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Abstract 

Objectives: People often hold unduly positive expectations about the outcomes of 

medicines and other healthcare products. Here the following explanation is tested: people who 

have a positive outcome tend to tell more people about their disease/treatment than people with 

poor or average outcomes. Akin to the file drawer problem in science, this systematically and 

positively distorts the information available to others.  

Method: If people with good treatment outcomes are more inclined to tell others, then 

they should also be more inclined to write online medical product reviews. Therefore, average 

outcomes in these reviews should be more positive than those found in randomized controlled 

trials (RCTs). Data on duration of treatment and outcome (i.e., weight / cholesterol change) were 

extracted from user-generated health product reviews on Amazon.com and compared to RCT 

data for the same treatments using ANOVA. The sample included 1,675 reviews of cholesterol 

reduction (Benecol, CholestOff) and weight loss (Orlistat) treatments and the primary outcome 

was cholesterol change (Bencol and CholestOff) or weight change (Orlistat). 

Result: In three independent tests, average outcomes reported in the reviews were 

substantially more positive than the outcomes reported in the medical literature (𝜂2 = .01 to 0.06; 

p = .04 to .001). For example, average cholesterol change following use of Benecol is -14mg/dl 

in RCTs and -45mg/dl in online reviews. 

Conclusions: People with good treatment outcomes are more inclined to share 

information about their treatment, which distorts the information available to others. People who 

rely on word of mouth reputation, electronic or real life, are likely to develop unduly positive 

expectations. 
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People often use medical treatments that are unlikely to have a direct therapeutic benefit 

(Ernst & Singh, 2006; Evans, Thornton, & Chalmers, 2010). Within conventional medicine, this 

is described as medical overuse or over-treatment and it is common in both prescribed 

medications and procedures and, importantly for the present work, in over-the-counter medicine 

use (Busfield, 2015). Moreover, medical systems such as herbal, alternative, complementary, 

Aruvedic, and Chinese medicine remain popular despite offering few treatments with 

demonstrable therapeutic benefits (though it is possible that some users experience benefits 

besides those typically emphasised in biomedical science). For example, over 100 million 

Europeans currently use traditional and complimentary medicine treatments (WHO, 2013), few 

of which are supported by scientific evidence. For the purposes of this paper, the term 'medical 

overuse' is used to designate the use of a conventional or alternative therapy that would not have 

been used had the patient had full knowledge of outcome probabilities. The primary focus of this 

work is the causes of medical overuse in regards to non-prescription medicines; for a review of 

the economic, health and environmental consequences of medical overuse, see Thomas & 

Depledge (2015). 

The financial interest of the pharmaceutical and other healthcare industries is 

undoubtedly an important driver of medical overuse (Busfield, 2015; Thomas & Depledge, 

2015). However, an additional or interacting cause is that patients often hold preferences for 

treatments that are likely to have little therapeutic effect. These preferences are particularly 
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important in the context of over-the-counter treatments, but much recent work suggests that 

patients' expectations are important drivers of professional behaviour (Coenen, Michiels, Renard, 

Denekens, & Van Royen, 2006; Covvey, Johnson, Elliott, Malcolm, & Mullen, 2014) and policy 

decisions (Taylor & Bury, 2007). There is strong evidence that patients hold unduly positive 

expectations about treatment outcomes. A recent systematic review found that estimations of 

benefit were unduly high in at least 63% of the samples studied (Hoffmann & Del Mar, 2015). 

Benefits were underestimated for just 3% of outcomes. These positive expectations about 

treatment outcomes are likely to drive medical overuse. Many basic psychological theories like 

subjective expected utility theory (Edwards, 1954) and social cognitive theory (Bandura, 1986) 

emphasise that positive expectations about the outcome of a given behaviour make that 

behaviour more likely. Moreover, there is empirical evidence that people who believe that a 

medicine will have positive effects are more likely to use that medicine (Horne et al., 2013). 

A recent review of medical reasoning by Lilienfeld, Ritschel, Lynn, Cautin, and Latzman 

(2014) catalogues the processes that predispose people to incorrectly attribute positive change to 

a treatment. For instance, health often improves due to regression-to-the-mean, because the 

disease is self-limiting, or because of placebo effects, and these positive changes can be 

incorrectly attributed to the medical treatment. These processes may explain why people come to 

believe that a treatment works after one has tried it, but as Hoffmann & Del Mar (2015) 

demonstrate, people often hold false beliefs about likely treatment outcomes prior to use. 

An alternative explanation of unduly positive outcome expectations was proposed by de 

Barra, Eriksson, and Strimling (2014). In contrast with the mechanisms listed in Lilienfeld et al. 

(2014), this theory does not derive its explanatory power from peoples’ biased reasoning or 

faulty logic, but instead from features of the health communication process. Inaccurate health 
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beliefs emerge, they argue, because a non-representative subset of treatment outcomes is 

communicated from person to person. The remainder of this paper explores the assumptions of, 

and predictions derived from, this theory. 

When people use a medical treatment, there is generally a broad range of outcomes, with 

some people improving and others deteriorating. A subset of the people who use a given 

treatment will communicate their experience to other people. For example, they might tell 

friends and colleagues that they lost weight after using a weight loss drug or that their cholesterol 

count has unexpectedly increased since they started using statins. Exposure to this kind of health 

information is likely to influence the recipient's health beliefs and health behaviour (see below). 

Health beliefs based on the outcome experience of small samples of people are likely to be error 

prone, with individuals developing overly positive or overly negative treatment expectations. 

However, what de Barra et al. (2014) additionally suggest is that the subset of individuals who 

actively communicate information about their treatment/outcome is not representative of the total 

outcome distribution. Rather, they propose that people who have positive outcomes are more 

inclined to share information than people with negative or neutral outcomes. This has important 

implications. If there is a positive correlation between outcome positivity and probability of 

information sharing, then the information circulating about the treatment will be systematically 

and positively biased because people with poorer outcomes will appear to be relatively rare. 

Such a communication pattern could account for the unduly positive treatment outcome 

expectations discussed above. Note that a similar under-representation of poor to middling 

reviews has been documented in the marketing literature where it is termed the under-reporting 

bias (Anderson, 1998; Hu, Pavlou, & Zhang, 2006). However, the under-reporting of negative 

outcomes might equivalently be described as an over-reporting of positive outcomes. Thus, the 
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term reporting bias will be used here. 'Bias' is meant in the statistical sense (i.e., a biased sample) 

rather than in the psychological sense (i.e., a deviation from some normative standard of 

reasoning, as in Tversky & Kahneman, 1974). 

The notion that exposure to other people's health outcomes might influence subsequent 

health behaviour is consistent with a range of models of health behaviour. Social cognition 

models, like the health belief model (Rosenstock, 1966), the theory of planned behaviour (Ajzen, 

1985), and descendent theories, assume that people choose to adopt a particular behaviour, in 

part, because of a belief that that behaviour will lead to a preferred outcome with an acceptably 

high probability. The crucial issue of how these beliefs are formed is less well described by these 

theories, but it seems safe to assume that observation of another person's outcome is an 

influential event. Imagine for example, that we encounter a person who speaks highly of a 

cholesterol reduction drug they have used. This encounter might influence key health behaviour 

determinants like (a) the subjective probability that using this cholesterol reduction drug will 

have the desired outcome, (b) how much this outcome -- cholesterol reduction -- would 

positively improve our well-being, (c) the degree to which we see the health behaviour, taking a 

pill twice daily in perpetuity, as achievable for us (our perceived behavioural control), or (d) it 

might influence our perception of the social norm, that is the degree to which we see ignoring 

high cholesterol as socially acceptable. That we are tuned to learn from other's outcomes is also 

consistent with observational learning theory (Fryling, Johnston, & Hayes, 2011) and several 

empirical studies (Betsch, Ulshöfer, Renkewitz, & Betsch, 2011; Gregory et al., 2011; 

Winterbottom, Bekker, Conner, & Mooney, 2008) as well as the sampling framework within 

cognitive psychology (Fiedler & Juslin, 2006). 
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A central prediction from de Barra et al.'s reporting bias theory is that the reputation of 

the treatment (i.e., the average outcome among people who choose to describe their treatment to 

others) should be substantially more positive than the average outcome as measured in a clinical 

trial of representative patients. Online medical product reviews provide a good arena in which to 

test this prediction because this form of information sharing leaves a lasting digital trace that can 

be quantified and analysed. Moreover, the psychological and contextual factors that lead people 

to share information about medical products appears to be similar in offline and online contexts 

(King, Racherla, & Bush, 2014) suggesting that findings from the online domain may generalise 

to the offline domain. 

Research Questions 

De Barra et al. (2014) demonstrated that the reputation of several alternative medicines, 

measured by averaging the outcomes in multiple Amazon reviews, is more positive than one 

might expect based on clinical trials. This present work replicates and extends this finding in 

several ways. Firstly, the previous work focused on alternative/unorthodox treatments (the 

Atkins diet, herbal fertility treatments). One possible explanation for this finding is that people 

who have average/negative outcomes after using an unorthodox treatment may be unlikely to 

share their experiences because they are ashamed to have made a poor medical decision or 

because their experiences provide little new information to a broadly sceptical audience. If this is 

the case, then the explanatory scope of the theory presented here is quite narrow and it cannot 

explain why outcome expectancies for conventional, commonly used medicines are unduly 

positive. The first and main objective of this study, research question one (RQ1), is to test the 

generality of the reporting bias by examining if the reputation of conventional treatments (i.e., 
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treatments widely supported by national health agencies and commonly prescribed by medical 

doctors) is also unduly positive. 

The second objective is to assess whether the magnitude of this distortion is similar 

across pairs of treatments targeting similar health problems (RQ2). If the reporting bias has a 

consistent effect -- that is, it biases the reputation of all treatments by a similar degree -- then it 

will have little effect on the average rank order of treatments. If treatment A is more effective 

than treatment B, then treatment A will also have a better reputation than treatment B, though 

both will have a positively distorted reputation. On the other hand, if the reporting bias acts more 

strongly in some circumstances than in others, the reputation of treatment B might be more 

positive than the reputation of treatment A. If, as one might expect, people apply the rule choose 

the treatment with the best reputation, then subtle differences in the extent to which reporting 

biases operate may have a substantial effect on people's treatment choice. Hence a sub-goal of 

this paper is to examine if the reputational distortion is similar across treatments. 

Both the treatment's true beneficial effect and the reporting bias will contribute to its 

reputation. The third research question concerns the relative size of these factors. Even if the 

reporting bias is present, it might be relatively minor and the reputation might largely be a 

function of its true therapeutic effect. Although it would be interesting to compare the 

consequences of the reporting bias to the consequence of the placebo effect, regression to the 

mean, and other factors discussed by Lilienfeld et al. (2014), this is not possible in the present 

analysis because none of the trials include a no-treatment control and, hence, we do not know 

what would have happened to the patients had they been left untreated. The third research 

question is how large is the consequence of the reporting bias relative to the size of the 

treatment's therapeutic benefit (RQ3). 
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In many online reviews, people report telling friends, family, or colleagues about their 

medical treatment. For example, reviewers might report "As I've been telling everyone at work, 

this drug just does not work!!". An additional novel prediction derived from the reporting bias 

theory is that people who have average or negative outcomes should be less likely to report 

information sharing than people who have a positive outcome. This fourth and final research 

question (RQ4) is important because it bridges offline and online information sharing and would 

-- if supported -- lend weight to the argument that the reporting bias is a generally important 

process in shaping the reputation of medical treatments. 

Methods 

Design Overview 

Some online retailers allow people to write a review of products they have purchased. If 

people who have better outcomes are more likely to tell other people about their experiences, we 

might also expect them to be more likely to write an online review. The approach of this paper is 

to test whether medical outcomes reported in Amazon.com (a large international online retailer) 

reviews are representative of the outcomes of the same products reported in clinical trials. If no 

reporting bias exists, the average outcomes reported in online reviews should be broadly similar 

to the average outcomes reported in the scientific literature. Amazon posts all reviews that meet 

basic criteria (e.g., relate to the product, does not contain personal information). 

Data Collection 

We sought out three medical products that met the following criteria. First, the products 

had more than 300 online reviews. Assuming that one in four reviews have analysable data and 
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that online review averages are approximately 0.5 standard deviations (SDs) more positive, this 

will give a greater than 80% power to detect a difference at the 𝑝 < .05 threshold of statistical 

significance. Second, the reviews contained specific quantitative information about the 

reviewer’s health. Pain medication, for example, would fail to meet this criterion because 

changes in pain are generally expressed in qualitative terms. Third, high quality, scientifically 

collected data on the true effect of the treatments were available. Randomised controlled trials 

(RCTs) and longitudinal studies allow us to accurately estimate the average outcome when 

someone begins treatment. Finally, products were orthodox medical treatments. 

Three products met these criteria: Benecol Smart Chews Caramels (made by Raisio) and 

Nature Made CholestOff (PharPharmavite), two cholesterol reduction treatments, and Alli 

Orlistat (GlaxoSmithKline), a fat absorption inhibitor for people seeking to lose weight. It is 

likely that many other treatments also meet these criteria, but these are the three that were 

discovered first while searching a range of medical products on Amazon.com. Data on the Atkins 

diet from de Barra et al. (2014) were also reanalysed for comparative purposes (see de Barra, 

2014 for data access). All data came from Amazon.com, the US version of the on-line retailer. 

No other medical products were assessed. 

Estimates of "true effects" were derived from several clinical trials, the details of which 

can be found below. Baseline-versus-endpoint differences rather than control-versus-baseline 

differences were extracted from these trials. This enables a fair comparison between the 

Amazon.com data which is also derived from baseline-endpoint differences. Thus change scores 

from the Amzon.com data and clinical data reflect regression to the mean, placebo effects etc. as 

well as the true effect of the treatment.   
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Treatments 1 and 2: Benecol and CholestOff. Nine hundred and eight reviews of 

cholesterol reduction products written on or before March 18th, 2015 were included (Benecol 

𝑁 = 526, CholestOff 𝑁 = 382). Information about blood lipid levels and duration of drug use 

was extracted from each review. For example, in this review: 

I have been using this product for 2 years. Within the first 3-4 months my cholesterol was 

down 30 points. Just got cholesterol tested last week: down from 245 to 196. 

the total cholesterol change was -49 mg/dL and the duration was two years. If, as in the case 

above, change over two time periods was presented, only the longer period was used. If the 

review reported lipid changes for two or more individuals ("my wife and I started using this 

product..."), only the author's change was recorded. In 161 of the reviews, the reviewer 

mentioned either a change in total cholesterol or a pre- and post- treatment cholesterol level. 

Low-density lipoprotein (LDL) change was mentioned in 50 of the reviews. 

Lipid changes in Amazon reviews were compared with lipid changes reported in a 

systematic review (Wu et al., 2009). The average baseline lipid level and the average follow-up 

lipid level were extracted from each relevant study arm (Devaraj, Autret, & Jialal, 2006; Devaraj, 

Jialal, & Vega-López, 2004; Doornbos, Meynen, Duchateau, Van Der Knaap, & Trautwein, 

2006; Goldberg et al., 2006; Jauhiainen, Salo, Niittynen, Poussa, & Korpela, 2006; Korpela et 

al., 2006; Maki et al., 2001; Matvienko et al., 2002; Mensink, Ebbing, Lindhout, Plat, & 

Heugten, 2002; Miettinen, Puska, Gylling, Vanhanen, & Vartiainen, 1995; Polagruto et al., 2006; 

Quílez et al., 2003; Seki et al., 2003; Woodgate, Chan, & Conquer, 2006). Four of the 20 studies 

reported in Wu et al. (2009) were excluded: in two cases the original study report was 

unavailable and in two cases the intervention involved substantial dietary changes, over and 
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above stanols/sterols (Hallikainen & Uusitupa, 1999; Jones, Ntanios, Raeini-Sarjaz, & Vanstone, 

1999). 

Treatment 3: Orlistat. In the 767 reviews of the weight-loss drug Orlistat written on or 

before 28 February, 2015, a specific weight change could be calculated in 250 cases. In some 

reviews, duration of treatment was expressed in terms of bottles purchased rather than time. 

Given that Alli guidelines suggest one pill with each fatty meal, people were assumed to use two 

pills per day. As in the blood lipid drugs above, the longest time period was used when two were 

presented in the review and if data from two or more people were presented in a single review, 

only information from the author was extracted. 

Comparison trials were selected from a recent systematic review of drug treatments for 

weight loss (S. Z. Yanovski & Yanovski, 2014). Two of the included trials examined the relevant 

drug (Orlistat) at the relevant dosage (60mg) (Hauptman, Lucas, Boldrin, Collins, & Segal, 2000; 

Rössner, Sjöström, Noack, Meinders, & Noseda, 2000). Where necessary, results were extracted 

from figures using an online graph digitiser (http://arohatgi.info/WebPlotDigitizer/app/). 

Percentage changes were converted to absolute changes by multiplying by average weight at 

time zero. Weight at time of diet onset rather than weight during run in period was taken as 

baseline. 

Data Analysis 

Research Questions 1 and 2. RQ1 (Is there a mean difference between Amazon review 

outcomes and RCT outcomes?) and RQ2 (Is that difference consistent across medical 

treatments?) were answered using ANOVA models. An estimate of "true" treatment effect was 

created by collating RCT results from different trials using a meta-analysis. Owing to well-

http://arohatgi.info/WebPlotDigitizer/app/
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recognised problems in the biomedical literature (e.g., under-reporting of negative results, 

outcome switching, testing of products on samples of people where maximum effect is expected 

rather than testing on representative users, see Charlson & Horwitz, 1984; Dwan, Gamble, 

Williamson, & Kirkham, 2013), these estimates are likely to be an overestimate of the true effect 

and, hence, they make for a conservative test of the hypothesis. Note that secular trends or 

regression to the mean result in general improvement in patient condition, independent of 

treatment. It is appropriate, therefore, to compare the Amazon review weight and cholesterol 

changes to the baseline versus endpoint difference rather than to the control versus intervention 

difference. The comparison of RCT outcome versus Online outcome answers RQ1 while the 

interaction effect (CholestOff v Benecol or Orlistat v Atkins) answers RQ2. 

Research Question 3. The reputation of a treatment is a function of both the reporting 

bias and the therapeutic effect, but what is the relative importance of these two factors? To 

answer this question, the treatment's true benefit was calculated by taking the difference between 

the treatment group and control group at endpoint and expressing this difference in standard 

deviations of baseline variability. Where multiple estimates were available, an average weighted 

by sample size was used. To calculate the reputational distortion due to reporting, the difference 

between intervention group at endpoint and the average review outcome at endpoint was 

measured, which was also expressed in standard deviations of baseline RCT variability. To 

estimate the relative importance of therapeutic benefit and reporting bias, these two effect sizes 

were compared. 

Research Question 4. An R script that scanned every review for sentences containing 

words/strings relating to the act of sharing (told, tell, inform, advi, know) or the likely target of 

sharing (wife, husband, friend, colleague, family, brother, sister, everyone, no one, everybody, 
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nobody, anyone) was developed to identify instances of information sharing (Rinker, 2013). For 

example, "advi" identified sentences containing the words “advice”, “advised,” and so on. Each 

of these sentences was then examined manually to confirm that it described information sharing. 

Any past or planned information sharing (e.g., "I can't wait to tell my dr what I did INSTEAD 

OF Lipitor") was coded as a share. Only information directed towards a third party, rather than at 

the reader, was included. Buying the product for someone was counted as information sharing, as 

was recommending that others to buy/use or not to buy/use it. A randomly selected 10% of the 

reviews were manually examined to ensure that the algorithm was reliably identifying 

information sharing. In these 164 reviews, there were two discrepancies; in both cases the 

manual coder missed an instance of sharing that the algorithm identified. 

Results 

The supplementary materials include an overview of the data and describe analyses that 

suggest that fraudulent reviews are rare/absent in this dataset. Briefly, (1) the outcome 

distributions are very similar in both RCTs and online reviews suggesting similar data generation 

processes (e.g., weight loss) rather than distinct data generation processes (e.g., weight loss v 

fraud) and (2) a propitiatory "fake review" identification algorithm suggests that between 90% 

and 100% of reviews are reliable. All datasets have been placed in a repository (de Barra, 2016).  

Research Questions 1 and 2 

Cholesterol reduction. The average cholesterol change reported by Benecol users was -

45.32 mg/dl (SD = 33.08). As Figure 1 indicates, this cholesterol change is substantially larger 

than that reported in any of the nine comparable trials (range: -24.00, -9.28 mg/dl). Average 
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cholesterol change listed by CholestOff reviewers was -30.37 mg/dl (SD = 41.09), again larger 

than any comparator trial (range: -17.40, -3.48 mg/dl). 

 

Figure 1 Cholesterol Change reported in Clinical Trials and Amazon.com Reviews. 
Mean change (i.e. baseline v endpoint) in blood lipids as reported in Amazon.com reviews 
and in clinical trials. Dot size is proportional to sample size. LDL = Low-density lipoprotein. 
PSE = phytosterol sterol ester. PS = phytosterol, plant sterol or plant stanol. 

 

A meta-analysis of studies in Figure 1 indicates that cholesterol change while using 

Benecol is -13.83 mg/dl (95% CI: -17.75, -9.92) and the change for CholestOff users is -12.52 

mg/dl (95% CI: -16.23, -8.81). These estimates are derived from before and after comparisons in 

the intervention groups using a fixed effects model. Heterogeneity was low in both analyses 

(CholestOff I2: 0.00%, 95% CI: 0.00%, 50.33%, Benecol I2: 21.52%, 95% CI: 0.00%, 62.53%). 
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Using a two-way ANOVA, average cholesterol change as reported in Amazon reviews was 

compared to change estimated from the meta-analysis. Results indicate a strong overall effect of 

data source, F(1,904) = 54.92, p < .01 , 𝜂2 = .057, that is, cholesterol reduction was substantially 

larger in online reviews (see RQ1). There is a statistically significant interaction effect between 

data source (RCT vs. Amazon review) and treatment (Benecol vs. CholestOff), F(1,904) = 4.2, p = 

.04, 𝜂2 = .005. This is consistent with the hypothesis that the reporting bias distorts the reputation 

of Benecol more strongly than it does the reputation of CholestOff (see RQ2). 

Average LDL changes show a similar pattern. The change reported in Benecol 

reviews, -30.97 mg/dl, SD = 17.24, was larger than that reported in any trial (range: -26.00, -8.42 

mg/dl). In sterol/stanol trials, LDL change range (-23.20, -2.71) mg/dl, did not include the 

average loss reported in the online reviews: -27.40 mg/dl, SD = 34.71. However, because few 

reviewers recorded specific LDL scores (Benecol N = 30, CholestOff N = 20), no further analysis 

was performed. 

Weight changes. Is average weight loss in online reviews statistically different to weight 

loss in RCTs at two to three months and at five to seven months? These periods were selected 

because all the relevant clinical trials reported participant outcomes during one (Hauptman et al., 

2000) or both (Foster et al., 2003; Gardner et al., 2007; Rössner et al., 2000; Truby et al., 2006) 

of these periods. Where more than one clinical trial was available, the changes in weight were 

combined using a meta-analysis: Study effects were homogeneous for Orlistat trials at five to 

seven months (I2 = 0.00%, 95% CI: 0.00%, 0.00%) and Atkins trials at five to seven months (I2: 

0.00%, 95% CI = 0.00%, 0.00%); heterogeneity was present for Atkins trials at two to three 

months (I2 = 70.97%, 95% CI = 1.25%, 91.47%). Online review scores were averaged over the 

same period. Only one trial assessed Orlistat weight change at two to three months.  
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Figure 2. Weight Change reported in Clinical Trials and Amazon.com Reviews. 
Amazon.com review weight change is depicted by the data points (individual reviews) and 
by the loess smoothened unbroken line and shaded 95% CI area around this estimate. 
Broken lines depict two comparison randomised controlled trials (baseline versus 
endpoint changes). 

 

Results of the two ANOVA analyses suggest that weight loss was substantially larger 

among the online reviewers than in the clinical trial participants (two to three months: F(1,562) = 

4.32, p = .04, 𝜂2 = .008; five to seven months: F(1,668) = 19.21, p < .01, 𝜂2 = .028). The frequency of 

weight loss was larger in the Atkins diet than with the Orlistat medication, but this difference 

appears to be accounted by true differences in treatment effect rather than by differential 

distortion (i.e., there were no interaction effects, see RQ2: two to three months: F(1,562) = 0.49, p 

= .48, 𝜂2 = .001; five to seven months: F(1,668) = 2.46, p = .12, 𝜂2 = .004). 

Research Question 3 

Treatments effects (i.e., difference between control and intervention group changes) for 

Orlistat, Benecol and CholestOff were -0.14, -0.41 and -0.52 SDs of baseline variance, 
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respectively. The reputational distortion for the same three treatments (i.e., the online average 

minus the RCT intervention group endpoint average) were -0.59, -2.58, and -1.55. Thus, for 

Orlistat, positive reputation derived from the reporting bias is about four times larger than 

positive reputation derived from the treatment's pharmacological effect. For CholestOff and 

Bencol, the reporting bias enhancement to reputation is three and six times larger than 

enhancement to reputation that stems directly from the drug action, respectively. 

Research Question 4 

In 79 of the 1596 Benecol, CholestOff, and Orlistat reviews, an instance of information 

sharing was identified. Because information sharing was reported rarely, its relationship to 

number of stars rather than to weight / cholesterol change was examined. Stars are a grading 

system in which product reviewers give more stars to products they are satisfied with (possible 

range: one to five). This increases the sample size because all reviewers include a star rating but 

only a subset include a weight or cholesterol change. The data were analysed using an ordered 

logistic regression in which treatment kind, duration, and sharing (binary, share vs no share) 

were used to predict number of stars. Reviews that included information sharing were 0.55 stars 

more positive than reviews without a mention of information sharing (95% CI: 0.07; 1.07). 

Discussion 

People with positive treatment outcomes are more heavily represented in online reviews 

than in RCTs. This effect is large and it is present in all three new medical products assessed 

here. This result is consistent with the hypothesis that people with more positive outcomes are 

more inclined to write reviews of medical products than people with average or poorer-than-
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average outcomes, and it suggests that the reporting bias documented in de Barra et al. (2014) 

generalises to conventional medicines. 

At a time where online user-generated health information is becoming influential in 

people's health decision making (O’Neill, Ziebland, Valderas, & Lupiáñez-Villanueva, 2014) 

this over-representation of good outcomes has important implications: people who form beliefs 

and make decisions based on these outcomes are likely to engage in medical overuse. 

Inconsistent Distortion? 

These results tentatively suggest that the difference between the real benefit and the 

reputed benefit is not consistent across treatments: Benecol's reputation is more distorted than 

CholestOff's. This variability in reputational distortion may be important. For much of human 

history -- and in some cases today -- choices between medical products are mainly based on 

observations and word-of-mouth information rather than on the results of carefully controlled 

trials or meta-analyses (Evans et al., 2010). The current study indicates that some treatments will 

appear better than others for reasons besides true differences in effectiveness. Given that the 

reporting bias has a three to six times larger influence on the drugs' reputation than the medicinal 

benefit, it is not surprising that the reputation is influenced by differences in the reporting bias. 

During the long-term evolution of folk-medicine and other non-scientific medical cultures, 

medical innovations that benefited health may have been less important than medical innovations 

that effectively exploited this distortion. Treatments good at appearing effective will spread at 

the expense of treatments that actually are effective. 
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Sampling Errors versus Cognitive Biases 

This study adds to a body of literature that implicates sampling biases rather than 

cognitive biases as the source of erroneous belief (Fiedler, 2000). According to this perspective, 

beliefs are formed in a way that are analogous to how pollsters assess support for electoral 

candidates -- by sampling a subset of the total population of relevant events (Galesic, Kause, & 

Gaissmaier, 2016). But as in electoral sampling the observed sample is often unrepresentative of 

the total population. For example, Galesic, Olsson, and Rieskamp (2012) found that people's 

tendency to overestimate how much better (or worse) off they are relative to others is a 

consequence of "convenience" sampling the set of people within one's own unrepresentative 

social milieu. This analysis of online reviews suggests that the treatment-outcomes available as a 

sample are also unrepresentative and thus the findings provide a parsimonious explanation for 

some cases of health-related unrealistic optimism, also known as the positive illusion (Shepperd, 

Waters, Weinstein, & Klein, 2015). It is likely that sampling biases -- enabled by processes like 

the reporting bias described here -- contribute to many of the misbeliefs in medicine's chequered 

history (Wootton, 2006). 

Cultural Evolution of a Medicine’s Reputation 

Echoing the present findings, several diffusion chain experiments found that positively 

valenced information is transmitted more readily than neutral information (Bebbington, 

MacLeod, Ellison, & Fay, 2016). Yet, the same and other studies (Fessler, Pisor, & Navarrete, 

2014; Moussaïd, Brighton, & Gaissmaier, 2015) found that negative/risk information also has a 

survival advantage. Why then are negative outcomes not also over-represented in the Amazon 

dataset? Diffusion chain experiments are an imperfect model of the processes described here. A 
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would-be Amazon reviewer is not deciding whether to relay some Nth hand information or not, 

but instead is deciding whether to describe a health experience which he or she has chosen to 

undergo. The motives for sharing may be different. But these diffusion chain experiments do 

suggest that reputation of these treatments will undergo further changes if it is relayed down 

through several generations of people. This negativity bias, coupled with other content biases 

(Miton & Mercier, 2015), may explain the unduly negative reputation of vaccines among some 

individuals. 

Under what conditions is the information circulating about a medical treatment 

maximally distorted? The answer to this question depends on the psychological, biological, and 

social processes that cause people with positive outcomes to tell more people about their 

treatment. The data presented here sheds little light on this issue, but it is worth speculating. 

Perhaps people prefer not to dwell on past periods of sustained ill health. A period of recovery, 

in contrast, is a more positive experience and, hence, people may be more motivated to discuss it 

with others. Alternatively, telling people that your treatment failed involves telling them that you 

are still sick, and this is something people may want to avoid. A positive outcome, on the other 

hand, conveys the message that one is now free from the disease. Some people may believe that 

choosing an ineffective treatment may reflect poorly on their own decision making capacity and 

hence may be less inclined to share "failures" than "successes". It is notable that this distortion of 

reputation is not limited to unconventional and alternative medicines: Orlistat and plant 

stanols/sterols (Benecol/CholestOff active ingredient) are indicated for weight loss and 

dyslipidemia, and are promoted by NHS trusts and the British Dietetic Association. 

Perhaps the explanation for the distorted reputation rests less on features of human 

psychology and more on features of the disease process. One straightforward possibility is that 
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when people continue to have poor health, they remain in a depressed state, with low mood and 

little energy or capacity to engage in information sharing. However, high cholesterol does not 

generally result in ill health in and of itself. Another possibility is that people with positive and 

negative outcomes tell others at the same rate while using the treatment, but that people with 

negative outcomes tend to cease treatment more quickly. Conceptually, this is somewhat like 

Tanaka et al's (2009) notion that harmful treatments that prolong a disease can be more effective 

in spreading because they are displayed to others for a longer time than more effective 

treatments. However, for the chronic diseases examined here, it is more likely that people will 

continue rather than abandon treatments with seemingly positive effects (Colombo et al., 2014; 

Grandy, Fox, Hardy, Group et al., 2013). 

Limitations 

One important limitation of this study is that people who buy products online and people 

who participate in clinical trials may be different for reasons other than the reporting bias. We 

might expect these differences to work against the hypothesis. RCTs of commercial health 

products are themselves subject to a publication bias, with "positive" outcomes more likely to be 

published (Dwan et al., 2013). Furthermore, restrictive eligibility criteria mean that the treatment 

is tested on the sample where it is most likely to have an effect, rather than on the sample most 

representative of future users (Charlson & Horwitz, 1984). 

Does the reporting bias operate in health communication among friends, family, and 

colleagues as well as in online medical product evaluation? In the reviews presented here, people 

who were more satisfied with the product were more likely to describe instances where they told 

other people about the product (see also King et al., 2014). Nevertheless, tests which confirm or 
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disconfirm this reporting bias in other health communication media (e.g., web forums) or in real-

world communication would be a welcome addition to the literature. 

The medical treatments studied here were not selected in a systematic fashion. Rather, 

appropriate criteria were devised and then the Amazon health section was scanned to find 

qualifying treatments. Undoubtedly several other treatments meet these criteria, and, although 

unlikely, these results could logically be a result of chance or some selection bias. In future, 

automated analysis of multiple online medical products should enable a more comprehensive 

analysis.   

Conclusions 

These results replicate and extend de Barra et al. (2014) by showing that people with 

positive outcomes are more likely to write reviews of weight loss and cholesterol reduction drug 

treatments. This differential tendency to write reviews results in a large distortion of the 

reputation of medical treatments. This finding has implications for health-care: when people rely 

on word-of-mouth information to evaluate and choose between health products, they are likely to 

get an unduly positive impression of the curative value of that treatment. A distorted perception 

of health outcomes may lead to the selection of health treatments that would, were it not for this 

distortion, be avoided. This communication pattern may be one explanation for the widespread 

overestimation of treatment benefits (Hoffmann & Del Mar, 2015). 
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