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Selection of a representative set of features is still a crucial and challenging problem in machine learning. The
complexity of the problem increases when any of the following situations occur: a very large number of attributes
(large dimensionality); a very small number of instances or time points (small-instance set). The first situation
poses problems for machine learning algorithm as the search space for selecting a combination of relevant
features becomes impossible to explore in a reasonable time and with reasonable computational resources. The
second aspect poses the problem of having insufficient data to learn from (insufficient examples). In this work,
we approach both these issues at the same time. The methods we proposed are heuristics inspired by nature
(in particular, by biology). We propose a hybrid of two methods which has the advantage of providing a good
learning from fewer examples and a fair selection of features from a really large set, all these while ensuring a
high standard classification accuracy of the data. The methods used are antlion optimization (ALO), grey wolf
optimization (GWO), and a combination of the two (ALO-GWO). We test their performance on datasets having
almost 50,000 features and less than 200 instances. The results look promising while compared with other
methods such as genetic algorithms (GA) and particle swarm optimization (PSO).

1. Introduction

One of the current challenges in feature selection is to deal with
problems that involve a large number of features, sometimes in the
order of millions. It is evident that a significant amount of these fea-
tures are redundant and can be eliminated from the final classification
process. It is also well known that fewer attributes increase the classi-
fication accuracy. From an experimental point of view, these attributes
or features represent measurements of a specified entity. It is, of course,
desirable to know which of these measurements have an effect on the
final analysis. Reproducing the whole set of measurements can often
be costly and time-consuming [1]. This aspect is usually referred to as
high-dimensionality of the data. On the other hand, some experiments
are very difficult to reproduce entirely, both due to cost and time (it
may sometimes take years to get a data instance or a data time point,
for example, biological experiments where a data instance could be an
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experiment with an animal over the duration of a number of years) [2].
This determines some datasets to have fewer instances. We refer to this
aspect as a small-instance set.

In the field of machine learning, feature selection is one of the
most studied problems. There exist a large amount of work dealing
either with high-dimensional feature selection problems or with small-
instance set problems. It is far more complex and challenging to deal
with both these aspects at the same time and this for two reasons: the
search space becomes too large to allow exploration of each state and
the small number of instances do not provide sufficient examples to
learn from Ref. [3].

Evolutionary computing (EC) and population-based algorithms
adaptively search the feature space by using a set of search agents that
interact in a social manner to reach the optimal solution [4,5]. EC meth-
ods are inspired by the animal social and biological behavior in nature
like wolves, antlions, dragonflies, spiders, and so on, in a group [6].
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Cuckoo search (CS) is a heuristic search technique applied for
numerous optimization problems [7]. Bat algorithm (BA) is a meta-
heuristic technique that uses the echolocation behavior [8]. The water
cycle algorithm (WCA) is a novel metaheuristic optimization technique
for constrained optimization in engineering design problems [9]. The
ordinary differential equations (ODEs) is a novel algorithm applied for
solving several engineering problems. The aim of this technique is to
minimize the weighted residual (error) function of the ODEs [10].

Several variants use a binary version of bio-inspired algorithms
[11-13] and adapt and use them in different applications [14-20].

In general, approximation methods are well suited for feature selec-
tion problems and have been applied in the past with certain success.
Among those, bio-inspired heuristics show potential in proving a good
classification accuracy. These methods transform the feature selection
problem into a multiobjective optimization problem with two crite-
ria: maximize the classification accuracy and minimize the number of
selected features [21].

In this work, we investigate the applicability of two methods -
antlion optimization (ALO) and grey wolf optimization (GWO)- for fea-
ture selection and, based on the advantages offered by each method,
we propose a combination of them in a new algorithm called ALO-
GWO. In the hybrid version, we exploit GWO’s global search ability
to find the optimal solutions (good exploration of the search space)
and ALO’s local search performance to get the real optimum (good
exploitation of the already found solutions). It is important to ensure
a good exploration/exploitation balance in the optimization process.
The hybrid ALO-GWO avoids premature convergence and provides an
efficient search of the feature space.

These methods are tested and evaluated on 27 different datasets.
The first datasets have a balance between the number of features and
the number of data instances and have the scope to test the applicabil-
ity of our bio-inspired methods and the tuning of the parameters. We
then perform a more challenging test on datasets having up to almost
50,000 features and fewer than 200 instances. These complex datasets
are microarray experiments and image processing data. The results are
compared with the ones obtained by genetic algorithms and particle
swarm optimization.

Details regarding the techniques used are described in Section 3
and Section 4. Moreover, the comparison of the results is presented
in Section 5. The work concluded the results and propose further direc-
tions to investigate in Section 6.

2. Related work

Various heuristic techniques mimic the behavior of biological and
physical systems in nature and prove to be robust methods for global
optimization. Some of them have been applied to feature selection
(modeled as an optimization problem) and this section summarizes
the contributions. A feature selection method based on genetic algo-
rithm (GA) using a fuzzy set as fitness function has been proposed in
[22]. With the same fitness function, particle swarm optimization (PSO)
achieves better performance than GA algorithm as evident from [23]. A
multi-objective method using the non-dominated sorting genetic algo-
rithm (NSGAII) has been applied to feature selection, but the perfor-
mance of the method has not been compared with any other feature
selection algorithms. Hybrid NSGAII with rough sets is used as feature
selection technique for microarray gene expression data [24].

A multi-objective method for feature selection based on genetic pro-
gramming (GP) filter model has been applied to binary classification
problems [25]. Gaussian process multi-task regression using feature
selection (GPMTFS) uses the multi-tree GP technique and designs a clas-
sifier utilizing the selected features [26].

Artificial bee colony (ABC) is a numerical optimization algorithm
based on the foraging behavior of honeybees [27]. A virtual bee algo-
rithm (VBA) is applied to optimize numerical functions using a swarm
of virtual bees that move randomly in the feature space and interact to
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find the food sources [28]. An approach based on the natural behav-
ior of honeybees in which randomly generated worker bees are moved
in the elite bee direction, the elite representing the optimal (near to
optimal) solution is proposed in Ref. [29].

Ant colony optimization (ACO) based wrapper feature selection
algorithm is applied to network intrusion detection [30]. ACO uses
Fisher discrimination rate to adopt the heuristic information and rough
set theory used for feature selection [31]. Grey wolf optimization mod-
ified to ensure a good balance between exploration and exploitation is
proposed in Ref. [32]. A multi-objective variant of GWO is developed
to optimize multi-objective problems [33]. New binary approaches of
GWO (BGWO) are proposed and applied to feature selection problem
[12]. A variant of antlion optimization using binary representation
(BALO) is used for finding a feature subset that maximizes the classifi-
cation performance while minimizing the number of selected features
[13].

3. Preliminaries

This section provides an introduction to the standard GWO and ALO
algorithms formulated for optimization.

3.1. Grey wolf optimization (GWO)

Grey wolf optimization is inspired by the hunting behavior of grey
wolves in nature [34]. The grey wolves are species have a strict social
dominant hierarchy of leadership, being organized into four main lev-
els:

1. Alpha (a) wolves (one male and one female) are the leaders. They
are responsible for making decisions (hunting, sleeping place, time
to wake, etc.).

2. Beta (f}) wolves are second-level subordinate wolves that help « in
taking decisions or the other pack activities. f wolf is the best can-
didate to be the next a.

3. Delta () wolves are the third-level subordinate and their responsibil-
ities are scouts, sentinels, elders, hunters, and caretakers.

4. Omega (@) wolves are the fourth-level subordinate and play the role
of scapegoat.

In an optimization context, « wolves are the best solution, f and
6 wolves are the second and third best solutions respectively, while
wolves are the remaining candidate solutions. The hunting is guided
by a, f, and &, while @ follow these three candidates. In order for the
pack to hunt prey, they first encircle it. The mathematical model of the
encircling behavior is given in Eq. (1) [35]:
Xt+1)=X,®)—A-D, @

where X is the grey wolf position, )_fp is the prey position, t is the itera-

tion number, and D is given by:

D= |C-X,(0) = X()l. @
A, C are coefficient vectors given by:

A=2d-7, -4, (3)
C =2, C)]

where @ are linearly decreased from 2 to 0 over the course of iterations
and ry,r, are random vectors in [0, 1].

The hunt is guided by «, but f and 6 might also participate in hunt-
ing process. In the mathematical simulation of the hunting behavior,
a, f, and 6 are assumed to have better knowledge about the potential
location of prey. w update their positions according to the position of
the best search agents as follows:

D,=1C; -X, -XI.D; =1C; -X; —X|,D; = |C; - X; — X| (5)
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X, =X, — A, -D,|.X; = |X; —A; - Dy X5 = |X; — A3 - D] 6)
i(t+1)=w 7

Parameter a controls the trade-off between exploitation and explo-
ration and is linearly updated in each iteration with a range from 2 to
0 according to Eq. (8).

2

a=2-t-——,
Maxlter

(8
where Max,, is the total iteration number allowed for the optimization.
Candidate solutions tend to diverge from the prey when |2d -7 —
d| > 1 and converge towards the prey when |2d -1 —d| < 1.
GWO is described as in Algorithm (1).

3.2. Antlion optimization

Antlion optimization has been proposed by Mirjalili [36] and mimics
the hunting mechanism of antlions in nature. They often hunt in larvae
and the adulthood period is for reproduction. Antlion larvae dig a hole
in the sand and, after digging the trap, the larvae hide underneath the
bottom of the hole and wait for insects (preferably ants) to be trapped
in the hole. Once the antlion recognizes that prey is in the trap, the
antlion tries to catch its prey. However, insects regularly are not caught
immediately and try to escape from the trap. In this case, antlions intel-
ligently throw sands towards to edge of the hole to slide the prey into
the bottom of the hole. When prey is caught in the jaw, it is pulled from
the soil and consumed. After consuming the prey, antlions throw the
leftovers out of the hole and amend the hole for the next hunt.

Algorithm 1 Grey wolf optimization (GWO).
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In order to explain the steps of ALO, we use the following
notations:

t: the current iteration
T: the total number of iterations
Antlion]?: the position of antlion j at iteration t

Antl.t: the position ant i at iteration t

ct: is the minimum of all variables at t — th iteration.

d: indicates the vector including the maximum of all variables at

t — th iteration.

e w: a constant defined based on the current iteration (w = 2 when
t>0.1T, w = 3 when t > 0.5T, w = 4 when t > 0.75T, w = 5 when
t > 0.9T, and w = 6 when t > 0.95T). The constant w can adjust the
accuracy level of exploitation.

e [I:]is a ratio defined based on w using the equation

t

I=10"~ 9
0" )
e @;: minimum random walk of i — th variable
e b;: maximum random walk of i — th variable.
Random walks of ants are all based on Eq. (10):
X(t) = [0, cumsum(2r(t;) — 1); cumsum(2r(ty) — 1);
... scumsum(2r(ty) — 1)] , (10)

where cumsum calculates the cumulative sum, T is the maximum num-
ber of iteration, t shows the step of random walk, and r(t) is a stochastic
function defined in Eq. (11).

Input: Number of grey wolves (n), maximum iterations (Mazx ;).

Result: The optimal wolf position and its fitness.

1. Initialize a population of n grey wolves positions randomly.

2. Find «, B, and ¢ as the first three best solutions based on their fitness

values.
while ¢t < Maz ., do
foreach Wolf; € pack do

end

end

| Update current wolf’s position according to Eq. (1).

- Update a, A, and C' as in Egs. (2) and (3).

- Evaluate the positions of individual wolves.

- Update «, 3, and § positions as the first best three solutions in
the current population; as in Egs. (5), (6), and (7).

3. Select the optimal grey wolf position.

The artificial antlion works in the following way: the preys are ants
that move around the search space using different random walks. These
random walks are influenced by the traps of antlions. Antlions build
holes proportional to their fitness (the higher the fitness, the larger the
hole). Antlions with larger holes have a higher probability of catching
ants. Each ant can be detected by an antlion in each iteration. The range
of random walks decreases adaptively to mimic sliding ants towards
antlions. If an ant becomes fitter than an antlion, this indicates that it
is caught and pulled under the sand by the antlion. An antlion updates
its position to the latest caught prey and builds a hole to enhance its
chance of catching another prey after each hunt. ALO is formulated in
the Algorithm (2).
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O = {1 if rand > 0.5 an

0 if rand < 0.5,

with rand being a random number generated with uniform distribution
in the interval of [0, 1].

In order to keep the random walks inside the search space, the
min-max normalization is applied:

X; —a)x (d; —c)

Xt =
i (b —a)

+ Cis (12)
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Algorithm 2 Antlion optimization (ALO) algorithm.

Input: Search space, fitness function, number of ants and antlions,

number of iterations (Maxyier).

Result: The elitist antlion and the its fitness.

1. Initialize a population of n ant positions and n antlion positions

randomly.

2. Calculate the fitness of all ants and antlions.
3. Find the fittest antlion (the elite).

4. while t < Maz ., do
foreach ant; do

Eqgs. (13) and (14).

(18).
end

end

- Calculate the fitness of all ants.
- Replace an antlion with its corresponding ant it if becomes fitter.
- Update elite if an antlion becomes fitter than the elite.

1) Select an antlion using roulette wheel (building trap); as in

ii) Slide ants towards the antlion;as in Eqs. (15) and (16).
iii) Create a random walk for ant; and normalize it; as in Eq.

5. Select the optimal antlion position.

Trapping of ants in antlion’s hole is modeled by sliding of prey towards
the selected antlion. The walk of the ant becomes bounded by the posi-
tion of the antlion and is expressed in Egs. (13), and (14):

ch =ct+ Antlion;, (13)

d=d

1

+ Antlion; . a4

Antlions shoot sands outwards the center of the hole once they real-
ize that an ant is in the trap. This behavior slides down the trapped ant
that is trying to escape. For mathematically modeling this behavior,
the radius of ants’ random walks hypersphere is decreased adaptively as
shown in Egs. (15) and (16):

e_ ¢t

c = 7, (15)
t
&= dT (16)

The final stage is catching the prey and re-building the hole when the
antlion consumes the ant. It is assumed that catching prey occur when
ants become fitter (goes inside sand) than its corresponding antlion. An
antlion is then expected to update its position on the latest position of
the hunted ant to improve its chance of catching new prey, modeled by
Eq. (17):

Antlion; = Ant! If f(Ant}) is better than f (antlion;). a7

To maintain the best solution(s) across iterations, elitism should be
applied. The random walk of an ant is guided by the selected antlion as
well as the elite antlion and therefore the repositioning of a given ant
takes the form of average of both random walks as in Eq. (18).

RL +R!
Antl=-A__E (18)
2
where R! is the random walk around the roulette wheel selected

antlion, and Rg is the random walk around the elite antlion.
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4. The proposed hybrid ALO-GWO for feature selection

GWO is an optimization algorithm with no internal control param-
eter which makes it easy to use. Moreover, GWO has a rational bal-
ance between exploration (diversification) and exploitation (intensifi-
cation) through the setting of the parameter a which controls the explo-
ration/exploitation rates at each iteration. The randomly set obsta-
cle modeler C has an impact on the walk/step scale which provides
enough variation and avoids algorithm stagnation, especially in the last
optimization stages. Actually, a grey wolf can be viewed as an agent
that is attracted by the best three agents in the pack but with some
obstacles on its way. Fig. 1 shows the walk step/scale obtained using
Eq. (19) that models the attraction of an agent by one of the leader
wolves:

Xt+1)=X,0)—(2d -1 - [C-X,(6) ~X(®), (19)
with the factor (2d - r; — d) representing the walk scale/size, C repre-
senting the obstacles in the wolf’s way and )?p(t) is the attractor wolf
position at time t and should be replaced by the best, second best and
third best solution at every optimization iteration.

As can be seen in Fig. 1, the wolf’s step size has some variation while
keeping a global convergence towards an attractor wolf -who is assumed
to know more about the prey. We can also notice that the new position
of the wolf (in a given dimension) may be between the attractor posi-
tion and the wolf’s original position which means exploration (at posi-
tive values of the step size) or may be beyond the attractor position at
negative values of the step size which means exploitation. Furthermore,
for step size > 1 the wolf diverges from the prey (attractor) while in the
case of step size < 1 the wolf converges towards the prey. Therefore,
GWO has the merit of enhanced convergence capability while keeping
enough variation of the population and the optimizer can be described
as goal-directed optimizer which follows the best three solutions rather
than following only the best solution as in particle swarm optimization
(PSO) [2].
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Fig. 1. GWO step size/scale for individual wolf across optimization time.

In ALO, two types of agents exist: ant and antlions. Antlions can be
thought of as the set of the best solutions found ever where an antlion
position is replaced only when finding better prey (ant) to replace it.
Ants are in continuous motion and each ant changes its position at each
iteration according to the antlions’ positions. The updating mechanism
of an ant relies on selecting an antlion using roulette wheel selection
in combination with the best antlion and the given ant follows these
two agents. Relying on an agent that is selected using roulette wheel
has the merit of adding enough diversification and allows the algo-
rithm to avoid stagnation. Stagnation avoidance capability gives such
algorithm superiority over other algorithms such as PSO. Furthermore,
the algorithm has minimal internal parameters compared to GA or
PSO.

Choice of leader for a given swarm has a very strong impact on
the explorative/exploitative capability of the algorithm. In GWO, the
algorithm keeps track of the best three solutions found. So, weak agents

have no chance to lead other agents and hence the exploration capabil-
ity of the algorithm is lower while the exploitative capability is higher.
In case of ALO, the algorithm keeps track of the best N (N is the pop-
ulation size) agents found and applies roulette wheel to select a leader
besides the current global best to guide the swarm. So, weak agents
have the chance to lead the swarm together with the current global
best which enhances the exploration capability of the algorithm but at
the expense of minimizing exploitation capability. An algorithm that
uses both methods for leadership assignment seems to be more capable
of keeping the balance between diversification and intensification. The
proposed hybrid algorithm keeps both the swarm of ants in motion and
also keeps the motion of antlion swarm. The hybrid algorithm updates
both the weak agents (ants) using ALO principles to take the merits of
ALO, as well as the strong agents (antlions) using GWO principles that
have the merit of faster convergence and is more a goal follower. The
proposed methodology is formally given in Algorithm (3).

exploration rate

I
00 10

20

30
iteration No.

40 50

Fig. 2. Exploration rate of different ALO iterations.
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Algorithm 3 The proposed hybrid ALO-GWO algorithm.

Input: Search space, fitness function, number of ants and antlions,

number of iterations (Max ).

Result: The optimal antlion position and its fitness.

1. Initialize a population of n ant positions and n antlion positions

randomly.

2. Calculate the fitness of all ants and antlions.
3. Find the fittest antlion (The elite).

4. while t < Maxy., do
foreach ant; do

end

(Catching Prey)
based on their fitness.

- Update antlion positions.

end

- Calculate the fitness of all ants.
- Replace an antlion with its corresponding ant it if becomes fitter

i) Select an antlion using Roulette wheel (building trap).
ii) Slide ants towards the antlion.
iii) Create a random walk for the ant; and normalize it.

- Select the alpha, beta and delta from the antlion population
- Update the exploration rate parameter a.

- Update the elite if an antlion becomes fitter than the elite.

5. Select the optimal antlion position.

The hybrid algorithm has enough diversification capabilities as a
result of:

e Roulette wheel selection of agents -drawn from ALO which impacts
the ants’ swarm;

e Adaptive size of the random walk as in GWO and impacts antlions
swarm;

e Adaptive size of the random walks as in ALO and impacts the ants’
swarm;

e The repositioning of the whole swarm rather than of ant swarm as
in ALO.

Moreover, the hybrid algorithm has the following intensification
capabilities:

e Goal-directed, which results from GWO walk where the three best
solutions are followed and helps enhance the walk of antlions;

e Reduction of random walk scale/step size which is adopted in both
GWO and ALO;

e Replacement of fitter ants with the corresponding antlion using ALO
principles.

The proposed hybrid algorithm for feature selection works in
a wrapper-based manner. The principal characteristic of wrapper
methodologies is the use of the classification performance as a guide
to feature selection procedure. K-nearest neighbor (KNN) is a super-
vised learning algorithm that classifies an unknown sample instance
based on the majority of the K-nearest neighbor category. We use KNN
as a classification method in our system to ensure the quality of the
selected features [37]. The feature classification criteria or the objec-
tive function in the wrapper feature selection reflects the classification
performance as well as the number of selected features as given in Eq.
(20):

>0
fo=a-E+(1-a) l'N ,

(20)
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where f, is the fitness function of a binary vector 6 of size N, with
0/1 elements representing unselected/selected features, N represents
the total number of features in the dataset, E is the classifier error, and
a is a constant controlling the importance of classification performance
using the number of features selected.

In wrapper-based methods, the single evaluation of a given solu-
tion is very costly as it always applies training and testing of the
given classier. Therefore, an effective selection of the search method is
mandatory. In this study, we use a combination of ALO and GWO algo-
rithms to adaptively search the features space, ensuring a maximization
of the classification performance while keeping a minimum number of
selected features. Iteratively, the antlion algorithm selects an antlion
for hunting in a roulette wheel manner and performs the random walk
of ants around the elite/best antlion. Based on the past two random
walks, an ant adapts its location. Iteratively, if an ant becomes better
than an antlion (in terms of fitness function value), the antlion eats

Table 1

List of used parameters.
Parameter Value(s)
K for cross validation 10o0r3
M The number of runs 30

No. of search agents 8

No. of iterations 70

Problem dimension Number of features in the data

Search domain [0, 1]

r1&r2 in GWO & ALO rl and r2 drawn from the uniform
distribution

Crossover Fraction in GA 0.8

Inertia factor of PSO 0.1

Individual-best acceleration factor of PSO 0.1

a parameter in the fitness function 0.99

f parameter in the fitness function 0.01
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Table 2

UCI datasets.
Dataset No. Attributes No. Instances No. Classes
Breastcancer 10 699 2
Exactly 13 1000 2
Exactly2 13 1000 2
Lymphography 18 148 8
M-of-n 13 1000 2
Tic-tac-toe 9 958 2
Vote 16 300 2
Zoo 17 101 7
Wine 13 178 3
Spect 22 267 2
Sonar 60 208 2
Penglung 325 73 7
Ionosphere 34 351 2
Heart 13 270 4
Congress 16 435 2
Breast 30 569 2
Chess(Krvskp) 36 3196 2
Waveform 40 5000 3

Table 3

Microarray gene expression and image datasets.
Dataset No. Attributes No. Instances No. Classes
Microarray gene expression data
CLL-SUB-111 11340 111 3
GLA-BRA-180 49151 180 4
SMK-CAN-187 19993 187 2
TOX-171 5748 171 4
GLI-85 22283 85 2
Nci9 9712 60 9
Carcinom 9182 174 11
Image (face) detection data
ORL10P 10304 100 10
PIX10P 10000 100 10
AR10P 2400 130 10
PIE10P 2420 210 10
ORL 1024 400 40

it and changes its position to the ant’s position. Antlion’s update their
positions according to the grey wolf principles, where the alpha, beta,
and delta are selected among the antlions. This algorithm is iteratively
applied for a number of steps. It worth mentioning that the random
walk of an ant is limited by the exploration rate at the current iter-
ation. Commonly, the exploration rate decreases as the optimization
progress to allow for fine search/intensive search. The plot in Fig. 2
outlines the exploration rate of the antlion at different optimization
iterations.

A similar behavior is applied to the exploration rate controlling
the repositioning of antlions, where antlions’ exploration rate is lin-
early decreased from 2 to O at each iteration in order to allow for fine
search.

An individual solution is represented as a continuous-valued vec-
tor with the same dimension as the number of attributes in the given
dataset. The solution vector is limited to the range [0, 1]. For a solution
evaluation, the continuous values are mapped to a binary representa-
tion using Eq. (21):

0 If(x; < 0.5
.Yij={ Gy < 09 1)

1 Otherwise,

where x;; is the continuous value of solution i in dimension j, and y; is
the discrete representation of solution vector x.

ALO-GWO works on the wrapper-based feature selection manner
employing KNN in classification data and ELM in regression data. The

35

Swarm and Evolutionary Computation 42 (2018) 29-42

0.8
0.7
0.6
0.5
0.4

0.2

0.1 [ ‘ ‘ ‘ l

GA

I

Full PSO ALO GWO ALO-GWO

Optimizer

Fig. 3. Mean, best, worst, and standard deviation fitness function values obtained by all
optimizes using small initialization.
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Fig. 4. Mean, best, worst, and standard deviation fitness function values obtained by all
optimizes using uniform initialization.

running time may increase when changing to another classifier, for
example, support vector machine (SVM), random forest (RF), or arti-
ficial neural network (ANN). Therefore, switching to different classifi-
cation methods should be carefully handled, particularly if the algo-
rithm is adopted in real-time applications. The main limitation of the
methodology presented in this paper is the non-exact repeatability of
the hybrid ALO-GWO results. We monitored this at various applica-
tions of the algorithm. The subset of features selected might not be the
same. Despite the fact that the resulting solutions are all good solu-
tions, it might be confusing for the user to figure out which subset to
consider.

5. Experimental results, analysis and discussions
5.1. Datasets used for experiments

The global and optimizer-specific parameter settings are outlined in
Table 1. All the parameters are set either according to domain-specific
knowledge as in the case of «,  parameters, based on trial and error on
small simulations, or common in the literature such as the rest of the
parameters.

We first tested the performance of ALO, GWO, and the hybrid
ALO-GWO on eighteen datasets taken from the UCI machine learn-
ing repository [38]. These datasets together with their number of fea-
tures and the number of instances are shown in Table 2. We can
observe that these datasets have a low ratio between the number of
features and the number of instances. We then moved to more com-
plex experiments for which the ratio between the number of attributes
and the number of features is really high. These datasets (given in



H.M. Zawbaa et al.

Swarm and Evolutionary Computation 42 (2018) 29-42

04
— 035
Q
?‘P ——ALO-GWO
603
> —ALO
©
~—
c 025 —GWO
.2
e
-g 0.2
>
[ )
© I |
- 015 |
| .
(14
e |
C o1
[0}
-
v
0.05
: l
o N‘ W | FAW AT\ - W MY
-- N MmO DN =N MO NN SN0 N - N0 0N SN0 N SN0 0N
- - M g N N W O™ 0 0 O O © = =W N N MO < < N N O O O O
™ o o NN NN NN NN NN NN NNANN
Iteration No.
Fig. 5. Population diversity for GWO, ALO, and ALO-GWO.
03
e ALO-GWO
025
— ALO
-
(%]
O o2 —GWO
0
O
0
O o015
01
0.05
0
- HNNNOONO ST T NN O O ONNODD®DOOWMONO N OO - - AN NN T NN O O O NN 000 a0
L I I I I I I I I B I B B I I I I I I I I I I I
Iteration No.

Fig. 6. Global best fitness (average) for GWO, ALO, and ALO-GWO.

Table 3) are taken from [39]. Seven of these datasets are microar-
ray gene expression data and the other five are image (face) detection
data.

10-fold cross-validation is used for the data in Table 2 where one
fold is kept for testing and the remaining 9-folds are equally divided
between training and validation portions. 3-fold cross-validation is used
for the data in Table 3 where an individual dataset is divided randomly
into three equal portions namely training, validation, and testing [40].
The validation set is used as the test set at the feature selection opti-
mization time. The test set is hidden until the final evaluation of the
selected features, the training data is used for training the classifier at
both feature selection optimization and at the final testing stage. Such

36

procedure is repeated M times to accurately assess statistical evaluation
indicators.

5.2. Evaluation criteria

The well-known KNN is used as a classifier to evaluate the per-
formance of individual algorithms with k =5 [37]. Each optimization
algorithm is repeated M times with different random seeds to test con-
vergence capability.

We use a set of quantitative measures in order to analyze the results
obtained by the methods we apply. The first three metrics are used to
measure the mean, best, and worst expected performance of the algo-
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Fig. 8. Average selected feature values

0.9
using small initialization.

0.8

0.7

Fitness
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rithms. The fourth measure shows the ability of the optimizer to con- low number of features and low classification error) and the resulted
verge to the same optimal solution. The fifth metric shows the per- data compactness/separability after applying feature selection. A final
formance of the classifier on test data. The sixth and seventh met- indicator is used to assess the statistical significance of the difference
rics are a measure of the size of selected features set (we expect a between two optimizers.
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. Mean fitness: is an average value of all the solutions in the final
sets obtained by an optimizer in a number of individual runs [41].

. Best fitness: is the best solution found by an optimizer in all the
final sets resulted from a number of individual runs [41].

. Worst fitness: is the worst solution found by an optimizer in all the
final sets resulted from a number of individual runs [41].

. Standard deviation (Std): is used to ensure that the optimizer
convergence to the same optimal and ensures repeatability of the
results. It is computed over all the sets of final solutions obtained by
an optimizer in a number of individual runs [42].

. Classification mean square error (CMSE): is a measure of classi-
fier’s average performance on the test data. It is averaged over all
final sets in all the independent runs [43].

. Average selected features: represents the average ratio of the

7. Average Fisher score: evaluates a feature subset such that in the
data space spanned by the selected features, the distances between
data points in different classes are as large as possible, while the dis-
tances between data points in the same class are as small as possible
[44]. Fisher score in this work is calculated for individual features
given the class labels; as follows:

_ el = " @2)
T
where F; F;is the Fisher index for feature j, 1/ and (¢7)? are the mean and

std of the dataset, ny is the size of class k, and y;( is the average of class
k. The Fisher for a set of features is defined as:

selected features subset to the original number of features. The aver- 18
age is computed for each final set of solutions in multiple individual Fioe = S Z B, (23
runs. =t

Table 4 Table 5

Average Fisher score values using small initialization. Average Fisher score values using uniform initialization.
Dataset GA PSO ALO GWO ALO-GWO Dataset GA PSO ALO GWO ALO-GWO
Breastcancer 0.654 0.638 0.730 0.408 0.648 Breastcancer 0.717 0.750 0.717 0.559 0.765
Breast 0.235 0.128 0.285 0.053 0.306 Breast 0.220 0.230 0.313 0.189 0.268
Congress 0.208 0.129 0.169 0.073 0.171 Congress 0.195 0.203 0.183 0.157 0.163
Exactly 0.001 0 0.001 0 0.001 Exactly 0.001 0.001 0.001 0.001 0.001
Exactly2 0.001 0 0 0 0.001 Exactly2 0.001 0.001 0.001 0.001 0.001
Heart 0.079 0.053 0.093 0.025 0.079 Heart 0.094 0.084 0.078 0.072 0.077
Ionosphere 0.033 0.015 0.013 0.005 0.021 ITonosphere 0.028 0.038 0.019 0.015 0.028
Chess(Krvskp) 0.019 0.011 0.021 0.003 0.021 Chess(Krvskp) 0.021 0.020 0.022 0.019 0.020
Lymphography 0.157 0.062 0.137 0.020 0.130 Lymphography 0.118 0.178 0.146 0.060 0.119
M-of-n 0.027 0.020 0.031 0.009 0.031 M-of-n 0.030 0.029 0.031 0.029 0.031
Penglung 0.253 0.061 0.088 0.007 0.069 Penglung 0.304 0.303 0.062 0.099 0.097
Sonar 0.019 0.008 0.016 0.002 0.015 Sonar 0.019 0.020 0.018 0.014 0.013
Spect 0.027 0.005 0.023 0.002 0.023 Spect 0.024 0.022 0.025 0.022 0.021
Tic-tac-toe 0.005 0.004 0.006 0.001 0.005 Tic-tac-toe 0.006 0.005 0.006 0.005 0.005
Vote 0.190 0.112 0.161 0.072 0.163 Vote 0.192 0.199 0.144 0.150 0.156
Waveform 0.124 0.086 0.152 0.019 0.142 Waveform 0.129 0.128 0.154 0.114 0.139
Wine 0.538 0.485 0.701 0.250 0.558 Wine 0.482 0.532 0.548 0.500 0.503
Zoo 11.136 6.925 11.195 3.744 12.899 Zoo 12.573 11.229 13.617 11.650 10.635
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Table 6
Wilcoxon test on the average fitness using small initialization.
Optimizers Wilcoxon Test value Comment
ALO-GWO - ALO 0.002 significant
ALO-GWO - GWO 0.04 significant
ALO-GWO - PSO 0 significant
ALO-GWO - GA 0.003 significant
Table 7
Wilcoxon test on the average fitness using uniform initialization.
Optimizers Wilcoxon Test value Comment
ALO-GWO - ALO 0.006 significant
ALO-GWO - GWO 0.06 insignificant
ALO-GWO - PSO 0 significant
ALO-GWO - GA 0.002 significant

where S is the number of selected features. The average Fisher score
over a set of N runs is defined as:

N
Fishr — score = Il\l Z Ffot, (24)
i=1

where F;'m is the Fisher score computed for selected feature set on run i.

8. Wilcoxon rank sum test: is a nonparametric test for significance
assessment. The test assigns rank to all the scores considered as one
group and then sums the ranks of each group [45]. The test statistic
relays on calculating W as in Eq. (25):

N

W= Z (sgn(xg; — x14)-Ry),
i=1

(25)

where X, ;, x; ; are the best fitness values obtained by first and second
optimizer on run i, R; is the rank of difference between x,; and x; ;, and
sgn(x) is the standard sign function.

5.3. Results and discussion on UCI datasets

Two major scenarios are used to benchmark the proposed hybrid
model versus the other methods depending on the initialization of
search agents’, namely uniform and small initialization. In uniform ini-
tialization, the search agents are positioned randomly on the search
space following the uniform distribution random number genera-
tor (RNG). In small initialization, the search agents are initialized

Table 8
Best fitness obtained using uniform initialization for the microarray and image
detection datasets.

Dataset ALO-GWO  ALO GWO GA PSO Full
Microarray gene expression data

CLL-SUB-111 0.163 0.189 0.165 0.188 0.163 0.242
GLA-BRA-180 0.151 0.150 0.185 0.283 0.266 0.383
SMK-CAN-187  0.118 0.145 0.128 0.175  0.206 0.402
TOX-171 0.192 0.247 0.158 0.245 0.311 0.546
GLI-85 0 0 0 0 0 0.103
Nci9 0 0.1 0.3 0.389  0.389 0.444
Carcinom 0.017 0.017  0.034 0.052  0.034 0.086
Image (face) detection data

ORL10P 0 0 0 0.059  0.058 0.152
PIX10P 0.115 0.097 0.167 0.232 0.239 0.229
AR10P 0.155 0.171 0.156 0.230 0.228 0.512
PIE10P 0.161 0.173 0.157  0.231  0.227 0.229
ORL 0.178 0.204 0.178 0.216 0.231 0.313
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Table 9
Worst fitness obtained using uniform initialization for the microarray and image
detection datasets.

Dataset ALO-GWO ALO GWO GA PSO Full
Microarray gene expression data
CLL-SUB-111 0.352 0.429 0.356 0.461 0.430 0.651
GLA-BRA-180 0.372 0.278 0.387 0.538 0.559 0.604
SMK-CAN-187 0.300 0.311 0.415 0.414 0.523 0.618
TOX-171 0.383 0.417 0.420 0.475 0.592 0.789
GLI-85 0.31 0.31 0.414 0.483 0.483 0.483
Nci9 0.7 0.8 0.824 0.85 0.824 0.85
Carcinom 0.31 0.31 0.345 0.31 0.345 0.379
Image (face) detection data
ORL10P 0.304 0.381 0.379 0.471 0.467 0.486
PIX10P 0.369 0.358 0.414 0.526 0.526 0.397
AR10P 0.602 0.736 0.614 0.778 0.775 0.805
PIE10P 0.453 0.488 0.485 0.507 0.551 0.538
ORL 0.481 0.444 0.459 0.451 0.466 0.519
Table 10

Mean fitness obtained using uniform initialization for the microarray and image
detection datasets.

Dataset ALO-GWO ALO GWO GA PSO Full
Microarray gene expression data

CLL-SUB-111 0.252 0.285 0.277 0.323 0.341 0.424
GLA-BRA-180 0.230 0.230 0.297 0.353 0.378 0.499
SMK-CAN-187 0.214 0.217 0.221 0.270 0.304 0.507
TOX-171 0.287 0.324 0.286 0.365 0.440 0.654
GLI-85 0.077 0.086 0.138 0.144 0.143 0.233
Nci9 0.491 0.481 0.597 0.616 0.613 0.679
Carcinom 0.144 0.149 0.168 0.170 0.168 0.248
Image (face) detection data

ORL10P 0.180 0.200 0.248 0.305 0.305 0.330
PIX10P 0.239 0.349 0.386 0.477 0.494 0.259
AR10P 0.514 0.494 0.503 0.604 0.626 0.702
PIE10P 0.295 0.329 0.318 0.392 0.399 0.401
ORL 0.327 0.333 0.319 0.340 0.339 0.419

with a minor number of features selected. The purpose of using
this initialization is to test whether certain algorithms can reach the
optimum even if the initial population is very different from the
optimum.

Mean, best, worst, and standard deviation fitness function values
obtained by all the optimizers using small initialization are presented
in Fig. 3, while the ones using the uniform initialization are presented
in Fig. 4. We can observe that the hybrid ALO-GWO outperforms GA,
PSO, GWO, and ALO, which proves the capability of ALO-GWO to adap-
tively search the feature space for optimal feature combination and
avoid premature convergence that may be caused by stagnation in local
minima. The enhanced performance of the hybrid algorithm can be jus-
tified by the fact that the algorithm takes advantages of GWO such
as being more exploitative by following the three best solutions, and
also the advantage of ALO for adopting roulette wheel selection which
provides more diverse search capability and hence helps to avoid pre-
mature convergence. Moreover, we can see that the hybrid algorithm
uses random step sizes for the random walk but within a linearly decre-
mented envelope. The random setting of the random walk scale helps
the optimizer to avoid stagnation and provides diverse solutions. Fig. 1
depicts the adopted random walk scale used in the hybrid algorithm.
We can remark also that the enhanced performance of the proposed
hybrid algorithm is comparable for both small and uniform initializa-
tion which proves the capability to generate enough diversity in the
population, which is a result of repositioning both the ants and the
antlions rather than the repositioning the half of the swarm. Moreover,
the diversity of population results from the adoption of the roulette
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Table 11
Standard deviation fitness obtained using uniform initialization or the microarray and
image detection datasets.

Dataset ALO-GWO ALO GWO GA PSO Full
Microarray gene expression Data

CLL-SUB-111 0.053 0.058 0.059 0.073 0.069 0.094
GLA-BRA-180 0.055 0.043 0.049 0.056 0.067 0.057
SMK-CAN-187 0.037 0.042 0.062 0.055 0.074 0.054
TOX-171 0.046 0.053 0.072 0.061 0.068 0.071
GLI-85 0.057 0.061 0.083 0.086 0.086 0.089
Nci9 0.118 0.120 0.106 0.105 0.105 0.103
Carcinom 0.067 0.065 0.067 0.065 0.067 0.071
Image (face) detection data

ORL10P 0.064 0.096 0.093 0.104 0.100 0.083
PIX10P 0.075 0.086 0.106 0.117 0.116 0.097
AR10P 0.071 0.085 0.077 0.086 0.080 0.081
PIE10P 0.078 0.090 0.083 0.085 0.091 0.089
ORL 0.045 0.048 0.053 0.049 0.046 0.050

wheel in the selection process of antlions. Fig. 5 depicts a simple diver-
sity measure for all search agents for GWO, ALO, and the proposed
hybrid ALO-GWO. The diversity measure calculates the standard devi-
ation of the agents’ positions averaged over all dimensions. We can
see from the figure the high diversification of ALO-GWO which results
from using roulette wheel selection, the random setting of random walk
scale and the change of positions of all ants and antlions in every
iteration.

Fig. 7 depicts the swarm mean fitness at each iteration after apply-
ing the ALO step and the GWO step as well as the global best fit-
ness on a sample test data. We can remark from the figure that ALO
occasionally squashes some search agent apart from the current swarm
local region (explorative agents) and hence we can see that it occa-
sionally worsens the swarm mean fitness. On the contrary, we see
that GWO with its exploitative behavior always attracts the swarm
towards the best-performing agents (alpha, beta, and delta) and hence
enhances the swarm mean fitness. By combing the two we can see
that the global best fitness can avoid stagnation and keeps a good
performance.

For assessing the stability of the stochastic algorithms and the capa-
bility of converging to the same/similar optimum, we measure the stan-
dard deviation of the obtained fitness values over the different runs.
We can again observe that the minimum for this measure is obtained
by ALO-GWO in the uniform initialization, while for the small initial-
ization ALO-GWO and ALO have comparable standard deviation. Hav-
ing a minimum value for the standard deviation measure proves the
capability of the optimizer to abandon local optima and to converge to

Table 12
Average size of the selected feature set using uniform initialization for the
microarray and image detection datasets.

Dataset ALO-GWO ALO GWO GA PSO
Microarray gene expression data

CLL-SUB-111 0.110 0.132 0.110 0.488 0.482
GLA-BRA-180 0.082 0.018 0.142 0.495 0.491
SMK-CAN-187 0.091 0.092 0.163 0.491 0.488
TOX-171 0.174 0.204 0.163 0.488 0.481
GLI-85 0.211 0.206 0.403 0.500 0.500
Nci9 0.137 0.119 0.370 0.500 0.500
Carcinom 0.295 0.278 0.412 0.499 0.499
Image (face) detection data

ORL10P 0.030 0.005 0.082 0.480 0.480
PIX10P 0.002 0.003 0.072 0.479 0.479
AR10P 0.025 0.057 0.115 0.472 0.462
PIE10P 0.065 0.068 0.115 0.474 0.462
ORL 0.340 0.331 0.346 0.499 0.502
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Table 13

Classification mean square error obtained using uniform initialization.
Dataset ALO-GWO ALO GWO GA PSO Full
Microarray gene expression data
CLL-SUB-111 0.257 0.281 0.271 0.321 0.336 0.416
GLA-BRA-180 0.224 0.224 0.294 0.355 0.374 0.495
SMK-CAN-187 0.232 0.216 0.229 0.269 0.308 0.505
TOX-171 0.287 0.325 0.281 0.359 0.443 0.655
GLI-85 0.221 0.223 0.226 0.226 0.230 0.221
Nci9 0.683 0.707 0.686 0.675 0.675 0.663
Carcinom 0.231 0.238 0.234 0.236 0.232 0.236
Image (face) detection data
ORL10P 0.183 0.202 0.246 0.309 0.305 0.321
PIX10P 0.117 0.097 0.161 0.231 0.236 0.256
AR10P 0.474 0.489 0.509 0.599 0.615 0.695
PIE10P 0.293 0.328 0.317 0.402 0.404 0.402
ORL 0.406 0.404 0.402 0.408 0.409 0.429

Table 14

Wilcoxon test on the average fitness for different optimizers using
uniform initialization.

Optimizers Wilcoxon Test value Comment
ALO-GWO - ALO 0.630 insignificant
ALO-GWO - GWO 0.001 significant
ALO-GWO - PSO 0 significant
ALO-GWO - GA 0 significant

the global optimum. Again, such capability can be interpreted by the
enhanced diversification of the optimizer which enables it to avoid pre-
mature convergence. Fig. 6 highlights the convergence curve (on aver-
age) for one of the datasets using the different optimizers and one can
notice that the hybrid algorithm still has the capability to find a bet-
ter solution at the final optimization stages while both ALO and GWO
stagnate at local minima.

Regarding the size of selected features with respect to the orig-
inal size, Figs. 8 and 9 present this ratio. We can observe that,
although ALO-GWO outperforms all other methods in classification per-
formance, has a comparable ratio of features selected which confirms
that ALO-GWO can select the optimal feature combination with com-
parable size. Fisher score is calculated for the output of the differ-
ent feature selection systems over the different datasets as shown in
Tables 4 and 5. We can again observe that the best Fisher score value
is achieved by ALO-GWO using small initialization. This confirms that
the performance of ALO-GWO is better compared to the other methods
used.

Furthermore, we measured the Wilcoxon test for all the algorithms
and the results are presented in Tables 6 and 7. We can see that the
score obtained by ALO-GWO is significantly better compared to ALO
(0.002), GWO (0), PSO (0), and GA (0.002) using small initialization.
While using uniform initialization, ALO-GWO obtains significantly bet-
ter results compared to ALO (0.005), PSO (0), GA (0.002), and GWO
(0.0.06).

5.4. Results and discussion on microarray and image datasets

Table 8 shows the best fitness function values obtained by all opti-
mizers for the five microarray datasets and the four image datasets.
We observe that ALO-GWO outperforms GA, PSO, GWO, and ALO
for the datasets that have lower attributes, such as ORL10P, AR10P,
and PIE10P. GWO outperforms GA, PSO, ALO, and ALO-GWO for the
datasets that have a larger number of attributes. Table 9 outlines the
worst fitness function values obtained by all the algorithms for all the
nine datasets. Table 10 presents the mean fitness function values. We
remark that the results of ALO-GWO on average, outperform the results
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obtained by GA, PSO, ALO, and GWO. Such a huge search space with
a large number of features (dimensions) adds more difficulty on the
optimizer. Again, the advantages of using the hybrid algorithm become
more apparent and the added diversification, as well as intensification
capabilities, are clearer.

Moreover, we measured the standard deviation of the solutions
obtained by all the algorithms, and the results are reported in Table 11.
The minimum value of the std measure is obtained by ALO-GWO.
Regarding the size of selected features with respect to the original fea-
ture set size, we can see from Table 12 that, although ALO-GWO outper-
forms all the other methods in reduction rate, has a comparable ratio of
features selected, which confirms that the ALO-GWO can select the opti-
mal feature combination with comparable size. From Table 13, we can
observe that ALO-GWO achieves the best classification performance.

Furthermore, we measured the Wilcoxon test for all the optimizers
and the results are reported in Table 14. The results obtained by ALO-
GWO are significantly better while compared with GWO (0.001), PSO
(0), and GA (0), and insignificant while compared to GWO (0.630).

6. Conclusion and future work

The aim of this work is to investigate and analyze the potential of
antlion optimization, grey wolf optimization, and hybrid antlion-grey
wolf algorithm for selecting significant features from datasets in which
the number of attributes is very large while the number of instances is
relatively small. This type of feature selection datasets are challenging
for machine learning algorithms as the complexity of the search space
is very large due to a large number of features, on one hand, while on
the other hand, the small number of instances do not provide sufficient
information for learning.

We concentrate our efforts on proving that the nature-inspired
heuristics can be adapted to perform very well in these situations. The
two algorithms investigated here are hybridized in a third model and
the performance of these models seems to outperform that of the other
models used for comparisons such as genetic algorithms and particle
swarm optimization. This indicates that these methods are efficient
optimizers for large-dimensional small-instance datasets and are able to
obtain accurate results in terms of classification on feature subset selec-
tion. The hybrid ALO-GWO algorithm has a very good balance between
the exploration of the large search space and the exploitation of optimal
solutions. The algorithm has the capability to generate diverse solutions
and to avoid premature convergence.

On the basis of future performance, we have a few ideas that can be
investigated in addition to the work presented here:

1. Use enhanced initialization method that starts the optimization with
solution pool closer to optimal;

2. Extend the hybrid algorithm to work on parallel distributed mode
to enhance convergence time;

3. Test the methodology on other big datasets besides those from bioin-
formatics.
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