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The data presented in this article are related to the paper entitled
‘Ultrafast synchrotron X-ray imaging studies of microstructure
fragmentation in solidification under ultrasound’ [Wang et al., Acta
Mater. 144 (2018) 505-515]. This data article provides further
supporting information and analytical methods, including the data
from both experimental and numerical simulation, as well as the
Matlab code for processing the X-ray images. Six videos con-
structed from the processed synchrotron X-ray images are also
provided.
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Table 1
The measured amplitude of the so
using Eq. (1).

Ultrasound power (W)

20
40
60
80
100
ubject area
 Materials Science and Engineering

ore specific subject
area
Solidification of Metallic Alloys
ype of data
 Table, figures, synchrotron X-ray images, videos and Matlab code

ow data was acquired
 Synchrotron X-ray imaging, high-speed camera, finite element simulation

ata format
 Raw and analysed

xperimental factors
 Ultrasound intensity, acoustic pressure, temperature, fatigue strength and

life

xperimental features
 Solidification of metallic alloys under ultrasound

ata source location
 School of Engineering & Computer Science, University of Hull, Hull, HU6

7RX, UK

ata accessibility
 The data are available with this article
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Value of the data

� The videos presented clearly demonstrate the microstructural fragmentation induced by ultra-
sound treatment in a liquid metal.

� The datasets can be used for comparison with other experimental and theoretical results.
� The data on acoustic pressure can be used to determine the ultrasound induced pressure at any

depth from the sonotrode tip.
� The Matlab code can be used for future synchrotron X-ray image processing.
1. Data

Table 1 shows the measured amplitudes of the sonotrode tip from the ultrafast X-ray images when
different ultrasound powers were applied; and the resulting ultrasonic intensities. Fig. 1 presents the
distribution of acoustic pressure in the Bi-8%Zn liquid metal along the distance below the sonotrode tip.
Fig. 2 gives the growth in percentage of solid needle-shaped Zn phase during the solidification process of
the Bi-8% Zn alloy without ultrasound under a cooling rate of 0.2 °C/s. Fig. 3 demonstrates the experi-
mental data used to determine the material constants for the Zn alloy at 20, 50 and 100 °C. The Matlab
code used to obtain the percentage and speed of the solid particles from synchrotron X-ray images is
listed in Appendix A. Synchrotron X-ray images in supporting the evidences and arguments presented in
Figs. 4–6 and 8 in [1] were processed into videos. Video 1 shows the ultrasonic bubble implosion and
shock wave; Video 2 presents the bubble pulsating on a liquid-solid (L-S) interface; Video 3 gives the
fragmentation of a needle-shaped Zn particle by an oscillating bubble; Videos 4–6 demonstrate the
break-up of the L-S interface by acoustic flow under different ultrasonic intensities.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.
dib.2018.01.110.
notrode tip under different applied ultrasonic powers. The ultrasonic intensity was calculated

Amplitude (µm) Ultrasonic intensity (W/mm2)

30.12 276
42.67 553
55.22 926
65.26 1294
77.81 1839

dx.doi.org/10.1016/j.dib.2018.01.110
dx.doi.org/10.1016/j.dib.2018.01.110


Fig. 1. Distribution of the acoustic pressure along the distance below the sonotrode tip under different powers calculated by
using Eq. (2).
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Fig. 2. Growth of the solid Zn phase in percentage during the solidification of the Bi-8% Zn alloy under a cooling rate of 0.2 °C/s.
Insets show the real-time X-ray images captured at Beamline I12 using 30 fps.
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2. Experimental design, materials and methods

Ultrafast Synchrotron X-ray imaging experiments were carried out to study the effects of ultra-
sound on the fragmentation of metallic phases during the solidification process as detailed in [1]. A
Bi-8%Zn alloy was used because of its low melting temperature and sufficient X-ray contrast between
the matrix and the primary Zn phases. A Hielscher UP100H ultrasound processor with a MS2 sono-
trode was adopted to introduce ultrasound into the melt. As supplementary to the full research paper
[1], this article provides further experimental and simulation data as listed below.
2.1. Ultrasonic intensity

To measure the actual vibration amplitudes of the sonotrode tip, the same ultrasound processor as
in [1] was used, with the Ø2mm sonotrode tip submerged in a distilled water tank (50 × 50 ×
50mm). Ultrasound was applied for 1 s, and a PhantomTM V7.3 high speed camera was used to



Fig. 3. Experimental data extracted to determine the material constants for the Zn alloy at 20, 50 and 100 °C.
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capture the images at 11,000 frame per second (fps) with a spatial resolution of 4.43 µm/pixel. Then,
the real vibration amplitudes of the sonotrode tip can be measured from a set of images by using the
FIJI [2] software, and the resulting data are listed in Table 1. Therefore, the corresponding ultrasonic
intensity, I, can be calculated as below [3]:

I¼ 1
2
ρC A0ωð Þ2 ð1Þ

where, ρ is the density of the melt; C is the sound speed in the liquid media; A0 is the amplitude of the
cyclic pressure wave; ω ¼ 2πf is the angular frequency with f being the frequency of the sound wave.

2.2. Acoustic pressure

The alternating acoustic pressure field generated from the ultrasonic waves in a liquid medium
attenuates exponentially along the distance below the sonotrode tip [4]. The acoustic pressure, Pa, at a
certain depth follows the Helmoholtz equation [5]:

ω=C
� �2

ρ
Paþ∇

1
ρ
∇Pa

� �
¼ 0 ð2Þ

Eq. (2) can be solved by using the finite element-based software COMSOL Multiphysics as detailed
in [6]. Fig. 1 presents the distribution of acoustic pressure in the Bi-8%Zn liquid metal along the
distance below the sonotrode tip under the ultrasonic power of 20W, 60W and 100W.

2.3. Solidification of the Bi-8%Zn alloy

Solidification of the Bi-8%Zn alloy without ultrasound was monitored by using the synchrotron
X-ray imaging at Beamline I-12, Diamond Light Source (DLS), UK. Fig. 2 shows the growth of the solid
needle-shaped Zn phase during the solidification process, the insets are the real-time X-ray images
captured at 30 fps.

2.4. Fatigue analysis of Zn phases

Experimental data for a commercial Zn-4% Al alloy as reported by Sawalha [7] were used to predict
the fatigue behavior of Zn under 270 °C. The fatigue strength, S, and fatigue life, N, of alloys can be
calculated by using the Basquin's Law as detailed in [1]. For high-cycle fatigue (with N 4 105 cycles),
three data points below 90MPa were selected at each temperature from [7] to determine the material
constants. Fig. 3 shows the linear relationship between (log N) and (log C) at 20, 50 and 100 °C.
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2.5. Synchrotron X-ray image processing

The percentage and speed of the detached solid particles were obtained by analyzing the X-ray
images using a Matlab script [8]. The code is provided in Appendix A.
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