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ABSTRACT

We present a novel system for gait recognition based on holo-
scopic rather than conventional imaging. The system is based
on a novel gait template, the Holoscopic Gait Energy Image
(HGEI), that is constructed from holoscopic rather than con-
ventional images. Due the holoscopic recording approach, the
proposed template captures richer information and the resul-
tant system has increased capabilities. The proposed system
is compared to the conventional approach for gait recognition
using a newly recorded database and is experimentally shown
to yield favourable results.

Index Terms— Gait, recognition, holoscopic, imaging,
3D, silhouette.

1. INTRODUCTION

Although the field of gait recognition [1] has seen significant
advances in the past few years, there are still several chal-
lenges that have to be met in order to enable the reliable op-
eration of gait recognition technology outside the laboratory.
Such challenges have to do with the ability to operate effec-
tively, regardless of the age, emotional state, and clothing of
the observed subjects, as well as to deliver satisfactory recog-
nition performance in outdoor areas, where occlusions and
complicated backgrounds are to be expected.

An imaging methodology that can contribute to meeting
some of the current challenges in gait recognition and enable
the widespread use of gait as a reliable biometric is the de-
velopment of 3D holoscopic cameras, where a 3D object is
imaged through an array of micro lenses [2]. Each micro lens
in the lens array captures a 2D elemental image of the object
from a unique perspective that depends on the position of the
lens in the lens array. The availability of multiple images,
captured from slightly different viewpoints, enables the sub-
sequent reconstruction of 3D objects. This approach, inspired
from the vision system of the fly, is fundamentally different
from methods that deploy a simple depth map [3].

The general framework of automatic gait recognition con-
sists of subject detection, feature extraction, and classifica-
tion. There are mainly two kinds of gait features, namely
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Fig. 1. Raw holoscopic image representation.

model-based and model-free features. Model-free features
are normally acquired from binary silhouettes of the walk-
ing subject. Using walking silhouettes, distinctive gait pat-
terns can be extracted [4, 5] and used as gait signatures. The
most popular model-free gait representation is the Gait En-
ergy Image (GEI) [4], which averages silhouettes in a gait
cycle. Although the averaging operation apparently discards
gait dynamics, the GEI is a very effective gait representation.

In this paper, we focus on a model-free gait recognition
approach, which relies on holoscopic rather than conventional
silhouettes. Gait information is captured using a simple lens
array that is attached on a conventional camera and does not
impose increased equipment requirements on the architecture
of the system. Using the holoscopic silhouettes, we con-
struct a holoscopic template, the Holoscopic Gait Energy Im-
age (HGEI), which is subsequently used for recognition. Due
the holoscopic recording principles, our proposed holoscopic
template captures richer information than the conventional
GEI. Furthermore, the new system has increased human de-
tection and background subtraction capabilities, which are ex-
pected to be particularly useful in cases of complex scenes
captured in crowded environments where occlusion or com-
plicated backgrounds are common.

The paper is organized as follows. The holoscopic rep-
resentation is presented in Section 2. The construction of the
holoscopic templates is described in Section 3, while the clas-
sification methodology is presented in Section 4. Experimen-
tal evaluation is presented in Section 5 and, finally, conclu-
sions are drawn in Section 6.



2. HOLOSCOPIC REPRESENTATION

Fig. 2. A holoscopic image (left) and its constituent viewpoint
images (right).

Holoscopic image recording is achieved by means of an
array of lenses, where every lens records a unique 2D image
of the 3D object. The representation of a holoscopic image
is graphically explained in Fig. 2. On the right-hand side
of Fig. 2, the constituent unique 2D images, captured from
slightly different perspectives, are shown as images of low
resolution. These images are the viewpoint images and their
number depends on the design of the lens array. On the left-
hand side of Fig. 2, the constituent images are re-arranged in
a full image representation that resembles a 2D image of full
resolution. An example of such an image is shown in Fig. 1.

The detail of a holoscopic representation is shown in
Fig. 3(b). The original holoscopic viewpoint representation,
shown in Fig. 3 (a), comprises29× 29 viewpoint images. As
the number of viewpoint images increases, their resolutions
decrease. However, the deployment of silhouette-based fea-
tures in our architecture simplifies the operation of the system
and makes it less critically dependent on the resolution of the
constituent viewpoint images.

3. HOLOSCOPIC GAIT TEMPLATE
CONSTRUCTION

In order to construct a holoscopic template for recognition
purposes, we first extract binary holoscopic silhouettes from
the recorded holoscopic image sequences. The holoscopic sil-
houettes are subsequently aligned in the centre of the frame
and they are cropped in order to include only the walking sub-
ject. The output of this process is graphically shown in Fig.
4.

Following silhouette extraction, a standard method (e.g.,
like the one in [6]) is used for partitioning the sequence of
silhouettes into gait cycles. Similar to the construction of the
conventional GEI, holoscopic silhouettes in a gait cycle are
subsequently used for the construction of a Holoscopic Gait

(a)

(b)

Fig. 3. Structure of a 3D Holoscopic image, (a)29× 29 array
of viewpoint images, (b) Zoomed6× 6 part of the array.

(a) (b)

Fig. 4. Holoscopic silhouette. (a) Original, (b) Centered and
cropped.

Energy Image (HGEI) by means of averaging:

HGEI(x, y) =
1

T

T∑

t=1

ht(x, y), (1)

whereT is the number of holoscopic silhouettes in a gait cycle
andht represents the holoscopic silhouette at timet. This
combination of multiple holoscopic silhouettes into a HGEI
template is shown in Figure 5.

A GEI and a HGEI corresponding to the same walking
sequence are shown in Fig. 6. Despite being a binary tem-
plate, the HGEI captures richer information due the its ability
to capture elements of the observed subject’s 3D structure.
This approach is substantially different from that used in con-
ventional GEI, which mainly captures the temporal imprints
of human contours and for this reason it would lead to less
effective gait representations. It has to be noted that, in this
work, we endeavour to assess the inherent gait representation
capacity of the holoscopic template and we do not investigate



Fig. 5. Construction of Holoscopic GEI (right-most image) using holoscopic silhouettes.

additional feature extracting techniques, such as Linear Dis-
criminant Analysis [7] or Deep Neural Networks [8], which
can be applied in conjunction with template-based gait repre-
sentations.

(a) (b)

Fig. 6. (a) Conventional GEI, (b) Proposed holoscopic GEI.

4. GAIT TEMPLATE CLASSIFICATION

For classifying the templates constructed as above, we per-
formed template matching by trying minor horizontal dis-
placements to compensate for the fact that direct matching
is rendered ineffective in cases where reference and test se-
quences correspond to different walking conditions. Such
displacements have been seen to be useful in the context of
gait recognition [9] in situations where carried bags or heavy
clothing shift the centre of the template and result in distances
that do not reflect the true likeness between the observed sub-
jects. Considering these, for both GEI and HGEI, the distance
between theith reference templateRi, i = 1, . . . , N and the
jth test templatePj is calculated as

Dij(δx) =
∑

(x,y)

(R(x+ δx, y)− P (x, y))2 (2)

whereδx is the applied horizontal displacement. For each
comparison between reference and test templates, we tried the
above distance calculation for displacementsδx = −5, . . . , 5
and we kept the minimum, i.e., using the theδx that yielded
the minimum distanceD̃. The search for minimum dis-
tance along a1D line is reminiscent of disparity calculation

in stereo imaging or displaced frame difference in motion
estimation [10]. Due to the fact that only horizontal displace-
ments were considered, the distance calculation based on eq.
(2) above remains extremely fast and imposes negligible ad-
ditional computational load on the recognition process. Once
all minimum distances̃Dij between thejth test template and
reference templatesi = 1, . . . , N are calculated, the indexi∗

of the recognized subject is determined as

i∗ = argmax
i

D̃ij (3)

As we will see in the ensuing section, the HGEI template
offers performance advantages in comparison to the conven-
tional approach.

5. EXPERIMENTAL RESULTS

For the experimental evaluation of our methodology, we
recorded a small detabase of holoscopic gait sequences us-
ing seven volunteering subjects. The seven subjects were
recorded in three different conditions, i.e., without carrying
objects, carrying a bag on their left shoulder, and carryinga
bag on their right shoulder. We then compiled a Reference set
of gait representations, which includes the subjects walking
without carrying objects, as well as two test (Probe) sets in
which the subjects were carrying a bag on their left (Probe A)
or right shoulder (Probe B).

For each recorded sequence we constructed a conven-
tional Gait Energy Image (GEI) as well as our proposed
Holoscopic GEI (HGEI). As expected when using a small
number of subjects observed in lab conditions, recognition
performance was 100% for both GEI and HGEI, which did
not lead to conclusive results. For this reason, we made the
recognition problem harder by using portions of the GEI and
HGEI for recognition, i.e., truncated templates from which
the upper portion of the full template was left out.

As seen in Fig. 7, the holoscopic approach yields im-
proved results in comparison to the conventional GEI and ex-
hibits very promising performance. Interestingly, the perfor-
mance gains of the HGEI over the GEI are more pronounced
when the part of the template that represents the carried bag
is included in the truncated template that is used.

It is important to note that the holoscopic approach en-
dows the proposed scheme not only with the capability for
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Fig. 7. Comparison between HGEI and GEI when portions of
the templates are left out, (a) Probe A, (b) Probe B. Blue bars
represent the HGEI and yellow bars represent the GEI (best
viewed in color).

superior recognition performance but also with functionalities
that would be very valuable in a real-life recording situations,
where the background is not uniform or the scene is crowded
and there are occlusions. In such cases, the depth estimation
that the holoscopic representation allows will enable the sys-
tem to perform more accurate extraction of the target subject
leading to further performance gains.

6. CONCLUSION

We proposed a novel system for gait recognition based on
holoscopic rather than conventional imaging. The new sys-
tem is based on a simple array of lenses that is attached on
conventional cameras and, therefore, it does not impose in-
creased equipment requirements. The system is based on
a holoscopic template, the Holoscopic Gait Energy Image
(HGEI), that is constructed from holoscopic rather than con-
ventional images. Due the holoscopic recording approach,

the new system has increased background subtraction capa-
bilities, which are particularly useful in cases of complex
scenes captured in crowded environments where occlusion or
complicated backgrounds are to be expected. The system is
compared to the conventional approach for gait recognition
using a newly recorded database and is experimentally shown
to produce very favourable results.
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