically, if the disease is confined to the ovaries, the cancer is classed as localised. Once
the cancer begins to spread into the nodes and around the body, the cancer is classed as
regional or distant (CRUK, 2017). The majority of ovarian cancers are of epithelial origin
(Vargas, 2014).
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FIGURE 1.2: Extent of cancer spread at time of diagnosis. The extent of cancer
spread at time of diagnosis, based on data from patients diagnosed in 2012,
2013 and 2014 and followed up in 2015 in UK. Data sourced from Bannister

and Broggio, 2016.

Ovarian cancer is primarily a post-menopausal disease, with the majority of cases diag-
nosed in patients at the age of 55-74 years (45.5%), Fig 1.3.
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FIGURE 1.3: Cancer diagnosis by age. Chart showing age of cancer diagnosis,
based on 2012 to 2014 figures. Data sourced from CRUK, 2017.
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1.2.2 Staging and disease progression in ovarian cancer

All patients diagnosed with ovarian cancer, are staged on their disease according to the
Federation of Gynaecology and Obstetrics (FIGO) staging system, detailed in Table 1.1, and
diagrammatic representation of disease and stage can be seen in Fig 1.4 below.

Stage Sub-stage Description

I Ia The tumour is confined to one ovary with no
signs of tumour on the surface.

Ib As Ia but involving both ovaries.
Ic The tumour is confined to one or both ovaries

with either or all of the following: signs of the
tumour on the surface of the ovary, rupture of
tumour capsule before or during surgery, ma-
lignant cells found in ascites.

II IIa Metastasis outside the ovaries in the uterus or
fallopian tubes.

IIb Metastasis to pelvic cavity organs for example
the bladder.

III IIIa Metastasis to retroperitoneal lymph nodes or
microscopic malignancy found outside the
pelvis.

IIIb Tumour smaller than or equal to 2cm found
outside the pelvic cavity including surface of
liver and/or spleen.

IIIc Tumour bigger than 2cm found outside the
pelvic cavity including surface of liver and/or
spleen.

IV IVa Pleural effusion (fluid around the lungs) posi-
tive for malignant cells.

IVb Metastasis to distant sites including extra-
abdominal and parenchymal liver or spleen in-
volvement.

TABLE 1.1: Ovarian cancer staging. Ovarian cancer staging parameters, as
defined by FIGO (Society for Gynecologic Oncology, 2014).
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FIGURE 1.4: Ovarian cancer location by stage. Ovarian cancer location by
stage. (A) Healthy ovaries with no cancer. (B) Stage I ovarian cancer, where
the cancer is confined to one or both ovaries. (C) Stage II ovarian cancer, where
the cancer spreads within the pelvic region. (D) Stage III ovarian cancer, the
cancer has metastasised within the abdomen, this is also the average stage of
diagnosis. (E) Stage IV ovarian cancer, metastasis has now spread beyond the
abdomen to distant organs. Taken from http://smrfteal.org November 2017.
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In addition to staging, patients are also graded on their ovarian cancer as detailed in
Table 1.2.

Grade Description

I Well differentiated
II Moderately differentiated
III Poorly differentiated

TABLE 1.2: Ovarian cancer grading. Description of grading parameters in
ovarian cancers.

The biology of ovarian carcinoma differs from that of hematogenous-initiatied metasta-
sising tumours, as ovarian cancer cells primarily disseminate within the peritoneal cavity,
and thus are only superficially invasive. The rapidly proliferating tumours however com-
press the visceral organs (Lengyel, 2010).

Ovarian carcinomas are most likely to originate from the surfaces of the ovary, the fallop-
ian tube, or the mesothelium-lined peritoneal cavity. Growing evidence supports the fallop-
ian tube epithelia as an etiological site for the development of high grade serous carcinoma
of the ovaries and consequently, salpingectomy alone is emerging as a prophylactic option.
The fallopian tube epithelium (FTE) and the ovarian surface epithelium (OSE), have both
been shown to share common mesodermal embryological origin and a close anatomic prox-
imity (George, Garcia, and Slomovitz, 2016). Ovarian cancer tumorigenesis progresses either
from a slow growing borderline tumour to a well-differentiated carcinoma (type I), or in-
volves a genetically unstable high-grade serous carcinoma that can metastasise rapidly (type
II). During the initial stages of tumorigenesis, ovarian cancer cells undergo an epithelial-to-
mesenchymal transition (EMT); this involves a change in cadherin and integrin expression
and up-regulates the proteolytic pathways (Huber, Kraut, and Beug, 2005; Cavallaro and
Christofori, 2004). These cancer cells are carried on the peritoneal fluid, where cancer cell
spheroids overcome anoikis, and attach preferentially on the abdominal peritoneum or the
omentum, at which point the cancer cells revert to their epithelial phenotype (Sawada et al.,
2007).

Metastasis is initially regulated by a controlled interaction of adhesion receptors and
proteases, whereas late metastasis is characterised by the oncogene-driven fast growth of
tumour nodules on mesothelium covered surfaces, in turn causing ascites, bowel obstruc-
tion, and tumour cachexia (Lengyel, 2010).



Chapter 1. 7

1.2.3 Ovarian cancer survival

Long term survival rates in ovarian cancer remain comparatively poor, with a 10 year sur-
vival of only 35%, Fig 1.5. Ovarian cancer is the most common cause of deaths in genealog-
ical cancers in the UK (CRUK, 2017).

FIGURE 1.5: Ovarian cancer survival rates over 10 years. Chart showing a
decline from approximately 72% at 1 year to approximately 35% at 10 years.

Taken from CRUK, 2017.

Survival is also dependent on stage of the cancer with advanced cases showing poorer
survival as presented in Fig 1.6.



Chapter 1. 8

FIGURE 1.6: Ovarian cancer survival by stage. Ovarian 5 year survival data
by stage of cancer. Data shows poorer survival with advancement in stage.

Taken from CRUK, 2017.

The absence of a robust screening tool has hindered potential early diagnosis efforts,
in part due to the absence of a reliable biomarker for this disease. Typical ovarian cancer
screening exists as a transvaginal vaginal scan (Transvaginal ultrasound - TVUS), and de-
tection of the cancer antigen 125 (CA125), neither of which have been successful. CA125
is commonly utilised as a means of monitoring treatment management of patients diag-
nosed with ovarian cancer (Gupta and Lis, 2009). CA125 is known to be elevated in ovarian
cancers, however CA125 levels are also known to be elevated in various other non-ovarian
cancer related diseases, deeming this inadequate as a screening tool (Gupta and Lis, 2009).
Although due to lack of other markers, the CA125 serum levels are commonly used as a
means of monitoring responses to chemotherapy, relapse, and disease progression.

CA125 is a membrane associated glycoprotein, known to be involved in cell adhesion,
migration and metastasis. CA125 is commonly used clinically to monitor disease progres-
sion in patients undergoing ovarian cancer treatment, and had been suggested as a possible
screening/diagnostic tool (Menon et al., 2015; Giannakouros et al., 2015; Reinartz et al.,
2012; Rump et al., 2004). The efficacy of CA125 is questionable due to a high propensity for
false positives. Conditions such as heart failure, endometriosis, and breast cancer also raise
CA125 levels, as do demographic and lifestyle factors such as ethnicity, obesity, and tobacco
(Folga et al., 2012; Mol et al., 1998; Johnson et al., 2008). A CA125 value of 35 units per mL is
considered abnormally high, however Johnson et al. 2008 found this to be the case in 1.6%
of non-cancer individuals (Johnson et al., 2008). Buys et al. 2011 carried out a randomised
trial in the US to explore the utility of CA125 as a screening tool in conjunction with TVUS
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(Buys et al., 2011). General findings suggested simultaneous screening of TVUS (for 4 years)
and CA125 (offered annually for 6 months), compared with the usual care offered by their
centre did not reduce ovarian cancer mortality. The false positive rate was reported as high
as 8.4%, of which a diagnostic evaluation was based on, resulting in further complications
for 15% of patients. All these results highlight the limitations and even the inadequacy of
this approach (Buys et al., 2011). However, more recently a study described the benefits
of early screening using the Risk of Ovarian Cancer Algorithm, along with the frequent of
CA125 testing in women at an increased familial risk of ovarian cancer (Skates et al., 2017).

1.2.4 Treatment of ovarian cancer

Treatment in the UK for ovarian cancers is dependent on the type and stage of cancer, and
consists of a combination of surgery, chemotherapy, and radiotherapy, with the majority of
patients undergoing primary debulking surgery to remove malignant tissue, followed by
further treatment (NHS choices).

Many agents are being developed against a range of potential new molecular therapeutic
targets for the treatment of ovarian cancer. For this, research has been focused on tumour
growth and metastasis. Several clinical trials are being run in the UK, Table1.3 lists a few
targeted drug clinical trials.

Drug name Treatment/Target

Cediranib Inhibits the vascular endothelial growth factor (VEGF)
Thalidomide antiangiogenic and immunomodulatory properties
Pazopanib Receptor tyrosine kinase inhibitor (TKI)
Olaparib inhibits poly ADP ribose polymerase (PARP)
Niraparib PARP inhibitor

TABLE 1.3: Details of current targeted therapies in ovarian cancer. List
of some current targeted drug clinical trials within the UK from Clinicaltri-

als.gov, 2018.

Angiogenesis is one of the processes central to tumour growth and metastasis. It is gene-
rally triggered by localised tissue conditions, such as hypoxia, which cause the release of
angiogenic promoters from cells in the affected tissue. Vascular endothelial growth factor
(VEGF) is one of the most important promoters produced by normal and neoplastic cells.
It is a diffusible glycoprotein, and is an important regulator of physiological and patholog-
ical angiogenesis. Increased levels of VEGF expression have been found in most human
malignancies including tumours of the lung, breast, thyroid, gastrointestinal tract, kidney,
bladder, ovary, cervix, and pancreas, as well as angiosarcomas and glioblastomas. Increased
VEGF serum levels have been correlated with poor survival (Li, Zeng, and Shen, 2014).
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In ovarian cancer, angiogenesis has been shown to have a central role in both disease
progression and prognosis. A direct relationship has been demonstrated between the ex-
pression of biomarkers for angiogenesis such as VEGF, the degree of neovascularization
and the behaviour of epithelial ovarian cancers (Yoneda et al., 1998; Burger et al., 2007).
These data suggest that pharmacological inhibitors of angiogenesis may have the capacity
to arrest tumour progression. Several phase II trials of different antiangiogenic drugs have
been reported to demonstrate activity against relapsed ovarian cancer (Burger et al., 2007;
Friedlander et al., 2010).

1.2.5 Ovarian cancer relapse

Once ovarian cancer recurs, a curative option is almost non-existent, beyond this point the
disease is considered chronic with sequential relapses and remissions. Over 80% of pa-
tients with advanced ovarian cancer will relapse and despite further good remissions from
additional chemotherapy, they will usually die from their disease (Luvero, Milani, and Le-
dermann, 2014). Nationally there are likely to be about 4,200 patients (70% of the forecasted
∼7,000 new cases per annum), who will have recurrence of their cancer.

Sequential treatment strategies are employed to maximise quality and length of life.
Many of these patients will receive three or more lines of chemotherapy but will eventually
become resistant to standard therapies. Further treatment is required in order to prevent
the onset of symptoms in this group of resistant patients. Preference is generally given for
simple non-toxic therapies that will maintain or improve quality of life. In addition, after
several lines of chemotherapy, many patients do not want further intravenous treatment
with its’ associated often weekly hospital visits. The adverse effects and ease of administra-
tion of any future treatments are of paramount importance to maximise patients’ quality of
life.

1.3 Lung cancer

1.3.1 Incidence of lung cancer

Lung cancer incidences in the UK, were reported at 46,403 in 2014, accounting for 13% of
all cancer cases in the UK (CRUK, 2017). Despite an overall decrease in incidence over the
years, the rate of deaths has remained constant, Fig 1.7.

Moreover, similarly to ovarian cancer, late diagnosis is also responsible for the poor over-
all survival rates, where there are no effective screening programs. Over 60% of patients are
diagnosed in advanced stages, where treatment options become limited and prognosis is
poor (Bannister and Broggio, 2016), Fig 1.8.
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In contrast, lung cancer incidence for females has increased by 27.6% over the same period from 51.4 diagnoses 
per 100,000 in 1995 to 65.6 diagnoses per 100,000 in 2015. Mortality rates for females remain fairly consistent 
since 1995 with only a slight increase of 5.0% to 2015, rising from 45.9 per 100,000 in 1995 to 48.2 per 100,00 in 
2015.

Figure 10: Directly age-standardised rates per 100,000 people of newly diagnosed cases of lung cancer 
and deaths from lung cancer, England, 1995 to 2015

Source: Office for National Statistics

Notes:

The International Classification of Diseases Tenth Revision (ICD-10) was used to classify cancer sites for 
incidence data for all years.

Mortality rates for years 1995 to 2000 inclusive have been mapped from The International Classification of 
Diseases Ninth Revision (ICD-09).

All ages combined.

The gap in lung cancer incidence between males and females has been narrowing for a number of years. There 
has been a steady decrease in male lung cancer since the 1980s, whereas lung cancer incidence among females 
has steadily been increasing since the 1970s. The change in incidence could be explained by smoking, which is 
identified as the . Figure 11 shows the decline in average daily cigarette most common cause of lung cancer
consumption since 1974, as described in . Over time, average daily Adult Smoking Habits in the UK: 2015
cigarette consumption among men who smoke has typically been higher than in female smokers. Despite this, in 
recent years the gap between male and female cigarette consumption has been narrowing.

FIGURE 1.7: Lung cancer incident rates. Lung cancer incidents per 100,000
persons from 1995 to 2015 in the UK for male and female patients. Figure

extracted from Kaur and Poole, 2017.
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FIGURE 1.8: Lung cancer diagnosed by stage. Percentage of cases diagnosed
by stage, 2012-2014 and followed up in 2015 in UK. Data sourced from Ban-

nister and Broggio, 2016.
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1.3.2 Staging and disease progression in lung cancer

Primary lung cancers are commonly staged and graded according to the TNM staging sys-
tem. The T refers to the size and extent of the tumour, N refers to the number of nearby
lymph nodes affected by the tumour, and M signifies metastasis. Details of the TNM stag-
ing system are shown in Tables 1.4, 1.5, 1.6 and Fig 1.9.

T Stage Sub-stage Description

Tx - Primary tumour cannot be assessed, or tumour proved
by the presence of malignant cells in sputum or bronchial
washings, but not visualised by imaging or bronchoscopy.

TI Ia Tumour is ≤2cm in greatest dimension, surrounded by
lungs or visceral pleura, without bronchoscopic evidence
invasion, more proximal then the lobar bronchus.

Ib As Ia but tumour is 2-3cm.
TII IIa Tumour ≤5cm in greatest dimension.

Involves main bronchus, ≥2cm distal to the carina.
Involves the visceral pleura.
Associated with atelectasis or obstructive pneumonitis that
extends to the hilar region but does not involve the entire
lung.

IIb As IIa but tumour is 5-7cm.
TIII - Tumour of any size that directly invades: chest wall, di-

aphragm, mediastinal pleura, parietal pericardium; or
Tumour in the main bronchus <2cm distal to carina, but
without involvement of the carina; or
associated atelectasis or obstructive pneumonitis of the en-
tire lung.

TIV - Tumour of any size that invades any of the following: medi-
astinum, heart great vessels, trachea, oesophagus, vertebral
body, carina; or
tumour with a malignant pleural or pericardial effusion,
or with satellite tumour nodule(s) within the ipsilateral
primary-tumour lobe of the lung.

TABLE 1.4: Lung cancer staging classification. Details of the T classification
of the TNM staging system and sub sections within, referring specifically to

the size and extent of the primary tumour. Adapted from Cancer.org, 2018.
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N Stage Description

Nx Reginal lymph nodes cannot be assessed
N0 Reginal lymph nodes cannot be assessed
N1 Metastasis to ipsilateral peribronchial and/or ipsilateral hilar lymph

nodes, interpulmonary nodes involved by direct extension of the pri-
mary tumour

N2 Metastasis to ipsilateral peribronchial and/or ipsilateral hilar lymph
nodes, interpulmonary nodes involved by direct extension of the pri-
mary tumour

N3 Metastasis to contralateral mediastinal, contralateral hilar, ipsilateral
or contralateral scalene, or supraclavicular lymph node(s). Details of
regional lymph node involvement determined by the N classification
of the TNM staging system.

TABLE 1.5: Lung cancer N stage classification. Details of regional lymph
node involvement determined by the N classification of the TNM staging sys-

tem. Adapted from Cancer.org, 2018.

M Stage Description

Mx Presence of distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis present

TABLE 1.6: Lung cancer M stage classification. M classification details of
the TNM staging system, determining distant metastasis. Adapted from Can-

cer.org, 2018.
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FIGURE 1.9: Diagrammatic representation of lung cancer stages I – IV.
Where at stage I the primary tumour is small and localised to one lung, stage
II depicts growth and spread of the tumour to nearby lymph nodes. Stage
III represents further growth of the tumour and spread to additional lymph
nodes, by stage IV the tumour is shown to spread to distant organs. Taken

from Asbestos.ucoz.net, 2018.

Lung cancers arise from the cells of the respiratory epithelium, and can be separated
into two broad categories. Small cell lung cancer (SCLC), a highly malignant neuroen-
docrine tumour subtype derived from cells exhibiting neuroendocrine characteristics. SCLC
account for 15% of all lung cancer cases. The other category being non–small cell lung cancer
(NSCLC) (epithelial cancer), which accounts for the remaining 85% of cases, can be further
divided into 3 major pathologic subtypes: adenocarcinoma, squamous cell carcinoma, and
large cell carcinoma. Adenocarcinoma itself accounts for 38.5% of all lung cancer cases,
squamous cell carcinoma for 20%, while large cell carcinomas covers for 2.9% of all lung
cancer cases, with the rest made up from other less common subtypes including, adenosqua-
mous carcinoma and sarcomatoid carcinoma (Herbst, Heymach, and Lippman, 2008; Dela
Cruz, Tanoue, and Matthay, 2011). Over the past several decades, incidence of adenocarci-
nomas has increased greatly, replacing squamous cell carcinoma as the most prevalent type
of NSCLC (Dela Cruz, Tanoue, and Matthay, 2011).

There is also a genetic component in the pathogenesis of lung cancer, these have been
shown to differ between smokers and non-smokers. Various genetic mutations have been
associated with lung cancers (frequency in NSCLCs), including epidermal growth factor
receptor (EGFR) (10-35%), KRAS (15-25%), PTEN (4-8%), and anaplastic lymphoma kinase
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(ALK) (3-7%), as the most frequently mutated (MyCancerGenome, 2017; Brambilla and Gaz-
dar, 2009).

A lung cancer risk prediction analysis developed by Spitz et al. 2007, reported the in-
fluence of a family history of cancer increases the risk of developing lung cancer in non-
smokers, ex-smokers, and current smokers (Spitz et al., 2007; Spitz et al., 2008).

Multiple genetic, cellular, and local tissue alterations have been known to be involved in
a chronic process that can lead to lung carcinogenesis. The transformation of normal cells to
pre-neoplastic cells to malignant cells, involves changes including, DNA damages, genetic
and epigenetic alterations, and the progression and proliferation of cells, leading to inva-
sion outside of the boundaries of the local lung tissues that is characterised as metastases.
Exposure to various carcinogens can alter normal cells before clinically detectable, invasive
malignant tumours occur (Dela Cruz, Tanoue, and Matthay, 2011).

1.3.3 Lung cancer survival

Lung cancer is one of the leading causes of death around the world, in America it accounts
for more deaths than breast, prostate, and colon cancers combined (Dela Cruz, Tanoue, and
Matthay, 2011). Reports show five year survival as low as 18.1% (based on 2007-2013 data),
accounting for 25.9% in the USA (2008-2013 data) of all cancer deaths (SEER, 2017). In the
UK, survival at 1 year is around the 35% in both genders, and falls to around only 5% sur-
vival by ten years (CRUK, 2017), Fig 1.10.

FIGURE 1.10: Ten year lung cancer survival by gender in the UK. Taken from
(CRUK, 2017).
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Once again, survival is dependent to the stage of the cancer, with advanced cases in
stage IV having the worst survival rates, of less than 20% in both males and females, Fig
1.11. This is mostly due to the lack or absence of conspicuous symptoms, and consequently
a late diagnosis.

FIGURE 1.11: Net survival (%) in lung cancer patients by staging, broken
down by gender, in the UK. Taken from (CRUK, 2017).

The lack of robust biomarkers as part of a screening tool, also contribute to the late di-
agnosis and poor associated outcomes (CRUK, 2017). Currently most lung cancer findings
are incidental, due to the lack of conspicuous symptoms. Those patients who present symp-
toms (respiratory related) are usually in more advanced stages of the disease (Midthun,
2016). Currently most findings of lung cancer are incidental, usually from X-rays and CT
scans. The incidence of lung cancer and related mortality can be reduced by: early detec-
tion, treatment of disease, chemoprevention, and smoking avoidance and cessation (Kelley
and McCrory, 2003).

1.3.4 Lung cancer treatment

Surgery is the gold standard treatment in cancer, followed by radio- and chemotherapy,
either independently, if the patient is unfit for surgery or the cancer is too advanced, or
combined. Limitations of radiotherapy, and chemotherapy more so, are the toxicity to pa-
tients, but also the risk of no response to the treatment. Monitoring response to chemother-
apy can be complicated as scans may not necessarily show much change in the tumour in
the short term, and tissue biopsies are impractical on a routine basis. Currently, response
to chemotherapy is monitored by scans after cycles are completed (with some cycles last-
ing several months), meaning substantial time lapse before efficiency of the drug can be
measured, and the patient is reassessed for other treatment should the current therapy be
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ineffective (Housman et al., 2014). Various clinical trials are currently underway, targeting
therapies. Table 1.7 lists some of these.

Drug name Treatment/Target

Gefitinib Receptor tyrosine kinase inhibitor (TKI)
erlotinib Receptor tyrosine kinase inhibitor (TKI)
Pazopanib Receptor tyrosine kinase inhibitor (TKI)
Olaparib Inhibits poly ADP ribose polymerase (PARP)

TABLE 1.7: Lung cancer targetted therapies. Lists of some current targeted
drug clinical trials for lung cancers within the UK (Clinicaltrials.gov).

Surgery is the only potentially curative treatment for early-stage NSCLC patients (Mit-
sudomi, Suda, and Yatabe, 2013). Many patients with NSCLC have been cured by surgery;
however, 30 to 55% of patients develop recurrence and die of their disease despite curative
resection (Kattan et al., 1997; Hoffman, Mauer, and Vokes, 2000; Carnio et al., 2013).

Numerous studies have been conducted to determine causes of recurrence after com-
plete resection. These studies have shown that complete cancer removal needs to be ensured
both macroscopically and microscopically (Matsutani et al., 2017; Chudasama et al., 2017a).
It has been suggested that there are occult micro-metastatic cancer cells, undetected by stan-
dard staging methods, already present systemically in the patients at the time of surgery
(Uramoto and Tanaka, 2014). Moreover, handling of the tumour during surgery itself may
also lead to the further dissemination of cancer cells (Hayashi et al., 1999; Hashimoto et al.,
2014). Reports on these cancer cells, known as circulating tumour cells (CTCs) have been
previously described (Pantel, Brakenhoff, and Brandt, 2008; Sienel et al., 2003; Tanaka et al.,
2009). Numerous studies have reported an association between the presence of CTCs during
tumour resection and patient outcomes (Pantel, Brakenhoff, and Brandt, 2008).

1.4 Metastatic spread

The development of metastatic disease is responsible for 90% of all cancer related deaths
(Moore et al., 2008). The general underlying metastatic process is thought to be similar in
all cancer types. Once metastasis has been established, prognosis is often very poor in indi-
viduals due to the aggressive nature of the disease. The process of metastasis is propagated
by cancerous cells, which intravasate to allow lymphohematogenous dissemination to other
areas of the body (Fidler, 2003).

The three major routes of tumour cell invasion and formation of tumour metastasis are: i)
the lymphatic vessels, ii) the bloodstream, iii) and the transcoelomic (across cavities) spread
into the pleural, pericardial, and abdominal cavities (Fidler, 1978). The haematogenous
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system is the most common, and regarded as the primary route for distant metastasis. The
exact mechanisms are not fully understood. Figure 1.12 shows the cancer cell proliferation
leading to metastasis.

FIGURE 1.12: Diagrammatic representation of the metastatic process.
Schematic showing general tumour growth leading to metastasis. The initi-
ation of tumour growth can be seen from the proliferation of a few cancerous
cells, with growth and development of the tumour cells seen to invade sur-
rounding tissue and enter the lymphatic vessels and blood stream where they
are carried to distant sites, leading to metastasis (taken from Knoji.com, 2017).

Tumour cells can also lay dormant in the bone marrow (known as disseminating tumour
cells), for a number of years, before they re-enter the bloodstream en-route to a secondary
site (Slade et al., 2009). This theory could explain variations in metastasis amongst individ-
uals (e.g. time to metastasis and where secondary tumour growth occurs); as at present it is
not well understood what other factors trigger the metastatic pathway.

1.5 Limitations in ovarian and lung cancer contributing to poor
survival rates

As highlighted previously, there are several limitations that if by-passed could potentially
improve survival rates. In order to achieve this, there is a need for a robust biomarker or
genetic signature that could be used for diagnostic and prognostic purposes. Below lists the
limitations that could be addressed by this approach:

• Absence of a robust screening tool for early diagnosis resulting in mostly late diagnosis
in both cancers.
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• Absence of a robust biomarker for routine real-time treatment monitoring. Current
measures allow infrequent monitoring to assess efficiency of the treatment, particu-
larly in the case of chemotherapy.

• Absence of a robust biomarker for monitoring of relapse post curative surgery was
shown to be an area of concern, with alarmingly high rates of recurrence, owing to the
presence of macro and microscopic tumour remnants, known as CTCs.

Most of these limitations exist due to the restrictive use of tissue biopsies; in the next
section we discuss developments in liquid biopsies and their role in addressing these short-
comings.

1.6 Liquid biopsy & biomarkers

Recent research around cancer cells in the blood, such as CTCs and ctDNA has generated
much interest, opening the potential to a ‘Liquid Biopsy’ option, as an alternative to a con-
ventional tissue biopsy. Thus, allowing for a better routine monitoring system, but also ro-
bust genetic characterisation of the cancer. The concept of tumour and cancer profiling from
blood components is an exciting field, opening the potential to solve many issues currently
surrounding cancer diagnosis and treatment.

Several limitations have been identified in tissue biopsies compared to blood liquid
biomarkers, Table 1.8 details these.

Tissue Biopsy vs Liquid Biopsy

Tissue Biomarker Blood Biomarker

Can probe many features Can probe many features
Single location, limited sampling Tissue volume , full tumour burden sam-

pling possible
Invasive (tissue biopsy) Non-invasive
Serial assay challenging Serial assay possible
Widely available central assay Widely available local and central assay

TABLE 1.8: Comparison of the use of tissue and liquid biomarkers.

Several advantages exist with the use of liquid over tissue biomarkers. There are var-
ious applications and clinical uses for liquid biopsies, as highlighted above. This section
discusses in more detail the potential uses and benefits of a liquid biopsy in these particular
areas, to improve prognosis and survival.

The ‘liquid biopsy’ is appealing due to its non-invasive nature, and by comparison with
conventional biopsies is also much more cost effective. Furthermore, blood analysis allows
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for routine sampling on even a daily basis, where this would be impractical with a tissue
biopsy, which may be obtainable 2-3 times a year, particularly in the case of ovarian and
lung cancers.

This study looks to evaluate various blood based indicators, in an attempt to identify a
robust ‘liquid biopsy’ marker for use in cancer clinical practice.

1.6.1 Circulating tumour cells

The general definition of CTCs remains universal, as cancer cells of epithelial origin that
have detached from the primary tumour, or a metastatic site, and entered the blood circula-
tion (Allard et al., 2004; Hou et al., 2012; Park et al., 2012). Some CTCs are thought to arise
as a consequence of passive tumour cell shedding. However, a more complex epithelial-
to-mesenchymal transition has also been described, whereby cells lose their differentiated
epithelial characteristics and acquire mesenchymal features including motility, invasiveness,
and a resistance to apoptosis (Polyak and Weinberg, 2009; Munzone et al., 2012). Neverthe-
less the cells are shed from the tumour and express tumour-specific characteristics (Hilter-
mann, Wekken, and Groen, 2012). Most CTCs that detach from a primary tumour die; it has
been suggested by pre-clinical models that only as few as 0.01% will give rise to metastasis.

The passage of CTCs in peripheral blood is key to the genesis of distant metastases in
various cancers and hence crucial to patient outcomes. Fig 1.13 details the concept of CTCs.

FIGURE 1.13: CTCs entering the blood circulation. Diagrammatic represen-
tation of the process of CTCs entering the general blood circulation, with high-
lights on the role of EMT and MET in the spread of cancer (Krzeszinski and

Wan, 2015).
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CTCs have long been hypothesised as being heavily implicated with metastatic disease
(Hiltermann, Wekken, and Groen, 2012), with the haematogenous spread of carcinoma re-
sulting in incurable metastasis, yet the basic characteristics of cancer cells in the bloodstream
are relatively unknown, including their ability to evade apoptosis, and mechanisms that in-
fluence and facilitate migration, particularly to specific secondary sites (i.e. ovarian metas-
tasis occurs mostly in the bowel, bladder, and abdomen, whereas lung cancers commonly
metastasizes to the liver, brain, and bones) (Hong, Fang, and Zhang, 2016; Dalum, Holland,
and Terstappen, 2012; Valastyan and Weinberg, 2011). Previous studies have detected CTCs
in both ovarian and lung cancers, reporting positive findings and associations with prog-
nosis (Normanno et al., 2016; Hamilton and Rath, 2016; Nurwidya et al., 2016; Zhou et al.,
2015; Kolostova et al., 2016; Romero-Laorden et al., 2014).

Detection of potentially small populations of CTCs within the large number of normal
blood cells represent a significant technical challenge (Hou et al., 2013; Dent et al., 2016).
Isolation of CTCs has been attempted by using physical features such as their larger size
and weight. Microfluidic techniques, where spaces and flows are commensurate with a
scale of single cells, allowing CTCs to be captured (Autebert et al., 2012). Table 1.9 lists some
CTC isolation platforms.

Lable-Free Affinity based

Function Platform Function Platform

Gradient Based Ficoll Paque Immunomagnetic CellSearch
RareCyte Adna Test

MACs
Size Based Circulogix Microfludic CTC-chip

ISET GEDI Chip
ScreenCell OncoCEE
Parsotix Clearbridge

Dielectrophoresis ApoStream Surface Based Herringbone Chip
DEPArray Graphene oxide

ImageStream

TABLE 1.9: CTC isolation platforms. Details of some existing CTC isolation
platforms grouped in lable-free and affinity based classes.

However, the physical features of some CTCs overlap with some leucocytes, which may
compromise accurate detection. Efforts to purify or enrich the CTC populations rely on sur-
face proteins, such as EpCAM or MUC1, and ultimately antibody specificity. However, the
EMT process has been shown to down-regulate and alter many surface proteins, particu-
larly EpCAM expression has been shown to be lost in several cancers including lung (Hyun
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et al., 2016; Polyak and Weinberg, 2009). Moreover, the frequency of CTCs with mesenchy-
mal and/or EMT markers have been shown to rise in breast cancer patients who are resistant
to treatment (Aktas et al., 2009) and in those with more advanced disease compared to lo-
calised cancers (Kallergi et al., 2011). More recently, a new High Definition CTC (HD-CTC)
assay was introduced as a fluid biopsy approach that identifies CTCs without using surface
protein-based enrichment. This method presents CTCs in sufficiently high definition (HD)
to satisfy diagnostic pathology image quality requirements (Marrinucci et al., 2012; Phillips
et al., 2012).

The current literature supports the clinical utility of CTCs, and there is increasing evi-
dence that CTCs can be used as predictive markers for diagnosis, prognosis, and response
to treatment (Fidler, 2003; Hou et al., 2011; Phillips et al., 2012; Lecharpentier et al., 2011).

1.6.2 Circulating nucleic acids

Another form of ‘liquid biopsy’ are circulating nucleic acids (ctNAs), these include DNA
(ctDNA) and RNA. The process of ctNAs shedding is not well understood. A schematic of
this process is depicted in Fig 1.14.

FIGURE 1.14: Source and process of some circulating liquid biomarkers.
Source and process of ctNAs, tumour DNA & RNA and CTCs entering the

blood circulation. Taken from Medicalexpress, 2017.

ctDNA is tumour derived and originating from the cancer. The exact nature of ctDNA
shedding like CTCs is unknown, but it is postulated to occur due to apoptosis and necrosis
of cancer cells, in addition to active release from viable tumour cells. Apoptosis of normal
cells results in larger uniformly truncated cfDNA fragments, in contrast to ctDNA, whereby
cancerous cells undergo necrosis and mitotic catastrophe resulting in smaller fragmented
DNA (Huang et al., 2016).
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Cell-free nucleic acids were first discovered in plasma samples by Mandel and Metais,
1948, but only much later in 1987, Stroun et al. determined that ctDNA in cancer patients’
plasma had originated from tumour cells (Stroun et al., 1987). Currently, ctDNA have been
detected in several bodily fluids, such as blood, urine, stools, milk, bronchial lavages and
ascites.

ctDNA half-life has been estimated at about 16 min (Fournié et al., 1995; Diehl et al., 2008;
Lo et al., 1999), suggesting that ctDNA is not ‘naked’ but rather complexed with cellular or
non-cellular components. ctDNA physico-chemical characteristics are poorly documented
but it might be associated with cell membrane parts, specific or non-specific DNA-binding
proteins (Kawamura, Paschoal, and Carvalho, 2000), apoptotic bodies (Nagata, 2000) or
multi-nucleosome complexes (Holdenrieder et al., 2008a; Deligezer et al., 2006). Discrep-
ancies about ctDNA size in serum/plasma exist in the literature certainly due to technical
limitations. ctDNA size was found to range from 500 bp to >30 kb (Dennin, 1979; Giacona et
al., 1998; Chan et al., 2004); however, recent studies described ctDNA fragments as smaller
than 250 bp, whereas cfDNA released from normal cells are believed to be larger (Jahr et al.,
2001; Diehl et al., 2008; Diehl et al., 2008). The size distribution of ctDNA fragments within
the same plasma/serum sample has been poorly studied (Chan et al., 2004; Fan et al., 2008).

The genomic profiling of ctDNA has become increasingly popular, based on the hypothe-
sis that ctDNA harbours the same profile of somatic mutations and genomic rearrangements
as the tumour itself (Freidin et al., 2015). As cancer cells frequently rely on the activation of
oncogenes for proliferation and survival, the presence of these specific gene alterations and
mutations can be of diagnostic value, reflect patient’s responsiveness to the treatment and
therapies, and predict survival (Gold et al., 2015). At present, advanced technologies have
turned precise ctDNA mutation detection to reality (Patel and Tsui, 2015; Thierry et al.,
2010), including the FDA approved Cobas kits for EGFR mutation analysis.

1.7 Applications of liquid biopsy

1.7.1 Diagnosis

As discussed earlier, late diagnosis in lung and ovarian cancers contributes to the poor sur-
vival rates. We know this is due to the lack of obvious symptoms and the absence of any
robust screening tool.

Cancer screening programmes are fundamental to support early diagnosis, and have
been seen to dramatically improve breast, cervical, and prostate cancer survival rates. A re-
cent study evaluated the breast cancer screening programme, concluding that the screening
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programme significantly reduced mortality rates in breast cancers, and the risks of popula-
tion screening were significantly outweighed by the benefits (Johns et al., 2017).

In breast cancers, mammograms (breast’s X-rays) can be suitably used for cancer diag-
nosis, as is the detection of abnormal cells in cervical screening tests, and identification of
the prostate serum antigen (PSA) in prostate screening tests. However, there is an absence
of a robust biomarker in both ovarian and lung cancers.

Characterisation and quantification of CTCs and ctNAs (including ctDNA) could be ex-
ploited as potential diagnostic markers. Several studies have evaluated and reported the di-
agnostic capabilities of CTCs (Ankeny et al., 2016; Ilie et al., 2014; Wu et al., 2016; Cen et al.,
2012; Liu et al., 2013), and ctDNA (Vidal et al., 2017; Fernandez-Cuesta et al., 2016; Cheng,
Su, and Qian, 2016) in various cancers, however none of these have been implemented into
clinical practice due to limitations in technologies. These limitations include, low sensitivity
and specificity, and poor correlation with clinical characteristics in some cases (Liu et al.,
2013).

As liquid biopsy testing is simple and non-invasive for patients, it could be potentially
offered at a primary care site, e.g. general practitioners (GP) surgeries, walk in clinics etc.,
avoiding thus long NHS waiting times for tertiary or specialist hospital appointments. The
test could be patient stratified, and offered to those who are at high risk, pertaining to age,
life-style, family history, etc.

1.7.2 Predicting and treatment planning

Clinicians are always faced with the challenge of treatment planning for cancer patients. It is
well known that all patients’ cancers are individual and will respond differently to therapies
and drugs, this phenomenon is defined as inter-patient variability. Even the tumour itself is
known to be heterogeneous and constantly evolving and changing its biological and genetic
make up, increasing the disease complexity (Gay, Baker, and Graham, 2016).

With the emergence and continual development of target specific drugs, also known as
targeted therapies, there is a requirement to identify potential candidate patients who would
benefit from these, over broad conventional chemotherapy or therapeutics.

Target therapies are drugs designed to target particular genes and mutations known to
drive or be involved in the development and growth of the tumour. Specific examples in-
clude: Gefitinib, used in non-small cell lung cancers (NSCLC) acting as a tyrosine kinase
inhibitor (TKI), Trastuzumab in human epidermal growth factor receptor 2 (HER2) breast
cancer positive patients, Bevacizumab (Avastin) targeting the VEGF ligand in various can-
cers, including ovarian, NSCLC, colorectal, and cervical cancers. In many cases these drugs
have been shown to be more effective than conventional chemotherapy.
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Recent advances in the analysis of CTCs and circulating tumour nucleic acids (ctNAs)
offer the prospect of better routine and real-time monitoring of the patients cancer, with
the potential of identifying changes in genetics more rapidly, informing thus of appropri-
ate treatment options. Furthermore, robust sensitive and specific assays could allow for the
characterisation and mutation profiling of patients offering the possibility of a truly person-
alised treatment plan.

1.7.3 Monitoring treatment response

Currently, when surgery is not an option, patients are offered chemotherapy and radiother-
apy as alternatives. These therapeutic options come with risks, such as the attack of healthy
cells, side effects, and even failure to treat the cancer itself. Monitoring this is currently done
by means of CT scans and X-rays at the end of a cycle of treatment, which could mean sev-
eral months may go by before the efficacy of the approach is assessed. Time is incredibly
critical for cancer patients, particularly those in advanced cases (Graham et al., 2014; Thoeny
and Ross, 2010).

Routine and real-time monitoring during therapies, of CTCs and ctNAs could inform of
patients’ response and allow more rapid decisions to be made. Routine mutational profiling
could also measure changes in the cancers’ genetics, providing valuable information that
could lead to clinically relevant treatment decisions being taken.

1.7.4 Monitoring relapse

Cancer relapse, as mentioned earlier, contributes to the high mortality rates in the ovarian
and lung cancers. Despite curative surgery, there is a risk of cancer recurrence. This has been
reported to occur due to ineffective removal of all the tumour, and also manipulation of the
cancer leading to further cancer cells being shed, entering the general circulation, and going
on to seed and develop in new sites (Hayashi et al., 1999; Hashimoto et al., 2014; Pantel,
Brakenhoff, and Brandt, 2008).

For this reason, monitoring CTCs and ctNAs, directly post-surgery and thereafter on a
regular basis could inform of presence of cancer cells in the blood, and the potential of re-
lapse, thus enabling rapid clinical decisions on further intervention or treatment if required.
Currently, patients have a CT scan every 6 months post-surgery, which may not necessarily
pick up small nodules. Moreover, studying the mechanisms and biology of CTCs and ctNAs
in this context may offer more insight in the process of metastasis and relapse.
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1.7.5 Identifying novel and important gene signatures

Mutational and marker analysis of CTCs and ctNAs could have huge potential benefits in
identifying novel liquid biomarkers and gene signatures in cancer. The biomarker discovery
is also important in unlocking vital information on cancer biology, including critical associ-
ated pathways and mechanisms currently unknown.

Ultimately, the application of CTCs and ctNAs could sustainably support and reform
current clinical practice in the management and treatment of cancers. All the mentioned
liquid biomarkers have been shown to be clinically relevant. Application in the clinical
setting of these biomarkers requires the assays to be robust, sensitive and specific, and cost-
effective. Overcoming these obstacles could see a potentially revolutionary biomarker enter
the clinical setting.

Potential benefits of liquid biopsies:

• Liquid biopsies could overcome the sampling bias that results from tissue heterogene-
ity.

• Liquid biopsies have the potential of early diagnosis.

• Liquid biopsies could provide early insights to response to treatment.

• Liquid biopsies have the potential of informing of early resistance to drugs.

• Liquid biopsies provide the opportunity of serial real-time monitoring of patients.

• Liquid biopsies have the potential to monitor and inform of possible relapses follow-
ing curative surgery/treatment.

Precision medicine is the goal of the future, where optimal individual patient treatment
is determined by means of in-depth analysis of multiple materials and markers from the pa-
tient. Fig 1.15 describes a proposed integrated profiling of cancer to define patient treatment.
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FIGURE 1.15: Integrated profiling of cancer. Pictorial representation of an in-
tegrated profiling of cancer to define patient treatment, as a form of precision

medicine.

1.7.6 Aims and objectives

This study aims to evaluate the use of blood based liquid biomarkers to address current
limitations in the diagnosis, treatment, and management of ovarian and lung cancers as
identified earlier, ultimately in a bid to increase survival in these two diseases. This will
include identifying one or several robust liquid biomarkers and proposing a pipeline of tests
to be implemented into the clinical setting, addressing in detail the following objectives:

• The ability to detect CTCs in the blood of lung and ovarian cancer patients using the
ImagestreamTM and ClearbridgeTM devices, and it’s clinical utility.

• The clinical relevance of detecting ctDNA in the blood of lung and ovarian cancer
patients for diagnostic and prognostic purposes.

• Evaluate the use of available microarray data to identify clinically relevant liquid
biomarkers in the blood of lung and ovarian cancers.

• Evaluate the ability to identify clinical relevant biomarkers and gene signatures by
means of RNAseq data interrogation and chromosomal analysis.
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Chapter 2

Methodology

2.1 Tissue culture

2.1.1 Cell lines

SKOV-3 (clear cell adenocarcinoma), MDAH-2774 (endometrioid adenocarcinoma), A549
(non-small cell adenocarcinoma) and NCI-H358 (non-small cell lung bronchialveolar carci-
noma) human adherent epithelial cell were used as in vitro models of human ovarian cancer,
and human lung cancer (latter 2) respectively. Cell line details are summarised in Table 2.1.

Cell line Origin Grade Key gene mutations

SKOV-3 Ascites 1/2 TP53
PIK3CA

MDAH-2774 Ascites 2 TP53
PIK3CA
KRAS
BRCA1 (silent)
BRCA2 (silent)

A549 Lung 1 RAS
CDKN2A

NCI-H358 Lung/bronchiole 1 KRAS

TABLE 2.1: Cell lines. Characteristics of SKOV-3, MDAH-2774, A549, and
NCI-H358 cell lines.

A549, SKOV-3, MDAH-2774, and NCI-H358 cells were grown in DMEM (Dulbecco’s
Modified Eagles Medium, Gibco) supplemented with 10% FBS (fetal bovine serum, Gibco),
1% penicillinstreptomycin (Gibco) and 1% L-glutamine (Gibco). All cell lines were cultured
at 37◦C 5% CO2 and subcultured when approaching 80% confluency, approximately three
times a week.
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2.1.2 Tissue culture practice

An aseptic environment was maintained with the use of a HERAsafe laminar flow cabi-
net (Heraeus), and repeated applications of 2% TriGene Advance (Medimark Scientific) and
70% industrial methylated spirits (IMS) in dH2O to all surfaces and equipment used. Com-
mercial pre-packed and pre-sterilised items were used, where possible. All plasticware was
sterilised by autoclave prior to use.

2.1.3 Thawing cryopreserved cells

When growing cells from stored frozen liquid nitrogen stocks, 20mL of media was first
stored in a T-75 cell culture flask in the incubator for at least one hour to allow the media
to equilibrate to the temperature and CO2 conditions. After which cells were moved with
speed from liquid nitrogen, defrosted in a water bath at 37◦C, and immediately transferred
to the pre-warmed media which was then left undisturbed in the incubator for 12 hours. At
12 hours the media was replaced with fresh media that had been warmed to 37◦C, removing
the high concentration of DMSO remaining from the freezing medium and replenishing the
nutrients.

2.1.4 Subculturing cells

Cells were subcultured at approximately 80% confluency by aspirating the media, incubat-
ing with 2.5mL TrypLETM Express (Invitrogen) per about 75cm2 growth surface area and
manually disturbing the flask to detach adherent cells. The detached cells were then sus-
pended in 17.5mL of their appropriate media and 5mL transferred to each of four new T-75
cell culture flasks already containing 15mL of media. All media used in the subculturing
process was first warmed to 37◦C. All cell lines required a 1 in 4 split approximately three
times per week.

2.1.5 Cryopreserving cells

Stocks of each cell line were stored in liquid nitrogen. This was done by aspirating the
media and detaching the cells by incubating them for two minutes with 2.5mL TrypLETM

Express (Invitrogen), per ∼75cm2 surface area, and manually disturbing the flask to detach
adherent cells. The cells were resuspended in 4mL of media, the suspension moved to a
12mL centrifuge tube and centrifuged for five minutes at 1,500 RPM to form a cell pellet. The
supernatant was removed and 0.5mL of FBS and 0.4mL of media was used to resuspended
the cells. The cell suspension with 100µl DMSO was added to a cryovial and cooled slowly,
first to -80◦C in a Mr. Frosty freezing container (Nalgene) and then in liquid nitrogen 24
hours later.
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2.1.6 Seeding cells

Cells were seeded in 24 and 6-well plates at a specific seeding density. Cell counts to de-
termine seeding requirements were performed with a Countess R© Automated Cell Counter
(Invitrogen) using an equal volume of Trypan Blue (0.4%) stain to cell suspension for cell
viability. The seeding volume was calculated as follows:

Total number of cells = Viable cells per mL × Volume (in mL) of suspension
Number of cells per µL = Total number of cells/Volume (in µL) of suspension
Volume of suspension to add to well = Seeding density required/Number of cells per µL

Cells were allowed to proliferate for 24 hours before processing.

2.2 Clinical samples

2.2.1 Ethical approval process

In order to obtain clinical material from patients, firstly I sought ethical approval via the
Human Tissue Act (HTA) and National Research Ethical Authority (NRES). Ethical ap-
proval was already in place for the collection of Ovarian blood and tissue samples, under
the METRO-BIBF clinical trials ethical consent. Ethical approval was sought for collection
of lung blood and tissue samples from The Royal Brompton & Harefield NHS Hospital
Trust. This involved completion of an online NRES ethical approval form and production
of patient specific documents, followed by attendance at a panel review meeting to answer
questions from health professional and members of the public. I was notified a week later
that our application had been successful, and would run under the following reference:
14/LO/1284. Material transfer agreements (MTA) were also put in place for transfer of
ovarian and lung tissue from their respective sites to Brunel University.

2.2.2 Fresh ovarian tissue

Ovarian clinical tissue samples from patients with ovarian and endometrial cancer, as well
as unaffected female controls were obtained from the University of Thessanoliki, Greece
(ethical approval obtained by the local hospital authority and by Brunel University ethics
committee, Table 2.2). Samples were shipped on dry ice in RNAlater R© (Life Technologies)
to preserve RNA integrity.
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Stage/Grade

Pathology 2/IIIC 3/IIIC 3/IV

Serous adenocarcinoma 2 7 1
Endometriod 1 - -

TABLE 2.2: Ovarian cancer samples. Table detailing clinical samples, includ-
ing pathology, staging and grade of cancer.

2.2.3 Fresh lung tissue

Lung tissue samples were collected from The Royal Brompton & Harefield NHS Trust, from
patients undergoing surgical resection of their known lung cancer, tumour tissue and nor-
mal tissue was collected for these patients. Ethical approval was sought prior and all pa-
tients consented to the study. All tissue was resected by the surgeon, and immediately snap
frozen in liquid nitrogen and stored at -80◦C, until further use. Sample information is shown
in Table 2.3.

Stage

Pathology I II III IV Un-staged

Non-small cell lung cancer Adenocarcinoma 5 6 1 1 -
Squamous Cell Carcinoma - 5 - 2 -
Metastatic lung cancer - - - - 5

Controls Bullectomy 5

TABLE 2.3: Lung cancer samples. Table detailing clinical samples, including
pathology and staging of cancer.

2.2.4 Ovarian, breast, and lung cancer, and normal tissue cDNA array plate (OrigenTM)

An array plate containing lyophilised ovarian, breast and lung tissue cDNA for cancer and
control patients was also purchased from OrigeneTM. The kit also contained kidney cancer
samples, that were subsequently discarded. Details of samples are listed in Table 2.4.

Position Gender Age Tissue Type Diagnosis Stage
D01 Female 47 Brest Normal Adenocarcinoma of breast,

ductal
Normal

D02 Female 52 Brest Tumour Adenocarcinoma of breast,
ductal

IIA
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D03 NA 78 Brest Tumour Adenocarcinoma of breast,
ductal

IIA

D04 Female 50 Brest Tumour Adenocarcinoma of breast,
ductal

IIB

D05 Female 55 Brest Tumour Adenocarcinoma of breast,
ductal

IIIC

D06 Female 68 Brest Tumour Adenocarcinoma of breast,
ductal

IIIC

D07 Male 77 Kidney Normal Carcinoma of kidney, renal
cell, clear cell

Normal

D08 Male 43 Kidney Tumour Carcinoma of kidney, renal
cell, papillary

I

D09 Male 64 Kidney Tumour Carcinoma of kidney, renal
cell, papillary

II

D10 Male 4 Kidney Tumour Nephroblastoma II
D11 Male 59 Kidney Tumour Carcinoma of kidney, renal

cell, papillary
II

D12 Male 59 Kidney Tumour Carcinoma of kidney, renal
cell, clear cell

III

E01 Female 72 Lung Normal Adenocarcinoma of lung Normal
E02 Female 82 Lung Tumour Adenocarcinoma of lung IA
E03 Male 65 Lung Tumour Carcinoma of lung, squa-

mous cell
IIB

E04 Male 76 Lung Tumour Carcinoma of lung, squa-
mous cell

IIIA

E05 Female 46 Lung Tumour Adenocarcinoma of lung IV
E06 Female 64 Lung Tumour Tumor of lung, carcinoid,

atypical
Unknown

E07 Female 54 Ovary Normal Adenocarcinoma of ovary,
clear cell

Normal

E08 Female 58 Ovary: Tumour Adenocarcinoma of ovary,
endometrioid

IIB

E09 Female 91 Ovary Tumour Adenocarcinoma of ovary,
papillary serous

III

E10 Female 49 Ovary Tumour Tumor of ovary, mucinous,
borderline

IIIA

E11 Female 47 Ovary Tumour Adenocarcinoma of ovary,
clear cell

IIIC
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E12 Female 68 Ovary Tumour Adenocarcinoma of ovary,
serous

IV

TABLE 2.4: Information on cDNA from tissue samples, purchased from
OrigeneTM. Clinical details of samples provided in the commercial kit.

2.2.5 Fresh frozen paraffin embedded blocks of ovarian and lung tissue

Matching fresh frozen paraffin embedded (FFPE) blocks for ovarian and lung patients from
Mount Vernon hospital and The Royal Brompton & Harefield NHS Trust respectively, were
provided. Blocks were cut using a microtome at 5µm and 15µm for microscope slides and
scrolls for RNA extraction respectively. Slides were stored at room temperature and scrolls
at -20◦C until use. Clinical tissue arrays containing paraffin embedded ovarian and lung
cancer and normal samples were purchased from US Biomax (Tables 2.5, 2.6, and 2.7 respec-
tively).

Locus Sex Age Organ Pathology Grade Stage
A1 F 40 Ovary Clear cell carcinoma - I
A2 F 57 Ovary Serous papillary carcinoma II Ic
A3 F 48 Ovary Clear cell carcinoma - II
A4 F 57 Ovary Serous papillary carcinoma II IIIc
A5 F 43 Ovary Serous papillary carcinoma III IIIc
A6 F 54 Ovary Serous papillary carcinoma I Ic
A7 F 63 Ovary Serous papillary carcinoma III IV
A8 F 46 Ovary Serous papillary carcinoma III IIIc
A9 F 54 Ovary Serous papillary carcinoma III IIIc
A10 F 56 Ovary Hyperplastic fibrous tissue - -
B1 F 44 Ovary Granular cell tumor - -
B2 F 49 Ovary Serous papillary carcinoma III II
B3 F 18 Ovary Immature teratoma - -
B4 F 15 Ovary Endodermal sinus carcinoma - IIa
B5 F 38 Ovary Metastatic adenocarcinoma III -
B6 F 39 Ovary Serous papillary carcinoma III IV
B7 F 24 Ovary Endodermal sinus carcinoma - II
B8 F 42 Ovary Serous papillary carcinoma III II
B9 F 50 Ovary Serous papillary carcinoma III I
B10 F 49 Ovary Serous papillary carcinoma III IIIc
C1 F 62 Ovary Serous papillary carcinoma III II
C2 F 53 Ovary Mucinous papillary carcinoma I IV
C3 F 38 Ovary Metastatic adenocarcinoma III -



Chapter 2. 34

C4 F 43 Ovary Clear cell carcinoma - Ia
C5 F 26 Ovary Serous papillary carcinoma I Ic
C6 F 47 Ovary Serous papillary carcinoma I I
C7 F 62 Ovary Squamous cell carcinoma III I
C8 F 35 Ovary Dysgerminoma - Ia
C9 F 41 Ovary Dysgerminoma - I
C10 F 47 Ovary Serous papillary carcinoma III I
D1 F 42 Ovary Clear cell carcinoma - Ic
D2 F 39 Ovary Metastatic adenocarcinoma I -
D3 F 66 Ovary Metastatic adenocarcinoma III -
D4 F 48 Ovary Malignant follicular theca cytoma - III
D5 F 51 Ovary Serous papillary carcinoma I IIIc
D6 F 33 Ovary Metastatic signet-ring cell carcinoma -
D7 F 18 Ovary Mixed germ cell tumor - Ib
D8 F 40 Ovary Metastatic signet-ring cell carcinoma - -
D9 F 43 Ovary Granular cell tumor - -
D10 F 55 Ovary Serous papillary carcinoma III II
E1 F 46 Ovary Serous papillary carcinoma III IIIc
E2 F 57 Ovary Serous papillary carcinoma III IIIc
E3 F 75 Ovary Serous papillary carcinoma III IIIc
E4 F 69 Ovary Serous papillary carcinoma (sparse) III Ia
E5 F 30 Ovary Serous papillary carcinoma III I
E6 F 42 Ovary Serous papillary carcinoma II IIIc
E7 F 48 Ovary Clear cell carcinoma - I
E8 F 22 Ovary Serous papillary carcinoma I IIb
E9 F 50 Ovary Clear cell carcinoma - I
E10 F 32 Ovary Serous papillary carcinoma II I
F1 F 48 Ovary Serous papillary carcinoma II I
F2 F 50 Ovary Serous papillary carcinoma II II
F3 F 65 Ovary Serous papillary carcinoma III IIIc
F4 F 38 Ovary Serous papillary carcinoma III IIIc
F5 F 31 Ovary Metastatic adenocarcinoma III -
F6 F 55 Ovary Metastatic adenocarcinoma III -
F7 F 51 Ovary Serous papillary carcinoma III II
F8 F 65 Ovary Serous papillary carcinoma II I
F9 F 26 Ovary Serous papillary carcinoma II IIIc
F10 F 55 Ovary Serous papillary carcinoma II I
G1 F 49 Ovary Serous papillary carcinoma III II
G2 F 48 Ovary Metastatic signet-ring cell carcinoma - -
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G3 F 46 Ovary Serous papillary carcinoma III IIIc
G4 F 63 Ovary Serous papillary carcinoma III II
G5 F 37 Ovary Serous papillary carcinoma II IV
G6 F 35 Ovary Malignant tumour (sparse) - IIIc
G7 F 12 Ovary Dysgerminoma - Ib
G8 F 55 Ovary Serous papillary carcinoma II I
G9 F 20 Ovary Malignant tumour cell (sparse) - I
G10 F 55 Ovary Serous papillary carcinoma II I
H1 F 40 Ovary Cancer adjacent normal ovarian tissue of

No. 01
- -

H2 F 22 Ovary Cancer adjacent normal ovarian tissue - -
H3 F 30 Ovary Cancer adjacent normal ovarian tissue - -
H4 F 39 Ovary Cancer adjacent normal ovarian tissue - -
H5 F 32 Ovary Cancer adjacent normal ovarian tissue of

No. 50
- -

H6 F 63 Ovary Normal ovarian tissue - -
H7 F 17 Ovary Normal ovarian tissue - -
H8 F 29 Ovary Normal ovarian tissue - -
H9 F 14 Ovary Normal ovarian tissue - -
H10 F 20 Ovary Normal ovarian tissue - -

TABLE 2.5: Information on paraffin embedded tissue of 80 ovarian cancer
and normal tissues, from the OV802 array chip. Clinical details of FFPE sam-

ples of ovarian cancer patients.

Locus Sex Age Organ Pathology Grade
A1 F 40 Ovary Endometrioid adenocarcinoma II
A2 F 40 Ovary Necrosis tissue -
A3 F 57 Ovary Serous papillary cystadenocarcinoma II
A4 F 57 Ovary Serous papillary cystadenocarcinoma II
A5 F 48 Ovary Clear cell carcinoma -
A6 F 48 Ovary Clear cell carcinoma -
B1 F 57 Ovary Serous papillary cystadenocarcinoma II
B2 F 57 Ovary Serous papillary cystadenocarcinoma II
B3 F 46 Ovary Fibrofatty tissue -
B4 F 46 Ovary Serous papillary cystadenocarcinoma III
B5 F 42 Ovary Endometrioid adenocarcinoma I
B6 F 42 Ovary Endometrioid adenocarcinoma I
C1 F 66 Ovary Serous papillary cystadenocarcinoma III
C2 F 66 Ovary Serous papillary cystadenocarcinoma III
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C3 F 53 Ovary Serous papillary cystadenocarcinoma III
C4 F 53 Ovary Serous papillary cystadenocarcinoma III
C5 F 35 Ovary Serous papillary cystadenocarcinoma II
C6 F 35 Ovary Serous papillary cystadenocarcinoma II
D1 F 52 Ovary Serous papillary cystadenocarcinoma III
D2 F 52 Ovary Serous papillary cystadenocarcinoma III
D3 F 41 Ovary Cancer adjacent ovary tissue -
D4 F 41 Ovary Cancer adjacent ovary tissue -
D5 F 49 Ovary Cancer adjacent ovary tissue -
D6 F 49 Ovary Cancer adjacent ovary tissue -

TABLE 2.6: Information on paraffin embedded tissue of 23 ovarian cancer
and normal tissues, from the OV242 array chip. Clinical details of samples

obtained from the origene kits for ovarian cancer.

Locus Sex Age Organ Pathology Grade Stage
A1 M 49 Lung Squamous cell carcinoma 1-2 IIIb
A2 M 43 Lung Squamous cell carcinoma 1 II
A3 M 51 Lung Squamous cell carcinoma 1 I
A4 F 40 Lung Squamous cell carcinoma 1 II
A5 M 62 Lung Squamous cell carcinoma (sparse) - II
A6 M 40 Lung Squamous cell carcinoma 1 II
A7 M 64 Lung Squamous cell carcinoma 1 I
A8 M 60 Lung Squamous cell carcinoma 1 II
B1 M 65 Lung Squamous cell carcinoma 2 II
B2 F 54 Lung Squamous cell carcinoma 2 IIIa
B3 M 70 Lung Squamous cell carcinoma 2 I
B4 M 39 Lung Squamous cell carcinoma 2 I
B5 M 63 Lung Squamous cell carcinoma 2 I
B6 M 63 Lung Squamous cell carcinoma (sparse) - II
B7 M 50 Lung Squamous cell carcinoma 2 II
B8 M 68 Lung Squamous cell carcinoma - IIIb
C1 M 49 Lung Squamous cell carcinoma 2 II
C2 M 35 Lung Squamous cell carcinoma 3 I
C3 M 61 Lung Squamous cell carcinoma 3 I
C4 M 72 Lung Adenocarcinoma 1 I
C5 M 68 Lung Adenocarcinoma 1 I
C6 M 62 Lung Adenocarcinoma 2 I
C7 F 59 Lung Adenocarcinoma 2 II
C8 M 55 Lung Adenocarcinoma 2 I
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D1 F 42 Lung Adenocarcinoma 2-3 I
D2 M 59 Lung Adenocarcinoma 2 I
D3 F 60 Lung Adenocarcinoma (sparse) with necrosis 2 I
D4 F 46 Lung Adenocarcinoma 2 I
D5 F 53 Lung Adenocarcinoma 2 I
D6 F 41 Lung Adenocarcinoma 2 I
D7 M 58 Lung Adenocarcinoma 2 I
D8 F 56 Lung Adenocarcinoma 2 II
E1 M 60 Lung Adenocarcinoma 3 I
E2 M 65 Lung Adenocarcinoma with necrosis 3 I
E3 M 71 Lung Adenosquamous carcinoma - II
E4 M 50 Lung Adenosquamous carcinoma - II
E5 M 70 Lung Adenosquamous carcinoma - IIIb
E6 F 67 Lung Adenosquamous carcinoma - I
E7 M 60 Lung Atypical carcinoid - I
E8 M 67 Lung Atypical carcinoid - I
F1 F 21 Lung Normal lung tissue - -
F2 F 21 Lung Normal lung tissue - -
F3 F 40 Lung Normal lung tissue - -
F4 F 40 Lung Normal lung tissue - -
F5 F 18 Lung Normal lung tissue - -
F6 M 49 Lung Normal lung tissue - -
F7 M 50 Lung Normal lung tissue - -
F8 M 47 Lung Normal lung tissue - -

TABLE 2.7: Information on paraffin embedded tissue of 48 lung cancer and
normal tissues, from the LC485 array chip. Clinical details of lung cancer

samples obtained from this kit.

2.2.6 Whole blood

Ovarian cancer blood samples were collected from ovarian cancer patients enrolled on a
clinical trial at Mount Vernon Hospital, London, known as the METRO-BIBF trial (appro-
priate ethical approval was in place). Healthy control blood samples were collected from
female volunteers. All patients were stage III & IV, Ovarian Serous Adenocarcinoma, en-
rolled on the METRO-BIBF trial to begin third line dual chemotherapy treatment.

Blood samples from lung cancer patients were collected from consenting patients (with
appropriate NRES ethical approval in place) at The Royal Brompton & Harefield NHS Trust.
Samples were also collected from patients with non-cancer diseases and normal healthy
volunteers to act as controls. Sample details are summarised in Table 2.8.
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Stage

Pathology I II III IV Un-staged

Non-small cell lung cancer Adenocarcinoma 8 9 3 1 -
Squamous Cell Carcinoma - 6 1 2 -
Metastatic lung cancer - - - - 5

Controls Bullectomy 5
Healthy volunteers 20

TABLE 2.8: Clinical samples information. Details including pathology and
staging of cancer.

All blood samples were collected in ethylenediaminetetraacetic acid (EDTA) tubes to
prevent coagulation of the blood. The samples were inverted 10 times, before decanting
5mL into a 15mL falcon tube and spinning for 10 min at 1,500 RPM, 2mL of the plasma layer
is then aspirated, carefully not to disturb the red blood sediment, in to a 2mL eppendorf
tubes and stored at -80◦C, until use. If RNA extraction was not done immediately, 0.5mL of
whole blood was added to 1.5mL of RNAlater R© (Life Technologies) in an eppendorf tube
and stored at room temperature for up to 72 hours, or -20 indefinitely.

2.3 Isolation and imaging of cells

2.3.1 ImageStream XTM

Protein expression and localisation was investigated using ImageStream XTM (Amnis) high
resolution flow cytometry. Expression and cellular location of AE1/AE3, RAD51 associ-
ated protein 1 (RAD51AP1) and Follistatin like protein 1 (FSTL1) was assessed using Im-
ageStream XTM (Amnis) imaging flow cytometry.

2.3.2 Preparing cultured cells

Cells were cultured in T-75 tissue culture flasks until approximately 90% confluent. Media
was aspirated and the cells were washed briefly in PBS (Gibco). The cells were incubated
with 2.5mL of TrypLETM Express (Invitrogen) per ∼75cm2 growth surface area and the flask
was manually disturbed to detach adherent cells, which were resuspended in 2.5mL of pre-
warmed PBS (Gibco). The cell suspension was transferred into a 15mL centrifuge tube and
centrifuged for 5 minutes at 1,500 RPM to form a pellet. Supernatant was removed and
cells were resuspended in 5mL of prewarmed PBS (Gibco) a further time to remove debris.
Samples were fixed immediately as described in Section 2.3.4.
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2.3.3 Preparing patient samples for ImageStream XTM

One mL of whole blood from patient samples was decanted from the EDTA blood tubes into
a 15mL falcon tube and mixed with 9mL of red blood cell (RBC) lysis buffer (G Biosciences),
inverted several times and incubated for 10 mins with gentle agitation. The solution was
then spun at 2,500 RPM for 10 mins, the supernatant removed and a further 2mL of RBC
lysis buffer added to resuspend the pellet, before incubating for 10 mins at room tempera-
ture with gentle agitation. The solution was spun for a further 10 mins at 2,500 RPM, and
supernatant aspirated. The pellet was then washed in 1.5mL of PBS, and solution moved
to a 2mL microcentrifuge tube and spun at 3,600 RPM for 3 mins. Samples were then fixed
immediately as described in Section 2.3.4. For spiking in experiments, 1mL of healthy blood
was used, and an approximate amount of cells calculated (as described in Section 2.1.6) and
spiked in accordingly. Samples were then processed as per patient samples described above
in this section.

2.3.4 Fixing cells

All cell pellets (cultured cells and patient samples) were then transferred to a 2mL micro-
centrifuge tube and resusended in 1mL of ice cold 4% paraformaldehyde for 7 minutes to
crosslink proteins in the cells. The cell suspension was centrifuged for 2 minutes at 3,600
RPM and the PFA removed. The cells were washed in prewarmed PBS a further two times,
and centrifuging for 2 minutes at 3,600 RPM between each wash. All cells were immediately
stained.

2.3.5 Staining cells

The cells were incubated in blocking buffer (10% fetal bovine serum, Gibco, in PBS) for 30
minutes with gentle agitation. Cells were centrifuged for 3 minutes at 3,600 RPM and the
blocking buffer was removed. The cells were then incubated in the appropriate primary
antibody, details listed in (Table 2.9), diluted in blocking buffer overnight at 4◦C with gentle
agitation. Following primary antibody incubation, cells were centrifuged for 3 minutes at
3,600 RPM and the antibody aspirated. The cells were washed in PBS (Gibco) tween (0.2%)
to remove any remaining antibody and centrifuged again for 3 minutes at 3,600 RPM. The
PBS tween was removed and the cells incubated in secondary antibody (Table 2.9) diluted in
blocking buffer for 1 hour with gentle agitation. From this step onwards the cell were pro-
tected from light as the fluorphore conjugated to the secondary antibody is light sensitive.
After secondary antibody incubation the cells were centrifuged for 3 minutes at 3,600 RPM
and the secondary antibody removed. The cells were washed once in PBS tween for 3 min-
utes at 3,600 RPM to remove any remaining antibody. PBS tween was removed and the cells
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were resuspended in 50µL Accumax (Innovative Cell Technologies) to dissociate any cellu-
lar aggregates. 1µL of Draq5 (Biostatus Ltd) nuclear stain was added before visualisation on
the ImageStream X. All the data files were then analysed on the IDEAS software.

Primary Dilution Species Suplier Secondary Antibody Dilution Suplier
Antibody

Anti-
AE1/AE3

1:200 Rabbit Dako Anti-rabbit, alexifluor
conjugated

1:1000 Molecular
Probes

Anti-
RAD51AP1

1:200 Rabbit Sigma Anti-rabbit, alexifluor
conjugated

1:1000 Molecular
Probes

Anti-
FSTL1

1:200 Rabbit Sigma Anti-rabbit, alexifluor
conjugated

1:1000 Molecular
Probes

TABLE 2.9: Details of antibodies used in Imagestream X experiment. Details
of all primary and respective secondary antibodies used in the Imagestream

X experiments.

2.3.6 Clearbridge processing of cell culture pellets and lung samples

Samples were processed on the ClearBridge ClearCell FX system (ClearBridge BiomedicsTM).
Cultured H358 cells were prepared as described in Section 2.1.3 and 2.1.4. Approximately
100,000 cells (counted as described 2.1.6) were spiked in to 7.5mL of blood from a healthy
volunteer and processed as patient samples. Peripheral blood samples from lung cancer
patients, and patients suffering from other lung malignancies (controls) were collected in
9mL EDTA vacutainers or Streck tubes, either prior to surgery for surgical patients, and in
clinics for all other samples, all samples were processed within 24 hours for EDTA samples,
and within 72h for Streck tubes. The blood was first inverted 10 times before adding 4.3mL
of a suspension reagent supplied by the manufacturer. The samples were then processed
through the ClearCellTM system using a CTC ChipTM FR1 and microfluidics technology to
separate tumour cells from white blood cells, to form an enriched suspension of CTCs. Pro-
cessed samples were air dried on to glass slides and subjected to standard haematoxylin and
eosin (H&E) staining, and then reported independently by two histopathologists. Results
were categorized into negative or positive cells suggestive of tumour, based on the presence
of nucleated cells with high nuclearcytoplasmic ratios that were larger than resting lympho-
cytes and/or cells having irregular nuclear outlines.

Inter-pathologist agreement was measured by Cohen’s Kappa statistic (Medicalc) and
diagnostic utility was calculated as sensitivity, specificity, positive and negative predictive
values and expressed with a 95% confidence interval. Statistical analyses were performed
on Stata 13 (College Station, Texas, USA).
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2.4 Immunohistochemistry

Immunohistochemistry and DAB (3,3-Diaminobenzidine) staining was used to visualise
mTOR, DEPTOR, rictor and raptor protein expression in paraffin embedded ovarian and
lung cancer tissue samples. A PAP pen was used to encircle the tissue sections on the slide, to
allow liquids to stay within the desired region. Tissue was deparaffinised and rehydrated by
incubation in Histo-Clear (National Diagnostics) and decreasing concentrations of ethanol
as follows (Table 2.10):

Solution Time

Histoclear 3 × 5 minutes
Histoclear:ethanol (1:1) 3 minutes
100% ethanol 3 minutes
95% ethanol 3 minutes
70% ethanol 3 minutes
50% ethanol 3 minutes
Running tap water 3 minutes

TABLE 2.10: IHC deparaffinisation process. Incubation times to deparaffinise
and rehydrate formalin fixed paraffin embedded tissue samples.

Antigen retrieval was achieved by boiling the slides in sodium citrate (pH6, Table 2.11)
for 20 minutes. Additional sodium citrate was added every 5 minutes to avoid the slides
boiling dry.

Reagent Quantity

Sodium citrate 2.94g
dH2O 1L
Tween 20 500µL

TABLE 2.11: Formulation of antigen retrieval solution.

The slides were then washed in running tap water for 10 mins followed by washing with
TBS 0.025% Triton X 2 times for 5 minutes to remove sodium citrate. Endogenous hydrogen
peroxidase activity was blocked by incubation with 0.3% hydrogen peroxide for 30 mins.
The slides were then washed in TBS 0.025% Triton X 3 times for 5 mins each on a shaker.
Slides were placed in a humidity chamber (glass chamber with dH2O in surrounding wells)
for subsequent incubations to avoid drying out. The tissue was blocked in 10% rabbit serum
in TBS for 1 hour at room temperature by dispensing 200µL onto the tissue area of the slide
and using a small square of parafilm to ensure the blocking buffer spreads over the tissue
evenly. Blocking buffer was carefully removed from the slides and the primary antibody
(diluted in blocking buffer) was applied to the tissue in the same way as the blocking buffer
and incubated over night at 4◦C. After primary antibody incubation, the slides were washed
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3 times for 5 mins each time in TBS 0.025% Triton X on a shaker to remove any unbound pri-
mary antibody. The tissue was then incubated in horseradish peroxidase (HRP) conjugated
secondary antibody (diluted in blocking buffer) at room temperature for 1 hour in the same
way as blocking buffer. The slides were then washed 3 times for 5 mins in TBS 0.025% Tri-
ton X on a shaker to remove any unbound secondary antibody. DAB solution (DAKO) was
prepared as follows: one drop of chrom added to 1mL of DAB. 200µL of the DAB solution
was applied to the tissue and incubated at room temperature for 2-5 minutes until a brown
colour develops. DAB solution was washed off the slide by incubation in dH2O for 5 mins
on a shaker. Haematoxylin (Fisher Scientific) was used to stain nuclei blue to provide con-
trast to the brown DAB staining. The tissue was incubated in haematoxylin for 1 min and
rinsed off with running tap water followed by incubation in 0.1% sodium bicarbonate for
1 min and a second wash in running tap water. Tissue was dehydrated prior to coverslip
mounting as follows (Table 2.12):

Solution Time

50% ethanol 3 minutes
70% ethanol 3 minutes
95% ethanol 3 minutes
100% ethanol 3 minutes
Histoclear:ethanol (1:1) 3 minutes
Histoclear 3 minutes

TABLE 2.12: Incubation times to dehydrate stained tissue samples.

Coverslips were mounted with aqueous mounting media (DAKO) to protect the tissue,
the slide was allowed to dry for 30 mins before observation.

2.5 RNA extraction

mRNA was extracted from cells for examination of gene expression transcripts. All surfaces
and equipment were cleaned thoroughly with 70% IMS and 2% Trigene before and through-
out any RNA work. RNA was stored at -80◦C when not in use and kept on ice at all other
times to prevent degradation.

2.5.1 RNA extraction from cultured cells using GenEluteTM (Sigma Aldrich)

The GenEluteTM Mammalian Total RNA MiniPrep Kit is a commercially available silica
membrane, spin column based RNA extraction kit. Media was removed from cells in cul-
ture. Cells were briefly washed in phosphate buffered saline (PBS, Gibco). Cells were then
trypsinised with 2mL TrypLETM Express (Invitrogen) and incubated for 5 mins at 37◦C to
allow cells to detach. The cell solution was collected in to a 15mL falcon tube, and spun at
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1,500 RPM for 5 mins. Supernatant was then aspirated and 500µL of lysis buffer containing
1% β-mercaptoethanol was used to resuspend the cell pellet and lyse cell membranes and
inactivate RNases. The lysate was transferred into a blue filtration column contained within
a collection tube and centrifuged for 2 minutes at 12,000×g to remove cellular debris and
shear DNA. The filtered lysate was then mixed with 500µL of 70% ethanol to enhance the
binding of nucleic acids to the silica membrane and loaded into a red silica column con-
tained within a collection tube. The column was centrifuged for 15 seconds at 12,000×g; the
flow-through was discarded as the RNA had now bound to the membrane. The RNA was
washed three times, once with Wash Solution I and twice with Wash Solution II (supplied in
kit) by centrifuging for 15 seconds at 12,000×g to remove any impurities including proteins,
cellular debris and salts. A final centrifugation of 12,000×g for 2 mins was carried out to
ensure that the ethanol was completely removed from the membrane. RNA was eluted by
placing the membrane column in a fresh collection tube, applying 50µL of pure water (elu-
tion solution) to the membrane and centrifuging at 12,000×g for 60 seconds. The RNA was
stored at -80◦C until further use.

2.5.2 RNA extraction of tissue samples (GenEluteTM kit by Sigma Aldrich)

Tissue samples were removed from -80◦C, and 40mg of tissue was placed in a sterile mortar,
liquid nitrogen was then poured over the tissue and the pestle used to smash the tissue to a
powder residue. The tissue was then added to a 1.5mL eppendorf tube and 500µL of lysis
buffer containing 1% β-Mercaptoethanol was added and retropippeted to resuspend the
tissue. The lysate was transferred into a blue filtration column contained within a collection
tube and centrifuged for 2 mins at 12,000×g to remove cellular debris and shear DNA. The
filtered lysate was then mixed with 500µL of 70% ethanol to enhance binding of nucleic acids
to the silica membrane and loaded into a red silica column contained within a collection
tube. GenEluteTM protocol was then continued as above from Section 2.5.1.

2.5.3 RNA extraction from Formalin Fixed Paraffin Embedded tissue blocks with
Promega ReliaPrepTM FFPE RNA extraction mini kit

FFPE blocks were cut to 15µm thick scrolls using a microtome, and approximately 3 scrolls
were added to a microcentrifuge tube. FFPEs were deparaffinised by adding 300µL of min-
eral oil (supplied) to the microcentrifuge tubes containing the scrolls and incubated at 80◦C
for 1 min, followed by vortexing to mix. Samples were lysed by adding 100µl of Lysis
Buffer (supplied). Samples were centrifuged at 10,000×g for 15 seconds at room tempera-
ture, forming 2 phases, lower (aqueous) phase, and upper (oil) phase. 10µL of Proteinase K
was added to the lower aqueous phase and pipetted gently to mix. The sample was then
incubated at 56◦C for 15 mins, followed by 80◦C for 1 min. Tubes were then immediately
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placed on ice for 1 min, followed by room temperature for 2 mins. 30µL of DNAase treat-
ment was added to the lower phase, and mixed by gentle pipetting, and incubated for 15
mins at room temperature. Followed by addition of 325µL of BL buffer and 200µL of 100%
isopropanol, sample was vortexed to mix. Samples were then centrifuged at 10,000×g for
15 sec. Two phases were formed as earlier. A binding column was fitted into a collecting
tube, and the entire lower aqueous phase added to the binding column. Samples were then
centrifuged at 10,000×g for 30 sec. The flow through was discarded, and 500µL of 1× wash
buffer was added to the column, followed by centrifugation at 10,000×g for 15 sec, flow
through was discarded and wash step repeated. Samples were then centrifuged at 16,000×g
for 30 sec to dry column. The column was then transferred to a fresh 2 ml eppendorf tube,
and 50µL of elution solution added. Samples were then centrifuged at 16,000×g for 1 min.
Collected RNA was stored at -80◦C until use.

2.5.4 RNA extraction from whole blood with Ribopure RNA extraction kit (Life
Technologies)

All blood samples stored in RNALater were processed using the Ribopure RNA extraction
Kit (Life Technologies), including for fresh samples immediately processed. Samples stored
in RNALater, were first defrosted if stored at -20◦C at room temperature. Defrosted samples
or refrigerated/fresh samples were then centrifuged at 13,000 RPM for 1 min, followed by
aspirating supernatant. From this point on the process is the same for fresh and RNALater
stored samples. 800µL of lysis solution and 50µL of sodium acetate were added to the sam-
ples (500µL of fresh anticoagulated blood), samples were then vortexed vigorously. 500µL of
Acid-Phenol:Chloroform was added to the cell lysate, and vortexed vigorously for 30 secs,
and stored at room temperature for 5 min. Samples were then centrifuged at 13,000 RPM
for 1 min, to separate the aqueous and organic phase. The upper aqueous phase was then
transferred to a 2mL centrifuge tube and 600µL of 100% ethanol was added and vortexed
briefly. 700µL of solution was then added to a filter cartridge assembly and spun for 30 secs
at 13,000 RPM to allow solution to filter through. The supernatant in the collection tube
is discarded and the next 700µL of sample solution added and spinning repeated, until all
the sample solution had been filtered through. 700µL of wash solution 1 was then added
to the filter cartridge and spun again for 30 secs 13,000 RPM, collection tube was replaced
and 700µL of wash solution 2/3 added to the filter tube, and re-spun for 30 secs 13,000 RPM.
Wash solution 2/3 step was repeated, followed by an additional spin at 1 min at 13,000 RPM,
to remove residual fluid. The filter cartridge was then added to a new centrifuge tube, and
50µL of elution solution added, and spun at 13,000 RPM for 1 min. Eluted RNA was stored
at -80◦C until use.
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2.5.5 RNA quantification

1µL of extracted RNA per sample was analysed spectrophotometrically for concentration
and purity using the NanoDrop 2000C (Thermo Fisher Scientific). Concentration was cal-
culated from absorbance at 280nm and purity was calculated by A260/A280 ratio with an
acceptable range of 1.7-2.1.

2.5.6 cDNA synthesis

Complementary DNA (cDNA) was synthesised from extracted RNA for use as template
in qPCR experimentations. All surfaces and equipment were cleaned thoroughly with 70%
IMS before and throughout cDNA synthesis work. Random primers were chosen over oligo-
dT in order to avoid 3’ poly-A tail weighting. RNA volume input was calculated by the
following:

RNA input = desired cDNA concentration/RNA concentration (ng/µL).

2.5.7 High throughput cDNA synthesis kit by Applied Biosystems (Thermo Fisher)

RNA input was calculated and the appropriate amount, made up to 10µL with pure H2O,
was mixed in one 0.6mL, thin walled PCR tube for each sample. The reverse transcriptase
mastermix was made up using reagents and volumes listed in Table 2.13.

Reagent Volume Added

10× RT Buffer 2.0µL
25× dNTP Mix (100 mM) 0.8µL
10× RT Random Primers 2.0µL
MultiScribeTM Reverse Transcriptase 1.0µL
RNase Inhibitor 1.0µL
Nuclease-free H2O 3.2µL
Total per reaction 10.0µL 10.0µL

TABLE 2.13: cDNA synthesis process. Reagent volumes for reverse transcrip-
tase for one sample for use with the High-throughput cDNA reverse transcrip-

tase kit (Thermo Fisher).

10µL of the mastermix was then added to the RNA/H2O samples, to make a 20µL final
volume, samples were briefly vortexed. Samples were then incubated at 25◦C for 25 minutes
to anneal the primers, 37◦C for 120 minutes to extend the synthesis, and 85◦C for 5 mins to
inactivate the enzyme. cDNA was stored at -20◦C until further processing.
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2.5.8 Quantitative PCR (qPCR)

qPCR (quantitative polymerase chain reaction) was used to assess relative gene expression
(RQ) in a number of different experiments. qPCR experiments were prepared in an exclusive
area or PCR dedicated hoods when possible and all equipment used was sterilised using 2%
TriGene (Medimark Scientific) and 70% IMS initially and repeatedly throughout the prepa-
ration. All reagents were defrosted and kept on ice when in use to preserve their integrity
and SYBR R© Green containing reagents were kept in a light proof storage whenever possible.

2.5.9 Reference gene assessment

The MIQE (minimum information for the publication of qPCR experiments) guidelines out-
line the importance of an assessment of the most appropriate reference genes specific to the
samples used must be carried out prior to any qPCR experiment. In light of this, a selection
of samples representing the whole cohort in each experiment were assessed using the ei-
ther the geNormTM human 12 gene kit or geNormTM human 6 gene kit (Primerdesign). The
genes assessed are detailed in Table 2.14.

Gene name Description

B2M* Beta-2-microglobulin (mRNA)
YWHAZ* Phospholipase A2 (mRNA)
RPL13A* Ribosomal protein L13A (mRNA)
18S 18S RNA (rRNA)
UBC* Ubiquitin C (mRNA)
ATP5B ATP synthase subunit (mRNA)

TABLE 2.14: The geNormTM human 6 gene kit from Primerdesign.

2.5.10 geNormTM with PrecisionPLUSTM Mastermix (Primerdesign)

GeNormTM experiments were prepared in a qPCR exclusive area and all equipment used
was sterilised using 2% TriGene (Medimark Scientific) and 70% IMS initially and repeatedly
throughout the preparation. All reagents were defrosted and stored on ice when in use to
preserve their integrity and SYBR R© Green containing reagents were kept in light proof con-
tainers whenever possible. GeNormTM experiments were carried out on the Quantistudio 7
cycler (Life Technologies). PrecisionPLUSTM Mastermix by Primerdesign was used for the
geNormTM experiments as per manufacturer’s instructions. PrecisionPlusTM Mastermix is
pre-prepared master mix containing a hot start Taq polymerase enzyme, SYBR R© Green I
dye and deoxynucleoside triphosphates (dNTPs). Primers in the geNormTM kit were sup-
plied lyophilised, thus prior to use tubes were briefly centrifuged to collect dry components
at the bottom of the tubes which were then rehydrated with 220µL of pure H2O. Forward



Chapter 2. 47

and reverse primers were contained within the same tube. Samples were run in duplicate
and so small mixes were made up for each primer for (n × 2)+1 containing the following
components as shown in Table 2.15.

Reagent Volume n=1 (µL)

Primer Mixture 1 1
PrecisionPLUSTM Mastermix 10
Pure H2O 4
cDNA 5
Total 20

TABLE 2.15: geNorm primer mix. Volume of components for primer mixes in
geNormTM experiment.

cDNAs for all representative samples were diluted to a concentration of 5ng/µL. 15µL of
the primer mix was pipetted into each well (two reactions for each sample) of a MicroAmp R©

Fast Optical 96-Well Reaction Plate (Life Technologies) followed by 5µL of appropriate cDNA.
The wells were sealed hermetically with a transparent, contact adhesive sealing film and the
plate briefly centrifuged to ensure all the reagents had collected and there were no visible
air bubbles. The reagents were then subject to the following thermal protocol detailed in
Table 2.16.

Step Temperature Time Cycles

Start 95◦C 2 minutes 1
Amplification 95◦C 15 seconds 40

60◦C 60 seconds
Fluorescent measurement - -
Dissociation curve 60-95◦C - 1

TABLE 2.16: Thermal protocol of a geNormTM experiment on the Quantstu-
dio 7 (Life Technologies).

Following the amplification protocol, the dissociation temperature of the PCR products
generated were assessed by a dissociation protocol. In the protocol, the temperature was
increased by 1◦C from 60-95◦C, whereby a fluorescence measurement is taken at each in-
crease. The differential fluorescence was plotted against the temperature (◦C) to determine
the temperature at which the product strands dissociated.

2.5.11 geNormTM analysis

geNormTM was analysed using the qBase+ software (Biogazelle). qPCR raw data was up-
loaded to qBase+, where the software calculated an M (measure) and V (variation) value for
expressional stability and optimum number of reference genes to use respectively.
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2.5.12 Primers

Primer sequences were sourced from the literature, and ordered from Sigma Aldrich. Primers
were supplied lyophilised and so were briefly centrifuged to collect dry components at the
bottom of the tubes. Primers were then rehydrated according to manufacturer’s direction.
All reference genes are shown in Table 2.17 and all primer sequences are listed in Table 2.18.

Species Gene Accession Anchor Context Length
Symbol Number Nucleotide Sequence (bp)

HUMAN 18S NM_10098 235 99
HUMAN B2M NM_004048 362 141
HUMAN GAPDH NM_002046 1087 142
HUMAN ACTB NM_001101 1194 106

TABLE 2.17: Primer sequence of reference genes. Primer sequence for all ref-
erence genes tested as purchased from Primerdesign. Primerdesign does not
release primer sequence details, but provided the amplicon context sequence
for all reference genes, accepted by MIQE guidelines for publication purposes.

Primer Amplicon
(bps)

Strand Size
(base)

Sequence

RAD51AP1 121 Forward 20 AGTGAAGTAAAATCCCAGTAGA
Reverse 20 TGGCAAGGACTGAGATTCTGAT

FSTL1 150 Forward 22 TAAAGGGAGCAACTACAGYGAAAT
Reverse 20 TTGTTCTCCTGGTCTGGATAGC

COL12A1 98 Forward 19 GTGCCTGGACTGATTGGTTT
Reverse 21 AGACACAAGAGCAGCAATGAAG

SPRR1A 137 Forward 19 GCCACTGGATACTGAACACC
Reverse 21 AGAATGAGGGTAAGGGACATCTT

SOX2 210 Forward 19 CATCGACGAGGCTAAGCGG
Reverse 18 TAACTGTCCATGCGCTGGTT

SNAI1 208 Forward 21 GAGCTGAACCTCCCTGTCAGA
Reverse 20 GTTGAAGGCCTTTCGAGCCT

MDM2 285 Forward 22 ATGTCTGTACCTACTGATGGTGC
Reverse 20 TCACAGAGAAGCTTGGCACG

AIP 199 Forward 19 TCAAGGCCTACTTCAAGCGG
Reverse 19 CAATGGGAGAAGATCCCCCG

FAS 192 Forward 18 ACACTCACCAGCAACACCAA
Reverse 19 TGCCACTGTTTCAGGATTTAA

SOD1 78 Forward 23 TAAAGTAGTCGCGGAGACGGG
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Reverse 22 CGGCCTCGCAACACAAGCCT
BAX 204 Forward 20 TGCTTCAGGGTTTCATCCA

Reverse 21 GGAAAAAGACCTCTCGGGG
SHISA2 244 Forward 19 ACGATTCGACCATCTGCTG

Reverse 21 CAGTTGGTTTGGGATCGAGT
THBS1 550 Forward 22 CCAGCTGTACATCGACTGTGA

Reverse 22 GCAGATGGTAACTGAGTTCTGA
XIST 110 Forward 20 AGGTCAGGCAGAGGAAGTCA

Reverse 20 CTCCCGATACAACAATCACG
Reverse 19 CAGTGGGTGTTGCAGGATG

GSTT1 989 Forward 20 GGCGAGAGAGCAAGACTCAG
Reverse 20 GGCAGCATAAGCAGGACTTC

NBPF14 201 Forward 19 TGGCTCATCCTCTATGTTG
Reverse 21 AGATTCCTGGGAGACACTGGT

IL1A 119 Forward 21 CGCCAATGACTCAGAGGAAGA
Reverse 19 AGGCGTCATTCAGGATGAA

IL1B 118 Forward 18 AATCTGTACCTGCGTGTT
Reverse 25 TGGTAATTTTTGGGATCTACACTCT

EGR1 160 Forward 21 CTTCAACCCTCAGGC GGACA
Reverse 21 GGAAAAGCGGCCAGTATAGGT

F2RL2 109 Forward 23 AGCTCCACGAAAGGTCTTAATGG
Reverse 18 AGCTGCTGGCCTGCTGCT

MEGF6 452 Forward 24 CCTCACAGCTGTTCACGATTTCCA
Reverse 22 GATTGGCCTTGAATGCCTGTCA

CTFG 117 Forward 19 AATGCTGCGAGGAGTGGGT
Reverse 23 CGGCTCTAATCATAGTTGGGTCT

mTOR 135 Forward 20 TGCCAACTACCTTCGGAACC
Reverse 19 GCTCGCTTCACCTCAATTC

DEPTOR 202 Forward 19 CACCATGTGTGTATGAGCA
Reverse 19 TGAAGGTGCGCGCTCATTG

rictor 117 Forward 20 GGAAGCCTGTTGATGGTGAT
Reverse 19 GGCAGCCTTTTTATGGTGT

raptor 170 Forward 19 ACTGATGGAGTCCGAATGC
Reverse 19 TCATCCGATCCTTCATCCTC

TABLE 2.18: Primer sequences of all genes. Primer sequence for all genes
tested, all primers were synthesised by Sigma-Aldrich.



Chapter 2. 50

2.5.13 Gel electrophoresis

Primers were validated by running the PCR products on a 2% agarose gel. 2g of agarose
(Fisher Scientific) was added to 100mL of 1 × tris-borate EDTA (TBE, 89mM Tris-borate,
2mM EDTA, pH 8.3) buffer and microwaved for approximately 2 mins or until the agarose
had dissolved and the mixture was clear. The mixture was cooled to approximately 50◦C,
and 5µL ethidium bromide was added and mixed well. The gel was poured into a prepared
casting tray on a level surface and a 20 well comb inserted at one end. The gel was left to set
for approximately 25 mins and transferred into a tank containing 1×TBE buffer. 2µL of DNA
loading buffer was mixed with 10µL qPCR product to aid loading and visualisation of mi-
gration through the gel. The mixture was added to each appropriate well. In a separate well
5µL of 1kb Plus DNA LadderTM (Life Technologies) was added as a guide of product size.
The gel was run at 100V and 400mA for approximately 45 minutes until the product had
migrated a satisfactory distance. The gel was visualised using a Gel DocTM XR+ Imaging
System (Bio-Rad) and analysed visually for consistency of product size, to predicted prod-
uct size and the presence of extra products which may represent contamination or primer
dimers.

2.5.14 Power SYBR R© Master Mix (Life Technologies)

Power SYBR R© Master Mix (Life Technologies) was used with the Quantstudio 7 (Life Tech-
nologies). Power SYBR R© Master Mix is a pre-prepared master mix containing AmpliTaq
Gold DNA Polymerase, SYBR R© Green I dye and dNTPs (with a blend of dUTP and dTTP).
Reactions were formulated as follows (Table 2.19).

Reagent Volume n = 1 (µl)

Power SYBR R© Master Mix (2×) 10
Pure H2O 4
Forward Primer (10µM) 0.5
Reverse Primer (10µM) 0.5
cDNA (100ng/µL) 5
Total 20

TABLE 2.19: qPCR mastermix preparation. Volume of components for primer
mixes in qPCR experiment with Power SYBR R© Master Mix (Life Technolo-

gies).

The above reagent mix was made up separately for each primer set. 15µL of the appro-
priate mix and 5µL of cDNA was dispensed into a MicroAmp R© Fast Optical 96-Well Reac-
tion Plate (Life Technologies) according to a pre-designed well plan. NTCs (non-template
controls), where water was substituted for cDNA, were included for each of the primer
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mixes as a negative control. According to MIQE guidelines and geNormTM analysis (com-
pleted previously), 2 reference genes, B2M and 18S, were shown to be expressionally stable
and thus were included as an endogenous controls in this set of experiments. The wells
were sealed hermetically with a transparent, contact adhesive sealing film and the plate
centrifuged to ensure all the reagents had collected. The sample plate was subjected to a
temperature protocol as described in Table 2.20.

Step Temperature Time Cycles

Hot Start 95◦C 10 minutes 1
Amplification 95◦C 15 seconds 40

60◦C 60 seconds
Fluorescent measurement 60◦C -
Dissociation curve 60-95◦C - 1

TABLE 2.20: qPCR thermal cycler details. The thermal protocol of a qPCR ex-
periment using Power SYBR R© Master Mix on a Quantstudio 7 thermal cycler

(both Life Technologies).

Following the amplification protocol, the dissociation temperature of the PCR products
generated were assessed by a dissociation protocol as described above.

2.5.15 Multiplex TAQMan qPCR

Multiplex TAQman qPCR was used to measure RAD51AP1 in clinical tissue and blood sam-
ples. The RAD51AP1 gene was tagged with FAM-MGB, the 2 reference genes Beta Actin and
GAPDH were used, and both were tagged with VIC-MGB, and FAM-MGB, respectively.
Multiplex was carried out on the RAD51AP1 and Beta Actin, whereas GAPDH was run sep-
arately. The TAQman Multiplex real time PCR mastermix (ABI) was used in a 20µL reaction
on the Quantstudio 7. Reactions were formulated as show in Table 2.21.

Reagent Volume n=1 (µL)

TAQman Multiplex real time PCR mastermix 10
Pure H2O 3*
Primer 1 1
Primer 2 1
cDNA (100ng/µL) 5
Total 20

TABLE 2.21: Multiplex reagent mix. Volume of components for primer mixes
in qPCR experiment with TAQman Multiplex real time PCR mastermix (ABI).
*In GAPDH reactions only, H2O was increased to 4µL to make up a final 20µL

working reaction.
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The above reagent mix was made up for RAD51AP1 and Beta Actin simultaneously and
GAPDH separately. 15µL of the appropriate mix and 5µL of cDNA was dispensed into
a MicroAmp R© Fast Optical 96-Well Reaction Plate (Life Technologies) according to a pre-
designed well plan. NTCs, where water was substituted for cDNA, were included for each
of the primer mixes as a negative control. Beta Actin and GAPDH were used as reference
genes. The wells were sealed hermetically with a transparent, contact adhesive sealing film
and the plate centrifuged to ensure all the reagents had collected. The sample plate was
subjected to a temperature protocol as described in Table 2.22.

Step Temperature Time Cycles

Hot Start 50◦C 2 minutes 1
95◦C 10 seconds 1

Amplification 95◦C 15 seconds 40
60◦C 60 seconds

Fluorescence Measurement 60◦C -
Dissociation Curve 60-95◦C 1 1

TABLE 2.22: Multiplex qPCR thermal cycler process. The thermal protocol
of a qPCR experiment using Power SYBR R© Master Mix on a Quantstudio 7

thermal cycler (both Life Technologies).

Following the amplification protocol, CT values were generated and relative quantifica-
tion calculated as described in Section 2.5.19.

2.5.16 DNA extraction

DNA was extracted from frozen plasma samples from clinical samples, using a commer-
cially available kit, Qiagen DNA blood mini kit (cat #51104). Briefly, plasma was defrosted
at room temperature. 20µL of protease K was added to the bottom of a clean 1.5mL eppen-
dorf tube, followed by addition of 200µL of plasma sample, and 200µL of buffer AL, the
solution was then pulse mixed for 15s. The sample was then incubated for 10 mins at 56◦C
in a water bath. 200µL of 100% ethanol was then added to the samples, followed by pulse
vortexing for 15 s. The solution was then spun through a QIAamp Mini spin column with
a collection tube attached, at 8,000 RPM for 1 min, discarding the filtrate. 500µL of buffer
AW1 was added to each spin column and spun at 8,000 RPM for 1 min. The flow through
was discarded and the spin column placed in a new collection tube. 500µL of buffer AW2
was added, and samples spun for 3 mins at 14,000 RPM. The flow through was discarded
and the spin column spun for an additional 1 min at 14,000 RPM to eliminate carryover of
buffer AW2. The spin column was then placed in a new 1.5mL eppendorf tube, and 200µL
of buffer AE added, incubated for 1 min at room temperature before being spun at 8,000
RPM for 1 min. The DNA elute was stored at -20◦C until further analysis.
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2.5.17 ALU repeat primers

Sequences for the ALU 114 and 247 were taken from Umetani et al. (2006), and synthesised
by Sigma-Aldrich (Table 2.23).

Primer Forward Sequence bp Reverse Sequence bp

ALU 114 CCTGAGGTCAGGAGTTCGAG 20 CCCGAGTAGCTGGGATTACA 20
ALU 247 GTGGCTCACGCCTGTAATC 19 CAGGCTGGAGTGCAGTGG 19

TABLE 2.23: Alu repeat primer sequence. Primer sequences for Alu repeat
sequences 114 and 247. Sequences obtained from Umetani et al., 2006, and

synthesised by Sigma-Aldrich.

2.5.18 DNA qPCR

Power SYBR R© Master Mix (Life Technologies) was used with the Quantstudio 7 (Life Tech-
nologies). Reactions were formulated as follows (Table 2.24).

Reagent Volume n = 1 (µL)

Power SYBR R© Master Mix (2×) 10
Pure H2O 4
Forward Primer (10µM) 0.5
Reverse Primer (10µM) 0.5
DNA (100ng/µL) 5
Total 20

TABLE 2.24: Alu repeat PCR reagent mix. Volume of components for primer
mixes in qPCR experiment with Power SYBR R© Master Mix (Life Technolo-

gies).

The above reagent mix was made up separately for each primer set. 15µL of the appro-
priate mix and 5µL of cDNA was dispensed into a MicroAmp R© Fast Optical 96-Well Re-
action Plate (Life Technologies) according to a pre-designed well plan. NTCs where water
was substituted for cDNA, were included for each of the primer mixes as a negative control.
The wells were sealed hermetically with a transparent, contact adhesive sealing film and the
plate centrifuged to ensure all the reagents had collected. The sample plate was subjected to
a temperature protocol consisting of the following (Table 2.25).
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Step Temperature Time Cycles

Hot Start 95◦C 10 minutes 1
Amplification 95◦C 30 seconds 35

64◦C 30 seconds
95◦C 15 seconds
60◦C 60 seconds
95◦C 15 seconds

Fluorescence Measurement 60◦C -
Dissociation Curve 60-95◦C 1 1

TABLE 2.25: qPCR thermal cycler process. The thermal protocol of a qPCR
experiment using Power SYBR R© Master Mix on a Quantstudio 7 thermal cy-

cler (both Life Technologies).

Following the amplification protocol, CT values were generated and relative quantifica-
tion calculated as described below. A DNA Integrity Index calculated as follows: RQ Alu
247/RQ Alu 114.

2.5.19 qPCR analysis

Amplicon load can be measured in by either absolute or relative quantification. Absolute
quantification (AQ) measures amplification in relation to a known standard to provide an
absolute copy number. Relative quantification (RQ) measures amplification in relation to a
reference gene or genes which are stably expressed under the conditions of the experiment
(for example after treatment of cultured cells with a drug compound). The most common
way to analyse relative quantification qPCR data is the ∆Cq or ∆∆Cq method detailed be-
low:

∆Cq=Cq (gene of interest - GOI) - Cq (reference gene)
(Normalises GOI expression to the reference gene)

∆∆Cq=∆Cq (sample) - ∆Cq (calibrator)
(Normalises GOI expression in a sample to that of a calibrator, for example untreated cells)

For ∆Cq method: RQ = 2-∆Cq

For ∆∆Cq method: RQ = 2-∆∆Cq

(Inverts value to show change whilst assuming 100% efficiency)

The ∆∆Cq method demonstrates fold change in expression in comparison to a calibrator
and is only appropriate when a valid calibrator is available; for example where cultured
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cells treated with a drug compound, the cells under basal conditions would be the calibra-
tor. In the case of gene expression in clinical samples, unless each sample is matched to
non-affected adjacent tissue and the assumption is made that the tissue is ‘normal’, it is not
acceptable to match the ∆Cq value from one patient to that of a different patient as natural
individual differences will mean that gene expression will differ from person to person. If
this is the case, the ∆Cq method can be used to provide a comparison between samples and
calibrators.

2.6 siRNA transfection in cell lines

In order to further understand the role and function of RAD51AP1 we sought to carryout
functional studies. We used siRNA targeted to RAD51AP1 (SMARTpool: ON-TARGETplus,
Dharmacon, CO, USA) to suppress RAD51AP1 expression in SKOV-3, MDAH-2774 and
A549 cells. Transfection efficiency was first determined with siGLO-labelled siRNA, at dif-
ferent seeding densities, siRNA concentration and volume of transfection reagent. All cell
lines were seeded at 2×104 and 1×105 cells, per well in 6-well (RNA) and 24-well plates
(protein lysates and cell count) respectively, based on optimisation results. The siRNA trans-
fection was carried out once at a concentration of 50nmol/L per well/dish using Dharma-
fect 1 transfection reagent, a scrambled control was also included (ON-TARGETplus Non-
targeting Pool; Thermo Scientific). Transfection was established by, seeding cells in serum-
free DMEM media (Gibco) overnight. SiRNA was diluted to a 5µM working concentration
from a 20µM stock solution, by a 1 in 4 dilution in siRNA buffer (Dharmacon). Transfection
was made up for n + 1 working concentration. Tables 2.26 and 2.27 detail the reagents and
volumes for the reaction.

Tube A Tube B

Reagent Volume µL (n=1) Reagent Volume µL (n=1)

siRNA 5 Transfection reagent 1 1.5
Serum free media 45 Serum free media 48.5

Serum free media - 400µL

TABLE 2.26: Reagents and quantities for siRNA transfection cocktail for a
24 well plate.

Tube A and B are made up independently and allowed to incubate at room temperature
for 5 mins, before being mixed together, and incubated for 20 mins at room temperature to
allow the complexes to form. Following incubation the tubes were spun briefly for 1 min
at 3,000 RPM. Serum free media was then added to the solution and mixed by pipetting,
followed by added 500µl and 2mL to cells in the 24 well and 6 well plates respectively (fol-
lowing removal of existing media). The transfection media was replaced with fresh serum
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Tube A Tube B

Reagent Volume µL (n=1) Reagent Volume µL (n=1)

siRNA 20 Transfection reagent 1 10
Serum free media 180 Serum free media 190

Serum free media - 1600µL

TABLE 2.27: Reagents and quantities for siRNA transfection cocktail for a 6
well plate.

free media at 24 hours to avoid toxicity, and samples collected at 48 and 72h post transfec-
tion. Scrambled controls were conducted in the same way, and carried for all experiments
in all 3 cell lines.

2.7 Western Blotting

Protein RAD51AP1, FSTL1, mTOR, DEPTOR, rictor, and raptor lysates was analysed by
Western blot. Proteins were separated by mass by SDS-PAGE (Sodium-Dodecyl-Sulphate
Polyacrylamide gel electrophoresis).

2.7.1 Protein extraction

Protein was extracted from cultured cells from 24-well plates in order to examine expression
patterns of RAD51AP1, FSTL1, mTOR, DEPTOR, rictor, and raptor. Media was aspirated
and cells were washed briefly in PBS (Gibco). 100µL of LaemmLi buffer (Table 2.28) was
added and the plate gently rocked to cover all cells. Cells were scraped with a pipette tip
and lysate was transferred into a sterile 1.5mL sample tube. Lysates were denatured by
boiling for 10 minutes at 95◦C in a heat block before storage at -20◦C until further use.

Reagent Volume

Tris (pH 6.8) 1mL
10% SDS 4mL
Glycerol 2mL
β-mercaptoethanol 0.5mL
dH2O 2.5mL
Bromophenol blue Tip of pipette amount to achieve desired colour to aid visualisation

TABLE 2.28: Volume of components of 10mL LaemmLi buffer.
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2.7.2 Western gel

A 12% resolving and 5% stacking gel were used and were prepared as follows. The gels
were poured at a thickness of 1mm between glass plates according to the recipes in Table
2.29.

Gel Reagent Resolving (mL) Stacking (mL)

dH2O 1.6 3.4
30% Acrylamide/Bisacrylamide (Sigma-Aldrich) 2 0.83
1.5M Tris (pH 8.8) 1.3 N/A
1M Tris (pH 6.8) N/A 0.63
10% SDS 0.05 0.05
10% Ammonium Persulphate in dH2O 0.05 0.05
TEMED (tetramethylethylenediamine) 0.002 0.005
Total 5 5

TABLE 2.29: Formulations of resolving and stacking gels, in mL.

Resolving gel was topped with 100% methanol to level and allowed to set for 20-30 min-
utes at room temperature. Once the resolving gel had set the methanol was poured away, the
gel was washed with distilled H2O and excess water removed with filter paper. The stacking
gel was poured over the resolving gel at an approximate height of 2cm, and a comb placed
between the glass plates to form wells. The stacking gel was left to set for a further 20-30
minutes at room temperature. Cell lysates were incubated at 100◦C for at least 10 minutes
to linearise the protein, break down disulphide bonds and remove tertiary structures. The
SDS in the protein buffer and gel serves to coat the protein in a consistent negative charge to
avoid the varying charges on amino acids to affect migration of the protein through the gel.
10µl of each sample was loaded into each appropriate well. 5µl of PageRulerTM Prestained
Protein Ladder (Life Technologies) was used as a reference of mass. The gels were run in
1× Running Buffer (Table 2.30) at 100V and 40mA per gel until the visible blue band of
LaemmLi buffer was almost at the bottom of the gel and the ladder was fully separated.

Reagent Quantity

Tris Base 30g
Glycine 44g
10% SDS 100mL
dH2O Up to 1L

TABLE 2.30: Formulation of 10× Running Buffer.

When the samples move through the stacking gel they are concentrated between a chlo-
ride and glycine front and so enter the resolving gel simultaneously. The proteins are



Chapter 2. 58

then able to separate based on their individual mass by their differential rate of movement
through the resolving gel.

The separated proteins were then electrophoretically transferred onto a nitrocellulose
membrane (Thermo Scientific) in Wet-Transfer Buffer (Table 2.31). The transfer apparatus
were assembled whist immersed in Wet-Transfer Buffer to avoid the gel and membrane
drying out. The membrane and gel were sandwiched between sponges and filter paper and
placed in a cassette before being placed in a tank of transfer buffer and run at 100V and
300mA for 1.5 hours.

Reagent Quantity

Tris Base 2.41g
Glycine 11.25g
dH2O Up to 800mL
Methanol 200mL

TABLE 2.31: Formulation of 1× Wet-Transfer Buffer.

After successful transfer the protein ladder was visible on the nitrocellulose membrane,
and visualisation of bands in the presence of a Ponceau stain. The membrane was then
rinsed briefly in 1× TBS Tween (Tables 2.32 and 2.33) and incubated in 50mL of 5% cow’s
milk (Marvel milk powder in TBS Tween) for one hour at room temperature on a shaker.

Reagent Quantity

Tris Base 24.2g
NaCl 80g
dH2O Up to 1L

TABLE 2.32: 10× TBS recipe.

Reagent Quantity

10× TBS 100mL
dH2O 899mL
Tween 20 1mL

TABLE 2.33: Formulation of 1× TBS Tween.

After blocking, the membrane was washed three times for ten minutes each in TBS
Tween to remove any unbound milk proteins. A primary antibody (Table 2.34) diluted in 5%
bovine serum albumin/TBS Tween was applied to the membrane in sealed pouch and incu-
bated overnight at 4◦C on a shaker. The membrane was then washed a further three times
for 10 mins each in TBS Tween to remove any unbound primary antibody. The secondary
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antibody (Table 2.34) was diluted in 5% bovine serum albumin/TBS Tween and incubated
with the membrane for one hour at room temperature. The membrane was washed three
times for 10 mins in TBS Tween to remove any unbound secondary antibody; the mem-
brane was stored in TBS Tween while reagents are prepared for visualisation of the proteins
by enhanced chemiluminescence (ECL). Development of the membranes was carried out
in a dark room so as not to expose the light-sensitive X-ray films. Solution A and B were
prepared (Table 2.35) beforehand, mixed and applied to the drained membranes in the dark
room immediately prior to developing. The membranes were incubated for one minute,
blotted on filter paper and exposed to X-ray film within a light impermeable cassette for a
range of times (usually 30 seconds to 5 minutes). The films were developed on a Curix60
(AGFA) automatic developing machine.

Primary
Antibody

Dilution Species MW
(kDA)

Supplier Secondary Anti-
body

Dilution Supplier

RAD51AP1 1:1000 Rabbit 37 Sigma Anti-rabbit, HRP
conjugated

1:2000 Sigma

FSTL1 1:1000 Rabbit 50 Sigma Anti-rabbit, HRP
conjugated

1:2000 Sigma

mTOR 1:1000 Rabbit 289 Abcam Anti-rabbit, HRP
conjugated

1:2000 Sigma

DEPTOR 1:1000 Mouse 46 Abcam Anti-mouse,
HRP conjugated

1:2000 Sigma

rictor 1:1000 Mouse 192 Abcam Anti-mouse,
HRP conjugated

1:2000 Sigma

raptor 1:1000 Rabbit 150 Abcam Anti-rabbit, HRP
conjugated

1:2000 Sigma

B Actin 1:1000 Mouse 42 Source
Bio-
science

Anti-mouse,
HRP conjugated

1:2000 Sigma

TABLE 2.34: Western Blot antibody details. Details of antibodies used in
Western blotting experiments. MW is the molecular weight.

Solution A Solution B

Reagent Quantity Reagent Quantity

100 mM Tris (pH 8) 5mL 100 mM Tris (pH 8) 5mL
Luminol 50µL Hydrogen Peroxide (30%) 3µL
Coumaric Acid 22µL

TABLE 2.35: Formulation of solutions A and B for enhanced chemilumines-
cence.
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2.8 Cell cycle assay

Cell cycle analysis was carried out on the RAD51AP1 transfected cell lines, using a commer-
cial kit, Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis (Abcam ab139418).
Samples for cell cycle analysis were collected from transfected cells at baseline, 48 and 72h
post siRNA transfection with RAD51AP1, and scrambled siRNA to act as a control, from 24
well plates. Media was aspirated and collected in a 15mL centrifuge tube (to retain apop-
totic and loosely adherent cells), followed by addition of 200µL of TrypLETM Express (In-
vitrogen), cells were incubated for 5 mins in a 37◦C incubator, before collecting the cell
suspension in to the same 15mL tube. Cells were then spun at 500xg in a centrifuge and
supernatant discarded. The cells were then washed in 1mL of ice cold PBS, re-spun at 500
g for 5 mins and supernatant discarded. The cells were then fixed in 66% ethanol on ice, by
resuspending the cell pellet in 400µL of ice cold PBS, then slowly adding 800µL of ice cold
100% ethanol; this was mixed well by retro pipetting. The samples were then stored at 4◦C
and processed within 4 weeks.

Samples were run on the ACEA NovocyteTM Flow cytometer; samples were first equi-
librated to room temperature, followed by gentle inversion of cells to resuspend the pellet.
Cells were pelleted by centrifuging at 500g for 5 mins, aspirating the supernatant. The cells
were then washed in 1mL of PBS, and respun at 500g for 5 mins, before removing the su-
pernatant. The pellet was then resuspended in 200µL of 1× Propidium iodide and RNase
staining solution (Abcam). The solution was then incubated in the dark for 30 mins at 37◦C.
Samples were then placed on ice, and mixed well before running on the flow cytometer.
Analysis was conducted using the cell cycle assay function.

2.9 Oncology protein analysis

Further analysis was carried out on RAD51AP1 transfected cell lines to ascertain if cancer
specific proteins were affected by the RAD51AP1 silencing. This was done by a commercial
kit, Human XL Oncology Array Kit (R&D systems, cat #ARY026). Samples were collected
at 60 hours post transfection, as only one sample was possible due to cost constraints; it was
felt this would be the optimal transfection time between 48 and 72h. Treated and scram-
bled control sample were run for 2 of the cell lines only, SKOV-3 and A549 (due to cost
constraints), all samples were run in duplicate.

Cell lysates were collected by aspirating media from the cells, and washing with PBS.
The PBS was aspirated off. Cells were solubilised at 1×107 cells/mL in Lysis buffer 17. The
solution was resuspended by pipetting, followed by rocking the lysate gently on a rocker
at 2-8◦C for 30 mins. The solution was then microcentrifuged at 14,000×g for 50 mins, and
supernatant transferred in to a clean Eppendorf and stored at -80◦C until processing.
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Samples are processed on an array plate, provided. Firstly, 2mL of Array Buffer 6 was
added to each well of the of the 4-Well Multi-dish. Array Buffer 6 serves as a block buffer.
The membranes containing the antibody is placed in the well, and incubated for 1 hour on a
rocking shaker. 500µL of sample were mixed with 500µL of Array Buffer 4 in separate tunes.
The final volume was adjusted to 1.5mL with Array Buffer 6. Array Buffer 6 was aspirated
from the wells of the 4-Well Multi-dish and the prepared samples added to the membranes,
and covered by a lid. The membranes were incubated overnight 2-8◦C on a rocking shaker.
The membranes were carefully removed and placed in individual plastic containers, with
20mL 1× Wash Buffer, and washed for 10 mins on a rocking shaker, this was repeated for
a total of 3 washes. The array was then carefully removed from the container, allowing ex-
cess Wash Buffer to drain off, returning to the 4-Well Multi-dish containing the Detection
Antibody Cocktail, covering the dish with a lid. The plates were then incubated for an hour
at room temperature on a shaking rocker. The membranes were re-washed in 20mL of 1×
Wash Buffer, three times on a rocking shaker for 10 mins each. Following the final wash,
all the solution was discarded and 2mL of 1× Streptavidin HRP was added to each well, of
the 4-well multi dish. The membrane was then removed from the wash container, allow-
ing excess Wash Buffer to drain off, and returned to the 4-Well Multi-dish containing the
1× Streptavidin HRP, closing the lid. The membranes were incubated for 30 mins at room
temperature on a rocking shaker. The membranes were re-washed in 20mL of 1× Wash
Buffer, three times on a rocking shaker for 10 mins each. The membrane was removed from
the wash container, allowing excess Wash Buffer to drain from the membrane by blotting
the lower edge onto paper towels. Each membrane was placed on the bottom sheet of the
plastic sheet protector provided. 1mL of Chemi Reagent mix was added to the membrane,
followed by covering the membrane with the top sheet plastic protector, smoothing out any
bubbles. This was incubated at room temperature for 1 min, followed by squeezing out the
excess Chemi Reagent. The membranes were wrapped in plastic wrap whilst in the protec-
tive cover, and placed in an autoradiography cassette. The membrane was then exposed to
X-ray film from 1-10 mins, followed by developing on a Curix60 (AGFA) automatic devel-
oping machine.

2.9.1 Oncology array analysis

The membranes were analysed densitometrically using ImageJ software (National Institutes
of Health). Optical density (OD) of the spots/bands representing protein expression was
measured and a ratio calculated comparing transfected OD by scrambled control OD.
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2.10 Microarray

Microarray analysis was carried out on SKOV-3 72h transfected cells and scrambled controls,
due to cost constraints. The microarray experimentation was carried out by collaborators at
Oxford Brookes University. Experiments were performed in pooled biological replicates.
The extracted RNA was quality verified on a 2100 expert Agilent bioanalyzer; all samples
had an RNA yield greater than 30µg and RIN values of 10. Samples were amplified and
labelled with Agilent Low Input Quick Amp labelling two colour kit and hybridised with a
dye swap to an Agilent G3 8plex x 60k gene Human transcriptome microarray and washed
to supplier’s protocol.

The array slide was scanned at 3µM and 20 bit Tiff file dynamic range on an Agilent
Surescan G2565CA microarray scanner at 100% PMT (photomultiplier tube) gain for both
red and green lasers, and exported TIFF images. The TIFF images were then aligned to their
design files, quality controlled and converted into probe intensity values using the Agilent
Feature Extraction Software Ver 12.0.1.1. Using this software this data was probe- and Loess-
normalised and then quantile-normalised for subarray variation using Genespring 14.8 GX-
Build 7274 (Agilent), and baseline transformed by the median of all samples. Genes showing
2-fold change between groups and Moderated T-Test significance p-value < 0.05 to remove
technical variation (no FDR was carried out due to small sample numbers) were enriched
and loaded into Pathways Analysis module of Genespring and compared to Wikipathways
Jan 2017 release, BioCyc Ver 20.5 and KEGG Release 81.0 annotated pathways to report on
significantly enriched pathways.

2.11 RNAseq

RNA sequencing was carried out on lung cancer patient samples only (due to cost con-
straints). Sampling was carried out on tissue and blood samples of lung cancer and healthy
controls. The RNA sequencing was carried out by collaborators at the Wellcome Trust Cen-
tre for Human Genetics (Oxford). RNA samples were normalised to 630ng total RNA and
the libraries prepared with the Illumina TruSeq Stranded mRNA Library Prep Kit which
involves isolation of the polyA containing mRNA molecules using poly-T oligo attached
magnetic beads. Manufacturer’s instructions were followed with only minor modifications.
All libraries were pooled equimolar and sequenced on one lane of HiSeq4000 at 75bp paired
end according to Illumina specifications.

2.11.1 RNAseq data analysis

The RNA-seq data was analysed using open source software programs from the Tuxedo
suite: namely TopHat2 (Kim et al., 2013) and Cufflinks (Trapnell et al., 2010). The paired
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end raw reads were mapped to the human reference genome hg37 (Ensembl 74) using the
annotations from GENCODE 19 (Harrow et al., 2012), withTopHat2 under standard condi-
tions. The resulting alignments were filtered for high quality hits using samtools (Li et al.,
2009) with a threshold score of 30. Next, we used Cufflinks to assemble the mapped reads
into transcripts and quantify their expression levels in the patient and control samples. Fi-
nally, we used Cuffdiff, as part of the Cufflinks package, to identify differentially transcribed
genes and transcripts between any two states (cancer tissue vs normal, cancer blood vs nor-
mal, cancer tissue vs cancer blood, and normal tissue vs normal blood). The RNA-seq reads
manipulation was done in collaboration with Dr Cristina Sisu (Brunel University).

2.11.2 In silico analysis using online tools

In silico analysis was carried out on various subsets of data. For this we used an online tool,
Oncomine (Oncomine, 2018), to determine gene expression levels of existing microarray
data for specific genes in cancer and normal tissues, across cancer types. We also used
another online tool known as Kaplan Meier Plotter, (Kaplan-Meier Plotter, 2018), this tool
also utilises existing microarray data, but for the purposes of gene expression associations
on prognosis and overall survival.

2.11.3 Statistical analysis

A Student’s t-test was used to asses statistical significance of any changes observed in ex-
periments. An assessment for homoscedasticity of data from each category was made using
the F-test. If homoscedasticity was proven, an unpaired, two-tailed Student’s t-test was per-
formed to assess significance in all cases as no matched pairs of samples were used. If data
were not homoscedastic, an unpaired, two-tailed Student’s t-test with Welch’s correction
was performed to account for variance. All statistical tests were performed using GraphPad
Prism R© Software (GraphPad Software). p-values were denoted on graphs and interpreted
as follows (Table 2.36):

p-value Denotation

0.01-0.05 *
0.001-0.009 **
<0.0009 ***

TABLE 2.36: The asterisk denotations of p-value on graphs and ranges.
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Chapter 3

ImagestreamTM and ClearCellTM

analysis of circulating tumour cells in
cell lines and the blood of ovarian and
lung cancer patients

3.1 Introduction

Circulating tumour cells (CTCs) are cancer cells shown to be present in the peripheral blood
of cancer patients. These cells are shed from the tumour and express tumour-specific char-
acteristics (Hiltermann et al., 2012). The passage and adherence of CTCs in peripheral blood
is key to the genesis of distant metastases in various cancers and hence crucial to patient
outcomes. Emerging evidence supports the clinical utility of CTCs, and there is increasing
evidence that CTCs can be used as predictive markers for diagnosis, prognosis, and re-
sponse to treatment (Fidler, 2003). However, detection of small populations of CTCs within
the large number of normal blood cells represents a significant technical challenge (Hou et
al., 2013). Conventional cytogenetics, morphology, and flow cytometry have been used to
detect circulating tumour cells at a level of 1 in 100; more sensitive methods including im-
munocytochemistry may detect one tumour cell in 105 normal cells (Molino et al., 1991; Hou
et al., 2011). However, examination of CTCs has been limited by several factors including
biological heterogeneity and the lack of surface signals on CTCs as opposed to static cells
(Gorges et al., 2012). Most assays established for CTC enumeration rely on the expression
of the cell surface marker epithelial cell adhesion molecule (EpCAM). However, these ap-
proaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing
epithelial-to-mesenchymal transition (EMT; (Schneck et al., 2015)). Other methods include
size based isolation, as CTCs were shown to be larger than typical blood leukocytes, in stud-
ies by Vona et al., 2000 and Dent et al., 2016.

Developments in imaging flow cytometry has enabled the technology to overcome the
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earlier hurdles of acquiring sufficient fluorescence sensitivity, leading to the production of
high spatial resolution imaging, the ability to combine fluorescence imaging with other
imaging modes, and to image all of the cells in flow (Basiji et al., 2007). The Imagestream
Mark IITM is an advanced imaging flow cytometer that combines microscopy with flow cy-
tometry. The Imagestream Mark IITM is capable of producing 60,000 images of 10,000 cells in
approximately 30 seconds. The IDEAS software analyses captures images of cells as it com-
pares cellular morphology, fluorescent signal strength, signal locations and other aspects.
The device is equipped with a software package that provides 40 quantitative features per
image, allowing for approximately 250 features to be analysed per cell (Basiji et al., 2007).

Other recent developments in technology include the Clearbridge ClearCellTM FX sys-
tem device (Clearbridge Biomedics, Singapore). The platform involves the use of spiral mi-
crofluidics to separate and enrich CTCs from whole blood based on cell size. Smaller haema-
tological cells (red blood cells and leucocytes), 8-15µm are affected by the Dean drag force
and migrate to the outer walls, whereas larger CTCs (15-20µm) are subjected to stronger
inertial lift forces and are focussed along the microchannel inner wall (Hou et al., 2013; Chu-
dasama et al., 2016), resulting in a concentrated cell suspension. Previous studies using
microfluidic based platforms have reported positive results, with high sensitivity and speci-
ficity. Moreover they report minimal cell loss due to no or little pre-processing required. The
resulting sample is also available as an enriched CTC suspension that can be further utilised
for genomic analysis (Nagrath et al., 2007; Maheswaran et al., 2008; Xu et al., 2017).

Overall isolation, detection, and characterisation of CTCs has proved challenging over
the years. Despite the development of many CTC isolation platforms, all have shown some
shortfalls; hence none have been approved for clinical NHS practice.

3.2 Aims and objectives

• To evaluate the ability of the ImagestreamTM to detect and quantify CTCs using SKOV-
3, MDAH-2774, and A549 cell lines as initial in vitro experimental models.

• To assess the efficacy of quantifying CTCs in clinical ovarian and lung cancer blood
samples using the ImagestreamTM technology.

• To assess the efficacy of quantifying CTCs in clinical lung cancer patients using the
ClearCellTM device.

• To extrapolate CTCs results and correlate with patient CA125 levels (ovarian only),
and patient outcomes and survival.
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3.3 Results

3.3.1 ImagestreamTM analysis of SKOV-3, MDAH-2774 & A549 cell lines

We conducted in vitro proof of principle experiments to ascertain whether we could stain
SKOV-3, MDAH, and A549 cancer cell lines with the AE1/AE3 antibody, and assess the
efficiency of this staining. Cells were grown in culture, and counted before conducting the
experiment. Both SKOV-3 and MDAH-2774 were used as ovarian models, as they portrayed
different subsets within this cancer (clear cell adenocarcinoma and endometriod carcinoma
respectively), and would allow for any differences to be identified.

The cell pellets were stained with AE1/AE3 antibody, and tagged with a secondary
Alexafluor R© 488 (AF488) antibody, emitting a green fluorescence. AE1/AE3 is a pan-cyto-
keratin marker used widely in NHS histopathology laboratories as part of routine testing
in cancer (Travis, 2012). As a cytokeratin marker, a positive stain on cells would resemble
a green halo like staining around the entire cells surface. Once samples were stained they
were run through the ImagestreamTM flow cytometer. The machine is comprised of 12 chan-
nels; for the purposes of this experiment the following channels were used as described in
Table 3.1.

Chanel Image Colour

Channel 1 Brightfield image Brightfield
Channel 2 AE1/AE3 image Green (AF488)
Channel 5 Draq5 nuclear stain Red (642)

TABLE 3.1: Stains used and relevant ImagestreamTM channels. Details of
the different stains used in the Imagestream analysis, including AE1/AE3 a
broad cytokeratin marker and DRAQ5, a nuclear marker, and the respective

channels the florescence is captured.

Upon cell capture with the ImagestreamTM, a scatterplot is produced (see Fig 3.1), based
on aspect ratio and area of cell captured, to allow identification of populations of cells. Here,
the further left are beads from the machinery, cancer cells (SKOV-3 cells) are to the right,
while the far right cells are most likely clumps of multiple cells.
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FIGURE 3.1: Gating of single cells captured during ImagestreamTM anal-
ysis. Scattter plot portraying the gating of single cells captured by the
ImagestreamTM analysis. SKOV-3 cancer cells were run analysed with the sys-
tem as a proof of principle experiment to ascertain if single cancer cells could
be detected. A - represents beads and debris of much smaller density and size;
B - represents single SKOV-3 cells; C - shows larger clusters of SKOV-3 cells.

Once the cells of interest were gated, unfocused cells (images of cells that appeared dis-
torted) were excluded from further analysis. The software allows various parameters to be
set to group and identify cell populations, and allow enumeration. For the purposes of this
study cells were grouped by membrane specific staining of AE1/AE3 using AF488 with pos-
itive DRAQ5 nuclear staining (positive CTCs), and non-specific staining (negative CTCs), as
is seen in Fig 3.2, and images of CTCs in Fig 3.3. Automatic quantification’s was done for
the gated regions using the available software, while gating was done manually by viewing
cells and staining.
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MEMBRANE SPECIFIC STAINING 

NON-SPECIFIC STAINING 

FIGURE 3.2: Quantification of AE1/AE3 positive staining in SKOV-3 cells,
measured by the ImagestreamTM. Quantification was done following gating
of relevant single cells and interrogation staining using the IDEAS software.
Charts were constructed for quantification purposes and data tabulated be-
low. Similar charts were constructed for A549 and MDAH-2774 cell lines us-
ing AE1/AE3 antibody, with similar patterns of staining. Positive staining
was defined as cells with a green halo encircling the entire cell, and a nucleus,

depicted by a positive DRAQ5 stain, red.
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SKOV3

MDAH-2447

A548

Bright�eld AE1/AE3 DRAQ5

FIGURE 3.3: Positive AE1/AE3 staining of SKOV-3, MDAH-2774 & A549
cells. Positive AE1/AE3 staining, is signified by a deep green halo encircling
the entire cells cytoplasm. Positive CTCs are depicted as having a positive
AE1/AE3 staining in addition to positive DRAQ5 (red) staining of the nucleus
This figure portrays positive staining of these cancer cells, for all 3 cell lines.

40× magnification.

Negative control experiments were also run alongside, whereby all 3 cell lines were
stained as described, omitting the primary antibody (AE1/AE3), Fig 3.4.

Brightfield                  AE1/AE3  DRAQ5 

FIGURE 3.4: Negative controls for AE1/AE3 in SKOV-3, MDAH-2774 & A549
cells. A negative control experiment was also run to prove results seen in
previous experiment are valid. The experiment was run in the absence of a
primary antibody, no staining is seen for the AE1/AE3 antibody, signifying
a successful negative control experiment. The cell nucleus can be seen in red

from DRAQ5 staining. 40× magnification.
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Initial results of the three cell lines independent staining with AE1/AE3 proved promis-
ing. Next, we focused on developing a realistic model, using whole blood spiked individu-
ally with the 3 cancer cell lines, to evaluate the staining in the medium of blood mimicking
a liquid biopsy, and the ability to differentiate cancer cells from white blood cells. Approxi-
mately 200,000 SKOV-3, MDAH-2774, and A549 cells were spiked in to 1mL of whole blood.
Initial experimentations appeared to be inconclusive, with very faint to no staining at all. To
address this issue, we increased the primary antibody incubation time from 1h to overnight
in order to eliminate the potential effects of other blood components (i.e. leukocytes, ery-
throcytes) on the staining. The overnight incubations were successful, and all subsequent
experiments were conducted with a primary overnight incubation. The ability to separate
cell populations upon cell size (with CTCs typically being much larger than WBCs) (Fig 3.5)
and staining of AE1/AE3 (Fig 3.6) were assessed.
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FIGURE 3.5: Separation of the cell population based on cell size. Separation
shows 3 distinct populations, as can be seen labelled on the chart as debris,
white blood cells (WBC) & SKOV-3, MDAH-2774, and A549 cells respectively.
Debris is present in the form of beads from the machine and cell debris and
remnants. Beads and cell debris would be expected to be smallest in aize,

followed by WBCs, with cancer cells being the largest.
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FIGURE 3.6: Separation of the captured cell population based on cell
size. Cell populations, were measured by intensity of AF488 staining of the
AE1/AE3 antibody in channel 2. The 3 populations highlighted in the charts

were identified based on staining pattern, as labelled above.
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The spiking experiments allowed us to differentiate cell populations based on both cell
size and staining. Observations were expanded to look at cell retrieval and cell loss during
the process and to evaluate efficiency of cell capture. Varying levels of cancer cells were
spiked in whole blood and cell retrieval was quantified as detailed in Table 3.2.

AE1/AE3 stained cells approximate retrieval

Total cells spiked in to 1mL SKOV-3 MDAH-2774 A549

200,000 3.58% (7,168) 3.76% (7,520) 3.48% (6,958)
20,000 7.12% (1,421) 5.85% (1,169) 9.43% (1,885)
2000 10.70% (213) 28.10% (561) 38.60% (771)
200 32.50% (65) 48.50% (97) 41.00% (82)
20 20.00% (8) 60.00% (12) 55.00% (11)

TABLE 3.2: Quantification of positive CTCs. Quantification of positive CTC
cells was made using the enumeration features of the ImagestreamTM. A cell
retrieval experiment was carried out on average cell capture from spoking in
experiments to ascertain cell recovery, from a total of 200,000, 20,000, 2000,
200, and 20 cells across all 3 cell lines. Findings showed a recovery of 3.61%,

7.48%, 25.8%, 40.7%, and 45% respectively.

Retrieval of cancer cells amongst the 3 different cell lines is relatively consistent, through-
out the different number of spiked-in cells. Interestingly, the general consensus shows poor
cancer cell retrieval when a high number of cells are spiked in. We observed a cancer cell
retrival as low as below 10% across all 3 cell lines when 200,000 and 20,000 cells were spiked
in. By contrast, the highest cell retrieval is seen at 60% in MDAH-2774 cells when only 20
cells are spiked in. While these results do not follow previously observed trends, they sug-
gest that a smaller number of spiked cells can be used successfully for further experiments.
Thus we proceeded with subsequent analysis in a clinical setting using patient samples.

3.3.2 ImagestreamTM analysis of ovarian cancer blood samples

Patient blood samples were collected from Mount Vernon Hospital, from ovarian cancer
patients on the METRO-BIBF trial. Details of collection and processing can be seen in flow
diagram below (Fig 3.7).

Blood drawn into EDTA tube

Blood collected within 2 hrs  
of draw and transferred to 
Brunel University London 

Sample processed and stained

Sample examined on Imagestream 
the following day

Blood 
drawn into  
EDTA tube

Blood collected within 2 hrs  
of draw and transferred to 
Brunel University London 

Sample 
processed 
and stained

Sample examined 
on Imagestream  
the following day

FIGURE 3.7: Ovarian cancer blood sample processing. Flowchart detailing
the steps in the collection and processing of the ovarian cancer blood sample.
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All patients were chemotherapy free for one month before commencing the trial, as per
required guidelines. Blood samples were taken from ovarian cancer patients (n=22, and
control samples taken from female volunteers (n=16). All blood samples were processed
within 4 hours of blood draw. Results can be seen in Fig 3.8.

Staining discrepancies were observed in some cells, particularly for the AF488 staining
for AE1/AE3 as can be seen in Fig 3.9. These cells were discarded from all analyses as
non-specific staining.

All ovarian cancer and normal blood samples were analysed through the ImagestreamTM

software in the same fashion while applying the same selection criteria, positive cytoplasmic
staining throughout of AE1/AE3 antibody, positive staining of DRAQ5 nuclear stain, and
CTCs quantification (Fig 3.10A). Quantification was calculated as positive cells per 10,000
cells rather than per sample volume (i.e. 1mL), in order to by-pass the variability nature
of the sample volume of the flow cytometry acquisition (see Chapter 2). Diagnostic tool
evaluation was assessed by Receiver Operator Characteristic (ROC) curve, and Area Under
the Curve (AUC) as a means of sensitivity and specificity testing, as can be seen in Fig 3.10B.
As the ovarian patients were on the METRO-BIBF and CICATRIX trial, multiple samples
were taken in most cases at different points of treatment. Overall survival data was also
calculated, and can be seen in Fig 3.11, while the median survival data is summarised in
Table 3.3.
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FIGURE 3.8: Scatter plots of processed patient samples, based on cell size.
(A) population of an ovarian cancer sample shows much wider spread and
presence of larger cells, whereas (B) cells are more confined to left hand re-
gion, suggestive of generally smaller non cancer cells in the entire population.
CTCs were identified by intensity of AF488 AE1/AE3 staining, non-specific
cell/debris were easily distinguished at the bottom left corner with very min-
imal AF488 staining, these cells were excluded from the analysis. The pop-
ulation of cells in top middle consisted of CTCs, WBCs and non-specifically
stained cell, upon interrogation of the cells visually these areas could be gated
and quantified. (C) captured cells from patient sample based on AF488 stain-
ing in a scatter image generated by the ImagestreamTM , (D) further inter-
rogation of patient sample A to differentiate CTCs, to WBCs and other non-
specifically stained cells. Captured images of cells in the ovarian cancer sam-
ple of (E) positive CTC (positive cytoplasmic staining of AE1/AE3 & DRAQ5
nuclear staining), (F) WBC (negative for AE1/AE3 but positive for DRAQ5),

(G) positive CTC attached to WBCs. 40× magnification.
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FIGURE 3.9: Non-specific staining pattern of the AF488 for AE1/AE3 in cells
captured from patient samples. This is depicted by a dark green staining
pattern covering the entire cell, rather than a green halo as seen in positive

images, 40× magnification.
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FIGURE 3.10: Ovarian cancer patients blood CTC quantification. CTCs were
quantified in the blood of ovarian cancer patients and normal disease free
females using the ImagestreamTM , with AE1/AE3 antibody staining. CTC
quantification was done per 10,000 cells. An F-test was performed to assess
the variance between the two groups, and two-tailed unpaired Student’s t-
tests with Welch’s correction for unequal variance were performed to assess
significance. (A) The Ovarian cancer group showed substantially increased
positive CTCs in comparison to the normal group, and was shown to be sta-
tistically significant with a p-value>0.0006. (B) ROC curve analysis was used
to measure sensitivity and specificity, an AUC of 0.97 (p-value<0.0001) was

calculated indicating strong sensitivity and specificity.
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FIGURE 3.11: Overall survival. Overall survival was measured by Kaplan
Meier plot, patients with an excess of 1,000 CTCs in 10,000 cells showed a
poorer overall survival compared to those with less than 1,000 CTCs, Chi-
squared value 3.18 (p-value=0.07), Hazards ratio 0.12 (95% confidence interval

0.013-1.23), however this was not shown to be statistically significant.

CTC value Median Survival (Days)

<1,000 290
>1,000 197

TABLE 3.3: Median survival. Median survival in days was measured as days
of survival post beginning of therapy. Median survival is shown to be longer
in the <1,000 CTCs/10,000 cell group compared to the >1,000 CTC/10,000 cells

by as much as 93 days.

Enumeration of CTCs in ovarian cancer blood samples revealed higher values when
compared to controls (p-value<0.006). However, we also observed a large spread of the CTC
values in the ovarian cancer group, some of which appear to overlap with the control cohort.

CTC size measurements were also taken throughout the METRO-BIBF (third line ovarian
stage III & IV) trial in patients where possible. Here samples were taken at 6 week intervals,
for every cycle of the treatment. The CTC load as calculated by the ImagestreamTM was
compared to the CA125 values at that time (Fig 3.12), obtained from the patients clinical
records.
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B 

FIGURE 3.12: Patient blood CTC count comparison to CA125 blood count.
CTC counts from ovarian patient blood samples were compared to CA125
blood counts during the METR-BIBF treatment for individual patients, during
each treatment cycle for individual patients. Patients A & B show very little to
no correlation, however patient C appears to show a correlation with the CTC

and CA125 levels.
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We observed little or no correlation between the CTC and CA125 counts. This could
be a result of inter-patient variability, and also suggests a lack of specificity for the CA125
biomarker.

3.3.3 ImagestreamTM analysis of lung cancer blood samples

CTCs were quantified from blood samples of lung cancer patients (n=21), prior to undergo-
ing surgical resection of their known cancers at Harefield Hosptial (Fig 3.13 & 3.14). Control
blood samples were obtained from healthy volunteers (n=21). The same staining criterion
was applied as in the ovarian cancer analysis. Samples were obtained from patients with
early stage (I-II), late stage (III-IV), and metastatic lung cancer. Due to small ’n’ numbers,
for statistical analysis purpose, the late stage and metastatic patients were grouped together,
as they are both categorised as advanced cases of lung cancer.

FIGURE 3.13: Positive CTC image from the blood of lung cancer patient.
A positive cell is depicted by a strong green halo staining around the cell,
and a positive nuclear stain see in red, as seen on the images above (A) large
positive CTC, (B) smaller positive CTC as visualised by the ImagestreamTM,

magnification ×20.
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FIGURE 3.14: ImagestreamTM CTCs quantification in blood of lung can-
cer patients vs healthy volunteers with AE1/AE3 antibody staining. CTC
quantification was done per 10,000 cells. An F-test was performed to assess
the variance between the two groups, and two-tailed unpaired Student‘s t-
tests with Welch‘s correction for unequal variance were performed to assess
significance. (A) the lung cancer (LC) group showed substantially increased
positive CTCs in comparison to the normal group, and was shown to be sta-
tistically significant with a p-value>0.0007. (B) breakdown by staging and can-
cer advancement showed higher CTC counts in the late stage and metastatic
patients compared to early stage and controls, with statistical significant dif-
ferences in early stage vs normal, late stage vs normal and early stage vs late
stage and metastatic, p-value=0.0260, p-value=0.0038, p-value= 0.0139 respec-

tively.
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We observed a statistical significant enrichment in the cancer cohort CTC counts com-
pared to normal (p-value<0.0007). Further analysis in the lung cancer cohort revealed varia-
tions at the staging and cancer advancement level. In particular, the late stage and metastatic
patients showed higher CTCs compared to both normal controls and early stage patients (p-
value=0.0038 and p-value=0.0139 respectively). Next, we assessed the sensitivity and speci-
ficity of the method by ROC curve analysis (Fig 3.15), and measured the overall survival by
Kaplan Meier analysis (Fig 3.16).

FIGURE 3.15: ROC curve analysis of the CTC data from lung cancer sam-
ples. Diagnostic tool evaluation using ROC curve analysis of the CTC data
from lung cancer samples was done to assess sensitivity and specificity. Strong
positive sensitivity and specificity was shown in (A) early stage vs normal,
AUC 1.000 (p-value<0.0001); poor sensitivity and specificity is seen in (B) early
stage vs late stage lung cancer, AUC 0.68 (p-value=0.06), in contrast to, (C)
late stage cancer vs normal for which we calculated a perfect AUC 1.000 (p-

value<0.0001).
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FIGURE 3.16: Overall survival plot based on blood CTC levels. Overall sur-
vival was calculated using a Kaplan Meier plot, Chi-squared value of 0.50,
p-value=0.46, Hazard ratio 0.22 (95% confidence interval 0.0036-14.2). Data
appears to show poorer overall survival in patients displaying >1,000 CTCs
in their blood samples, data is not shown to be significant but there is a trend

emerging based on CTC enumeration.

Overall the results suggest there is a general trend where higher CTC counts are as-
sociated with more advanced cases, and also a poorer overall survival (although survival
data analysis was not statistically significant). Median survival analysis (measured in days),
however suggests that there is no difference in survival based on CTC counts (Table 3.4).

CTC value Median Survival (Days)

<1,000 378
>1,000 378

TABLE 3.4: Median Survival in days in lung cancer patients. Median sur-
vival is shown to be the same, regardless CTC counts being < or > 1,000

CTCs/10,000 cells.

3.3.4 Analysis of ImagestreamTM data based on size of CTCs

Following the clinical validation experiment, we extended our analysis to look at specific
characteristics of the captured cells, in particular at their size. Images of captured cells posi-
tive for AE1/AE3, showed a variation in size for both lung and ovarian cancer groups (Fig
3.17). Thus we compared lymphocyte size properties to those of CTCs to evaluate the level
of overlap in size.
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FIGURE 3.17: Positive CTCs for lung and ovarian cancer samples. White
blood cells and positive CTCs, were viewed on the ImagestreamTM and cell
size measured by taking the diameter by using the scale tool available. Results
show a small positive CTC (A) with a diameter of 10µm (area = 78.5µm2)
compared to a much larger positive CTC (B) with a diameter of 16.6µm (area

= 216.4µm2). 40× magnification.

Cell size was measured in all cell lines of AE1/AE3 positive cells and WBC, to observe
variations and overlap in cell size amongst cancer cells and WBCs. This analysis was per-
formed for all patient and normal blood samples investigated with the ImagestreamTM, by
taking the diameter of a fraction of CTCs and WBCs. In patient blood, all cells positive
for the DRAQ5 nuclear stain were counted, and separated into AE1/AE3 positive (deemed
CTC positive), and AE1/AE3 negative (presumed WBC). Cells with non-specific staining
were excluded from the analysis. Average cell size and ranges of all patient samples are
recorded in Table 3.5.

Largest Tumour
Cell (µm)

Smallest Tumour
Cell (µm)

Largest WBC
(µm)

Smallest
WBC (µm)

Ovarian

Average 13.44 10.28 10.03 7.05
Range 10-18.6 8-11.3 6.7-13.3 4.7-8.6

Lung

Average 13.68 10.53 10.06 6.35
Range 11.3-16.7 6.6-13.3 6.6-14.6 4.7-8

TABLE 3.5: Average and range of cell diameters of CTCs in ovarian and
lung cancer samples. Cell sizes were calculated using the ImagestreamTM

scale feature. The average cell sizes do not appear to overlap at any point.
There is an overlap seen in the smallest tumour cells and the largest WBC
in both cancer types, where smallest CTC range from 8-11.3µm and largest
WBC range from 6.7-13.3µm, in ovarian cancer samples, and 6.6-13.3µm and
6.6-14.6µm in in smallest CTCs and largest WBCs, respectively, in lung cancer

samples.

Cell size (diameter) of the three cell lines are larger than those of WBCs as can be seen in
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Fig 3.18A, p-value<0.0001. SKOV-3 cells has the largest cells compared to A549 and MDAH-
2774 cell lines, although there is considerable overlap of cell sizes amongst the 3 cell lines.
MDAH-2774 and A549 cells share a similar distribution of cell sizes, however A549 show
the smallest cancer cell sizes between all cell lines.

FIGURE 3.18: Cell sizes. Diameters of all captured cells in µm, plotted for (A)
cell lines, (B) ovarian cancer patient samples, (C) lung cancer patient samples,
compared to WBCs. All showed significantly larger cell diameters for CTCs

compared to WBCs/negative AE1/AE3 (p-value<0.0001), for all samples.
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Average cell size of the smallest CTC does not overlap with the average size of the largest
WBC captured, cell area 141.9µm2 and 78.6µm2, and 147.0µm2 and 79.49µm2 in ovarian and
lung, respectively, as can be seen with Table 3.5. When comparing ranges, there is an overlap
in the measured cell diameter of the smallest CTC and largest WBC in both ovarian and
lung samples, cell area ranges 50.3µm2 to 100.3µm2 and 35.3µm2 to 138.9µm2, and 34.2µm2

to 138.9µm2 and 34.2µm2 to 167.4µm2, respectively.

3.3.5 ClearCellTM proof of principal experiment

A proof of principal experiment was carried out to test the efficacy of the ClearCellTM de-
vice. This was done by using healthy blood donated from 3 volunteers, with each of the
3 samples being split into two, where one sample was left untreated, the other was spiked
with 10,000 H358 lung cancer cells. The samples were run through the ClearCellTM device
and the resulting cell suspension dried onto a glass slide and stained with haematoxylin and
eosin (H&E). The slides (Fig 3.19) were viewed by two independent pathologists and results
tabulated in Table 3.6. The results were given as either positive or negative for CTCs.

A
"#

B
"#

FIGURE 3.19: H&E stained slides from a positive and negatively identified
CTCs. Preliminary experimentation on voluntary samples, with and without
the lung cancer cell line H358 spiked in. Stained H&E slides were viewed and
scored by an independent pathologist, who were also blind to the details of the
sample. Results show (A) a slide scored as negative fot CTCs, the blue arrow
highlighting a WBC on the slide, and no CTCs are visible. This sample was
not spiked with the cancer cell line. (B) Shows a slide positive for CTCs, with
the red arrow highlighting a CTC. This sample was spiked with the cancer cell
line. CTCs are characterised as a large irregular shaped cell, imaged at 20×

magnification.

The positive results from the proof of principle experiment prompted clinical validation.
In total 51 patients were recruited from the Royal Brompton hospital, consisting of 32 lung
cancer patients and 19 non-cancer patients with demographics and pathology summarised
in Table 3.7. A total of 7.5mL of blood were taken from each patient and processed through
the ClearCellTM device as described in methods chapter 2, and the results are tabulated in
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Sample Phatology Result Sample Phatology Result

B1 Negative B1+H358 Positive
B2 Negative B2+H358 Positive
B3 Negative B3+H358 Positive

TABLE 3.6: CTC positive and negative reporting by 2 independent pathol-
ogist of cells isolated using the ClearCellTM device. All normal samples
spiked with H358 cells were reported as positive, whereas all normal blood

samples with no spiked in cancer cells were reported negative for CTCs.

Table 3.8. Each reporting group consisted of two independent pathologists, reporting the
slides (Fig 3.20) independently. All samples were anonymised.

Variable Value Percent

Total 51 100
Mean age (±SD) 57±15.1 -
Males/Females 27/24 52.9/47.1

Pathology

Primary lung cancer 24 47.1
Adenocarcinoma 17 70.8
Squamous cell carcinoma 6 25.0
Small cell carcinoma 1 4.2
Metastatic Cancer 8 15.7
Non-cancer control 19 37.3

Staging

I-II 18 90.0
III-IV 2 10.0

TABLE 3.7: Patient demographics. Details on demographics and histology of
patients recruited for ClearCellTM study.
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Sample Type First reporting team (%) Second reporting team (%)

All samples, n=51 23 (45.1) 28 (54.9)
Cancer Samples, n=32 22 (68.8) 28 (88.0)
Primary Cancer, n =24 9 (37.5) 15 (62.5)
Metastatic cancer, n =8 4 (50.0) 4 (50.0)
Benign, n =19 9 (47.3) 9 (47.3)
Early stage cancer, n =18 9 (50.0) 12 (66.7)
Late stage cancer, n =2 0 (0.0) 2 (100.0)

TABLE 3.8: Results as reported by two independent pathologists of blood
samples, positive and negative for CTCs. The first reporting team reported
on 23 samples, whereas the second reported on 28. Average reporting of sam-
ples positive for CTCs for across both team were 49%, 78.4%, 50%, 50%, 47.3%,
58.4%, 50%, in all samples, cancer samples, primary cancers, metastatic can-

cers, benign disease, early stage cancer and late stage cancer respectively.

FIGURE 3.20: H&E staining of patient samples. Panel of H&E stained slides
from 4 patient samples, samples were processed through the ClearCellTM sys-
tem, and viewed and scored independently by a pathologst as being either
negative or positive for CTCs, in a blind fashion to clinical details. Slides with
larger cells, with a nucleus were deemed positive, (A-C) positive slides, ar-
row pointing to a positive CTC, due to large cell, with a nucleus. (D) shows
a negative slide with only WBCs, depicted by smaller rounded cells with a

nucleus.

CTCs were detected on average in 49% of all cases and 78.4% of all cancer cases, by both
reporting teams. In primary and metastatic groups on average 50% of cases were reported
positive for CTCs in both cohorts and 47.3% in all benign cases. Positive CTCs were reported
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in an average of 58.4% and 50% of early stage (I-II) and late stage (I-IV) cases, respectively.
Sensitivity and specificity values were calculated and tabulated in Table 3.9.

First reporting team Second reporting team

Sensitivity 59% (41 to 76%) 41% (24 to 59%)
Specificity 53% (29 to 76%) 53% (29 to 76%)
Positive predictive value 68% (48 to 84%) 59% (36 to 79%)
Negative predictive value 44% (23 to 66%) 34% (18 to 54%)

TABLE 3.9: Sensitivity and specificity reporting of the ClearCellTM de-
vice. Sensitivity and specificity values for patient samples reported on were
recorded as, 59% and 53%, and 41% and 53% were calculated for the first and

second reporting team respectively, using Medcalc online tool.

Sensitivity and specificity values were calculated by reporting team, with values of 59%
and 53% for the first reporting team, and a lower sensitivity of 41% and specificity of 53%
for the second reporting team. Positive and negative predictive values were also calculated.
For assessment of the agreement between the observers, an inter observer agreement was
calculated at 80.4%, with a Kappa statistic of 0.6±1.1 (p-value<0.001), showing substantial
agreement.

3.4 Discussion

This study investigated the efficacy of both the ImagestreamTM and ClearCellTM device in
the detection of circulating tumour cells from the blood of lung and ovarian cancer patients.

Staining of SKOV-3, MDAH-2774, and A549 cell lines, proved successful with the broad
spectrum cytokeratin marker AE1/AE3, using the ImagestreamTM platform. This was also
the case when these cancer cells were spiked in to whole blood, and could be differentiated
in the presence of WBCs with the criterion applied to identify CTCs being AE1/AE3 positive
and DRAQ5 positive. This selection criterion is similar to the typical EpCAM positive, CD45
negative, and nucleus positive used by CellSearch (Farace et al., 2011; Miller, Doyle, and
Terstappen, 2010; Riethdorf et al., 2007; Cristofanilli et al., 2004). EpCAM was not used, as
several studies have shown loss and downregulation of EpCAM in CTCs (Hou et al., 2011;
Gorges et al., 2012). Cells negative for AE1/AE3 and positive for DRAQ5 were presumed
WBCs.

Cell retrieval experiments, showed poor CTC capture/retrieval of higher spiked-in vol-
umes of cancer cells, compared to smaller volumes. Retrieval was as low as 10% in all cell
lines when 20,000 cells were spiked in to 1mL of whole blood. This increased close to 50%
when 20 cells where spiked in. However, this behaviour was not observed in SKOV-3. These
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results do not follow previously reported trends, and could be attributed to certain system
limitations such as poor uptake of antibody in a dense population and cell loss from pro-
cessing. A study by Dent (2016) published similar cell retrieval rates using the Imagestream,
and in a subsequent study by the same group it was reported a 44% cell loss due to process-
ing and a further 6.7% during cell collection, i.e. sample uptake, cells lost/unfocused (Ogle
et al., 2016; Dent et al., 2016). This experiment also highlights the difficulty of CTC capture
and detection in the context of whole blood, which is echoed in the literature (Hou et al.,
2013; Joosse, Gorges, and Pantel, 2015). General CTC detection is challenging as few as only
one CTC may be found in the background of 105-106 peripheral blood mononuclear cells
(Hou et al., 2011; Hou et al., 2013; Dent et al., 2016), hence common referencing of CTC
capture being likened to ‘finding a needle in a haystack’.

Tumour cell plasticity and heterogeneity have also been associated with difficulties in
detection. In particular, in the context of epithelial antibody based detection, there is ev-
idence of epithelial marker loss at the cell surface in some cancers, with one explanation
for this loss attributed to the controversial epithelial-mesenchymal transition (EMT) (Krebs
et al., 2011; Hou et al., 2011). There is growing evidence supporting EMT, as being essential
in the metastatic process (Thiery, 2002; Kalluri and Weinberg, 2009). Cancer cells are be-
lieved to lose their epithelial properties such as cell-cell adhesion, leading to the transition
of firmly attached and immobile cells to become more flexible and mobile as mesenchymal
cells. Mesenchymal cells have the ability to invade through the basement membrane and en-
ter the vasculature and travel to distant organs to instigate secondary metastasis (Munzone
et al., 2012; Krebs et al., 2011).

Extending the experiments to clinical samples, we were able to detect, characterise and
quantify CTCs in both ovarian and lung cancer samples. Data acquired from clinical sam-
ples showed varying and in some cases large numbers of captured CTCs. A higher number
of CTCs were detected in ovarian cancer samples compared to normal controls, and this
was mirrored in the lung patient cohort. When interrogated on staging differences in lung
cancer, an increase in CTCs was seen between early (I-II) and advanced and metastatic cases
(III-IV). Diagnostic tool evaluation by means of ROC cure analysis, provided strong positive
results amongst the ovarian vs normal, and lung cancer vs normal comparison. However,
this was not the case when comparing early stage lung cancer with late and metastatic cases.
Analysis of overall survival (OS) showed no statistical significance, in both ovarian and lung
cancer, despite a poorer OS appearing to be associated with the presence of more than 1,000
CTCs per 10,000 cells in both cancers. These observations are in line with other findings of
higher CTC counts being associated with poorer OS in both lung (Shen et al., 2017; Krebs
et al., 2011; Hirose et al., 2012) and ovarian cancers (Poveda et al., 2011; Pearl et al., 2014).
Median survival in days within the ovarian group shows a similar trend where survival is
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shown to be poorer in those with more than 1,000 CTCs/10,000 cells, which is in contrast to
the lung group which shows no difference in median survival.

When comparing CTC and CA125 in ovarian cancer patients, no correlation is visible,
except for 1 patient (SL in Fig 3.12C). This is unsurprising, as CA125 is known to be non-
specific (Poveda et al., 2011), and inter-patient variability is an important confounding fac-
tor. Interestingly both patients (Fig 3.12A & B) are known to have responded well to the
treatment, which may be signified by the initial spike in CTC counts, eluding to a response
(tumour necrosis and thus further CTC shedding), followed by a reduction in CTC counts
as the patient continues to do well on the treatment. Patient C, however is known to have
not responded to the treatment at all (based on scans and clinical data), and subsequently
died quite soon after; one could speculate that the absence of a change in CTC counts (initial
spike) as seen with the other 2 cases may signify the lack of response.

Interrogation of cell staining and size showed a variation amongst the cancer types, par-
ticularly in the cell size distribution. Non-specific staining was seen in all samples includ-
ing cell line experiments, and subsequently these cells were excluded from the analysis.
Cell size was collected for a proportion of captured cells from both extremes (largest and
smallest) and in-between, and plotted. Differences in sizes were seen amongst all the cell
lines, this was also shown in a recent study listing mean cancer cell diameters of hepato-
cellular (21±0.6µm), oesophageal (17.2±0.4µm), thyroid (16±0.36µm) and ovarian cancer
(13.6±0.6µm) cells, eluding once more to the heterogeneous nature of cancers, both within
themselves and in relation to other cancers, results further echoed by subsequent studies
by Dent et al., 2016 and Ogle et al., 2016. A degree of overlap between the cancer cells and
WBCs was visible, which was enhanced in the clinical samples. This suggests a cell size
differentiation would be futile. Remarking on this, Dent et al., 2016 suggests that the phe-
notypic criteria for CTC identification varies amongst groups dependant on the technique
used, which could potentially lead to varying results and danger of inclusion of non-cellular
objects and cellular debris. This data also hints at possible staining issues, where larger cells
negative for AE1/AE3, positive for DRAQ5, presumed WBCs, may in fact be CTCs, how-
ever, in the absence of any other markers it is impossible to speculate. Similar findings were
also reported by Ogle et al., 2016, with similar mean areas of recovered large cells both CTC
positive and negative. The authors though concluded this was due to tumour cell hetero-
geneity, and as the CTC negative cells were positive for the DNA marker and exhibited evi-
dence of hyperploidy, they were of tumour origin (Ogle et al., 2016). The same could not be
said for all the larger AE1/AE3 negative cells captured in this experiment. These results also
highlight the danger of false positive reporting (larger WBCs i.e. monocytes/macrophages
as antibody negative CTCs) or false negative (true CTC negative for antibody as a larger
WBC). The use of WBC specific markers, such as CD45 may help to alleviate this. Dent et
al., 2016, demonstrated the use of multiple markers including epithelial and tumour specific
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markers as well as the WBC marker CD45, to successfully characterise CTCs in a variety of
cancer types, concluding the adaptability of the ImagestreamTM technique to identify CTCs
across many cancers by use of more specific tumour markers.

Data from the ClearCellTM platform show the potential to detect CTCs in clinical blood
samples, but in the absence of any quantification tools, the clinical utility remains limited,
with results providing only a binary (negative or positive) answer, in the absence of tumour
specific markers. The sensitivity and specificity levels in this experiment fall well below the
expected level for clinical use, and differences in results amongst the pathologists shed light
to a level of subjectivity, despite the substantial agreement calculated. This has been high-
lighted previously with the use of varying phenotypic criteria to identify CTCs (Dent et al.,
2016), particularly in this case where there are no specific cancer/epithelial markers. In con-
trast, the ‘CTC chip’, another microfluidic based device utilising EpCAM beads as a marker
without the requirement of a pre-processing step, effectively isolating CTCs from WBCs,
reported the achievement of high sensitivity and impressive enrichment (proven by purity
ranging from 1-80% CTCs to WBCs), in lung cancer and metastatic lung, breast, prostate,
pancreatic, and colon cancers (Sequist et al., 2009; Nagrath et al., 2007; Maheswaran et al.,
2008). Similarly Xu et al., 2017, used a microfluidic technique, the ‘Rare cell sorter’ to iso-
late breast CTCs and compare them to healthy controls, and reported a significant increase
in CTCs in the breast cancer group compared to normal. The authors went on to further
evaluate the RNA integrity of the enriched CTC population and concluded that the process-
ing was mild and had minimal effect on the RNA integrity for further genomic work (Xu
et al., 2017). The enrichment of the CTC population in the ClearCellTM device does offer the
prospect of further characterisation work using immunohistochemistry, and importantly ge-
nomic analysis, and thus the technique could be further developed and exploited. However
clinical application would only be successful if pathologists were able to score in line with
one another universally.

The findings from this study show that the use of the ImagestreamTM and ClearCellTM

for CTC detection and characterisation is possible. Various shortfalls must be overcome
before clinical application can be considered, along with further larger sample size testing.
Enumeration of CTCs with the ImagestreamTM, has the ability to differentiate cancer pa-
tients from normal controls. Results were particularly strong in lung cancer; between early
stage and late stage and metastatic. CTC quantification for prognosis and treatment mon-
itoring appears to also hold some correlation as was seen in the ovarian cancer treatment
monitoring results.

One of the limitations in this study would be the use of one broad spectrum marker for
CTC detection. The use of multiple and highly tumour specific markers would allow detec-
tion not only of those cells with ambiguous cytokeratin staining but some tumour specific
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markers could also identify the source and type of cancer i.e. TTF-1 for lung adenocarci-
noma. Due to the nature of this thesis exploring and assessing various techniques, this was
not developed further. With the limited data available from the H&E staining of clinical sam-
ples, the clinical utility for the ClearbridgeTM platform would currently be limited. Genomic
analysis of the enriched CTC suspension could be an exciting area of further development.

Collectively, these results show the development of a robust CTC quantification assay
could act as a potential non-invasive early diagnostic tool, and could be expanded for prog-
nostic and treatment monitoring purposes.



94

Chapter 4

DNA and plasma based ‘liquid
biopsy’ approaches for diagnosis and
prognosis in ovarian and lung cancer
patients: use of Alu repeat sequences
and Raman spectroscopy

4.1 Introduction

In addition to circulating tumour cells, there is also evidence of circulating tumour DNA
being present in the blood of cancer patients. Various applications have been explored in-
cluding quantification and genomic interrogation to analyse these markers. There is also
emerging research on the metabolomics analysis of plasma from cancer patients, as a poten-
tial ‘liquid biopsy’, these methods are described and evaluated in this chapter.

Typically in healthy individuals apoptosis of cells occurs naturally, where DNA (circu-
lating free DNA or cfDNA) is released into the blood circulation and uniformly truncated
at 185-200 bp (Umetani et al., 2006a). Circulating tumour DNA (ctDNA), is tumour derived
fragmented DNA, known to originate directly from the cancer itself (Umetani et al., 2006b).
ctDNA is found circulating in the blood of cancer patients similarly to circulating tumour
cells. DNA fragments released from malignant cells tend to vary in size and are typically
>200bp, due to the pathological process of cell death consisting not only of apoptosis, but
also necrosis, autophagy, and mitotic catastrophe (Wang et al., 2003). Ineffective nuclease
activity is also reported to contribute to longer DNA fragments. The exact nature of how
the ctDNA is shed is unknown, but it is postulated to occur as a consequence of apoptosis
and necrosis of cancer cells, but also as active release from viable circulating tumour cells
(Umetani et al., 2006a; Umetani et al., 2006b).
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Genomic profiling of ctDNA has become increasingly popular, based on the hypothesis
that ctDNA harbours the same profile of somatic mutations and genomic rearrangements
as the tumour itself (Han, Wang, and Sun, 2017; Freidin et al., 2015). This is an additional
advantage over CTCs, which may not adequately represent the entire tumour due to its het-
erogeneous nature (Freidin et al., 2015). Despite ctDNA being fragmented (as DNA is shed
into the blood stream) in comparison with the more intact DNA extracted from viable CTCs,
ctDNA provides a more comprehensive picture of the overall mutation profile as isolated
CTCs are not able to adequately represent the entire tumour (Freidin et al., 2015). Further-
more, capturing of CTCs remains a challenging subject (Yu et al., 2011). To date, a number
of successful studies have been performed to validate this concept, in a variety of cancers,
including lung, breast, pancreatic, bladder, gastroesophageal, colorectal, melanoma, hepato-
cellular, and head and neck cancers (Punnoose et al., 2012; Dawson et al., 2013; Bettegowda
et al., 2014), by comparing both CTCs and ctDNA. All the studies report higher detection
and concordance with tissue results using ctDNA over CTCs.

The percentage of ctDNA originating from tumour cells however, has been estimated to
range from 10 to 90% of the total cfDNA. Thus, the applicability of measuring the cfDNA
length (i.e. DNA integrity) in plasma may therefore depend on the type of disease (Jahr
et al., 2001). Detection of these longer ctDNA fragments and quantification of their relative
abundance in plasma compared to short cfDNA fragments and the calculation of a DNA In-
tegrity Index has been explored as a potential cancer monitoring technique (Agostini et al.,
2012; Silva Filho et al., 2013). To this end, several studies have shown that the size distribu-
tion of the cfDNA can be measured using qPCR on amplified Alu-repeats (Cancer Genome
Atlas Research Network, 2011; Umetani et al., 2006a; Umetani et al., 2006b). Classified as
Short Interspersed Elements (SINE), Alu is the most abundant mobile element in the human
genome (Zhang et al., 2011). A full length element can span approximately 300 base pairs
(bp), and include two tandem monomer units, separated by a poly ‘A’ stretch (Umetani et
al., 2006b). Alu-repeat measurements were shown to adequately predict the disease in cases
of colorectal, ovarian, and breast cancer, however the presence of pancreatic cancer could
not be diagnosed (Umetani et al., 2006a; Umetani et al., 2006b; Wang et al., 2003; Sikora et
al., 2015) using the same approach.

To date, various applications have been explored in the analysis of ctDNA including
quantification and genomic interrogation.

A more recent and alternative approach to the ‘liquid biopsy’ field, is the metabolic anal-
ysis on plasma and serum samples, by use of Raman Spectroscopy. Typically spectroscopy
techniques have been utilised for various applications, e.g. interpretation of tissue samples.
A number of optical techniques, such as elastic scattering spectroscopy (ESS) (Rodriguez-
Diaz et al., 2014; Bigio et al., 2000), optical coherence tomography (OCT) (Escobar et al.,
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2004; Mogensen et al., 2009), fluorescence spectroscopy (Ramanujam et al., 1994; Ramanu-
jam, 2000), fluorescence lifetime imaging microscopy (FLIM) (Verveer, Squire, and Bastiaens,
2000) and diffuse reflectance spectroscopy (DRS) (Zonios et al., 1999; Jayanthi et al., 2011)
have been studied for their potential applications in cancer diagnosis. However, all these
techniques have limitations, including low specificity (ESS, fluorescence spectroscopy), low
penetration depth and low specificity (OCT), low signal-to-noise ratio (FLIM), low accuracy
(DRS), and an invasive nature.

Vibrational spectroscopies such as Raman and mid-infrared (IR), are strongly sensitive
to the chemical composition of the sample, and have been tested for application in cancer
diagnosis using tissue samples as input. Between these two techniques, IR is significantly
affected by the presence of water in the tissue, and therefore cannot be used in non-invasive
measurements in vivo. By contrast, Raman (near-infrared wavelengths) remains largely un-
affected by water content, and for that reason it can be used directly in real-time for non-
invasive measurements. Due to its high specificity and sensitivity, Raman spectroscopy
is currently used in a number of applications including material characterisation, security
(Eliasson, Macleod, and Matousek, 2007), pharmaceutical industry (Griffen, Owen, and Ma-
tousek, 2015), art history (Volpati et al., 2015), and geology (Edwards, Middleton, and Har-
greaves, 2009), and emerging contribution to cancer.

Raman scattering (Raman effect) is a specific case of photon scattering, whereby the pho-
ton is scattered in a medium with a change in its energy (inelastic scattering). When incident
light falls onto a material surface, it will be typically scattered in random directions. The
vast majority of the light will be elastically scattered, maintaining the same energy (i.e. fre-
quency). A tiny amount of light (less than 0.001%) will be scattered with a slightly different
frequency from the incident light (inelastic scattering). This difference in the frequency is
characteristic of the bond vibrations of the molecules, and provides important chemical and
structural information of the sampled material (Feng et al., 2015; Edwards, Middleton, and
Hargreaves, 2009; Griffen, Owen, and Matousek, 2015).

To date, this method has been used to study tissue material, however more recently
has been explored in plasma, to test its value as a non-invasive ‘liquid biopsy’ technique.
Studies are not only confined to cancer, but include Alzheimer’s disease, whereby levels of
amyloid β-peptide were successfully detected in plasma samples of patients suffering from
Alzheimer’s (Huang and Isidoro, 2017). Few studies have explored the use of Raman spec-
troscopy in plasma sample of cancer patients, to test its efficacy as ‘liquid biopsy’. Successful
results were obtained by Feng et al., 2015 in colorectal patients, with the authors reporting
sensitivity and specificity values of 86.4 and 80% respectively. More recently, Medipally et
al., 2017 reported various drawbacks of the classical Raman spectroscopy including sample
preparation, equipment and expensive substrates, and long sample acquisition times. As
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an alternative, the authors proposed a ‘High-Throughput Raman Spectroscopy’ platform
developed by adapting in use methods and techniques, and successfully reported sensitiv-
ity and specificity values of 96.5 and 95% respectively, in prostate cancers. Moreover, the
described improvements allowed for high throughput and increased the method’s appli-
cability as a routine practice (Medipally et al., 2017), providing evidence of the potential
clinical utility of this technique as a ‘liquid biopsy’.

4.2 Aims and objectives

• Evaluate the use of Alu repeats and DNA Integrity Index in ovarian and lung cancer
patients for diagnostic and prognostic purposes.

• Evaluate use of Raman spectroscopy on plasma samples in ovarian and lung cancers,
to explore its utility as a potential ‘liquid biopsy’ method.

4.3 Declaration of contribution to the work presented in this chap-
ter

The University of Exeter - Raman Spectroscopy

• I collected patient samples and processed for plasma samples. I then organised deliv-
ery of these samples to The University of Exeter on dry ice.

• The University of Exeter ran the Raman Spectroscopy experiments. The processed
data was then sent to me.

• I then cross checked the data supplied with the patient details to make correlations
and further analyse this data.

Table 4.1 gives a detailed description of contributions from each participating unit.

Contributions The University of Exeter DC

Patient and sample collection - x
Sample preparation (RNA/DNA/Plasma) - x
Sample processing x -
Processing of raw data x -
Further analysis and correlation with clinical samples - x

TABLE 4.1: Contribution to the work presented in this chapter. Details on
specific tasks performed by The University of Exeter and Dimple Chudasama

(DC).
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4.4 Results

4.4.1 Alu repeat ratio and DNA Integrity Index in ovarian cancer patients

DNA extracted from 31 ovarian cancer plasma samples on the METRO-BIBF trial through-
out their treatment, were processed by qPCR against the Alu repeat primers Alu 115 and Alu
247 (as commonly used in literature Umetani et al., 2006a; Umetani et al., 2006b. Healthy
female samples were also collected from 11 individuals, details of patients are listed in Table
4.2. Data was analysed and DNA Integrity Index was calculated as the Alu 247/115 ratio,
and plotted as can be seen in Fig 4.1.

Variable Value Percent (%)

Total 42 100
Mean age (±SD) 64±11 -
Males/Females 0/45 0/100

Pathology

All cancer 31 73.8
Serous Ovarian Carcinoma 31 100

Staging

III 31 100
Non-cancer control 11 26.2
III-IV 5 22.7

TABLE 4.2: Information on ovarian cancer patients. Details on pathology
and ovrian cancer staging for patients recruited to this study.

FIGURE 4.1: DNA Integrity Index in ovarian cancer. DNA Integrity Index
as calculated by Alu247/115 ratio in ovarian cancer samples, shows higher
ratios compared to normal (p-value=0.0194), considerable overlap exists when
compared to normal samples. Reporter operating characteristic (ROC) curve
analysis, gives an area under the curve value of 0.69 (*p-value=0.07), suggest-

ing moderate sensitivity and specificity, however this is not significant.
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Results of DNA Integrity Index show higher values are reached in the ovarian cancer
group compared with controls (*p-value=0.0194). While the difference is statistically signifi-
cant, the average DNA Integrity Index values are close, 0.36 (0.08-0.97) and 0.21 (0.007-0.43)
respectively. Diagnostic tool evaluation by ROC analysis shows poor diagnostic utility with
AUC of 0.69 and *p-value=0.07.

Based on these results, we selected DNA Integrity Index value of >0.5 as an indicator of
a higher proportion of Alu 115, and consequently a higher tumour DNA burden. The DNA
Integrity Index was used to assess impact on overall and median survival times. Overall
survival calculation was made using a Kaplan Meier chart as seen in Fig 4.2, by taking
the mid-way point and separating patients below and above a DNA Integrity Index of 0.5,
median survival in days from trial commencement is tabulated in Table 4.3.

FIGURE 4.2: Kaplan Meier plot of overall survival in ovarian cancer pa-
tients. A Kaplan Meier was plotted to measure overall survival, Chi-squared
value of 0.12, p-value=0.70, Hazards ratio 1.34 (95% confidence interval 0.25-
7.26). Data shows no difference between the two groups, indicating Alu ratio

has no impact on OS.

DNA Integrity Index Median Survival (Days)

<0.5 197
>0.5 282

TABLE 4.3: Median survival in days from the start of METRO-BIBF treat-
ment. Calculation of median survival in days as of 1st March 2017. A higher

Alu ratio (>0.5) shown to be associated with longer median survival.
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The DNA Integrity Index was also compared to CTC values (see Chapter 3) from the
same patient over their treatment cycles and plotted in Fig 4.3. This analysis investigates
whether a similar pattern of change is apparent in the two biomarkers over treatment time.

A 

C 

B 

FIGURE 4.3: CTC vs Alu ratio in ovarian cancer patients. Observations of the
CTC value and Alu ratio in individual patients over the course of treatment
shows some correlation in patients A & B, however this correlation does not

appear in patient C.
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A general trend of little to no change in CTC and ctDNA followed by a spike in both
at around cycle 3 is evident in patients A & B followed by a significant drop. This was
described earlier in Chapter 3, and postulated as a signature of positive response to therapy.
The spike indicates a positive response and hence release of CTC and ctDNA as the tumour
may be shrinking/responding, followed by reduction in both biomarkers as tumour burden
is lessened. Patient C shows little to no correlation between the 2 biomarkers, the patient
is known to have not responded well to the therapy and subsequently died. The variation
could be attributed to inter-patient variability, and poor response to therapy.

4.4.2 Alu repeat ratio and DNA Integrity Index in lung cancer patients

The same analysis was carried out on samples from 29 lung cancer patients and 19 non-
cancer controls. Details of patients and pathology are listed in Table 4.4.

Variable Value Percent (%)

Total 48 100
Mean age (±SD) 60±15 -
Males/Females 25/23 52.1/47.9

Pathology

All cancer 29 60.4
Primary lung cancer: 22 75.9
- Adenocarcinoma 15 68.2
- Squamous cell carcinoma 7 31.8
Metastatic Cancer 7 24.1
Non-cancer control 19* 40

Staging

I-II 17 77.2
III-IV 5 22.7

TABLE 4.4: Lung cancer study patient information. Details on patients se-
lected in lung cancer study including pathological staging.* Includes 2 non-

cancer patients undergoing bullectomy surgery.

DNA samples were processed as earlier described using qPCR with the same Alu repeat
sequences as above. The DNA Integrity Index was calculated and plotted, as can be seen in
Fig 4.4. Due to small sample size (n) late stage and metastatic cases were pooled together,
as they would be categorised as advanced lung cancers, compared to localised early stage
lung cancer. ROC curve analysis and AUC were also calculated to measure sensitivity and
specificity of this technique in lung cancer patients, and can be seen in Fig 4.5.
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FIGURE 4.4: Scatter plot showing DNA Integrity Index. (A) shows an in-
creased DNA Integrity Index lung cancer vs controls, p-value=0.035. (B) shows
an increased DNA Integrity Index in the advanced cancer group (III-IV in-
cluding metastatic) compared to both early stage (I-II) and controls, ***p-

value<0.0001 and ***p-value=0.0006 respectively.

FIGURE 4.5: ROC curve analysis of diagnostic sensitivity and specificity
of using ALU repeat ratios. (A) All lung cancer vs controls, showed poor
sensitivity and specificity AUC 0.61, p-value= 0.22 compared to; (B) Late stage
vs controls, AUC 0.88, ***p-value=0.0007 showing much better performance,
in contrast to; (C) Early stage vs controls, sensitivity and specificity were poor
with, AUC 0.67, p-value=0.23; (D) Late stage vs early stage, AUC 0.92, ***p-
value=0.0002, suggests very good sensitivity and specificity as a diagnostic

tool.
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Patient survival data was also collected and patient status confirmed on 1st May 2017.
Patient median survival (Table 4.5), and overall survival was plotted as seen in Fig 4.6, in
terms of DNA Integrity Index, with a value of >0.5 used as an indication of higher propor-
tion of tumour DNA presence.

Pathology Patients
(N)

Mean DNA Integrity Index
(Range)

Median
survival

Primary lung cancer:
- Early stage (I-II) 17 0.18 (0.01-0.44) 434
- Late stage (III-IV) 5 0.86 (0.71-0.93) 460
Metastatic 7 0.51 (0.12-0.93) 454
Non-cancer controls 19 0.22 (0.007-0.44) -

TABLE 4.5: DNA Integrity Index by staging, including median survival
times. Interrogation of DNA Integrity Index by staging show advanced cases
and metastatic patients to have a higher Alu repeat ratios, compared to early
stage and non-cancer controls, 0.86, 0.51, 0.18, and 0.22 respectively. Median
survival times however do not seem to be significantly influenced by a higher

DNA Integrity Index.

FIGURE 4.6: Kaplan Meier plot of overall survival in lung cancer patients
based on DNA Integrity Index. Patients with ALU reading >0.5 show poorer
survival, Chi-squared value of 5.55, *p-value=0.03, Hazards ratio 0.023 (95%

confidence interval 0.00099-0.53).

Median survival post operation in days was also calculated and tabulated in Table 4.6.
Overall survival is shown to be poorer in patients with a DNA Integrity Index of >0.5,

p-value=0.03, in contrast median survival in days post-operatively shows little difference
between the two groups, with survival increased by 23 days for the <0.5 DNA Integrity
Index group.

We further interrogated the data, using known factors for lung cancer that can influence
survival. No significant correlations were found between Alu and CT tumour size (r = 0.21,
p-value>0.05), Fig 4.7.



Chapter 4. 104

DNA Integrity Index Median Survival (Days)

<0.5 434
>0.5 457

TABLE 4.6: Median survival by DNA Integrity Index. DNA Integrity Index
was measured against median survival, by stratifying the Alu ration as <0.5
or >0.5. Data show a better median survival in the group with a higher DNA

Integrity Index, compared to the lower group

FIGURE 4.7: CT Images of patients tumour. CT mass were interrogated
against DNA Integrity Index, by means of CT scans to assess tumour size.
(A) Stage IA Non-mucinous Adenocarcinoma of the Lung; (B) Stage IIB Ade-

nocarcinoma of the lung; (C) Stage IV NSCLC. Red arrow denoted tumour.
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Alu was also unrelated to age, smoking, or diabetes mellitus. The only background
variable associated with Alu was gender: women had significantly higher Alu (0.40) than
men (p-value<0.001). Subsequently, we found that the main group effect on Alu remained
significant also after statistically controlling for gender (p-value<0.001).

4.4.3 Plasma interrogation of ovarian patient cancer samples using Raman Spec-
troscopy

Plasma samples from 10 ovarian cancer patients, and 5 healthy female individuals were
processed by Raman Spectroscopy by our collaborators at Exeter University. Samples were
analysed by drop Raman mapping. Lung samples were not included due to time con-
straints. Plasma samples were defrosted from -80◦C freezer and a 1.5µL drop was pipet-
ted onto a clean ‘Raman grade’ Calcium Fluoride slide and allowed to dry for 30 mins.
Twenty Raman spectra were measured from the middle of the ‘coffee ring’ where most pro-
teins were deposited onto the slide. The 20 spectra were collected at equally spaced points
around the circumference of the ring using 830nm laser and acquired using a Renishaw in
via microspectrometer with a Leica x50 long working distance objective (Fig 4.8).

FIGURE 4.8: Plasma drop on a ‘Raman grade’ calcium fluoride slide. The
image depicts the process of Raman spectroscopy, with an image of a plasma
drop on a ‘Raman grade’ calcium fluoride slide, and image using the 830nm

laser, x50 magnification.

The baseline was subtracted and the samples spectra were analysed for various parame-
ters. Using this technique, various chemical properties of a sample can be measured, based
on the Raman shift resulted from the laser interaction with the samples’ molecules, eliciting
excitation. These readings can identify specific chemicals and molecules, Fig 4.9.
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FIGURE 4.9: Raman spectra of all ovarian cancer and control samples. Im-
age shows differences in chemical balance of the following molecules: CaF2,

Prolines-amino acids, phenylalanine, Amide III, C-H and Amide I.

The initial Raman spectra analysis shows multiple chemical property differences amongst
all the samples. First we compared the Raman shift of ovarian cancer patients, to female
controls, Fig 4.10.

FIGURE 4.10: Raman shift comparison of ovarian cancer and control sam-
ples. A clear loss in carotentoid signals (1005/1150/1530 cm-1 peaks) in cancer

patients. Other subtle peaks in the cancer group can also be seen.
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There are clear distinctions in the loss of carotenoids in cancer patients compared to
control samples, which are denoted by the identified peaks.

Principal component analysis (PCA) was also carried out to assess commonalities across
the ovarian cancer samples. Loadings for the dataset contained 300 spectra, from 20 samples
(cancer and control). PCA scores were calculated by ANOVA analysis for the principal
components with highest statistical significance of separation between the groups.

Using the PCA scores for each of the 300 spectra a linear discriminant (LDA) function
(Fig 4.11) was used to maximise the separation, and minimises the variance within groups.

FIGURE 4.11: Differentiation between cancer and control samples using lin-
ear discriminat analysis. Histogram of a linear discrimination function of
ovarian cancer and control samples from Raman spectroscopy analysis. A

clear distinction in chemical properties is visible between the two groups.

The LDA plot reveals a 100% correct prediction; however, these results required further
validation. This was done by extracting 20 spectra from each individual and keeping them
back while a new PCA-LDA model was constructed from the remaining spectra to maximise
separation. The held out spectra were then projected on the new model. The results are
shown below Table 4.7.
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Prediction

Control Ovarian Cancer

Control 100 0
Ovarian Cancer 40 160

TABLE 4.7: Cross validation of 20 spectra from each individual sample. Re-
sults generated show 80% sensitivity and 100% specificity.

Validation results support the findings of the PCA-LDA correlation model, and enforce
strong sensitivity and specificity values within this technique.

4.5 Discussion

With ctDNA readily available in the plasma of cancer patients, various efforts have been
made to exploit their clinical utility, one being the measurement of the DNA Integrity Index
(Wang et al., 2003; Umetani et al., 2006a). We evaluated the efficacy of the DNA Integrity
Index, by means of Alu repeat analysis of ctDNA found in the plasma of ovarian and lung
cancer patients.

Based on the premise that tumour cells undergo a more chaotic cell death, compared to
mostly apoptosis in normal cells (Umetani et al., 2006a; Lehner et al., 2013), we expect to
find a higher ratio of smaller fragmented DNA to larger in the cancer cohort. As the disease
progresses one would expect an increased DNA Integrity Index, reflecting the increased tu-
mour burden and thus shedding of fragmented DNA. This can potentially provide means to
not only identify and diagnose cancer patients, but also differentiate them based on staging
and advancement of disease. Umetami et al. (2006) demonstrated a significantly increased
DNA Integrity Index, even in patients with localised disease for colorectal cancer, demon-
strating its utility as a diagnostic tool (Umetani et al., 2006a). More recently, a study in 95
breast cancer patients, revealed a significantly higher DNA Integrity Index, compared to
benign and control samples (p-value<0.001). Moreover, sensitivity and specificity values of
85 and 100% were reported, concluding the clinical utility of ctDNA, and correlation with
TNM staging (Kamel et al., 2016).

The results generated from this study show that a difference can be observed in the DNA
Integrity Index of cancer patients compared to controls, in both ovarian and lung cancers.
DNA Integrity Index in both the ovarian (p-value=0.0194) and lung cancer (p-value=0.035)
cohorts were significantly higher than in their respective controls with average ratios of 0.37
(range 0.009-0.97) vs 0.20 (0.007-0.42); 0.38 (range 0.01-0.93) and 0.22 (0.007-0.44), in cancer
and control respectively. ROC curve analysis reported an AUC of 0.69 (p-value=0.07) and
respectively of 0.61 (p-value=0.22) in ovarian and lung cancer, indicating poor sensitivity and
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specificity. This is in contrast to results from a study by Wang et al. (2003), in gynaecological
and breast cancers where an AUC of 0.911 was observed (Wang et al., 2003). However, we
do have to account for differences in the analysis method and primers used, including larger
patient cohort, consisting of early and late stages.

In addition we noticed a considerable overlap between the cancer and non-cancer co-
horts in both cancer types, which has been previously reported (Umetani et al., 2006a;
Umetani et al., 2006b). No normal established baseline exists, healthy non-cancer patients
will be expected to show both shorter and larger DNA fragments due to biological cell death
processes. Inflammation and auto immune diseases are contributing factors to cell death
rates, explaining higher DNA Integrity Index values in non-cancerous controls, with the
lower ratio seen in the cancer group being potentially attributed to effective DNA clearance,
as well as minimal cell death (Holdenrieder et al., 2008b). Other factors such as trauma
or stroke can also affect the Alu ratio, demonstrating poor specificity (Chiu et al., 2006;
Zeerleder et al., 2003; Lam et al., 2003; Rainer et al., 2006; Pares and Whitecross, 1982); the
overlap in the DNA Integrity Index between the cancer and non-cancer group further cor-
roborates this.

Further analysis was carried out to compare ctDNA values and corresponding CTCs
from ovarian cancer patient samples on the METRO-BIBF trial. Data shows a similar trend
for both biomarkers in patients A & B (Fig 4.3), while this is not apparent in patient C. These
differences could be attributed to inter-patient variability. It is known that patients A & B
responded well to the therapy, which may be represented by the spike in both biomarkers
around cycle 3, possibly indicating tumour necrosis. By contrast, patient C did not respond
well to the therapy and subsequently died, hence this may be reflected with by the little
change in Alu ratio compared to patients A & B. Patient C also shows less of a decline in
CTC value following a spike, as is seen with the other 2 patients, perhaps indicating little
or no change to the tumour. As seen previously in chapter 3, CA125 levels did not correlate
with CTC levels, the same is also true with ctDNA, these findings corroborating again the
lack of value of the CA125 biomarker.

For lung cancer patients, further break down by staging revealed a significantly higher
DNA Integrity Index in the advanced patients (III-IV and metastatic), compared to both the
early stage (II-II) (p-value<0.0001) and controls (p-value=0.0006). Furthermore, ROC curve
analysis between advanced cases and early stage, and advanced cases and normal indicated
high sensitivity and specificity with AUC of 0.92, p-value=0.0002 and 0.88, p-value=0.0077
respectively, whereas early stage vs normal has a poorer AUC of 0.67, p-value=0.23. The re-
sults of this study are generally in line with recent reports (Umetani et al., 2006a; Umetani
et al., 2006b), and hint at a prognostic role for this biomarker in advanced cancers. Lit-
erature also suggests that DNA released from malignant tumours into the bloodstream is
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enhanced by lymphovascular invasion, as direct lymphatic or blood flow through the tu-
mours enables dissemination of viable tumour cells, and thus can enhance the diffusion of
DNA released from dead tumour cells into the bloodstream. As a result, circulating DNA
may be directly related to tumour progression and rate of tumour cell turnover, representing
biologic tumour aggressiveness (Umetani et al., 2006b), which would agree with the results
of this study. Analysis of DNA Integrity Index in lung patients against staging showed Alu
repeat ratios of >0.5 in the advanced stages, 0.61 and 0.58 in the advanced cases (III-IV) and
metastatic patients, respectively, when compared to controls and early stage (I-II), 0.23 and
0.27 respectively, supporting the notion that with disease progression more ctDNA is shed
into the circulation.

Short term follow up data was also acquired, and overall survival was plotted against
DNA Integrity Index, whereby patients were divided by a ratio of either <0.5 or >0.5. Based
on the results of average DNA Integrity Index in both ovarian and lung cancer, and given
that the DNA Integrity Index falls between 0 and 1, the middle point seemed sensible to
distinguish higher ratios from lower. A similar approach and cut-off was utilised in a recent
study in breast cancers (Kamel et al., 2016). Overall survival was seen to be unaffected
in the ovarian cohort (p-value=0.7), but was significantly better in the <0.5 DNA Integrity
Index cohort (p-value=0.03) for lung cancer patients. This result suggests a potential role for
lung cancer prognosis, however the median survival in days shows (Tables 4.3 & 4.6), that
survival is slightly worse or not significantly different in the lower DNA Integrity Index
group compared with the higher DNA Integrity Index group for lung cancer. Interestingly,
no differences are observed in overall survival for ovarian cancers, while median survival
in days is shown to be increased by approximately 3 months (85 days), suggesting again
a potential prognostic use for this assay. These disparities allude to the complications of
inter-patient variability, different cancer types, and one must consider the small number of
samples analysed for both cancer types, particularly in the case of advanced and metastatic
lung cancer patients.

Studies by Wang et al., 2003 corroborate our findings, as they report a significant in-
crease in the DNA Integrity Index in ovarian and gynaecological cancers, concluding its
clinical utility. Our initial findings showed similar results in ovarian cancer patients with an
increased DNA Integrity Index compared to controls, however statistical significance was
not reached and these did not translate into clinical outcomes which appears not to have
been measured by Wang et al., 2003. Similarly studies in colorectal, periampullary, breast,
ovarian, head and neck and prostate cancers (Yu et al., 2011; Lehner et al., 2013; Umetani
et al., 2006a; Umetani et al., 2006b; Jiang et al., 2006; Hanley et al., 2006) also report positive
results for the use of Alu repeats both diagnostically and prognostically. In contrast studies
in pancreatic, gastrointestinal, colorectal cancer (Utomo et al., 2016; Boddy et al., 2006) have
concluded against their utility as a clinical tool due to poor sensitivity and specificity. The
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results from this finding suggest the assay lacks value in a diagnostic setting, however can
be used in the advanced setting for prognostic purposes at least for lung cancer.

Raman spectroscopy analysis of the ovarian cancer samples, revealed interesting varia-
tions amongst the cancer and control samples. Metabolomic differences were also observed
in a study by Winnard et al., 2017, when comparing primary breast cancer cell lines to nor-
mal, using Raman spectroscopy. Another recent study in melanoma patients, revealed dif-
ferences in the biochemical and structural make-up of tumour tissue compared to controls,
allowing the group to develop a model and identify specific components to be affected in
this cancer cohort (Mazurenka et al., 2017). These studies are in line with our findings.

In this analysis we observed a significant loss in carotenoids in cancer patients com-
pared to controls. Carotenoids are a structurally and functionally diverse group of natural
pigments of the polyene type, known to be very efficient physical and chemical quenchers
of both singlet oxygen (1O2), and potent scavengers of other reactive oxygen species (ROS)
(Fiedor et al., 2005). The uncontrolled generation, and increase of ROS levels in the body, re-
sults in ‘oxidative stress’, a contributor to the pathogenic processes of many diseases, includ-
ing cancers (Fiedor and Burda, 2014). It has been reported that various natural carotenoids
have been proven to possess anti-carcinogenic properties (Nishino et al., 2000). Further-
more, carotenoids such as β-cryptoxanthin are suggested to stimulate the expression of an
anti-oncogene, and p73 gene that is known as one of the p53-related genes (Nishino et al.,
2000). Thus, this observed loss in carotenoids could explain tumorigenesis in these patients,
in addition to acting as a blood based biomarker.

This technique has the potential to detect molecular changes prior to any morphological
changes occurring in the tissue, offering thus many possibilities to aid the early detection
of cancers. Raman spectroscopy is non-invasive with high specificity, and could be used
for differentiating between benign and malignant tissue, in place of conventional biopsies
(Mazurenka et al., 2017).

ctDNA and Raman spectroscopy show potential as ‘liquid biopsy’ techniques. Using a
larger sample size when analysing ctDNA, may alleviate some limitations observed in this
study. In this work we show the diagnostic and prognostic value of ctDNA in the advanced
setting, by means of Alu repeats and DNA integrity analysis. Raman spectroscopy has also
shown promising results, with particular emphasis on levels of carotenoids to differentiate
cancer patients from controls. The results generated are shown to be in line with other find-
ings, and further evaluation of specific identified components could be developed further.
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Chapter 5

Identification of novel cancer
biomarkers of prognostic value using
specific gene regulatory networks: a
novel role of RAD51AP1 for ovarian
and lung cancers

5.1 Introduction

In addition to the use of CTCs as liquid biomarkers, microarray data has been utilised for
biomarker and gene discovery. This chapter explores the use of microarrays in the discovery
of robust liquid biomarkers and unique gene signatures using gene regulatory networks.

Microarray is a powerful technology that allows large scale interrogation of biological
samples. The wealth of clinical cancer microarray data has been utilised over the years in
the search for new biomarkers and disease specific ‘molecular signatures’ of genes. How-
ever, despite the successful use of microarray data in cancer biomarker discovery, there are
still limitations in its main stream adoption for diagnostic or prognostic purposes. In addi-
tion, most studies concentrate on tissues which pose a greater level of difficulty in a clinical
setting as they are are usually not readily accessible by comparison to liquid biopsies.

To make matters more complicated, a recent study revealed extensive genetic similari-
ties across 14 major cancer types (breast, lung, and ovarian amongst them) based on whole
exome somatic mutation profiles (Heim et al., 2014). This has been further corroborated
by research demonstrating similarities between carcinomas from different organs, such as
high-grade serous ovarian carcinomas, basal like breast cancer, and uterine serous carcino-
mas (Cancer Genome Atlas Network, 2012; Cancer Genome Atlas Research Network, 2011;
Klein, 2013).
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Thus, generic analyses may reveal distinct and common genetic features across cancer
types, and these features could have the potential to be biomarkers of diagnostic or prog-
nostic value. For this reason, we worked in collaboration with the computer science division
at Brunel University London, to use a Unique Network Identification Pipeline (UNIP) for
biomarker discovery focusing on four different cancer datasets: ovarian, lung, triple neg-
ative breast, and medullary breast cancer. UNIP aims to semi-automatically identify an
enriched set of genes and the relationships between them, specific to one or a number of
independent studies (Bo et al., 2014).

In this work, a list of four potential genes, known to be involved uniquely in each type
of cancer has been identified, through mining of the National Center for Biotechnology In-
formation (NCBI) data (Rebhan et al., 1997): RAD51 associated protein 1 (RAD51AP1), Fol-
listatin like 1 (FSTL1), Collagen type XII, alpha 1 (COL12A1), and Small proline rich protein
1A (SPRR1A). This study evaluates their validity and clinical relevance.

5.2 Aims and objectives

• Clinically validate all four identified biomarkers in tissue samples, with emphasis in
ovarian and lung cancer.

• Evaluate the function and relevance of successfully validated genes by means of func-
tional studies.

5.3 Declaration of contribution to the work presented in this chap-
ter

Oxford Brookes University- Microarrray

• I have obtained RNA from SKOV3 cells transfected with siRNA for RAD51AP1 and
controls.

• Oxford Brookes University ran the Microarray experiments and raw data was Then
provided to me in a form of an excel file.

• I carried out bioinformatic analysis using a wide repertoire of in silico tools.

• I then cross checked the data with the patient details for any correlations.
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Table 5.1 gives a detailed description of contributions from each participating unit.

Contributions Oxford Brookes University DC

Patient and sample collection - x
Sample preparation (RNA/DNA/Plasma) - x
Sample processing x -
Analysis of raw/partly processed data - x
Further analysis and correlation with clinical samples - x

TABLE 5.1: Contribution to the work presented in this chapter. Details
on specific tasks performed by Oxford Brookes University and Dimple Chu-

dasama (DC).
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5.4 Results

5.4.1 Unique-networks for prediction of unique genes

Development of the UNIP was done independently by a computing mathematics team,
as part of a collaborative project. The UNIP was applied to analyse four different can-
cer datasets:ovarian, lung, triple-negative and medullary breast cancers. Initially, en-
richment of the identified genes was undertaken by using principal component analysis
(PCA) with a threshold on the standard deviation. Glasso was then applied to identify
a Gene Regulatory Network (GRN) for each cancer sub-type, and derive unique connec-
tions common to the networks. Baysian Networks (BN) was used to obtain the unique-
network structure (Fig 5.1) for each cancer subtype and identify, through inference, the
most predictive (how well it predicts other expression level values) and predictable (how
well its expression level values are predicted) genes within (intra) and outside (inter) the
cancer subtypes using the leave one out cross validation technique.

FIGURE 5.1: Unique gene regulatory network. A GRN was constructed using
the methods described earlier. The nodes with a grey background indicate
genes with intra-study predicted accuracy higher than 0.6. Numerical values
within the nodes refer to the gene specific ID in the dataset. This pipeline

identified 4 novel markers: SPRR1A, FSTL1, COL12A1, and RAD51AP1.

To capture study-specific genes, GeneCards encyclopaedia was used to obtain the list
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of genes that are known to be involved in each cancer. These lists were compared amongst
themselves and with the genes included in the unique-network list and, finally, we se-
lected the genes that appeared in the ovarian cancer study.

Identification of these four genes prompted in silico analysis of existing datasets to
further investigate the relevance of all genes identified in relation to prognosis and sur-
vival (see Fig 5.2, 5.3, 5.4, and 5.5). This was done using Oncomine and Kaplan Meier
plotter, online tools that mine existing clinical data for these purposes. Oncomine nor-
mal data is denoted as a 1 and diseased (cancer) as 2.

FIGURE 5.2: Oncomine analysis for the RAD51AP1 gene. Oncomine results
for (A) Yoshimoto ovarian dataset (1, n=9; 2, ovarian serous adenocarcinoma,
n=43), (C) Curtis breast dataset (1, n=144; 2, breast carcinoma, n=14); (E)
Shearman lung dataset (1, n=19; 2, lung adenocarcinoma, n=20). RAD51AP1
is shown to be over-expressed across all the cancer types and associated with
a poorer overall survival by Kaplan Meier analysis in all 3, ovarian (B), breast

(D) and lung cancer (F), all shown to be statistically significant.
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FIGURE 5.3: Oncomine analysis for the FSTL1 gene. Oncomine analysis de-
noted as 0 for controls and 1 for cancer, across (A) Richardson breast dataset
(0, n=7; 1, ductal adenocarcinoma n=79), (C) Adib ovarian dataset (0, =4; 1,
serous ovarian adenocarcinoma n=12), (E) Landi lung dataset (0=49; 1, ade-
nocarcinoma n=79). Kaplan Meier analysis of FSTL1 is shown to be over-
expressed across all 3 cancer types, although it appears to be weakly associ-
ated with a poorer overall survival for (B) breast and (D) ovarian cancers, this
is not shown to be statistically significant. (F) Lung cancer however shows
a poor overall survival with increased FSTL1 expression, which is seen to be

statistically significant.
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FIGURE 5.4: Oncomine analysis for the COL12A1 gene. Oncomine results
for (A) Finask breast dataset (0, n-6; 1, invasive breast carcinoma n=53),
(C) ovarian TCGA dataset (0, n=561; 1, ovarian serous cystoadenocarcinoma
n=607), (E) Hou lung dataset (1, control n=65; 2, lung adenocarcinoma, n=45).
COL12A1 is shown to be over-expressed across all the cancer types, ovarian
being the exception where there is considerable overlap with controls. Ka-
plan Meier analysis of overall survival is shown to be poorer in (B) breast
cancer patients who overexpress COL12A1, shown to be statistically signifi-
cant. Overall survival is not shown to be affected in (D) ovarian and (F) lung

cancers.



Chapter 5. 119

FIGURE 5.5: Oncomine analysis for the SPR1A gene. Oncomine results
for (A) Richardson breast dataset (n=7; 1, ductal breast carcinoma, n=40),
(C) TGCA ovarian dataset (0, n=561; 1, ovarian serous cystoadenocarcinoma,
n=607), (E) Landi lung dataset (0, n=49; 1, adenoxarcinoma, n=58). SPRR1A
is shown to have differential expression across all the cancer types. Similar
levels appear to be shown in breast and lung cancer, with higher levels of
expression seen in ovarian cancer compared to controls. Overall survival by
Kaplan Meier analysis does not appear to be affected in breast, ovarian or lung

cancer, (B), (D) & (E) respectively.
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In silico analysis of the four identified genes portraits a very similar pattern of over-
expression in breast, ovarian, and lung cancers, for the RAD51AP1, FSTL1, and COL12A1
(with the exception of ovarian) genes, according to the available microarray datasets, thus
corroborating the findings of the GRN modelling. The SPRR1A gene however, exhib-
ited a lower expression profile compared to the 3 other identified genes according to the
GRN model. Oncomine analysis also showed a similar down-regulation compared to
controls in breast and lung cancers, however higher expression in ovarian cancers. Ka-
plan Meier analysis of overall survival is mixed amongst the four genes and cancer sub-
types. A strong association with over-expression and poorer overall survivals is seen in
RAD51AP1, and to a lesser extent in FSTL1, both showing statistically significant results.

5.4.2 Validation of identified genes in cell lines and clinical samples

We expanded on the in silico analysis results, by assessing the relative expression of
the four genes common to the four cancer subtypes in relevant immortalised cell lines
(see Table 5.2) by means of RT-qPCR, (as described in Section 2.5.8) using primers for
RAD51AP1, FSTL1, COL12A1, SPRR1A, and reference genes Beta Actin and GAPDH. Bi-
ological and technical triplicates were performed for each experiment, as seen in Fig 5.6
to 5.9. Only normal (i.e. non-cancerous) cell lines were available for breast cancer cell
lines, hence additional analysis on pooled cancer vs pooled control was carried out on
these cell lines only, with breast cancer cell lines n=6, and control breast cell lines n=2.

Cell line Site Subtype

MDA-MB 231 Breast cancer Invasive ductal carcinoma
MDA-MB 436 Breast cancer Triple-negative breast cancer
MDA-MB 361 Breast cancer Adenocarcinoma
Gi101 Breast cancer Metastatic breast carcinoma
T-47D Breast cancer Ductal Carcinoma
SK-BR Breast cancer Adenocarcinoma
MCF-10A Breast normal Fibrocystic disease
HMEC Breast normal Primary human mammalian epithelial cells
PEO1 Ovarian cancer Ovarian cell carcinoma
SKOV-3 Ovarian cancer Adenocarcinoma
MDAH-2774 Ovarian cancer Endometriod ovarian adenocarcinoma
A-431 Lung Cancer Squamous cell carcinoma,
A549 Lung cancer Adenocarcinoma

TABLE 5.2: Cell lines tested against the panel of 4 GRN identified genes.
Details of site and disease subtype for each analysed cell line.
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FIGURE 5.6: Expression of SPRR1A across breast, ovarian and cancer cell
lines. An F-test was performed to assess the variance between the two groups,
and a two-tailed unpaired Student’s t-tests with Welch’s correction for un-
equal variance were performed to assess significance. (A) Low expression was
detected across all cell lines, with the exception of T47D breast cell line where a
markedly increased expression in comparison to all other cell lines was noted.
(B) Direct comparison of breast cancer and normal cell lines shows increased

expression in the cancer cell lines, however this did not reach significance.

FIGURE 5.7: Expression of FSTL1 across breast, ovarian and cancer cell lines.
An F-test was performed to assess the variance between the two groups, and a
two-tailed unpaired Student’s t-tests with Welch’s correction for unequal vari-
ance were performed to assess significance. (A) A variable gene expression is
seen across all cell lines. (B) Normal breast cell lines are shown to have higher
FSTL1 expression compared to cancer; however this did not reach statistical

significance.
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FIGURE 5.8: Expression of RAD51AP1 across breast, ovarian and cancer
cell lines. An F-test was performed to assess the variance between the two
groups, and a two-tailed unpaired Student’s t-tests with Welch’s correction
for unequal variance were performed to assess significance. (A) a variable but
generally increased gene expression is seen across all cell lines. (B) Breast can-
cer cell lines are shown to have higher RAD51AP1 expression compared to

normal breast cell lines, *p-value=0.0285.

FIGURE 5.9: Expression of COL12A1 across breast, ovarian and cancer cell
lines. An F-test was performed to assess the variance between the two groups,
and two-tailed unpaired Student’s t-tests with Welch’s correction for unequal
variance were performed to assess significance. (A) Variable but generally in-
creased expression of COL12A1 are seen in ovarian and lung cancer cell lines,
compared to low gene expression seen in breast cancer patients in comparison
to controls, which is seen better in (B), although not shown to be statistically

significant.
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The cell line expression data generated for the four genes, showed a cell-type specific
response. To further validate the expression of the 4 genes clinically, patient tissue sam-
ples were compared with normal controls (Fig 5.10). Tissue samples for ovarian cancer
patients were obtained from the University of Thessaloniki (Table 2.2, detailed in Sec-
tion 2.2.2). Lung tissue samples were obtained from Harefield Hospital, London, in the
form of tissue or formalin fixed paraffin embedded (FFPE) blocks, breast cancer cDNA
was purchased. A tissue array kit was purchased, which consisted of a 96 well plate pre-
loaded with ovarian, lung, and breast cancer, and control cDNA (Origene). Information
of all samples in this study are tabulated in Table 5.3. qPCR on cDNA was performed
and reference genes Beta Actin (as recommended by Origene array plate manufacturers)
and GAPDH were used.

Lung Tissue Ovarian Tissue Breast Tissue

Pathology N Pathology N Pathology N

Normal 16 Normal 12 Normal 1
Adenocarcinoma 19 Ovarian serous

adenocarcinoma
25 Breast ductal ade-

nocarcinoma
5

Squamous carci-
noma

6 Clear cell adeno-
carinoimoma

2

Carcinoid 1 Endometriod
adenocarcinoma

1

TABLE 5.3: Clinical samples information. Summary of the pathology and
numbers pertaining to the clinical tissue samples used in this study.



Chapter 5. 124

FIGURE 5.10: Results of RT-qPCR of all four genes across breast, lung and
ovarian cancer cell line. RAD51AP1 gene expression in breast tissue sam-
ples was measured by RT-qPCR. An F-test was performed to assess the vari-
ance between the two groups, and a two-tailed unpaired Student’s t-tests
with Welch’s correction for unequal variance were performed to assess signifi-
cance. Results show RAD51AP1, COL12A1 and SPRR1A as significantly over-
expressed in lung, when compared with ovarian and breast cancer, and FSTL1
was significantly over-expressed in ovarian cancer compared with lung and
breast cancer. Within lung cancer RAD51AP1 was shown to be significantly
over-expressed in cancer compared to control tissue, (*p-value=0.04). Whereas
in ovarian cancer FSTL1 and RAD51AP1 were shown to be significantly over-
expressed in diseased tissue compared to healthy controls, *p-value=0.04 and

**p-value=0.0012, respectively.
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Short term outcomes and survival data was available for the lung cancer cohort only,
as no outcomes data was available for the ovarian samples for ethical reasons. Overall
survival for the RAD51AP1 gene was analysed by a Kaplan Meier plot (Fig 5.11). The
mean RAD51AP1 expression in controls being used as a cut-off of high and low expres-
sion.

FIGURE 5.11: Over-expression of RAD51AP1 in lung cancer patients.
Over-expression of RAD51AP1 is associated with poorer overall survival, p-

value=0.0230, Chi-squared 5.166, Hazards Ratio 9.9 (95%, 1.37-71.6).

Data generated from clinical validation of the four genes showed RAD51AP1 to be
the most promising of the four, with significant over-expression in lung and ovarian can-
cer tissue samples compared to their relevant controls. A similar pattern was observed
in breast cancer samples as well but the results were not statistically significant. Fur-
thermore, overall survival data of lung cancer patients has shown that a poorer prognosis
association with higher RAD51AP1 expression levels was statistically significant. For
these reasons, we have decided to concentrate on further investigation of RAD51AP1.

To validate RAD51AP1 in a clinical setting, we used immunohistochemistry tech-
niques to measure RAD51AP1 expression at the protein level in tissue samples from
both lung and ovarian cancer patients using a commercially-available tissue microar-
ray (Biomax Ltd). Formalin fixed paraffin embedded (FFPE) tissue slides were acquired
from Harefield Hospital (lung) and Mount Vernon Cancer Centre (ovarian). Sections
were sliced and mounted on to slides, and stained using an antibody against RAD51AP1
(Sigma), and visualised by DAB-chromogen (Dako), as described in Section 2.3.5. Slides
were then scored on positive staining and plotted, Fig 5.12.
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FIGURE 5.12: RAD51AP1 protein expression was measured in lung cancer
tissue samples embedded in FFPE blocks. The scoring of lung FFPE slides
are as follows, (A) shows a significantly higher proportion of RAD51AP1 ex-
pression at the protein level compared to normal controls,***p-value<0.0001.
(B) Image represents an FFPE slide from a lung cancer patient, stained with the
RAD51AP1 antibody, strong positive staining can be visualised by the brown
staining. (C) Control non-lung cancer lung tissue, with little to no RAD51AP1

staining on FFPE tissue. Images at ×20 magnification.
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RAD51AP1 is shown to be over-expressed significantly in lung cancer patients (n=43)
compared to controls (n=7). Analysis of the staining pattern of RAD51AP1 revealed both
cytoplasmic and nuclear staining. Further analysis was carried out on staging and sub-
type, Fig 5.13.

FIGURE 5.13: RAD51AP1 protein expression from scoring of lung FFPE
slides. (A) shows a significantly higher proportion of RAD51AP1 expression
in squamous cell carcinoma compared to adenocarcinoma, p-value<0.0001.
RAD51AP1 expression appears increased compared to adenocarcinomas but
not squamous carcinoma, however this is not statistically significant. (B)
RAD51AP1 expression in the tissue appears highly expressed in stages II and
III, however not in a stage specific manner. This data is not seen to be statisti-

cally significant.
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Differences were observed in RAD51AP1 protein level expression in lung cancer pa-
tients amongst cancer subtype and staging. Immunohistochemistry and RAD51AP1 pro-
tein expression was also tested on FFPE tissues obtained from ovarian cancer patients.
Details of scoring were plotted, Fig 5.14.

FIGURE 5.14: RAD51AP1 protein expression from scoring of ovarian FFPE
slides. (A) shows a significantly higher proportion of RAD51AP1 expression
at the protein level compared to normal controls, p-value=0.0157. (B) image
represents an FFPE slide from an ovarian cancer patient, stained with the
RAD51AP1 antibody, slide shows positive staining denoted by the brown. (C)
Control ovarian FFPE tissue from non-cancer patient, shows weak RAD51AP1

staining.



Chapter 5. 129

RAD51AP1 is shown to be significantly over-expressed in ovarian cancer patients
(n=40) compared to controls (n=5). Again a similar staining pattern of RAD51AP1 was
observed, in cytoplasm and nucleus. Further analysis was carried out on staging and
subtype, Fig 5.15.

FIGURE 5.15: RAD51AP1 protein expression from scoring of ovarian FFPE
slides. (A) shows a significantly higher proportion of RAD51AP1 expression
in serous cell carcinoma compared to endometriod and clear cell carcinoma,
**p-value=0.0016 and 0.0063, respectively. (B) RAD51AP1 expression in the
tissue appears highly expressed in stages II and III, however not in a stage
specific manner. Statistical significance is only seen when comparing stage I

to III, where stage III shows increased expression, **p-value=0.0016.

Ovarian cancer subtype and staging also displays difference in RAD51AP1 expression
at the protein level suggesting differential expression is dependent on cancer pathology.

Next we analysed blood samples for elevated expression levels in RAD51AP1. Blood
samples were only available for ovarian (diseased n=30, controls n=12), and lung can-
cers (diseased n=18, controls n=16), due to ethical restrictions breast cancer blood sam-
ples were unattainable. All blood samples were collected and processed within 4 hours.
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RNA was extracted using the RibopureTM RNA blood extraction kit (Fisher) or Qiagen
mini RNATM extraction blood kit (Qiagen). cDNA was synthesised using the high capac-
ity cDNA Reverse Transcriptase kit (Thermo Fisher, as described in Section 2.5.7). A 6
geNormTM analysis was carried out to assess the reference gene stability, as it is known
that common reference genes can lack expressional stability.

Multiplex qPCR on cDNA was performed as previously described on the Quantistu-
dio 7 R© (ABI) thermal cycler using Multiplex TaqmanTM PCR Master Mix (Thermo Fisher)
(Section 2.5.15) using probes for RAD51AP1 (FAM-MGB), Beta Actin (VIC-MGB), and
GAPDH (FAM-MGB). Relative quantification is shown in Fig 5.16.

FIGURE 5.16: RT-qPCR results of RAD51AP1 expression bloods of ovar-
ian and lung cancer patients compared to healthy controls. An F-test was
performed to assess the variance between the two groups, and two-tailed un-
paired Student’s t-tests with Welch’s correction for unequal variance were per-
formed to assess significance. RAD51AP1 was shown to be over-expressed in
the bloods of (A) ovarian and (C) lung cancer patients, in comparison to con-
trol blood samples, *p-value=0.0320 and **p-value=0.0040, respectively. More-
over, Kaplan Meier analysis demonstrates a poorer overall survival being as-
sociated with RAD51AP1 expression in both (B) ovarian and (D) lung cancer
patients, *p-value=0.0478, Chi-squared - 3.92, Hazards ratio - 8.72 (95% CI, 1.02
to 72.6); *p-value=0.0230, Chi-squared - 6.26, Hazards ratio - 62.2 (95% CI, 2.44

to 1582), respectively.
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Analysis of RNA extracted from whole blood showed significant up-regulation of the
expression level of RAD51AP1 in diseased patients compared to healthy controls, further-
more this was associated with a poorer overall survival in both ovarian and lung cancer
patients.

Data generated from in silico and qPCR of clinical samples, demonstrate that RAD51AP1
is an important gene which is implicated in both ovarian and lung cancers and has a great
potential as a prognostic predictor. For this reason, RAD51AP1 was therefore chosen for
further in vitro functional studies, using the SKOV-3, MDAH-2774, and A549 cells lines
as experimental models for ovarian cancers, and the latter for lung cancer respectively.

5.4.3 Knockdown of the RAD51AP1 gene in cell lines

Suitable cell lines for the knockdown experiments were established by testing protein ex-
pression of RAD51AP1 by means of immunofluorescence and Imagstream analysis (Fig
5.17 and 5.18) of the two ovarian cancer cell lines, MDAH-2774 and SKOV-3, and lung cell
line A549. Stained cells were viewed under the Leica DM4000 microscope for the IF ex-
perimentation. The ImagestreamTM was used to also view RAD51AP1 protein expression,
in particular due to its enhanced microscopic and individual cell analysis capabilities.
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A B C A B C

FIGURE 5.17: Immunofluorescent staining of cell lines for RAD51AP1 ex-
pression. Staining of (A) MDAH-2774, (B) SKOV-3, and (c) A549 cell lines of
RAD51AP1 protein expression, at 40x magnification. Images are divided into
two with the top - RAD51AP1 seen in green (Alexafluor488) and the bottom
panel a combined image of the RAD51AP1 by the Alexafluor488 (green) and
blue DAPI staining of the nucleus. A strong cytoplasmic green staining in ad-
dition to a moderate to strong green loci type staining is visible throughout
most cells, suggesting aberrant expression of RAD51AP1 in all three cell lines.

FIGURE 5.18: RAD51AP1 protein level expression in MDAH-2774, SKOV-3,
and A549 cell lines. Imagestream analysis was used to measure protein ex-
pression of RAD51AP1 (green) and nuclear stainig with DARQ5 (red). Results
demonstrate an aberrant protein expression in (A) MDAH-2774, (B) SKOV-3,

and (C) A549 cell lines.
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Negative controls for each cell line were also carried out, where primary antibody was
omitted. Images can be seen in Fig 5.19.

FIGURE 5.19: Imagestream analysis of negative control experiment in
MDAH-2774, SKOV-3, and A549 cell lines. Results of all 3 cells lines in a neg-
ative control experiment, whereby RAD51AP1 primary antibody was omit-
ted, are shown to have worked and no staining (green) is visible as would be
expected, only the nucleus is stained by the DRAQ5 (red) . (A) MDAH-2774,

(B) SKOV-3 & (C) A549 cell line.

Using ImageStream and immunofluorescence analyses we show that RAD51AP1 is
aberrantly expressed as a protein in all 3 cells lines, while the lack of staining in the
negative controls of all 3 cell lines renders them suitable models for functional studies.

Next we used siRNA targeted to RAD51AP1 (SMARTpool: ON-TARGETplus, Dhar-
macon, CO, USA) to silence RAD51AP1 expression in MDAH-2774, SKOV-3, and A549
cells. Transfection efficiency was first determined with a series of optimisation assays
using siGLO-labelled siRNA, carried out as per manufacturer’s instructions (Fig 5.20).
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FIGURE 5.20: Phase and fluorescent imaging of SIGLO-labelled cell lines
at a siRNA concentration of 50nmol/L per well. Phase imaging, showing the
level of siRNA uptake in (A) MDAH-2774, (B) SKOV-3, and (C) A549. Imaging
shows approximately >90% uptake efficiency in all three cell lines, seen by the

green fluorescence uptake.

Transfection efficiency was determined to be greater than 90% with the siGLO-labelled
siRNA, using a concentration of 50nmol/L per well/dish and Dharmafect 1 transfection
reagent for all cell lines.

According to MIQE (Minimum Information for the Publication of Quantitative Real-
Time qPCR) guidelines, reference gene expression should be stable and strongly corre-
lated with the total mRNA expression. As cancer is a heterogeneous disease, it is advis-
able to assess reference gene stability in these samples. geNormTM (Primerdesign) is a
commercially available assessment kit for suitable reference genes within a sampleset.
The geNormTM human 6 gene kit, assesses six different human reference genes for av-
erage expression stability and the optimum number of reference genes required in the
qPCR experiments for each set of samples.

Six samples were selected (2 of each cell line, one transfected and one scrambled con-
trol) to represent the whole cohort and were tested in triplicate using the geNormTM 6
gene kit (Primerdesign). An equal number of samples were used from each group to
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eliminate bias towards any variable. The kit contains primers for ATB5P, B2M, UBC,
18S, YWHAZ and RPL13A (detailed in Section 2.5.9). 2X PrecisionPlusTM qPCRMaster-
Mix (Primerdesign) was used on the ABI Quantistudio 7 (Life Technologies, described
in Section 2.5.15). cDNA was used at a concentration of 5ng/µL as per manufacturer’s in-
struction. qPCR results were analysed using the qBase+ software (Biogazelle) (see Figs
5.21 & 5.22).

RPL134 ATP1B UBC YWHAZ 18S B2M 

FIGURE 5.21: Six gene analysis of the geNormTM 6 gene kit (Primerdesign).
House-keeping genes from the 6 gene geNorm kit were assessed for expres-
sional stability in a selection of cDNAs from clinical samples, representative
of the entire cohort. Data were analysed using qBase software (Biogazelle).
qBase+ provides a geNormTM M value, representing the expressional stabil-
ity; a lower M value is indicative of a greater expressional stability. The graph
orders genes of least stability to most (left to right). The two most stable genes

were identified as 18S and B2M.
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FIGURE 5.22: Six gene analysis of the geNormTM 6 gene kit (Primerdesign).
The 6 genes in the geNorm kit were assessed for expressional stability in a se-
lection of cDNAs from clinical samples, representative of the entire cohort.
Data were analysed using qBase software (Biogazelle). qBase+ provides a
geNormTM V graph showing cumulative variability of successive genes, thus
indicating how many reference genes should be used in each qPCR experi-
ment for optimum normalisation, with a value below 0.15 represents the opti-

mal number. In this case 2-3 genes have been shown to be sufficient.

geNorm analysis, indicates the requirement of at least 2 to 3 reference genes for these
experimentations. As it was earlier indicated in Fig 5.21 that 18S and B2M were the most
stable genes, it was decided to proceed with these 2 genes in these clinical samples to
ensure robust normalisation.

A scrambled control was also included (ON-TARGETplus Non-targeting Pool; Thermo
Scientific). Twenty-four hours after transfection, the medium in the wells was replaced
with fresh serum-free complete media, to avoid toxicity. RNA and lysate cell samples
were collected at baseline, 48, and 72 hours post transfection. Level and efficiency of
RAD51AP1 silencing was established by Western blotting and qPCR analysis (Fig 5.23).
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FIGURE 5.23: RT-qPCR and Western blot analysis of RAD51AP1 silencing
in cell lines. Silencing of the RAD51AP1 gene was measured by RT-qPCR and
western blotting. An F-test was performed to assess the variance between the
two groups, and two-tailed unpaired Student’s t-tests with Welch’s correction
for unequal variance were performed to assess significance. A substantial
and significant down-regulation in RAD51AP1 expression post transfection
was seen at 48 and 72h at qPCR (mRNA) level and mirrored in Western blot
(protein) data, compared to scrambled controls, across (A-B) MDAH-2774, (C-
D) SKOV-3 and (E-F) A549 cell lines, ***p-value<0.0001 and ***p-value=0.0002;
***p-value<0.0001 and ***p-value<0.0001, *p-value=0.0147 and **p-value=0.0067,

respectively.

A complete downregulation of RAD51AP1 at gene level and protein level was evident
as early as 48h post-transfection for SKOV-3 cells. A similar reduction in mRNA level was
evident for MDAH-2774 and A549 cells, however further protein inhibition was achieved
at 72h post-transfection.
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5.4.4 Proliferative potential of RAD51AP1 knockdown cell lines

Next, we investigated the effects of RAD51AP1 knockdown on proliferation within the
three cancer cell lines. Images of cells in culture were taken to visualise any differences in
cell growth at baseline, 48, and 72h, using the Fliod microscope (Applied Biosystems), as
shown in Fig 5.24 to 5.26. A scrambled control for each cell line was used as a comparison,
to rule out toxicity from the transfection reagents as a contributor. Cells were also counted
using an automated cell counting system, (Countess cell counting chamber slides from
Thermo Fisher), whereby cells were scraped off at baseline, 48, and 72h, and all cells
were collected to establish levels of cell death.

FIGURE 5.24: MDAH-2774 transfected cells. Images of MDAH-2774 trans-
fected cells taken whilst in culture post transfection with siRAD51AP1, at
baseline, 48, and 72h. Cell growth is shown to be slower in transfected cells

compared to controls x40 magnification
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FIGURE 5.25: Transfected SKOV-3 cells. Images of transfected SKOV-3 cells
taken whilst in culture post transfection with siRAD51AP1, at baseline, 48,
and 72h. Cell growth is shown to be slower in transfected cells compared to

controls.
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FIGURE 5.26: Transfected A549 cells. Images of transfected A549 cells taken
whilst in culture post transfection with siRAD51AP1, at baseline, 48, and 72h.
Cell growth is shown to be slower in transfected cells compared to controls.

Phase microscopy images show a slowing down of the growth of all 3 cell lines once
transfected with the RAD51AP1 siRNA, compared to the scrambled control. Cell pro-
liferation was quantified by use of the Countess cell counting chamber slides (Thermo
Fisher), and plotted in Fig 5.27. An F-test was performed to assess the variance between
the two groups, and two-tailed unpaired Student’s t-tests with Welch’s correction for un-
equal variance were performed to assess significance.
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FIGURE 5.27: Cell proliferation charts, reporting viable cell counts at base-
line, 48, and 72h post transfection. Cell proliferation is shown to be reduced
in transfected cell lines compared to scrambled controls and controls (non-
treated cells). (A) MDAH-2774 at 72h, p-value=0.0066 and 0.0049, respectively.
(B)SKOV-3 cells at 48 h, p-value<0.0001 and p-value=0.004, respectively, and
at 72h, significance only reached in scrambled controls, p-value=0.0002. (C)
A549 cells at 72h, p-value<0.0001 for both scrambled controls and untreated
controls. In addition, average cell death figures were also tabulated, showing
no difference in cell death for siRNA transfected cells and scrambled control

cells.

Silencing of RAD51AP1 resulted in significant inhibition of cell growth at 72 hours
for all 3 cell lines compared to untransfected control and scrambled siRNA cells; whereas
a modest but significant decrease in cell proliferation was also evident for SKOV-3 at 48h.
The similar average cell death values demonstrate that the reduction in cell numbers is
not due to increased cell death in the siRNA cells (due to possible toxicity), but rather a
true reflection of reduction in cell growth.

A cell cycle assay was also carried out to determine the frequency of cells at different
cell cycle phases, particularly apoptotic cells. This was achieved by use of Propidium
Iodide (PI). Transfected cells were collected at 48 and 72h and stained with PI, before
being observed by flow cytometry. The results were plotted as percentages in Fig 5.28.
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FIGURE 5.28: Cell cycle assay of MDAH-2774, SKOV-3 and A549 cell lines.
Assay results for (A) MDAH-2774, (B) SKOV-3 and (C) A549 cell lines. All
show very low frequencies of cells in sub G1 phase, suggesting a low propor-

tion of apoptotic cells.

Cell cycle analysis also shows a small proportion of sub G1 phase cells in all cell lines,
suggestive of little apoptotic activity. These results support the previous findings of cell
growth suppression as opposed to cell death due to toxicity, suggesting the effects seen
are cytostatic rather than cytotoxic.
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5.4.5 Effects of RAD51AP1 silencing on apoptotic, metastatic markers, and the
pro-survival mTOR signalling pathway

To gain a better insight into the inhibition of cell growth by siRNA, the expression of cer-
tain apoptotic genes and pro-metastatic markers known to be involved in lung and ovar-
ian cancer were measured by RT-qPCR (see Fig 5.29 and 5.30). An F-test was performed to
assess the variance between cancer and control groups, and two-tailed unpaired Student’s
t-tests with Welch’s correction for unequal variance were performed to assess significance.

FIGURE 5.29: RT-qPCR results of expression of pro-apoptotic markers in
RAD51AP1 silenced lung and ovarian cell lines compared to scrambled
controls. (A) BAX expression decreases in all cell lines at 48 and 72h, with
significant decreases in A549 at 48h, **p-value=0.0036. (B) FAS expression in-
creases in all cell lines at 48h, however by 72h, this increase is reduced, and
in A549 significantly reduced, **p-value=0.0014. (C) AIP decreases in expres-
sion across all cell lines, with significance being reached in A549 at 48 and 72h
(*p-value=0.0159 and *p-value=0.0271, respectively), except for MDAH-2774 at
72h. (D) SOD, shows variable results with increase in expression in some cell
lines and decreases in others compared to controls, although significance is
only reached in MDAH-2774 at 72h, showing a decrease in expression, *p-

value=0.0201.
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FIGURE 5.30: RT-qPCR results of expression of pro-metastatic markers in
RAD51AP1 silenced lung and ovarian cell lines compared to scrambled
controls. In general there is a decrease in pro-metastatic markers in the si-
lenced cell lines, particularly seen at 72h. (A) SNAI1, significant decrease in
expression is seen in transfected A549 at 48 and 72h and MDAH-2774 at 72h,
p-value=0.0046, 0.0010 and 0.0144, respectively. (B) SOX2 expression is sig-
nificantly reduced at 72h in SKOV-3, A549 and MDAH-2774 cell lines, ***p-

value=0.0006, **0.00457 and *0.0459, respectively

Expression of these pro-apoptotic markers was variable across the cell lines, suggest-
ing a cell and disease specific response. BAX showed a general reduction across all cell
lines in apoptosis compared to controls. FAS, AIP, and SOD showed more variable re-
sults, where increases in apoptosis were seen at 48h, this was reduced or reversed in most
cases by 72h. No significant increases in pro-apoptotic markers were seen at 72h in any
of the transfected cell lines. Collectively these data suggest once again a cytostatic effect
for RAD51AP1 rather a cytotoxic effect.

These findings were then expanded to look at the effects of silencing RAD51AP1 on
pro-metastatic markers, SNAI1 and SOX2. Silencing of RAD51P1 in all 3 cell lines led
to a reduction in expression of both metastatic markers SNAI1 and SOX2, the exception
being SNAI1 in SKOV-3 cells at 72h, however significance was not reached.
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We also sought to investigate the effects of RAD51AP1 silencing on the mTOR sig-
nalling pathway both at the genetic and protein level (Western blot analysis), in vitro
across all 3 cell lines, see Fig 5.31 to 5.34. F-tests were performed to assess the variance be-
tween cancer and control groups, and two-tailed unpaired Student’s t-tests with Welch’s
correction for unequal variance were performed to assess significance.

FIGURE 5.31: Gene and protein level expression of mTOR in RAD51AP1
transfected cell lines. (A) mTOR gene expression. A decrease in mTOR ex-
pression is evident in all cell lines, significance however is only reached in
A549 at 48h (*p-value=0.0497), and SKOV-3 and A549 at 72h, ***p-value=0.0007
and **0.00123, respectively. (B) Western blot analysis showed similar results
of downregulation in mTOR expression across the cell lines, this is not as ap-

parent in the MDAH-2774 cell line.

The expression of mTOR was significantly reduced in all 3 cell lines, in the siRNA
transfected samples, whereas DEPTOR depicted cancer-specific expression; being upreg-
ulated in SKOV-3 and MDAH-2774, and downregulated in A549 compared to controls.
The expression of key components for mTORC1 and mTORC2, namely raptor and rictor
remained unaltered in SKOV-3 but was markedly reduced in A549 cells, and MDAH-2774
for raptor, but increased for rictor, again depicting a cancer specific expression.

Next, we sought to investigate changes in the expression of cancer specific proteins, by
using the Human Oncology Array (R&D systems) commercial kit. Protein lysates from
SKOV-3 and A549 cells were collected and processed as described in Section 2.7. Only
2 cell lines were analysed due to cost constraints. The kit functions like a Western blot
assay, with the ability to process 84 cancer markers in duplicate on one blot, Fig 5.35.
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FIGURE 5.32: Gene and protein level expression of in RAD51AP1 trans-
fected cell lines. A variable DEPTOR expression is visible in all cell lines, a
significant increase DEPTOR is seen in SKOV-3 at 72h (*p-value=0.0345), and
significantly decreased in A549 at 72h compared to controls (**p-value=0.0032).

FIGURE 5.33: Gene and protein level expression of rictor in RAD51AP1
transfected cell lines. A variable rictor expression is visible in all cell lines,
a significant decrease in rictor expression is seen in A549 at 72h compared to

the control (*p-value=0.0201).
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FIGURE 5.34: Gene and protein level expression of raptor in RAD51AP1
transfected cell lines. A variable raptor expression is also visible in all cell
lines, a significant increase in raptor is seen in A549 at 72h compared to con-

trols (***p-value=0.0004).

FIGURE 5.35: Western blots of Oncology Array (R&D systems) used for the
detection of predetermined targets. The Oncology Array (R&D systems) was
used to test various oncology markers in all 2 cancer cell lines, (A) A549 (B)

and SKOV-3 cell lines. 10 min exposure in both cell lines.
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Several exposures were taken, and optical density (OD) measured using the ImageJ
software. Results can be seen plotted in Tables 5.4 and 5.5.

Up-regulated Function Down-regulated Function

FoxO1* Transcription factor
regulates cell death

Angiopoietin-1* Vascular development
and angiogenesis

CA-125 Tumour biomarker Progranulin* Promotes tumorigenesis
Mesothelin Over-expressed in

cancers
SPARC* Promotes tumour cell

growth
E-Cadherin Cell-to-cell adhesion Vimentin* Facilitates EMT & cancer

cell migration
CCL7 Anti-tumour activity Leptin Involved in angiogenesis

TABLE 5.4: Details on protein targets found to be up- or down-regulated in
RAD51AP1 silenced A549 cell lines using OD analysis. Cancer promoting
proteins are shown to be down-regulated, and immune and apoptotic are up-

regulated.
*expression shown to be switched off
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Up-regulated Function Down-regulated Function

CCL20 Regulates immune
response

DLL-1 Cell-to-cell communica-
tion

CCL2 Anti-tumour activ-
ity

ErbB3 Cell proliferation

GM-CSF Regulates immune
response

HGFR Cell migration and inva-
sion

Hif-1α Role in apoptosis
and angiogenesis

MMP-3 Tumour initiation

BCL-x Regulates cell death Survivin Cell proliferation and pre-
vention of apoptosis

TABLE 5.5: Details of protein targets found to be up-regulated and down-
regulated in RAD51AP1 silenced SKOV-3 cell lines using OD analysis. The
results are similar to those seen for the A549 cell lines, with mostly cancer
promoting proteins to be down-regulated and immune and apoptotic to be

up-regulated.

These results suggest that the silencing of the RAD51AP1 gene has regulatory effects
on multiple cancer proteins and pathways in cancer. In particular many apoptotic and cell
death regulated genes appear to be up-regulated, whilst cell proliferation, angiogenic,
and tumorigenic proteins appear to be down-regulated, across both cell types. Interest-
ingly, in A549 cells, vimentin is shown to be switched off (no expression) in RAD51AP1
transfected cells, and E-Cadherin expression up-regulated by over 3 fold, suggesting a
mesenchymal to epithelial transition (MET) effect. A similar trend is seen in SKOV-3
cells to a lesser extent, with down-regulation of vimentin of just over 1 fold, and increase
in CEACAM-5 expression, another cell-cell adhesion gene.

5.4.6 Microarray analysis of transfected SKOV-3 cells

To further analyse the effects of RAD51AP1 silencing, we carried out whole genome mi-
croarray analysis, as a non-biased transcriptomics screen. Due to financial constraints we
were only able to carry out this analysis on one cell line. We have decided to concentrate
on the in vitro model of ovarian cancer, given that screening is ineffective for this disease,
allowing us to gain a better insight into the signalling of this potential biomarker. More-
over, complete protein knock down was achieved at 72h post-transfection in SKOV-3 but
not in A549 or MDAH-2774 cells.
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Gene expression values with a p-value derived from the unpaired Student t-test of
less than 0.05 compared to the control, and a 2-fold change compared to the control were
included, all others were discounted as displaying no significance. Overall, silencing of
the RAD51AP1 gene significantly up-regulated 124 genes and down-regulated 21. Tables
5.6 and 5.7 list the top 4 up-regulated and down-regulated genes.

Gene Log2Fold
Change

p-value Role

Interleukin-1A 2.123492 0.003458 Immune responses, inflammatory pro-
cesses, and hematopoiesis

Interleukin-1B 1.982557 0.003777 Mediates inflammatory response, cell
proliferation and apoptosis

EGR1 2.833716 0.004206 Transcription factor: Tumour suppressor
gene

F2RL2 1.582566 0.007408 Coagulation factor

TABLE 5.6: Top 4 up-regulated genes generated from Microarray analysis.
Details of gene expression and functionality.

Gene Log2Fold
Change

p-value Role

RAD51AP1 -3.80083 6.22E-04 DNA double strand break repair
MEGF6 -2.0819 0.004201 Transcription factor
CTGF -1.34039 0.010976 Growth factor: cell adhesion, migration,

proliferation and angiogenesis
SHISA2 -1.27854 0.017224 Plays an essential role in the maturation

of presomitic mesoderm cells by individ-
ual attenuation of both FGF and WNT
signalling

TABLE 5.7: Top 4 down-regulated genes generated from Microarray analy-
sis. Details of gene expression and functionality.

The tables above list the 4 most up-regulated and down-regulated genes. RAD51AP1
being the most down-regulated, demonstrates the level of successful silencing by the
transfection. In order to validate the results of the identified genes, we performed RT-
qPCR on the SKOV-3 cell line, Fig 5.36 and 5.37. Bars denote standard error of the mean.
An F-test was performed to assess the variance between the two groups, and two-tailed
unpaired Student’s t-tests with Welch’s correction for unequal variance were performed
to assess significance.
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FIGURE 5.36: RT-qPCR validation of 4 most up-regulated genes, as reported
by microarray analysis. Microarray results show an up-regulation of expres-
sion in all 4 identified genes statistical significance was only reached in ILA1
*p-value=0.0175, with the exception of FR2L, where little or no difference is

seen in expression

FIGURE 5.37: RT-qPCR validation of 3 most down-regulated genes, as re-
ported by microarray analysis. Microarray results show (A) SHISA2 with lit-
tle or no expression change, whereas MEGF6 and (B) CTCG (p-value=0.0098)

show downregulation of expression.

Validation of the genes identified from the microarray data generally show consensus,
although 2 genes showed little or no difference in expression, namely FR2L and SHISA2.
This data corroborates the robustness of the generated microarray data.

Enrichment analysis using GeneSpring Software using KEGG, Reactome and Wikipath-
ways produced 32 pathways that have 4 more genes which show changes in the expres-
sion patterns including: apoptotic signalling, MAPK signalling, Toll-like Receptor and
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PI3K-Akt-mTOR signalling, Fig 5.38 to 5.41. Various genes within these pathways have
been shown to be up-regulated, these a highlighted by a red dot. These results demon-
strate the various different pathways affected as a result of RAD51AP1 silencing in SKOV-
3 cell lines.

FIGURE 5.38: Effects of RAD51AP1 silencing on the steroid biosynthesis
pathway. The steroid synthesis pathway is one of the pathways significantly
affected by the silencing of RAD51AP1 in SKOV-3 cell lines. The affected

genes within the pathway are highlighted with a red dot.
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5.5 Discussion

In this chapter, we provide evidence of how genes derived from unique networks can be
of importance as potential biomarkers or therapeutic targets. The combination of glasso
network learning, graph theory and Bayesian network prediction, and the Unique Net-
work approach enabled the exploration and extraction of useful biological information
from the existing data. The approach focuses on those genes that appear specifically in a
subset of conditions - here four different cancer types. This is in stark contrast to many
data integration techniques that risk "averaging" over multiple datasets. Only genes that
are predictive in the subset of cancer types are preserved in the unique networks and this
approach has enabled the identification of one key gene, RAD51AP1.

RAD51AP1 has been shown to participate in the homologous recombination DNA
damage response pathway, as an accessory protein to RAD51, known as the main medi-
ator (Modesti et al., 2007). Interaction of the RAD51AP1 with RAD51 greatly enhances
its recombinase activity, stimulating the RAD51-mediated D loop reaction (Wiese et al.,
2007). Over the past years, novel roles for RAD51AP1 have emerged, including acting
as a growth promoting signalling molecule (Pathania et al., 2016), as well as being criti-
cal during the early stages of neoplasia, where replication stress occurs at higher levels
than normal. Moreover, elevated levels of RAD51AP1 can then shift the balance from
a precancerous lesion to cancer (Parplys et al., 2014). In the same study, RAD51AP1-
deficient cells appeared to be sensitised to cisplatin’s cytotoxic effects. Here, RAD51AP1
up-regulation is described in both tissue and matching blood from patients with ovar-
ian and lung cancer compared to healthy controls. These results expand and compliment
findings from previous cancer studies, where over-expression of RAD51AP1 has been
described in cholangiocarcinoma tissues (Obama et al., 2008), hepatocellular carcinomas
(Song et al., 2015) and acute myeloid leukaemia with complex karyotypic abnormalities
(Schoch et al., 2005). Moreover, publicly available microarray data corroborate our find-
ings, demonstrating significant up-regulation of the gene in ovarian and lung malignan-
cies.

The over-expression of RAD51AP1 described above is associated with reduced overall
survival in ovarian and lung cancer patients, and similar observations are also reported
for breast cancer (Pathania et al., 2016). Furthermore, Miles et al. (2012), identified novel
microRNA/mRNA mechanisms in ovarian cancers, demonstrating that the expression of
RAD51AP1 is strongly inversely correlated with the expression of hsa-miR-140-3p, which
was significantly down-regulated in the ovarian cancer samples. This down-regulation
was not seen in normal ovarian tissue samples, suggesting a direct causal dysregulation
of RAD51AP1 by hsa-miR-140-3p microRNA in the ovary, thus potentially playing a part
in tumorigenesis (Miles et al., 2012).
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With the emergence of circulating tumour cells (CTCs) (Chudasama et al., 2016), and
circulating nucleic acids (ctNAs), readily available in the blood of lung and ovary can-
cer patients there is renewed hope of developing this tool further to identify circulat-
ing surrogate biomarkers, i.e. ‘liquid biopsy’ biomarkers, which would be considerably
more accessible than repeated tissue biopsies. Given the over-expression of RAD51AP1
in ovary and lung cancer patients tissue and peripheral blood, compared with normal
healthy controls described here, RAD51AP1 could be explored as potential biomarker
for both ovarian and lung cancer.

Taking advantage of the availability of parallel tumour tissue samples for the lung
cancer patients, we compared them against each other to assess the relationship of RAD51AP1
expression levels in tissue and blood samples from the same patients. In 50% of the pa-
tient samples we observed a correlation between the expression levels of RAD51AP1 in
tumour tissue and blood. A weaker association was observed in a further 27% of the pa-
tients, while the remaining samples showed very low or no correlation at all between the
expression levels of RAD51AP1 in tumour and blood. These results suggests that blood
‘liquid biopsy’, while a powerful approach might be contingent in some degree to inter-
patient variability. Further analysis using a much larger cohort in the future will evaluate
this potential inter-patient variation.

To investigate the role of RAD51AP1 in tumorigenesis, we generated RAD51AP1 si-
lenced ovarian and lung cell lines using siRNA. We demonstrate for the first time, that
suppressing RAD51AP1 in SKOV-3, MDAH-2774, and A549 cells leads to a significant
decrease in cell proliferation at 72h post-transfection. Similar results were produced in a
study with RAD51AP1 suppression using intrahepatic cholangiocarcinoma (Obama et al.,
2008). This marked reduction in cell proliferation could be attributed to reduced expres-
sion of pro-metastatic genes. Following RAD51AP1 siRNA transfection into SKOV-3,
MDAH-2774 and A549 cells, SOX2 (Sex-determining region Y (SRY)-Box2) was signif-
icantly down-regulated. SOX2, is a transcription factor belonging to the SOX family.
SOX2 is involved in embryonic development and regulating stem cell fate, as well as
conferring and maintaining stem cell identities (self-renewal, an important hallmark of
cancer-initiating cells). SOX2 has also been linked to epithelial mesenchymal transition
(EMT), with studies showing that knocking down SOX2 resulted in decreased expression
of EMT drivers, including SNAI1 (Herreros-Villanueva et al., 2013). Interestingly, SOX2
over-expression occurs in the majority of patients with high-grade serous ovarian cancer
(HGSOC) irrespective of tumour stage (Hellner et al., 2016). However, a more cell-specific
effect was noted for SNAI1, since transfection of RAD51AP1 siRNA did not alter its ex-
pression in SKOV-3 cells but was significantly down-regulated in MDAH-2774 and A549
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cells. SNAI1 is a transcription factor, shown to down regulate E-cadherin expression, re-
sulting in loss of cell to cell adhesion, and facilitation of EMT, promoting metastasis (Bell
and Watson, 2009).

With regards to Bax, this is not the first time that a variable expression is documented.
For example, when the FSTL1 gene was silenced in ovarian cancer cells, a decrease in
proliferation was noted while the Bax gene expression remained unchanged (Chan et
al., 2009). It is possible therefore, that the mitochondrial-initiated intrinsic pathway of
apoptotic events might not be involved, and the decrease in cell proliferation is due to
compromised mTOR signalling.

mTOR signalling regulates growth, proliferation, controls cellular behaviour and acts
as a nutrient and amino acid sensor (Foster et al., 2014; Mparmpakas et al., 2012; Foster
et al., 2010; Mparmpakas et al., 2010). Previous studies from our laboratory have shown
involvement of this pathway in drug resistance in ovarian cancer, mediation of responses
of the complement protein C1q (Kaur et al., 2016), and as a therapeutic target, given
that rapalogues can exert an inhibitory effect on ovarian cancer cells (Rogers-Broadway
et al., 2016). Here we demonstrate that mTOR (the key component for both mTORC1
and mTORC2 complexes) is significantly down-regulated in all 3 cell lines both at gene
and protein level. For the remaining of the mTOR pathway genes, there is some cell-
specificity. For example, DEPTOR appeared to be upregulated in SKOV-3 and MDAH-
2774, whereas the key components for mTORC1 and mTORC2 namely raptor and rictor
respectively, were down-regulated only in A549 cells, and raptor only in MDAH-2774, but
not in SKOV-3 cells. Collectively, these results point towards a compromised mTOR sig-
nalling in all 3 cell lines in vitro. In SKOV-3 and MDAH-2774 cells, the decreased mTOR
signalling along with the increase in DEPTOR would inhibit the activity of complexes.
In A549 cells, similarly compromised activity occurs through the reduction in expression
of the key components (raptor and rictor) of mTORC1 and mTORC2 complexes. Future
work on protein expression of these components or changes in the phosphorylation status
of downstream components, like S6 kinase (S6K) would provide a more detailed insight
into the effects of RAD51AP1 on mTOR signalling.

Silencing of the RAD51AP1 gene has been shown to influence multiple cancer pro-
teins, as demonstrated in the results of the Human Oncology array assay. Multiple apop-
totic markers where shown to be up-regulated in RAD51AP1 silenced cells, and a down-
regulation of tumour promoting markers. Moreover, evidence suggested the process of
MET in RAD51AP1 knockdown cells, with a decrease in vimentin and up-regulation in
epithelial cell-to-cell adhesion markers, hinting at the reversion of cancer migration and
progression (Heerboth et al., 2015). It is well known that EMT is involved in tumour mi-
gration and metastasis. Whereby cells take on mesenchymal features and loose their rigid
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cell structure by loss of epithelial properties and gain of mesenchymal, with vimentin be-
ing one of these drivers of EMT (Bell and Watson, 2009).

To summarise, using unique regulatory network analysis we were able to filter and
select genes of interest with clinically relevant expression signatures, from a wealth of
existing microarray data. The main risk of unique networks is small sample sizes that
may affect the significance of the connections identified.

Finally, we found that RAD51AP1 is not only over-expressed in lung and ovarian can-
cer tissue but also readily identified in the peripheral blood of these patients as opposed
to normal healthy controls, thus, showing potential as a biomarker, and even as a ‘liquid
biopsy’ biomarker. Further studies using ‘liquid biopsies’ will also provide evidence as
to whether this gene has diagnostic value. In addition, the knock down of RAD51AP1 re-
duced cell proliferation in vitro possibly offering itself as a therapeutic target for ovarian
and lung cancers. Preliminary work here suggests that RAD51AP1 has the potential to
influence many pathways from pro-metastatic genes such as SOX2, transcription factors
such as SNAI1 and the mTOR pathway.
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Chapter 6

Evaluation of molecular signatures in
the blood of cancer patients, using
cancer panels, copy number instability
analysis, and RNA sequencing

6.1 Introduction

‘Liquid biopsies’ open the potential to carry out biological characterisation of tumours
by sampling blood or plasma, offering prospects of biomarker and unique gene signa-
ture discovery. Researchers have explored the use of liquid biopsies in many forms, in-
cluding quantification and characterisation of circulating tumour cells and circulating
tumour DNA, and their potential clinical utility to inform on prognosis and response to
treatment. The question however remains on how similar the tumour profile identified
in blood is to that of the tumour, and how this may influence clinical decisions.

In order to address this issue, a number of technologies are available to create a com-
prehensive picture of the tumour genome and advance the field of ‘liquid biopsy’, by
exploitation of circulating tumour DNA & RNA, tumour genes expression profiles, and
copy number changes. Copy Number Instability (CNI) is a measure of copy number
changes (Beck et al., 2013). Specific human cancers are reported to share recurrent copy
number changes (Beroukhim et al., 2010). CNI assays can be obtained by various sources,
including circulating tumour free DNA (ctDNA) derived from plasma/serum samples
and tissue. Various methods have been used to assess chromosomal instability, includ-
ing, next generation sequencing (NGS) (Weiss et al., 2017), and digital droplet PCR (Beck
et al., 2013). Elevated CNI scores are indicative of increased copy number changes and
instability, a hallmark of cancers, often characterised by large physical or functional so-
matic gains or losses in the ctDNA (Weiss et al., 2017; Beck et al., 2013; Beck et al., 2010).
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Several recent studies report positive results, including Weiss et al. (2017), who showed
the ability of CNI scores to accurately predict response to immunotherapy in advanced
and metastatic cancers (including, colorectal, lung, breast, pancreatic, renal, colon, melanoma
and others) (Weiss et al., 2017). Other studies report impressive specificity and sensitivity
results, 95% and 90%, respectively, in the early detection of breast cancers (Beck et al.,
2010), showing this to be a promising tool for ‘liquid biopsies’.

Another method of ‘liquid biopsy’ evaluation is the use of whole blood transcrip-
tomics analysis. RNAseq is an attractive approach to transcriptomics profiling. RNAseq
provides precise measurement of levels of transcripts and their isoforms compared to
other methods (Wang, Gerstein, and Snyder, 2009). This technology allows for a high-
throughput, and overcomes several limitations faced with classical methods, e.g. lim-
ited outputs. Moreover, RNAseq is able to identify transcriptomic complexities, such
as allele-specific expression and novel promoters and isoforms (Oshlack, Robinson, and
Young, 2010). A study by Zhang et al. (2015), compared microarray and RNAseq based
transcriptomic models as an end point predictor in lung cancers, concluding that RNAseq
outperforms microarrays in determining the transcriptomic characteristics of cancer, but
performed similarly in end point prediction (Zhang et al., 2015). However, some levels of
inaccuracy in using RNAseq results have also been reported (Su et al., 2014).

Recent studies have shown value in transcriptomics analysis of RNA extracted from
whole blood. Karkokawa et al. (2017), analysed whole blood RNA extracted from col-
orectal cancer patients by microarray analysis, assessing sense and anti-sense RNA. They
observed significant differences between the cancer and control cohort, including an
anti-sense RNA, haloacid dehalogenase-like hydrolase domain-containing 1 (HDHD1).
Further analyses revealed that samples analysed 3 months post-surgical excision of the
tumour showed significantly reduced levels of HDHD1 compared to samples from the
same patient one week post-surgery (Kurokawa et al., 2017). Another study in castration
resistant prostate cancers, reported the prognostic value of whole blood RNA analysis.
The study hybridised whole blood RNA on to the Affymetrix U133plus2 microarrays. A
nine-gene signature was identified by this method, shown to be associated with overall
survival. The authors concluded the benefits of a whole blood RNA transcriptomics ap-
proach in identifying novel gene signatures, in this case that could stratify patients with
castration resistant prostate cancer in to 2 distinct prognostic groups (Olmos et al., 2012).
Friedlander et al. 2017, found that whole blood RNA transcriptomics in melanoma pa-
tients, provided a validated pre-treatment mRNA classifier model that predicted clinical
response. Moreover, the data suggested that the model captured a biological signature
representative of genes needed for a robust anti-cancer immune response. It also identi-
fied non-responders to Tremelimumab at baseline prior to treatment (Friedlander et al.,
2017).
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All these findings support the utility of a transcriptomics approach to cancer, in the
form of a ‘liquid biopsy’. This chapter evaluates several approaches to transcriptomics
evaluation in clinical samples.

6.2 Aims and objectives

• Evaluate the use of a 79-gene cancer panel to identify novel biomarkers using pe-
ripheral blood from ovarian cancer patients and comparing it to controls.” Changes
in red.

• Evaluate the use of copy number instability analysis to identify copy number changes
in lung and ovarian cancer patients.

• Identify novel gene signatures in matched tissue and blood samples from lung can-
cer patients compared to controls, using RNA sequencing.

6.3 Declaration of contribution to the work presented in this chap-
ter

TATAA Biocenter – 79 cancer panel

• I extracted total RNA from whole blood of patients and controls. I then organised
delivery of these samples to TATAA Biocenter in Sweden on dry ice.

• TATAA Biocenter, ran cancer panels on the samples. The resulting qPCR data was
then sent to me by TATAA.

• I then cross checked the data supplied with Oncomine and Kaplan Meyer plots to
dissect the data further in terms of expression in tissue and overall survival.

Table 6.1 gives a detailed description of contributions from each participating unit.

Contributions TATAA Biocenters DC

Patient and sample collection - x
Sample preparation (RNA/DNA/Plasma) - x
Sample processing x -
Processing of raw data x -
Data analysis and correlation with clinical samples - x

TABLE 6.1: Contribution to the work presented in this chapter. Details on
specific tasks performed by TATAA Biocenters and Dimple Chudasama (DC).
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Chronix Biomedics - Chromosome Number Instability

• I collected patient FFPPE samples and processed their matched plasma. I then or-
ganised delivery of these samples to Chronix Biomedics in Germany on dry ice

• Chronix Biomedics, ran the copy number instability (CNI) experiments. The CNI
score 171 and Circos plots were then sent to me. then cross checked the data sup-
plied with the patient details to make correlations with stage of disease and further
analyse this data in terms of chromosomal instability.

Table 6.2 gives a detailed description of contributions from each participating unit.

Contributions Chronix Biomedics DC

Patient and sample collection - x
Sample preparation (RNA/DNA/Plasma) - x
Sample processing x -
Processing of raw data x -
Data analysis and correlation with clinical samples - x

TABLE 6.2: Contribution to the work presented in this chapter. Details on
specific tasks performed by Chronix Biomedics and Dimple Chudasama (DC).

The Wellcome Trust Centre for Human Genetics - RNASeq

• I collected patient samples and extracted RNA from matched blood and tissue of
control and cancer patients. I then organised delivery of these samples to The Well-
come Trust Centre for Human Genetics in Oxford, on dry ice.

• The Wellcome Trust Centre for Human Genetics, ran the RNASeq experiments. The
raw data was sent to us.

• I carried out the analysis with the use of a bioinformatician using ‘R’ and ‘Python’.

• I then cross checked the data supplied with the patient details to make correlations
and further analyse this data.
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Table 6.3 gives a detailed description of contributions from each participating unit.

Contributions The Wellcome Trust
Centre for Human
Genetics

DC

Patient and sample collection - x
Sample preparation (RNA/DNA/Plasma) - x
Sample processing x -
Processing of raw data - x
Data analysis and correlation with clinical samples - x

TABLE 6.3: Contribution to the work presented in this chapter. Details on
specific tasks performed by The Wellcome Trust Centre for Human Genetics

and Dimple Chudasama (DC).
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6.4 Results

6.4.1 79 cancer gene panel evaluation of ovarian cancer blood samples

The 79 cancer gene panel evaluation was carried out on 25 ovarian cancer blood samples
and 14 female controls. Table 6.4 lists all 79 genes contained in the panel.

Genes
UPA CD45/PTPRC Hjurp MUC1 SRD5A1
ACTB CDH1_1 HPRT1 Myc STAT3
ADAM17 CDH2 IGFR NCOA1 TBP
AHR CTSD KI67 PARP TNFSF11
AKR1C3 CXCR4 KIT_1 PI3KCA TOP2A
AKT2 CYP11A1 KRAS PPIC TP53
ALDH CYP19A1 KRT19 PROM1 TUBB
ANXA2R DDR1 MAL2 PTCH1 VEGFA
AR EPCAM MCL1 PTEN VEGFR1
AURKA ERBB2 MCM4 RAD51 VEGFR2
B2M ESR1 MET_1 RPLP VIM
BCL2 FOXO MRP1 RUNX2 WHSC1L1_L1
CCND1 GAPDH MRP2 SATB1 WHSC1S1_S1
CCNE2 GUSB MRP4 SLC6A8 XIAP
CD24L4 H2AFZ MRP5 SNAI1 YWHAZ
CD44_all HDAC2 MTOR SPINK1

TABLE 6.4: List of all 79 markers contained on the cancer gene panel.

Expression levels of the diseased samples were compared against controls and plotted
accordingly. The analyses revealed 28 genes to be significantly up or down-regulated in
cancer blood samples compared to controls, Fig 6.1 and Table 6.5.
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GeneID Regulation change
(Cancer vs Normal)

P-Value

UPA Up-regulated 0.000000125
Hjurp Up-regulated 0.000005849
CCNE2 Up-regulated 0.000006464
PPIC Up-regulated 0.000040492
CYP19A1 Up-regulated 0.00006855
CTSD Up-regulated 0.000081921
RAD51 Up-regulated 0.000178834
DDR1 Down-regulated 0.001770788
EpCAM Down-regulated 0.002151251
BCL2 Up-regulated 0.00218176
CDH1_1 Up-regulated 0.002229509
AKR1C3 Up-regulated 0.002304223
ERBB2 Up-regulated 0.004033908
SATB1 Up-regulated 0.005105688
Myc Up-regulated 0.006669233
RPLP Up-regulated 0.007967613
KIT_1 Up-regulated 0.012608669
TNFSF11 Up-regulated 0.013825421
MAL2 Up-regulated 0.014203491
SLC6A8 Up-regulated 0.016099728
MRP5 Down-regulated 0.020914345
VEGFR2 Up-regulated 0.026447178
TOP2A Up-regulated 0.034451156
VEGFR1 Down-regulated 0.040150036
MRP4 Up-regulated 0.040338224
PTEN Down-regulated 0.043608118
ADAM17 Down-regulated 0.055675039
VEGFA Up-regulated 0.05752768

TABLE 6.5: Data of change in expression and p-values (generated by a two-
tailed t-test) comparing cancer samples to controls. Genes are listed from
most to least significant, with colour coding separates most significant (p-
value<0.0001) to significant (p-value<0.0001-0.049), and borderline significant

(p-value<0.05-0.06).

Several genes were shown to be differentially expressed in cancer samples compared
to controls, highlighting that genetic material from the cancer is carried in blood and
could be potentially exploited as a ‘liquid biopsy’. Particularly of interest is the down-
regulation of EpCAM, which has also been shown in the literature (Barriere et al., 2014;
Raimondi, Nicolazzo, and Gradilone, 2015). RAD51 is also shown to be over-expressed
in cancer blood samples, and is of interest due to its close relationship with RAD51AP1
discussed in Chapter 5.
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To further evaluate these results we sought to exploit existing in silico data of expres-
sion level and overall survival, using Oncomine and Kaplan Meier plotter. This analysis
revealed 5 genes to be up-regulated in both blood from the cancer panel analysis, and tis-
sue according to the Oncomine data, Table 6.6. Overall survival data was also evaluated
for these 5 genes, using the KM plotter online tool.

Genes Expression in blood Expression in tissue
(Oncomine)

Overall Survival
(KM Plotter)

VEGFA Up-regulated Up-regulated Very Significant
Hjurp Up-regulated Up-regulated Very Significant
CCNE2 Up-regulated Up-regulated Significant
CTSD Up-regulated Up-regulated Significant
RAD51 Up-regulated Up-regulated Very Significant

TABLE 6.6: Five genes that are significantly up-regulated compared to con-
trols. The ovarian cancer panel revealed 5 of the 79 genes to be significantly
up-regulated. The results mirror the Oncomine data. Kaplan Meier plotter
shows significant (p-value 0.05-0.0001) to very significant (p-value<0.0001) as-

sociation with overall survival.

This data not only validates the expression pattern of the 5 identified genes from the
79 cancer panel, but shows that expression levels in blood mirror the ones observed in
tissue. Furthermore, the expression pattern of these 5 genes has been shown to be asso-
ciated with a poorer prognosis and overall survival. These results are detailed in Figs 6.2
to 6.6.



Chapter 6. 169

FIGURE 6.2: Oncomine analysis for the CTSD gene. Results in (A) Lu ovar-
ian dataset (1, n=5; 2, ovarian mucinous adenocarcinoma, n=9), show up-
regulation of CTSD in the cancer cohort compared to controls, which was
shown to be statistically significant. (B) Overall survival plotted as a Kaplan
Meier, shows poorer overall survival in the CTSD high expression group, also

shown to be significant.
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FIGURE 6.3: Oncomine analysis for the CCNE2 gene. Results in (A) Adib
ovarian dataset (1, n=4; ovarian serous adenocarcinoma, n=6), show an up-
regulation in gene expression of CCNE2 in the cancer cohort compared to con-
trols, that is statistically significant. (B) Overall survival plotted as a Kaplan
Meier, shows poorer overall survival in the CCNE2 high expression group,

this was shown to be significant.
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FIGURE 6.4: Oncomine analysisfor the HJURP gene. Results in (A) TGCA
ovarian dataset (0, n=8; 1, ovarian cystoadenocarcinoma, n=586), show that
HJURP expression is up-regulated in the cancer cohort compared to controls,
statistically significance was reached. (B) Overall survival plotted as a Kaplan
Meier, shows poorer overall survival in the HJURP high expression group,

this was also shown to be significant.
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FIGURE 6.5: Oncomine analysis for the RAD51 gene. Results in (A) Yoshi-
hara ovarian dataset (0, n=10; 1, ovarian adenocarcinoma, n=43), show that
RAD51 expression is up-regulated in ovarian cancers compared to controls,
statistical significance was reached. (B) Overall survival plotted as a Kaplan
Meier, shows poorer overall survival in RAD51 over-expressed patients, again

this was shown to be significant.
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FIGURE 6.6: Oncomine analysis for the VEGFA gene. Results in (A) Lu
ovarian dataset (0, n=5; 1, ovarian cystoadenocarcinoma, n=586), show an up-
regulation in gene expression of VEGFA in the cancer cohort compared to con-
trols, statistical significance was not reached. (B) Overall survival plotted as
a Kaplan Meier, shows poorer overall survival in the VEGFA over-expressed

group, shown to be statistically significant.
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In silico analysis of the 5 genes identified from the ovarian 79 cancer panel, against
available microarray data on Oncomine also reveal an increased expression of these 5
genes in ovarian cancer tissue samples, interestingly a poorer overall survival can also
be seen from the Kaplan Meier plots. These results highlight the importance of such a
technique to identify unique and clinically relevant gene signatures.

To further assess associations and gene expression patterns in the samples, a principle
component analysis (see Fig 6.7) was conducted.

FIGURE 6.7: Principle component analysis of all samples tested on the ovar-
ian cancer gene panel. PC1 vs PC2 scatter plot for the 79 analysed genes
shows a good separation into three distinct gene clusters, 2 containing the

cancer cohort (in red), and a final one containing the controls (in blue).

The principle component plot revealed 3 distinct populations of patients, sharing
simi-lar gene expression profiles. As would be expected, the control group has formed
one cluster. Interestingly the cancer cohort formed 2 clusters, suggesting 2 different ex-
pression profiles being shared amongst the cancer samples, 1 control sample was also
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found to be present in a cancer cluster. Further analysis on a patient level reveals no
trends, patients on the chemotherapy trial appear to move from one cancer cluster to an-
other and back. This could be explained by changes in the disease state and stage in-
fluencing the genetic profiles, however there is no correlation to outcome. These results
could be explained by the very nature of the chemotherapy treatment, which could alter
the cancer, along with influences from inter-patient variability. This data provides strong
evidence of common expression profiles shared in this cancer cohort, highlighting the
value of cancer gene expression panel analysis to identify unique gene signatures.

6.4.2 Cell-free Copy Number Instability in lung cancer patients

Next we looked at the cell free Copy Number Instability (CNI). We collaborated with
Chronix Biomedical in Germany to analyse the CNI profile on 3 lung cancer (blood, tu-
mour tissue, and normal adjacent tissue) and 3 control samples from patients undergoing
surgery for other respiratory diseases (blood and lung tissue). Two ovarian samples were
also run, however further samples could not be run due to cost constraints. CNI analyses
was conducted on DNA extracted from the tissue (tissue analysis) or plasma (blood/liquid
biomarker analysis). Sample collection and DNA extraction was done prior to sending
for CNI processing and sequencing to the company, as described in these studies (Beck
et al., 2013; Beck et al., 2010).

Samples are assigned a CNI 171 score. A copy number instability (CNI) score is cal-
culated from the number of copies of a particular genetic region, which varies from one
individual’s sample compared to a previous sample or to a normal database. The CNI
score can be interpreted as a general measure of genomic instability and is directly re-
lated (within the technology limits) to the regional chromosomal DNA ploidy. Data is
then plotted in a circos plot. Circos plots are images for visualising data and information.
It visualizes data in a circular layout enabling exploration of relationships of genomic
positions. In these reports, a red dot symbolizes where a genomic region has a gain of
copy number of that region and a purple dot symbolized where a genomic region has a
loss of copy number of the region. Z-values per evaluated region are used for display.
Each sample has a Z value calculated, A Z-value is a statistical measurement of a value’s
relationship to the average in a group unaffected individuals in multiples of the standard
deviation. A Z-value of 0 means the value is the same as the average, 1 means the value
is one standard deviation above the average, a Z-value can also be positive or negative,
indicating whether it is above or below the average.

Patient CNI scoring can be seen in Table 6.7, with CNI circus plots in Fig 6.8.
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Patient Sample CNI 171 score Sample type

MAS4 524 Cancer
MAS12 24 Cancer
MAS23 74 Cancer
N1 0 Control
N2 3 Control
N3 54 Control

TABLE 6.7: CNI 171 score for all lung cancer patient and control samples.
All cancer and control samples were processed and a CNI171 score generated.
A normal CNI 171 score would be seen as 0 to 31, values above this would
indicate disease, with a higher CNI 171 scores indicating increased chromoso-
mal instability and disease. All cancer patients are seen to have a higher than
normal CNI 171 score, except MAS 12. All normal patients show a CNI 171

score within the normal range, with N3 being the exception.

Read counts per bin were normalised to the median read counts over all bins. Ratios
are displayed as log2 values. Log2 values > 0.15 (gain) or < -0.15 (loss) are displayed as red
or purple dots, respectively.
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FIGURE 6.8: Circos plots CNI for samples MAS4 and MAS12. Circos plots
were generated for 2 of the lung cancer cases, highlighting the chromoso-
mal copy number instability and corresponding chromosome and location
(A) MAS4 shows extensive copy number changes, visualised by the red and
purple dots (loss and gains based on values that are significantly different to
normal). Interestingly the copy number changes are identical and occur in
the same regions in the tumour and plasma sample. (B) MAS12 shows very
little chromosomal copy number changes, and these can only be seen in the

plasma.
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The results generally show that cancer patients display a CNI 171 score above the nor-
mal range, with one exception of a cancer patient (MAS12), with a CNI 171 score within
the normal range. This could be due to patient variability, or the stage and nature of the
disease. This particular patient’s cancer is known to be diagnosed as a stage II adeno-
carcinoma, which would be classed as early stage. The patient may have a stable slow
growing tumour or be in remission. Correspondingly all normal patients displayed a
CNI 171 score within the normal range, with one exception of a normal patient (N3) with
a CNI 171 score above the normal range; again this could be due to other underlying or
undiagnosed conditions the patient may have.

Similar analysis was carried out on 2 ovarian cancer patients. Table 6.8 lists the CNI
171 scores for all the ovarian patient samples, while circos plots are depicted in Fig 6.9.

Patient CNI 171 score Sample type

Ov1 984 Cancer
Ov2 18 Cancer

TABLE 6.8: CNI 171 score for all ovarian patient samples. All ovarian can-
cer samples were processed and a CNI 171 score generated as with the lung
samples. A normal CNI 171 score would be seen as 0 to 31, values above this
would indicate disease. Patient Ov1 scored 984, much higher than the normal

range, whereas patient Ov2 scored 18 which is within the normal range



Chapter 6. 179

A 

B 

Ov1  
Grade 3 Ovarian Carcinoma 
Patient status: Died 123 days 
post commencement of trial 

Ov2  
Grade 3 Ovarian Carcinoma 
Patient status: Alive, 340 days 
post commencement of trial. 

FIGURE 6.9: Circos plots CNI for samples Ov1 & Ov2. A circus plot was gen-
erated, highlighting the chromosomal copy number instabilities identified, in
relation to corresponding chromosome and location. (A) Ov1 shows extensive
copy number changes, visualised by the red and purple dots (loss and gains
based on values that are significantly different to normal). The copy num-
ber changes are identical and occur in the same regions in both tumour and

plasma. (B) Ov2 shows no real chromosomal copy number instability.
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When these results above are compared to overall survival, it is apparent that a higher
CNI 171 score correlates with a poorer prognosis, a similar trend is also seen for the lung
cancer patients. Interestingly, although patient Ov2 scored within the normal ranges, it
is important to note that this patient has gone into remission and has subsequently been
discharged, thus suggesting a strong predictive and prognostic role for CNI scoring.

6.4.3 Transcriptomics analysis

RNA sequencing was carried out by our collaborators at the High-Throughput Genomics,
Wellcome Trust Centre for Human Genetics, Oxford. RNAseq was run on 3 lung cancer
matched tissue and blood samples, with 3 matched tissue and blood samples from con-
trols. All data was analysed as described in Chapter 2.11.1.

A scatterplot was formulated to visualise the general distribution of gene expression
levels in the studied samples for quality assurance purpose. The blood and tissue sam-
ples were compared amongst themselves, respectively (Fig 6.10 and 6.11).
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FIGURE 6.10: Comparison of gene expression values between all patient
blood samples. Pairwise scatter plots show the expression values (as mea-
sured by the FPKM value) for each gene (represented by a circle). If the value
is the same in both samples the gene would be found on the diagonal. Any
difference between the gene expression in the two sample will appear of di-
agonal. The scatterplots show a homogenous distribution of gene expression

for all blood samples tested.
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FIGURE 6.11: Comparison of gene expression values between all patient tis-
sue samples. Pairwise scatter plots show the expression values (as measured
by the FPKM value) for each gene (represented by a circle). If the value is the
same in both samples the gene would be found on the diagonal. Any differ-
ence between the gene expression in the two sample will appear of diagonal.
The scatterplot shows a heterogenous distribution of gene expression of all the
tissue samples tested, particularly in comparison to the blod sample as seen

in the previous scatterplot.

As expected, the gene expression levels in blood show a higher level of homogeneity
than in tissue. This result comes in accord with previous observations on the effect of
tissue cell heterogeneity on gene expression (Zhao and Simon, 2010).

Next, we compared the landscape of gene expression levels in the cancer tissue and
blood samples vs normal (Fig 6.12 & 6.13) as well cancer tissue vs cancer blood for each
of the three patients (Fig 6.14). The data was plotted as a volcano plot. We distinguished
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three types of gene groups. First, there are genes (shown in red) that show a statisti-
cal significant differential transcription pattern characterised by an FPKM (Fragments
Per Kilobase of transcript per Million mapped reads) value >5, the absolute value of
log2FoldChange between the two analysed conditions >2, and p-value<10-4. Second,
there are genes (seen in green) with FPKM>5, absolute value of log2FoldChange>2 and
with a p-value<0.05. Finally, there are genes that do not show any significant change in
the transcription levels between the analysed states (shown here in grey).

FIGURE 6.12: Volcano plot of all 3 cancer tissue samples compared to control
tissues. Data shows mostly up-regulation or down-regulation of genes in the
cancer samples in comparison to controls (left of centre = down-regulation,
right of centre = up-regulation), with a handful of genes shown to be very

significantly up or down-regulated (red, p-value<0.0001).
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FIGURE 6.13: Volcano plot of all 3 cancer blood samples compared to blood
samples. Data shows mostly up-regulation and down-regulation of genes in
the cancer samples in comparison to controls, with a handful of genes shown

to be very significantly up or down-regulated (red, p-value<0.0001).
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FIGURE 6.14: Volcano plot comparing all 3 cancer patient tissue samples
to respective blood samples. Volcano plots were also constructed to look at
the differences in gene expression between parallel tissue and blood samples
taken from the same patient. The data shows a huge variation in gene expres-
sion between the 2 sample types in the same patient. (Tumour 1 vs Blood 1)
shows a large proportion of samples with the same expression pattern seen in
both the tumour tissue and blood, seen in the middle region, although these

are not seen to be significant.

Overall, the gene expression data shows that a large number of genes are up or down-
regulated in the tumour samples compared to control. In particular, there are 356 differ-
entially expressed genes in patients’ blood compared to controls, and 293 differentially
expressed genes in the tumour tissue samples compared to controls. Moreover, we ob-
served a large difference in the gene expression profiles when we compared the tumour
tissue and blood samples in individual patients. This suggests that the tumour tissue
cancer genetics are not necessarily mirrored in the blood, even though we see differen-
tial gene expression in both the blood and tissue of cancer patients compared to controls.
This could again be attributed to inter-patient variability. Evaluation of these genes using
GO term analysis showed these genes are mostly immune related.

Next, we evaluated in more detail the genes that show a statistical significant differ-
ential expression (red dots in volcano plots) in the three patients lung tissue compared to
controls (see Table 6.9). Patient 1 is a stage IV squamous cell carcinoma, whilst patients 2
& 3 share the same pathology of T1B adenocarcinoma.
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Patient 1 Patient 2 Patient 3

Total genes 149 116 80
Up-regulated 94 54 34
Down-regulated 55 62 46
Common up-regulated (All) 3
Common up-regulated (Pt 2&3) 16
Common down-regulated (All) 3
Common down-regulated (Pt 2&3) 29

TABLE 6.9: Differentially expressed genes within the three patient tissue
samples. Greyed areas indicate the number of common differentially ex-
pressed genes across multiple samples (e.g. across all patients or common
only to patients sharing the same disease stage and type as is the case with

patients 2 & 3.

Overall the results are heterogeneous, with patient 1 (most advanced disease, squa-
mous cell carcinoma) having the largest number of differentially expressed genes in the
tumour tissue. Moreover, patient 1 also shows a higher number of genes being over-
expressed compared to down-regulated vs controls. By contrast, patients 2 and 3 show
a similar ratio of up- to down-regulated genes compared to control. Interestingly, when
looking at genes differentially expressed across all three patients, only 3 are commonly
up-regulated across all 3 patients, and the same number down-regulated (within patient
2 and 3 analysis only this becomes 16 and 29, respectively). In particular, MUC4 a proto-
oncogene, and MIR663A a tumor progression associated gene, have been shown to be
over-expressed, while the RUNX1T1, tumour supressor gene, as expected was down-
regulated in all three patients.

GO term analysis reveals that most of these genes are commonly associated with im-
mune responses. A summary of these genes can be seen in Tables 6.10 and 6.11.

Up-regulated Down-regulated

Gene Biological Function Gene Biological Function

MUC4 Proto oncogene AGER Immunoglobulin family
RIMS2 Presynaptic protein RUNX1T1 Tumour suppressor
MIR663A Tumor progression SFTPA1 Immune response

TABLE 6.10: List of genes commonly expressed in the tumour tissue across
all three patients. Table listing details on biological function for genes show-

ing similar expression across all 3 patients.
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Up-regulated Down-regulated

Gene Biological Function Gene Biological Function

BRDT Transcription regulation AGER Immunoglobulin family
CALML5 Calcium binding protein RUNX1T1 Tumour supressor
DPF1 double PHD fingers 1 SFTPA1 Immune response
GSTT1 Glutathione S-transferase

theta 1
ADRA1A Cells growth and ploriphera-

tion
KCNJ10 Potassium channel protein CD300LG Immune escape of lung can-

cer cells
LINC00511 Long noncoding RNA DDX3Y Y-linked DEAD-box helicase
LINC00668 Long noncoding RNA EIF1AY Eukaryotic translation initia-

tion factor 1A
MIR663A Tumor progression FAM110D Protein FAM110D
MSMB Microseminoprotein beta FAM153A Renal carcinoma antigen
MUC4 Proto oncogene FAM153B Protein FAM153B
RIMS2 Presynaptic protein FGFR4 Growth factor
RP11-169F17.1 Ribosomal protein FHL1 Ion channel binding
TMPRSS11E Serine protease GPM6A Calcium ion transport
XAGE1B Tumor associated GRIA1 Glutamate receptor
XIST Pseudogene related to

lung & testicular cancer
MYO15B Myosin

ZIC2 Zing finger protein NOSTRIN Endocytosis
PRKY Kinase pseudogene
RPS4Y1 Ribosomal protein
SEMA3B Tumour supressor
SFTPA2 Immune response
SFTPB Pulmonary-associated sur-

factant protein
SFTPC Pulmonary-associated sur-

factant protein
SORBS2 Muscle cell development
TPSD1 Serine-type peptidase
TTTY15 Testis-specific transcrip
TXLNG2P Pseudogene
USP9Y Ubiquitin specific peptidase
VIPR1 Signal transduction
ZFY Organism growth

TABLE 6.11: List of genes similarly expressed in the tumour tissue across
patient 2 and 3. Details on biological function for genes with similar expres-

sion across 2 patients with the same cancer subtype and staging.

The increased number of genes shared between patients 2 & 3, in contrast to all 3
patients, suggests that similarities in gene profiles exist within similar cancer subtypes as
would be expected. This can potentially allow for pathological subtyping and possibly
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staging based on specific gene profiles.

We repeated the analysis workflow on the data from patient blood samples, and iden-
tified a number of genes that are commonly expressed across the patient blood samples
(see Table 6.12).

Patient 1 Patient 2 Patient 3

Total genes 121 188 190
Up regulated 61 77 110
Down-regulated 60 111 80
Common up-regulated (All) 7
Common up-regulated (Pt 2&3) 38
Common down-regulated (All) 8
Common down-regulated (Pt 2&3) 48

TABLE 6.12: Number of differentially expressed genes within the three pa-
tient blood samples. The number of differentially expressed genes within
the three patient blood samples were also assessed. Greyed areas indicate the
number of common differentially expressed genes across multiple samples
(e.g. across all patients or common only to patients sharing the same disease

stage and type as is the case with patients 2 & 3).

The blood samples show overall the same heterogeneity when comparing the three
patient samples. Specifically, we observe a higher number of differentially expressed
genes in patients 2 and 3 compared to patient 1. Further analysis reveals that these genes
are not commonly shared between patients 2 & 3, however as previously seen with the
tissue sample in Table 6.9, more genes are shared between these 2 patients with the same
pathological cancer than across all three patients. This result provides further evidence
that similar gene profiles are seen in the same disease subtypes. The variation in genes
also amplifies the challenge of heterogeneity we know exists within cancers, also those
of the same subtype. This also highlights issues seen with inter-patient variability.

Using GO term analysis, we found once more that these genes are related to the or-
ganism’s immune response. A summary of these differentially expressed genes in blood
is shown in Tables 6.13 and 6.14.
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Up-regulated Down-regulated

Gene Biological Function Gene Biological Function

KIAA1324 Survival in carcinomas IGJ Immune response
NBPF14 Neuroblastoma family;

linked to cancer
RPS17 Ribosomal protein

IFITM3 Membrane protein; con-
fers immunity to H1N1

CFD Immune response

AC104135.3 Long noncoding RNA IGLC2 Antigen binding
HLA-DRB6 Pseudogene GCG Negative regulation of apoptotic

process
HLA-DQA2 Immune response IGHG1 Immunoglobulin receptor binding
DEFA3 Host defence REG1A Cell regeneration

TTR Proteolysis, autophagy & glucose
homeostasis

TABLE 6.13: List of genes similarly expressed in blood across all patients.
Details on gene ID and biological function.

Up-regulated Down-regulated
Gene Biological Function Gene Biological Function

AC104135.3 Long noncoding RNA CFD Immune response
DEFA3 Host defense GCG Negative regulation of apop-

totic process
HLA-DQA2 Immune response IGHG1 Immune response
HLA-DRB6 Immune response IGJ Immune response
IFITM3 Immune response IGLC2 Antigen binding
KIAA1324 Associated with survival

in carcinoma
REG1A Cell regeneration

NBPF14 Nueroblastoma family;
alterations linked to
cancer

RPS17 Ribosomal protein

AHSP Hemoglobin assembly TTR Proteolysis, autophagy &
glucose homeostasis

ALAS2 Heme synthesis pathway BCORP1 Pseudogene
BTNL3 Butyrophilin-like C4BPA Immune response
CD177 Immune response DDX3Y DEAD-box helicase
CLEC4D Immune response EIF1AY Translation initiation
CYP27A1 Bile synthesis pathway FAM118A Protein family 118A
FAM21B Protein transport HLA-

DRB5
Immune response
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GSTT1 Role in carcinogenesis HLA-G Immune response
HBD Oxygen binding IGHA1 Immune response
IGHA1 Immune response IGHM Immune response
IGHA2 Immune response IGHV2-5 Immune response
IGHG2 Immune response IGHV3-15 Immune response
ITGA2B Platelet coagulation IGHV3-23 Immune response
LINC00958 Long noncoding RNA IGHV5-51 Immune response
MEG3 Long noncoding RNA IGKC Immune response
MSRB2 Protein repair IGKV1-5 Immune response
RAMP3 Coreceptor activity IGKV1D16 Immune response
RP11203B9.4 Ribosomal protein IGKV3-20 Immune response
RP11661A12.5 Ribosomal protein IGLC1 Immune response
RPH3A Neurotransmitter release IGLV3-1 Immune response
S100A12 Calcium binding IGLV3-10 Immune response
S100P Calcium binding IGLV3-21 Immune response
SELENBP1 Selenium bindin IGLV3-27 Immune response
SERPING1 Endopeptidase inhibitor KDM5D T-cell antigen processing

and presentation
SLC37A3 Transmembrane trans-

port
KRT77 Sturctural molecule

THBS1 Platelet aggregation, an-
giogenesis, tumorigene-
sis

MRGPRE Signal transduction

TMTC1 RNA processing MS4A1 B-cells development
TUBBP5 Pseudogene PRKY Kinase pseudogene
VNN1 Immune response PRSS1 Serine protease
XIST Pseudogene related to

lung & testicular cancer
RP11-
424G14.1

Ribosomal protein

ZFP57 Zing finger protein RPS4Y1 Ribosomal protein
SHISA4 Membrane component
SLC12A7 Ion transport
SORBS2 Muscle cell development
SOX2-OT Long noncoding RNA
SPON2 Defense response
TMSB4Y Acting sequestrin protein
TTTY15 Noncoding RNA
TXLNG2P Pseudogene
USP9Y Ubiquitin specific peptidase
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ZFY Organism growth

TABLE 6.14: List of genes similarly expressed in blood across patients 2 and
3. Details on gene ID and biological function.
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Next, we analysed genes expression signatures in tumour tissue and blood compared
with control (Fig 6.15) we identified 21 genes that are differentially expressed in both
tissue and blood.

FIGURE 6.15: Summary of differential expressed genes in blood and tis-
sue. A total of 272 genes were shown to be differentially expressed in tumour
tissue compared to controls, and 335 in cancer blood samples compared to
controls. 21 genes show statistical significant differential expression pattern

in both tissue and blood samples compared to control (see Table 6.15).

Genes

TTTY15 DDX3Y DMKN
EIF1AY KDM5D C10orf9
TXLNGY ELN KRT77
RPS4Y1 SLC6A8 SPD1C
USP9Y FRCLA IGHV4-31
PRKY ME132 XIST
ZFY SORB5 GSTT1

TABLE 6.15: Differentially expressed genes, across blood and tissue sam-
ples. 21 genes were shown to have significantly different expression patterns

in blood and tissue samples.

We observed that while the majority of genes are down-regulated in patient samples
compared to controls, there was only 1 gene that was over-expressed in both patient tissue
and blood, with no or very little expression in both blood and tissue of control patients,
X Inactive Specific Transcript (XIST). All results were shown to be highly statistically
significant (p-value<0.0001).

To expand our biomarker search horizon, we looked next at genes that are overex-
pressed in patient blood compared to control. Out of the total number of differentially
expressed genes in blood (335+21) we selected 18 genes that have the following charac-
teristics: have an expression level higher than 5 FPKM (minimal expression threshold for
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calling a protein coding gene transcribed (Harrow et al., 2012)), show a statistical signifi-
cant differential expression, and the expression level in the tumour blood is at least 2 fold
higher than in control. The 18 genes are summarised in the Table 6.16.

Genes

BTNL3 DEFA3 HLA-DQA2 KIAA1324 RPH3A TMTC1
CD177 ECHDC3 HLA-DRB6 MSRB2 SERPING1 VNN1
CEBPE GSTT1 IGHG2 NBPF14 THBS1 XIST

TABLE 6.16: Over-expressed genes in lung cancer blood. A total of 18 genes
were shown to have significantly higher expression levels in the blood of lung

cancer patients compared to controls.

We functionally characterised the differentially expressed genes, 335 (+21) & 272 (+21),
in blood and tissue, respectively. We also characterised the 21 genes significantly differ-
entially expressed in both blood and tissue, and the 18 genes known to be up-regulated
in blood (Fig 6.16) using FunRich software.
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D.  21 Genes differentially expressed in both blood & tissue

B.  293 Genes differentially expressed in tissueA. 356 Genes differentially expressed in blood

C.  Top 18 genes differentially expressed in blood

FIGURE 6.16: Functional enrichment analysis. Details on top GO terms re-
sulting form the functional enrichment analysis using Fun Rich software, for
differentially expressed genes in blood (356), tumour tissue (293), blood only

(18), and in both blood and tumour (21) compared to controls.
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We observed that overall, in both tumour tissue and blood, cell communication and
signal transduction are the most enriched pathways. For tissue samples, immune re-
sponse and energy pathways are top gene ontology (GO) terms for differentially ex-
pressed genes in blood, while regulation of the nucleobase and nucleosides is the top
tumour tissue specific GO term. The set of enriched GO terms for the 21 differentially
expressed genes in both tissue and blood is composed of a mixture of both blood and
tumour tissue relevant terms, with metabolism, energy pathways, immune response, and
regulation of nucleoside being the top terms.

The functional analysis using FunRich software revealed immune response, energy
pathway and metabolism to be the most common functions of these 18 genes (see Fig
6.16). Moreover, it is interesting to point out that the top GO terms enriched in the 18
genes match the top enriched terms in the set of 21 genes that are differentially expressed
in both tissue and blood, highlighting the fact that the functions of the top blood differ-
entially expressed genes match at certain levels, the ones observed in tissue.

To verify the results from the RNAseq analysis, validation experiments were carried
out on the 4 statistically significant over-expressed genes in blood from the 18 identified.
These include, XIST, GSTT1, THBS1 and NBPF14. These were tested in 5 patient blood
samples (cancer and controls). Validation was conducted by qPCR, (Figs 6.17 to 6.20).
Samples were taken from cancer and control patients not included in the RNAseq experi-
mentations. Samples consisted of 3 cancer patients, and 2 controls. For each of the figures,
(A) represents the qPCR validation experiment, and (B) the RNAseq generated data.
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FIGURE 6.17: qPCR and RNAseq expression of XIST. Validation using
qPCR, shows XIST expression in blood samples for control and cancer pa-
tients. Validation data shows the same up-regulation of XIST expression in

patient blood samples compared to controls.
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FIGURE 6.18: qPCR and RNAseq expression of GSTT1. Validation us-
ing qPCR shows GSTT1 expression in blood samples for control and can-
cer patients. The data shows similar up-regulation of expression in patient
blood samples compared to controls, in both the validation experiments, and

RNAseq data.
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FIGURE 6.19: qPCR and RNAseq expression of THBS1. Validation using
qPCR, shows THBS1 expression in blood and tissue samples for control and
cancer patients. The data shows similar up-regulation of expression in patient
blood samples compared to controls, in both the validation experiments, and

RNAseq data.



Chapter 6. 197

0

2

4

6

8

Con
tro

l

Can
ce

r

M
ea

n 
ex

pr
es

si
on

 v
al

ue
 (F

PK
M

)

NBPF14

Con
tro

l

Can
ce

r

FIGURE 6.20: qPCR and RNAseq expression of NBPF14A. Validation us-
ing qPCR, shows NBPF14 expression in blood samples for control and cancer
patients. The data shows similar upregulation of expression in patient blood
and tissue samples compared to controls, in both the validation experiments,

and RNAseq data.

The validation experiments of the 4 genes appear to mirror that of the RNAseq find-
ings. Thus, a validation success rate of 100% adds confidence to our RNAseq results.

To further assess this data, average Log2 fold change values for the qPCR and RNAseq
are tabulated in Table 6.17.

qPCR RNAseq
Genes Log2 fold change Log2 fold change

GSTT1 3.60 inf*
XIST 4.28 inf*
THBS1 0.15 4.02
NBPF14A 1.00 3.14

TABLE 6.17: Levels of changes in expression for 4 validated genes, accord-
ing to qPCR and RNAseq results. The Log2 fold change data generated from

the validation and RNAseq analysis are listed above.
* No expression observed in control blood samples (FPKM=0)

These results corroborate the findings above, and evidence the genes seen to be up-
regulated in blood samples as per the RNAseq, are also seen to be up-regulated in the
qPCR validation experiment, although not to the same extent. THBS1 shows a much
smaller increase in expression levels in cancer blood samples compared to controls, in
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contrast to the RNAseq results. Overall the results suggest that our transcriptomics anal-
ysis is robust.

6.5 Discussion

Genomic analysis is fast becoming a growing area of interest in cancer diagnostics and
prognosis. In this chapter, we tested and evaluated three current genomic techniques for
their suitability in liquid biomarker discovery.

First, we focused on cancer panels; in particular we studied a 79 ovarian cancer gene
panel, processed by qPCR. This technique was used to evaluate differential gene sig-
natures in ovarian patient blood samples compared to controls. The attraction of this
method is the ease of use, directed analysis, high throughput and fast response time.
This type of assay has tremendous potential in the clinical setting as the results are avail-
able to the patients within 2-3 hours. However, we also observed a number of downfalls
such as the need to know beforehand the genes of interest, thus limiting the investigation
to known onco and proto-onco genes.

Results of the cancer panel analysis revealed statically significant differential expres-
sion for 28 of the 79 genes when comparing the cancer and control samples. Several genes
of interest were identified. In particular, we observed an upregulation of RAD51. RAD51
is involved in DNA repair by homologous recombination. Studies have shown an asso-
ciation of RAD51 mutations found in breast cancer, with an increased risk of developing
cancer (Jara et al., 2017; Le Calvez-Kelm et al., 2012).

Interestingly the epithelial adhesion molecule (EpCAM) was shown to be down-regulated
in cancer patients compared to controls. EpCAM confers cell-to-cell adhesion, and is
known to be lost in many cancers due to the epithelial mesenchymal transition (EMT).
The EMT process involves cells losing their rigid epithelial structure to take on more mo-
bile mesenchymal features, allowing cancerous cells to invade through the basal mem-
brane and enter the general vasculature, leading to metastasis. These results are sup-
ported by previous reports (Hyun et al., 2016; Imrich, Hachmeister, and Gires, 2012; Hyun
et al., 2016) and match the expected cancer cell behaviour. Similarly, we found as ex-
pected, that the genes VEGFR1 and VEGFA were up-regulated in the cancer samples.
These two genes are known to play a role in promoting angiogenesis and vasculogensis
(Shibuya, 2011; Yao et al., 2011; Cao, 2009).

Furthermore, the expression pattern of the 79 genes was used as a finger print for
each of the 30 samples (cancer n=15, control n=15). The principal component analysis
of the 30 sample gene expression finger prints, revealed 3 distinct populations sharing
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similar genetic profiles. One population in particular, consisted primarily of controls
only (with the exception of 1 case), while the other two populations consisted mainly
of cancer patients, again with the exception of one control case in one of these cancer
clusters. Further analyses of this data did not reveal any trends within the cancer clusters
amongst the patients, in terms of prognosis or treatment stage. In fact, patients were
seen to move between the 2 predominant cancer clusters throughout their chemotherapy
treatment. These results suggest that there are 2 unique gene profiles shared by these
advanced ovarian cancer patients. These shifts in gene profiles could be driven by the
treatment or due to inter-patient variability and changes in their disease profile.

In silico analysis of the 79 genes, revealed 5 genes with significantly up-regulated
expression in the tumour tissue, in addition to being significantly up-resulted in blood
samples compared to controls, as observed from the 79 ovarian cancer panel. Further-
more, evaluation of overall survival with the KM plotter tool, revealed a poorer overall
survival to be associated with this over-expression in these 5 genes. Interestingly, 3 of
the 5 identified genes are known to be involved in the DNA damage pathways, CCNE2,
RAD51, and HJURP. The other 2 genes identified include, VEGFA, a growth factor, in-
volved in angiogenesis and vascularisation and CTSD, part of the family of peptidases,
known to be mutated in some cancers. These 5 genes could be explored further as po-
tential ’liquid biomarkers’, as gene expression for these 5 targets appear to be mirrored
in both the tumour and blood. Moreover, these genes could be exploited further to un-
derstand mechanisms and pathways and their involvement in cancer. As mentioned a
significant proportion of these 5 genes are related to the DNA damage pathway, which
would be expected due to the nature and mechanisms of cancer.

Overall the results suggest unique gene signatures exist amongst the ovarian cancer
populations, which could be exploited further in disease stage grading and survival rate
predictions, potentially allowing a better stratification of ovarian cancers based on their
genetic profile.

Next, we evaluated the use of CNI in the analysing of patient samples (3 cancer and
3 control). Overall, we observed a high CNI 171 score for the cancer samples and a low
(normal) CNI 171 score for the controls. However, there were some exceptions, including
one cancer patient scoring within the normal range, and a control patient scoring above
the normal range. Although it must be noted, the cancer case scored in the higher range
of the normal score, and the control patient scored in the lower range of the cancer scor-
ing. These outliers could be attributed to a number of underlying factors influencing the
score. In respect to the cancer patient, the tumour may be slow growing and localised,
in this case the patient was a stage IIB which would be classed as early stage. The con-
trol patient could have another undiagnosed underlying condition (other than the bulla,
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the reason for this surgery) that could have attributed to the high CNI 171 score. Vari-
ous diseases influenced by genetic disorders exist, any of which may be responsible for
the high CNI 171 score. Other more general factors that could influence the CNI 171
score in both these patients include inter-patient variation, previous treatment or thera-
peutics, or exposure to damaging agents or materials, such as X-rays, asbestos, and harm-
ful radiation that can cause DNA damage (Kamp, 2009; Borrego-Soto, Ortiz-López, and
Rojas-Martínez, 2015). As expected we observed the highest CNI 171 score for the most
advanced cancer case with several copy number changes apparent on the circos plot. In-
terestingly the same copy number changes were mirrored across both their tumour tissue
and their matched blood plasma sample. Similar results were observed in the ovarian
cancer patients, with both patients being diagnosed as Grade 3, advanced ovarian cancer,
however only 1 patient demonstrated an enhanced CNI 171 score, and subsequently (as
with the high scoring lung patient) died. The other ovarian cancer patient (Ov2), despite
having an advanced cancer, exhibited a lower (normal range) CNI 171 score, but the pa-
tient also responded well to the treatment and has been reported to be in remission. Thus,
these results offer not only the possibility of a blood based test providing chromosomal
level data and ability to profile the cancer, but the potential of predictive and prognos-
tic evaluation. These findings are in line with previously published reports (Beck et al.,
2010; Weiss et al., 2017). The results are promising and allow further exploitation of the
chromosomes and associated copy number changes. However, they also highlight the
necessity for high accuracy and specificity when translating the research into a clinical
setting.

Finally, we focused our study on designing a framework for identifying genes as
potential liquid biomarkers using transcriptomics data. For this, we used the RNAseq
data available from 3 patients and 3 controls provided by Oxford Wellcome Trust Cen-
tre. The data was mapped to the human genome annotation GENCODE 19 and we were
able to identify 8,910 and 13,230 genes expressed with an expression level higher than
5 Fragments Per Kilobase of transcript per Million (FPKM) in the 3 patients, in blood
and tissue respectively. By contrast we found 9,400 and 11,755 genes expressed with and
FPKM larger than 5, in the control blood and tissue respectively. Moreover, by comparing
the cancer and control samples we observed a number of differentially expressed genes
across the three patients. It is interesting to note that we noticed a higher number of sig-
nificantly differentially expressed gene in blood compared to tissue. Similar results were
seen in a study by Huang et al., 2017.

In order to define a gene as a potential biomarker we required to see a similar change
in the expression pattern in both blood and tissue. We found 21 genes that match this
criterion. However, of them only X inactive-specific transcript (XIST) has shown an in-
crease in expression in the cancer samples for both blood and tissue compared to control.
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XIST is a non-coding RNA gene, involved in X chromosome silencing in female cells,
and allows X chromosome equilibrium in males (Weakley et al., 2011). Long non-coding
RNAs are known to often contribute to unrestricted growth and invasion of cancer cells,
with XIST shown to be up-regulated in several cancers, including non-small cell lung
cancer (NSCLC), colorectal, gastric, and giloma cancers (Ma et al., 2017; Fang, Sun, and
Gong, 2016; Yu et al., 2017). A study in NSCLC, also showed up-regulation of XIST. Si-
lencing of the XIST gene resulted in suppressive functions, including, inhibition of cell
proliferation and invasion, and induced apoptosis (Wang et al., 2017). Fang et al. (2016),
also observed the role of XIST as an oncogene in NSCLC. A study in colorectal cancers,
also reported XIST as a prognostic factor, and its down-regulation was shown to over-
come resistance to 5-fluorouracil, acting as potential therapeutic target (Xiao, Yurievich,
and Yosypovych, 2017). Due to its up-regulation in tumours, as well the effects of it’s
silencing on cell proliferation, invasion and apoptosis, XIST is important not only as a
potential biomarker but also a potential druggable target.

Next, to expand our liquid biopsy marker horizon we focused our analysis on genes
that are differentially expressed in the blood of the cancer patients compared to control.
In particular, we selected for future investigation only genes that are over-expressed in
the cancer blood samples. Here we identified 18 genes that match our imposed selection
threshold as described in Section 6.4.3. Relaxing this strict selection method increases
considerably the number of potential search avenues. For practical purpose and given
the limited sample availability we selected only 4 genes to pursue further for experimen-
tal validation using qPCR. The experimental results reflected the RNAseq observations
for most of the genes in the context of blood, with the 5 validated genes seen to be up-
regulated in both the validation experiments and RNAseq results, for the cancer blood
samples compared to controls. Subtle differences between the results of the two analy-
ses can be attributed to the small sample size and again inter-patient variability where
specific patient disease profiles will not be identical. It must also be considered that the
RNAseq and qPCR were conducted on samples from different individuals (both for can-
cer and control).

Finally, we integrated our CNI and RNAseq results in order to get an overall picture
of the tumour. Thus, looking at the CNI circos plots for patient 1 (MAS4), it is interest-
ing to note that while chromosome 3, 5, 8, 10, and 13 seem to exhibit a larger number
of chromosomal abnormalities, this is not reflected in changes in the gene expression
levels for those locations. However, a direct effect of the genome abnormality on the
expression levels has been previously observed in cancers (Lavarino et al., 2009). The
discrepancies could be attributed to the tissue/blood differences, as well as a decrease in
expression level in those genes in the blood sample, which did not constitute the focus
of our RNAseq analysis.
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Findings from this chapter show the huge potential of genomic analysis, with promis-
ing initial results from the ovarian 79 cancer gene panel providing valuable insights on
molecu-lar signatures. CNI scoring method gives a snapshot of genomic disruptions that
are the result of disease evolution and can even potentially drive it. Therefore, a larger
cohort study is necessary in order to evaluate the method’s usefulness in a clinical setting.
Finally, trans-criptomics analysis provided exciting insights into new potential markers
of interest parti-cularly in a ‘liquid biopsy’ context. However, the contrast between the
gene expression in the tissue and blood of the same patients raises some questions on
how well the clinical blood biomarkers can describe the tumour behaviour and hetero-
geneity.

Despite these challenges, the three methods studied here opened up significant new
possibilities for biomarker discovery.
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Chapter 7

General discussion and concluding
remarks

7.1 Impact and importance

Over the past decades a vast improvement in cancer survival has been achieved, with
some cancer types having a 10 year survival as high as 80%. e.g. breast and prostate.
However, in other cancers i.e. ovarian and lung, survival rates remain poor, being as low
as 35 and even 5% in some cases (CRUK, 2017) (see Fig 7.1).

FIGURE 7.1: Ten-year survival rates in different cancer types. (A) Breast, (B)
Prostate, (C) Ovarian, (D) Lung cancer (CRUK, 2017).
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This disparity can be related to a number of reasons, including lack of early diagnosis,
real-time disease monitoring, and limited therapeutic options. The introduction of robust
screening tools in both, breast and prostate cancers has hugely benefitted cancer survival,
as treatment in early stages whilst the disease is still localised offers more options, and
is associated with a promising outcome (CRUK, 2017; Goldstraw et al., 2007). Cancers
detected at stage I would benefit from a 98% in ovarian, and just over 80% survival rate
in prostate (CRUK, 2017).

Response to therapies is highly patient and cancer type specific, therefore not all pa-
tients can benefit from the same therapy. Due to lack of real-time screening and monitor-
ing options, valuable time could pass before non-response is observed and treatment can
be changed. Furthermore, the risk of recurrence in both ovarian and lung cancers is high,
particularly in advanced stages, which make up the majority of diagnosed cases. Once
the cancer recurs the prognosis is poor, as a curative options are almost non-existent at
this point (Luvero, Milani, and Ledermann, 2014; Consonni et al., 2015).

Over the years, several therapeutic targets have been developed, some with very suc-
cessful results, i.e. anti-HER2 treatment in breast cancer (Vrbic et al., 2013; Rimawi, De
Angelis, and Schiff, 2015). However, cancers evolve and adapt over time, becoming re-
sistant to drugs, a behaviour described as an evolutionary pressure imposed by the treat-
ment (Friedman, 2016). Thus, discovery of new biomarkers to characterise and provide
information on the disease stage and evolution is crucial in the development of new ther-
apies. Identification and evaluation of novel liquid biomarkers could not only allow
development of new thera-peutic targets, but could also inform on the biology of can-
cer spread. This is particularly poignant as circulating cancer cells (CTCs) in the blood
are known to propagate metastasis (Polyak and Weinberg, 2009; Munzone et al., 2012).
Moreover, real-time measurements of liquid biomarkers, could inform of variations in
the cancer biology, particularly during drug therapies where these changes may render
the patients treatment ineffective, prompting rapid changes in therapeutic regimes to be
implemented.

All the aforementioned areas within ovarian and lung cancers would benefit from de-
velopment of personalised treatment plans, which is being widely accepted as the future
of effective cancer treatment and management (Verma, 2012).

Here, we developed a pipeline for biomarker discovery to identify robust liquid biomark-
ers, as shown in Fig 7.2.
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In silico analysis: 

 

• Oncomine – gene expression 

levels in the population 

• Kaplan Meier plotter – overall 

survival analysis of gene 

expression of interest 

• Gene Regulatory Networks 

 

In vitro analysis: 

 

• Evaluating various liquid 

biomarkers in relevant cell lines 

• Carrying out additional functional 

characterisation and analysis 

• Identification of novel genes and 

gene signatures  

 

Clinical/Patient analysis: 

 

• Evaluate various liquid biomarkers 

in ovarian and lung clinical 

samples 

• Evaluation of clinical relevance by 

measuring overall and median 

survival.  

• gene signatures  

 

Robust Liquid Biomarker 

FIGURE 7.2: Flow diagram of liquid biopsy identification study design. Liq-
uid biomarker discovery is informed by in silico, in vitro and clinical analysis.

7.2 Circulating tumour cells, circulating nucleic acids and liquid
biomarker discovery in ovarian and lung cancer

Cancerous tumours are shown to shed from their primary sites circulating tumour cells
(CTCs) (Allard et al., 2004; Hou et al., 2012; Park et al., 2012), and circulating nucleic acids,
(ctNAs, i.e. DNA and RNA) into the blood (Volinia et al., 2008; Freidin et al., 2015). These
CTCs and ctNAs originate directly from the cancer site, and have been shown to share bi-
ological tumour-specific characteristics and genomic profiles (Hiltermann, Wekken, and
Groen, 2012; Freidin et al., 2015). Thus, the presence of genetic tumour material in the
blood opens the potential for liquid biomarker discovery. It can potentially facilitate the
development of novel therapeutics and provide new insights in to the mechanisms and
biology of the disease (Beck et al., 2013; Weiss et al., 2017; Zeng et al., 2011).

From our studies, we show that we can identify, characterise, and quantify CTCs in the
blood of ovarian and lung cancer patients, using the ImagestreamX technology. We also
showed that CTCs were significantly over-expressed in both ovarian and lung cancers
compared to control samples, even in the early setting (for lung cancer patients only). A
strong prognostic value was observed in advanced stages of lung cancer patient compared
to early stage using ctDNA analysis; with our findings mirroring previously published
reports in other cancers (Umetani et al., 2006a; Umetani et al., 2006b; Wang et al., 2003).

We also demonstrated the presence of unique biomarkers in the blood of ovarian and
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lung cancer patients, which are not seen in control samples. Various gene signatures and
individual genes were identified using several approaches such as GRNs, gene cancer
panel evaluation and RNAseq.

More specifically, cancer panel evaluation of 79 genes in ovarian cancer patients, also
revealed significantly differentially expressed genes in cancer patients compared to con-
trols. Further analysis revealed specific gene signatures in cancer patients.

Analysing RNAseq data from lung cancer patients, we observed differential gene ex-
pressions in cancer patients compared to controls. More in-depth analysis revealed the
presence of lung cancer subtypes specific expression profiles. The analysis also identified
a novel gene, XIST as being significantly over-expressed in the tissue and blood of lung
cancer patients compared to controls.

Finally, we report the identification a novel marker, RAD51AP1, exploiting existing
microarray data through the use of GRNs and UNIPs. In silico clinical validation re-
vealed that this gene was over-expressed in both ovarian and lung cancer tissue and blood
samples compared to controls. In silico analysis using Oncomine also revealed a similar
over-expression in the tissue of ovarian and lung cancers. KM plotter showed that this
over-expression is associated with a poorer overall survival.

7.3 The clinical utility of CTCs, ctNAs and liquid biomarker dis-
covery in lung and ovarian cancer

In this study we showed that the over-expression of CTCs in the blood of ovarian and
lung cancer patients was associated with a poorer prognosis. Moreover, in-depth analy-
sis of CTCs in lung cancer patients by stage revealed CTC quantification could be used to
differentiate early stage from advanced cancers. Most importantly, diagnostic utility eval-
uations revealed high sensitivity and specificity in both early and late stage lung cancers
compared to controls. As all recruited ovarian cancer patients were diagnosed at stage
III and IV, a si-milar analysis was not possible. However, high sensitivity and specificity
values for ovarian cancers CTC detection were also calculated, suggesting a strong diag-
nostic utility of CTC evaluation and quantification using the ImagestreamX. These results
show the potential use of CTCs as a non-invasive screening tool in support of early diag-
nosis in lung and possibly ovarian cancer. Moreover, our observations inform the utility
of this biomarker for prognostic purposes, as increased CTCs burden correlates with an
increased tumour burden, potentially broadening its use to real-time monitoring of treat-
ment and relapses. By conducting a short-term treatment monitoring study we observed
a specific trend in CTC levels for patients who responded well to treatment. Expanding
this to longer term monitoring in the future, could provide better insights.
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Evaluation of ctDNA was conducted by calculating the DNA Integrity Index, from
measurements of Alu repeats in the plasma of patients. We observed a significantly in-
creased DNA Integrity Index (ctDNA burden) compared to controls, in both cancer types.
Diagnostic utility evaluation however revealed poor sensitivity and specificity values for
both cancer types. Further analysis by lung cancer staging revealed a significantly higher
DNA Integrity Index in advanced lung cancer cases, compared to both early stage and
controls, with diagnostic utility evaluation showing high sensitivity and specificity. This
increased DNA Integrity Index was also shown to be associated with a poorer overall
survival, demonstrating the prognostic value of this technique in the advanced setting.

In our work we also demonstrate the ability to identify novel gene signatures as po-
tential liquid biomarkers in ovarian and lung cancers. These findings support the notion
that cancer genomic material is present in patients’ blood, and can be exploited for var-
ious uses, i.e. development of therapeutic target, monitoring of disease and genomic
changes to cancer profile, as well as informing on treatment options.

Specifically, here we describe the clinical significance of RAD51AP1 gene in ovarian
and lung cancers. Our findings reveal that over-expression RAD51AP1 is also associ-
ated with a poorer prognosis. Further functional analysis of this gene demonstrated its
key role in cancer progression. By conducting gene knockouts in vitro, we have shown
that the cancer growth was reduced in vitro. Protein analysis revealed various apoptotic
and immune response genes to be up-regulated, whilst tumorigenic ones were down-
regulated (Chudasama et al., 2017b). These findings suggest RAD51AP1 plays a critical
role in both ovarian and lung cancers, and could be further exploited as a therapeutic
target, by means of down-regulation.

Our findings underpin the clinical utility of all the techniques and assays described
above. Moreover our analyses address the current limitations faced by cancer treatment
and management, and provide potential solutions (see Table 7.1).
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Problem area Solution: liquid biomarker Cancer Evaluation Results
Early diagnosis CTCs Ovarian & Lung
Real-time treatment
monitoring and relapse

CTCs Ovarian & Lung

Biomarker discovery Circulating nucleic acids and
tumour material

Ovarian & Lung

Monitoring of genomic
changes to cancer

ctDNA (CNI), Circulating tu-
mour material

Lung only for CNI; Ovarian
& Lung

Prognostic value CTCs, ctDNA Ovarian & Lung (ctDNA ad-
vanced lung only)

TABLE 7.1: Limitations currently faced in ovarian and lung cancers. Current
identified limitations, with liquid biomarkers solutions from this study.

Collectively these data are indicative of potential use of a combination of these liquid
biomarkers to support current clinical practice and improve diagnosis and prognosis in
these two cancer types.

7.4 Implementation of liquid biopsies in to the clinical setting

Various factors must be taken in to consideration in order for a technique or assay to
be implemented into routine clinical practice in the NHS, including addressing an un-
met clinical need, methodology robustness, repeatability and reliability, clinical value
and validity, and cost-effectiveness. In this respect, liquid biomarkers have proven their
huge potential in a clinical setting. Moreover, early diagnosis will enable treatment in
localised stages, where costs are lower. It has been reported by the National Institute for
Health and Care Excellence (NICE) that treatment of ovarian cancer in Stage I is approx-
imately £5,328 per patient, but it increases to £17,810 at Stage IV. NICE predicts savings
of over £16 million with early diagnosis in ovarian cancers (NICE, 2017). Predicting and
treatment monitoring would also inform on the best drugs for the patient based on their
genomic profile, as well as an effective treatment update upon a poor response, due to
drug resistance for example. In the long term we feel the benefits and costs will outweigh
the current burdens and poor survival rates.

In addition, an assay that can be used universally across multiple cancer types, would
also prove advantageous. Currently, we know this is problematic due to each diseases
complexity and heterogeneity. For all these reason, Cancer Research UK (CRUK) have
developed a biomarker roadmap for development of a robust biomarker assay, Fig 7.3.
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FIGURE 7.3: CRUK Biomarker development flowchart. Biomarker roadmap
structure outlined by CRUK.
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In the present work, we showed that CTCs yielded similar results across both cancer
types. By contrast, transcriptomic evaluation, as would be expected, yielded very dif-
ferent gene signatures, with the exception of RAD51AP1, which was shown to be over-
expressed in tissue and blood samples across both cancer types.

These strict criteria are essential, and must be met amongst other factors in order for
the assay to be implemented into routine clinical practice.

7.5 Limitations

One of the biggest limiting factors of any study is inter-patient variability. Inter-patient
variability is described as differences in genetics and/or pharmacokinetics from individ-
ual to individual (Holliday et al., 2014). Inter-patient variation is therefore likely to mask
trends in gene and protein changes, particularly if these changes are subtle.

In particular, we observed the effects of inter-patient variability when we measured
CTC levels in the blood of ovarian and lung cancer patients. As highlighted earlier, the
exact mechanism of CTC shedding is not well understood (Polyak and Weinberg, 2009;
Munzone et al., 2012), and the frequency of CTCs will differ from patient to patient. In
turn this impacts the level of genomic material present in blood, as it is dependent on the
body’s mechanisms of controlling and discarding these aberrant cells.

Furthermore, differences in clinical samples were also reflected in the assessment of
expression signatures of various genes. Transcriptomics evaluation has shown varying
genetic profiles from patient to patient. Moreover, both ovarian and lung cancers are
recognised as strikingly heterogeneous diseases. The high standard deviation bars from
qPCR analysis can thus be interpreted as a result of inter-patient variation, and may trans-
late into a lack of statistical significant results in some cases. In one example, RAD51AP1
expression in breast cancer compared to controls did not reach significance, despite a
marked increase in cancer patients. Thus, inter-patient variation, provides yet another
hurdle in the ever complicated saga of improving cancer management and treatment (Jor-
dan et al., 2003).

Tumour heterogeneity is an added complexity in the world of cancer research. The
plane/collection area could thus affect the genomic and phenotypical characteristics of
the analysed samples (Fidler, 1978; Fisher, Pusztai, and Swanton, 2013). Findings from
single-cell CTC analysis have also shown that cells from the same tumour may be ge-
netically and phenotypically different from one another, dependent on the exact origin
on the tumour (Saadatpour et al., 2015). Furthermore, single cell studies have reported
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modulations in oncogenic, proliferation and immune signalling, differential growth fac-
tor receptors and KRAS expression, and ER receptor expression in breast cancers (Miwa
et al., 2015; Kim et al., 2015; Janiszewska et al., 2015; Shalek et al., 2013; Patel et al., 2014;
Babayan et al., 2013).

Another factor contributing to increased variability, particularly in immunohistochem-
istry (IHC), is the nature of the analysis method. As mentioned, ovarian and lung tumours
can be highly heterogeneous. Slides for IHC analysis are cut from the FFPE block housing
the tumour sample. Dependent on the plane and area of the tumour tissue sliced for ex-
perimentation, results could vary and highlight differential protein expression levels, as
we have seen in the case of RAD51AP1. As each cancer sample is taken from an unspec-
ified area of the tumour, it may contain multiple tissue types that were phenotypically
different. Furthermore, IHC by DAB staining is not only a semi-quantitative method of
analysis; it also gives an indication on the number of cells showing expression. However,
the expression levels cannot be determined accurately. While this information is useful,
the counting is manual, and thus the method is also subjective to the presence of residual
background noise. An automated counting system using stringent marking criteria could
overcome this. Alternatives for DAB staining are also now commercially available.

On the matter of subjectivity, various aspects of this study require a level of indi-
vidual/personal judgment and assessment. This is the case with flow-cytometry analysis
using ImagestreamX, whereby gating of cells is required in order to apply various param-
eters for analysis and quantification. For these reasons, initiatives have been developed
including ACCEPT, the automated imaging analysis software, shown to increase concor-
dance from 30% in manual scoring to 51% (Zeune et al., 2017). Although extensive care is
taken to ensure these are applied accurately, the measurements are done “manually”, by
human eye, and results could vary subtly between operators. The Clearbridge study in
Chapter 3 required a similar approach, where slides were stained with Haematoxylin and
Eosin for cancer cells, however this is not a confirmatory stain and two pathologists were
asked to score these independently for the presence or absence of CTCs. Inter observer
agreement was calculated at 80.4%, with a Kappa statistic of 0.6 ± 1.1 (p-value<0.001),
highlighting subjectivity of the assessment procedure. Even in the presence of strict cri-
teria and rules, inter observer subjectivity will be a continuing issue.

7.6 Future directions

7.6.1 Large patient cohorts

In this project, different numbers of samples were used for various assays, dependent on
the time of the experimentations and type of sample required. In all instances, sample
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levels did not exceed 20 for any given type (i.e. cancer or controls) due to limitations in
patient recruitment and ethical approval. For the RNAseq and CNI work, sample sizes
were limited due to cost constraints to 6, including controls. The same constraint limited
our analyses to lung only samples as well. Future perspectives include expansion of sam-
ple types to ovarian cancer, as well as increasing the cohort numbers in both disease and
controls, in order to confirm the observed results. This increase in cohort size should take
in to consideration subtypes and grading of cancer to account for any specific changes as
a result of cancer pathology. Moreover, the research will benefit by further expanding the
analysis to account for variations according for gender and ethnicity, as these has been
shown to affect gene expressions (Knappskog et al., 2014). Genetic variations ascribed to
ethnicity have been associated to differences in treatment response (Rotger, Csajka, and
Telenti, 2006), and drug susceptibility (O’Donnell and Dolan, 2009).

7.6.2 Developing an assay for long term monitoring of patients for relapse and
treatment

In this work, we reported a significant increase in CTCs in the blood of ovarian and
lung cancer patients compared to controls. We followed ovarian cancer patients on the
METRO-BIBF trial, with correlations observed in CTC trends overtime with responders
compared to non-responders. However, this study was limited by the number of cycles
(maximum of 5 cycles for some patients) followed and patients recruited, with only short
term follow-up data available, up to 2 years for some patients. Long term monitoring data
could provide more insights in to the trends of CTC changes and their association with
response to treatment. Furthermore, coupling this analysis with molecular profiling at
various time points would inform of crucial biological and genomic changes undergone
as a result of the treatment.

Long term monitoring of both ovarian and lung cancer patients can also measure any
relapse post treatment or surgery. Prompt treatment of the recurrent cancer may result in
a better prognosis than at present.

7.6.3 Elucidating the cytostatic effect of RAD51AP1

In the present study, we reported on the cytostatic effect exerted by silencing the RAD51AP1
gene in SKOV-3, MDAH-2774, and A549 cell lines. Future work could provide valuable
insight into this effect by focusing on the analysis of cell cycle progression markers, in-
cluding the expression of cyclin B1 and the phosphorylation of cyclin dependent kinase
1 (CDK1), which are increased at the G2/M transition (Stewart and Dell’Orco, 1992) in ad-
dition to the proliferating cell nuclear antigen (PCNA), which increases at the G1/S tran-
sition (Stewart and Dell’Orco, 1992). Furthermore, a better understanding of the protein
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interactions of RAD51AP1, see Fig 7.4, with other predicted proteins other than RAD51
will provide a novel insight into its signalling mechanisms.

FIGURE 7.4: String motif of associated proteins to RAD51AP1 using
STRING (String-db.org, 2018). Schematic of RAD51AP1 protein-protein as-
sociation network. Each node represents a protein and each edge indicates an
association. Known interaction are coloured in cyan and pink, while predicted
associations (e.g. gene neighborhood, gene fusions, gene co-occurrence) are

shown in green, red, and blue.

7.6.4 Use of additional in vitro models to study the effects of RAD51AP1

In this study we used two epithelial ovarian adenocarcinoma cell lines and one lung can-
cer adenocarcinoma cell line, as in vitro models of ovarian and lung cancer. By expanding
the analysis to include various cancer cell lines reflecting the different cancer types and
stages, would provide a better understanding of the observed variations within cancer
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types of differing pathologies. Furthermore, the addition of both control healthy ovarian
and lung cell lines would be beneficial.

7.6.5 Further elucidation of the effects of RAD51AP1 on the mTOR pathway

Findings from this work revealed compromised mTOR signalling in all three cell lines in
vitro. In SKOV-3 cells, decreased mTOR signalling along with DEPTOR increase would
inhibit the activity of complexes. Future studies concentrating on the protein changes of
the same key components would be useful. Future work on protein expression of these
components or changes in the phosphorylation status of downstream components, such
as S6 kinase (S6K), as well as upstream, components including Akt would provide a more
detailed insight into the effects of RAD51AP1 on mTOR signalling.

7.6.6 Development of a rapid liquid biomarker test: Concluding Remarks

The ultimate aim of this study was to provide a framework for developing a liquid biopsy
test, allowing for real-time testing and monitoring of cancer patients to support various
aspects of the treatment. Thus, the natural route of building on the results provided by
this project is to develop a pipeline of tests using the assays described here in order to
address early diagnosis, relapse and treatment monitoring. Fig 7.5 and 7.6 outline these
proposals.

FIGURE 7.5: Liquid biomarkers screening pipeline. Proposed screening
method and management for ovarian and lung cancers using liquid biomark-

ers.
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FIGURE 7.6: Liquid biomarkers relapse and treatment monitoring pipeline.
Proposed relapse and treatment monitoring method and management for

ovarian and lung cancers using liquid biomarkers.

These proposed workflows utilise a wide repertoire of liquid biomarker assays, en-
abling a detailed picture of the cancer to be obtained on a regular basis. The test results
will form the basis of any subsequent treatment or management of that patient. This
detailed and more systematic approach will enable a personalised treatment plan to be
developed for patients.

Finally, personalised medicine is the ultimate goal in cancer diagnostics, treatment
and management. Thus it is crucial to determine detectable biomarkers in cancer, in a
view to developing better diagnostic and treatment plans. A great deal can be achieved
through the development of liquid biomarkers, and their implementation in to clinical
practice.
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Appendix A

Supplementary Information

A.1 Extended Tables

Date Patient
code

Age Gender Pathology Cancer
Type

Stage

04/11/14 EC001 56 F Adenocarcinoma Primary T3NXM1A
16/11/14 RR002 65 M Adenocarcinoma Primary T2BN2M0
09/11/14 TK003 71 M Adenocarcinoma Primary T23N0M2
14/12/14 PD004 72 M Squamous Cell Car-

cinoma
Primary T2BN2MX

13/01/15 WS005 58 M Papillary Adenocar-
cinoma

Primary T2AN0MX

09/02/15 PG006 67 F Adenocarcinoma Primary T1AN0M0
20/04/15 JH007 57 F Squamous Cell Car-

cinoma
Primary T2AN1M0

27/04/15 PW008 50 F Adenocarcinoma Primary T1AN2MX
14/06/15 JC009 64 M Adenocarcinoma Primary T3N1M0
15/06/15 TB010 84 F Adenocarcinoma Primary T1BN0M0
25/06/15 TB011 57 F Non-mucinous ade-

nocarcinoma
Primary T1AN0MX

25/06/16 JB012 76 F Metastatic lung,
from lung primary

Metastatic No staging

06/12/15 MAS01 56 M Primary Adenocari-
noma (squamous
differentiation)

Primary T4N0MXR1

07/12/15 MAS02 77 F Primary multi-
focal mucinous
Adenocarcimona
(bronchoalveolar)

Primary T3N0MXR0
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17/01/16 MAS03 66 M 2 metastatic re-
nal and bladder
cell carcinoma, 1
primary lung adeno

Metastatic No staging

18/01/16 MAS04 71 M Squamous CC
2 nodules in 2
separate lobes

Primary T4N1MXPL0R0

27/01/16 MAS05 76 M Keratinising squa-
mous cell carci-
noma

Primary pT2aPL1N0R0

27/01/16 MAS06 75 F Undifferentiated
carcinoma

Primary pT1bPL0N1R0

28/01/16 MAS07 56 F Mucinous adeno-
carcinoma acinar
predominant

Primary pT2aPL0N2
(station 6) ?R1

01/02/16 MAS08 76 M Adenocarcinoma
(local recurrence?)

Primary pT1aN0MxPL0R0
(or
pT2aN0MxPL1?)

02/02/16 MAS09 60 M Metastatic ade-
nocarcinoma (aci-
nar/cribriform ar-
chitecture, nuclear
stratification and
necrosis morpho-
logically favouring
metastasis from a
colorectal primary)

Metastatic No staging

08/02/16 MAS10 71 M Keratinising squa-
mous cell carci-
noma

Primary T2BN0MX

09/02/16 MAS11 70 F Non-mucinous ade-
nocarcinoma

Primary T1AN0MX

09/02/16 MAS12 50 F Non-mucinous ade-
nocarcinoma

Primary T2AN0MX

22/02/16 MAS13 67 F Non-mucinous ade-
nocarcinoma

Primary T2BN2MX

22/02/16 MAS14 56 F Non-mucinous ade-
nocarcinoma

Primary T1AN0MX
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23/02/16 MAS15 70 M Non keratinising
squamous cell
carcinoma

Primary T2AN0MX

25/02/16 MAS16 34 M Metastatic colorec-
tal adenocarinoma

Metastatic No staging

25/02/16 MAS17 72 M Oesphageal cancer -
adenocarcinoma

Primary No staging

29/02/16 MAS18 73 M Keratinising squa-
mous cell carci-
noma

Primary T4N2MX

29/02/16 MAS19 72 M Non-mucinous ade-
nocarcinoma

Primary T1BN0MX

03/03/16 MAS20 56 M Squamous Cell Car-
cinoma secondary
from lung

Metastatic No staging

03/03/16 MAS21 77 F None-keratinising
squamous carci-
noma

Primary T2AN0MX

08/03/16 MAS22 72 F Adenocarcinoma Primary T2AN2MX
21/03/16 MAS23 62 F Adenocarcinoma Primary T2AN0MX
05/04/16 MAS24 79 F Adenocarcinoma Primary T2AN0MX

TABLE A.1: Patient information. Phenotypic details of patients used in this
study.
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