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Abstract 

Facial expression recognition (FER) is a research area that consists of classifying the human emotions 

through the expressions on their face. It can be used in applications such as biometric security, 

intelligent human-computer interaction, robotics, and clinical medicine for autism, depression, pain and 

mental health problems. This dissertation investigates the advanced technologies for facial expression 

analysis and develops the artificial intelligent systems for practical applications.  

The first part of this work applies geometric and texture domain feature extractors along with various 

machine learning techniques to improve FER. Advanced 2D and 3D facial processing techniques such 

as Edge Oriented Histograms (EOH) and Facial Mesh Distances (FMD) are then fused together using 

a framework designed to investigate their individual and combined domain performances.  

Following these tests, the face is then broken down into facial parts using advanced facial alignment 

and localising techniques. Deep learning in the form of Convolutional Neural Networks (CNNs) is also 

explored also FER. A novel approach is used for the deep network architecture design, to learn the 

facial parts jointly, showing an improvement over using the whole face. Joint Bayesian is also adapted 

in the form of metric learning, to work with deep feature representations of the facial parts. This 

provides a further improvement over using the deep network alone.  

Dynamic emotion content is explored as a solution to provide richer information than still images.  The 

motion occurring across the content is initially captured using the Motion History Histogram descriptor 

(MHH) and is critically evaluated. Based on this observation, several improvements are proposed 

through extensions such as Average Spatial Pooling Multi-scale Motion History Histogram 

(ASMMHH). This extension adds two modifications, first is to view the content in different spatial 

dimensions through spatial pooling; influenced by the structure of CNNs. The other modification is to 

capture motion at different speeds. Combined, they have provided better performance over MHH, and 

other popular techniques like Local Binary Patterns – Three Orthogonal Planes (LBP-TOP). 

Finally, the dynamic emotion content is observed in the feature space, with sequences of images 

represented as sequences of extracted features. A novel technique called Facial Dynamic History 

Histogram (FDHH) is developed to capture patterns of variations within the sequence of features; an 

approach not seen before. FDHH is applied in an end to end framework for applications in Depression 

analysis and evaluating the induced emotions through a large set of video clips from various movies. 

With the combination of deep learning techniques and FDHH, state-of-the-art results are achieved for 

Depression analysis. 

Keywords: Facial Expression, Image Processing; Facial Expression Recognition; Convolutional 

Neural Networks; Machine Learning; Deep Learning; Motion Description, Depression;   
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 Introduction 
 

1.1 Research Content  

Human-computer interaction (HCI) is becoming a leading role in everyone’s day to day life activities. 

We are entering a generation where documents are no longer needed to be filled in by hand, where a lot 

of activities are accomplished from home via PC. The two major areas where HCI research is going 

towards are on biometric data and emotion detection. There are a substantial number of applications 

that can benefit from them in many sectors from business to medical and consumers.  

Emotions play a critical role in rational decision-making, perception and human interaction. Emotion 

can be described in several ways. The simplest way is the six basic universal expressions (Anger, 

Disgust, Fear, Happy, Sad and Surprise) proposed by Ekman et al. [1]. They are called discrete emotion 

categories. Another way to describe emotions is by using a dimensional space such as arousal, valence, 

and others. They are called emotion dimensions [2], [3]. Arousal is understood to be the measure of 

activation, which ranges from high or low. Valence is a measurement of the pleasantness, which ranges 

from pleasant to unpleasant. The combination of these two measurements can produce a high-

dimensional space where any point in that space can represent a type of emotion. This concept is 

visualised in Figure 1.1, demonstrating a dual axis representation of the possible emotions through 

combining arousal and valence. 

The task for emotion detection is to predict the one of the discrete emotions, or a point in the arousal-

valence dimensional emotion space. For artificially intelligent systems, they achieve this by learning 

various patterns and features from recorded data of different modalities. However, some of these 

artificial intelligent systems ignore some of the affective states that motivate human actions and 

communications, as their main objective is to look for specific emotions. Therefore, systems are being 

developed to understand more emotions than the basic expressions [4], and capturing the affective state 

of the person can bridge and improve the response of the system. 

A humans emotion can be observed through facial expressions, voice, body gesture, touch gesture, and 

biosensors such as GSR, heart rate, EEG, etc. However, facial expressions are the most significant 

modality to represent a human’s emotion [5]. They are strongly linked to the representations of the 

emotion due to the expressive behaviour of the face, with the possibility of capturing rich content in 

multi-dimensional views. Facial expressions provide the cues of communication in which we can 

interpret the mood, meaning and emotions at the same time. These expressions are used as a tool to 

interact with others to portray their mood and emotion, and therefore, a vital area of research for HCI. 

Existing research [6], [7] has exploited the facial model to try and identify these emotions, with more 

and more active research continually improving FER. 
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Figure 1.1 - Dimensional representation of Arousal and Valence that can represent many emotions [3]. 

This research aims to detect and determine emotions from human facial expressions automatically 

through image and video processing techniques. These emotions are based on various applications that 

try to understand a human’s emotional state, such as facial expression recognition, Depression analysis 

etc. Developing advanced artificially intelligent systems will require face image analysis, feature 

extraction techniques, modelling, and machine learning techniques. It is a research area involving 

computer science, psychology, etc. 

1.2  Current Research and Limitations for FER 

The process of facial expression recognition initially requires a professional to observe and classify 

samples before they are provided to a machine for learning. However, the accuracy of a professional is 

not always guaranteed. There are only six basic expressions (Happy, Surprise, Fear, Sad, Angry and 

Disgust) for FER that are chosen as the objectives even though there are thousands more. This 

demonstrates that humans find it difficult recognise complex emotions like anticipation or remorse, 

which in-return limits the capabilities of machines. 

The issues with current computing environments are that the human-computer interaction designs 

involve using traditional interface devices such as the keyboard and mouse. They are “constructed to 

emphasize the transmission of explicit messages while ignoring implicit information about the user, 

such as changes in the affective state” [4]. Existing datasets on facial expressions tend to have their 

expressions acted out rather than being naturalistic. This is a limitation as the true emotion is not fully 

conveyed, and therefore, when a system is used in a real environment it may struggle to identify the 

naturalistic expressions properly. The traditional images used in research for many years have been 
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based on 2D static models of the face. This form of the image also has its limitations that have 

continuously challenged researchers. 

1.2.1 2D Facial Models 

Even with the current state of the art techniques, there are problems with 2D imaging that cannot be 

fixed, making it difficult for face and facial expression recognition. Some of these problems are: 

• Pose Variations – they can cause big problems for any image processing that requires the face. 

Pose variations such as the rotation of the head in 2D imaging would mean that a significant 

portion of the face detail can be lost. This would make the image processing techniques difficult 

to benefit from all the facial features, effectively making some algorithms inaccurate.  

• Occlusions – these are objects and variations of the facial image causing only part of the face 

to be visible. This is a big problem especially for face recognition as any slight facial appearance 

change can make it unrecognisable to a machine. Examples of occlusions can be, glasses, hats, 

scarfs, facial hair etc. 

• Illumination changes – mainly caused by lighting conditions when an image is captured. If there 

is a change in lighting, images of the face can appear differently. This effect can cause various 

types of issues in the image like causing shadows, or completely make part of a face black. A 

demonstration of this effect is visible in Figure 1.2. A lot of light can cause part of the face to 

be bright and highlighted. Visually for humans, we may still be able to see the face. However, 

for a computer, shadows on a face will produce higher or lower intensity values compared to 

the unaffected areas.  

• Facial ageing – This occurs naturally for every human in their lifetime. The problems it causes 

are the facial structure, which changes slightly throughout the early years. In conjunction with 

ageing, the skin texture becomes rougher with lines mainly on the forehead and beside the eyes. 

 

Figure 1.2 - The effects of illumination changes at different angles on a face [8] 

1.2.2 Static 3D Facial Models 

3D imaging can be computationally expensive to work with compared to 2D images. However, they do 

provide a more accurate and detailed description of the face. They give the depth parameter of the face, 

which is important for face and facial expression recognition as the facial structure has muscles that 

cannot be viewed clearly with 2D images like a concave or convex. For facial expression analysis, the 
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muscular movement of the face can significantly help recognise what expression is portrayed, and these 

muscular movements can be captured in detail with 3D imaging.  

With technology that is evolving facial imaging to other dimensions, 3D imaging can be approached 

towards amending many of the 2D image processing issues. Illumination changes is not an issue for 3D 

imaging, as it does not deform the face and the geometric data does not differ based on lighting. The 

2D textured data can. However, with most 3D systems, there are multiple cameras that take the pictures 

from different angles and not all of them would have lighting issues. Therefore, the texture can be 

reproduced with the unaffected images. Romdhani et al. [9] demonstrate how 3-Dimensional 

information can improve face recognition, even with the pose and illumination variances.  

 

Figure 1.3 - 3D happy facial expression images with different head rotation. Top row is yaw rotation and bottom row is 

pitch rotation with angles of −40◦, −30◦, −20◦, 20◦, 30◦ and 40◦ going from Left to Right [10]. 

Pose variations are also eliminated as 3D images are captured to cover the majority of the face and head. 

Therefore, the face can be rotated back to show the frontal view of the face. Wang et al. show a prime 

example in [10]; using their method Primitive Surface Feature Distribution (PSFD); of how changing 

the pitch and yaw rotation of the head (Figure 1.3), can still produce similar results (Figure 1.4) 

compared to the normal position with no rotation. Figure 1.4 also demonstrates how 2D techniques on 

the facial texture still get effected. 

1.2.3 Temporal Facial Models 

Temporal data on facial models can come in 2D and 3D models. The time dimension is added to provide 

more information for tasks like emotion, gesture and facial expression recognition. The 2D dynamic 

data provides a different approach for displaying information. This is required for tasks such as 

expressing a gesture [11] where motion needs to be portrayed, or showing signs of depression which is 

visible over a period of the subject participating in an activity [12], [13]. Using this data would require 

a considerably higher amount of computational resources compared to static data.  
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Figure 1.4 - Graphical results of the Recognition Rate achieved by PSFD across different pitch and yaw rotations [10] 

3D temporal data is the latest development for researchers to experiment with, it provides a higher depth 

of information that many applications can benefit from. Facial Expression Recognition is a good 

example that can benefit from the 3D temporal models, as the data can provide build up to an expression 

using information about how the facial muscles change throughout the expression.  

Binghamton University have produced a database that contain temporal 3D models, which is called 

Binghamton University – A 3D Dynamic Facial Expression Database (BU-4DFE) [14] and their latest, 

Binghamton-Pittsburgh 3D Dynamic Spontaneous Facial Expression Database (BP4D-Spontaneous) 

[15] which is 2.82 Terabytes containing spontaneous 3D temporal expressions made from geometric 

models with the texture mapped on.   

Other forms of emotion can be determined using the Arousal and Valence dimensions. Such 

applications can include Depression analysis, violence detection and inducing emotions. These tasks 

have been approached through means of challenges [12], [13], [16]–[18] to get the research community 

to apply their knowledge into areas of emotion that can be benefitted. These challenges provide large 

amounts of temporal data that look to capture affective emotions [19], [20] of video clips. The 

MediaEval workshop in 2015 had shown interesting methods to detect violence and the induced 

affective emotions by the videos [21]–[24]. In 2016 [17], the challenge of predicting induced emotions 

[25]–[28] was continued. The AVEC challenges have continued on a yearly basis to allow the state-of-

the-art techniques and ideas be adapted for this task. These are all areas in development that will 

continue to be researched and eventually applied for medical, commercial and personal practises.  

1.3 Motivations and the Approach 

There has been a lot of work done recently for emotion-based applications such as facial expression 

recognition, using 2D and 3D images that come in static and temporal forms. Facial pre-processing 
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steps such as face localisation and alignment are also being researched to provide improvements over 

new and existing systems. There are many existing 3D techniques based on geometric information, as 

well as the traditional 2D techniques for processing faces. However, there is still room to understand 

how both areas can complement each other to produce robust and efficient frameworks.  

Temporal data is also further explored as it is a richer source of information compared to static data. 

Many of the tasks for applications such as Depression analysis require a sequence of information as it 

is hard to estimate such an emotion based on a single image. There are a few motion-based techniques 

such as Motion binary patterns [29] and Motion history histogram [30] that observe and capture 

movement across a sequence of frames. This idea can and is explored further to capture richer motion 

information by viewing the sequence in more than one way. These ideas can also be compared to the 

spatiotemporal techniques that are based on spatial images but have been moved to the temporal 

domain, such as LBP-TOP [31] and LPQ-TOP [32]. We also investigate if a sequence of image frames 

represented instead as a sequence of mathematical representations can improve a system. This approach 

is achieved by developing an algorithm that can capture feature variations across the sequence of 

mathematical representations, just as motion is observed across a sequence of image frames. 

Deep learning is also a key area that has taken of recently, with the heavy computational requirements 

now a viable option thanks to the powerful GPUs available. Convolutional Neural Networks introduced 

a complex black box approach to understand the relations and content within sets of images, making it 

a big success for tough challenges such as large-scale object detection on the ImageNet database [33], 

[34]. This approach started off with hand-written digit recognition by LeCun et al. [35] and has 

expanded to advanced applications including emotion based with recent works in [17], [36]–[38]. Based 

on these ideas, the motivation is to try and produce advanced techniques to further improve FER, and 

other emotion-based applications through frameworks that can utilise deep learning techniques. With 

all the available pre-trained deep networks on large databases, their parameters can be exploited to also 

benefit these applications.  

1.4 Aim and Objectives 

The aim of this thesis is to use advanced techniques to improve the current state of human emotion 

detection using facial expressions. The following objectives are undergone throughout the thesis: 

• Investigate and understand existing techniques for FER based on 2D and 3D information 

• Determine facial areas that have significant contribution towards each expression 

• Use temporal data to produce a dynamic descriptor for emotions that vary across time 

• Integrate state-of-the-art deep learning techniques into frameworks that can predict the 

emotions of a person 
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1.5 Thesis Contributions 

The thesis provides research works with the following contributions: 

• Chapter 3 considers 3D + 2D facial expression recognition with the fusion of both domains to 

classify 6 basic expressions.  

• Chapter 4 creates automatically detected facial parts using advanced face pre-processing 

algorithms, and uses deep learning techniques to learn these facial parts, along with the whole 

face. Innovative architectures are designed to combine the efforts of the facial parts with a Joint 

Bayesian approach in the form of metric learning. 

• Chapter 5 investigates motion-based descriptors which are modified to extend their capabilities 

by capturing advanced motion information. Several extensions are proposed and tested against 

the Motion History Histogram [30] descriptor, demonstrating competing performances on 

motion intensive and emotion based applications. 

• Chapter 6 develops a novel algorithm called Feature Dynamics History Histogram to capture 

variations in a temporal sequence of feature vectors. This is applied to a Depression analysis 

application and to capture induced emotions through movies. A constructive framework is 

designed using CNNs as a pre-trained feature extractor at frame-level on a visual sequence, 

from which the FDHH algorithm is applied to capture patterns of feature variations. At the time 

of testing and publication, state-of-the-art results are achieved.  

1.6 Thesis Outline 

The remaining chapters of this thesis are organised in the following order: 

Chapter 2 provides a detailed review of current technology and techniques in the area of facial 

expression recognition and other emotion-based applications such as Depression analysis and induced 

emotions. The chapter also contains the details of various hand-crafted descriptors, as well as machine 

learning techniques and processes.  

Chapter 3 contains an investigation into 3D and 2D static image techniques for facial expression 

recognition. The BU-3DFE and Bosphorus 3D databases are utilised with the extraction of unique 

texture and geometric features. These descriptors are compared and fused together to demonstrate the 

effect of using multiple domains in a single framework. 

Chapter 4 introduces deep learning techniques to extend the works in Chapter 3. The use of isolated 

facial parts is also investigated, using a combination of sophisticated geometric techniques for face 

localisation, alignment and normalisation. The use of facial parts is compared to using the whole face 

using hand-crafted and deep learning techniques. Joint Bayesian is also investigated in the form of 

metric learning, which is integrated into the learning process of CNNs. 
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Chapter 5 considers how motion can be modelled from temporal data. The popular Motion History 

Histogram descriptor [30] is extended to provide different abilities for better motion capture. These 

extensions are thoroughly tested and compared on various applications such as human action 

recognition and Depression analysis. 

Chapter 6 applies deep learning techniques on temporal content, demonstrating strategies across 

emotion based applications. An algorithm is also developed to work with the mathematical 

representations of each frame in a sequence, by observing patterns of variations throughout the 

sequence. This technique is applied in a framework that produces state-of-the-art performances for 

emotion-based applications, using constructive frameworks that exploit deep features in various ways. 

Chapter 7 concludes the main contributions achieved by the thesis, and the experimentation conducted 

for it. The possibility of future works is also detailed. 
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 Literature Review 
 

In this chapter, various works related to human emotions, especially for human emotion recognition 

from facial expressions are reviewed. It will describe the different forms of computing tools be used for 

facial expression recognition. Existing works will be presented to understand what is currently being 

researched and used as solutions for determining these emotions. 

2.1 Human Emotions Representation 

Computers play an essential role in life in the 21st century and are everywhere around us. Computers 

are beginning to gain the ability to recognise emotion and soon enough may be given to “have emotions” 

[39]. The history of emotions theories reach as far back as the Ancient Greek Stoics, Plato and Aristotle 

[40]. Aristotle’s famous Aristotelian theory of emotions, explores the development of his thought on 

emotions through defining, explicates, compare, contrast various emotions and characterises emotions 

themselves. His theory led to remarkable observations: “Emotions are the things on account of which 

the ones altered differ with respect to their judgments, and are accompanied by pleasure and pain: such 

are anger, pity, fear, and all similar emotions and their contraries.” [41] 

Many everyday applications now require the use of biometric data, from logging in to sensitive data 

using fingerprint scanning technology to being allowed into a country using facial recognition via 

passport photo. The main purpose is to identify the person more securely than, for example, a password. 

This technology allows machines to handle requests without the supervision of humans, providing a 

streamlined process and the prevention of forgery or fraud to occur with stricter security in place. Poli 

et al. [42] explained the techniques used for biometric identification, which included parts of the human 

body such as the face, iris, voice, and fingerprints. They stated the benefits of biometric which include: 

• No more forgotten passwords, lost cards or stolen pins. You are your own password. 

• Positive Identification-It identifies you and not what you have or what you carry. 

• The highest level of security, and offers mobility.  

• Impossible to forget, serves as a “Key” that cannot be transferred or coerced. 

• Non-intrusive, safe & user-friendly. 

• Increased security when controlling access to confidential data and IT systems. 

• Reduced risk of fraudulent use of identity by employees. 

These are all advantages that can improve the current system of passwords and ID cards. Some of the 

Disadvantages mentioned by Poli et al. are [42]: 

• An automatic personal identification system based solely on fingerprints or faces is often not 

able to meet the system performance requirements. 
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• In case of face recognition, the face will sometimes change with time or injury, and that poses 

a problem. Fingerprint verification is reliable but inefficient in database retrieval. 

• Some voice recognition systems have some problems since the voice changes with a human’s 

mood and illness and background noise pose some problems. 

These are all valid disadvantages. However, they can be overcome as technology and research improve. 

Systems are being able to process significantly faster every generation. Emotions are linked to another 

division of HCI called affective computing. The target for behavioural scientists is to understand the 

social signals we produce from our actions. Computer Vision researchers use this information and try 

to interpret them in a way that can be fed into machines. Currently, the devices we use do not fully 

understand how human emotions play a role in decision making. This is an area that is still under 

development with many researchers striving for a solution to automatically detect affective emotions 

[5], [43], [44]. Knowing the emotional state of a person can affect a lot of decisions in areas like: 

• Detecting pain where vocals cannot be expressed. An example is in an operation theatre for 

radiotherapy where the doctor cannot be present, the pain can be severe that the patient is left 

speechless with just a shock expression on his face. 

• Detecting depression and aggression of subjects to give early signs that can prevent any 

incidents occurring. Staff will have a better judgement of the patients’ behaviour if they have 

data of their affective emotions available. 

• Using machines to find early signs of autism, and other disabilities that show signs of weakness 

or differentiation compared to a healthy person. 

• Customer Service Satisfaction, if an operator is able to tell the emotional state of the customer, 

it can prevent questions that will provoke the customer further. 

• For daily use, vehicles can display warnings advising drivers to pull over or automatically locate 

the nearest resting place if it can detect when a person is fatigued or sleepy.  

These are just a few examples where being able to understand emotions via HCI can aid the lives of the 

vulnerable and improve the quality of the medical sector. Further research is needed in this field in order 

to get to a future where machines can understand how to communicate and handle humans, providing 

us support on demand wherever needed, but mainly interacting with humans a lot more effectively. 

2.1.1 Facial Expressions 

Facial Expressions are important tools used to communicate the emotional reaction and/or state of a 

person during their daily activities. There are many expressions a human can display and behind each 

emotion are a group of components that control the intensity of the expressions. These are the person’s 

intentions, action tendencies, appraisals, other cognitions, neuromuscular and physiological changes, 
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expressive behaviour, and subjective feelings [45]. These components cause the movement of the facial 

muscles which in return creates a visual expression for others to see the emotion. 

From the vast range of human emotions, there are 6 basic facial expressions noted by Ekman and Friesen 

[46] which are Happy, Surprise, Fear, Sad, Angry and Disgust as shown in Figure 2.1. There are many 

other emotions associated with facial expressions, but they are mainly small variations of the basic 

expressions.  

 

Figure 2.1 – Image of 6 basic expressions taken from the Bosphorus Database 

A recent active research area in affective computing has the objective to try and computationally model 

Major depressive disorder (MDD) through the patient’s facial expressions. It is a mental health 

disability that affects the mind and behaviour of a person, leaving them in a low mood. It is defined as 

“a common mental disorder that presents with depressed mood, loss of interest or pleasure, decreased 

energy, feelings of guilt or low self-worth, disturbed sleep or appetite, and poor concentration.” [47]. 

The most recent report by the World Health Organisation indicates that MDD is the largest form of 

disability in the world (over 300M people), affecting 7.5% of people that have a disability [48]. It is 

estimated that females have a 50% higher rate in suffering from depression than males do [49]. 

Depression has been a key research area in the affective computing area to try and understand and 

determine the severity of depression that patients suffer. 

Currently, there are a few comprehensive ways to assess the severity of depression in a person that can 

be translated to aid artificial intelligence. These are in the form of questionnaires such as the BDI-II 

[50], PHQ-8 [51] and PHQ-9 [52]. Professionals can determine the severity of depression based on the 

score produced from the questionnaires, and a cut-off point that separates the various levels of 

depression. These allow for computer vision techniques to map a patient’s emotions and facial 

expressions to the scales that determine their depression level.  

2.1.2 Typical FER System 

In order to achieve a good FER system, an understanding is required for how a typical system is 

designed, and what stages are required to go from image to expression. The architectures for these 

typical systems consist of 3 main building blocks that are universal across many applications including 

Depression analysis and FER, as shown in Figure 2.2. The following section will describe these blocks 

in detail.  
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The traditional design of most systems that work with facial images, or of objects, can be described 

using 3 main building blocks. The first block directly handles the input which can be raw images, audio 

or visual sequences. This block applies pre-processing techniques to the data to prepare it for the 

following feature extraction stage. For facial images, these pre-processing steps can include face 

detection, alignment, normalisation, augmentation, with many other techniques available and under 

development. Once all the necessary steps required by the system are complete, the next building block 

extracts features from the pre-processed samples.  

 

Figure 2.2 - Building blocks for a typical FER system 

There are many different techniques and approaches that exist to extract features from the sample 

images, some of which are detailed later. These approaches can extract features in the form of 

appearance information, geometric information, temporal and spatiotemporal information. Once these 

features are obtained, the final building block will try to learn them using machine learning techniques; 

also mentioned later in this chapter. To get a better understanding of these systems, the following 

sections will go deeper into the various existing feature extraction techniques used on different 

modalities of data. This will also include the popular machine learning techniques widely used in 

diverse applications.  

2.2 Feature Extraction Techniques 

The upcoming sections will describe and demonstrate feature extraction techniques for image and image 

sequences. The image techniques use spatial information and are either globally or locally applied. The 

goal of this section is to understand some of the existing techniques out there that can be used to improve 

the current state for FER and applications that deal with facial expressions.  

2.2.1 Global Spatial Image Feature Extraction Approaches 

The following section will describe some of the techniques of spatial feature extraction which is 

computed globally across the image. These techniques can be applied for FER or other tasks that work 

with facial images. The Global approach uses the whole face as a region to work on, rather than breaking 

the image down into smaller patches. 
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2.2.1.1 Facial Action Coding System 

The Facial Action Coding System (FACS) was first developed by Ekman and Friesen [53] to distinguish 

between facial expressions. Since then, it is commonly used in facial expression recognition because of 

how detailed the FACS is and how it can be interpreted by others to suit their tasks. The system works 

on spotting a single or multiple facial muscle movements called action units (AUs), these are referenced 

back to a catalogue that indicates what expression it represents. There are 46 different AUs such as 

raising the left eyebrow or the jaw clenching, the default position is the neutral face [54].  A visual 

example can be seen in Figure 2.3 of the action units captured from the upper face. 

FACS is a reliable way of recognising a large set of expressions. However, a big issue with this system 

is finding professionals to judge the AU and expression, which can be difficult and expensive. Research 

has gone into this field to try and overcome the challenge to detect the AUs automatically from subjects, 

whether it is temporal or spatial-based data. There have been many public challenges out there [55], 

[56] inviting others to create systems that tackle this problem, showing good results in [32], [57].  

 

 

Figure 2.3 - Facial Action Units example on the upper face, where each action unit is demonstrated, along with the 

combinations of them [58]. 

2.2.1.2 Gabor Filters and Wavelets 

Gabor filters have been mentioned to be closely linked to the primary visual cortex, they are linear 

filters that are used mainly for edge detection. It was first introduced by Gabor et al. [59] in 1945 and 
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since then has played a major role in many computer vision applications. The Gabor filter is typically a 

bandpass filter, multiplying the odd and even filters shown in Equations 2.1 and. 2.2. 

 𝑔𝑒(𝑥) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2 cos(2π𝜔0𝑥) (2.1) 

 𝑔𝑜(𝑥) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2 sin(2π𝜔0𝑥) (2.2) 

   

where 𝜔0 defines the centre frequency (i.e., the frequency in which the filter yields the greatest 

response) and 𝜎 is the spread of the Gaussian window. These filters have been shown to possess optimal 

localization properties in both spatial and frequency domain and thus are well suited for texture 

segmentation problems. Frequency and orientation representations of Gabor filters are similar to those 

of the human visual system, and they have been found to be particularly appropriate for texture 

representation and discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian kernel function 

modulated by a sinusoidal plane wave. 

2.2.1.3 Primitive Surface Feature Distribution 

Primitive Surface Feature Distribution is based on 3D Geometric imaging of faces and structures. It was 

developed by Wang et al. [10] for 3D FER along with the release of their 3D Facial Database called 

BU-3DFE Database [60].  

The data provided is a point cloud with a triangular mesh, eliminating any illumination and orientation 

problems that can occur during capture. The data points are 300 microns apart to provide a more detailed 

structure of the face, a smooth local fitting procedure is applied on the mesh so the minimum λ1 and 

maximum λ2 degrees of bending can be obtained, which is (a) and (b) in Figure 2.4 respectively.  

 

Figure 2.4 - (a) is the minimum curvature direction map, (b) is the maximum curvature direction map and (c) is the primitive 

label map produced by principal component analysis [10] 

Principal Curvature Analysis is used on the newly generated surfaces to split the surface into different 

regions. Each of these regions is labelled depending on how the feature is. For example, a ridge, ravine, 
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peak, pit, saddle, concave hill, convex hill, etc. This is illustrated as (c) in Figure 2.4. These labels are 

determined by a set of rules explained in Table 2.1 [10].  

Table 2.1 - Classification rules to determine the primitive 3D surface labels [10], where 𝜆1 and 𝜆2 are minimum and 

maximum curvature direction maps and 𝑇𝜆 is the threshold to evaluate whether the principal curvatures are insignificant 

enough to be set as 0. 

λ1 λ2 Hillside Label Non-Hillside Label 

|𝜆1| < 𝑇𝜆 |𝜆2| < 𝑇𝜆 Flat Slope hill 

𝜆1 < −𝑇𝜆 𝜆2 < −𝑇𝜆 Peak Convex hill 

𝜆1 < −𝑇𝜆 |𝜆2| < 𝑇𝜆 Ridge Convex hill 

𝜆1 < −𝑇𝜆 𝜆2 > 𝑇𝜆 Ridge saddle Convex saddle hill 

𝜆1 > 𝑇𝜆 𝜆2 < −𝑇𝜆 Ravine saddle Concave hill 

𝜆1 > 𝑇𝜆 |𝜆2| < 𝑇𝜆 Ravine Convex hill 

𝜆1 > 𝑇𝜆 𝜆2 > 𝑇𝜆 Pit  

𝜆1 > 𝑇𝜆 𝜆2 < −𝑇𝜆  Concave saddle hill 

 

2.2.1.4 Principal Components Analysis 

Principal Components Analysis (PCA) is a well-known technique used to for dimensionality reduction. 

It decorrelates the high dimensionality data whilst trying to retain high variance within the data. This is 

achieved by grouping the highly-correlated data together in a lower-dimension subspace that is made 

from the principal components. PCA is commonly applied to data before the machine learning stage. 

This has the benefit of speeding up the training process, as there are fewer dimensions to the data. The 

number of degrees of freedom is also reduced, and for some machine learning techniques, this can 

prevent overfitting occurring. 

PCA essentially projects a set of data into a lower dimensional subspace. These projections are called 

the Principal Components. To compute PCA, there are a few steps taken to get to the end set of 

dimensions. First, we start with a data set containing 𝑝 observations of an 𝑛-dimensional vector 𝐱 =

[𝑥1, 𝑥2, … , 𝑥𝑛]Τ. This vector requires having a total mean of zero. This is achieved by calculating the 

mean of each observation 𝑝 subtracting the mean 𝜇𝐱 of data 𝑋 across each component as follows: 

 𝜇𝑋 =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 (2.3) 

 
𝐶𝐱 = ∑(𝑥𝑖 − 𝜇𝐱)(𝑥𝑖 − 𝜇𝐱)

𝑇

𝑛

𝑖=1

 

 

(2.4) 
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This is followed by calculating the covariance matrix 𝐶𝑥, from which the eigenvalues and eigenvectors 

are obtained from the data. The eigenvectors correspond to the dimensions that contain the highest 

variance within the dataset. For dimensionality reduction, only some of the highest eigenvectors are 

kept as the new feature; which is generally balanced between the number of eigenvalues against the 

total variance kept. 

2.2.2 Local Spatial Image Feature Extraction Approaches 

The following section will describe the many different techniques for describing local image feature 

extraction techniques. Most of the techniques have been used widely in the field of computer vision. 

They have shown to work good in a variety of applications such as face detection [61], facial expression 

recognition [62], [63], object detection [64], [65], and texture classification [66], [67]. 

2.2.2.1 Local Binary Pattern 

Local Binary Pattern (LBP) is a non-parametric operator that is used to describe the local surroundings 

of a pixel by producing a pattern from the binary derivatives of the pixel. The algorithm itself is basic 

when it comes to computational calculations and is robust to monotonic grey change; which is why the 

operator is usually applied to grey scale images; making it a popular and efficient method for texture 

analysis.  

 

Figure 2.5 – 5 local patterns detected using LBP [68], each representing a characteristic of a local 9×9 patch. 

Figure 2.5 shows the kind of patterns that can be detected using LBP. With this information, LBP has 

shown to be useful for face recognition [69] and in facial expression recognition [70]. It has shown 

tolerance against illumination changes, which for 2D facial models is a major issue.  

 

Figure 2.6 - LBP Basic 3x3 Window Calculation 
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Figure 2.6 shows how the binary pattern is calculated for each pixel using its local surrounding pixels, 

this process can be described using Equation 2.5 [71]. The value 𝑚 denotes the number of surrounding 

pixels, the centre pixel 𝑚𝐶, which is 54, is taken as a threshold value and each of the surrounding pixels 

𝑚𝑖 has the threshold subtracted from them. The function 𝑓(𝑥) would determine the output bit assigned 

to 𝑚𝑖, if 𝑥 is ≥ 0 then a ‘1’ is assigned, else if 𝑥 is < 0 then a ‘0’ is assigned. Once all the local 

surrounding pixels are evaluated then a pattern is created by combining the 8 bits assigned starting from 

the top left pixel.  

 𝐿𝐵𝑃𝑖 = ∑ 𝑓(𝑚𝑖 − 𝑚𝐶) ∙ 2𝑖

𝑚−1

𝑖=0

                  𝑓(𝑥) =  {
1    𝑥 ≥ 0
0    𝑥 < 0

  (2.5) 

   

A drawback with the basic LBP operator is that it is not rotation invariant, making it difficult to use 

even on slightly rotated images. To fix this, there has been a modification made to prevent rotation 

causing an issue.  

2.2.2.2 Uniform LBP 

Uniform LBP (ULBP) extends from LBP by looking at the binary pattern for bit-wise transitions. Given 

𝑈 is the number of changes of binary sequence from ‘0’ to ‘1’ or vice versa, uniform patterns are 

recorded when a binary number in the sequence changes a maximum two times (𝑈 = 2). There are 36 

rotation invariant patterns which include the 9 uniform patterns, these samples can be seen in Figure 

2.7 [72]. 

 

Figure 2.7 - The 36 unique rotation invariant Binary Patterns represented by black and white circles as bit values of 0 and 1 

The remaining 27 patterns are when 𝑈 ≥ 4, where there are at least 4 bit-wise changes in the pattern. 

These patterns have been known to have fundamental properties that occur the most when taking LBP 

on an image.  
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2.2.2.3 Extended LBP 

This is an extension of the original LBP code called Extended Local Binary Patterns, which was 

developed for texture analysis by Zhou et al. [68] in 2008. They demonstrated that a bit of noise can 

change the uniform patterns into something else that it should not be. To tackle this, the first solution 

was to assign the closest uniform pattern to every non-uniform pattern. This can be achieved by 

calculating the minimum sum of the absolute difference between the LBP pattern and all the uniform 

patterns, the ideal candidate would be the pattern with the most similar pattern and closest distance. 

Figure 2.8 illustrates examples of the LBP patterns from which the uniform pattern of 00000111 closely 

matches. From the selection, the LBP pattern that would benefit this approach the most would be 

00000101 as it is the most similar. 

 

Figure 2.8 - Some local patterns with their most similar uniform pattern of 00000111 [68] 

2.2.2.4 Number LBP 

Number Local Binary Pattern is a variation of LBP created by Yan et al. [71] that provides better texture 

discrimination when compared to other LBP methods (ULBP and ELBP). According to Yan et al. the 

ULBPs work well in some cases, but not all because there is no pattern that can describe every texture 

well enough. To improve on ULBP, they divide the non-uniform patterns further into different groups.  

 

Figure 2.9 - NLBP groups with local similarity 

The idea is to group similar looking patterns together as shown in Figure 2.9. This idea transforms 

closely related patterns to produce 5 more non-uniform groups compared to the single non-uniform 

group mentioned in ULBP. 
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2.2.2.5 Scale Invariant Feature Transform 

Scale Invariant Feature Transform was proposed by Lowe et al. [73], [74] for object recognition. The 

method will extract features that are invariant to image scaling, translation, and rotation, and partially 

invariant to illumination changes and affine or 3D projection. The feature itself is a 3D histogram of 

gradient locations and orientations. To calculate the feature, a grid is placed on the image, and each grid 

has smaller windows. In each window, the overall gradient approximation is calculated, which is a 

weight based on the average of all the gradients of each element in the window. Each gradient is based 

on the centre of the window. All the weights are then made into a histogram. 

The orientation of each window is done based on voting, where each orientation is calculated by 

obtaining the magnitude and the distance of each gradient from the centre of the window. The 

orientations are also put into a histogram, and all the histograms are normalised and concatenated 

together to produce a single feature vector. Figure 2.10 shows the process of getting the gradients in 

each window and producing an approximation of each grid, and then produce a histogram of the 

different approximations from each grid.  

 

Figure 2.10 - SIFT feature procedure of getting the gradients of each window, making a gradient approximation of each grid 

and producing a histogram based on them 

2.2.2.6 Edge Orientation Histogram 

Edge Oriented Histogram (EOH) is known as a faster and simpler version of Histogram of Oriented 

Gradients (HOG), which is a method that produces a feature consisting of gradients across an image. 

HOG was first used in Hand Gesture Recognition by Freeman and Roth [75], and then for human 

detection  by Dalal et al. [65]. EOH is well known for object and face detection as demonstrated in [76] 

[77] [74], and is beneficial when considering if computation time and memory is an issue.  

The method first converts the original image into grayscale image and is split up into blocks 𝐼(𝑥, 𝑦). 

The edges in each block are obtained using Sobel edge operators (𝐾𝑥  𝑎𝑛𝑑 𝐾𝑦) to calculate the 

horizontal edges (𝐺𝑥) and vertical edges (𝐺𝑦) shown in Equation 2.6.  

 𝐺𝑥(𝑥, 𝑦) = 𝐾𝑥𝐼(𝑥, 𝑦)            𝐺𝑦(𝑥, 𝑦) =  𝐾𝑦𝐼(𝑥, 𝑦) (2.6) 
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The angle 𝜃 and strength 𝑆(𝑥, 𝑦) of the orientation for the edges are calculated and arranged in a polar 

coordinate system shown in Equation 2.7 and 2.8. The angles and strengths are then divided into N bins 

to make the EOH feature. 

 𝜃 = arctan(
𝐺𝑦(𝑥, 𝑦)

𝐺𝑥(𝑥, 𝑦)
) (2.7) 

 𝑆(𝑥, 𝑦) =  √𝐺𝑥
2(𝑥, 𝑦) + 𝐺𝑦

2(𝑥, 𝑦) (2.8) 

   

Using blocks with the EOH operator makes it possible to recover the orientation of the image, as the 

highest bin value will always be at 0 degrees. It is also robust to illumination changes good for detecting 

borders, as strong gradients moving in different directions will most likely represent a corner of an 

image. 

2.2.2.7 Local Phase Quantisation 

The Local Phase Quantisation (LPQ) operator was developed by V. Ojansivu and J. Heikkila [67] for 

blurred texture classification, in which it is shown to perform better than LBP. It has been used 

frequently for face recognition [78] [79] [80] [81] showing LPQ works in the frequency domain and 

splits an image into windows. The short-term Fourier transform is then computed across the local 

𝑀 × 𝑀 neighbourhoods; similar to LBP; to obtain the Fourier coefficients. This is applied to all pixels 

in the image, then a scalar quantizer is used to transform the coefficients into an 8-bit binary code and 

from that, a histogram is produced. 

2.2.3 Temporal Feature Extraction Approaches 

The following section will describe methods that produce features from temporal data such as videos.  

2.2.3.1 Motion Binary Patterns 

Motion Binary Pattern (MBP) [29] attempts to capture the characteristics of motion movement by 

observing the frame level grey values of the video. Each of the frames is divided into cells. Then 3 cells 

across 3 frames in a fixed XY position are taken and the first frame cell is compared to the second frame 

cell. For each pixel in each cell, if the grey value is higher, then a 1 is assigned. If not then a 0 is 

assigned. The third frame cell is also compared to the second frame cell in the same way. The output 

from both comparisons is combined using an exclusive OR function which then creates the final motion 

pattern [29]. Unlike the previous methods, MBP tries to use natural occurring motion. However, it lacks 

the depth of time information as each frame overwrites it's previous using the XOR function. 
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2.2.3.2 Motion History Histogram 

Motion History Histogram (MHH) tracks motion patterns across a visual sequence. It was produced by 

Meng et al. [30] which was originally proposed for human action recognition [30], has also shown to 

be effective for tracking subtle emotions caused by depression [82], [83] and has proven to be better 

than Motion History Image [84]. 

 

Figure 2.11 - Patterns that are generated based on motion movement [30] 

MHH captures the motion from a video in its grayscale form, this is done by detecting how much each 

pixel moves across the frames. Binary patterns are noted for each pixel depending on how much it has 

moved across the frames if there is a great deal of motion the pattern becomes longer. In Figure 2.11 

you can see the patterns produced based on the length of the motion. If a pixel has multiple values for 

a period of 3 frames then the pattern for that pixel will be P3 = 01110. MHH is produced by collecting 

the all the patterns 𝑃𝑖, (𝑖 = 1, 2, … ,𝑀), where 𝑀 is the highest pattern recorded. Each pattern contains 

the count for each pixel, indicating how many times that pattern occurred throughout the video for the 

pixel. Each pattern 𝑃𝑖, MHH(: , : , i) can then be viewed as a frame so that the motion can be visualised. 

 

Figure 2.12 - MHH example of a person waving their hands, the resulting patterns are shown from P1 to P4 [30] 
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Figure 2.12 is an example visualisation of a person waving their hands in the air. MHH is captured 

where the parameter 𝑀 = 4, each pattern is visualised where 𝑃1 (shown in (a)) shows the small 

movement that occurs during the gesture. (d) Shows the pattern 𝑃4 occurrences which indicate where 

there has been significant movement. 

2.2.3.3 Local Binary Patterns – Three Orthogonal Planes 

Local Binary Patterns – Three Orthogonal Planes (LBP-TOP) is an expansion of the original LBP 

operator for the temporal domain, which can be used on dynamic data like time-based facial 

expressions. Zhou, Pietikainen et al. [31] introduced their dynamic LBP operator for texture recognition 

and for facial expressions [31].  

LBP-TOP produces small cuboids on the videos, with the 3 axes being X, Y and T (for the time). The 

radius determines the size of the cuboid, with the default size radius being 1 pixel. It calculates LBP on 

three Orthogonal Planes XY, XT and YT and then concatenates the three histograms produced from 

each plane. An example of the process can be seen in Figure 2.13, LBP-TOP being taken from (a) a 

woman’s face, which is split into blocks (b) and the operator is applied on it to produce the histograms 

for each plane (C). 

 

Figure 2.13 - LBP-TOP is being applied across a face, the image is first split into block volumes (a), showing the feature 

from 3 planes in a single block (b) and their resulting histograms (c) [31] 

LBP-TOP has also been used and extended by Mattivi et al. [85] for recognizing human actions such 

as walking, jogging and boxing. The extension involves using more slices in each of the XY, XT and 

YT dimensions resulting in 6 slices for each axis. He has called it Extended LBP-TOP. Another 

modification they have made is to use the LBP operator on gradient images. Claiming that the gradient 

image contains information about the rapidity of pixel intensity changes along a specific direction. And 

that it has large magnitude values at edges which can further increase the LBP operator’s performances 

[85]. This method was named as Gradient LBP-TOP.  

Almaev et al. and Valstar et al. produced another modification called Local Gabor Binary Patterns from 

Three Orthogonal Planes (LGBP-TOP) for automatic facial expression recognition [86]. This has been 
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used to detect Action Units based on the Facial action coding system. Their modification introduces 

Gabor filters that are applied to the subject before LBP-TOP is taken. This has shown to perform better 

overall than the standard LBP, LBP-TOP and LGBP (Local Gabor Binary Patterns). 

2.3 Machine Learning 

Machine learning is still an active research area with the goal of creating intelligent machines that can 

learn from humans. This section will discuss the machine learning techniques used extensively across 

all areas of computer vision.  

2.3.1 Classification Models 

This section will briefly describe machine learning techniques that are used for classification tasks. 

2.3.1.1 Support Vector Machine 

SVM is a robust learning algorithm that is currently the most commonly used machine learning 

technique by data scientists and industries around the world. It is a supervised learning method that 

looks for patterns within classes and separates the different classes using hyperplanes. This is achieved 

by mapping the given features into a high dimensional feature space that can best separate the features 

from different classes through optimisation of the hyperplane. In the upcoming experiments, a 

MATLAB toolbox/library called Lib-SVM [87] is used for modelling the SVMs, which specialises in 

using kernel-based techniques including Polynomial kernel and Radial Basis Function kernel.  

LibSVM Setup 

This toolbox involves running kernel based SVMs, namely Polynomial and RBF. The hyperparameters 

are different for each kernel. The RBF kernel 𝐾𝑅𝐵𝐹(𝑢, 𝑣) can be calculated as shown in Equation 2.9, 

where 𝑔 is the gamma hyperparameter in the kernel function, and 𝑢, 𝑣 being the vectors in the input 

space. 𝑔 is the only hyperparameter that can be adjusted, which is determined based on the number of 

feature dimensions (𝑓𝑑). It is calculated as 𝑔 =
1

𝑓𝑑
, where 𝑓𝑑 will be based on the reduced number of 

dimensions after the feature reduction procedure.  

 𝐾𝑅𝐵𝐹(𝑢, 𝑣) = 𝑒−𝑔‖𝑢−𝑣‖2
 (2.9) 

   

The Polynomial kernel 𝐾𝑃𝑜𝑙𝑦(𝑢, 𝑣) can be calculated as shown in Equation 2.10. However, it also 

includes adjustable hyperparameters 𝑑 for the degree of the kernel, and 𝑟 being the coefficient in the 

kernel function. It is hard to try all possible combinations for the upcoming experiments. Therefore, the 

recommended default values in the toolbox for hyperparameters 𝑟 and 𝑑 have been selected. 𝑔 is the 

same as the RBF kernel, which is 
1

𝑓𝑑
. 
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 𝐾𝑃𝑜𝑙𝑦(𝑢, 𝑣) = (𝑔𝑢Τ𝑣 + 𝑟)
𝑑

 (2.10) 

   

2.3.1.2 K-Nearest Neighbour 

K-Nearest Neighbour (KNN) is a computationally efficient machine learning technique that looks for a 

calculated distance between an input sample with a set of training samples. The prediction is based on 

using a majority voting scheme from the numbers of nearest neighbours (closest distances). The 

distance used commonly used with KNN is the Euclidean distance 𝑑, shown in Equation 2.11, 

where 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑛) are points in the Euclidean space ℝ𝑛. A few other 

distances include Manhattan, Hamming and Minkowski distances.  

 𝑑(𝐱, 𝐲) =  √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 (2.11) 

   

2.3.1.3 Random Forest 

Random Forest is an algorithm that was first developed by Breiman et al. [88]. It is based on an 

ensemble of classifiers that make decision trees, which are made up of individual learners that are 

combined. 𝑁 decision trees are created using a training subset, using a greedy procedure [88]. These 

decision trees are then collectively gathered to produce a prediction based on majority voting, as shown 

in Equation 2.12, where 𝑦𝑖 is the class and 𝑝𝑛(𝑦𝑖) is the probabilities for each class. 

 𝑅(𝑦𝑖) =
1

𝑁
∑ 𝑝𝑛(𝑦𝑖)

𝑁

𝑛=1

 (2.12) 

   

2.3.2 Regression Models 

This section will briefly describe techniques used to solve regression problems. 

2.3.2.1 Partial Least Squares Regression 

PLS regression attempts to fit multiple response variables in a single model. Because PLS regression 

models the response variables in a multivariate way, the results can differ significantly from those 

calculated for the response variables individually. The best practice is to model multiple responses in a 

single PLS regression model only when they are correlated. The correlation between the feature vector 

and depression labels is computed in the training set, with the model of PLS as: 

 
𝐗 = 𝐓𝐏T + 𝐄

𝐘 = 𝐔𝐐T + 𝐅
 (2.13) 

   



Chapter 2: Literature Review 

35 

 

where 𝐗 is a 𝑛 × 𝑚 matrix of predictors and 𝐘 is a 𝑛 × 𝑝 matrix of responses. 𝐓 and 𝐔 are two 𝑛 × 𝑙 

matrices that are, projections of 𝐗 (scores, components or the factor matrix) and projections of 𝐘 

(scores); 𝐏, 𝐐 are, respectively, 𝑚 × 𝑙 and 𝑝 × 𝑙 orthogonal loading matrices; and matrices 𝐄 and 𝐅 are 

the error terms, assumed to be independent and identical normal distribution. Decompositions of 𝐗 and 

𝐘 are made to maximize the covariance of 𝐓 and 𝐔. 

2.3.2.2 Linear Regression 

Linear regression a fitting technique to model a given set of features with its respective variables using 

a linear equation. Given a set of variables 𝐗 and the responses/labels 𝐲, the linear relationship can be 

defined as: 

𝐗 = [
𝑥1

1 … 𝑥1
𝑚

⋮ ⋱ ⋮
𝑥1

𝑚 … 𝑥𝑛
𝑚

] ; 𝐲 = [

𝑦1

⋮
𝑦𝑛

 ] ; 

 𝐲 = 𝛼 + 𝛽𝐗 (2.14) 

Where 𝛼 is the intercept and 𝛽 is the slope. These parameters are minimised to best fit the variables. 

2.3.3 Deep Learning 

In this section, deep learning in the form of Convolutional neural network will be presented and 

explained in detail.  

2.3.3.1 Convolution Neural Networks 

CNNs are a form of Neural Networks that recently have been shown to be very effective for solving 

image-based tasks. The applications can be almost anything image related such as object detection [34], 

[89] and face recognition [90]. It has provided a revolutionary breakthrough for training deeper 

networks through supervised learning. The layering idea of the CNN was inspired by the visual cortex 

of a cat [91], from which LeCun et al. adopted this approach for vision applications such as handwriting 

recognition [35], [92]. Since then, the idea has evolved into its own active research area in machine 

learning, becoming a widely used approach in all areas [93]–[95]. In this section, the architecture and 

building blocks of the CNN are described in detail for a better understanding. 

Architecture Layers 

Generally, the architecture of a CNN follows a pattern of stacked layers. However, recent works in this 

area show that have gone beyond stacking and have introduced different ideas [96], [97], which include 

multiple branches. Generally, CNNs have neurons (parameters as weights) stacked in a 3-dimensional 

space, measured by height, width and depth. They represent the spatial dimension along with the feature 

maps of the given input.  
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Convolution Layer 

Convolution layers are used to compute the convolution spatially of a set of input neurons with a 

learnable filter. Feature maps are produced by doing the dot product of the filter weights with the input 

neurons, which are then passed to the next layer for further computation. The task of this layer is to 

produce a response from the input data the best it can by tuning the filters weights to look for generalised 

features across the data.  

The basic parameters for the layer consist of: Kernel Size; Depth; Stride and Padding. Each has their 

task as described: 

• Kernel Size: Spatial size of the convolution filter. 

• Depth: The 3rd dimension of the filter, that represent the depth of the filters. 

• Stride: The stride parameter represents how much the convolution filter slides 

across a local region on the given input data. 

• Padding: Determines how much the input should be zero padded and from which 

edges. 

Pooling Layer 

The pooling layer works to reduce the spatial dimension of a given input. This can be performed across 

the whole input using a sliding window on a single depth slice at a time. The pooling operations used 

in CNNs are to calculate the Average or Max of a spatial location. Equation 2.15 shows the operation 

for both, where 𝛼 and 𝛽 are the dimensions of the spatial window used for the pooling operation,  𝑢 and 

𝑣 are the spatial location of the input slice 𝑘, and 𝑓(𝑢, 𝑣, 𝑘) is used to get the local patch from the 

previous layer.𝑓𝑎𝑣𝑔(𝑘) and 𝑓𝑚𝑎𝑥(𝑘) represents the pooled pixel at slice 𝑘.  

 
𝑓𝑎𝑣𝑔(𝑘) =

1

𝛼 × 𝛽
× ∑𝑓(𝑢: 𝑢 + 𝛼, 𝑣: 𝑣 + 𝛽, 𝑘) 

𝑓𝑚𝑎𝑥(𝑘) = MAX(𝑓(𝑢: 𝑢 + 𝛼, 𝑣: 𝑣 + 𝛽, 𝑘)) 

(2.15) 

   

Rectified Linear Unit Layer 

This layer applies an activation function on neurons to add nonlinearity, generally following a 

convolution layer. The ReLU layer specifically removes the negative neurons, based on Equation 2.16, 

by taking the max function of the neuron with a threshold of 0.  

 𝑓(𝑥) = max(0, 𝑥) (2.16) 

   

There are other activation functions such as tanh and sigmoid but are not commonly used as they tend 

to squeeze neurons between 0 and 1. When the output of the previous layer is close to 0, the neuron is 

killed and when close to 1, the neuron saturates, making them both ineffective. The tanh and sigmoid 

activation function compared to the max function are slower and more expensive to compute as it 
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involves exponential values. The max function is just simply applying a threshold proving to be far 

more efficient [34]. The Leaky ReLU is a modification to the ReLU layer where a small negative slope 

is introduced to prevent all negative neurons from dying (always set to 0). It was developed by He et 

al. [98] which they have demonstrated how the leaky ReLU can also be parametrised so it can adjust to 

give its best performance.   

Fully Connected Layer 
The Fully connected layer is a special form of the convolutional layer, where all the neurons have been 

reduced to a 1 × 1 spatial size. The depth of the data connects them all together.  

 𝑦𝑗 = 𝑓 (∑𝑧𝑖 ∙ 𝑤𝑖,𝑗 + 𝑏𝑗

𝑚

𝑖=1

) (2.17) 

   

Equation 2.17 represents the fully connected layer that computes the dot product between each neuron 

from the input data and the filter weights, where 𝑦𝑗 is the output neuron by taking the function 𝑓(𝑧) of 

the given input 𝑧𝑖 from the previous layer. The function calculates the sum of all inputs 𝑧𝑖 with the dot 

product of each individual weight 𝑗 of the fully connected layer plus the bias 𝑏𝑗. 

The final fully connected layer size is based on the number of categorical labels for the application it is 

designed for. If there are 5 classes, then the size will be 1 × 1 × 5 neurons. Each of these neurons will 

be connected to all the previous layers neurons. 

Classification Layer 

The Classification Layer is used to measure the performance of the last fully connected layer based on 

its predicted probabilities. Since applications for Convolutional Neural Networks are highly used for 

classifying multiple categories, the SoftMax function is the most commonly used for this layer. 

 𝑆𝑛(𝑧) =
𝑒𝑧𝑛

∑ 𝑒𝑧𝑖𝑁
𝑖=1

 (2.18) 

Equation 2.18 shows the formulation of the SoftMax function, which takes the output of the CNN as a 

vector of scores 𝑧 and squashes them between the values 0 and 1, where the sum totals to 1. The cross-

entropy loss is then determined using Equation 2.19. 

 𝐿 = −𝑆𝑦𝑖
+ log (∑ 𝑒𝑆𝑛

𝑁

𝑛=1

) (2.19) 
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2.4 Critical Evaluation 

The literature had reviewed techniques that are widely used in many applications, namely FER. The 

typical structure of an artificial system was detailed, with various feature extraction and machine 

learning steps. For still images, the local descriptors mentioned in the literature are considered for the 

upcoming experiments to try and capture changes that occur between different expressions within the 

local face regions. The LBP descriptor produces a pattern detection feature, good for cataloguing local 

neighbour patterns. The ULBP variation provides robustness by looking for a set of pre-defined pattern 

combinations. For facial expressions, ULBP can capture the differences in terms of patterns detected 

within each expression.  

HOG looks to capture the shape of entities within an image, by capturing the different angle of gradients 

and their strength. This can be useful for capturing the variations of the shape across the facial parts, to 

determine how they differ across each expression. EOH is a variation of the HOG descriptor that 

proposes a faster and efficient technique to capture the gradients using Sobel edge detection. Both 

techniques can capture key attributes of the facial deformation of an expression. LPQ works similarly 

to LBP but in the frequency domain, making it unique to the others. This technique can be used to 

investigate whether the combination of descriptors in different domains makes a feature set more robust 

and reliable.  

Another area in which FER can benefit is from integrating deep learning techniques for feature 

extraction and inferencing. There are existing deep CNNs trained on images such as VGG-Face [90] 

and AlexNet [34], as well as the opportunity to train a deep CNN from scratch to learn FER images. 

The FER performances using deep learning and hand-crafted techniques will be compared to investigate 

whether one is better than the other. 

For temporal based feature extractors, LBP-TOP simply extends the LBP feature from an image to an 

image sequence. This has shown to be effective in applications [31] [99], even though it is based on an 

idea for static images.  However, the basis of MHH has been designed specifically for an image 

sequence. It presents a good technique to capture motion patterns throughout a sequence. This is a key 

area to investigate when attempting to model the structural change of the face throughout the expression 

action. Motion can capture the facial deformations which can provide a reliable description of the 

expression. 

Each technique has been detailed and is considered for the upcoming experiments to obtain their unique 

set of features. Each of the chapters will have their own related works section, to provide the most 

appropriate information of other people’s work for comparison.  
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  Facial Expression Recognition from Still 

Images 
 

Chapter 2 has reviewed existing feature extraction techniques along with the related works on facial 

expression recognition. In this chapter, facial expressions from 2D and 3D still images has been studied 

for human-computer interaction tasks. This is to obtain a better understanding of how machines can 

best perceive these emotions and expressions in a detailed and efficient way. Various feature extractors 

are explored to produce a mathematical understanding of facial expressions, which can be modelled 

with machine learning techniques to understand and predict similar behaviour. 

3.1 Introduction 

With technology advancing at a fast rate, it is now possible to capture facial expressions in multiple 

dimensions using many different modalities such as texture and geometric information. There has been 

significant research done for 2D based facial applications which have shown impressive performance 

across the spectrum. However, there are still some situations that can cause performance hits purely 

because the 2D data (static facial images) cannot robustly provide its highest quality representation. 

Common problems with 2D facial images include facial occlusions, bad lighting, head and pose 

rotation. This is where 3D facial imaging can eliminate some of these issues and even provide the 

possibility to bridge the gap by combining both 2D and 3D information in the system. 3D Data can 

include geometric data (e.g. facial landmarks and 3D facial mesh), time series data, depth information, 

with more avenues being researched. Computational resources have significantly increased, and still is, 

making it easier to meet the demands of processing the 3D data.  

The focus here is to develop a system to execute facial expression recognition based on 2D and 3D still 

images. The processes from start to end are explained and experiments are run to focus on evaluating 

their performances. Various local and global descriptors are captured using different methods, with 

machine learning techniques trained to classify the descriptors to their appropriate categories.  Two 

databases are selected for the experiments that contain both 3D and 2D facial expression data. These 

are the Binghamton University 3D Facial Expression and Bosphorus 3D database, both containing 6 

basic expressions of Angry, Disgust, Fear, Happy, Sad, Surprise, as well as the Neutral expression. The 

main experiment will be based on the BU-3DFE database, and the Bosphorus database will be used as 

a validation to confirm the findings. 

3.1.1 Problems & Related Works 

Facial expression recognition can be a difficult task to accomplish because of the diversity of each 

expression across different people. Each person can have their own unique style of portraying these 

expressions. Capturing people’s emotions using facial expressions can help understand and predict a 
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person’s behaviour. However, the facial images are generally captured based on fixed conditions that 

made the problem easier to solve, but also unrealistic. These conditions include having the same ideal 

lighting across the face, which had to be oriented in a frontal profile, and next to no occlusions. Not 

only this, but the emotions were also acted and sometimes exaggerated to create a clear distinction 

between each emotion.  

Recent challenges include occlusions, varying ethnicities, genders and skin colour. These contribute to 

making the task more challenging. There has been a lot of research done towards understanding texture 

images, to extract key features that can determine which expression is portrayed in the image. This is 

demonstrated by works mentioned in [100], [101], showing a significant progression in using face 

detection and localisation techniques to improve performance and eliminating some of the challenges. 

3D imaging has also been investigated to try solving problems that can occur with 2D imaging. These 

can be situations where the face is not orientated correctly, the pose varying across samples, or even 

having issues with the illumination changes. There has been a lot of recent work in this area that 

demonstrates the performance introducing 3D imaging to FER [62], and how it can eliminate problems 

that 2D techniques cannot. Considering these benefits, this chapter will focus on combining the efforts 

of both 2D and 3D techniques to produce a system that is more robust towards these imaging problems. 

There are a few 3D FER databases based on static face images, such as BU-3DFE [60], Bosphorus 3D 

[102], D3DFACS [103], and ND-2006 [104]. The BU-3DFE database is very popular amongst 

researchers as it provides a consistent set of samples for 6 basic expressions + Neutral, across a variety 

of ethnicities. They provide both 2D texture image of the frontal face and a 3D scan containing 35,000 

vertices. There has been a lot of research applied to this database in the 3D and 2D domain to try and 

solve the FER task. Early study indicates a good performance using both geometric data [10] [105] 

[106] [107] [108] [109] and textured data [110] [111]. Recent studies after these experiment show 

further improvements using tougher protocols [112] [113] [114] [115]. They include a variety of 

designed feature sets that are based on either 2D texture data, 3D geometric data, or both.  

The early 3D techniques started with Wang et al. [10], who have had the initial tests on the database, 

which involved looking at the Primitive Surface Feature Distribution across the 3D vertices. They create 

a triangular mesh and estimate a curvature map in which they determined the primitive 3D surface 

labels based on a set of rules. Linear Discriminant Analysis was adopted for their machine learning 

approach. Rabiu et al. [105] used the provided 3D facial landmarks to create a set of specific geometric 

distances and angles, with the idea inspired by FACS. They also apply mRMR to keep the most relevant 

and non-redundant set of features, paired with a One VS. All SVM approach for machine learning. 

Yurtkan et al. [109] looked at facial movements in the 3D space, by generating facial feature point 

positions. Their idea uses entropy on the changes in face deformation that occurs during an expression 
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change. They use a two-level SVM to classify the 6 basic expressions. Tekguc et al. [108] look at the 

distances between landmarks to see how they vary throughout the expressions. The 3D Euclidean 

distance is calculated across all permutations of landmark pairs. Feature selection is applied using a 

multi-objective genetic algorithm, which is designed to optimise the number of features to use.  

Texture-based feature sets were also adopted, with Lemaire et al. [111] creating Differential Mean 

Curvature Maps to capture the deformations of the 3D mapping. This was based on global and local 

information. From these texture maps, they applied HOG to capture the orientation gradients within the 

deformations and used this feature with SVM for classification. 

A Recent study also includes using both texture and geometric-based features, with Li et al. [115] 

capturing the local shape and local texture features and achieving great accuracy. They use modified 

versions of HOG that include Histogram of Second Order Gradients (HSOG); Histogram of Shape 

Index (HOS); Histogram of mesh Gradients (meshHOG); Histogram of mesh Shape index (meshHOS); 

and SIFT features. These are combined using early and late fusion, paired with SVM to produce the 

state-of-the-art results on the BU-3DFE database using hand-crafted features.  

3.1.2 Findings and Research Direction 

For this research, we consider how various traditional descriptors from 2D and 3D imaging can 

complement each other. The chosen 2D techniques are widely used in the computer vision area, to allow 

various high-quality feature representations of the images. For the 3D features, we will consider 

techniques that will observe the facial movement of each expression. The 2D and 3D sets of features 

will be considered for fusion to observe if they can complement each other. 

3.2 Framework for 3D Facial Expression Recognition  

The framework proposed will comprehensively model various abstract techniques that are applied to 

sources of different modalities, with the main objective of detecting 6 discrete emotions. The idea is to 

investigate various hand-crafted techniques applied on the geometric and textured modalities, 

comparing their individual performances. These features are also fused together at the feature or 

decision level to determine whether a fusion can provide a performance boost. 

The framework can be split into three stages, with the first being the data pre-processing and feature 

extraction stage. The next stage is the optional feature fusion, followed by dimensionality reduction and 

normalisation. And finally, there is feature learning stage using various machine learning techniques to 

try fit the data to its respective class. Figure 3.1 visually demonstrates the data flow and processes of 

the proposed framework. Each of the features has been extracted based on their respective toolbox 

recommendation, using the MATLAB environment.  
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3.2.1 2D Texture Descriptors 

There are many feature descriptors available for facial images to highlight their key features, each with 

their own benefits and drawbacks. Using descriptors to describe an image is a lot more efficient and 

accurate to learn and conclude compared to using the raw image. Textured images are a common input 

source as most applications are based on having visual entities as inputs. These images provide a 

detailed representation of the entity, in which noise and other information unnecessary to the subject 

can be found. Hand-crafted texture descriptors can highlight certain characteristics of the image that is 

best suitable for its application. Therefore, some descriptors perform better than others for certain 

applications. For the upcoming experiments, a select number of 2D texture descriptors will be extracted 

for their applications that involve facial images. Before extracting these texture features, each image is 

also resized to a 128 × 128 and 64 × 64 size image. There will then be 3 sets of images to work with, 

which are the raw images, the resized 128 × 128 images, and finally the resized 64 × 64 images. Each 

hand-crafted descriptor will be applied on each set of images will be experimented to understand what 

impact the image size makes.  

3.2.1.1 ULBP Extraction of Texture Images 

The LBP Feature is one of the most popular texture descriptors and is used for the upcoming 

experiments. LBP is good in looking for local patterns such as edges, corners and lines within an image. 

For facial images, this would be details such as the ends of the mouth, eyes and the detection of other 

facial parts. For facial expressions, this technique can further highlight the movement of the facial 

muscles for each expression. A key factor for determining a certain facial expression is to observe how 

the facial parts move together, and in which direction.  

As there are many variations of this technique, the ULBP descriptor has been chosen as it focuses on 

capturing specific types of edges and boundaries. With facial expressions, the change that occurs on the 

face throughout the different expressions is what needs to be captured. Using ULBP can prevent any 

noisy characteristics being captured from the image, which LBP may capture as it looks for all 255 

possible combinations. For the experimentation, each of the images is split up into windows of sizes 

8 × 8, 16 × 16, 32 × 32 and 64 × 64. ULBP is applied on each window, and the resulting histograms 

from each are concatenated to produce a final ULBP feature vector, to represent the whole face. 

An example size of a ULBP feature vector, for say a 128 × 128 image using window sizes of 16 × 16, 

can be determined as follows:  
128×128

16×16
× 59 = 3,776 components. The largest dimension of all the 

ULBP variants is the raw image based on 8x8 window sizes. This produces a total of  
320×256

8×8
× 59 =

75,520 components. This is a very large set of features to handle, which can make the training process 

very long and tedious. Therefore, having a feature reduction technique is very important for situations 

like this.   
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Figure 3.2 - Visualisation of the ULBP operator applied to a Facial image demonstrating an intense Angry expression, 

where a histogram will be produced on each of the 64 windows to make the ULBP feature 

In Figure 3.2, a facial image is split into 64 windows with each window displaying the effect of applying 

the ULBP operator on it. This is then captured in a histogram to represent the number of occurrences 

of each pattern.  

3.2.1.2 LPQ Extraction of Texture Images 

Local Phase Quantisation is another technique like LBP but works in the frequency domain to obtain 

the Fourier frequency. LPQ is often known to be useful for blurred images [78], [116], which other 

techniques struggle. LPQ is computationally more expensive to run compared to LBP, as it requires 

moving to the frequency domain. For facial expressions, LPQ can be used to investigate the differences 

between expressions that occur in the frequency domain.  

When capturing the LPQ feature, each image is broken up into 4 × 4 windows of equal sizes, each of 

which LPQ is applied to produce a histogram. Then each histogram from all windows is concatenated 

together to produce the final feature. This produces a feature vector containing 4 × 256 = 4,096 

components. Throughout the experiments, the radius parameter has been varied to evaluate what is the 

best radius and how the performance differs across the selected radiuses. The radius values chosen are 

𝑟 = [2, 4, 8, 16]. 

3.2.1.3 HOG Extraction of Texture Images 

Histogram of Oriented Gradients [65] is a feature descriptor that looks at the distribution of the gradients 

within an image. The histogram is determined by two properties. These are the gradient direction and 

magnitude. The direction determines which bin to populate, and the magnitude determines how much 

to populate it by. This is useful for object detection because calculating the gradient around corners and 

edges of objects produces a large response. For facial expressions, this can determine the mouth position 
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and angle, or the angle around the face and eyebrows. Each expression has a set of characteristics that 

can be detected with this descriptor. 

HOG has a cell size parameter which is configured to be the following sizes: 𝑐 = [8, 16, 32, 64]. The 

cell size determines how big a window should be to extract the gradients from. A sliding window 

technique is applied, from which each window produces 31 features containing histogram bins of 

gradient directions. The 31 features from all windows are later concatenated to produce the HOG 

feature. The gradient orientations can be observed in Figure 3.3, where the HOG descriptor is applied 

on a facial image showing the Angry expression. These orientations are further captured in a histogram 

to produce the final feature vector. 

 

Figure 3.3 - Visualisation of the HOG descriptor applied on a facial image displaying an intense Angry expression 

In terms of feature size, this is based on the number of cells and the HOG feature size. For a given 

image size of 128 × 128, and a cell size of 16, the total feature size is 
128×128

16×16
× 31 = 1,984 feature 

components. 

3.2.1.4 EOH Extraction of Texture Images 

Edge Oriented Histogram [75] is also based on finding the orientation gradients in an image, but after 

a Sobel edge detector is applied to the image. It is supposedly a faster and more efficient technique [65]. 

For facial expressions, EOH can capture information based on edges detailed in the facial structure. 

This can specifically highlight the facial parts that have moved from their natural position and will be 

less noise compared to the raw image, as it focuses on just the edges.  

In this experiment, EOH is used in a similar style, creating windows on top of the image and then 

applying the operator to each window. However, the images are only split with 2 × 2, 4 × 4 and 8 × 8 

windows as the feature can get very large beyond that point. For a given image of 128 × 128, and 

windows of 2 × 2, the total feature vector size comes to (2 × 2) × 384 = 1536 components. For the 
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largest window size, the feature size becomes (8 × 8) × 384 = 24,576. The 16 × 16 window will not 

be used for this experiment as the feature will become too large and will not be beneficial for the system. 

3.2.2 3D Geometric Descriptors 

The Geometric descriptors are based on a 3D point cloud data containing 𝑋𝑌𝑍⃑⃑⃑⃑ ⃑⃑ ⃑⃑   coordinates for each 

vertex. A useful characteristic of this data is that it can be orientated in any way and keep the same 

form. This can provide very useful and consistent information for facial expression recognition, 

especially in events that are not in a controlled environment. In the upcoming experiments, the 83 

provided 3D landmarks from the BU3DFE database will be utilised and investigated further.  

3.2.2.1 3D Facial Landmarks from Geometric Data 

Both the BU-3DFE and Bosphorus 3D database provide 83 and 22 annotated 3D landmarks 

respectively, of the structure 𝑃𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) coordinates. In Figure 3.4, a sample from the BU3DFE dataset 

can be seen with the 83 facial landmarks annotated onto a cropped face, where the figure is captured in 

a 2D view.  

 

Figure 3.4 - 83 Facial Landmarks annotated on a BU-3DFE sample cropped face 

The facial landmarks provide key information to where the expressive facial parts are positioned in the 

3D space, and what characteristics can be learnt based on their positions. These include points from the 

eyebrows, eyes, nose, mouth and around the face. The Bosphorus database also provides similar 

landmarks, but only 22, so it is not as well annotated as the BU3DFE database which may limit its 

capabilities.  

The landmarks around the face can be an issue because of its nature. They are more likely to represent 

a personal characteristic of the individual person’s face. This means that the shape of the face can 

significantly vary between subjects, which in return can be difficult to learn. However, there are some 

benefits to observing the way the shape changes between expressions. This can be a common 

characteristic of expressions across all subjects. An example is between the sad and surprise 

expressions, where the shape stays similar to neutral for sad, yet stretches vertically for the surprise 

expression.  
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Before machine learning is applied, the 3D points are pre-processed to be in the best form it can for the 

machine learning technique. First, each sample (an expression from a subject) is reshaped to become a 

single vector. Let us denote the feature as 𝐿𝑀. For a given sample from BU-3DFE database, each 

landmark 𝑃1:83 contains ℝ3 components. This can be reshaped to a vector which contains ℝ249 

components.  

Once all samples are reshaped, they are stacked to make the matrix 𝐿𝑀. This is then rank normalised 

between 0 and 1 to provide boundaries to the matrix by having an upper limit of 1 and lower limit 0. 

This process can be seen in Equation 3.1, where 𝐿𝑀𝑖 is the 𝑖𝑡ℎ component of all samples, 𝛼𝑚𝑖𝑛 and 

𝛼𝑚𝑎𝑥 are the min and max values of 𝐿𝑀𝑖. 

 𝐿𝑀̂𝑖 =
𝐿𝑀𝑖 − 𝛼𝑚𝑖𝑛

𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛
 (3.1) 

   

As each landmark is in a local space within a point cloud boundary, it is unlikely that an outlier will be 

found that can cause the normalisation to deteriorate. 𝐿𝑀̂ is the final feature matrix that will be used by 

the machine learning techniques.  

3.2.2.2 3D Facial Mesh Distances from Geometric Data 

The facial landmarks can be further exploited to provide greater information than it currently does. A 

key feature that can be obtained is to capture how the facial parts vary from expression to expression. 

During each expression, a set of facial muscles tighten or relax which cause them to move from their 

initial location. These movements are different for each expression, which can be a useful feature to 

obtain. A way to record these movements is by learning the distance between each of the landmarks.  

As each facial part reacts, they will move further or closer to other facial parts. The distance between 

them can determine how much they have moved and can help understand how some expressions can 

cause certain movement when compared to others. A metric distance such as Euclidean can provide this 

information. For example, with the sad expression, the mouth corners drop down on the y-axis based 

on the Euclidean distance, moving away from the eyes and eyebrows. In the happy expression, the 

mouth corners are raised on the y-axis and move closer to the eyes and eyebrows, showing an opposite 

effect on the sad expression. These corresponding distances can help distinguish between the 

expressions. 

 𝛿𝑖,𝑗 = √(𝑥𝑗 − 𝑥𝑖)
2
 + (𝑦𝑗 − 𝑦𝑖)

2
+ (𝑧𝑗 − 𝑧𝑖)

2
 (3.2) 

   

The facial mesh distances feature can be denoted as 𝐹𝑀𝐷. The distance is calculated based on the 3D 

Euclidean distance, as shown in Equation 3.2, where 𝛿𝑖,𝑗 is the distance value between 3D points and 
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𝑥, 𝑦, 𝑧 are the individual coordinates for each landmark 𝑖 and 𝑗. The idea for this feature is to calculate 

the distances for all the possible combinations between each of the facial landmarks, similar to [108]. 

With the BU3DFE database, using the 83 landmarks, there will be a total of 3403 unique distances per 

sample.  

 𝐝 = ∑∑𝛿𝑖,𝑗

82

𝑗<𝑖

83

𝑖

 (3.3) 

They are calculated in Equation 3.3, where 𝐝 is a vector of all the 3043 distances. These features are 

also rank normalised to rescale the distances between 0 and 1, providing boundaries and making further 

processing more efficient. 

3.2.3 Feature Dimensionality Reduction 

All of the feature vectors extracted from the texture and geometric modality have their own unique 

characteristics to represent the facial expressions. Some of the feature vectors have high dimensionality 

due to the descriptor properties. These vectors also contain some highly-correlated feature components 

that can become redundant within the vector. Using all the feature components can slow down the 

performance of a system unnecessarily. However, there are feature dimensionality reduction techniques 

that solve this problem. One of the most popular dimensionality reduction technique used in various 

research areas is Principal Components Analysis. PCA is used to remove any highly correlated features 

produced by the descriptors, resulting in a feature set with high variance.  

The face has similarities throughout each expression and there will always be features produced by the 

selected descriptors that are common throughout each expression. Therefore, PCA will be effective in 

removing the correlated features. Most of the textured descriptors that are used in the experiment 

produce a large feature vector which mainly consists of noise and highly correlated features. PCA will 

be set to retain 99% of the variance within them keeping all the contributing features. This applies to 

both texture and geometric features sets. 

3.2.4 Fusion and Feature Learning for 3D Facial Expressions 

Fusion is an idea that finds a way to combine the effectiveness of various feature descriptors. This can 

also be applied during the feature learning process and during the prediction stage, as it is an idea of 

combining the efforts of multiple entities. For the upcoming experiments, various combinations of 

feature sets are fused locally by concatenating the components together. With this, we can also evaluate 

the performance of combining the features from the textured and geometric modalities together, to see 

if it will produce an improved and robust feature vector. The initial experiment will evaluate the feature 

vectors individually to compare their performances. Then they will be fused at the feature level by 

concatenating the various combinations of feature vectors together. PCA will be applied on top of the 
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concatenated feature for dimensionality reduction, to avoid training a significantly large set of fused 

feature vectors. This feature will then be ranked normalised and ready for the machine learning process. 

There are many machine learning techniques available today for all kinds of applications. For these 

experiments, a few machine learning techniques have been selected based on their popularity and 

performance. The task for this application is multi-class classification based. SVM has been chosen for 

its popularity and performance for FER and similar applications. KNN is also chosen for its speed and 

approach in finding the closest cluster of samples for a given input. For FER, this technique would find 

the closest matching feature distance of an expression against a dictionary of training expressions. And 

finally, Random Forest is chosen to give a good comparison and SVM and KNN. All three techniques 

significantly differ in the way it learns from data, and the upcoming experiments can indicate which 

performs better under the same controlled settings. These techniques have tuneable hyperparameters 

that will be optimised throughout the experiment, to obtain the best performance out of the system. For 

SVM, both the Polynomial and Radial Basis Function kernels will be used in the system. The main 

hyperparameter for both will be the Cost. KNN has the number of neighbours hyperparameter and RF 

has the number of trees.  

3.3 Experimental Settings and Results 

In this section, experiments are carried out on two databases, BU-3DFE and Bosphorus. This is to 

evaluate the performance of the 2D and 3D feature extractors. The main focus of these experiments is 

to recognise 6 basic expressions Angry, Disgust, Fear, Happy, Sad and Surprise using various machine 

learning techniques. The texture and geometric modalities are further evaluated by fusion of their 

extracted feature vectors. There are 3 experiments that will take place. The first will be the optimisation 

of the machine learning hyperparameters. The second will run a complete and thorough test of all 

descriptors on the BU-3DFE database. And finally, the third experiment will run a validation test on 

the Bosphorus 3D database, to support the findings from the second experiment. 

3.3.1 Spatial Datasets 

The following section will detail the databases that will be used in the experiments. They are based on 

texture and geometric data, which involve handling mainly static images or 3D point clouds.  

3.3.1.1 BU-3DFE Database 

The BU-3DFE database [60] was created by a research group from Binghamton University, who has 

also developed a temporal equivalent called BU-4DFE and BP-4DFE. The BU-3DFE database contains 

a total of 2500 samples made up of 100 subjects. For each subject, there are 4 samples for each of the 

6 basic expressions that consist of Angry, Disgust, Fear, Happy, Sad and Surprise, along with a single 

sample of the subject’s neutral face. The 4 samples per expression represent the levels of intensity for 

that expression, which goes from mild to strong. Each individual sample comes in 4 data formats that 
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are: a cropped front facial 2D texture image; an uncropped side view of the face in a 2D texture image; 

a 3D geometric point cloud and 83 annotated 3D facial landmarks. The cropped image size is 

320 × 256 pixels, in colour format. The 3D point cloud contains a mesh that has roughly 25K to 35K 

polygons per face. From the 100 subjects, there are 44 Male and 56 Female that come from a variety of 

ethnic backgrounds.  

3.3.1.2 Bosphorus Database 

The Bosphorus database [102] developed by Savran et al. also used for research purposes. The database 

includes a total of 4,666 scans collected from 105 subjects, of which 61 are male and 44 are female. 

There are multiple facial expressions included which are represented in 2 ways, first being the basic 

expressions of Angry, Disgust, Fear, Happy, Neutral, Sad and Surprise. The other are expressions based 

on Action Units. Ideally, each subject would contain a single frontal face image and 3D landmark file 

for each expression (except Neutral which contains 4 per subject). This is annotated in Fig. 3. However, 

the database is not very consistent with some subjects missing certain expressions yet having the others. 

 

Figure 3.5 - Sample expressions of the Bosphorus database, showing Happiness, Surprise, Fear, Sadness, Angry and 

Disgust. The rightmost picture shows a 3D annotated landmark sample. 

3.3.2 Settings and Protocols 

There are 2 protocols that are commonly used for Facial Expression Recognition on the BU-3DFE and 

Bosphorus 3D datasets. They are both similar to each other, and differ in only one aspect, which is to 

be subject independent. The protocol is strictly followed as mentioned in [117]. 60 of the 100 subjects 

are randomly chosen, where 54 are used for training and 6 used for testing. From each subject, the top 

2 intensities for each expression are used, making 720 expression samples in total across all subjects. 

There is a total of 100 tests carried out in a subject independent manner, where no samples from a 

subject will be found in both the training and testing sets at the same time. In each test, 10-fold cross 

validation is applied for an extensive and fair result.  

Finally, the average result is then taken across all tests to produce a solid recognition rate for each 

experiment. This protocol is similar to [83] but ensures that images of each subject do not appear in 

both training and testing data splits, and is now mentioned as Protocol 1. Another protocol that is 

adopted consists of the same settings as Protocol 1, but it will not be subject independent. This is to 

achieve a real-world application environment, where each subject can and will most likely reappear 

several times. This protocol is referred to as Protocol 2. The evaluation metric is based on the 



Chapter 3: Facial Expression Recognition from Still Images 

51 

 

recognition rate, measuring the accuracy of the system. This is measured by the number of true class 

predictions 𝐶𝑇 over the total predictions (𝐶𝑇 + 𝐶𝑁) shown in Equation 3.4, where 𝐶𝑁 is the false class 

predictions. 

 𝑅𝑅 =
𝐶𝑇

𝐶𝑇 + 𝐶𝑁
 (3.4) 

For the Bosphorus database, there are 105 subjects in this dataset with a total of 4666 facial scans. These 

include Action Unit scans, pose variations and facial expression scans. The upcoming experiment uses 

just the facial expression scans. These include 1 scan per expression per subject (except Neutral that 

has 4 samples per subject). However, some of the expressions are missing for subjects, so it is not very 

consistent. Because of the inconsistency, only Protocol 2 will be applied in the experimental setting for 

this database. This will be using 60 subjects to predict the 6 basic expressions, along with the Neutral. 

3.3.3 Experiment 3A – Hyperparameter Optimisation 

This section will go through the procedure and outcome of selecting the best hyperparameter values for 

the machine learning techniques. All tests from this experiment will be based on the BU-3DFE database 

because of the data consistency in samples. The feature to be tested is the ULBP texture descriptor and 

the FMD geometric descriptor, both have PCA applied before machine learning, to keep 99% variance 

for the texture feature and for the geometric feature. There will be 100 tests using 10-fold cross-

validation, taking 60 random subjects from 100 using the Protocol 1 settings. 

The initial test will be to select the cost for the SVM RBF and Polynomial (Poly for short) kernels. The 

hyperparameter that will be optimised is the cost, which will go up in 1, 5, 10, 50, 100, 500, 1000. If 𝑋 

is the given input data, then 𝑋̂ is the outcome after PCA. The gamma parameter will be set to 𝛾 =
1

𝑛̂
 for 

RBF and Polynomial, given that 𝑛̂ is the number of dimensions of vector 𝑋̂.   The rest will be set to the 

toolbox default.  

Table 3.1 - Cost Hyper-Parameter Optimisation for SVM 

Cost 

 

ULBP 128x128 

RBF/Poly 

FMD 

RBF/Poly 

1 66.9%/69.3% 74.9%/75.5% 

5 69.9%/69.3% 76.6%/74.3% 

10 69.2%/68.7% 76.5%/73.6% 

50 68.1%/68.0% 75.2%/73.2% 

100 68.3%/68.1% 75.4%/73.6% 

500 68.3%/68.2% 75.4%/75.3% 

1000 68.2%/68.3% 75.4%/73.4% 
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From Table 3.1, the cost for the RBF kernel is best at 5, and for the Polynomial kernel, 1 is best. These 

will be the choices for the later experiments for the SVM classifier. The next test will be optimising the 

KNN number of neighbours. The number of neighbours will start from 1 and will reach 49 in steps of 

2. An odd number is chosen to prevent equal neighbours of 2 or more different classes. The distance 

measurement chosen is the default, which is set to ‘Euclidean’.  

 

Figure 3.6 - Number of Neighbours optimisation for KNN using the ULBP and FMD feature. Each result is based on 100 

tests, and parameter values of 1 to 49 are tested in steps of 2. 

Figure 3.6 shows the outcome of optimising the number of neighbours hyperparameter. The chart shows 

that the number of neighbours beyond 21 generally produce a better performance. ULBP performs best 

at 49 neighbours whilst FMD is at 25. This indicates that the optimised number of neighbours can be 

different for each feature.  

Random Forest is the final machine learning method that will be used. It also contains a hyperparameter 

that can be tuned to the data, which is the number of trees to have. The selection of trees is important, 

as it determines the sample of observations to use. Not having enough trees can mean that some 

observations of a class may not get selected at all in the training process. For our optimisation, we apply 

the following values for the number of trees: [10, 25, 50, 100, 150]. Having too many trees significantly 

increases the computation time and power needed. Therefore, a maximum of 150 trees is selected for 

optimisation. 

Table 3.2 shows the performance of each selection of trees, using the ULBP and FMD features. Having 

150 trees does give the best performance of 62.1% for ULBP, and 68.1% for FMD. The results indicate 

that the higher number of trees do further improve the performance. However, the increase in accuracy 

gets less and less as more trees are added.  
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Based on the results from RF, SVM and KNN techniques, SVM has performed the best overall 

dominating both features using either Poly or RBF kernels. The highest performance from ULBP was 

69.9% and FMD was 76.6%, both of which are using SVM with the RBF kernel. KNN has performed 

~6-8% worse than SVM using either feature. And RF has ~7-8% margin worse than SVM. Further tests 

will now include all the texture and geometric descriptors, using the optimised SVM, KNN and RF 

machine learning techniques.  

Table 3.2 - Random Forest optimisation for number of trees to use with the ULBP and FMD features 

Trees 

  

ULBP  

RF 150 

FMD 

RF 150 

10 35.9% 54.2% 

25 56.7% 66.0% 

50 61.3% 67.1% 

100 61.8% 67.8% 

150 62.1% 68.1% 

 

3.3.4 Experiment 3B – FER on the BU-3DFE Database 

This section will run the main experiment on the BU-3DFE using all feature vectors and their variants, 

along with the optimised machine learning techniques. Each test will be run 100 times with the average 

recognition rate taken as the result for that feature vector. Once all the features are tested, a select variant 

of each descriptor will be tested using further optimisation on the best performing machine learning 

technique, to give a final defining result for each descriptor.  

For this experiment, most of the tests will be based on Protocol 1 as it is a more challenging and tougher 

protocol to follow. The experiments are broken down into three parts. The first part is to individually 

test the feature descriptors that are applied to the textured data using each of the optimised machine 

learning techniques. The second part uses the same process as the first, but on the feature descriptors 

that are applied to the geometric data. They are also learnt individually using each of the optimised 

machine learning techniques. Finally, the last part is to apply fusion at the feature level. This is tested 

thoroughly to determine if fusion makes an impact. 

Each texture feature is extracted from the raw image and resized versions. The raw image size is a 

320 × 256 spatial dimension. This is also resized to 128 × 128 and 64 × 64, to see if the performance 

improves or degrades. The benefit of having smaller images are the speedup in computation time for 

the feature extraction, and the image details also become sharper e.g. long curves can be misinterpreted 

by ULBP as straight lines in a big image. 
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When applying the ULBP; LPQ; HOG; and EOH feature descriptors, the image is initially split into 

windows of 𝑛 × 𝑛, and the descriptor is applied to each window. The final feature is the concatenation 

of all the features from each window. For the upcoming experiment, we use 4 different window sizes 

of 𝑛 = [8, 16, 32, 64] for ULBP and HOG. LPQ and EOH split the image on to a total cell count of 

[2, 4, 8, 16]. Each feature will have their results presented in a table, which will contain results using 

different window sizes and machine learning methods. Each test is run 100 times, with the same test 

protocol used in Table 3.1. (Raw, 64,128) represents the result using different image sizes. Raw is the 

raw image, 64 represents rescaled 64 × 64 image and 128 is rescaled 128 × 128 image. These are laid 

out in the same order for each feature and Machine Learning technique. 

The aim of the initial testing is to see how the machine learning techniques perform across the features, 

along with the variants of each feature descriptor. From this, we can obtain the top 2 machine learning 

techniques, along with the preferred variant for each texture feature descriptor. Then, a final test will 

occur to try and achieve the best performance using further optimised machine learning techniques. 

3.3.4.1 BU-3DFE Texture Data Performance 

Starting with the texture features, the order of testing is ULBP; HOG; EOH; and LPQ. Each table will 

show all the results from the feature it is representing. The best result from each machine learning 

technique will be in bold font.  

Table 3.3 - 3D FER testing based on the ULBP texture feature. SVM, KNN and RF are applied to each variant of ULBP. 

Feature 
Image 

Size 
SVM RBF SVM Poly KNN 25 KNN 49 RF 150 

ULBP_8 

Raw 71.4% 68.4% 56.5% 55.7% 58.2% 

128 74.2% 75.8% 61.1% 60.6% 61.5% 

64 73.9% 73.8% 61.0% 61.6% 60.2% 

ULBP_16 

Raw 73.2% 74.9% 61.9% 62.0% 58.7% 

128 74.8% 68.7% 64.2% 65.1% 60.4% 

64 69.7% 74.0% 61.6% 62.7% 55.0% 

ULBP_32 

Raw 75.2% 74.7% 63.0% 64.2% 58.8% 

128 70.4% 68.0% 60.4% 61.4% 55.9% 

64 60.8% 58.1% 52.8% 54.7% 52.0% 

ULBP_64 

Raw 69.7% 67.5% 59.3% 59.8% 55.2% 

128 59.6% 57.0% 51.3% 51.9% 53.3% 

64 44.1% 42.4% 39.3% 40.2% 42.6% 

 

Table 3.3 contains the results for the ULBP feature. The highest performer is the ULBP_8 feature 

extracted from the 128 × 128 size images, using SVM Poly machine learning to get an accuracy of 

75.8%. This is closely matched by the ULBP_32 feature extracted from the Raw images using SVM 



Chapter 3: Facial Expression Recognition from Still Images 

55 

 

RBF, with an accuracy of 75.2%. The KNN and RF techniques produced a maximum accuracy of 

65.1%, which is significantly less than the SVM techniques.  

Table 3.4 is based on the same experiment but using the HOG texture feature. SVM has again dominated 

in accuracy when compared to KNN and RF. The highest accuracy recorded is 77.1%, using HOG_32 

on the Raw images with SVM Poly. SVM RBF with the same feature setup has produced the second 

highest accuracy of 76.9%. The remaining machine learning techniques perform less than 67%. It is 

worth noting that the configuration to produce the best performing feature set is HOG_32 on the Raw 

images, as 4 out of 5 machine learning techniques have this setting yielding their highest accuracy. 

Table 3.4 - 3D FER testing based on the HOG texture feature. SVM, KNN and RF are applied to each variant of HOG. 

Feature 
Image 

Size 
SVM RBF SVM Poly KNN 25 KNN 49 RF 150 

HOG_8 

Raw 66.8% 72.0% 61.7% 63.5% 62.3% 

128 76.1% 76.0% 64.6% 64.1% 63.4% 

64 72.4% 72.1% 63.3% 63.0% 58.0% 

HOG_16 

Raw 76.0% 76.2% 62.2% 65.7% 59.8% 

128 75.1% 74.7% 63.8% 64.0% 60.8% 

64 67.6% 66.7% 60.3% 60.4% 55.6% 

HOG_32 

Raw 76.9% 77.1% 62.2% 66.5% 61.3% 

128 69.8% 69.1% 60.4% 60.6% 58.9% 

64 57.9% 56.7% 55.1% 55.3% 50.4% 

HOG_64 

Raw 70.8% 70.7% 60.9% 60.9% 59.1% 

128 59.0% 57.0% 55.1% 55.2% 51.3% 

64 41.5% 41.3% 49.2% 49.2% 38.1% 

 

Table 3.5 - 3D FER testing based on the EOH texture feature. SVM, KNN and RF are applied to each variant of EOH. 

Feature 
Image 

Size 
SVM RBF SVM Poly KNN 25 KNN 49 RF 150 

EOH_2 

Raw 72.8% 71.4% 61.7% 61.2% 57.8% 

128 73.3% 72.5% 62.6% 63.1% 59.7% 

64 71.7% 71.7% 62.5% 62.9% 58.8% 

EOH_4 

Raw 71.1% 71.3% 58.8% 58.3% 53.0% 

128 71.2% 71.5% 59.6% 59.2% 52.8% 

64 70.1% 70.5% 58.3% 58.3% 51.6% 

EOH_8 

Raw 66.6% 68.6% 55.6% 54.9% 50.5% 

128 63.5% 67.4% 53.6% 53.4% 49.4% 

64 62.4% 66.2% 53.1% 53.0% 48.1% 
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Table 3.5 shows the results when using the EOH feature. The best performer is EOH_2 on 128x128 

images, using SVM RBF. The accuracy is 73.3%, with SVM Poly on the same feature producing 72.5% 

accuracy. The results indicate that the best performing feature variant for all of the machine learning 

technique is the same, which is EOH_2 on 128 × 128 images. Table 3.6 is based on the LPQ feature. 

It has achieved the best accuracy of 74.7% using LPQ_8 on the Raw images and using SVM RBF. 

LPQ_8 on the Raw images produce the best accuracy for each machine learning technique. 

Table 3.6 - 3D FER testing based on the LPQ texture feature. SVM, KNN and RF are applied to each variant of LPQ. 

Feature 
Image 

Size 
SVM RBF SVM Poly KNN 25 KNN 49 RF 150 

LPQ_2 

Raw 70.9% 70.5% 58.4% 59.1% 52.2% 

128 72.9% 73.2% 58.1% 58.2% 54.1% 

64 71.6% 71.5% 55.0% 56.5% 53.7% 

LPQ_4 

Raw 74.1% 73.9% 62.4% 62.5% 55.7% 

128 73.2% 73.1% 61.3% 62.2% 55.8% 

64 70.2% 69.8% 56.8% 57.0% 51.9% 

LPQ_8 

Raw 74.7% 74.2% 62.9% 63.6% 56.0% 

128 71.0% 70.3% 58.0% 57.4% 52.8% 

64 66.8% 65.9% 56.25 55.9% 49.0% 

LPQ_16 

Raw 72.9% 72.2% 59.5% 59.8% 55.3% 

128 66.9% 66.1% 55.8% 56.0% 49.5% 

64 55.1% 54.3% 46.7% 47.1% 41.0% 

 

From all the tests above, it is very clear that the SVM techniques outperform both KNN and RF by a 

good margin. SVM RBF and SVM Poly both perform very similar, making either of them a worthwhile 

selection. For ULBP, using the ULBP_8 variant on 128 × 128 images has produced the best result. 

HOG_32 on the Raw images is the best variant for the HOG feature. EOH_2 on 128 × 128 images is 

best for the EOH feature and finally, LPQ_8 on the Raw images is the best for LPQ. 64 × 64 images 

have proven to be inefficient, with the idea that the faces become too small and lose their detailed 

information. To achieve a better performance from each texture feature, a test will occur that considers 

using the best variant of each feature, along with the SVM techniques. The several Cost hyperparameter 

values will also be used to see if this can improve the result for each further.  

Figure 3.7 demonstrates the performance that can be achieved by the best-selected texture feature 

variants with further optimised SVM technique. The best feature in the texture domain is HOG_32, 

which is applied to the Raw image. This feature produced 77.3% accuracy. All features produce a result 

within a ~3% range.  
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Figure 3.7 - Performance of each optimised texture feature using SVM that is further optimised. 

3.3.4.2 BU-3DFE Geometric Data Performance 

For the Geometric testing, as there are only 2 features (FMD and LM83), the testing using each machine 

learning technique will be thorough. These features will not be resized like the images for the texture 

descriptors, as it will not make any difference. This means that several values of the cost hyperparameter 

for the SVM techniques will be tested. The number of neighbour’s selection for KNN, and the number 

of trees optimisation for the RF technique are also thoroughly tested.  

The LM83 feature vector contains very few feature components (only 249). Therefore, there is no need 

to apply PCA to this, and the vector will be used as it is. The FMD descriptor contains 3403 components, 

and PCA will be applied to keep 99% variance. Both features will still be rank normalised before the 

machine learning technique is applied. For the SVM RBF and Poly tests, the Cost hyperparameter will 

vary as [1, 10, 50, 100]. The number of neighbour’s selection will vary as [9, 25, 37, 49]. And finally, 

for RF, the number of trees will vary as [10, 25, 50, 100, 150]. 

Table 3.7 contains the results of the geometric feature testing. The best machine learning technique is 

once again SVM, with the Poly kernel just edging over the RBF kernel. The FMD feature shows a 

higher accuracy than any other texture feature used in the experiments, reaching 77.5% when combined 

with SVM Poly. This indicates that using the geometric modality can be advantageous and just as useful 

as the texture information. LM83 seems to struggle with the KNN and RF machine learning techniques, 

producing less than 50% accuracy in all tests using them. However, with SVM, LM83 comes in as the 

3rd best feature out of the texture and geometric features when the Cost 𝛼 = 1000. SVM Poly has 
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produced 1% better than SVM RBF, with SVM Poly now coming in the highest against all individual 

features. 

Table 3.7 - Optimised 3D FER testing based on geometric features FMD and LM83 using Protocol 1. 

Feature SVM 

α 

SVM 

RBF 

SVM 

Poly 

KNN 

α 

KNN RF 

α 

RF 

FMD 1 74.1% 76.4% 9 66.1% 10 45.4% 

10 77.1% 77.5% 25 68.0% 25 54.8% 

50 76.6% 76.3% 37 67.4% 50 57.9% 

100 76.6% 76.2% 49 67.2% 100 60.0% 

1000 76.7% 76.2% 65 67.2% 150 60.8% 

LM83 1 20.7% 30.1% 9 24.1% 10 34.1% 

10 46.6% 59.1% 25 23.0% 25 38.7% 

50 65.4% 69.5% 37 22.5% 50 40.7% 

100 69.4% 72.2% 49 22.4% 100 42.3% 

1000 74.9% 75.9% 65 22.3% 150 42.4% 

 

3.3.4.3 BU-3DFE Feature Fusion Performance 

For the fusion, the first part looks at the feature level. In this, the texture descriptors are fused together 

first, to evaluate the modality performance. This is followed by the geometric features, and then they 

are both fused together. Each of the tests that will take place will have the same protocol used in the 

previous tests so that they can be compared fairly. Only SVM will be used for the machine learning 

stage, using both kernels of RBF and Poly.  

Firstly, the combination of the texture features is applied by concatenating the various features together. 

These combinations include the groupings of ULBP with LPQ; EOH with HOG; and finally, all of them 

together. The feature vector will become very large when they are combined. Therefore, PCA is applied 

on top of the concatenated feature to reduce the dimensionality whilst retaining 99% variance within 

the data. The results presented in Figure 3.8 indicates the performance based on fusing various sets of 

features from the texture and geometric domains. The combination of ULBP and LPQ have shown an 

increase for either feature when using SVM Poly as the machine learning technique. EOH and HOG 

shows a very slight increase (0.2%) over the HOG feature and a significant increase of 4.9% increase 

over the EOH feature. With all texture features combined, the performance increases to a highest of 

78.7% using SVM Poly. This shows a positive sign for feature fusion.  

The geometric features FMD and LM83 are also fused together and shows a decrease in performance 

than having FMD alone. This may be due to the unstable results of the LM83 individual feature, which 

looks like it is having a negative influence. Finally, the texture and geometric domain features are fused 

together, showing a further improvement over the previous highest (all texture features fused) by 0.23%. 
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Not a great margin, however, when the LM83 feature is not included, the performance goes up an 

additional 0.3%.  

 

Figure 3.8 - Experiment results based on the fusion of features using Protocol 1, taken from both texture and geometric 

domains. Accuracy is measured based on the SVM technique using RBF and Poly kernels, with a varied Cost parameter. 

3.3.4.4 Experiment 3B Highlights 

This experiment has been an attempt to investigate how available texture-based descriptors and 

geometric descriptors can be used to interpret the human face to determine their expression. The 

descriptors that were captured from the textured image data are ULBP; EOH; HOG; and LPQ. For the 

3D data, the facial landmarks annotations (LM83 and LM22) are taken. Based on these landmarks, a 

set of distances (FMD) are recorded in the 3D space, calculating the 3D Euclidean distance between 

each of the landmarks. Initially, a set of machine learning techniques had been adopted in the system. 

These included SVM with Poly and RBF kernels, KNN and RF.  

Table 3.8 is a summary of findings from the experiment, showing the best performances from individual 

and fused feature sets. The first clear indication from this table is that the SVM Poly kernel has 

outperformed all other machine learning techniques, including the SVM RBF kernel. Secondly, in most 

cases, combining the various feature sets together increases the accuracy of the system. From the Lowest 

individual accuracy of 72.6% to the highest fused feature accuracy of 79.3%. HOG has shown to be the 

best individual texture feature, and FMD the best geometric. Between them, there is only a 0.2% 

difference, indicating that both domains can provide high-quality features of similar calibre. Feature 
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fusion has shown a positive sign in most cases, except for when the LM83 feature is included, as it 

shows a negative impact on the accuracy.  

Table 3.8 – A summary table showing the best performance for each individual feature and the fusion combinations tested in 

the experiment. Each test is based on SVM RBF and SVM Poly machine learning techniques. Those highlighted in bold 

indicate the best result out of the SVM kernels. 

Feature Domain Protocol 1 Protocol 2 

ULBP Texture 75.9% 83.5% 

HOG Texture 77.3% 83.2% 

EOH Texture 72.6% 75.7% 

LPQ Texture 74.0% 82.0% 

FMD Geometric 77.5% 81.1% 

LM83 Geometric 75.9% 83.3% 

ULBP + LPQ Texture 76.9% - 

HOG + EOH Texture 77.5% - 

ULBP + LPQ + EOH + HOG Texture 78.7% 86.5% 

FMD + LM83 Geometric 76.3% 81.2% 

Geometric + Texture Both 78.7% 90.0% 

Texture + FMD Both 79.3% 90.2% 

 

Table 3.9 is a confusion matrix based on 100 tests of the fused texture + FMD feature, which indicate 

some interesting findings. There seems to be a lot of confusion between the Sad and Angry expressions, 

with Angry predicted as Sad 18.78% of the time, and Sad predicted as Angry 13.15% of the time. Both 

expressions do have similar characteristics, with them being negative expressions, and the ends of the 

mouth going downwards. The best distinguishable expression is Surprise, with a 92.46% accuracy, 

followed by Happy with 90.15% accuracy. Happy and Surprise also have similar characteristics but 

show signs of clear differences. Surprise causes the mouth to close in and create a round shape. Happy 

creates a smile which stretches the mouth instead. 

Table 3.9 - Confusion matrix of the Texture + FMD test, detailing accuracy between each expression 

 Predicted Label 

A
ct

u
a

l 
L

a
b

el
s 

Accuracy (%) Angry Disgust Fear Happy Sad Surprise 

Angry 72.30% 8.16% 5.18% 0.98% 13.15% 0.21% 

Disgust 7.70% 80.16% 4.30% 1.67% 3.26% 2.88% 

Fear 5.00% 8.42% 70.15% 6.64% 6.35% 3.43% 

Happy 0.04% 2.04% 7.29% 90.15% 0.00% 0.47% 

Sad 18.78% 2.65% 8.01% 0.00% 70.34% 0.20% 

Surprise 0.02% 2.10% 4.57% 0.80% 0.02% 92.46% 

 

Table 3.10 highlights the comparison of our work with performances by others using Protocols 1 & 2. 

Our result for Protocol 2 indicates a very strong performance against others, above 90%. The highest 
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recorded performance is 92.2% using a set of defined distances and angles produced using the provided 

3D landmarks. For Protocol 1, the best performance was produced by Li et al. [115] using a fusion of 

3D and 2D descriptors. They used the SIFT + HSOG 2D feature sets and meshHOG + meshHOS 3D 

features along with late fusion to produce 86.3%. Our performance was not as strong as Protocol 2 but 

shows improvement over the works that were done before this experimentation. Li et al. [115] have also 

used both texture and geometric domains, but in a different manner to ours. They first apply techniques 

on the geometric data, and then treat that as an image for the texture descriptors. Whereas we apply 

unique descriptors separately on the data and fuse their resulting feature vectors. From the findings, it 

is clear that there is a benefit towards incorporating both modalities into a single system. 

Table 3.10 - Comparison of our fusion performance with other state-of-the-art techniques 

Performance Comparison 

Feature Domain Protocol 1 Protocol 2 

Wang et al. [10] Geometric 61.7% 83.6% 

Rabiu et al. [105] Geometric - 92.2% 

Soyel et al. [106] Geometric 67.5% 91.3% 

Li et al. [107] Geometric - 90.2% 

Tekguc et al. [108] Geometric - 88.1% 

Yun et al. [110] Texture - 85.3% 

Lemaire et al. [111] Texture 75.7% 78.1% 

Yurtkan et al. [109] Geometric - 88.2% 

Tang et al.1 [112] Geometric 75.7% 87.1% 

Zhen et al.1 [113] Geometric 84.5% - 

Yang et al.1 [114] Geometric 84.8% - 

Li et al.1 [115] Both 86.3% - 

Ours [117] Both 79.2% 90.2% 

 

3.3.5 Experiment 3C – FER on the Bosphorus 3D Database 

Experiment 3C is a validation test, to ensure that what occurs with the BU-3DFE is similar if applied 

to another database, which in this case is the Bosphorus database. We have used a similar protocol as 

the BU-3DFE database, as mentioned in [117], but due to the lack of consistency between samples for 

each expression, they cannot be followed completely. The textured features produced for this 

experiment are ULBP; LPQ; and EOH. These are extracted from the frontal face image. The landmark 

annotations are provided by the database but only consist of 22 to 25 landmarks, compared to 83 of the 

BU-3DFE database. From this set, there are 22 landmarks that are consistent with all samples that are 

used in the experiment. These are denoted as LM22. The FMD feature is created from these 22 

landmarks providing a 231 Facial Mesh Distances. These features are reduced in dimensionality using 

PCA and classified with SVM using the same parameters as the previous experiment.  

                                                      
1 The referenced experiments are run after in 2015, after our experiments had taken place 
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The tests in the experiment consist of a shortened but similar style as the previous experiment. First, 

each feature individually tested from both domains. Secondly, the fusion of features is applied, starting 

with using the textured features separately, then the geometric features separately, and finally the fusion 

of both. As the subjects contain inconsistent samples for each expression, we have decided to combine 

all the relevant expressions from every subject and to randomly shuffle them around throughout the 100 

tests per experiment. Therefore, the tests will not be subject independent. All tests will use the SVM 

machine learning technique, with the polynomial kernel. 

3.3.5.1 Experiment 3C Highlights 

The purpose of this experiment is to demonstrate and validate facial expression recognition using 

texture-based spatial descriptors and 3D geometric features. In addition, the effect of fusing descriptive 

features taken from spatial and 3D data. Protocol 2 was adopted from Experiment 3B, but to classify 

the 6 basic expressions and the Neutral face.  

Table 3.11 - Performance of each individual and fused texture and geometric domain features from the experiment. All tests 

are an average of 100 tests, using the SVM Poly kernel. 

Feature Domain SVM Poly 

ULBP Texture 72.3% 

LPQ Texture 73.0% 

EOH Texture 71.7% 

LM22 Geometric 72.1% 

FMD Geometric 73.3% 

ULBP + LPQ + EOH Texture 75.6% 

LM22 + FMD Geometric 74.4% 

Texture + Geometric Both 79.4% 

 

Table 3.11 shows the performances of all the tests taken place in this experiment. The initial 5 tests 

indicate the individual performances. From these 5 tests, the FMD feature has the highest accuracy of 

73.3%, with LPQ (73.0%) being the highest for the texture domain. EOH has performed the worst, with 

a difference of 1.2% compared to LPQ. When the features are fused, in all cases, the performance has 

increased compared to the individual tests. Fusing the texture features sets has shown an increase of 

2.6% over the LPQ feature, and the fusion of geometric features has shown an increase of 1.3% over 

the FMD feature. When both domains are fused, there is a significant increase in performance reaching 

79.4% accuracy, a 3.7% increase over the fused texture features, and a 6.1% increase over the best 

individual feature.  

3.4 Evaluation and Discussion 

The chapter investigated different avenues in how 2D and 3D data can be exploited for FER. The 

descriptors that were captured from the textured image data are ULBP, EOH, HOG, and LPQ. For the 

3D data, the facial landmarks annotations (LM83 and LM22) are taken. Based on these landmarks, a 
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set of distances (FMD) are recorded in the 3D space, based on the 3D Euclidean distance between each 

of the landmarks. A set of machine learning techniques had been adopted in the system to learn the 

features. These included SVM with Poly and RBF kernels, KNN and RF.  

The first experiment 3A shows how the geometric and texture descriptors FMD and ULBP perform 

alongside various machine learning techniques. The goal was to optimise the techniques 

hyperparameters. Each descriptor went through the same pre-processing stages as each other, with the 

deciding hyperparameter values for each technique based on the highest accuracy. Another optimisation 

from experiment 3B was based on the facial image size and what effect it can have on the descriptor 

performance. The image size can play a crucial role in the system, that can improve or deteriorate the 

performance of it. From the findings, the Raw image size of 320x256 seemed to perform the best using 

majority of the texture features. The 64x64 images achieved accuracies far worse the other image sizes. 

From this, it can be understood that having a bigger image size can provide more information for the 

descriptors, and therefore, create a more detailed feature. The downside to this is that the processing 

overhead and computation time is increased. 

One of the major findings from these tests indicates that SVM has been the most dominant technique. 

This is evidenced by the machine learning optimisation process in experiment 3A, and the FER tests in 

experiment 3B. Both Poly and RBF kernels performed roughly as good as each other, with Poly 

marginally performing better. Experiment 3C was solely based on the SVM Poly machine learning, as 

this was the best performer from experiment 3B. From the experiments on fusing various feature 

descriptors, it shows a great demonstration that these descriptors can perform better together. Fusion 

was adopted at the feature level, where the descriptors are concatenated together to produce a higher 

quality feature vector for each sample. The idea from this is to combine the characteristics from each 

descriptor, to produce a super feature descriptor that can pool the benefits from each of them to improve 

the robustness of the system. The experiments 3B and 3C tried fusion at various levels. First being 

within domain level feature sets, and second of fusing multi-domain level feature sets. The results for 

fusing domain level feature sets shows an improvement over any individual feature set. This shows the 

capability of characteristics complementing each other for a better solution. However, the increase in 

accuracy was not a large amount for this database (1.35% for texture domain), which can then be 

debatable whether it is worth the extra computation required. Though, the accuracy does increase further 

when the geometric feature FMD and the texture features are fused together, to reach 79.25%. There is 

also an indication that some feature sets can have a negative influence on the fused features, such as the 

LM83 feature.   

The validation experiment on the Bosphorus 3D database also indicates how fusing features from the 

same or different domains can improve the performance of a system. The outcome showed a progressive 

increase as more feature sets were fused together, and a significant increase when features from the 
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texture and geometric domain were fused together. Though the Bosphorus 3D database lacked 

consistent structure and images per expression, there was still a clear indication from the findings that 

follow a similar trend to the conclusions from the BU-3DFE database. However, the performance 

increase compared to the BU-3DFE was a lot higher, making it worthwhile to extract various descriptors 

and fuse them together. In terms of the textured data VS. geometric data, when each domain level 

features are fused together, the textured features edge over the geometric features. But the individual 

performance of the geometric features is higher than any of the texture features. Both findings are by a 

small margin, and the texture domain does contain two additional feature sets. An extension on this 

could be to look at how the face can be better interpreted before applying the various descriptors. As in 

most images, there can be a lot of unwanted noise. Examples can be of objects in the background of an 

image, or for facial expressions, as similarities of the face that occur within all expressions. These 

similarities across the expressions do not increase the variance throughout the samples. This can only 

make it more challenging to learn as the picture is not as clear as it could be. In Chapter 4, this idea is 

explored to find a solution to remove the noise where possible before the feature descriptors are applied.  

3.5 Summary 

In this chapter, the classification of facial expressions has been practised using the textured and 

geometric modalities as the sources of information. From this, we looked for diverse ways to understand 

the data, using various feature descriptors. These descriptors give a mathematical representation of the 

characteristics of each facial expression, whether it be from the facial image or their face mapping in a 

3D space. The BU-3DFE database had been the main test bench for the experiments, with the Bosphorus 

3D database acting as a validation to the findings from BU-3DFE tests. Based on the outcomes of all 

the experiments, the following can be understood: 

• The fusion of unique hand-crafted descriptors improves the system performance for FER, in 

both Texture and Geometric domains. 

• Combining both domains also provides a boost to the performance, which was demonstrated 

on 2 databases. 

• In terms of comparing geometric and texture features, geometric features provided a better 

performance, showing better robustness for FER. 

• The SVM technique has achieved the highest accuracy in all of the experiments when 

compared to KNN and RF.  
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 Deeply Understanding Expressions via Facial 

Parts Isolation 
 

In the previous chapter, existing feature extraction techniques had been applied on 2D and 3D facial 

expression data based on the facial structure. This chapter will introduce deep learning as a feature 

extractor and learning technique for FER. The face will also be broken down into facial parts to perceive 

a better understanding of how the face changes throughout the expressions. 

Deep learning has made a major impact in all sorts of applications since it had taken off in the ImageNet 

competition [34], with a huge improvement over other techniques submitted showing a possible 

breakthrough in artificial intelligence. A deep learning approach, namely Convolutional Neural 

Networks (CNNs), are applied and manipulated for Facial Expression Recognition. Furthermore, a 

processing stage is developed on the input facial image to break down and capture the key parts of the 

face that can better represent an expression. The experiments will include the comparison to traditional 

hand-crafted techniques used in Chapter 3.   

4.1 Introduction 

Earlier, in Chapter 3, 3D Facial Expression information was investigated using the texture and 

geometric domains of the face. It was understood that there can be more done to improve the 

performance based on the findings from the experiments. What we can understand is that each facial 

expression has its own combination of facial muscles that move to produce the expression. This can be 

interpreted using FACS [53]. However, if the whole face is closely observed, there are in-fact parts of 

the face that are stationary across all the expressions. This could potentially give little to no meaningful 

contribution to humans and/or machines for distinguishing between the expressions.  

Visually, the most moving parts of the face are the eyes; mouth; eyebrows; and nose. This is concluded 

by observing the facial parts mentioned in the FACS Table 4.1. Thus, it can be assumed that these facial 

parts can provide valuable information about facial expressions. The rest of the face is assumed 

providing a little contribution, or even be perceived as noise. Based on this idea, we consider extracting 

only the mentioned facial parts from the face. Advanced face processing techniques can be adopted to 

accurately extract facial parts, using generated geometric information to process the textured data. 

Hand-crafted techniques and deep learning can be applied to the facial parts to understand the level of 

discrimination each part contributes towards FER, and how well they complement each other.  

During the experiment section, facial parts will initially be assessed as separate entities to try and 

understand what role each can play. It could possibly be that some facial parts are better at 

distinguishing certain expressions than others. This is followed by combining the efforts of each facial 

part, to see what combination performs the best for each expression. All of this will be compared to the 
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performance of the whole face as a sample, with a thorough analysis and discussion to follow the 

experiments. 

Table 4.1 - Facial action coding system table consisting the details of all the action units that represent a movement of facial 

muscles that occur on the face [53] 

Facial Action 

Code 
FACS Name 

Facial Action 

Code 
FACS Name 

AU0 Neutral face AU24 Lip Pressor 

AU1 Inner Brow Raiser AU25 Lips Part 

AU2 Outer Brow Raiser AU26 Jaw Drop 

AU4 Brow Lowerer AU27 Mouth Stretch 

AU5 Upper Lid Raiser AU28 Lip Suck 

AU6 Cheek Raiser AU29 Jaw Thrust 

AU7 Lid Tightener AU30 Jaw Sideways 

AU8 Lips Toward Each Other AU31 Jaw Clencher 

AU9 Nose Wrinkler AU32 [Lip] Bite 

AU10 Upper Lip Raiser AU33 [Cheek] Blow 

AU11 Nasolabial Deepener AU34 [Cheek] Puff 

AU12 Lip Corner Puller AU35 [Cheek] Suck 

AU13 Sharp Lip Puller AU36 [Tongue] Bulge 

AU14 Dimpler AU37 Lip Wipe 

AU15 Lip Corner Depressor AU38 Nostril Dilator 

AU16 Lower Lip Depressor AU39 Nostril Compressor 

AU17 Chin Raiser AU41 Glabella Lowerer 

AU18 Lip Pucker AU42 Inner Eyebrow Lowerer 

AU19 Tongue Show AU43 Eyes Closed 

AU20 Lip Stretcher AU44 Eyebrow Gatherer 

AU21 Neck Tightener AU45 Blink 

AU22 Lip Funneler AU46 Wink 

AU23 Lip Tightener   

 

Deep learning is also thoroughly investigated in this chapter, to see how it can be applied to facial 

recognition. This will be applied on facial parts that are extracted using the proposed extraction process, 

as well as directly on the whole face for comparison purposes. Different deep network architectures will 

be designed with experimental architectures that combine branches for each facial part to learn them all 

simultaneously. The deep learning approach will also extend as a feature extractor, from which the 

probability of expression similarity will be observed, and a metric distance computed to suggest the 

popular expressions. 

4.2 Deep Learning & Facial Localisation for FER 

A lot of systems for face recognition, facial expression recognition and similar applications apply 

common pre-processing techniques that are well known to improve the robustness and stability of their 
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system. Deep learning is becoming an emerging solution in which different forms on networks are 

utilised for certain tasks or sub-tasks to aid FER. A fast representation of Deep Belief Networks (DBNs) 

was developed by Hinton et al. [118], using a greedy algorithm to quickly learn a generative model one 

layer at a time. This idea has been utilised for emotion detection and recognition applications in [38], 

[119], [120] to try and learn and understand the face. Lv et al. [38] proposed a framework that has 

multiple learning stages to try and understand the face in detail. They use a DBN as a hierarchical 

detector that starts by detecting the face using the HOG feature. This is achieved by using HOG on 

different patches of the face using a sliding window technique. The patches that contain the detected 

face are followed up with the same process to try and detect parts of the face and continues until smaller 

individual parts are detected. Gabor features are then captured from the eyes and mouth and are fed to 

a stacked auto-encoder for classification.  

Liu et al. [119] proposed a Boosted Deep Belief Network (BDBN) for FER that contains a 3 stage loopy 

framework. They apply supervised and unsupervised learning techniques to iteratively learn patches of 

the face, followed by feature selection and then classifying the 6 basic facial expressions using 

AdaBoost. They ran experiments on the CK+ and JAFFE database with 80 BDBNs trained from which 

each is specific to a patch of the face.  

Huynh et al. [36] explored the use of CNNs for classifying the 6 basic facial expressions. Two CNNs 

are trained on the BU-3DFE database, with the first based on the facial appearance, and the second 

based on the 3D face shape. Both networks consist of convolution layers, ReLU, Pooling, Local 

Response Normalisation layers and Drop Out layers. The fully connected layers from the networks are 

concatenated and used for prediction, with the SoftMax function to evaluate the loss. They adopted a 

protocol to use all 100 subjects for training and testing instead of 60 and achieved good results, with 

the best performance of 92% coming from the joint effort of the 2D and 3D data. 

Zhong et al. [121] split the face into small non-overlapping patches from which they try to categorise 

groups of patches. These categories are based on the relation between the different expressions, which 

include the common facial patches, specific facial patches, and the rest. They found that the only having 

the highly discriminative patches improves performance and that having too many patches causes a 

volatile decrease in performance. Essentially, including too many patches introduces noise that makes 

the task more challenging.   

They propose ideas that mention looking within the whole face, analysing patches instead for better 

discrimination of expressions. The mentioned systems have interesting ideas that can be exploited and 

improved upon using recently advanced face detection, alignment and localisation technologies [61], 

[122]–[124]. They can be utilised to provide a consistent and less noisy approach. Facial parts such as 

the Mouth, Eyes, Nose and Eyebrows can be accurately captured and extracted. They can provide the 

samples to a framework that can analyse what facial parts work better and for which expression.  



Chapter 4: Deeply Understanding Expressions via Facial Parts Isolation 

68 

 

Having small patches as proposed by Zhong et al. [121] lacks the ability to automatically localise and 

determine what part is in effect for an expression. It can also have trouble distinguishing patches when 

applied to faces of different gender and ethnicity. Having a learned detector for the face and parts as 

proposed by Lv et al. [38] cannot guarantee the robustness as much as face detection, alignment and 

localisation techniques do, especially when there are peculiar samples provided. Both proposals used 

the JAFFE and CK+ database, which are not very diverse when it comes to their subject’s ethnicities. 

In their experiments, they adopt a cross-validation approach, in which they do not ensure subject 

independence. This can result in a high performance which can be inconsistent if a new subject is ever 

tested. 

This chapter looks to create a robust face alignment and localisation procedure to accurately crop out 

facial parts for further processing. A way to capture a facial part is to first locate it in the image, find 

the boundaries in which it consists in, and then crop the image based on this bounding box. The quality 

of the facial part extraction mainly relies on good detection of the boundaries. As the facial parts move 

with each expression, the bounding box cannot be determined at the subject level. It will have to be 

done separately for each expression by each subject.  

There are many techniques that exist to locate a face in an image [61], [125], and other techniques that 

can produce the facial landmarks of that face [122], [124], [126], [127]. The combination of face 

detection and facial landmark localisation can provide all the information needed to create a bounding 

box for each part, only if the landmarks produced are sufficient for each facial part. The BU-3DFE and 

BU-4DFE databases both provide manually annotated 3D facial landmarks and frontal face images, but 

no direct mapping of the 3D landmarks on the 2D images. Therefore, they would require re-localising 

to obtain 2D landmarks to map directly on the texture face image. 

4.3 Facial Parts Extraction using Geometric Information 

To extract the facial parts from a sample, an approach using geometric information is investigated. This 

is an attempt to use the given 3D landmarks and map it on to the 2D frontal images of the subjects faces. 

This process is broken down into 4 stages, to get from frontal face image to facial parts processed and 

ready for the CNNs and hand-crafted algorithms.  

For the first stage, the 3D landmarks are mapped directly onto the 2D frontal face image. The second 

stage is to apply pre-processing steps to make sure each sample of the frontal face is aligned and 

corrected before the facial parts are extracted. The third stage involves using the mapped and aligned 

2D landmarks on the facial image to be able to crop out the different facial parts. The parts are then 

cropped using a bounding box that is generated from the landmarks. Finally, each of the cropped facial 

parts has post-processing steps applied to it, to make sure that they are of the same size across each 
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subject. Once all the stages are complete, each facial part can be used for experimentation using hand-

crafted and deep learning techniques.  

Before the bounding box can be created for each facial part, the facial image should be adjusted in a 

way that can narrow the differences amongst each other. These include the size of the face, its rotation 

and facial parts localisation. These differences can be reduced by observing some of the key locations 

on a face that tend not to move with facial expressions. They can aid the image adjustment process, 

providing a reference point in which all the faces can be corrected to match.  

For example, the inner eye locations will always remain in their position on a face. Using this 

information, the Euclidean distance can be calculated and used as a reference distance that other faces 

can match. This especially is a very effective method for resizing faces from the same subject that is 

portraying different expressions. There are also other techniques and the combination of locations that 

can aid the normalisation of the faces. 

4.3.1 Spatial Mapping of 3D Landmarks 

The facial images provided in the databases contain 2D texture information. However, the 3D 

landmarks are based on a 3D point system making direct the mapping of the 2D image close to 

impossible. Therefore, a protocol called Incremental Parallel Cascade of Linear Regression (iPar-CLR) 

[122] has been adopted to localise each 2D projected facial image. This technique is based on the 

Supervised Descent Method [128], [129], which was updated to be parallelised and to allow incremental 

updates when given new samples. The outcome of this technique is 49 landmarks for each facial image, 

that cover the inner parts of the face.  

The iPar-CLR technique aims to reduce the variance of the perturbations at each level in a Monto-Carlo 

setting, training and updating all the levels of the regression functions independently using only the 

statistics of the previous level. This eliminates the need for propagation through all the previous 

iterations of samples. It becomes highly parallelisable in all the regression functions which means they 

can be trained independently and without any loss in the alignment accuracy.  

iPar-CLR can be understood as the following [122]: let a set of 𝑀 images ℒ = {𝐼𝑖}𝑖=1
𝑀  and the set of 

ground-truth shapes S = {𝐬𝑖
∗}𝑖=1

𝑀  with 𝐬0 ∈ ℝ𝑛×1. Also, let a feature function 𝐡(𝐈, 𝑠) ∈ ℝ1×ℎ, where, ℎ 

is the dimensionality of the feature. This function 𝐡 returns the SIFT or HOG features around each 

landmark of shape 𝐬 [128], [129] from an image 𝐈. 𝒫∗ = {𝐩𝑖
∗}𝑖=1

𝑀  is a set of ground-truth shape 

parameters, with the goal of learning a function from an initial estimate of 𝐩 that takes us to the ground-

truth shape parameters 𝐩∗, where, both 𝐩∗ and 𝐩 ∈ ℝ1×𝑙. 𝑙 is the total number of shape parameters 

[122]. A linear rule is learnt from the perturbed parameters 𝐩(1) of image 𝐈 such as that of Equation 4.1 

[122]: 
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𝐩∗ = 𝐩(1) + 𝐡(𝐈, s(𝐩(1)))𝐖 + b 

𝐩∗ = 𝐩(1) + [𝐡(𝐈, s(𝐩(1))) 1] 𝐖̃

𝐩∗ = 𝐩(1) + 𝐡̃(𝐈, 𝐩(1))𝐖̃

 (4.1) 

   

where 𝐖̃ = [𝐖;b] is the learning objective, 𝐡̃ (𝐈, 𝐬(𝐩(1))) is a feature extraction function of the SIFT 

descriptor, 𝐈 is an image from a set of 𝑀 images, 𝐩 is a set of perturbed shape parameters, with 𝐩∗ as 

the ground-truth shape parameters. The initial 𝐖̃(1) regression problem is solved sequentially (known 

as Seq-CLR) as the following in Equation 4.2 [122]: 

 arg min
𝐖(1),b(1)

∑∑‖∆𝐩𝑖𝑗
(1)

− 𝐡(𝐈𝑖, 𝐩𝑖𝑗
(1)

) 𝐖̃(1)‖
2

𝑗

𝑀

𝑖=1

 (4.2) 

   

where the updated perturbed shape parameter is: ∆𝐩𝑖𝑗
(1)

= 𝐩∗ − 𝐩𝑖𝑗
(1)

, 𝑗 is the number of perturbations, 

𝐈𝑖 is the 𝑖th image from a set of 𝑀 images. The following perturbed shape parameter is calculated as 

shown in Equation 4.3 [122]: 

 𝐩𝑖𝑗
(2)

= 𝐩𝑖𝑗
(1)

+ 𝐡(𝐈𝑖, 𝐩𝑖𝑗
(1)

) 𝐖̃(1) (4.3) 

   

 

Figure 4.1 - Incremental update addition to the Par-CLR training procedure [122].  

The problem with this is that it requires the previous perturbed shape parameter of 𝐩𝑖𝑗
(1)

 which means it 

can’t be run in parallel. And when new samples are added to the trained model, all the shape parameters 

must be retrained from scratch. Par-CLR fixes this issue by using the statistics of the previous levels 
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(variance) instead, removing the need for relying on the propagated perturbed shape parameter from the 

previous iterations. This consequently allows all the perturbed shape parameters to be learnt in parallel.  

Figure 4.1 shows a visualisation of the parallelised training procedure for Par-CLR (a), along with the 

incremental update in (b) [122]. iPar-CLR is applied similarly to Par-CLR, with the addition of allowing 

perturbed shape parameter to be updated by using new samples. This technique is applied to facial 

expression images to learn the 49 2D facial landmarks similarly in [115], which are used in the 

following stages of the framework to extract and isolate facial parts from a given facial image. 

4.3.2 Facial Pre-processing Steps 

Once the 49 2D landmarks 𝑃1, … , 𝑃49 are obtained as shown in Figure 4.2, the following step is to align 

each frontal face image so that they are normalised spatially. This can be achieved by using the 

landmarks to rotate and resize the facial images. Each image is rotated firstly to make sure the face is 

completely straight. This is to prevent any misalignment of hand-crafted descriptors. Subsequently, the 

face is resized within the image based on a given parameter, which will be the same across all samples. 

This is to make sure that all faces are roughly the same size within the image frame so that the facial 

parts can roughly be of a similar size across the different subjects and expressions.  

4.3.2.1 Face Rotation Correction 

To calculate the angle of the face, two locations are needed: a central origin point, and a line that goes 

through the upper face centrally. These can be obtained by observing the nose and mouth. As most of 

the face is symmetrical across a vertical plane, the landmark that is the centre of the upper lip (𝑃35 in 

Figure 4.2) can be selected as a reference point. It is roughly central horizontally across the lower face 

and varies little in its position across the different expressions. A straight line can be produced along 

the nose using point 𝑃11 as 𝑥11𝑦11 and the upper lip 𝑃35 as 𝑥35𝑦35. The angle can then be calculated 

between this line and the norm. After observing the data, the consistency for 𝑃11 to be central proved 

to be an issue with the possibility that the subject may have suffered from a broken nose or any 

equivalent incidences that changes its natural shape. Therefore, to address this issue, a new landmark is 

generated to replace 𝑃11 that will be less likely to deviate much from each subject.  

 𝑃50 = (𝑥50, 𝑦50) = (
(𝑥6 − 𝑥5)

2
,
(𝑦6 − 𝑦5)

2
) (4.4) 

 
𝑑50,35 = √(𝑥50 − 𝑥35)

2 + (𝑦50 − 𝑦35)
2 

 
(4.5) 

This landmark is generated near the centre of the forehead (𝑃50), created using the inner end of each 

eyebrow, which are landmarks 𝑃5 and 𝑃6. It is difficult for a person to move these inner eyebrow 

landmarks throughout the expressions, and because the face is symmetrical, the centre of the inner 

eyebrows is roughly at the centre of the face horizontally. This centre point makes a robust location to 
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be used as the higher end reference point, replacing the nose point 𝑃11. With the new point 𝑃50 generated 

using equation 4.4, the next step is to calculate the distance from that point and 𝑃35. This is achieved 

by calculating the 2D Euclidean distance between them shown in Equation 4.5. The rotating angle 𝑆 

can be calculated as followed: 

 𝑉 = (𝑣1, 𝑣2) = ((𝑥50 − 𝑥32), (𝑦50 − 𝑦32)) (4.6) 

 𝑍 = (0, 𝑣2) (4.7) 

 𝑆 = cos−1 (
𝑉𝑍𝑇

‖𝑉‖ × ‖𝑍‖
) (4.8) 

   

With the angle 𝑆, the face can be rotated at point 𝑃35 until this becomes 0°. Doing so will mean that the 

angle of the face is also 0°. This alignment can prevent straight lines being mistaken for curves or angled 

slopes across samples, which can have a negative influence on algorithms such as LBP and HOG by 

them producing incorrect feature histograms. Therefore, it is vital to keep all samples at the same angle. 

Figure 4.2 demonstrates the facial landmarks being annotated on a sample face, with the new point face 

rotated to 0°. The landmarks have also gone through the same transformation to ensure that they are 

properly aligned to the rotated face.  

 

Figure 4.2 - Sample face with rotation correction. Facial landmarks annotated on the face as a green cross, with the number 

representing the order of landmark detected. Bounding boxes are outlined for the 4 main facial parts that will be extracted. 
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4.3.2.2 Face Resizing 

Once all the faces are rotated to the same angle, the next step is to resize them to approximately the 

same size within the images spatial dimensions. This is a crucial step as it makes sure that the facial 

parts across the expressions are of the exact same size. This issue can occur during the capturing process 

of the faces. If the subject moves closer or further from the camera, the face can get bigger or smaller 

respectively. The uneven sizing can cause the feature descriptors to produce a different feature of the 

same image (that has smaller or bigger face). 

Resizing the face to match the same size across the dataset can be tricky, and sometimes cannot be 

guaranteed between different subjects as their face shape may vary. However, it should be possible for 

each expression by a subject. This can be achieved by measuring a distance between two points on the 

face that does not vary between expressions. Then, if all the following samples are resized to produce 

the same distance between the same points, the face should ideally become the same size.  

Two points that can be used are the inner eye corners 𝑃23 and 𝑃26. This is preferred over the inner 

eyebrows points 𝑃5 and 𝑃6 as the eyes are more towards the middle of the face. The distance 𝑑26,23 

between these points do not vary throughout the expressions, which makes it a suitable candidate to be 

the reference distance. It is calculated using Equation 4.9, the Euclidean distance between both inner 

eye points.  

 𝑑26,23 = √(𝑥26 − 𝑥23)
2 + (𝑦26 − 𝑦23)

2 (4.9) 

   

Initially, a reference size for the inner eye distance is required that can be used on all the samples. This 

can be determined by taking the mean value of a random batch of faces. Each sample can then have the 

face resized evenly until the distance matches the reference. 

4.3.3 Facial Parts Extraction 

Once the face is aligned and resized correctly, the facial parts can be extracted using the new aligned 

and resized 2D landmarks. Four key facial parts are extracted for the upcoming experimentation. These 

are the Eyebrows; Eyes; Mouth; and Nose. This is achieved by creating a bounding box around each 

facial part using the relevant landmarks. The size of the edges for each bounding box is increased by 

approximately 5-10 pixels, to ensure that each facial part is fully inside each bounding box.  Then, each 

image is cropped with its respective bounding boxes to separate the facial parts, producing 4 new images 

per sample.  

The bounding box is created using 4 points across the corners of the facial parts. To determine the 

corners of each facial part, a few steps are required to prepare for this process. The first step is to isolate 

all the landmarks relevant to each facial part. They can be determined by visually inspecting the 

landmark positions in Figure 4.2. The Mouth consists of the points from 𝑃32: 𝑃49, Eyes are points 
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𝑃20: 𝑃31, Eyebrows are points 𝑃1: 𝑃10 and finally Nose are points 𝑃11: 𝑃19. To determine the corners of 

each facial part, the Min and Max 𝑥 and 𝑦 points are required within the points set. From this, 4 

combinations are created to representing each corner.  

Given the set of all 50 landmark points as P: 

 

P = {𝑃1, 𝑃2, ⋯ , 𝑃50} 

𝑃𝑖 = (𝑣1
𝑖 , 𝑣2

𝑖 ) 

P̂ = {𝑃̂1, ⋯ , 𝑃̂𝑘} 

 

(4.10) 

Where 𝑃𝑖 is the point 𝑖, which is a subset from 𝑖 ∈ [1,50], and P̂ is a subset of points for a specific 

facial part. The bounding box is created using 4 points representing each corner as: 

 

𝑥𝑚𝑖𝑛 = min(𝑣1
1,⋯ , 𝑣1

𝑘) 

𝑥𝑚𝑎𝑥 = max(𝑣1
1,⋯ , 𝑣1

𝑘) 

𝑦𝑚𝑖𝑛 = min(𝑣2
1,⋯ , 𝑣2

𝑘) 

𝑦𝑚𝑎𝑥 = max(𝑣2
1,⋯ , 𝑣2

𝑘) 

(4.11) 

 

𝑃𝑇𝑙 = (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) 

𝑃𝑇𝑟 = (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛) 

𝑃𝐵𝑙 = (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) 

𝑃𝐵𝑟 = (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) 

(4.12) 

   

Where 𝑃𝑇𝑙 is the top left corner, 𝑃𝑇𝑟 is the top right corner, 𝑃𝐵𝑙 is the bottom left corner and 𝑃𝐵𝑟 is the 

bottom right corner. With all the corner points of the bounding box calculated for the requested facial 

part, the next step is to simply crop the image with the bounding box. This step will isolate the requested 

facial part of the whole face. 

4.3.4 Facial Parts Post-Processing Steps 

Not all facial parts are the same in size across all the samples, therefore another processing step is taken 

to resize all the parts into 64x64x3 images. This is to provide consistency in size for the hand-crafted 

and deep learning algorithms. Resizing of the image should not alter the facial parts differently, as the 

initial face resizing that has taken place is done on the face within the image. Therefore, each part should 

still be normalised according to the initial resizing. Now the facial parts of each sample are ready to be 

used in the upcoming experiments. Figure 4.3 shows sample images of the Mouth after all the 

processing techniques. The Happy, Neutral and Fear expressions are presented on the same subject.  
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Figure 4.3 - Samples of a subjects Mouth portraying the Happy, Neutral and Fear expressions. This is the resulting images 

with all the processing steps before and after extraction.   

4.4 Deep Network Designs for Understanding Facial Parts 

In this section, the use of Convolutional Neural Networks designed for facial expressions is described 

in detail, for both facial image and parts. Several CNN architectures are designed and tested on the data, 

to see how their performance varies based on their structural differences. There are many different 

building blocks to a CNN, making the design process very tricky to know what the right or wrong thing 

to try is. Therefore, the architectures that are designed, are inspired by the existing networks that have 

shown their effectiveness towards their application.  

With CNNs, there are two key factors to consider when creating a network. Firstly, how much data is 

available for training. The second is how deep does the CNN really need to be. The general rule is that 

the quantity of training data helps a deep network perform better. With this in mind, networks are 

designed deeper if there is a lot of data to play with, and usually show better performance with the cost 

of longer training time and extra computational and memory resources required. However, the depth of 

the network also depends on the difficulty of the task. For instance, if the task is to classify 1000 

different objects, then this would require a very deep network to create all the associations necessary 

for each object. However, if there are only 10 objects to classify, then the task becomes significantly 

easier making a very deep network a waste of time and resources to train, as the same performance can 

be possibly achieved using a smaller network. 

To test this theory out, one of the experiments will focus on comparing the performance of assorted size 

network architectures using the same data and parameters. This will give an indication if there is any 

improvement of using a deeper network with a small size database. 

4.4.1 Data Preparation and Pre-processing Steps 

Preparing the data for any system that goes through data mining tasks can have a really large impact 

and contribution on how well the system performs [130]. Training a CNN directly on raw images may 

not be the most efficient way to do so. Preparation can include tasks such as data acquisition; cleaning; 

format and structure; storing and handling. Some of the data pre-processing steps mentioned can be 

applied to speed up training and even increase the performance of a CNN. Initially, all the samples must 

be of the same spatial dimensions. Then, each image can be rank normalised between 0 and 1, which is 
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also known as rescaling. This can be achieved easily with images due to the known pixel value range 

of 0 to 255. Each pixel from all the images can be divided by 255 to achieve this.  

Another step is to standardise the images, which is essentially calculating the zero mean unit variance. 

This is done by calculating the mean of all images and subtracting this value with all the images so that 

the new mean of all images is now equal to zero. The images are then divided by the standard deviation 

of all images. The formula is shown in 4.13, where 𝜇 is the mean of vector 𝐱, and 𝜎 is the standard 

deviation of 𝐱.  

 𝑥̿𝑖 =
𝑥𝑖 − 𝜇

𝜎
 (4.13) 

   

Another concept that can be applied to achieve better performance from CNNs is to augment the data. 

This can provide a form of regularisation and effectively to increase the quantity of data. This can be 

advantageous when training the network as is gives more depth and variation of the data, which in result 

can also reduce or even prevent overfitting occurring.  

Some of the common data augmentations are:  

• Rotation – An image is rotated uniformly from the centre point with an angle of 0 to 360 

degrees. 

• Image Flipping – An image is flipped vertically or horizontally to produce an alternate sample. 

• Image Rescaling – An Image can be uniformly rescaled within the spatial dimensions, to 

produce a distinct size of the image within its initial dimensions. 

• Image Stretching – Where an image can be stretched vertically or horizontally. 

• PCA reduction – This is a step that requires calculating the zero-mean beforehand. Then, the 

covariance matrix is obtained to understand the correlation of the data. This data is then 

decorrelated by calculating the eigenvectors using singular vector decomposition, and 

multiplying it with the zero-centred images. The dimensionality can be reduced by multiplying 

the zero-centred images with only a subset of the top eigenvectors. 

• PCA-Whitening – This is applied directly to the decorrelated data, to normalise the scales of 

every dimension. This is achieved by diving the decorrelated data with the eigenvalues. 

For the experiments, data augmentation is also considered, with the possibility to expand on the total 

number of samples. From the lists above, the following techniques will be adopted: image normalisation 

between 0 and 1, calculating the zero mean with unit variance, and image flipping is used for 

augmentation. The images will be flipped horizontally as opposed to vertically, or both. Doing so 

vertically is an impractical solution as there will rarely be any realistic situations where the mouth, or 

other parts, are positioned upside down.  
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4.4.2 Pre-Training and Fine-Tuning Networks  

The idea of pre-training a network is to learn from existing data before the network is applied to the 

data from the active task. Once this network is trained, it becomes a pre-trained network. There are 2 

useful applications of a pre-trained network. The first application is to use this network to propagate 

new data forwards only. The prediction can then be taken from the network, or even the features 

produced from the previous layers (pre-trained feature extraction). The second is to further train the 

deep network with the new data, which has the benefit of starting with optimised weights from its 

previous application. This process is also known as fine-tuning a network. 

Razavian et al. [131] had considered how an off-the-shelf OverFeat model [132] worked for other 

applications. The pre-trained model they used was successfully applied on a variety of datasets for 

recognition tasks such as object image classification, scene recognition, fine-grained recognition, 

attribute detection and image retrieval. They simply extracted CNN features coupled with a linear 

Support Vector Machine for recognition and managed to achieve state-of-the-art performances at the 

time on those datasets. Using this idea, we plan to investigate if pre-trained networks can be exploited 

successfully for emotion-based applications such as Facial Expression Recognition. 

There are a variety of publicly available pre-trained networks that have been trained on existing data. 

These include applications such as object recognition [34], [96], [97], face recognition [133], [134] and 

semantic segmentation [135], [136]. These networks can be utilised for extracting pre-trained features 

or fine-tuning from the facial expression images. To get the best response from the pre-trained network, 

there usually is a given set of pre-processing commands used on the images before propagating them 

through the network. This is to make sure they are in the same form before they are propagated (zero 

mean, normalised, rescaled).  

For the upcoming experiments, the use of a pre-trained network for feature extraction will be considered 

for FER. The following pre-trained networks are considered: AlexNet [34] and VGG-Face [133]. 

AlexNet is suited for object detection, but it will be interesting how the performance will differ to VGG-

Face (trained on faces). A network will also be trained from scratch based on the BU-4DFE database, 

using a set of sample frames of each sequence as the training data. The network architecture will be 

based on combining facial parts, so all of the training occurs in one session.  

4.4.2.1 AlexNet Pre-Trained Deep Network 

AlexNet is a popular deep network that was known for its successful demonstration in the ImageNet 

challenge [33]. It was designed by Alex Krichevsky, which at the time was not attempted for such 

challenges. The results achieved in 2012 had surprised the research area after it achieved 16% error, 

which was at 25% in 2011. It had produced a significant increase in performance compared to other 
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hand-crafted techniques, and the error decrease trend was then followed yearly in the ImageNet 

challenges by other deep networks. 

The AlexNet pre-trained CNN contains a 21-layer architecture that has 8 parameter layers, 5 of which 

are convolutional layers and 3 fully connected layers. The remaining are a mix of Pooling, Rectified 

Linear activation function and Normalisation layers with a single SoftMax layer at the end. As this 

network is used as a pre-trained feature extractor, the model will not be retrained. The main focus is to 

know which layers to extract the feature from when propagating facial expression samples through the 

network.  

The areas of interest are the Fully Connected layers FC1 and FC2, as they contain information that 

connects all the previous feature maps. They are also the smallest form of features as the spatial 

dimensions are 1 × 1. The initial convolution layers are not considered to be used as the extracting 

feature as the parameter and memory count is drastically higher than the fully connected layers. With 

AlexNet, there were around 70K parameters VS. 4096 when comparing the initial convolution layer 

VS. the fully connected layers. For VGG-Face, this number increases significantly to 802K VS. 4096. 

These are too large to be used directly as a feature vector. Therefore, the targeted layers for this 

experiment are 16 and 18, which are represented as FC1 and FC2 respectively. This network is designed 

for recognizing up to 1000 various objects, which may result in unsuitable features when applied with 

facial images. 

4.4.2.2 VGG-Face Pre-Trained Deep Network 

VGG, known as Visual Geometry Group, is a group from Oxford, UK, that have designed and trained 

deep network models. Their works include several popular networks based on object detection. These 

are the VGG-S, VGG-F, VGG-M, VGG-D and VGG-E networks [137], [138] networks trained on the 

ImageNet dataset [33]. All the networks vary in speed and layer size, with the very deep networks VGG-

E and VGG-D (16 and 19 convolution layers) performing a lot better than the VGG slow, fast and 

medium (all containing 5 convolution layers) network. This can be a demonstration of how the depth 

of the network can help in performance when there are millions of data samples. 

VGG-Face is the network they trained for face recognition amongst 2622 celebrity faces. This had 

shown great performance on many of the top face databases, achieving state-of-the-art performance 

[133] on the YouTube Faces Dataset [139] at the time. This network contains 37 layers in total. These 

consist of 13 convolution layers; 3 fully connected layers; 15 ReLU Activation layers; 5 pooling layers; 

and a final SoftMax layer at the end to calculate the loss. Each of the convolution layers has a kernel 

size of 3 × 3, padding of 1 and stride of 1. This is the style of convolutions that VGG networks are 

known for, as the input image becomes the same in spatial dimension as the output feature maps 

produced by the filter. The condensed form of the network architecture can be seen in Figure 4.4, where 

each visual convolution layer from Conv1 to Conv4 represents a set of 3 convolutions. All layers apart 
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from Input Image and SM1 have a ReLU Activation layer after it, and Conv1 to Conv4 have a max 

pooling layer after the ReLU layers, reducing the image spatial dimensions by 2.  

 

Figure 4.4 - Visual process of the VGG-Face Network Architecture 

The VGG-Face network had been designed and trained to recognise faces from a list of 2622 famous 

people. Compared to AlexNet, this network is trained solely on faces and will, in theory, be more 

beneficial for FER. The early convolutional layers contain details in the form of edges, blobs, facial 

parts, but do not have any interconnectivity between them. This is handled by the fully connected layers, 

linking the blobs and facial parts that produce a response.  

 𝑦𝑗 = 𝑓 (∑𝑥𝑖 ∙ 𝑤𝑖,𝑗 + 𝑏𝑗

𝑚

𝑖=1

) (4.14) 

   

The interconnectivity can be interpreted in Equation 4.14, where 𝑦𝑗 is the fully connected output feature 

by taking the function 𝑓(𝑥)of the given input 𝑥𝑖 from the previous layer. The function calculates the 

sum of all inputs 𝑥𝑖 multiplied by each individual weight (𝑗 = 1: 4096) of the fully connected layer 

plus the bias 𝑏𝑗. These layers will also be the focus of the upcoming experiments, with FC1 and FC2 

extracted as 4096-dimensional feature vectors used as the deep representations of the given samples. 

4.4.3 Network Architecture Designs 

There will be 4 forms of network designs in total. The first is to focus on learning an image of the frontal 

face, which can also be adopted for each individual facial part. Here a single branch network is designed 

to only learn 1 image at a time. The facial parts network contains 4 branches that gradually concatenate 

to 1, where each branch learns a specific facial part. This is to try and get a deep understanding of each 

facial part and fuse the relations between them via parameter concatenation and the use of fully 

connected layers.  
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A network is also pre-trained using the BU-4DFE database, from which fine-tuning will occur to see if 

external data of a similar nature will benefit FER. The pre-training will be based on the facial parts 

using the same procedure as on the BU-3DFE database, and the fine-tuning will be to simply apply BU-

3DFE samples for light re-training and prediction. Finally, a Joint Bayesian technique will be adopted 

on top of the trained networks. These networks will be treated as pre-trained networks for feature 

extraction, from which JB is applied to find similarities amongst the expressions.  

4.4.3.1 Comparison of Small, Medium and Large Deep Network Architectures for FER  

Having substantial amounts of data is a key ingredient to get a deep network to perform the best it can. 

The databases used here for facial expression recognition are very small (up to 3000) when compared 

to the ImageNet database [33] that has millions of images. The ImageNet database has shown how deep 

networks can learn a lot from enormous quantities of data. Training a small deep network on a small 

database will perform similarly to training a large deep network as the lack of data is what will cause 

the large network to overfit the data. Part of the experimentation will investigate how much difference 

there is when comparing small, medium and large network architectures, under controlled settings.  

The networks are designed using a similar style to the VGG-Face network [133] as it has a consistent 

architecture structure that can be manipulated to be small or large. The VGG-Face network architecture 

features a design that has a combination of convolutional and ReLU layers that do not change the spatial 

dimensions of its the input. This allows the pooling layers to have full control over reducing the spatial 

dimensions and allows to easily make the network deeper if needed.  

The training iterations will be set based on when the objective converges to a steady value. This may 

not be the same for the large and small networks as the large network may take longer to converge. 

Therefore, sufficient training will be needed to allow for fair comparison. The networks will be trained 

on frontal face images of spatial resolution 128 × 128, and with RGB colour. For facial parts, the 

spatial resolution of them will be 64 × 64.  

4.4.3.2 Network Architectures 

A network is designed to learn from facial images and facial part individually. It will come in three 

variants, a small, medium and large version. The small version will be created to be a fast and efficient 

network. The large will be a slower network with more memory usage but will be able to learn data at 

a higher depth. The medium version sits in between to provide a deeper network but with fewer memory 

requirements than the large version. 

Some standard design rules are followed.  

• Batch Normalisation is applied immediately after every convolution layer, they are paired 

together. 



Chapter 4: Deeply Understanding Expressions via Facial Parts Isolation 

81 

 

• Each convolution layer (apart from prediction) + Batch Normalisation is followed by a ReLU 

activation layer. 

• When a pooling layer is defined, Max pooling is always chosen, apart from the final pooling 

layer to create 1x1 feature maps, where average pooling is applied instead. 

• Activation of all parameterised layers is done the same for all created networks, which is using 

the Xavier improved technique proposed in [89]. 

The networks are based on similar principals as the VGG-Face network but modified to accommodate 

the image spatial dimensions. The Convolutional layers will always produce an output of the same input 

spatial dimensions and will always be followed by a Batch Normalisation layer and a ReLU layer. The 

Pooling layers will shrink the spatial dimensions throughout the network. The deeper network will 

contain more convolutional layers before a Pooling layer is applied. This will be considered the 

differentiation point between small, medium and large Deep networks for this experiment. 

 

Figure 4.5 - Architecture of the Large Size Deep Network 

Figure 4.5 shows the architecture of the large deep network. It starts with the input image, followed by 

3 sets of convolutional layers. These convolutional layers will produce feature maps of the same spatial 

dimensions, with a depth of 64. They are followed by a max pooling layer to reduce the spatial 

dimensions of the feature maps to 64 × 64. This sequence is then repeated 4 more times, decreasing 

the spatial dimensions and increasing the feature maps. After layer Conv 5-3 an average pooling layer 

is applied reducing the 8 × 8 feature maps to 1 × 1. This is then followed by 2 fully connected layers 

and a SoftMax layer.  

 

Figure 4.6 - Architecture of the Medium Size Deep Network 

In Figure 4.6, the medium size network is shown with the only difference of having 2 convolutional 

layers per sequence. Figure 4.7 is the small architecture containing just 1 convolutional layer per 

sequence. Each Conv layer will have a kernel size of 3 × 3, with a stride of 1 and a padding of 1. The 
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Max pooling layers will have a stride of 2 and a kernel of 2 × 2. The average pooling layer will have a 

stride of 1 and a kernel of 8 × 8, and finally, the Fully Connected layers will have a stride of 1 and 

kernel of 1 × 1. 

 

Figure 4.7 - Architecture of the Small Size Deep Network 

For the facial parts, the initial spatial dimension will be 64 × 64, and the architecture is adjusted 

appropriately to accommodate this factor. The architecture can be seen in Figure 4.8, with the proposed 

solution of removing the Conv 5 sequence. This will allow keeping the same style architecture used for 

the frontal face images. This architecture is repeated for the Large and Medium variants for comparison 

using individual parts. The remaining hyper-parameters will be set the same to allow a fair comparison. 

 

Figure 4.8 - Small Size Deep Network architecture for facial parts 

4.4.4 Dynamic Joint Bayesian Approach from Feature Learning 

An interesting approach is to look at how the deep networks can learn the differences between each 

expression. The fully connected parameters contain information about all previously activated neurons 

and will be a good place to investigate.  

Techniques like KNN often use distances such as the Euclidean distance directly between the feature 

vectors. There are some major downfalls to this idea, as the data can be very correlated within its 

dimensional space. Metric learning, namely Mahalanobis distance, looks to learn a new metric that can 

make two classes more separable by removing the covariance between the vector dimensions. This can 



Chapter 4: Deeply Understanding Expressions via Facial Parts Isolation 

83 

 

be achieved by decorrelating the data similar to PCA, and calculating the Euclidean distance within the 

eigenvector space.  

Joint Bayesian is a technique that has been successful for detecting face similarity [140], [141]. It tries 

to find the probability of a sample belonging a class, with the aid of learning the shortest Mahalanobis 

metric distance. Chen et al. [140] looked to find the similarity of a given face compared to 2000+ other 

possible faces. They represent a sample face as 𝑥 = 𝜇 + 𝜀, where 𝜇 is the identity of the face and 𝜀 is 

the variation of the face that can consist of lighting and expression changes. 𝜇~𝑁(0, 𝑆𝜇) and 𝜀~𝑁(0, 𝑆𝜀) 

are the Gaussian distributions from which 𝑆𝜇 and 𝑆𝜀 are covariance matrixes. The joint likely-hood ratio 

can be assumed as follows [140]: 

 𝑟(𝑥1, 𝑥2) = log
𝑃(𝑥1, 𝑥2|𝐻𝐼)

𝑃(𝑥1, 𝑥2|𝐻𝐸)
 (4.15) 

   

where 𝐻𝐼 is the hypothesis that the identity of 𝜇1 and 𝜇2 are the same, and 𝐻𝐸 is the hypothesis that 

intra-person variations 𝜀1 and 𝜀2 are not the same. This can also be represented as Equation 4.16 [140]: 

 log
𝑃(𝑥1, 𝑥2|𝐻𝐼)

𝑃(𝑥1, 𝑥2|𝐻𝐸)
= 𝑥1

𝑇𝐴𝑥1 + 𝑥2
𝑇𝐴𝑥2 − 2𝑥1

𝑇𝐺𝑥2 (4.16) 

where 𝐴 and 𝐺 are negative semi-definite matrices. The covariance matrices 𝑆𝜇 and 𝑆𝜀 are therefore 

required to get the joint likely-hood ratio, from which they can be learnt and described by Chen et al. 

[140], using their proposed EM-like algorithm to jointly estimate the matrices.  

This idea can also be manipulated for facial expression recognition, by determining the highest 

similarity of a given expression to each of the possible expressions. However, it may be that the whole 

face can provide some noise (parts of the face that do not relate to any expression), especially when 

comparing different genders, ethnicities and skin colour. This can cause groupings of these noise 

similarities that can be unrelated to how the expression changes. Therefore, using facial parts can seem 

like a positive move towards removing the biases that go towards the facial anatomy. 

Metric learning is adopted to handle the issue of dealing with more than two classes. It shares similar 

properties as the Joint Bayesian face [140], that can be exploited to provide a solution for classifying 

expressions. Metric learning can be understood by the following equation [140]: 

 Md = (𝑥1 − 𝑥2)
𝑇𝑀(𝑥1 − 𝑥2) (4.17) 

   

where 𝑀 is a positive definite matrix that defines the Mahalanobis distance Md of samples 𝑥1 and 𝑥2. 

This essentially presents a solution to learn the best distance for two given samples by observing the 

features of each when they are decorrelated. This results in the distance of the variability between them. 
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Chen et al. [140] proposed reformulating the metric to better preserve the separability, which is 

reformulated to: 

 𝑀𝑑 = (𝑥1 − 𝑥2)
𝑇𝐴(𝑥1 − 𝑥2) + 2𝑥1

𝑇(𝐴 − 𝐺)𝑥2 (4.18) 

   

which in return can be rewritten as [140]: 

 𝑀𝑑 = 𝑥1
𝑇𝐴𝑥1 + 𝑥2

𝑇𝐴𝑥2 − 2𝑥1
𝑇𝐺𝑥2 (4.19) 

   

This equation is broken down into 3 terms of 𝑥1
𝑇𝐴𝑥1, 𝑥2

𝑇𝐴𝑥2 and 2𝑥1
𝑇𝐺𝑥2. The protocol used for 

learning the facial expression samples is to initially compute the 𝐴 and 𝐺 term on a subset of training 

samples containing all types of expressions. 𝑥1
𝑇𝐴𝑥1 and 2𝑥1

𝑇𝐺𝑥2 will be based on the test samples, 

and are now referred to as 𝑇1 and 𝑇3 respectively, with the term 𝑥2
𝑇𝐴𝑥2 that will be a pre-computed 

dictionary for the training samples, referred to now as 𝑇2. Each new test sample has 𝑇1 and 𝑇3 computed, 

and the distances of the test sample compared to all the training dictionary are computed as 𝑌 = 𝑇1 +

(𝑇2 − 𝑇3). To find the best matching expression, 𝑌 is sorted in descending order, and a K-nearest 

neighbour approach is applied to determine the predicted class. 

The Joint Bayesian principal can be applied on the CNN Fully connected layer features. The CNN 

feature will continually learn the facial parts, and what makes them unique to each expression at every 

training iteration. This is whilst the Joint Bayesian technique calculates the most relevant distance that 

can find the best similarity matches between the features. PCA can be applied to the CNN feature to 

reduce the dimensionality and focus in only keeping the variance.  

The upcoming experiments will train CNNs on the facial parts, from which this proposed Joint Bayesian 

approach will run in parallel. This will be applied to the individual facial parts, the whole face and the 

combined network using all the facial parts. 

4.5 Related Datasets 

The works from this chapter is a continuation of Chapter 3, but with the introduction of deep learning 

protocols, and a different viewpoint to observe the face. The main database remains the same, to give a 

thorough comparison of deep features against hand-crafted techniques. The details for each database 

have been mentioned in the previous chapters. Therefore, this section will mainly just highlight how 

each dataset will be used for the experiments.  

The main experiments will be run on the BU-3DFE. From these, the textured and geometric data will 

be utilised. The BU-4DFE database will also be used but for pre-training a network which will then be 

retrained using the BU-3DFE database. The initial training is achieved by collecting key frames from 

each temporal sequence. The intensity of each expression in a sample starts from neutral and hits the 
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peak roughly in the middle of the sequence, which then returns to the neutral state by the end of the 

sequence [14]. Based on this, several frames can be taken for near the centre of each sample to capture 

each expression. These frames will then be used as samples for pre-training a network that will be used 

with the BU-3DFE database.  

The Binghamton University 4-Dimension Facial Expression (BU-4DFE) Database [14] is similar to the 

BU-3DFE database, but with an added time dimension. There are 101 subjects included, each with 6 

emotions (Angry, Disgust, Fear, Happy, Sad and Surprise). From this, 58 are female and 43 are male, 

with a variety of racial backgrounds/ethnicities, including Asian; Black; Hispanic/Latino; and White. 

 

Figure 4.9 - Samples from the BU-4DFE database showing (a) Angry expression and (b) Happy expression 

Each emotion for each subject has a 3D facial expression sequence; captured and generated using a 

Di3D system. This includes a 3D model sequence and a 2D texture video. There is a total of 606 samples 

at 25 frames per second. In each sample, the subjects face starts from a neutral state, goes to the acted 

emotion and then back to the neutral state. The 2D texture videos have a spatial resolution of 1040x1329 

pixels per frame which contains the subjects cropped face along with a navy background, as 

demonstrated in Figure 4.9. 

4.6 Experimental Setup & Results 

The following experiments will be based on understanding how facial parts can be utilised for better 

discrimination of facial expressions. This idea will be compared with the experiments in Chapter 3, 

which was applying hand-crafted techniques on the whole face for facial expression recognition. Deep 

learning techniques will also be implemented to learn from the face and the extracted facial parts. This 
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is to study and apply recent technologies and advancements of machine learning, demonstrating how 

they can process facial expressions.  

There will be four experiments taking place. The first will focus on applying hand-crafted techniques 

on the facial parts using the same protocol and settings from 3.3. This will demonstrate if using facial 

parts instead of the whole face is beneficial for FER. The second experiment will focus on applying 

deep learning techniques to the frontal face images and facial parts. A small, medium and a large-sized 

deep network will be tested and compared to see if there is a performance difference. The third 

experiment will apply pre-trained deep network approaches on the whole face and facial parts. This is 

to investigate if using existing networks trained on similar and different image content will make a 

difference. Finally, the fourth experiment will apply a Joint Bayesian approach at the decision level to 

see if there are improvements when finding the best metric distance between each expression.  

4.6.1 Settings and Protocols 

The main experimentation will be applied on the BU-3DFE database, as it is consistent in samples per 

expression. The experiments will be extensive and the settings for each will be mentioned at the start 

of each experiment. The BU-4DFE database is also utilised for one of the experiments, with its data 

used to pre-train a network for further experimentation on the BU-3DFE database. 

For the experiments that do not require training a deep network, there will be one protocol adopted for 

them. This protocol is the same as Protocol 1 from Chapter 3. That is to use 60 of the 100 subjects in 

the tests that are randomly chosen. 54 are used for training and 6 used for testing. From each subject, 

the top 2 intensities for each expression are used, making 720 expression samples in total across all 

subjects. There is a total of 100 tests carried out in a subject independent manner, where no samples 

from a subject will be found in both the training and testing sets at the same time. In each test for each 

facial part/face, 10-fold cross validation is applied for an extensive and fair result. The average result 

of taken from the 100 tests which will be used as the final recognition rate for that approach.  

The experiments specific to training deep networks will be implemented on a publicly available deep 

learning toolbox called MatConvNet [142]. This will be used in the MATLAB 2017a environment, 

where the whole framework is designed and simulated. The tests will follow a similar Protocol of 

running 10-fold cross-validation, using 60 out of 100 subjects. However, for the networks that require 

training or re-training, they will only be tested once with 10-fold cross-validation as it is a lengthy 

procedure. Some general setting for the training of all deep convolutional neural networks include the 

optimiser set to Stochastic Gradient Descent, Nesterov’s Momentum update [143] used to improve the 

convergence, and Xavier’s improved method [89] which is used to initialise all the network parameters. 

The remaining hyper-parameters will be defined in each of the experiments as they may vary between 

them. 
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4.6.2 Experiment 4A – Facial Parts Analysis using Hand-Crafted Techniques 

This experiment is based on applying several hand-crafted techniques on the separated facial parts 

images. The framework for this experiment will be largely based on the previous experiment, but with 

the addition of facial part fusion, alongside feature fusion. Initially, each facial part is tested on 

separately, with and without feature level fusion. This is to judge the contribution of each facial part. 

After, the facial parts are fused with the different possible combinations. From this, we can evaluate if 

a facial part has contributed any improvement towards FER or not.  

Each sub-test will be thoroughly tested to give an accurate result, running 100 times with each based 

on 10-fold cross-validation. The parameters will be the same as used in the previous chapter. The feature 

dimensionality for each descriptor is as follows: 𝑈𝐿𝐵𝑃 = 3,712,  𝐿𝑃𝑄 = 4,096,  𝐻𝑂𝐺 = 1,984, 

𝐸𝑂𝐻 = 1,536, and finally, 𝐹𝑢𝑠𝑒𝑑 𝑇𝑒𝑥𝑡𝑢𝑟𝑒 = 3,712 + 4,096 + 1,984 + 1,536 = 11,328. PCA is 

used in all tests for dimensionality reduction, retaining 99% of the feature variance. 

4.6.2.1 Individual Facial Parts Test 

The first test will give an indication of how using facial parts individually compares to the whole face. 

Using the face has already shown to be an effective tool for FER from the previous experiments in 

Chapter 3. This test aims to break down how much each part of the face contributes towards the 

performance and to try find areas of improvement.  

Table 4.2 - Performance of each individual facial part using hand-crafted descriptors ULBP; LPQ; HOG and EOH. 

Facial Part Feature 
SVM RBF 

Accuracy 

SVM Poly 

Accuracy 

Eyebrows 

ULBP 42.15% 43.70% 

LPQ 40.64% 41.75% 

HOG 41.64% 43.61% 

EOH 40.93% 41.78% 

Eyes 

ULBP 46.93% 47.76% 

LPQ 45.13% 47.39% 

EOH 42.81% 43.65% 

HOG 46.39% 47.53% 

Mouth 

ULBP 72.78% 73.34% 

LPQ 72.43% 73.08% 

HOG 72.56% 73.04% 

EOH 72.12% 73.09% 

Nose 

ULBP 48.80% 50.69% 

LPQ 45.53% 47.42% 

HOG 48.16% 49.41% 

EOH 48.45% 48.81% 
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Currently, only the Eyebrows, Eyes, Mouth and Nose are extracted from the face, which are considered 

the parts that stand out the most from a face. It will be interesting to find out if parts of the face show 

better performance for certain expressions over others. An example can be the mouth, which visually 

contributes a lot to the surprise expression as it deforms significantly from its neutral state. This section 

will include the individual performance for each facial part using the feature descriptors ULBP, LPQ, 

HOG and EOH. SVM will be the only machine learning technique used, with both RBF and Poly kernels 

tested. The hyper-parameter selection for both feature extraction and machine learning have been 

optimised based on the previous experiments in Chapter 3.  

Table 4.2 has provided some interesting findings, with a clear demonstration that the mouth contains 

the most expressive information for each expression. It has in-fact performed closely to using the whole 

face. The Nose and Eyes performed similarly, with the nose hitting just above 50%. The Eyebrows have 

performed the worst, 4.06% behind the Eyes performance, and 29.64% behind the best performance 

produced by the Mouth. 

For all of the facial parts, the ULBP feature has performed the best amongst the rest. For the Mouth 

facial part, the feature descriptors have performed similarly with a 0.3% difference between the best 

and the worst. For the other facial parts, the differences are slightly bigger.  

Table 4.3 - Performance of each facial part using fused texture descriptors 

Facial Part Feature 
SVM RBF 

Accuracy 

SVM Poly 

Accuracy 

Eyebrows Fused Texture 44.59% 44.86% 

Eyes Fused Texture 48.85% 50.02% 

Mouth Fused Texture 73.86% 74.52% 

Nose Fused Texture 50.22% 52.75% 

 

Table 4.3 shows the performances of each facial part when all the texture features are fused together. 

They show a similar trend in the ranking of the best facial part, but there is an improvement for each 

facial part when the texture features are fused. The biggest improvement is achieved by the Eyes facial 

part, increasing by 2.26%. Table 4.4 shows the confusion matrix of the Mouth facial part. The Surprise 

expression has the best accuracy of 90.2%, followed closely by Happy with 87.9%. Both expressions 

have a heavy emphasis on the mouth, with unique signatures of the movement that can easily be 

distinguished amongst other expressions. The most confused expressions were amongst Sad and Angry. 

This is understandable as they both have similar mouth movements. The Fear expression has performed 

the worst out of the lot. It is an expression that can vary based how the person reacts and interprets fear. 

It has been confused a lot with the Angry, Disgust and Happy expressions, that demonstrates how much 

the expression can change per subject. All the expressions apart from fear have one other expression 

where a lot of confusion occurs.  
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Table 4.4 - Confusion Matrix of the Mouth Facial Part 

 Predicted Label 

A
ct

u
a

l 
L

a
b

el
s 

Accuracy (%) Angry Disgust Fear Happy Sad Surprise 

Angry 72.9% 5.4% 6.4% 0.5% 14.2% 0.5% 

Disgust 3.9% 68.2% 12.7% 2.7% 3.9% 8.4% 

Fear 11.0% 14.0% 54.0% 13.3% 6.4% 1.0% 

Happy 0.6% 2.5% 7.9% 87.9% 0.0% 1.0% 

Sad 17.5% 3.0% 5.1% 0.2% 74.0% 0.0% 

Surprise 0.5% 4.5% 2.6% 1.2% 0.7% 90.2% 

 

The confusion matrix for the eyebrows in Table 4.5 shows Fear also as the lowest recognised 

expression. However, the Sad expression has failed to be recognised as easily, demonstrating that the 

mouth has more changes occurred during the Sad expression than the eyebrows. Happy and Surprise 

have produced the highest accuracies, demonstrating that the change of the eyebrows form is significant 

enough to distinguish between other expressions. Both of those expressions cause the eyebrows to raise, 

which could be the movement that causes the high accuracy. 

Table 4.5 - Confusion Matrix for the Eyebrows Facial Part 

 Predicted Label 

A
ct

u
a
l 

L
a
b

el
s 

Accuracy (%) Angry Disgust Fear Happy Sad Surprise 

Angry 39.3% 33.1% 6.1% 5.8% 13.6% 2.1% 

Disgust 25.1% 49.3% 7.6% 6.3% 10.5% 1.3% 

Fear 11.8% 7.5% 25.4% 14.4% 17.9% 23.0% 

Happy 4.0% 5.5% 7.9% 63.0% 8.7% 10.9% 

Sad 19.8% 9.8% 18.4% 15.8% 31.3% 4.9% 

Surprise 2.1% 1.2% 12.4% 18.0% 3.7% 62.7% 

 

4.6.2.2 Combined Facial Parts Test 

This section will investigate combining the efforts of the facial parts in a variety of combinations. The 

feature to represent each facial part will be the fusion of all the texture features. Each facial part will 

have a reference number, with Eyebrows as 1, Eyes as 2, Mouth as 3 and Nose as 4. The combinations 

will include testing the upper face, which is facial parts 1 and 2, and then the lower face 3 and 4. The 

best 3 features from the individual test will be combined, and finally, all of them.  
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The results for the facial Parts combination are presented in Table 4.6. The best performing parts 

combination was using the Eyes, Mouth and Nose, producing an accuracy of 80.30%. However, it was 

only 0.25% better than using all facial parts. Such a small amount can be produced by the randomness 

factor. What this really indicates is that the Eyebrows do not contribute any extra when using all the 

other facial parts. Using just the Eyes and the Eyebrows does increase the performance to 53.74% from 

50.02%. The lower face combination also shows an improvement over the Mouth alone, increasing by 

4.06%.  

Table 4.6 - Facial Parts combination performances, using fused texture feature sets 

Facial Parts Combination 

Eyebrows (1), Eyes (2), 

Mouth (3), Nose (4) 

Feature 
SVM Poly 

Accuracy 

Upper Face (1+2) Fused Texture 53.74% 

Lower Face (3+4) Fused Texture 78.60% 

Best 3 (2+3+4) Fused Texture 80.30% 

All (1+2+3+4) Fused Texture 80.05% 

 

4.6.2.3 Experiment 4A Highlights 

This experiment consisted of using the geometric information to map and crop out facial parts from the 

facial image. Each of the parts was subsequently tested using the same protocol (Protocol 1) from 

Chapter 3. The tests have demonstrated that reducing the facial image to individual facial parts does 

improve the performance for FER. When you compare the best performance based on the fused texture 

descriptors from the previous experiment in Chapter 3, of 78.7%, there is a 1.6% increase using the 

combinations of the parts. The increase is not big, but the main indication is that using parts of the face 

rather than the whole face performs better.  

In terms of contribution, the Mouth has provided the most in these tests, and for every test, fusion of 

the texture descriptors also provides a boost to the performance. The joint effort of the Mouth, Eyes and 

Nose provide the best performance on 80.30%, an increase of 5.78% over the best individual facial part.  

4.6.3 Experiment 4B – Introducing Deep Network Architectures for FER 

The initial experiment using deep networks will be used on the whole face to determine the optimal 

network for the FER. This includes investigating the depth of the network and what parameter 

combination works best. The initial tests will include running a small, medium and large deep network 

on the face and all the facial parts using the same hyperparameter settings. Each test will use 10-fold 

cross-validation, with each fold training a network for up to 50 epochs until the network has converged. 
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Each cross-fold contains 80% training data, 10% validation data and 10% testing data. The 

hyperparameters are tuned as follows:  

• 50 training epochs per cross-fold; 

• Batch Size = 12; 

• Learning rate = 0.0002 which slowly decreases to 0.00002 over 50 epochs; 

• Momentum = 0.9; 

• Weight Decay (regularisation) = 0.00001; 

• Nesterov’s Momentum Update [143] is used; 

• Stochastic Gradient Descent is used as the learning optimiser; 

With the following pre-processing techniques applied: 

• Mean image is subtracted from all samples; 

• Data is augmented to flip each image horizontally; 

• Network weights are randomly initialised using Xavier’s improved method [89]. 

Table 4.7 shows the average performance of the Face and each facial part using the small, medium and 

large network sizes. There are some interesting results produced, with the Mouth performing better than 

the Face, and Large networks performing better on the Test data in most cases, apart from the Mouth. 

In all cases, the Validation data has a better accuracy than the Testing data. The results on the Validation 

data has achieved a better accuracy using small-medium networks.  

Table 4.7 - Average Recognition Rate for Deep Network performances of the Face and individual face parts using 10-fold 

cross-validation. 

Face/Facial Part Network Size 
Average Validation 

Accuracy 

Average Test 

Accuracy 

Face 

Small 73.81% 66.38% 

Medium 76.73% 68.05% 

Large 74.86% 71.80% 

Eyes 

Small 49.44% 40.00% 

Medium 46.18% 38.33% 

Large 45.48% 44.44% 

Mouth 

Small 72.91% 71.25% 

Medium 75.32% 73.05% 

Large 73.95% 70.55% 

Nose 

Small 49.37% 43.88% 

Medium 47.56% 42.63% 

Large 47.70% 40.83% 

Eyebrows 

Small 47.43% 38.05% 

Medium 49.02% 37.08% 

Large 50.48% 40.00% 
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Figure 4.10 displays the progress of how the system performs on the Validation and Testing data during 

the training stage. Based on this information, there is a visible trend that the accuracy varies a lot every 

epoch, which can make it difficult to understand exactly what size network is better. Figure 4.11 is a 

plot on how the objective function for the Training and Validation data changes after each epoch. It is 

based on the same test in Figure 4.10. From both plots, there is an indication that beyond ~10 epochs 

the network starts to overfit the Training data, as there is not much improvement on the Validation and 

Testing data. There is also signs of instability fluctuating rapidly between 65-75% accuracy. These 

symptoms are a result of not having enough data, where the networks cannot learn any more useful 

information that can benefit any new test samples.  

The combination of facial parts can also be applied using a multi-branch approach. This will incorporate 

all the facial parts to initially be learnt individually. After a few convolutions, the feature maps for each 

the facial parts are merged through multiple concatenations and the network continues as a single 

branch. Figure 4.12 shows the desired architecture to allow the contribution of each facial part within 

the system. The medium size layout is used, which involves 2 convolution stages before every max 

pooling stage. 

 

Figure 4.10 - Example of the Training process for the Medium size Deep Network on the Mouth. The Validation and Test 

accuracies are plotted throughout the 50 epochs of training. 

The desired outcome of this test is to see if the features of the facial parts can be integrated and learnt 

together to improve the performance over using an individual facial part. There are a few decisions 

needed to make the architecture, with the main being when to join the branches together to share their 

feature maps. Another is how to concatenate the feature maps, should they be joint in the spatial 

dimension or should they be stacked on top of each other. And finally, how long to extend the joint 

branch after concatenation. We have opted to make sure that each facial part has enough convolutions 
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before concatenation so that the quality of features for each facial part is good enough as they will be 

learnt better.  

 

Figure 4.11 – The objective function of the training process for the Medium size Deep Network of the Mouth. 

For the concatenation layer, each of the feature maps for each facial part has been joint spatially. This 

was decided as the facial parts have different characteristics, and they may not be compatible with each 

other if they are stacked. Joining them spatially allows the chance for further convolutions to find any 

characteristics that can be common amongst all facial parts that can be represented in future feature 

maps. To allow these characteristics to be found, there is an extra convolution sequence (Conv 5-1) 

applied straight after the concatenation, which is followed be one last convolution sequence (Conv 6) 

before all the neurons are fully connected. 

Table 4.8 - Performance of all facial parts combined using the Joint Architecture that learns each facial part individually 

and jointly throughout. The test is based on 10-fold cross-validation which is run once. Results of the previous test on the 

face and the best performing individual facial part is included for comparison, both using the same protocol. 

Feature 
Average Validation 

Accuracy 

Average Test 

Accuracy 

All Facial Parts 83.33% 77.63% 

Best Individual Part 

(Mouth) 
75.32% 73.05% 

Face 74.86% 71.80% 

 

The parameter size for this architecture is significantly larger than the other proposed architectures. 

However, this accomplishes more as a network using all facial parts than using them individually. It 



Chapter 4: Deeply Understanding Expressions via Facial Parts Isolation 

94 

 

makes the whole system framework more efficient by training only one deep network that takes care of 

all the facial parts and their fusion.  

 

Figure 4.12 - Joint Architecture of Deep Network containing all 4 facial parts, starting with 4 individual branches that are 

spatially concatenated together in the later stage of the network. The following convolutions connect and share parameters 

of each facial part. 

The tests on combining all facial parts using the Joint Architecture showed great performance in Table 

4.8. The results show a superior increase in validation accuracy against using the whole face or the 
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individual Mouth facial part. The average test accuracy also has a significant improvement of 5.83% 

over the whole face and 4.58% improvement over the individual mouth facial part.  

4.6.3.1 Experiment 4B Highlights 

Experiment 4B consisted of thorough tests to introduce deep learning in the form of CNNs for FER. 

This was applied to the whole face and the facial parts that were tested individually and combined. 

Several architectures were proposed consisting of different depths to investigate if overfitting occurs, 

and if there is a performance difference between them. A joint architecture was also proposed that 

strategically combined information from each facial part by individually learning them and then sharing 

their parameters through a concatenation layer.  

A few outcomes are understood from this experiment, which is summarised as the following: 

• The network architecture sizes do not contribute much towards a difference in performance, 

using this database. This is most likely due to the lack of training data to learn from, that can 

even cause smaller network architectures to overfit.  

• The Training data is learnt very quickly, with the network converging in a matter of a few 

epochs. This is also the probable cause of not having enough data. Batch normalisation also 

speeds up the convergence of the network, contributing to overfitting the data. 

• The Mouth facial part performed better than the whole face, which did not occur in the previous 

experiment. This may be due to the spatial increase in its size when tested individually, paired 

with the fact that the mouth is detected as the most expressive facial part. 

• There is a significant increase in performance using the Joint Architecture compared to the 

single branch architecture used for the face. This demonstrates that multiple spatial entities can 

be included in a single architecture. The facial parts combined once again demonstrates a solid 

improvement, indicating that the face does contain noise that should be avoided. 

4.6.4 Experiment 4C – Facial Expression Recognition using Pre-Trained 

Networks 

This experiment will be split into two sections, with the first focusing on using existing pre-trained 

networks as a feature extraction tool, in which the Protocol and framework will follow Experiment 4A. 

The texture features are essentially replaced with the extracted Deep features. The second section will 

focus on pre-training a network based on the BU-4DFE database samples, and then applying a fine-

tuning process with the BU-3DFE samples.  

4.6.4.1 Pre-Trained Feature Extraction Test 

This section will test the VGG-Face pre-trained network layers FC1 and FC2, along with the equivalent 

for AlexNet to compare their performances. The full face is tested along with each facial part and their 
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combined efforts. Each of the following tests is run 100 times with SVM Poly as the machine learning 

technique. PCA is also applied to reduce the dimensionality, keeping 99% variance. Each face is pre-

processed according to the requirements by the VGGFace and AlexNet networks. For VGGFace, this 

includes resizing the images to a spatial dimension of 227x227 and subtracting the provided mean for 

each colour channel. For AlexNet, the images are resized to 224x224 spatial dimensions, and a provided 

pixel level average image is subtracted from each image.  

Table 4.9 - Performance of extracted Pre-trained features from the VGGFace and AlexNet networks. Two fully connected 

layers are extracted from each network, with SVM Poly used as the machine learning technique. 

Image 
VGGFace 

FC1 

VGGFace 

FC2 

AlexNet 

FC1 

AlexNet 

FC2 

Face 69.01% 63.71% 77.74% 76.22% 

Eyebrows 38.95% 34.97% 43.14% 42.48% 

Eyes 44.16% 36.74% 47.63% 45.59% 

Mouth 71.79% 66.17% 76.71% 75.63% 

Nose 47.78% 37.74% 47.66% 46.65% 

All Parts 76.98% 73.55% 80.86% 80.51% 

Best 3 Parts 76.18% 73.38% 79.70% 79.47% 

 

Table 4.9 shows a few interesting outcomes from the experiment. Firstly, the AlexNet features have 

performed far better (80.86%) than the VGGFace features (76.98%). This is an unexpected outcome as 

the training for VGGFace is more relevant. Secondly, the initial fully connected layer FC1 for both 

networks have performed better in every test. The third outcome to take is that the parts combined 

perform significantly better than using the whole face for VGGFace (~8%), and a slightly smaller jump 

with AlexNet (~3.1%). In-fact, for VGGFace, the Mouth facial part alone performed better than the 

whole face. The performances of the facial parts follow the trend from the previous test in Table 4.3, 

with Eyebrows being the weakest, followed by Eyes, Nose then Mouth. However, for both pre-trained 

networks, using all the facial parts combined has produced the best accuracies.  

4.6.4.2 BU-4DFE Fine-tuning Test 

For this test, a deep network based on the architecture in Figure 4.12 is trained using samples from the 

BU-4DFE database. The BU-4DFE database contained visual sequences of the 6 basic expressions, 

where the facial expression starts in the neutral state and then transforms quickly into the assigned 

expression which then gradually reverts to the neutral face. Based on the observation of random 
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samples, the peak intensity is determined to be portrayed after roughly a third of the duration time. A 

static subset is then created taking the frame of every sample sequence that occurs at that time. 

Using this new subset of images, the same techniques for facial parts extraction are used to extract all 

the facial parts from each face. These parts are used together during training, with the pre-processing 

steps of taking the mean image value applied. The network is trained once using 90% of the data, with 

the remaining 10% used as validation. There are 200 full epochs of training with all the parameters 

saved and ready for the fine-tuning process. 

The number of expressions and the training objective is the same for the BU-3DFE database. Therefore, 

there is no modification needed to the architecture, and the BU-3DFE samples can immediately start 

training 10-fold Cross-validation on the pre-trained network. Majority of the settings are set the same 

as Experiment 4B using the combined facial parts. The only differences are: 

• Training is applied for 50 Epochs, with the weights are already pre-trained for the desired task. 

• As a result of pre-training, the learning rate is significantly lower to prevent drastic changes to 

the already tuned parameters. The learning rate starts at 0.0000002 and decreases slowly. 

• The mean value subtracted from the images of the fine-tuning task is based on the BU-3DFE 

samples. This is because the pre-training task is the same as the fine-tuning task. Therefore, it 

is better to subtract the mean of a new batch of images on those samples because if there is any 

lighting difference, then the mean value for the BU-4DFE database may alter the new samples 

more than it should.  

 

Figure 4.13 - Fine-Tuning performance for FER using a pre-trained network on the BU-4DFE database 
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The rest of the protocol is set the same as in Experiment 4B, for combining facial parts. This is to allow 

a fair comparison. This experiment includes only one test using 10-fold cross-validation, as 100 tests 

will require training 100 networks using 10-fold cross-validation which will be highly impractical.  

Figure 4.13 shows the performance of the fine-tuning test. The best accuracy is 75.83%, which is not 

better than training all the facial parts from scratch. However, it still performs better than using the face 

alone. An improvement over training from scratch is that the networks hit high accuracies almost 

immediately when retraining, showing that the pre-training has made an impact.  

4.6.4.3 Experiment 4C Highlights 

This experiment had 2 main tasks included, first using pre-trained networks as feature extractors for the 

whole face and the individual facial parts. The second task was to fine-tune a pre-trained network to see 

if retraining on the new data can improve the performance. Both tasks have shown promising 

improvements over the work in Chapter 3 through the process of using facial parts and creating applying 

deep learning technology.  

There were a lot of interesting findings to take from the first task. Each will be broken down and 

understood as to why: 

• AlexNet VS. VGGFace: The results indicated that the AlexNet pre-trained extracted features 

performed a lot better than those from VGGFace. This is interesting because the AlexNet 

network is trained on objects rather than faces. There are differences between the networks that 

can justify the performance difference: 

o VGGFace is trained specifically to identify a face, essentially from one it learnt during 

the training process. This means that for the given facial expression samples of the 

same subject, the network may just consider them to be the same person and 

consequently producing a similar feature for each expression. This can have a negative 

impact as it may consider all expressions to be the same. There will also be a lot of 

variation in the produced feature for an angry expression of a male subject VS. a female 

subject. 

o AlexNet is trained on more data, and it is trained on detecting objects in images. This 

may give an advantage for facial expressions as the differences between the expressions 

are related to how the facial parts change. With objects trained being a variety of 

shapes, sizes, and angles, this may aid the process of highlighting these changes across 

the facial structure. This may be considered a better approach to distinguish changes of 

the face when compared to the VGGFace network, that looks at the whole face.  

• The mouth facial part produced better performance than the whole face for VGGFace: This 

result backs up the point made about VGGFace producing similar features for the different 
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expressions of the same subject. The mouth has performed better alone because it has been 

separated from the whole face, making it harder to identify if it is the same subject. However, 

the performance increase is not substantial enough to completely overcome the problem. It still 

requires retraining the network to the facial parts, which would help towards separating facial 

parts from the same subject. 

o The face has performed better than the mouth when using AlexNet, which may be 

because it doesn’t treat the image as a face. The case may be that multiple filters 

respond as it may detect more variety of objects in the face than the mouth, producing 

a more comprehensive feature vector than the mouth.  

• Facial parts combined performed a lot better than using the whole face: The idea of using facial 

parts instead of the whole face has proven again to be a better option. This indicates that there 

is a lot of noise in the face and taking the key parts of the face can contribute better towards 

FER. To humans, the mouth is visually the biggest indicator in the face of how the person is 

feeling. This has also shown to be true for artificial intelligence, meaning that there is a higher 

variance in the mouth structure across expressions than other parts.  

• The FC1 Layers have produced better performances than the FC2 Layers: This can be expected 

because they are both fully connected, except that there is a ReLU layer in between them. What 

this means is that all the negative magnitude responses from the FC1 layer will essentially be 

killed to 0. This could result in significant loss of valuable information when used as a pre-

trained feature extractor. 

The second task involved an attempt to pre-train a network based on similar data, using the BU-4DFE 

database. This was later fine-tuned with the BU-3DFE database to investigate if prior training will 

improve the training process with the new data. The results indicated that there was not an improvement 

in the test accuracy, but there was on the validation accuracy. The quality of the network parameters 

after pre-training are significantly improved over random initialisation, with minimal effort required for 

convergence. The pre-training duration of 200 epochs did not provide any benefits, as the 50 iterations 

of pre-training provided the best fine-tuning performance. This is probably caused by the lack of 

training samples by both BU-3DFE and BU-4DFE databases.  

4.6.5 Experiment 4D – Joint Bayesian for Similarity  

This experiment takes a different approach to the others, by trying to incorporate a Joint Bayesian 

approach that includes learning the Mahalanobis distance of expressions to find the closest match. It is 

based on exploiting an advanced technique proposed by Chen et al. [140] for face verification, into a 

multi-class application of FER. The idea also investigates how the CNN features develop throughout 

the training process. The fully connected layer of the CNN is extracted from every sample after every 



Chapter 4: Deeply Understanding Expressions via Facial Parts Isolation 

100 

 

training epoch and split into a training set and testing set. These sets contain the same samples used for 

training, validating and testing the CNN.  

Table 4.10 - Results of applying the Joint Bayesian technique on the face and facial parts. 

Feature 
Average Validation 

Accuracy 

Average Test 

Accuracy 

Improvement in Test 

Accuracy over Deep 

Learning 

Face 76.04% 70.41% 2.36% 

Eyebrows 47.77% 39.72% 2.63% 

Eyes 43.68% 40.13% 1.80% 

Mouth 73.95% 75.41% 2.36% 

Nose 45.97% 43.05% 0.41% 

All Parts 80.69% 78.33% 0.69% 

 

 

Figure 4.14 - Plot showing the performance of the Joint Architecture network learning all facial parts. Accuracy is based on 

the CNN performance, from which the Test and Validation accuracy is measured at every epoch. 

The extracted layer from every trained network is the Fully Connected 1 layer. This layer contains the 

interconnectivity of all the neurons from the previous layer, which includes the combination of each 

facial part information using the Joint Architecture. Each of the tests is run in parallel to the tests in 

Experiment 4B, which allowed for exact comparison using the same initialisation of parameters and 

randomisation in training and testing. The upcoming results are based on the medium sized network 

architecture, which includes tests on the Face, on each individual facial part and on the combined parts. 
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The average validation and test accuracies are recorded from the 10-fold cross-validation, along with 

the performance difference compared to the CNN. 

Table 4.10 contains the results achieved by using Joint Bayesian on the face and facial parts. The 

Combined architecture performed best yet again, followed by the Mouth, then the Face. In all tests, 

there was some increase in the test accuracy, with the best improvement of 2.63% on the Eyebrows. 

The Mouth had a significant increase of 2.36%, but the parts combined only went up by 0.69%, reaching 

an overall highest of 78.33% using the protocol for training a CNN.  

Figure 4.14 is a plot based on the performance throughout the training stage of the CNN. The results 

after of the Validation and Test data that is propagated and predicted through the network after each 

epoch is trained. The accuracy of both Validation and Test data starts off low and increases to the hit 

its steady peak after ~15 epochs. The test performance slowly improves and becomes more stable after 

40 epochs. 

 

Figure 4.15 - Plot showing the performance of the Joint Architecture network learning all facial parts. Accuracy is based on 

the Joint Bayesian technique that is applied using the fully connected features. The Test and Validation accuracy is 

measured of the feature extracted at every epoch. 

Figure 4.15 shows the equivalent plot based on the Joint Bayesian performance for the Validation and 

Test data. There is a noticeable difference in how the starting epochs perform. Joint Bayesian 

immediately jumps above 65% for the test accuracy and above 80% for validation. The performance 

does stabilise the more the CNN is trained, with the test accuracy fluctuating between 78% and 82%. 

Compared to Joint Bayesian, the CNN performance is slower to hit its peak performance, with the Test 

data taking 6 epochs. The performance of both techniques is similar towards the end of the training.  
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4.7 Evaluation and Discussion 

 The general outcome of the experiments has proven that it is beneficial to use cropped facial parts 

instead of the whole face. In all experiments, using the proposed facial parts produced a better result, 

and in some cases, the mouth part alone performed better than the whole face. The introduction of deep 

learning has provided a better understanding of facial parts. Better results were achieved than using the 

hand-crafted techniques in Experiment 4A. Different avenues were explored to give a thorough insight 

into how deep learning can be adopted for FER.  

Experiment 4A extracted the facial parts and applied the same framework adopted in Chapter 3, using 

the textured features only. This was applied to each individual facial part, and then combined using 

feature fusion. The findings demonstrated an improvement in performance of 1.6% over the equivalent 

feature for the whole face, that was recorded in Chapter 3 using Protocol 1. This was achieved when 

the facial parts were combined at the feature level. 

Table 4.11 - Performance of all techniques, where the bold font results represent the highest accuracy in each protocol. 

Performance Comparison 

Feature Domain Protocol 1 Protocol 2 Protocol 3 

Wang et al. [10] Geometric 61.7% 83.6% - 

Rabiu et al. [105] Geometric - 92.2% - 

Soyel et al. [106] Geometric 67.5% 91.3% - 

Xioli et al. [107] Geometric - 90.2% - 

Tekguc et al. [108] Geometric - 88.1% - 

T. Yun et al. [110] Texture - 85.3% - 

Lemaire et al. [111] Texture 75.7% 78.1% - 

Yurtkan et al. [109] Geometric - 88.2% - 

Tang et al. [112] Geometric 75.7% 87.1% - 

Zhen et al. [113] Geometric 84.5% - - 

Yang et al. [114] Geometric 84.8% - - 

Li et al. [115] Both 86.3% - - 

Chapter 3 [117] Both 79.2% 90.2% - 

Fine-Tuning Facial Parts - - 75.8% 

CNN Facial Parts - - 77.6% 

Joint Bayesian Facial Parts - - 78.3% 

Hand-Crafted Facial Parts 80.3% - - 

Pre-Trained Feature Facial Parts 80.8% - - 

 

Experiment 4B introduced the deep learning techniques into the mix. The initial tests involved different 

deep network architectures designed and tested on the whole face and the facial parts. This was followed 

by an elaborate deep network design to incorporate all of the facial parts within the same network. This 

was achieved by initially creating multiple branches that learnt each facial part separately, which were 

all combined in the later convolutions using concatenation layer. This allowed each facial part to have 
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their own unique and shared parameters. For the individual tests, there were three network architectures 

designed which were inspired by the VGGFace network. The idea was to understand if having different 

depths of convolutional neural networks training on a small size database provided any benefits. Based 

on this objective, small, medium and large deep network architectures were designed and tested on the 

face and facial parts.  

All of the tests were conducted using a very similar protocol to Experiment 4A, with the exception of 

running the test 1 time instead of 100 times, as 100 tests are impractical in time and resource 

consumption. The results from the individual tests showed a similar trend in terms of facial parts. But 

interestingly, the mouth facial part had performed better than the whole face by 1.25% on the Testing 

data. The combination of facial part using the Joint Architecture produced the best result of 77.63%, 

which is 5.83% better than using the face. In terms of the small, medium and large depth of network 

architecture, it seemed like there was no major impact by any. The best result was produced using the 

medium-sized architecture and was therefore adopted in the Joint Architecture. This outcome is likely 

to be caused by the short supply of data samples.  

In Experiment 4C, the idea of using pre-trained networks as a feature extractor was explored along with 

pre-training a network using the BU-4DFE network, and applying a fine-tuning process using the BU-

3DFE database. The pre-trained feature extractor tests induced some strange results which suggested 

that a pre-trained network of objects for object detection performs better than a pre-trained network on 

faces for face recognition. The conclusion of the results was that the VGGFace network performed 

badly because it was trained specifically to learn similar faces. This can be problematic in the case when 

different expressions are produced from the same face, as the pre-trained network will respond similarly 

to the expressions.  

The pre-training + fine-tuning test was an attempt to see if prior training on the same task using pretty 

much the same form of data would provide a boost to the task. This was an attempt to extend the idea 

of a pre-trained network by retraining them specifically for facial expression recognition. An advantage 

of using existing networks is that there is already a set of trained parameters provided that are learnt 

from other data sources. For the experiment, the BU-4DFE database was used for pre-training a network 

that used all the facial parts with the Joint Architecture in Figure 4.12.  

Unfortunately, there was no improvement in terms of test accuracy. However, in other areas there were 

improvements such as the shorter time required for convergence. Along with the improvement in 

validation accuracy and compatibility of trained parameters. One area in which the pre-training stage 

could be further improved is to use a larger data source, as there were only 101 subjects with 6 

expressions from each that were utilised. 
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Experiment 4D introduced a Bayesian concept for attempting to create a metric distance that is derived 

from the deep feature representation of each expression. It was an attempt to understand a probabilistic 

view of how an expression is closely related to another. The Mahalanobis distance was adopted to 

separate deep representations extracted from the fully connected layer of each trained network, for each 

facial expression. 

The experiment produced an improvement over the CNN networks trained in Experiment 4B, increasing 

by up to 2.63% on the individual networks, and 0.69% on the combined facial parts test. Another finding 

was that the performance hit high accuracies almost immediately when the CNN started training. This 

benefit can possibly be adopted in networks that take a much longer time to converge, as an early insight 

into the potential of the network.  

4.8 Summary 

This chapter involved investigating 3 main areas of innovation for facial expression recognition. The 

first is to use the geometric information to identify and separate facial parts, in order to capture the most 

contributing factors of the face for FER. The second is to investigate and apply a variety of deep learning 

techniques on these facial parts, and the face for comparison. And the third is to apply a Bayesian 

approach to find similar and dissimilar expressive facial parts across facial expressions, integrated into 

a framework that uses deep learning. The outcome from all experiments can be understood as follows: 

• Using facial parts provides a significant boost over using the whole face. The Mouth area 

contributes towards the majority of the performance but improves when combined with the 

Nose, Eyes and Eyebrows. 

• Using popular well trained Pre-Trained networks as feature extractors can provide high-quality 

features, even if it is based on object detection. 

• The Joint Bayesian with Metric learning adaptation for FER has shown improvement over using 

a CNN alone. There is room for improvement for Joint Bayesian + Metric learning to be further 

integrated into the learning process. 

• Based on the outcomes of the experiments, using very deep networks performs similarly to 

shallower deep networks when training on a small database. This portrays that there is 

overfitting occurring in the deeper networks, and that it is unnecessary as a shallower network 

can achieve the same performance. 
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 Facial Motion Dynamics Modelling 
 

In the previous two chapters, the focus had been in using static data for facial expression recognition. 

This can be considered a limiting factor for facial expressions as the build up to each expression is not 

considered. Dynamic data is noticeably growing to be an emerging solution for HCI applications 

because of its rich information. Motion information that occurs on the face whilst a facial expression is 

in action can be considered a valuable tool for FER. In order to produce a better system for capturing 

emotions, the motion dynamics in a video recording data is investigated. 

In this chapter, motion dynamics are studied to understand how this technology can be used for video-

based action recognition. Research in this area spans across all sorts of applications, from body gesture 

recognition to surveillance-based applications for object or human identification. This chapter focuses 

specifically on how human interaction can be observed and processed using various motion-based 

feature extractors that can model and capture its dynamics. In order to create an effective motion 

descriptor, it is designed and tested for applications that contain large amounts of movement in the 

dynamic data, such as gesture recognition and human action recognition. This is paired with machine 

learning techniques to understand the dynamic model and predict similar behaviour.  

There are two parts to this chapter. The first part is to develop a set of motion descriptors based on 

extending MHH descriptor using dynamic data that contains significant movement. These features are 

generated by evaluating motion patterns at the pixel level within a temporal sequence. The second part 

is to investigate how these descriptors can then be applied towards human emotions, and how well it 

performs.  

5.1 Introduction 

In image processing and understanding, the use of dynamic content has becoming increasingly common 

to help solve complex problems because of its extensive information pool. Videos are a common source 

of dynamic content providing temporal data, and video dynamic descriptors extracted from the frames 

to provide an efficient description of the occurring dynamic actions. This video descriptor can be helpful 

for automatic systems to understand and analyse the video content. It can be further applied in the 

applications of human-computer interaction, robotics and automatic multimedia content analysis for 

complex big data. 

In computer vision, visual recognition on temporal and spatiotemporal domains using appearance-based 

methods has a very active area of research. A key component of temporal data is Motion. Motion can 

represent a lot of information about an entity, whether it is an individual or group of humans, animals 

or objects. It is the fundamental description of an action represented by a sequence of data.  
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Majority of the early research had been based on still images, which at the time was possible to apply 

image processing techniques at a good speed. But with still images, for certain applications, the real full 

picture sometimes cannot be seen. Videos, a form of temporal data, gives the possibility to view what 

exactly is happening in an event from start to finish. The depth and quality of the information surpasses 

still images, but at the cost of computation and storage. The amount of resources required to constantly 

process video data is a lot compared to a still image. A lot of research is ongoing to try and understand 

this data and seek information only relevant to the task.  

Motion that can be captured is used to summarise a video into a smaller manageable subset of data, by 

looking for a unique signature that can be related to actions and movements. This motion can be used 

recognising human actions [144]; detecting unnatural activities through surveillance videos for that 

environment [145] and other human-computer interaction tasks. Some techniques look at the frame 

level and observe all the changes from one frame to the next. These are appearance-based methods, 

where motion can be extracted from the pixel values of the frames.  

Optical flow is another technique that looks at the distribution of motion [146] by observing the 

velocities of objects between the frames of a video. This has been used in applications for action 

recognition [147], with recent works in semantic segmentation [148], [149] and also in dynamic facial 

expression recognition [150]. There are different algorithms developed to determine the optical flow, 

which include the differential techniques of estimating the flow as the Buxton–Buxton method; the 

Lucas–Kanade method; the Horn–Schunck method; Phase correlation, as well as block-based and 

discrete optimisation methods. Some of these are compared and tested thoroughly by Baker et al. [151] 

They concluded that although some methods demonstrate good performance on certain tasks, there is 

not any that has shown significant improvement across a range of different tasks.  

This chapter applies appearance-based techniques, namely MHH with a few proposed extensions for it,  

for applications that include human action recognition, gesture recognition and Depression analysis. 

The variety of applications can demonstrate how robust and well the motion descriptors can interpret 

input sequences that are based on various content, which also have different forms of motion.  

5.2 Related Works using Temporal Techniques 

For appearance-based methods, there has been a continuous effort in the computer vision society. Early 

works have been on methods like Motion Energy Images (MEI) and Motion History Image (MHI) to 

capture the movement of a motion. Bobick and Davis [152] created MEI to construct temporal templates 

with a view specific representation of motion over time. The temporal templates are constructed by 

vector images that can be matched stored representations of known actions. A sequence would sweep 

out a particular region of the image where the motion is, which can be used to suggest the current action 

and the viewing angle. MHI [152] is used to represent the direction of motion in an image sequence. 
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Each pixel has the temporal history of its motion displayed by its assigned intensity value. All the pixels 

with a scalar value can be represented as an image of recent motion. The feature itself lacks the depth 

information as it is solely based on the energy differences between two frames at a time. For a visual 

sequence based on an action, it would create an equivalent binary visual sequence based on the energy 

and decay of motion occurred.  

A more effective approach would be to summarize the energy across a whole sequence as a single 

vector, as some actions require longer sequences before they can be recognized, such as a jump that 

would require the subject running beforehand. An attempt to address this issue was followed by 

Weinland et al. [153] as they extended the 2D motion templates described by Bobick and Davis to create 

Motion History Volumes. They claim that a 3D representation of motion templates is a more robust and 

natural way to fuse information from multiple images, producing view-invariant features. To do this, 

they use the occupancy function 𝐷(𝑥;  𝑦;  𝑧;  𝑡), considering voxels instead of pixels, expressing motion 

in a cylindrical coordinate system. With the captured motion, they apply a Fast Fourier Transform on 

the cylindrical coordinates to produce Fourier magnitudes which they represent as their feature. 

There are also techniques that look for patterns and edges within the temporal space. LBP-TOP is a 

method that works well, which is based on the popular spatial method Local Binary Patterns [72]. A 

variant on LBP-TOP has been developed recently by Almaev and Valstar [86] called Local Gabor 

Binary Patterns - Three Orthogonal Planes, for the purpose of Automatic Facial Expression 

Recognition. They extended the spatial feature extractor method Local Gabor Binary Patterns produced 

by Senechal et al. [154], which applies multiple Gabor filters to get the magnitude response of the 

images, and then an LBP operator is applied on top of those images. LGBP-TOP combines the ideas 

from LBP-TOP and LGBP using the three orthogonal planes XY, XT and YT, to split the temporal data 

into blocks that are processed through a bank of Gabor filters. After this, the LBP operator is applied.  

Local Phase Quantization - Three Orthogonal Planes is another descriptor for temporal data, similar to 

LBP-TOP, by capturing LPQ features across the XY, XT and YT dimensions. This is developed by 

Jiang et al. [32] in which they applied it to facial expression sequences for detecting Action Units. LPQ 

captures local phase information by obtaining the coefficients produced by using a short-term Fourier 

transform across a grid of 𝑀 × 𝑀 blocks [78]. LPQ-TOP uses LPQ across the three planes and 

concatenates the resulting histograms to produce the temporal feature.  

Histogram of Oriented Gradients 3D [155] created by Kläser, Marszałek and Schmid is a descriptor 

based on histograms of oriented spatiotemporal gradients. Based on HOG [65], [75], they extend HOG 

to calculate the gradients and their orientations across the X,Y and time dimensions of a visual sequence. 

LBP-TOP, LPQ-TOP, LGBP-TOP and HOG3D are recent methods that look for patterns using 

traditional hand-crafted techniques that are designed for spatial applications. These techniques are being 

adapted into the temporal domain using a straightforward method. This idea lacks the naturalistic 
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concept for temporal motion depiction as it is primarily based on spatial applications. This can then 

propagate inefficiencies such as computational speed, especially when you consider the complex 

calculations required for HOG or LPQ on a single frame. Motion Binary Pattern [29] attempts to capture 

the characteristics of motion movement by observing the frame level gray values of the video. Each of 

the frames is divided into cells. Then 3 cells across 3 frames in a fixed XY position are taken and the 

first frame cell is compared to the second frame cell. For each pixel in the cells, if the gray value is 

higher, then a 1 is assigned, if not, than a 0. The third frame cell is then compared to the second frame 

cell in the same way. The output from both comparisons are combined using an exclusive XOR function 

which then creates the final motion pattern [29]. Unlike the previous methods, MBP tries to capture 

natural occurring motion. However, it lacks the depth of time information as each frame overwrites its 

previous using the XOR function. To solve this issue, Motion History Histogram was developed by 

Meng et al. [30] that records the motion history. 

5.3 Motion History Histogram & Extensions 

In this section, Motion History Histogram is firstly explained and understood in detail, with the use-

case of gesture recognition. Secondly, it is modified to produce multiple extensions that enhance the 

basic principle of MHH. This includes the addition of other adjustable dimensions such as time and 

spatial area. A discussion is made based on the merits and downfalls of each extension. During the 

discussion, the visual samples provided will be based on the KTH dataset [144] for the demonstration 

of each extension. This dataset is based on human actions and is chosen because there is a lot of visual 

movement produced by the actions. 

5.3.1 The Motion History Histogram Descriptor 

As previously detailed in Chapter 2.2.3.2, MHH is a descriptor that captures the patterns of motion 

across a visual sequence. In this section, there will be an in-depth review of the MHH descriptor, 

explaining how it works with all the technical details. There will also be a discussion on the drawbacks 

of the descriptor, and how it can be improved.  

The MHH descriptor looks at temporal data to produce motion that has visually occurred in a sequence 

of frames. This means that there are no motion sensor data required, which is a major benefit as video 

data is far more available and accessible to consumers than data from motion sensors. The visual motion 

can be produced by detecting the change of intensity in each pixel as the entity moves within the frame 

via a sequence of frames. From this, binary patterns are noted that occur in each pixel depending on the 

duration of the change occurrences. In simple terms, the length of the pattern 𝑃𝑚 determines how long 

a sequence of motion must occur before the histogram in the MHH feature; for pattern 𝑃𝑚 of length 𝑚; 

has its pixel bin incremented. And for motion to be detected, the absolute difference value of pixel 

intensities between two frames must be greater or equal to a threshold value.  
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The MHH feature can be visually seen in Figure 5.1, containing the motion patterns of a person waving 

their hands up and down. Patterns up to 𝑀 = 5 are recorded, with each bigger pattern showing less and 

less motion occurring for longer periods. This is because the action has motion occurring for shorter 

intervals in a fixed spatial location. But in fact, the motion occurs continuously up and down, which is 

why there are streaks of the subjects’ hand that makes a circle shape. Hence the word “History” is 

included, and it records the history of the object/subjects’ path, including the overlaps in spatial location.  

 

Figure 5.1 - MHH feature captured of a person waving their hands. Visually showing patterns up to M=5, along with the 

original visual sample 

The algorithm for MHH from [30] can be understood as follows: Let 𝑓(𝑢 = 1:𝑈, 𝑣 = 1: 𝑉, 𝑘 = 1:𝐾) 

be a visual sequence, where 𝑘 is the frame number and (𝑢, 𝑣) is a spatial location on a frame, 

representing the row and column. 𝐷(𝑢 = 1:𝑈, 𝑣 = 1: 𝑉, 𝑘 = 1: 𝐾 − 1) is defined as a binary sequence 

of the operation in Equation 5.1. Where 𝑇 is the threshold hyperparameter to determine the amount of 

motion required before accepting it has occurred. 𝛼 is the frame difference between two pixels as 

calculated in Equation 5.2.  

 𝐷(𝑢,𝑣,𝑘) = {
1,
0,

𝛼 ≥ 𝑇

𝑒𝑙𝑠𝑒
 (5.1) 

 𝛼 = |𝑓(𝑢,𝑣,𝑘+1) − 𝑓(𝑢,𝑣,𝑘)| (5.2) 

 MHH(𝑢,𝑣,𝑚) = {
MHH(𝑢,𝑣,𝑚) + 1,

MHH(𝑢,𝑣,𝑚)           ,

  𝑖𝑓{𝑃𝑚𝑖𝑠 𝑓𝑜𝑢𝑛𝑑}

𝑒𝑙𝑠𝑒
 (5.3) 

   

Once 𝐷 is computed, the next step is to check 𝐷 for patterns 𝑃𝑚, where 𝑚 = 1:𝑀. The feature histogram 

MHH is also defined and initialised as  MHH(1:𝑈, 1: 𝑉, 1:𝑀) = 0. A frame index 𝐼(𝑢,𝑣) keeps track of 
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the number of the starting frame of a new pattern on the pixel (𝑢, 𝑣). For each pattern pixel in 𝐼(𝑢,𝑣), 

pattern 𝑃𝑖 will be observed which can be seen in Figure 2.11. Here, the number of consecutive ‘1’ 

determines the duration of the motion at location (𝑢, 𝑣).  

The matrix 𝐼 is initialised as  𝐼(1: 𝑈, 1: 𝑉) = 1. That means a new pattern starts from frame 1 for every 

pixel. 𝐼(𝑢,𝑣) will then be updated to 𝐼(𝑢,𝑣) = 𝑘, while {𝐷(𝑢, 𝑣, 𝐼(𝑢, 𝑣)),⋯ , 𝐷(𝑢, 𝑣, 𝑘)} builds one of the 

patterns from 𝑃𝑚(1 ≤ 𝑚 ≤ 𝑀). Each current pattern 𝑃𝑚 must start and end with a ′0′, to understand 

when the detected motion is complete. When a pattern 𝑃𝑚 is produced, the feature histogram 

𝑀𝐻𝐻(𝑢,𝑣,𝑚) increases by 1, as shown in Equation 5.3. This process is repeated until 𝐼(𝑢,𝑣) = 𝐾, for all 

pixel location. The full pseudo code for the algorithm is shown in Figure 5.2: 

 

Figure 5.2 – Pseudocode for the MHH Descriptor Algorithm 

Concretely, the MHH feature summarises the motion representation from a sequence of frames into a 

single frame per pattern. The feature itself can, therefore, be treated as a still image for motion as 

visualised in Figure 5.1. As a set of still images, the MHH feature can be processed further to provide 

information based on local feature descriptor techniques like those used in Chapter 3.2.1. As the 

dimensions of the MHH feature can be large when flattened, using these local feature descriptors can 

be viewed as a descriptive form of dimensionality reduction.  

With the principals of the technique understood, there are some possible situations that can occur which 

can have a negative impact on the descriptor, or that the descriptor lacks the expertise needed for these 

situations. In the following section, these points are noted and discussed in detail. 

Algorithm (MHH) 

Input: Video clip f(u,v,k), u=1,…,U, v=1,…,V frame k=1,…,K 

Initialisation:  Patterns i=1,…,M, 

  MHH(1:U,1:V,1:M) = 0,  
  Pattern Starting Index I(1:U,1:V) = 1 

For k=2 to K (For K) 

      Compute D(:,:,k,s) (0 or 1 based on frame difference) 

      For u=1 to U (For U) 

For v= 1 to V (For V) 

      If (D(u,v,k)=0)   (If 1) 

If {D(u,v,I(u,v)),…,D(u,v,k)} is pattern i  (If 2) 

      Update: MHH(u,v,i)=MHH(u,v,i)+1 

End (If 2) 

Update: I(u,v)=k 

      End (If 1) 

End (For V) 

      End (For U) 

End (For K) 

Output: MHH(1:U,1:V,1:M) 
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5.3.2 Motion History Histogram inefficiencies 

MHH has shown good performances in a variety of tasks that have some form of motion that can be 

interpreted. However, there are some areas in which it can be improved to be more efficient and robust. 

Here are some key factors of MHH that are missing or can be improved: 

• MHH Lacks the ability to capture motion at different speeds, which can cause issues when 

motion varies throughout a sequence. Currently, the algorithm is designed to capture the fastest 

possible motion occurring as it only looks at two consecutive frames at a time.  

o A slow-paced motion may not be detectable by MHH if the input video has a 

characteristic of motion occurring across long time periods. MHH only utilises the 

following frame, which for slow motion, could look very similar to the previous frame.  

o Fast motion has the opposite effect, where consecutive frames provide big motion 

jumps within the frames. In this case, the MHH descriptor might not recognise them as 

the same source of motion because of the pixel distance. 

• Multiple motion entities are combined and not detectable separately within the algorithm. This 

shows a limitation to global motion capture and not local.  

• A lot of noise can be captured if the video source suffers from small stuttering or similar effects. 

This can be a potential problem caused by background objects in the scenes that are irrelevant 

to the task. 

• The spatial size of the motion captured can be visually sparse if too large. This can cause hand-

crafted techniques, such as LBP (if applied on top of the MHH feature), to miss gradually 

bending corners and other deviations.  

• The motion captured is pixel based, not object/person based. This means that multiple entities 

can contribute to the motion capture of what is supposed to be of a single entity if there is any 

overlap between them or their paths.  

• The Motion is only captured in grayscale. Converting a frame to grayscale could mean the loss 

of valuable information that could only be visible in a colour space.   

These are some of the recognised inefficiencies of the MHH descriptor. There may be more, but of 

course, it is not easy to develop an algorithm that can take care of every situation for its application. 

However, it is clear that there is room for improvement for the MHH descriptor. The upcoming ideas 

will try to solve some of the issues mentioned above, as well as providing different views to the existing 

algorithm.  

5.3.3 Extension 1 - Multi-Scale Motion History Histogram 

The first proposed extension attempts to capture motion at different speeds. The issue of MHH, as 

mentioned previously, that relates to this extension is that the descriptor is fixed in how it looks at 
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temporal data. This can make the feature very limited, and not dynamic enough to find all forms of 

motion. This extension, called Multi-Scale Motion History Histogram (MMHH), proposes to add more 

dynamics, providing motions that cannot be captured by the regular MHH descriptor. 

Motion across visual sequences can indeed be examined at different scales, not necessarily from a frame 

with its following frame. Working frame by frame can limit the algorithms descriptiveness. This 

extension can help provide more information about slow and fast paced motion. This is achieved by 

adding a scale dimension that can compare each frame with various other following frames. The number 

of following frames to compare can be defined by the user via a hyper-parameter 𝑆. This can allow the 

tunability for different speeds of motion based on its intended application. By looking at various subsets 

of frames, hidden motion, or those submerged in noise can be detected and made clearer. These would 

otherwise be lost or covered up by the way MHH prioritises fast motion.  

The new hyperparameter 𝑆 is introduced to define the scales in which to calculate MMHH. This range 

can be defined as 𝑠 = 1,⋯ , 𝑆. This will determine how many frames to compare pixel variation beyond 

frame 𝑘 too. Each of these scales will also have 𝑀 patterns recorded producing a feature vector of 

MMHH(𝑈, 𝑉,𝑀, 𝑆) dimensions. 

 

Figure 5.3 - MMHH feature captured of a person waving their hands. Visually showing patterns up to M=5, with the scale 

set to S=1, to demonstrate the difference of motion captured across each pattern when introducing S. The original visual 

sample is included 

Figure 5.3 demonstrates the effect of adding the Scale dimension to MHH. The scale has only been set 

to 𝑆 = 1 so it can be visually compared with Figure 2.12, which uses the same sample and shows the 

same number of patterns 𝑀 = 5. When compared with the MHH visual pattern in Figure 2.12, the visual 

motion is more concentrated on the hands and where they move, showing a higher motion count for 

𝑀 = 1.  

The MHH visualisation in Figure 5.1. Figure 5.3 shows its equivalent motion concentration, where the 

arms move closer to the body for 𝑀 = 1. Also, for 𝑀 = 5, MMHH shows higher motion count. It can 
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be said that the faster motions are captured and are more related to MMHH at 𝑆 = 1. This is based on 

how the hands are the fastest and furthest moving body part in this action, and how higher patterns 𝑀 >

2 have been detected more. The motion is effectively amplified by the visual differences across the 

shorter time range. 

 

Figure 5.4 - MMHH feature captured of a person waving their hands. Visually showing patterns of M=5, with the scale 

increasing from S=0:5. S=0 represents the MHH equivalent for M=5 as there is no scale included. 

Figure 5.4 is another visualisation of MMHH, where the scale is varied from 𝑆 = 0: 5 and showing only 

pattern 𝑀 = 5. This is to demonstrate how the adjusting the scale can detect the long duration motion 

(𝑀 = 5) at varied speeds (𝑆 = 0: 5). From the figure, the increase in scale shows how the speed of the 

motion is captured, with 𝑆 = 1 demonstrating the fast hand movement, to 𝑆 = 5 that shows the slower 

motion produced inner arm resulting from waving the hands. When taking the existing MHH parameters 

into account, the MMHH algorithm can be understood as follows: 

 𝛼 = |𝑓(𝑢,𝑣,𝑘+𝑠) − 𝑓(𝑢,𝑣,𝑘)| (5.4) 

 𝐷(𝑢,𝑣,𝑘,𝑠) = {
1,
0,

𝛼 ≥ 𝑇

𝑒𝑙𝑠𝑒
 (5.5) 

 
MMHH(𝑢,𝑣,𝑚,𝑠) = {

MMHH(𝑢,𝑣,𝑚,𝑠) + 1,

MMHH(𝑢,𝑣,𝑚,𝑠)           ,

  𝑖𝑓{𝑃𝑚𝑖𝑠 𝑓𝑜𝑢𝑛𝑑}

𝑒𝑙𝑠𝑒
 

 

(5.6) 

The frame difference 𝛼 is redefined as shown in Equation 5.4, along with the reformulation of the MHH 

descriptor in Equations 5.5 & 5.6 to produce the MMHH descriptor. Where the scale 𝑠 is incorporated 

in the calculation of the frame difference, essentially defining how many frames to skip. 𝐷(𝑢,𝑣,𝑘,𝑠) 

represents the binary matrix that now includes the scale dimension. It is calculated by checking if 𝛼 is 

≥ the threshold 𝑇. The full algorithm is shown in Figure 5.5.  
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5.3.3.1 Time-Scaled Variation 

The dynamics of the MMHH feature has increased compared to MHH. However, upon using the 

MMHH algorithm, there has been situations where the algorithm would not differ much from MHH. 

With thorough investigation, a vulnerability of MMHH was found. This was that the variability in 

framerate of a video can produce different outcomes even though the content is the same. i.e. if MMHH 

is applied to a video that is recorded at 30 fps, it will not produce the same feature if that same video 

was recorded at 60 fps instead.  

 

Figure 5.5 - Algorithm of the MMHH extension 

This would make sense as the scale dimension is linear in the way it is defined. This means that for 

visual sequences with different framerates, special attention will always be required to adjust the scales 

accordingly. If the framerate is high, this will cause the consecutive scales to be very similar. This can 

be inefficient as the feature will become unnecessarily larger. This would require the total number of 

scales 𝑆 to increase in order to obtain the motion at the intended speed. This drawback does also play 

true to the MHH algorithm, as the quality is also affected by higher framerates.  

A solution to this problem is to introduce the time dimension, where the measurement of movement is 

not based on the frame scale. Now it can be based on the timeline of a sequence, which can account for 

any variation in the framerate by selecting a time interval instead of a certain frame to calculate the 

motion. This provides a meaningful approach to the motions at various speeds. This solution will be 

called Time-Scaled Motion History Histogram (TSMHH).  

Algorithm (MMHH) 

Input: Video clip f(u,v,k), u=1,…,U, v=1,…,V frame k=1,…,K 

Initialisation:  Patterns i=1,…,M, 

  Scales s=1,…,S, 

  MMHH(1:U,1:V,1:M,1:S)=0,  
  Pattern Starting Index I(1:U,1:V)=1 

For s=1 to S (For S) 

      For k=2 to K (For K) 

 Compute D(:,:,k,s) (0 or 1 based on frame difference) 

 For u=1 to U (For U) 

      For v= 1 to V (For V) 

If (D(u,v,k,s)=0) (If 1) 

      If {D(u,v,I(u,v),s),…,D(u,v,k,s)} is pattern i (If 2) 

Update: MMHH(u,v,i,s)= MMHH(u,v,i,s)+1 

      End (If 2) 

      Update: I(u,v)=k 

End (If 1) 

      End (For V) 

End (For U) 

      End (For K) 

End (For S) 

Output: MMHH(1:U,1:V,1:M,1:S) 
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The scale hyperparameter 𝑆 from the MMHH extension has been changed to represent time instead, 

that can be denoted as 𝜏. This parameter can be used to determine at what gap of time should two frames 

be observed. For instance, if the motion is to be calculated every half a second at a given framerate of 

𝐹𝑟 = 30𝑓𝑝𝑠, then 𝜏 = 0.5 × 𝐹𝑟. This means that each frame 𝑓(𝑢, 𝑣, 𝑘) will be compared with 

𝑓(𝑢, 𝑣, 𝑘 + 𝜏). There can also be 𝑄 instances of time-scaled motion captured, by making 𝜏 a vector of 

ℝ𝑄. The benefit of having the parameter in terms of time can help the user judge what to set it to, by 

considering the application it is used for. An example of this use can be to detect very slow movements 

from emotions, such as signs of depression. The time parameter 𝐹𝑟 can be set to capture the slow 

occuring motion.  

5.3.4 Extension 2 - Spatial Motion History Histogram 

Spatial Motion History Histogram (SMHH) aims to look at a different viewpoint within the spatial 

domain. The idea comes from Convolutional Neural Networks, in the way the network pools an image 

after applying a convolution filter. Here, the image from a sequence is pooled several times, and motion 

is captured on each new sequence.  

By introducing pooling on the image sequences, the image size is reduced making the valuable 

information such as corners, edges and boundaries sharper. This can have the effect of highlighting 

areas of motion that provide useful information for situations like when a slow and long turning corner 

can be mistaken for a straight line. For the algorithm, there are three new tuneable hyperparameters 

when compared to MHH. The first is to decide the kind of pooling that is desired, with average pooling 

shown in Equation 5.7, max pooling in Equation 5.8, and the operation function in Equation 5.9.  

 𝑃𝑜𝑜𝑙𝐴𝑣𝑔 =
1

𝛽2 ∙ 𝑛
× ∑𝑓(𝑢: (𝑢 + (𝛽 ∙ 𝑛)), 𝑣: (𝑣 + (𝛽 ∙ 𝑛)), 𝑘) (5.7) 

 𝑃𝑜𝑜𝑙𝑀𝑎𝑥 = MAX(𝑓(𝑢: (𝑢 + (𝛽 ∙ 𝑛)), 𝑣: (𝑣 + (𝛽 ∙ 𝑛)), 𝑘)) (5.8) 

 𝑓𝑛̅ = 𝑃𝑜𝑜𝑙(𝑓, 𝑛) (5.9) 

   

where 𝑃𝑜𝑜𝑙 can either be the 𝐴𝑣𝑔 or 𝑀𝑎𝑥 depending on the user. 𝑛 = {0:𝑁} is the number of pooling 

operations that will occur, with 𝑛 = 0 representing no pooling operation, and continues to increment 

till 𝑁. 𝛽 is the spatial pooling size, which will be a 𝛽 × 𝛽 window. 𝑓𝑛̅ is the outcome of the frame 

sequence 𝑓 when pooling is applied with pooling operation 𝑛. The rest of the algorithm is as follows: 

 SMHH(𝑛) = MHH(𝑓𝑛̅) (5.10) 

 SMHH = {MHH(1:
𝑈

𝛽0
, 1:

𝑉

𝛽0
, 1:𝑀) ,⋯ ,MHH(1:

𝑈

𝛽𝑁
, 1:

𝑉

𝛽𝑁
, 1:𝑀)} (5.11) 
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Equations 5.10 & 5.11 shows how the SMHH feature is created based on the collective MHH operation 

on the raw and pooled visual sequences. Equation 5.10 represents MHH being applied on a pooled 

sequence 𝑓𝑛̅. This is repeated for all 𝑛 = 0:𝑁, with the 4th dimension to the SMHH feature becoming 

each MHH feature that is produced. 

5.3.5 Extension 3 - Spatial Multi-Scale Motion History Histogram  

Both extensions MMHH and SMHH can work effectively together to produce a comprehensive feature 

detailing various motion speeds with varied shape and size. This can ultimately be the feature descriptor 

that can uncover motion undetected by the MHH algorithm, giving a significantly higher amount and 

quality of information. However, this is at the cost of having a much larger feature size. 

The algorithm Spatial Pooling Multi-Scale Motion History Histogram (SMMHH) is based on applying 

the MMHH algorithm on the spatially pooled sets of visual sequences, including the original set. The 

entire process is visually depicted in Figure 5.6, using an action sample of a person waving their hands. 

The total feature size can be computed as: 

 𝑑𝑖𝑚 = ∑(
1

𝛽2 ∙ 𝑖
(𝑈 ∙ 𝑉 ∙ 𝑀 ∙ 𝑆))

𝑁

𝑖=0

 (5.12) 

   

Two variants are based on the Average and Max operator for the spatial pooling. These are denoted as 

ASMMHH for average pooling, and SMMHH for max pooling. 

5.4 Dynamic/Temporal Datasets 

Five public databases have been utilised in the upcoming experiments, that are based on a variety of 

different applications. This is to demonstrate the performances of MHH and the extensions across 

different forms of motion occurrence.  

5.4.1 CoST Database 

The Corpus of Social Touch (CoST) dataset is based on touch gestures with human interaction [156]. 

It contains 14 types touch gestures which are: grab, hit, massage, pat, pinch, poke, press, rub, scratch, 

slap, stroke, squeeze, tap and tickle. There are also 3 variations of each gesture (normal, gentle and 

rough). There is a total of 31 subjects producing each of the 14 gestures 6 times.  
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Figure 5.7 - Placement of pressure sensors (black fabric) on a mannequin arm 

The device used to record the gestures is an 8 × 8 grid of pressure sensors. They had been wrapped 

around a mannequin arm, as shown in Figure 5.7, which was chosen as a neutral body location to place 

the sensors. The pressure intensity is the measuring unit for the sensors and are recorded at 135 times 

per second for the duration of the gesture. Each sensor channel produces a 10-bit integer value between 

0 and 1023. The detailed description of how each of the 14 gestures is acted is mentioned in Table 5.1  

[156]. 

Table 5.1 - CoST gesture labels and definitions [156] 

Gesture Label Gesture Definition 

Grab Grasp or seize the arm suddenly and roughly 

Hit 
Deliver a forcible blow to the arm with either a closed fist or the side or 

back of your hand. 

Massage Rub or knead the arm with your hands. 

Pat Gently and quickly touch the arm with the flat of your hand. 

Pinch Tightly and sharply grip the arm between your fingers and thumb. 

Poke Jab or prod the arm with your finger 

Press Exert a steady force on the arm with your flattened fingers or hand. 

Rub Move your hand repeatedly back and forth on the arm with firm pressure. 

Scratch Rub the arm with your fingernails 

Slap Quickly and sharply strike the arm with your open hand. 

Squeeze Firmly press the arm between your fingers or both hands. 

Stroke Move your hand with gentle pressure over the arm, often repeatedly. 

Tap Strike the arm with a quick light blow or blows using one or more fingers 

Tickle Touch the arm with light finger movements. 

 

The HAART database [157] is based on expressing emotion towards a “haptic creature”, with the intent 

to understand and observe human emotion via touch gestures. A physical prototype is created in the 

form of a furry animal, with pressure and conductive sensors attached to the skeleton and fur. The 

sensors are in the form of a 10 × 10 grid, with each sensor the size of 1 square inch wide. An 8 × 8 

grid is provided to match the CoST data format. This device can be seen in Figure 5.8, with the complete 
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prototype on the left, the Styrofoam and skeleton on the top right, and the skeleton with the fabric 

pressure sensor on the bottom right [157].  

5.4.2 HAART Database 

 

Figure 5.8 - An affective touch-sensing zoomorphic prototype with pressure and conductive sensors attached to the device, 

inner Styrofoam and skeleton [157]. 

The data collected from the prototype contains 7 touch gestures that include: constant, no touch, pat, 

rub, tickle, scratch, and stroke. These gestures are derived from the touch dictionary provided by 

Yohanan et al. [158], which communicate emotions in human-animal interactions. The gestures are 

performed by 10 subjects, with each gesture being 10 seconds long. There are 3 substrate conditions 

(firm and flat, foam and flat, foam and curve), with 4 cover conditions (none, short minkee, long minkee, 

synthetic fur) for each gesture. This produces a total of 840 gestures. The sampling rate is set to 54 

times per second, with each sensor channel producing a 10-bit integer value between 0 and 1023. 

5.4.3 KTH Database 

The KTH is a database on human actions recorded as a visual sequence. This database has been 

thoroughly experimented on by many researchers as it contains 6 general actions that are performed 

clearly which are: walking, jogging, running, boxing, hand waving, and hand clapping. There are 25 

subjects performing the actions in 4 different settings. These are outdoor actions s1, outdoor actions 

with scale variation s2, outdoor actions with different clothes s3 and indoor actions s4, each of which 

has a homogeneous background. Samples of these actions with different scenarios can be seen in Figure 

5.9. This makes a total of 600 action samples, however, with one sample missing. Each sample is 

recorded at 25 frames per second, with on average 4 seconds per sample, and a spatial resolution that is 

down-sampled to 160 × 120 pixels. Each sample sequence contains 4 sub-sequences of the same 

action, which can be split to produce a total of 2391 sequences [144].  
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Figure 5.9 - Samples of the KTH database taken from [144] demonstrating the 6 different actions based on 4 scenarios 

5.4.4 AVEC2014 Dataset 

The AVEC2014 Dataset [13] is a subset of the audio-visual depressive language corpus (AViD-Corpus) 

[12]. The dataset contains a total of 300 video clips from 84 subjects performing Human-Computer 

Interaction tasks whilst being recorded by a webcam and a microphone in several quiet settings. Out of 

all the tasks, two have been selected based on being the most completed tasks. These tasks are the 

“Northwind” and “Freeform”, which require the following [13]:  

• Northwind - Participants read aloud an excerpt of the fable “Die Sonne und der Wind” (The 

North Wind and the Sun), spoken in the German language 

• Freeform - Participants respond to one of many questions such as: “What is your favourite 

dish?”; “What was your best gift, and why?”; “Discuss a sad childhood memory”, again in the 

German language 

There is only one person in each clip and some subjects feature in more than one clip. All the participants 

are recorded between one and four times, with an interval of two weeks. 18 subjects appear in three 

recordings, 31 in 2, and 34 in only 1 recording. The length of the clips for the two tasks is between 6 

seconds to 4 minutes 8 seconds. The mean age of subjects is 31.5 years, with a standard deviation of 

12.3 years and a range of 18 to 63 years. The depression is measured using the Beck Depression 

Inventory II, which ranges from 0 to 63. The value ranges can be interpreted as follows: 0-10 is 

considered normal as ups and downs, 11-16 is mild mood disturbance, 17-20 is borderline clinical 

depression, 21-30 is moderate depression, 31-40 is severe depression and over 40 is extreme depression.  

In terms of the data format, the audio is produced with a variable sampling rate and resampled to a fixed 

128kbps using the AAC codec. The visual content has been recorded using a variety of codecs and 
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frame rates. This was also resampled using the H.264 codec, to be at a uniform 30 frames per second 

with a spatial resolution of 640 × 480 pixels. This was stored in an mp4 container. Samples of the 

recordings that are allowed to be published are shown in Figure 5.10. 

 

Figure 5.10 - Controlled sample frames provided by AVEC2014 that can be published, showing 2 people completing their task 

The data is split into 3 partitions, which are for training, development, and testing. The purpose of these 

partitions is to try and build a system that is trained using the training partition, which can then be tuned 

to perform well on the development partition. Once the system is tuned and validated, the test partition 

can be used to give the final score of the system. This way there is no biases as the system is only tuned 

for the development data. For the majority of the global challenges, the testing labels are not released, 

and the predictions generally should be submitted to the hosts, so they can evaluate the performance. 

5.5 Frameworks for Action/Gesture Recognition and Emotion 

Recognition 

The framework for action and gesture recognition will be based on making the most of MHH and its 

extensions. To allow fair testing of MHH and each extension, the framework around each feature will 

remain the same. The common hyperparameters will also be kept the same so that only the contributions 

from each extension will be highlighted from the differences in performance. The initial frameworks 

will be based on the human action recognition and gesture recognition applications. These are followed 

by the Emotion recognition frameworks, which will be based on Depression analysis. These emotions 

portray slower motion throughout the sequences. Therefore, there will be a separate set of parameter 

values for them to make the best of the descriptors. 

5.5.1 Framework for Touch Gesture Recognition 

The CoST and HAART databases contain similar data, and each will host the same framework shown 

in Figure 5.11. The data format for both is a sequence of an 8 × 8 grid, which represent the pressure 

sensor readings. The values range from 0 to 972 for HAART, and 0 to 1023 for CoST. For this 

experiment, the sequence of pressure sensitivity is treated as a sequence of 8 × 8 pixels with a range of 
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10-bits, which can be visualised in the framework. For this experiment, the following features are tested: 

MHH, MMHH, SMHH, SMMHH (Average and Max), and the LBPTOP feature for comparison. 

The MHH and extension algorithms are applied on top of the sequence to try and model the motion of 

the gesture. Each algorithm has the same set of values for the Threshold parameter 𝑇, and the number 

of patterns 𝑀. The threshold has a range of values tested from 0.75 till 30. These are directly linked to 

the database as if depends on values of the sequences. The remaining parameters are defined as stay the 

same for each experiment.  

Starting with MHH, each sequence will have several versions captured, mainly adjusting the threshold. 

The number of patterns 𝑀 is set to 5 for all features. For the MMHH feature, the scale parameter 𝑆 is 

set to 5. This is to make sure various speeds of motion will be captured for each gesture. The threshold 

will vary the same as the MHH feature, with the pattern count also set to 𝑀 = 5. This will give a total 

of features size of 8 × 8 × 5 × 5 = 1600 components.  

 

Figure 5.11 - Framework for HAART and CoST dataset, where the gesture samples are treated as videos, and MHH + 

extensions are captured off. KNN, SVM and RF are used for the feature learning process to predict the gesture. 

When applying SMMHH to the framework, 𝛽 is set to 2, and 𝑁 is set to 3. This is so that the sequences 

can successfully be pooled, making 4 (including original) total sets of sequences. For each gesture, this 

becomes an 8 × 8, 4 × 4, 2 × 2 and 1 × 1 resolution sequence. Each set of sequences will have scales 

of up to 𝑆 = 5 and patterns of 𝑀 = 5.  

The feature learning will be based on a classification task and will involve 3 commonly used classifiers. 

These are KNN, RF, and SVM. Multiple classifiers are adopted to observe the performance difference 

using different techniques. They can also validate the performance of each other, making it visible if 
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there is an anomaly result. The KNN and RF classifiers have their hyperparameter adjusted to find the 

best for this task. For KNN, this is to select the number of neighbours to use, and for RF, the number 

of trees to have in the classifier.   

5.5.2 Framework for Human Action Recognition & Dynamic Facial Expression 

Recognition 

The framework for the KTH database and AVEC2014 database contain similar format data, in the form 

of an image sequence. The framework for them will vary from the HAART and CoST database as they 

are based on actual video content and not a grid of sensors. Because of this, the frame sizes are a lot 

bigger and will make the resulting feature very large. To overcome this, the motion histograms will be 

reduced by applying a local feature descriptor on each motion frame, as each motion histogram has the 

same spatial dimensions of the samples frame size. This will not only reduce the dimensionality but 

will also provide a mathematical representation of the motion captured.  

The main goal of the experiment is to evaluate the motion descriptors. Therefore, it is not necessary to 

use many local descriptors on top of the motion features frames. As the output from the proposed 

methods can be large, each of the resulting motion histograms of 120 × 160 (for Action Recognition) 

for all methods will have EOH applied to it, reducing the feature size from 19,200 components per 

frame down to 384. The local descriptor will be used on each frame for all the motion features, in the 

same way to allow for fairness. Each of the EOH feature produced from each frame of a motion feature 

will be concatenated together to produce a single feature vector. This vector will represent each sample.  

Starting with the original MHH feature, this has been captured across all of the videos with patterns up-

to 𝑀 = 5 along with a threshold of 𝑇 = 8. The result would be a feature of 5 frames, each equivalent 

to the frame size of the original video (120 × 160). Each of these frames will have EOH extracted from 

them and concatenated together. The final MHH feature will now consist of 𝑀 × 384 = 1920 

components, which is denoted as MHH_EOH. There are 2 Spatial Motion History Histogram with EOH 

features captured, first is using max pooling, which is denoted as SMHH_EOH and the other is using 

Average pooling, which is denoted as ASMHH_EOH. The spatial pooling is applied 𝑁 = 3 times, each 

with a scaling factor of 𝛼 = 2. This will produce 4 videos: the original video, and the 3 pooled videos. 

MHH is applied to each video capturing patterns up-to 𝑀 = 5; all with a threshold set of 𝑇 =

[5, 8, 10, 12, 15]. EOH is taken of all the patterns produced from each scale on each pooled video, 

making a total feature size of (𝑁 + 1) × 𝑀 × 384 = 7680 components. 

The next feature is Multi-Scale Motion History Histogram with EOH, denoted as MMHH_EOH, and 

the Time-Scaled Motion History Histogram denoted as TSMHH_EOH. The MMHH_EOH feature 

introduces a scale factor to obtain a dynamic feature that is affected by the movement speed. The Scale 

value chosen goes from 𝑆 = 1: 5, with the patterns, produce up-to 𝑀 = 5, and a threshold set of 𝑇 =
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[5, 8, 10, 12, 15], like MHH. For each scale, there will be 5 frames produced which represent each of 

the patterns 𝑃𝑚. EOH is taken of all the patterns produced from each scale, making a total feature size 

of 𝑆 × 𝑀 × 384 = 9600 components. TSMHH slightly differs by replacing 𝑆 with 𝜏, where 𝜏 is set to 

𝜏 = [0.5, 0.75, 1, 2, 𝐹𝑟]. When calculating the number of frames to skip, the algorithm simply applies 

𝐹𝑟

𝜏
. E.g. if 𝐹𝑟 = 25, then the resulting scales will be 𝑆 = [50, 33.3, 25, 12.5, 1].  

Spatial pooling and Multi-scale have been combined and tested for this framework. There are two 

features captured with this method, using both Max pooling and Average pooling denoted as 

SMMHH_EOH and ASMMHH_EOH respectively, with parameters 𝑁 = 3 and a scaling factor of 𝛼 =

2. MMHH is then taken on each of the videos with a Scale of 𝑆 = 1: 5; patterns produced up-to 𝑀 = 5; 

with a threshold of 𝑇 = [5, 8, 10, 12, 15]. EOH is taken of all the patterns produced from each scale on 

each pooled video, making a total feature size of (𝑁 + 1) × 𝑆 × 𝑀 × 384 = 38,400 components. 

5.5.3 Framework for Depression Analysis 

For Depression analysis, the framework will differ from the others as it is based on a regression task, 

rather than classification. Unlike the other databases, the AVEC dataset contains audio and visual 

information that can both be utilised in the upcoming experiment.  

The idea of this framework is to capture the temporal motion using the algorithms (MHH, MMHH, 

SMHH, SMMHH and TSMHH) and apply local hand-crafted descriptors to further extract information 

from it. The framework is shown in Figure 5.12, which can be understood in 4 stages. The first stage 

converts the raw data into grayscale and then applies the MHH algorithm or its extensions to extract 

motion data. Stage 2 then uses these motion frames as samples for a set of three hand-crafted descriptors 

of EOH, LBP and LPQ. These features are fused together by concatenating each descriptor histogram 

from each motion frame to make one big feature vector. Then, stage 3 applies PCA to reduce the number 

of dimensions from the fused feature vector. And finally, stage 4 applies multiple regression techniques 

to predict the depression score. The efforts from these predictors are further fused at decision level to 

give a joint prediction of a score between 0 and 63. 

The evaluation metric is based on the Mean Absolute Error (MAE), and the Root Mean Squared Error 

(RMSE). MAE is defined in Equation 5.13 and RMSE in Equation 5.14, where 𝑛 is the number of 

labels, 𝑦 is a set of ground truth labels, and 𝑦̂ is the set of prediction labels by the system.  

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖−𝑦̂𝑖|

𝑛

𝑖=1

 (5.13) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖−𝑦̂𝑖)

2

𝑛

𝑖=1

 (5.14) 
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The regression techniques that are used for the Depression analysis are Partial Least Squares regression 

and Linear Regression. Both techniques are applied individually for each feature set, as well as jointly 

using decision level fusion.  

 𝑦𝑖̂ = ∑∑𝑤𝑗 ∙ 𝑦(𝑖,𝑗)

𝑅

𝑗=1

𝑁

𝑖=1

 (5.15) 

   

The predictions from these techniques are combined using decision level fusion based on the weighted 

sum rule. This is shown in Equation 5.15, where 𝑅 is the number of regression techniques used, 𝑁 is 

the total number of samples, 𝑦(𝑖,𝑗) is the prediction value from the regression method 𝑗, of sample 𝑖, 𝑤𝑗 

is the weight assigned to regression method 𝑗. The objective is to fuse the confidence measure of each 

regression technique to get one set of predictions 𝑦̂. 

The efforts from both are linearly fused together using a weighted sum rule to aggregate their 

predictions. The weights are optimized by observing the performance of PLS and LR on the 

development partition. Initially, they both start with a weight of 0.5, with a step size of 0.05 whilst being 

optimised. The first change in weight is based on the individual performance for each technique, with 

the best performer getting an increase in weighting, and the worst receiving a loss the equivalent 

amount. Whilst the performance gets better, the weights continue to increase/decrease in the same 

direction. Once the performance increase halts, the optimal solution is decided based on the lowest 

error. 

5.6 Experimental Settings and Results 

In this section, four experiments will take place based on four databases. Each of which will be to 

demonstrate the performance of MHH and the proposed extensions. The first 2 experiments will be to 

evaluate the performance of the MHH and extensions on the KTH, CoST and HAART database. This 

is to provide an indication of how they perform on applications that contain a lot of motion. Then the 

last experiment will focus on applying these techniques into emotion recognition and detection, using 

the AVEC14 database. This will be in the form of Depression analysis.  

5.6.1 Settings and Protocols for Action/Gesture Recognition 

The CoST and HAART tasks have the guidelines followed by the Social Touch and Gesture Challenge 

that took place in 2015 [159], by using the training and testing sets they suggested. During the challenge, 

the test partition labels were not made available to the public. Therefore, the training set has been split 

into a ~70% training subset and ~30% validation subset. For the HAART training subset, there are 412 

samples, and 166 samples for the validation subset. For the CoST training set, the training data is split 

into 2685 samples for the training subset and 839 samples for the validation subset.  
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Initially, to get a better understanding of the parameter selection for the machine learning methods, 10-

fold cross-validation is applied on the training subset. Once they are defined, the training and validation 

subset are used to determine the performance of each feature method. The LBP-TOP feature is also 

computed on the sequences for each sample as a reference to compare the MHH and its extensions 

performances. 

For the KTH experiment, protocols are followed based on the experiments from [144] and [30], where 

the subjects are split so that 16 are used for training and 9 are used for testing. This will give a subject 

independent view of the experiment, which is a bonus for robustness. The proposed methods are applied 

to the first 300 frames of the 599 video clips, as done in [85]. 

5.6.2 Experiment 5A – Human Action Recognition based on Temporal Changes 

The first experiment will be based on detecting human actions using the KTH database. The following 

MHH features and its extensions will be tested: MHH, MMHH, TSMHH, SMHH, ASMHH, SMMHH, 

and ASMMHH. Each feature will be tested on the dataset using the same protocol, to provide fair testing 

using controlled settings. There will be a range of thresholds used for each feature, which can help 

determine what the best is for this application.  

The machine learning techniques that will be adopted for this experiment are SVM, KNN and RF. SVM 

will consist of both RBF and Poly kernels, as used in the previous experiment. The cost parameter 𝐶 

will be fixed to 1000, and 𝛾 =
1

𝑛̂
. For KNN, the number of neighbours is set to 5. And finally, for RF, 

the number of trees is set to 500. There will be no cross-validation procedure for the testing, as 

mentioned in the experimental protocol.  

The resulting feature vectors after the extraction process can become very large and take a long time to 

train. However, it will not be necessary to apply PCA to reduce the dimensionality and speeding up the 

training process, because each test will only be run once. Therefore, the full feature can be tested to 

produce the best performance it can.  

5.6.2.1 Performance Evaluation of Motion Based Descriptors 

Starting with the original MHH feature, Table 5.2 shows its performance based on 5 different 

thresholds, using 4 machine learning techniques. This feature can be used as a baseline, to evaluate the 

performance of the proposed extensions against it. The highest result has come from the MHH_15 

feature using SVM with RBF kernel, producing 87.50%. It is hard to determine the best threshold for 

this application, as it can depend on the machine learning technique. The machine learning techniques 

show that SVM does come on top in most cases for each threshold, but it is closely followed by RF. 

KNN looks like the weakest techniques with all thresholds of MHH.  



Chapter 5: Facial Motion Dynamics Modelling 

127 

 

Table 5.2 - Performance of the MHH descriptor on the KTH database, with 5 patterns captured using various thresholds. 

These are tested based on a 70/30 split of the data, using SVM RBF and Poly, RF and KNN for machine learning. 

Accuracy SVM RBF SVM Poly RF 500 KNN 5 

MHH_5 79.62% 76.85% 81.02% 74.07% 

MHH_8 86.11% 85.64% 86.11% 80.09% 

MHH_10 86.57% 87.03% 83.33% 78.70% 

MHH_12 87.04% 85.64% 84.25% 79.62% 

MHH_15 87.50% 86.54% 85.65% 82.41% 

 

Table 5.3 shows the performance of the MMHH and TSMHH extensions, with some interesting 

findings. Firstly, both features have shown an improvement over the MHH feature, with an increase of 

1.85%. This may not be a large amount, mainly because it is limited by the number of samples in the 

dataset. Between MMHH and TSMHH, in most cases, TSMHH has produced a better recognition rate 

across all machine learning techniques.  

Table 5.3 - Results based on the first set of MHH extensions: MMHH and TSMHH. 

Accuracy SVM RBF SVM Poly RF 500 KNN 5 

MMHH_5 82.41% 83.33% 79.63% 77.22% 

MMHH_8 87.50% 86.11% 81.94% 81.48% 

MMHH_10 87.96% 86.57% 83.80% 82.40% 

MMHH_12 88.88% 86.11% 87.96% 85.18% 

MMHH_15 89.35% 86.57% 85.65% 85.65% 

TSMHH_5 85.64% 85.18% 81.48% 78.24% 

TSMHH_8 86.11% 87.03% 82.87% 82.40% 

TSMHH_10 90.27% 88.89% 83.79% 82.40% 

TSMHH_12 90.74% 89.35% 84.25% 86.11% 

TSMHH_15 89.35% 88.89% 85.18% 85.18% 

 

This can be an indication that capturing motion based on the time scale can provide more insightful 

information. However, it is interesting to know if each application will have its desired speed of motion 

to capture the best possible motion features for it. Multi-scale has also shown a positive increase in 

performance throughout, indicating that using more information and capturing more scales of motion 

can improve performance. 
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Table 5.4 portrays the introduction of spatial pooling, with both average pooling and max pooling 

applied. Here, the best performer is the ASMHH feature, producing 88.89% using a threshold of 8. 

However, the SMHH feature has not performed well compared to the baseline, hitting only a max 

accuracy of 83.79% using SVM with both kernels. This is an accuracy decline of 3.71%.  

Table 5.4 - Results based on the SMHH and ASMHH features 

Accuracy SVM RBF SVM Poly RF 500 KNN 5 

SMHH_5 80.09% 80.55% 79.69% 74.07% 

SMHH_8 82.40% 83.79% 79.63% 73.14% 

SMHH_10 83.79% 82.09% 73.15% 79.17% 

SMHH_12 81.94% 81.48% 80.55% 72.22% 

SMHH_15 82.87% 82.87% 79.62% 67.12% 

ASMHH_5 79.62% 79.62% 74.07% 79.62% 

ASMHH_8 88.89% 86.57% 87.50% 84.72% 

ASMHH_10 88.42% 87.96% 84.72% 78.24% 

ASMHH_12 79.16% 79.16% 79.16% 72.22% 

ASMHH_15 80.55% 81.48% 80.09% 67.12% 

 

Table 5.5 - Performance of the SMMHH and ASMMHH features 

Accuracy SVM RBF SVM Poly RF 500 KNN 5 

SMMHH_5 86.11 87.03 82.87 79.62 

SMMHH_8 86.57 87.96 82.87 77.78 

SMMHH_10 87.50 87.96 83.33 81.48 

SMMHH_12 88.89 88.89 85.19 79.63 

SMMHH_15 87.04 87.50 84.26 83.33 

ASMMHH_5 84.72 85.64 81.01 74.53 

ASMMHH_8 92.13 91.20 87.04 88.89 

ASMMHH_10 90.27 89.35 87.50 89.35 

ASMMHH_12 89.88 87.96 88.89 87.03 

ASMMHH_15 86.57 88.89 85.18 87.50 

 

Table 5.5 shows the performance of the combined efforts of the spatial pooling and multi-scale 

extensions, which are the SMMHH and ASMMHH features. ASMMHH_8 has performed significantly 

well compared to the baseline, achieving 92.13%, which is a 4.63% increase in accuracy. This is also 

the best performing feature compared to MHH and all the extensions. SMMHH has also performed 
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well, beating the baseline, but not as well as ASMMHH. The threshold produces performances that vary 

with each machine learning technique, as well as each feature. Therefore, determining a threshold is not 

as straightforward. However, the performance does not significantly degrade from thresholds ranging 

from 8 and 12.  

5.6.2.2 Experiment 5A Highlights 

This experiment has tested the proposed MHH extensions for human action recognition against the 

baseline MHH feature, to demonstrate the boost in performance each has over the original feature. 3 

extensions have been proposed, each with a variant of its own, making 6 feature sets in total. The 

experiment has thoroughly tested each extension using a range of threshold values, along with various 

machine learning techniques. A summary of the performances for each motion feature set, including 

external descriptors by other people, are presented in Table 5.6. Mattivi et al. [85] have used SVM to 

classify their features LBP-TOP, Extended LBP-TOP and Extended Gradient LBP-TOP. They have 

also tested Laptev's method [160] of HOG-HOF feature with the same experimental setup. Kläser et al. 

[155] have used the HOG3D feature for their experiment using the same protocol. The best-performing 

feature out of all is ASMMHH with SVM RBF, narrowly beating the external descriptor HOG3D and 

Extended Gradient LBP-TOP. This demonstrates that the MHH extension has credibility and can 

compete with the state-of-the-art.   

In all tests, apart from the MHH feature, the best performances are recorded with a threshold range 

between 8 and 12. This demonstrates that there may not be a single stable threshold that can work best 

for an application. It can vary based on the type of motion feature used, the machine learning technique 

adopted, and the speed of motion within the data. 

Time-Scale MHH has shown to be a lot more effective than MMHH, reaching 90.74% to become the 

second-best performer out of MHH and the extensions. The difference in performance can be due to the 

wide range of motion capture speeds. Multi-scale only looks at the consecutive frames for motion 

difference. However, when the frame rate is high, this will not be very effective as each scale feature 

will have captured similar motion to the previous and following. TSMHH ensures that the motion speed 

desired will always be captured, as it is frame-rate invariant, providing robustness. 

In terms of including spatial pooling, there is a benefit in using it, but only when set to average pooling. 

Max pooling does not seem to provide any benefits, according to the SMHH and SMMHH feature 

performances. The best performance was achieved using average pooling with multi-scale. This 

experiment has also demonstrated the capabilities of SVM, as previously demonstrated in the 

experiments from Chapter 3. Both kernels have once again trumped in performance when compared to 

RF and KNN. However, this time there is a small gap between them and a bit more competitive. The 

RBF kernel has shown to be the better out of the kernels, slightly outperforming the Poly kernel.  



Chapter 5: Facial Motion Dynamics Modelling 

131 

 

Table 5.6 - Comparison of all motion feature sets, using SVM, RF and KNN. The best result is taken from the tested set of 

threshold values, to represent each feature vector. Other feature descriptors are included for comparison. 

Accuracy SVM RBF SVM Poly 

MHH 87.50% 87.03% 

MMHH 89.35% 86.57% 

TSMHH 90.74% 89.35% 

SMHH 87.39% 87.39% 

ASMHH 88.89% 87.96% 

SMMHH 88.89% 88.89% 

ASMMHH 92.13% 91.25% 

LBP-TOP 86.25% - 

Extended LBP-TOP 88.19% - 

Extended Gradient LBP-TOP 91.25% - 

HOF-HOG 89.88% - 

HOG3D 91.40% - 

 

5.6.3 Experiment 5B – Social Touch and Gesture Recognition 

This experiment will apply the proposed MHH extensions in a similar style to experiment 5A, but for 

touch gesture applications. The main purpose is to see how effective the motion descriptors are across 

different applications that can benefit from this. From experiment 5A, it seemed like having ASMMHH 

and SMMHH produced the same of better performance as ASMHH and SMHH respectively. This is 

understandable as there are more scales of the same kind of motion information captured. Therefore, 

the ASMHH and SMHH feature will be omitted from this experiment as it will not be necessary. 

For this experiment, we will consider how MHH and all proposed extensions will perform on the 

HAART and CoST datasets. Tests will be run on both datasets, using the same motion feature sets, and 

same protocol. The LBP-TOP will also be tested in the same protocol for comparison purposes. The 

machine learning techniques adopted are KNN, SVM and RF, with the hyperparameter settings based 

on experiment 5A. The experiment on both datasets had taken place during this challenge, with the 

results and findings published in [161]. The protocol for thoroughly testing MHH and extensions is not 

based on the global challenge in [159], as the test labels had not been released at the time of this 

experiment. For the protocol, a 10-fold cross-validation approach has been adopted on the available 

training samples for each dataset. All the samples are randomly shuffled before the data is split, to 

ensure that each test is different. The average from 50 tests is taken for each machine learning and 

feature set, to give a stable result. The performance measurement for both datasets are based on 

recognition rate out of 100%, to determine how accurately the system can predict gestures.  
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5.6.3.1 Human-Animal Interaction Gesture Recognition based on HAART dataset 

Starting with the HAART dataset, there are 578 samples in total for the training set. The test set contains 

251 samples, but the labels are unknown due to the hosts not releasing them. The 10-fold cross-

validation will split the data into 520 for training and 58 for validation for each fold. Like the previous 

experiment, we start with the MHH feature. The data itself is not originated as an image, but an 8 × 8 

grid of pressure sensor values. Therefore, the threshold values chosen are set low to allow more changes 

in the pressure activity to be picked up. These are the following: 𝑇 = [0.5, 1, 1.5, 2, 3], which is applied 

to each feature. Although the dimensions of these features are not too large, PCA is still applied to 

remove any highly-correlated features, by keeping 99% of the variance. This is because the larger 

feature vectors produced by MMHH and ASMMHH can contain a lot of no motion features throughout 

all the samples.  

Table 5.7 - HAART test based on the MHH descriptor, using SVM, RF and KNN 

Accuracy SVM RBF SVM Poly RF 250 KNN 5 

MHH_0.5 50.20% 49.61% 42.36% 39.41% 

MHH_1 63.14% 61.43% 55.98% 56.05% 

MHH_1.5 63.19% 61.57% 56.77% 55.99% 

MHH_2 59.68% 59.02% 58.10% 55.67% 

MHH_3 58.95% 56.41% 58.78% 54.77% 

 

Table 5.8 - HAART test based on the extensions MMHH and TSMHH, using SVM, RF and KNN 

Accuracy SVM RBF SVM Poly RF 250 KNN 5 

MMHH_0.5 65.16% 66.79% 53.02% 55.94% 

MMHH_1 70.34% 72.19% 57.11% 58.04% 

MMHH_1.5 70.62% 71.88% 56.35% 57.94% 

MMHH_2 69.40% 70.58% 60.01% 57.88% 

MMHH_3 68.80% 69.65% 63.12% 60.18% 

TSMHH_0.5 67.39% 67.70% 55.49% 59.37% 

TSMHH_1 72.02% 72.92% 55.18% 54.36% 

TSMHH_1.5 71.80% 72.91% 55.50% 54.45% 

TSMHH_2 71.67% 73.50% 55.73% 53.06% 

TSMHH_3 69.73% 71.71% 58.09% 58.59% 

 

Table 5.7 shows the performance of the MHH feature. The SVM techniques produce a higher accuracy 

than the KNN and RF techniques. The best accuracy of 63.19% was achieved using SVM RBF and 
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MHH with a threshold of 1.5, with SVM Poly 1.62% less using the same MHH feature. Table 5.8 

demonstrates the performance of the MMHH and TSMHH extensions. For MMHH, the best accuracy 

of 72.19% is achieved using a threshold of 𝑇 = 1.5, along with the SVM Poly technique. Both MMHH 

and TSMHH have performed better than MHH, with TSMHH performing slightly better than MMHH 

(1.31%). Table 5.9 contains the results for the spatially pooled features SMMHH and ASMMHH. 

ASMMHH with a threshold of 1, using SVM Poly has achieved a performance of 76.52%. SMMHH 

has produced a best of 75.57%, a difference of 0.95%. ASMMHH has the best performance of all the 

extensions and MHH. The summarising results of this experiment can be seen in Table 5.10. There is a 

clear performance gap between MHH and the extensions, with ASMMHH using SVM Poly having a 

12.85% increase over MHH. LBP-TOP is also tested for comparison, which performed better than 

MHH, MMHH and TSMHH. However, the introduction of spatial pooling has improved the 

performance enough to go 3.6% above LBP-TOP.  

Table 5.9 - HAART test based on the SMMHH and ASMMHH descriptor, using SVM, RF and KNN 

Accuracy SVM RBF SVM Poly RF 250 KNN 5 

SMMHH_0.5 70.39% 70.68% 56.40% 58.59% 

SMMHH_1 73.70% 75.57% 59.47% 60.90% 

SMMHH_1.5 73.61% 75.50% 59.53% 60.54% 

SMMHH_2 74.41% 75.10% 63.50% 61.25% 

SMMHH_3 72.84% 74.31% 67.12% 61.93% 

ASMMHH_0.5 75.48% 76.02% 63.36% 62.64% 

ASMMHH_1 75.39% 76.52% 62.35% 62.30% 

ASMMHH_1.5 75.04% 76.21% 62.18% 62.83% 

ASMMHH_2 74.21% 74.60% 64.90% 61.21% 

ASMMHH_3 71.56% 73.31% 66.84% 62.27% 

 

Table 5.10 - Summary of the best results for MHH and the proposed extensions. LBP-TOP is included for comparison. 

Accuracy SVM RBF SVM Poly 

MHH 63.19% 61.57% 

MMHH 70.62% 71.88% 

TSMHH 72.02% 72.92% 

SMMHH 74.41% 75.10% 

ASMMHH 75.48% 76.02% 

LBP-TOP 72.29% 72.42% 
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5.6.3.2 Social Touch Gesture Recognition based on CoST dataset 

The CoST dataset is similar to HAART but has more than double the gestures to classify making the 

task a lot more challenging. It is also based on an 8 × 8 grid of pressure sensors, containing a similar 

data format. The framework for the system is the same as for HAART, making the task straightforward. 

The CoST dataset contains 3524 training samples based on 14 gestures. The considerable number of 

classes and data can cause a significant increase in the training time for a system. Therefore, this 

experiment will adopt a different testing protocol, where the data is split 70% for training and 30% for 

testing. This makes 2685 training samples and 839 test samples. The test is only run once, and the split 

will remain the same for each feature.  

The order of feature testing will remain the same as the HAART tests, which is MHH, MMHH, 

TSMHH, SMMHH, and ASMMHH. The threshold values will range from 𝑇 = [10, 15, 20, 25, 35]. 

They are higher values than those used in the HAART because of the characteristics of the sensors, 

gesture sensitivity and the recording settings. The results for each feature below will represent the best 

produced from all the thresholds. Both databases contain similar gesture classes, with CoST having 7 

additional gestures. This would significantly increase the training time required at the machine learning 

stage. The LBP-TOP feature is also extracted and tested for comparison.  

Table 5.11 - Results table of the CoST dataset, using the MHH descriptor and its extensions. 

Accuracy SVM RBF SVM Poly RF 500 KNN 5 

MHH 43.50% 33.49% 41.59% 37.90% 

MMHH 50.65% 41.00% 45.17% 41.83% 

TSMHH 43.86% 38.14% 41.95% 40.16% 

SMMHH 52.44% 42.90% 47.19% 43.14% 

ASMMHH 51.72% 43.14% 46.96% 44.45% 

LBP-TOP 41.95% 41.95% 37.42% 24.55% 

 

Table 5.11 shows the results of all the descriptors including LBP-TOP. SMMHH has produced the best 

performance of 52.44% using SVM RBF, with the confusion matrix shown in Table 5.12. The LBP-

TOP feature did not produce satisfactory results. In fact, it was the worse feature of the bunch. Both 

Spatial Pooling extensions show an impressive performance, followed by MMHH, then TSMHH and 

MHH.  

The confusion matrix in Table 5.12 indicates that Grab was the easiest gesture to recognise (88.3%), 

closely followed by slap (81.6%). The worst gesture was Tap (23.3%) which had been mistaken as Pat 

31.6%, Hit 13.3% and Slap 10.0% of the time. This is understandable as the gestures are of similar 

nature, that has short durations with fast actions. 
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5.6.3.3 Experiment 5B Highlights 

The experiments on both CoST and HAART databases have shown that the MHH extensions have 

shown improvement over the MHH feature in all cases. SVM has once again outperformed KNN and 

RF for the machine learning technique. However, RF had been better than SVM Poly on the CoST 

database, by ~4%. SVM with RBF kernel performed well on the CoST dataset, whereas the Poly kernel 

performed well on the HAART dataset. This may indicate that the Poly kernel does not work well with 

more classes and that the RBF kernel does better. 

The Spatial pooling extensions have proven to be the best descriptor for touch gesture recognition. 

ASMMHH proved to be the best on the HAART tests, and SMMHH for the CoST tests. Both features 

performed better than the popular LBP-TOP feature on both databases, demonstrating the benefits of 

motion detection for touch gesture applications. The Challenge itself also demonstrated the performance 

of SMMHH in [161], showing the best individual performance amongst a set of other descriptors that 

include: Statistical Distribution (SD) of the surface; Binary Motion History (BMH); Motion Statistical 

Distribution (MSD); and LBP-TOP. The machine learning approach used was Random Forest and 

Boosting algorithms.  

Table 5.12 - Confusion Matrix of the SMMHH feature producing 52.44% using SVM with RBF kernel. 
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Grab 88.3 0 1.6 0 0 0 0 0 0 0 10.0 0 0 0 

Hit 0 58.3 0 6.6 0 3.3 3.3 0 0 25.0 0 0 3.3 0 

Massage 3.3 0 65.0 0 0 0 1.6 5.0 5.0 0 16.6 3.3 0 0 

Pat 0 3.3 0 45.0 0 1.6 0 5.0 5.0 21.6 0 5.0 3.3 10.0 

Pinch 5 0 6.6 3.3 40.0 16.6 3.3 1.6 0 0 23.3 0 0 0 

Poke 0 10.0 0 8.3 13.3 55.5 6.6 0 0 0 0 0 5.0 1.6 

Press 10.0 3.3 0 3.3 6.6 3.3 45.0 0 3.3 1.6 21.6 0 0 1.6 

Rub 1.6 1.6 13.3 5.0 1.6 0 0 30.0 16.6 3.3 3.3 20.0 0 3.3 

Scratch 0 0 1.6 0 1.6 0 0 10.0 58.3 1.6 1.6 13.3 0 11.6 

Slap 1.6 15.0 0 1.6 0 0 0 0 0 81.6 0 0 0 0 

Squeeze 46.6 0 8.3 0 5 0 0 0 0 0 40.0 0 0 0 

Stroke 0 0 3.3 0 0 0 0 31.6 1.6 3.3 0 58.3 0 0 

Tap 0 13.3 0 31.6 6.6 6.6 3.3 0 1.6 10.0 0 0 23.3 3.3 

Tickle 0 0 3.3 0 3.3 0 0 11.6 26.6 0 0 10.0 0 45.0 
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Table 5.13 shows the results based on a slightly different protocol to Table 5.10 but includes and 

compares the SMMHH descriptor with the others. There is a 10.84% increase in accuracy over MSD, 

the next highest accuracy recorded using RF. The combined performance is an aggregation of the 

statistical feature sets to provide a further jump in the accuracy of 10.99% using RF. This shows how 

different mathematical models can complement each other to provide further improvement, even if 

BMH has only 22.67% accuracy. The result of the combined model on the testing partition shows a 

slight decrease over the training partition but still shows a high accuracy overall.  

Table 5.14 is the equivalent experiment for CoST in the Challenge. It presents a similar trend to Table 

5.13, with SMMHH having the best individual performance, and the combined model increasing the 

accuracy further. The testing partition also shows a decrease in accuracy but provides a higher accuracy 

than any individual feature in the training partition. An interesting find is how the confusion matrix as 

Table 9 [161] closely matches the confusion matrix in Table 5.12. There are similarities in confusion 

between the Stroke, Slap, Tap and Tickle gestures that indicates an area that can be further worked on 

to distinguish between the gestures. 

Table 5.13 - Published Challenge results on the HAART database of a group of feature sets including SMMHH, the best 

individual performer. 

Data Set Feature Set Random Forest Boosting 

Training 

SD 36.17% 33.50% 

BMH 22.67% 22.34% 

MSD 54.82% 53.61% 

SMMHH 65.66% 60.84% 

LBP-TOP 53.01% 54.82% 

Combined 76.65% 77.67% 

Testing Combined 66.53% 65.54% 

 

Table 5.14 - Published Challenge results on the CoST database of a group of feature sets including SMMHH, the best 

individual performer. 

Data Set Feature Set Random Forest Boosting 

Training 

SD 41.24% 41.31% 

BMH 27.55% 28.88% 

MSD 44.82% 44.93% 

SMMHH 52.68% 52.56% 

LBP-TOP 45.65% 46.36% 

Combined 64.52% 64.44% 

Testing Combined 58.67% 58.19% 
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The outcome of this experiment was successful and contributed to the Challenge [159] proposed for the 

databases. Once again, the combination of Spatial pooling and Multi-scale extensions produced the best 

performance for both datasets. Both Average pooling and Max pooling performed closely to each other, 

with ASMMHH the best on HAART, and SMMHH for CoST. When compared to the MHH descriptor, 

there was a 14.45% increase on the HAART database and an 8.94% increase on the CoST database. 

These are considerably high jumps in accuracy, especially for a task with 14 classes. When compared 

to other techniques such as LBP-TOP; MSD; BMH; and SD, the increase is a more on the HAART 

database, and significantly more on the CoST database, showing a higher efficiency for a more 

complicated task.  

Feature fusion of these feature sets further increases the accuracy by a big margin [161]. This idea was 

observed from the findings in Chapter 3 and applied successfully, demonstrating the capabilities of 

fusing feature sets that are products of different modalities. Machine learning techniques can obtain the 

valuable information from each of these feature sets to give an aggregated prediction. These will most 

often be better than individual predictions by the same set of features. 

5.6.4 Settings and Protocols for Emotion Application 

So far, the proposed extensions have shown impressive performances for motion intensive applications. 

This idea was then moved towards emotional data, to see if motion information can be encoded from 

dynamic emotional data effectively. The application area which was considered for this was Depression 

analysis. It was chosen for the varying speeds of motion, specifically the slow changing expressions 

from people suffering from depression. 

The AVEC2014 guidelines are followed from [13], based on the global challenge that had taken place 

in 2014. In this, the data had been split into 3 partitions, which are training, development and testing. 

Each contained 50 video samples from the “Northwind” and the corresponding “Freeform” tasks, 

totalling to 100 video clips per partition. The labels provided are based on 1 real value for each pair of 

tasks, with the idea that the depression scale should be the same for both, as each subject has conducted 

both tasks with the same mental state. The evaluation metric consists of the RMSE and MAE. 

Each system is trained with the training partition data, and then evaluated on the development partition 

data. Once the results are good enough, the Testing partition is evaluated to give a final judgement of 

the system. This experiment was run after the challenge occurred due to the limitation in submissions, 

it would not be possible to get a result for each MHH extension. Therefore, the results are not taken 

from the works in [83].  

At the time of the global challenge, the testing labels were not made available to the public, showing 

the initial experiments [83] limited, as there were only 5 submissions allowed. Since the challenge has 

finished, the test labels have been made available to the public, in which further optimisation can be 
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allowed beyond 5 attempts. This has allowed for testing the MHH extensions in detail with the 

development partition to thoroughly evaluate their performance.  

5.6.5 Experiment 5C – Depression Analysis based on Temporal Data 

The proposed MHH extensions will be tested on a depression database to further demonstrate the 

techniques on an uncommon task, that also happens to be a regression problem. The framework is 

slightly different to the previous experiments in the machine learning stage. The audio data is not used 

in this experiment as the focus is mainly on the MHH extensions performances. Each extension is 

applied to the raw video to produce its respective motion frame histograms. Local descriptors will be 

used to extract information from these motion frames to produce a single vector per visual sample. 

Partial Least squares and Linear Regression are then tested individually and fused together to give a 

combined prediction of depression scale. The MAE and RMSE are used to evaluate the performance of 

the system for all sessions. The initial tests will be run on the development partition, and the best 

configuration for each descriptor will be run on the test partition. 

Each frame dimension is 640 × 480 pixels, which will be the motion frames for each descriptor. The 

local features are extracted from each motion descriptor and are denoted as their respective feature 

name, followed an underscore and by the extracted local descriptor. E.g. for MHH, the denotation will 

be MHH_LBP, MHH_EOH and MHH_LPQ. The threshold values for each test are 𝑇 = [0.5, 1, 2], with 

the pattern size set to 𝑀 = 5. These are chosen by observing the MHH feature captured from random 

samples to see the depth of the motion captured.  

Table 5.15 - List of feature size for MHH and each extension, before and after applying local descriptors 

Feature Resulting Feature Size After EOH After LBP After LPQ 

MHH 640 × 480 × 5 
384 × 5 

= 1,920 

256 × 5 

= 4720 

256 × 5 

= 1,280 

MMHH 640 × 480 × 5 × 5 
384 × 25 

= 9,600 

256 × 25 

= 6,400 

256 × 25 

= 6,400 

TSMHH 640 × 480 × 5 × 5 
384 × 25 

= 9,600 

256 × 25 

= 6,400 

256 × 25 

= 6,400 

SMMHH ∑(
1

22 ∙ 𝑖
(640 × 480 × 6 × 5))

4

𝑖=0

 
384 × 120 

= 46,080 

256 × 120 

= 30,720 

256 × 120 

= 30,720 

ASMMHH ∑(
1

22 ∙ 𝑖
(640 × 480 × 6 × 5))

4

𝑖=0

 
384 × 120 

= 46,080 

256 × 120 

= 30,720 

256 × 120 

= 30,720 

 

The threshold values are set low compared to experiment 5A because there are very subtle movements 

in these videos as they are based on a person talking and showing slow emotions. For the MMHH 

feature, the scale parameter is set to 𝑆 = 5, capturing motions from scales 1 to 5. The TSMHH feature 

is adjusted to capture motion based on 5 time scales, which are [0.5, 0.75, 1, 2, 𝐹𝑟]. Finally, the 

SMMHH feature is captured using both mean and max pooling. The number of pooling stages is set to 
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4. Each of the resulting pattern histograms will have the 3 local descriptors of EOH, LBP, and LPQ 

extracted from them, which will reduce the dimensionality significantly. The dimension size for each 

feature vector can be seen in Table 5.15. It is determined by the number of motion frames times the 

local descriptor size. Once the features are extracted, PCA is applied to reduce the feature 

dimensionality to 35 components, as PLS regression requires the number of dimensions to be less than 

the number of samples. These features are rank normalised between 0 and 1, where PLS and LR are 

then used to predict the depression scale for a given sample. 

Table 5.16 - Performance on the development partition using MHH and the proposed extensions, that have LBP applied on 

the motion frames. All 3 thresholds are tested for each feature to find the best combination that produces the lowest error. 

LBP 
PLS LR PLS + LR 

RMSE MAE RMSE MAE RMSE MAE 

MHH_0.5 9.83 7.70 10.07 7.88 9.91 7.74 

MHH_1 10.14 7.85 10.01 7.71 10.01 7.72 

MHH_2 11.82 9.32 11.41 8.84 11.60 9.04 

MMHH_0.5 10.36 7.44 10.29 7.64 10.34 7.66 

MMHH_1 10.03 7.61 9.86 7.49 9.91 7.54 

MMHH_2 11.37 9.07 11.12 8.65 11.20 8.82 

TSMHH_0.5 10.09 7.81 9.97 7.84 9.96 7.84 

TSMHH_1 9.88 7.82 9.67 7.53 9.76 7.64 

TSMHH_2 10.49 8.58 10.30 8.21 10.28 8.16 

SMMHH_0.5 9.85 7.65 9.79 7.56 9.86 7.58 

SMMHH_1 9.63 7.78 9.57 7.73 9.61 7.82 

SMMHH_2 10.13 8.31 10.12 8.19 10.13 8.20 

ASMMHH_0.5 9.86 7.62 10.02 7.65 9.93 7.56 

ASMMHH_1 9.63 7.82 9.63 7.86 9.65 7.92 

ASMMHH_2 10.12 8.40 10.16 8.36 10.16 8.40 

 

5.6.5.1 Threshold Test 

The initial test will be to determine what is the best threshold to use for each motion feature. This is a 

crucial step as it gives an indication of which speed of motion and sensitivity is best observed with each 

descriptor. The LBP descriptor will be used for this test, along with the MHH descriptor and the 

proposed extensions. This test will follow the framework and the performance will be based on the 

development partition, with the training partition used to train the system. PLS and LR will be tested 

individually, and then fused together using linear weighted fusion.  
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The initial tests results are shown in Table 5.16, which indicated that the threshold values 0.5 & 1 

produce the best performances, and threshold value 2 the worst in every test. SMMHH_LBP with a 

threshold of 1 has produced the lowest RMSE value of 9.57, with MMHH_LBP with a threshold of 0.5 

has produced the lowest MAE of 7.44. The following tests will have both thresholds of 0.5 & 1 tested, 

and the best out of both will be chosen. 

Table 5.17 - Performance on the Development partition using MHH and the proposed extensions, that have EOH applied on 

the motion frames. Thresholds 0.5 and 1 are tested for each feature, with the lowest error of the 2 chosen as the performance 

of the feature. 

EOH 
PLS LR PLS + LR 

RMSE MAE RMSE MAE RMSE MAE 

MHH 10.67 8.62 10.72 8.73 10.89 8.88 

MMHH 10.68 8.73 10.78 8.87 10.87 8.98 

TSMHH 9.79 7.79 9.70 7.62 9.81 7.68 

SMMHH 10.71 8.84 10.80 9.15 10.84 9.16 

ASMMHH 10.55 8.70 10.58 8.77 10.65 8.82 

 

Table 5.18 - Performance of LPQ descriptor on the Development partition, captured from the motion frames from each 

MHH descriptor and its Extensions.  

LPQ 
PLS LR PLS + LR 

RMSE MAE RMSE MAE RMSE MAE 

MHH 10.34 8.23 10.39 8.17 10.39 8.12 

MMHH 10.65 7.83 10.25 7.71 10.29 7.64 

TSMHH 10.52 8.55 10.64 8.54 10.59 8.48 

SMMHH 9.79 7.72 9.92 7.74 9.87 7.78 

ASMMHH 9.77 7.72 9.79 7.79 9.71 7.70 

 

Table 5.17 & Table 5.18 demonstrate the performance when using the EOH and LPQ local descriptor 

on the motion frames. The EOH descriptor has shown to work best with the TSMMHH motion 

descriptor, using LR to produce the lowest RMSE of 9.90 and MAE of 7.62. LPQ is best paired with 

the ASMMHH motion descriptor, producing the lowest RMSE of 9.71 with MAE of 7.70 using the 

fusion of PLS and LR.  

Between all 3 local descriptors, SMMHH_LBP has produced the lowest RMSE and MAE score. EOH 

has produced the second lowest with a difference of 0.13 RMSE and 0.09 MAE, and ASMMHH_LPQ 

the third lowest with a difference of 0.01 RMSE and 0.08 MAE against TSMMHH_EOH. The next step 

is to fuse the 3 feature descriptors together to see their performance.  
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Table 5.19 - Combined feature performances on the Development partition, using the LBP, LPQ and EOH descriptor that 

are applied on the motion frames of MHH and its extensions. 

Comb 
PLS LR PLS + LR 

RMSE MAE RMSE MAE RMSE MAE 

MHH 9.93 7.92 10.05 7.95 9.97 7.90 

MMHH 10.16 8.53 9.98 8.41 10.15 8.52 

TSMHH 9.59 7.39 9.55 7.49 9.52 7.37 

SMMHH 9.82 7.80 10.12 8.22 9.97 8.00 

ASMMHH 9.76 7.77 10.01 8.18 9.69 8.08 

 

Table 5.19 applies feature fusion in terms of the concatenation of all 3 local descriptors extracted from 

each motion frame. The error has dropped to the lowest recorded using the TSMHH_Comb descriptor 

and the fusion of PLS with LR, with an RMSE of 9.52 and MAE of 7.37. This is a difference of 0.07 

RMSE and 0.36 MAE against the best individual feature SMMHH_LBP using LR.  

Table 5.20 - Performance of the Combined features using MHH and all the extensions on the Test partition. 

Test 
PLS LR PLS + LR 

RMSE MAE RMSE MAE RMSE MAE 

MHH 9.83 8.00 10.05 8.21 9.73 7.88 

MMHH 9.80 7.67 10.07 8.08 9.82 7.68 

TSMHH 9.39 7.80 9.40 7.70 9.32 7.62 

SMMHH 9.96 7.63 9.91 7.99 9.91 7.84 

ASMMHH 9.97 7.75 9.92 8.01 9.89 7.74 

 

Table 5.20 shows the performance of the Combined local features from MHH and all the extensions on 

the Test partition. The performance is similar to the development partition performance, but with a 

better RMSE of 9.32, and a slightly worse MAE of 7.62 using the TSMHH feature with PLS and LR 

fusion. This indicates that the feature is robust and not biased towards the Development partition data.  

5.6.5.2 Experiment 5C Highlights 

This experiment has shown how the Motion descriptors paired with hand-crafted descriptors perform 

for Depression analysis that is based on a regression task. There are promising results that indicate that 

the extensions provide a better motion description than the original MHH. The baseline feature 

performance is based on the LGBP-TOP feature, which has had a worse performance than the all of our 

tested motion descriptors.  
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Table 5.21 compares the TSMHH performance against others that participated in the AVEC14 

challenge. The main objective here is to observe the performances that only use the visual data, for a 

fair comparison. Only Dhall et al. [162] managed to get a performance better on the Test partition using 

only visual data, with an improvement of 0.29 for RMSE and 0.54 MAE. They first used face processing 

techniques to detect and track the face along the sequence. Then they extracted Block-wise LBP-TOP 

on sub-sequences and used Fisher Vector encoding with Bag of Words. Williamson et al. [163] who 

has the state-of-the-art performance uses vocal tract timing from both visual and audio data to achieve 

a low RMSE and MAE of 8.12 and 6.31.  

Table 5.21 - Comparison of TSMHH against the baseline performance, other techniques using only the Visual modality 

(image frames). Additionally, the state-of-the-art that uses the audio and visual modalities. Performance is based on the Test 

partition data. 

Methods Modality RMSE MAE 

Perez et al. [164] Visual 11.91 9.35 

Baseline [13] Visual 10.86 8.86 

Jain et al. [165] Visual 10.24 8.39 

Kaya et al. [166] Visual 9.61 7.69 

TSMHH Visual 9.32 7.62 

Dhall et al. [162] Visual 8.91 7.08 

Williamson et al. 

[163] 
Audio + Visual 8.12 6.31 

 

TSMHH performs better than the rest of the works from the Challenge, demonstrating the ability of the 

descriptor. A probable reason for its superior performance over the other MHH extensions could be 

because the visual data contains emotions that change at a slow pace. TSMHH can take advantage of 

this situation by capturing motions at faster speeds that can interpret the relatively slow-paced emotion 

to fast-paced emotion.  

5.7 Evaluation and Discussion 

The initial experiment (5A) on human action recognition showed competitive performance against other 

spatiotemporal techniques like LBP-TOP and HOG3D. The highlight performance was by the 

ASMMHH descriptor, that using the pooling and multi-scale approach to provide a descriptive and 

robust feature. The pooling concept for this application showed to be more effective because human 

actions are very visually descriptive with a lot of motion. Pooling reduces the noisy information by 

reducing the spatial dimensions, making the most moving visual parts stand out more. This could be in 

form of having sharper curves of the body parts, as they can be identified easier in a smaller resolution 

being less sparse, making the motion more relative to that body part. In this case, average pooling had 
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performed better. This may be because the detailed information is retained better as max pooling would 

saturate the pixel values.  

The next experiment (5B) consisted of touch gesture recognition, which was based on human interaction 

with animals (HAART), and social interaction with humans (CoST). This experiment differed from 

experiment 5A in the form of data, as it was based on pressure sensors rather than visual data. However, 

this information was treated as a sequence of 8 × 8 images. The descriptors do not need to specifically 

have 8-bit pixel values. Therefore, this was not an issue if a pressure sensor contained a value beyond 

255. This data format was chosen to demonstrate the various kinds of motion the MHH extensions can 

capture, not necessarily just based on the sequential image form.  

So far, the proposed extensions have shown impressive performances for motion intensive applications. 

This idea was then moved towards emotional data, to see if motion information can be encoded from 

dynamic emotional data effectively. The application that was considered for this was Depression 

analysis. This was chosen for its varying speeds of motion, with the slow changing expressions from 

people suffering from depression. 

Experiment 5D looked at a different form of emotional data, based on Depression analysis from slow-

moving emotions. This task seems challenging at first because the visual data is just based on a person 

talking, which does not contain as much motion as the previous experiments. However, there are subtle 

expressions that can be captured by looking at the slow motion that occurs on the face. The expressions 

for depression will generally have low arousal as the subject’s mood will be sad, showing lack of 

energetic movement. Considering this, the expressions will be slow paced and consistent throughout 

the sequence. It is no surprise that the extension that performs the best is TSMHH, as that is specifically 

designed to capture different speeds of motion. Consequently, it can be adjusted to pick up the slow and 

sad emotions portrayed by the subjects. 

Performance wise, TSMHH has a decrease of 0.41 for RMSE and 0.62 for MAE against MHH. Both 

features benefitted from using decision level fusion of PLS and LR. The other extensions also performed 

better than MHH, but by a small amount. This may be because of the application type, and quantity of 

motion that makes the resulting features from the extensions (apart from TSMHH) similar to the MHH 

feature. When compared to other frameworks, ours had provided better RMSE and MAE than all the 

others that only used visual modality, apart from Dhall et al. [162]. This includes the baseline technique 

that used the LGBP-TOP variation of LBP-TOP. This is a good indication that motion capture can be a 

useful tool for emotion analysis based on dynamic content. 

5.8 Summary 

In this chapter, extensions were proposed on the MHH descriptor and thoroughly tested across a variety 

of applications. These extensions were proposed after analysing the inefficiencies of the MHH 
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descriptor, where each extension tackled a specific issue to make a more robust motion capturing 

algorithm that can be applied to applications with different forms of motion. The first part of the chapter 

introduced the proposed extensions to the MHH algorithm, which were demonstrated on human action 

recognition and touch gesture recognition applications as they contain a lot of motion in different forms. 

This was followed by demonstrating how the extensions would work on emotion data, through the 

application of Depression analysis. From the experiments, the following was understood: 

• All the proposed extensions provide a benefit over the MHH descriptor, which is observed by 

the performances across the various applications. 

• The Spatial Pooling combined with Multi-scale extension provided the best performance for 

the motion intensive applications. 

• Time-Scale MHH worked best with Depression analysis. This is concluded by the ability to 

control the speed of motion captured. As the emotions display with depression can be slowly 

changing, TSMHH can be adjusted to capture them effectively. 

• Competitive performances were achieved across all applications against popular techniques and 

frameworks.  
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 Deep Learning for Dynamic Facial Expression 

Recognition and its Applications 
 

In Chapter 5, extensions on the MHH motion descriptor were proposed and demonstrated good 

performances on various applications. Those ideas of capturing motion from the image sequences are 

limited to the visual changes. To try and remove this limitation, this chapter investigates the motion that 

occurs in the deep feature space of those raw images.  

A new algorithm is developed called Feature Dynamic History Histogram (FDHH) and is utilised on 

top of the deep features to capture the dynamics across the deep feature space. The idea is to show ways 

of combining efforts from deep learning with the dynamics found across a feature sequence. State-of-

the-art results are achieved on the AVEC2014 database, demonstrating the performance of the proposed 

FDHH algorithm.  

Experiments are carried out to observe the affective state of people under certain conditions. This 

includes observing continuous emotions and induced emotions, which is achieved by modelling 

temporal data to the emotions. The data is based on Depression analysis using the AVEC2014 dataset 

and predicting emotional impact of movies through induced emotions using the LIRIS-ACCEDE 

database. Both AVEC2014 and LIRIS-ACCEDE tasks are based on a regression, to predict the BDI-II 

scale for depression, and the Arousal and Valence of the induced emotion from movies. These are also 

demonstrated in the publications of [167], [168]. 

6.1 Introduction 

Discrete and continuous emotions are explored from temporal data for an understanding of how the 

dynamic information can be utilised to capture these emotions effectively. The data contains richer 

information than static images. For emotions, capturing the early state of an expression in a still image 

may be interpreted as a completely different expression. This would be easier to determine with 

temporal data, as the expression would unfold over time.  

A lot of research has moved towards temporal data such as video because the basic PCs performance 

has continuously increased to become more powerful. Because of this, a higher quality of data is 

available allowing for research and applications to go beyond the scope of still images. The data and 

media content generated has become so large that processing each sample manually has become 

inefficient and tedious. Tasks can be made automated to speed up this process. However, some tasks 

require intelligence to succeed automatically, such as an example to automatically group video clips in 

terms of content/genre.  

Emotions have also been considered in this area, with a recent task requiring the suggestion of induced 

emotion on a person based on viewing certain clips of videos. This is different to the task of determining 



Chapter 6: Deep Learning for Dynamic Facial Expression Recognition and its Applications 

146 

 

a person’s emotional state in a video, as it is the person viewing the video of whom the emotional state 

is required. This was proposed in the MediaEval16 challenge that had 2 main tasks. First was to suggest 

the induced emotion on a global level, which was to suggest a single value of Arousal and Valence for 

over 9000 short samples of sequences (< 30s). The second was to suggest a continuous Arousal and 

Valence value of induced emotion per frame of a longer sequence (> 60s). Depression is another form 

of emotion that has an affective state which can be modelled. It can also be determined by the affective 

dimensions of Arousal and Valence.  These emotions come in different dimensional forms and can be 

interpreted in many ways. Finding the affective state of a person has been studied significantly, to 

provide a detailed and accurate measurement compared to discrete emotions. Affective dimensions 

mainly include Arousal and Valence. When presented together, it can measure the many different 

emotions across a 2-dimensional space.  

Emotion recognition and all its applications can benefit from the capabilities of deep learning. The 

concept of deep learning has been compared to a black box idea, as it gives the ability to adapt to any 

situation the best it can, where the internals adjust themselves to the data given. Long-short term 

memory (LSTM) is a form of deep learning that specifically works with time series data, to try and 

create a connection between the past and current features. However, using image frames as a direct 

input can be too large for the network. Therefore, it is common to use some form of descriptive 

algorithm to summarise the image into a bunch of features. 

Convolutional Neural Networks are designed to learn spatial data such as images, which can be paired 

with LSTMs to create a 2-stage framework that handles temporal information at the frame level. There 

have been some attempts to try and create 3D CNNs [169] to work directly on temporal data, by training 

on cubes of data from consecutive frames. This has also been recently attempted for dynamic facial 

expression recognition [170], where it has shown to be affective in capturing changes of facial parts 

throughout a sequence. However, with this technique, is hard to understand how it can model temporal 

information as it works just works on small spatial dimensions. It does not consider the enough of the 

sequence as one instance to fully understand events that can occur over time. CNNs generally look at 

whole images at a time to sweep across it and try learning any local characteristics. This concept is lost 

at the local level as it requires several iterations to process a whole sequence.  

Spatial algorithms can also be exploited for temporal content, by looking at the data at frame level and 

stacking the feature vectors for each into a feature matrix. This is known as a spatiotemporal approach, 

which gives the benefit of allowing a large amount of research to be compatible with this kind of data 

structure. However, sometimes it is not enough to just apply a spatial feature extractor on all the data 

frames, as in most cases, this results in a large vector for one data sample. Therefore, it is almost required 

to run a second technique on top of the extracted spatial features to describe them all into one feature 

vector. Common techniques include simply as taking the mean of all the frames or other statistical 
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approaches. This may solve the problem of a large feature, but it will not do efficiently as a lot of 

valuable information is lost throughout the sequence.  

Our approach is to try and understand a temporal sequence by treating it as a feature vector sequence. 

Most of the research that works with temporal data generally apply temporal algorithms directly on the 

raw images. We adopt a different approach by looking at the mathematical representations of images 

from a sequence and then apply algorithms that work with the whole sequence of representations.  

The objectives of this chapter are to design a complete framework that can handle dynamic content at 

the frame level. This should produce a solution that incorporates deep learning techniques to produce 

high-quality feature representations. A descriptor will be developed to work on these feature 

representations, that can observe variations occurring dynamically across the feature sequence. 

Advanced regression techniques will be investigated to improve the system analysis and prediction.  

6.2 Related Works and Problems 

Depression can be expressed through body language, emotions and expressions. The early work for 

Depression analysis started with Cohn et al. [171] and McIntyre et al. [172]. Cohn et al. used face 

analysis techniques to try and understand the movement that occurs across the face. They used Active 

Appearance Model along with FACS to track the facial movements. From their findings, they concluded 

that it is possible to develop a system for Depression analysis. Since then, there have been several 

challenges to encourage further research for depression through the AVEC series [12], [13], [18]. 

The AVEC challenges have gained a lot of attention for their efforts to detect signs of MDD, as this 

disorder continually increases around the world. The depression recognition sub-challenge of 

AVEC2013 [12] and AVEC2014 [13] has had many participants contribute to finding a solution. Some 

of the proposed methods [83], [99], [163]–[166], [173], [174] demonstrate a strong link of depression 

with the visual and vocal cues of patients. AVEC2016 [18] is the most recent which also contributed to 

further research ideas in [175]–[177], but it has a slight change in its depression task. The data provided 

in the challenge are pre-computed sets of features that consist of: HOG features on the aligned face; 3D 

head poses position and orientation; gaze direction estimate for both eyes; 2D and 3D facial landmarks; 

and emotion-based measures. The Audio features they provide are also pre-computed. Unfortunately, 

the raw data is not made available for ethical reasons, which is why the database will not be utilised in 

the upcoming experimentation. The techniques for AVEC2014 will be briefly mentioned and used as a 

benchmark for the upcoming experiments. 

Williamson et al. [163] were the most successful for Depression analysis. They won the depression sub-

challenge for AVEC2013 and AVEC2014. They focused on the timing of movement in the vocal tract 

in 2013 and included the coordination between the vocal tract and facial gestures in 2014 to determine 

the level of depression. Recently [163], they extracted low-level features from the voice, speech and 
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facial data information. With the voice data, they look for a set of features like Harmonics-to-noise ratio 

and Cepstral peak prominence. For the speech system, they look for Dormant frequencies and Mel 

frequency cepstral coefficients. Facial action units are captured across the face to identify the changes 

in facial expression. The timing for all the low-level features is coordinated and characterised to 

correlate them and create high-level features. For the feature learning, they design a novel Gaussian 

mixture model (GMM)-based multivariate regression scheme that is referred to as Gaussian Staircase 

Regression. Extreme learning machines (ELMs) are also used to predict the depression level. 

The works by Meng et al. [82] is based on the AVEC2013 dataset, which involved making a framework 

to model the visual and vocal cues. These cues are branched off to be processed separately, and then 

later joined at the decision level. For the visual data, the dynamic motion is captured using the MHH 

algorithm on the visual data. Furthermore, the MHH features are treated as image frames, where the 

LBP and EOH local descriptors are applied to produce the two features. These features are concatenated 

together to produce the final visual feature. 

For the vocal branch, the baseline Low-Level Descriptors (LLD) feature provided by the host is utilised. 

They consist of 2268 features, composed of 32 energy and spectral related with 42 functionals; 6 voicing 

related LLD with 32 functionals; 32 delta coefficients of the energy/spectral LLD with19 functionals; 

6 delta coefficients of the voicing related LLD with 19 functionals; and 10 voiced/unvoiced durational 

features. These features are then considered as a sequence in which MHH can be applied on to. For 

each branch, PLS regression is adopted to predict the depression scales. Decision level fusion is applied 

to combine the predictions of both branches.  

Gupta et al. [99] add on to the visual and vocal modalities, by including the linguistic modality, from 

which they generate lexicon from the speech transcripts. For the visual features, they use the baseline 

LGBP-TOP features provided by the organisers. In addition, LBP features are computed at the frame 

level, and LBP-TOP on the temporal sequence. They also consider motion features, via optical flow. 

Key points are detected using a corner detection algorithm. The motion is computed by summing how 

much each key point has moved across the frames. Facial Landmarks are their final visual feature, 

applied to the frame level, generating 66 landmarks of the facial parts.  

The vocal features used by Gupta et al. [99] consist of the baseline features, to produce an acoustic 

feature representation by combining the speech streams. These streams include spectral shape; spectro-

temporal modulations; periodicity structure due to the presence of pitch harmonics; and the long-term 

spectral variability profile. These are stacked together and PCA is applied to reduce the dimensionality 

whilst keeping 90% of the variance.  Perez et al. [164] designed 3 models that are based on audio data, 

speech from video and the silence from the video. The silence was segmented using the Voice Activity 

Detection information provided by the organisers. The visual information was extracted based on the 
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voice and silence segments. They used the WEKA tool for applying the Relief feature selection to select 

the best features from each modality and used a meta-model for fusion. 

Kaya et al.[166] used the baseline features of LGBP-TOP and LPQ features on the visual data. They 

observed the inner face with the LPQ descriptor and the facial regions with the LGBP-TOP descriptor. 

Then they focused on regression-based machine learning of each feature using Canonical Correlation 

Analysis (CCA), creating an ensemble for their depression score prediction. Jain et al. [165] extracted 

LBP-TOP features on the video samples and captured Dense Trajectories of motion captured by optical 

flow. These trajectories have Histogram of Oriented Gradients, Histogram of Optical Flow (HOF) and 

Motion Binary Histogram (MBH) extracted from them. LLD Audio features are also used in the system 

and all of the features are encoded using Fisher Vectors. Linear SVR is used to learn the concatenated 

feature vector and predict the depression scales. 

All of the mentioned techniques consider visual information based on hand-crafted features and 

algorithms designed to specifically look for certain changes, edges, surface changes and texture 

information. This is an area that can go further by introducing deep learning to try and capture intelligent 

characteristics from the texture information that can be directly related to emotions and facial 

expressions. Not having fixed algorithms provides opportunities to obtain features that may not be 

considered when designing a hand-crafted technique. With deep learning, there are still some decisions 

required to design the network architecture and how it learns from data. However, to control what 

specific characteristics to find in an image is not possible as it has elements of randomness in the 

process. 

Recently, deep learning techniques have been considered for Depression analysis. Chao et al. [174] look 

to obtain features from three modalities, which are the Audio information, Face appearance information 

and Face shape information. From the Audio information, a set of audio features are extracted using the 

YAAFE toolbox [178], some of which are: MFCC, LPC and ZCR. With the Face appearance 

information, they use a pre-trained network to extract the features at the ReLU hidden layer. The pre-

trained network they use has been trained by them on the FER2013 database [179] that contains 35,886 

48x48 grayscale images of facial expressions taken from the wild. The Facial shape information is based 

on 49 facial landmarks across the sequence to capture the head movement and pose. 

All of the features are reduced with PCA, and an LSTM neural network is then designed on top of the 

reduced features, with the first layer of the LSTM being a multimodal fusion layer. They adopt a multi-

task learning approach to learn related tasks jointly. They achieved a better RMSE and MAE compared 

to most of the approaches mentioned earlier. However, the performance is still not close to the state-of-

the-art approach produced by Williamson et al. in [163], indicating that there is still room for 

improvement. Some problems with their approach include:  
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• Small images used for training the pre-trained network, as this will lose a lot of spatial 

information that deep networks can learn from.  

o The expressions that are associated with depression are very subtle, as the emotions are 

slow paced, resulting in small changes across the face. If the dimensions of the image 

are reduced a lot, these small changes are lost with it. 

• Lack of colour images can reduce the quality of the image for a deep network to learn from. 

The distribution of colours can contribute to a better feature. 

• The number of LSTM cells are hard to determine for this application, as the speed of emotion 

change can be slow.  

The most recent work by Zhu et al. [37] also looks into using deep CNNs for modelling facial 

appearance and facial dynamics and combining both efforts using a pair of joint tuning layers. For their 

facial appearance CNN, they pre-trained a model based on the GoogleNet [180] architecture, using the 

public CASIA WebFace database [181] for face recognition. The facial dynamics CNN is trained from 

scratch, based on motion changes between each frame and the following 10 using optical flow. They 

propose a good approach for creating a well-trained system for Depression analysis. A few limitations 

on their idea is that the motion dynamics they capture may not be sufficient for the slow-changing 

emotion found in depression. The motion would be better captured across the whole sample as each 

subject’s behaviour may be different and moves at different speeds. 

When considering emotions induced by video content, there has been a series of challenges by 

MediaEval [16], [17] that look to capture affective emotions based on a large-scale database [19], [20] 

of video clips. The challenge in 2015 had shown interesting methods to detect violence and the induced 

affect by the videos [21]–[24]. The MediaEval 2016 [17] challenge of predicting induced emotions in 

the following year [25]–[28], which included our contribution in [167].  

6.3 Feature Dynamic History Histogram  

With the idea of MHH [30] to capture motion across temporal data, the FDHH algorithm has been 

developed to apply this principle on to the feature space. The feature space is a dimension that is a 

mathematical representation of a source of data. For humans, it is easier to visualise an image, than a 

descriptive feature vector of that same image in the feature space. Our minds are not capable of 

computing the feature descriptor on the image, as well as understanding what we are seeing. However, 

for computers, this may be a preferred space to get a better understanding of the original image.  

It seems that majority of the temporal techniques work directly on the visual data, whether frame by 

frame sequentially or all at once. Here, we introduce a motion based temporal algorithm that instead of 

capturing motion across visual space, it captures the variation in the feature dynamics across the feature 

space. This feature space contains information that has previously been extracted from the raw frame 
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level data, generally of higher quality information, using hand-crafted techniques such as LBP, LPQ 

and EOH.  

Currently, there are several techniques proposed to move these hand-crafted algorithms into the 

temporal domain, such as LBP-TOP [31], LPQ-TOP [32], HOG3D [155] and LGBP-TOP [86]. They 

show reliable performance and introduce a way to move the spatial algorithms into the temporal domain. 

However, these techniques simply apply the hand-crafted techniques in three spatial directions, which 

is effectively just applying the spatial algorithm multiple times. Therefore, this extends the techniques 

spatially in different directions rather than dynamically taking the time domain into account. 

Instead of looking for a way to extend these algorithms, we propose a solution to use the benefits and 

qualities from any spatial algorithm with a temporal ideology, by looking for the variation of feature 

dynamics in a feature sequence, like how motion is captured across an image sequence. For example, 

if an image sequence contains a person walking, then its LBP equivalent feature sequence will show 

the mathematical representation of a person walking. The variation across the feature sequence of the 

person walking can be captured by observing the differences between each feature sequence. From this, 

pattern occurrences are observed in these variations from which histograms can be created to summarise 

them. 

 

Figure 6.1 - Block diagram of a given FDHH use-case. Starting with a sequence of images, each image has features 

extracted to produce a feature vector. These are combined to become a sequence of feature vectors. The FDHH algorithm is 

then applied onto the sequence of feature vectors to capture the variation within it and is used with a machine learning 

technique for training and prediction. 

Figure 6.1 demonstrated a generic use-case on how the FDHH algorithm can be integrated into a 

framework designed to learn and predict from temporal data. The FDHH algorithm can be broken down 

into 3 stages. The initial stage requires the feature vector to be rank normalised. The second stage 

calculates the difference between each frame sample, and the final stage locates and creates a histogram 

on all the variation patterns. 

The algorithm contains two hyperparameters: Threshold 𝑇 and number of patterns 𝑀. The threshold 𝑇 

controls what intensity of variation needs to occur before it is noted. The patterns 𝑀 determines what 

length of variations that occur should be recorded. The input feature matrix 𝐕 ∈ ℝ𝐶×𝑁, where 𝑁 is the 

total number of frame samples and 𝐶 is the total number of feature components for each frame. The 
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algorithm can be broken down into 3 stages. The first stage prepares the feature matrix by rank 

normalising the rows and producing a new matrix that contains the absolute difference of one frame 

sample to its adjacent. Given 𝐱 = 𝐕𝑖,1:𝑁
T  where 𝑖 = 1,… , 𝐶, the normalisation of 𝐕 is achieved using 

𝑓(𝐱) in equation 6.1 on each row, where 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 are the minimum and maximum of the vector 

𝐱. The normalised matrix is represented as the 𝐕̂. Normalisation will make determining a threshold 

value universally the same across various kinds of data. E.g. setting threshold 𝑇 = 0.1 is equivalent to 

only looking for variations that exceed 10% change of value in either direction within the normalised 

vector. 

 𝑓(𝐱) =
𝐱 − 𝛼𝑚𝑖𝑛

𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛
 (6.1) 

 𝐕̂ = [

𝑓(𝐕1,1:𝑁
T )

T

⋮

𝑓(𝐕𝐶,1:𝑁
T )

T
]  

 
𝐁 = [

|𝐕̂1,2 − 𝐕̂1,1| ⋯ |𝐕̂1,𝑁 − 𝐕̂1,𝑁−1|

⋮ ⋱ ⋮
|𝐕̂𝐶,2 − 𝐕̂𝐶,1| ⋯ |𝐕̂𝐶,𝑁 − 𝐕̂𝐶,𝑁−1|

] = [

𝑏1,1 ⋯ 𝑏1,𝑗

⋮ ⋱ ⋮
𝑏𝑖,1 ⋯ 𝑏𝑖,𝑗

] 

 

(6.2) 

 𝐁̂ = [

𝑏1,1 ≥ 𝑇 ⋯ 𝑏1,𝑗 ≥ 𝑇

⋮ ⋱ ⋮
𝑏𝑖,1 ≥ 𝑇 ⋯ 𝑏𝑖,𝑗 ≥ 𝑇

] (6.3) 

   

After the normalisation, the absolute difference is taken between each column and its following. This 

is represented as 𝐁 in equation 6.2, where 𝑖 = 1,… , 𝐶, and 𝑗 = 1,… ,𝑁 − 1. The second stage checks 

to see if each component of 𝐁 is greater than or equal to the threshold 𝑇, producing a logical matrix 

𝐁̂. These steps are also represented visually in Figure 6.2. Once 𝐁̂ is generated, the next stage is to 

loop through each row of 𝐁̂ to find patterns of sequential ‘1’s of up to 𝑚 = 1,… ,𝑀. Given 𝐪𝑖 =

𝐁̂𝑖,1:𝑁−1 is the 𝑖th row, where 𝑖 = 1: 𝐶, the patterns 𝑚 = 1,… ,𝑀 are detected using equation 6.4. 

   

 𝑧 = ℎ(𝐪𝑖) (6.4) 

 𝐅𝐃𝐇𝐇𝑖,1:𝑀 = 𝑧 (6.5) 

where the counter function ℎ(𝐪𝑖) that produces the total number of each pattern (1:𝑀) detected as 𝑧 ∈

ℝ1×𝑀. Once the counter for the row has completed detecting the patterns, the feature histogram row is 

updated in equation 6.5, where 𝐅𝐃𝐇𝐇 ∈ ℝ𝐶×𝑀 represents the final feature produced by the algorithm, 

where all the histogram bins are initialised to ‘0’. The final stage of the process can be visualised in 

Figure 6.3, demonstrating how pattern sequences are detected and how the final feature is updated. 
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Figure 6.2 - The second stage of the FDHH algorithm, calculating the absolute difference between each sample and its 

following sample, where the result is compared to a threshold to produce a logical representation of the absolute difference 

There are two special cases that can occur during this process. The first is if a detected pattern exceeds 

𝑀, then the histogram for pattern 𝑀 is increased, which is 𝑧𝑀. The other case is where consecutive ‘0’s 

occur. For this case, none of the histograms is increased. In the end, there are 𝑀 histograms that can be 

represented as a 𝐶 × 𝑀 Matrix 𝐅𝐃𝐇𝐇. The full algorithm pseudo code is presented in Figure 6.4, where 

𝑟  represents an internal counter to count the consecutive ‘1’s. 

6.4 Proposed Frameworks for Dynamic Emotion Modelling 

In this section, frameworks are proposed for Depression analysis and determining Induced emotions 

from movie clips. The tasks split into two categories, first on Depression analysis and the other on 

induced emotions, both are using dynamic data. For Depression analysis, deep learning is applied in the 

form of obtaining pre-trained feature sets for each frame. From these features, dynamic pattern 

variations are recorded using the FDHH feature descriptor. This is followed by dimensionality reduction 

and then decision level fusion for prediction.  
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Figure 6.3 - The final stage of the FDHH algorithm, showing the patterns created from the output of the initial stage 

The objective of determining induced emotions from movie clips has a different view of Depression 

analysis. Being that the data source is from movie clips already introduces a non-controlled environment 

factor compared to Depression analysis. This will consequently require a different approach to handle 

the objective. There are a lot of noisy samples in the form of inconsistent background and scenery. To 

tackle this form of data, a deep auto-encoder will be introduced to try and learn consistent parts across 

the movie clips. This can include the face and body parts throughout the various samples. The following 

procedure has a goal to reproduce the movie clips based on what the Deep Auto-Encoder has learnt, 

and then capture the feature variations in terms of patterns across the new representations using the 

FDHH algorithm. This will be followed by a deep convolutional neural network (DCNN) to get a deep 

understanding of what can be learnt from all the patterns.  

6.4.1 Framework for Depression Analysis 

The upcoming experiment on Depression analysis will be based on the AVEC2014 database. The 

emotions expressed by people suffering from MDD can vary from the healthy people, as the person is 

in a different mental state. This includes variation in the person’s speech and facial expressions. This 

experiment is an attempt to map these expressions to the BDI-II scale, by combining dynamic 

descriptions within naturalistic facial and vocal expressions of the person. The AVEC2014 database 

contains dynamic visual and vocal data, both of which will be utilised. 

Experiments on the AVEC2014 dataset will be extensive, covering a novel approach based on the 

FDHH feature, with the fusion of modalities and regression techniques. An alternative approach, similar 

to [82], will also be adopted to demonstrate the performance of MHH and the proposed extensions from 
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Chapter 5 on the AVEC2014 dataset. The alternative approach will also provide a means of comparison 

between the effectiveness of feature variation against the image motion. This can provide an indication 

whether the feature space is more valuable for detecting motion than the raw images. 

 

Figure 6.4 - Pseudocode for the FDHH algorithm, detailing all of the algorithm steps 

The framework for the FDHH approach can be broken down into 4 main stages, with a separate branch 

for the visual and vocal data. Figure 6.5 & Figure 6.6 illustrate the entire system framework, from the 

raw data, till the predicted depression scales. The visual and vocal data are processed separately through 

different branches to investigate the use of multiple modalities. Combining these modalities will involve 

fusing the two branches at decision level, to give a joint prediction from the visual and vocal modalities. 

6.4.1.1 Framework Details for Visual Data Branch 

Starting with Figure 6.5, the visual data is addressed at the frame level in 4 stages. The first stage looks 

at each frame, using a selection of local feature descriptors to capture the characteristics of the subject’s 

facial expression. The descriptors in the framework consist of LBP, EOH, LPQ that have been used in 

the previous chapter, along with deep features. The features are extracted from all the frames to make 

a feature matrix consisting of the (total frames × feature size).  

The second stage applies the FDHH algorithm to each feature matrix. This is to try and capture the 

dynamic patterns of variations that occur within the sequence of the facial expression characteristics. 

The number of patterns 𝑀 is defined by observing the variation depth that occurs through a random set 

of samples. If after 𝑀 patters, the histogram indicates that the count is significantly less, or none, then 

Algorithm (FDHH) 

Input: Normalised Feature Matrix 𝐕̂(c,n), c=1,…,C, n=1,…,N 
Initialisation:  Patterns m=1,…,M, 
  FDHH(1:C,1:M) = 0, 
  𝐁̂(1:C,1:N-1) = 0,  
  z(1:M)=0, 
  r=0 
For n=1 to N-1    (For N1) 

Compute 𝐁̂(1:C,n) = |𝐕̂(c,n+1) - 𝐕̂(c,n)| ≥ T (Binary Output) 
End    (For N1) 
For c=1 to C    (For C) 

For n=1 to N-1    (For N2) 
If (𝐁̂(c,n+1)==1)    (If 1) 

Update: r=r+1 
ElseIf (r>0 & r≤M) 
       Update: z(r)+1 
       Update: r=0 
ElseIf (r>M) 
       Update: z(M)+1 
       Update: R=0 
End    (If 1) 

End    (For N2) 
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the 𝑀 − 1 patterns are chosen for the framework. Once the FDHH features are produced for each local 

descriptor, they are concatenated together to produce a single feature vector per visual sequence. The 

third stage looks to reduce the dimensionality of the FDHH features, as they can be very large with the 

number of pattern histograms and local descriptors used. The PCA technique is applied to reduce the 

dimensionality down to 49 components, with the aim to keep at least up-to ~94% of the variance.  

Finally, two regression techniques are adopted to predict the scale of depression, based on the FDHH 

feature. PLS regression and LR have been chosen again for their reliable performance in the Chapter 5 

experiments. This will also allow direct comparison of the features performances from both 

experiments. This method reduces the predictors to a smaller set of uncorrelated components and 

performs least squares regression on these components, instead of on the original data. PLS regression 

is especially useful when the predictors are highly collinear, or when you have more predictors than 

observations and ordinary least-squares regression either produces coefficients with high standard 

errors or fails completely. Hence why PCA is applied to reduce the dimensionality below the sample 

size. Linear Regression is the other machine learning technique that is adopted for Depression analysis. 

 𝑦̂𝑖 = ∑∑𝑤𝑗 ∙ 𝑦(𝑖,𝑗)

𝑅

𝑗=1

𝑁

𝑖=1

 (6.6) 

   

The decision level fusion technique is the same as that adopted for Depression analysis in Chapter 5, 

which is based on linear weighted fusion as shown in Equation 6.6. where 𝑅 is the number of regression 

techniques used, 𝑁 is the total number of samples, 𝑦(𝑖,𝑗) is the prediction value from the regression 

method 𝑗, of sample 𝑖, 𝑤𝑗 is the weight assigned to regression method 𝑗. The objective is to fuse the 

confidence measure of each regression technique to get one set of predictions 𝑦̂. The optimisation 

remains the same, with the efforts of both techniques linearly fused together using a weighted sum rule 

to aggregate their predictions. 

6.4.1.2 Framework Details for Vocal Data Branch 

Figure 6.6 shows the branch for the vocal data. It starts with taking short segments of the speech of 3 

seconds at a time, with a 1-second shift between each segment.  Each of these segments has a set 

descriptors extracted based on the openSMILE [182] toolbox. These extracted descriptors are shown in 

Table 6.1 and Table 6.2 [13], which consist of 2268 total baseline features that are provided by the host. 

They are composed of 32 energies and spectral related with 42 functionals; 6 voicing related LLD with 

32 functionals; 32 delta coefficients of the energy/spectral LLD with 19 functionals; 6 delta coefficients 

of the voicing related LLD with 19 functionals; and 10 voiced/unvoiced durational features. 
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From this set of descriptors, some are selected to be used within the framework. The selection process 

involves first testing each individual feature vector with the development data set and then taking the 

top 8 performing descriptors. These are the following: Flatness, Energy in Bands 1k-4kHz (Band1000), 

Entropy, MFCC, Probability of Voicing (POV), PSY Sharpness, Shimmer and Zero Crossing Rate 

(ZCR).  

Table 6.1 - Low-Level Descriptors from the openSMILE toolbox provided by the host [13] 

Energy and spectral (32) 

Loudness (auditory model based), 

zero crossing rate, 

energy bands from 250 – 650Hz, 1kHz – 4kHz, 25%, 50%, 75%, and 90% spectral roll-

off points, spectral flux, entropy, variance, skewness, kurtosis, psychoacoustic sharpness, 

harmonicity, flatness, MFCC 1 – 16 

Voicing related (6) 

F0 (sub-harmonic summation, followed by Viterbi smoothing), probability of voicing, 

jitter, shimmer (local), jitter (delta: “jitter of jitter”), logarithmic Harmonics-to-Noise 

Ratio (logHNR) 

 

Next, all the features are tested in all combinations together, to determine the best set of descriptors that 

work well together. They are tested also tested on the development set, and from this, the best 

combination includes Flatness, Band1000, PSY Sharpness, POV, Shimmer and ZCR. These descriptors 

are concatenated to make the vocal feature vector for stage 2 of the vocal branch. 

The third stage is similar to the visual branch, where the vocal feature vector is reduced in 

dimensionality down to 49 using PCA, with the aim to keep at least up-to ~94% of the variance. The 

Final stage is also the same as the visual branch, where the PLS and LR techniques are fused using a 

weighted sum rule to predict the depression scales. To compare this framework fairly with the 

framework proposed in Chapter 5, majority of it will remain the same, with just the visual branch 

changing in how the data is processed. The only differences are in stage 1 and 2 for the visual branch, 

which is effectively reversed (hand-crafted features are extracted in stage 2), and the FDHH algorithm 

is replaced with MHH and its extensions (stage 1).  

The third and fourth stage is the same, where the dimensionality is reduced using PCA to keep 49 

components. Regression techniques PLS and LR use the reduced features to predict the depression 
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scales, where the fusion is also based on the weighted sum rule. The predictions from the vocal branch 

are also fused with the visual branch to give a multi-modality prediction. 

Table 6.2 - Set of all 42 functionals [13]. The functionals below with 1 are not applied to delta coefficient contours. 2 are for 

delta coefficients the mean of only positive values is applied, otherwise the arithmetic mean is applied. 3 are not applied to 

voicing related LLD. 

Statistical functionals (23) 

(positive2) arithmetic mean, root quadratic mean, standard deviation, flatness, skewness, 

kurtosis, quartiles, inter-quartile ranges, 1%, 99% percentile, percentile range 1% - 99%,  

percentage of frames contour is above: 

minimum + 25%, 50%, and 90% of the range, percentage of frames contour is rising, 

maximum, mean, minimum segment length1,3, standard deviation of segment length1,3 

Regression functionals1 (4) 

Linear regression slope, and corresponding approximation error (linear), 

Quadratic regression coefficient 𝛼, and approximation error (linear) 

Local minima/maxima related functionals1 (9) 

mean and standard deviation of rising  

and falling slopes (minimum to maximum), mean and standard deviation of inter maxima 

distances, amplitude mean of maxima, amplitude range of minima, amplitude range of 

maxima 

Other1,3 (6) 

LP gain, LPC 1 – 5  

 

6.4.2  Framework for Induced Emotion Detection 

Induced emotion from content is a trickier task compared to observing content containing emotion. A 

specific emotion can be induced in a person from two video samples of completely different scenes and 

nature, whereas the content of 2 people demonstrating the same emotion contains similarities that can 

be observed. The task of the application is to predict the induced emotion via scales of Arousal and 

Valence. 

The proposed framework will contain 3 stages designed to process, observe and learn the data. The 

amount of data is large and the content is from the wild (taken from movies). This entails random 

background scenes with many different people, containing objects, occlusions, different camera angles 

and poses etc. The first stage of the framework will be to try and understand and find similarities within 

the wide range of visual samples. This would be a form of pre-processing the data so that the later stages 

can work with the relevant information. This process will be achieved using a deep auto-encoder, to try 

and learn parameters that can be used to reproduce the contents of an image found frequently amongst 

the samples.  
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A deep auto-encoder is designed to process random image frames from a given video sample and 

reproduce them in a form that highlights main components within it. The architecture, that is inspired 

by the works in [183], contains 4 convolutional layers followed by 4 deconvolutional layers. Each 

convolutional layer shrinks the spatial dimensions, creating feature maps that represent various 

characteristics of the input. This will slowly transform the image into smaller encoded representations. 

The following 4 deconvolutional layers will use these representations to try and decode them and 

reproduce the original image. Each deconvolutional layer enlarges and combines the representations 

from the previous layer to slowly reconstruct the original image. Each of the convolutional and 

deconvolutional layers is followed by a Rectified Linear Unit activation layer.  

Figure 6.7 visually demonstrates the network architecture of the Auto-encoder stage using a sample 

image from the LIRIS-ACCEDE database. The architecture reduces the spatial dimensions of an input 

image as it propagates through the network. What this essentially does is encode whatever it can learn 

from the initial input across a set of parameters with smaller spatial dimensions. However, these 

parameters do have a higher depth to store different variations/representations of the initial input. By 

reducing the spatial dimensions, this ensures that the network will train to encode the key details from 

the input and not just set all the parameter values to 1, to essentially just pass the whole image through.  

 

Figure 6.7 - First Stage of the framework, using a Deep Auto-Encoder architecture to learn common components that are 

found in the database 

The deconvolutional layer (also known as Convolution Transpose) attempts to decode an input image 

using the learnt parameters, and the feature maps of the input image produced by the previous layer. A 

symmetrical design is used for the convolutional and deconvolutional layers. During the training 

process, the final output is compared to the original image using a loss function of either MSE or 

Euclidean loss. The MSE and Euclidean loss equations are calculated as follows in Equation 6.7 & 

Equation 6.8: 
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 𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

 (6.7) 

 𝐸𝑢𝑐 = √∑(𝑌𝑖 − 𝑌̂𝑖)
2

𝑛

𝑖=1

 (6.8) 

   

Where 𝑌 is a vector of 𝑛 ground-truth labels, 𝑌̂ is the vector of predictions produced by the network. 

The loss for the auto-encoder is based on the sum of every output neuron compared to each of its 

respective pixel from the original image. This is applied to both MSE and Euclidean loss functions. 

The second stage occurs once the deep auto-encoder from the first stage is trained. Each sample video 

will then have all its image frames propagated through the deep auto-encoder to produce its refined 

version. Once the outputs are gathered, FDHH is applied on the sequence to capture the variations that 

occur throughout by searching for a set number of patterns. Figure 6.8 shows a sample of FDHH 

patterns, reshape as images, that are captured from a refined sequence produced from stage 1.  

 

Figure 6.8 - Stage 2 of framework, capturing FDHH features of the output sequence from the Auto-Encoder 

The final stage is to learn and map FDHH patterns to predict the Arousal and Valence scales used to 

describe the induced emotion. For this stage, a deep CNN is used to learn the FDHH features for each 

sample. The input feature itself is reshaped to have a 128 × 128 spatial resolution with a depth of 15 

channels representing the patterns. The following layer is designed to reduce the spatial dimension a lot 

as there are a lot of parameters required to cope with the 15 channels of information. The structure goes 

as follows: 

Conv1 Pooling 1 Conv2 Pooling 2 Conv3 Conv4 Conv5 FC1 FC2 FC3 Output 
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Figure 6.9 - Third Stage of the framework, using a deep network architecture with regression loss, to learn the feature 

variations captured by the FDHH algorithm 

Each convolutional layer is followed by a ReLU layer for neuron activation. The prediction stage for 

this network is based on a regression model, with the loss function used for training as MSE and 

Euclidean. The loss functions for the third stage network will only deal with a single output neuron 

based on regression, unlike a whole image size as the first stage.  

Two networks are trained in parallel, as the Arousal and Valence ground-truth labels are learnt 

separately. The audio information is also considered in the framework, for which there is a special case. 

The Audio features are produced using the openSMILE toolbox [182]. They are applied to the whole 

audio provided per sample. Using the toolbox, there are 16 low-level descriptors extracted which 

include the root mean square (RMS) of the frame energy; the zero-crossing rate (ZCR); the harmonics-

to-noise ratio (HNR); pitch frequency (F0); Mel-frequency cepstral coefficients (MFCC) 1-12. Once 

these features are produced, further statistics are computed that include the 12 functionals mean, 

standard deviation, kurtosis, skewness, minimum and maximum value, relative position, and range as 

well as two linear regression coefficients with their mean square error (MSE).  

When the audio descriptors are used in the framework, the deep network in stage 3 is no longer used as 

a predictor. Instead, it is used as a pre-trained network to extract the learnt features from the visual data. 

These features are then fused with the audio features and PLS regression is applied to predict the 

Arousal and Valence. 

6.5 Related Datasets 

For the upcoming experiments, the datasets chosen are related to capturing emotions using real values. 

They include the previously used AVEC2014 database for Depression analysis and a new database 

called LIRIS-ACCEDE that is based on predicting induced emotions. 
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6.5.1 AVEC2014 

The AVEC dataset is visited again to compare a deep learning approach against the previously tested 

hand-crafted techniques from Chapter 5. The data usage remains the same, with the training, 

development and testing partitions playing the same role. Unlike the previous AVEC2014 experiment, 

the upcoming experiment will consider utilising the audio data within the framework. This will be in 

the form of the provided audio segments and feature sets for each. 

6.5.2 LIRIS-ACCEDE 

The LIRIS-ACCEDE Dataset [20] contains a large subset of videos, with the intention of inducing 

emotions on the viewer. The content is from several publicly available movies with the Creative 

Commons license. This dataset was selected as it shows a different view of how emotions are affected, 

by displaying what kind of content causes certain reactions to a person’s mental state. There are two 

sets of data within the database, for two different tasks. The first is based on predicting continuous 

induced emotion across long videos. The other is predicting global induced emotion on small video 

clips of ~10 seconds. The induced emotion is based on the Arousal and Valence dimensions, that is 2 

real values per frame for the continuous task, and 2 real values of each video clip for the global task. 

The upcoming experiment is based on the Emotional Impact of Movies Task that took place in the 

MediaEval16 workshop [184]. The global task was chosen to demonstrate the performance of the 

FDHH feature across whole sequences.  

There are 9,800 excerpts that are extracted from 160 different movies for the global task, which are all 

under the Creative Commons licenses. The total time of all excerpts is 26 hours, 57 minutes and 8 

seconds. The annotation of the database samples was produced workers using the crowdsourcing 

software CrowdFlower, and a quicksort algorithm to compare the annotations and rank the excerpts 

accordingly. The induced valence value ranging from +1 (Negative) to +5 (Positive), and the induced 

arousal value ranging from +1 (Passive) to +5 (Active). 

6.6 Experimental Setup & Results 

The following experiments will be designed to demonstrate the use of deep learning techniques along 

with the FDHH algorithm. The first experiment will be to revisit the Depression analysis task from 

Chapter 5, using a the proposed framework to handle it this time. A set of feature descriptors will be 

tested that include using deep features and hand-crafted features along with the FDHH algorithm. All 

of the results will be compared to the state-of-the-art result and others.   

The second experiment will be based on a challenge that was partaken, to determine the emotional 

impact of movies. Specifically, the task of identifying induced emotions from a large-scale database of 

over 9,800 samples. Only 5 tests are run that is based on the challenge settings from the MediaEval16 

workshop. These are compared to the other participants during that challenge.  
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6.6.1 Settings and Protocols 

The AVEC2014 guidelines are followed from [13], based on the global challenge that had taken place 

in 2014. In this, the data had been split into 3 partitions, which are training, development and testing. 

Each contained 50 video samples from the “Northwind” and the corresponding “Freeform” tasks, 

totalling to 100 video clips per partition. The labels provided are based on 1 real value for each pair of 

tasks, with the idea that the depression scale should be the same for both, as each subject has conducted 

both tasks with the same mental state. The evaluation metric consists of the RMSE and MAE. At the 

time of the global challenge, the testing labels were not made available to the public, showing the initial 

experiments in [83] limited, as there were only 5 submissions allowed. Since the challenge has finished, 

the test labels have been made available to the public, in which further optimisation can be allowed 

beyond 5 attempts.  

The LBP feature extraction for this experiment is based finding uniform patterns across 4x4 windows 

of a frame. Each pattern consists of 59 different combinations, which in total will become 4 × 4 × 59 =

944 components per frame. The EOH and LPQ descriptors are captured across the whole frame. With 

EOH producing a 384-component vector, and LPQ producing a 256-component vector. When using 

the FDHH algorithm, the threshold is set to find 1% variation change, due to the very slow movement 

in facial expressions in the feature space. Based on this, patterns are found up to 𝑀 = 3, which is 

selected by observing, from random samples, the depth of count in the resulting histogram using the 

1% threshold.  

When going for the deep learning approach, both AlexNet and VGGFace produce 4096-dimensional 

feature vectors at the FC1 and FC2 Layers. Before these are extracted, each frame has is gone through 

the required pre-processing steps before propagated through the network. These steps include the 

resizing of frames to 224 × 224 × 3 for AlexNet and 227 × 227 × 3 for VGGFace, and subtracting 

the mean image provided by the network, with AlexNet providing a pixel level average and VGGFace 

providing a colour channel level average. 

The next stage was to propagate each pre-processed frame through the networks and obtain the features 

produced by the filter responses at the desired layers. Both features will be utilised separately to 

investigate which layer provides better features for Depression analysis. The Threshold for FDHH is 

also set to 1% for variation detection, with the patterns set to 𝑀 = 5. These values have been chosen 

after observing a random sample with FDHH applied using a high pattern count of 𝑀 = 10. These 10 

patterns are then observed to determine at what point the pattern stops being detected, which in this case 

was at 𝑃𝑚 =′ 01111110′. Based on this, the pattern size was set to the last detected pattern which is 

𝑀 = 5. 
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For the Induced Emotion challenge using the MediaEval16 database, there are also 3 partitions of the 

data. The 9,800 provided samples are used for the training and validation of the system. They are split 

according to the details provided by the challenge hosts. The final test partition is based on 1,200 new 

samples that are released by the challenge host (without the ground-truth labels) approximately halfway 

through the challenge duration. The evaluation metrics are the MSE and Pearson’s Correlation 

Coefficient (PCC). The MSE can be calculated as shown in Equation 6.7. PCC can be calculated by the 

following in Equation 6.9: 

 𝑃𝐶𝐶 =
𝑐𝑜𝑣(𝑌 − 𝑌̂)

𝜎𝑌 × 𝜎𝑌̂
=

∑((𝑌̂ − 𝜇𝑌̂)(𝑌 − 𝜇𝑌))

𝜎𝑌̂ × 𝜎𝑌
 (6.9) 

   

Where 𝑌 is the set of ground-truth labels, 𝑌̂ is the set of predicted labels by the network, 𝜇𝑌 and 𝜇𝑌̂ are 

the respected means for the labels, 𝜎𝑌 and 𝜎𝑌̂ are the respected standard deviations of the labels.  

The initial process of the framework is to resize all the images the spatial dimensions of 128 × 128 × 3 

before the auto-encoder learns from the images. This is to have a consistent size across all samples 

which are not too big to run out of memory, or too small to lose important spatial information. During 

the auto-encoder training, the following hyperparameters are set for the network: 

• 100 training epochs; 

• Batch Size = 25; 

• Learning rate = 0.000001; 

• Momentum = 0.9; 

• Weight Decay (regularisation) = 0.00001; 

• Stochastic Gradient Descent is used as the learning optimiser; 

• Network weights are randomly initialised using Xaviers improved method [89]; 

• Data is split 50% training 50% validation as directed by the challenge host; 

• Each batch contains a single image from 25 visual sequences. 

Once the auto-encoder is trained, every visual sample has all its frames propagated through the network 

to produce the new feature sequence ready for stage 2, with the dimensions remaining the same of 

128 × 128 × 3 per frame. Next, the FDHH algorithm is applied on all the new feature sequences, with 

the threshold set to 5% movement, that results in 5 patterns captured. This results in a new FDHH 

feature size on 128 × 128 × 3 × 5 = 128 × 128 × 15 per sample. Stage 3 uses the FDHH features for 

each sample to train two DCNNs, one to predict Arousal and the other to predict Valence. Both DCNNs 

are identical in parameter, size and hyperparameter settings. They consist of the same settings as those 

used for the auto-encoder, except for the following changes: 

• Batch size is decreased to 10, due to the large FDHH image; 
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• Learning rate is set to 0.00001. 

The two variants of the training processes are based on the change of loss function in stages 1 & 3. They 

are either set to MSE loss or Euclidean loss. The denotations are DCNN_MSE for the MSE loss and 

DCNN_EUC for Euclidean loss, with the audio features denoted as Audio. 

6.6.1.1 Feature Sets for Depression Analysis 

In the Depression Framework for the Visual Data branch, shown in Figure 6.5, the 3 local descriptors 

of EOH, LBP and LPQ are extracted to produce 3 separate sets of feature vectors from each frame of a 

sample video, as depicted in stage 1. For thorough testing, FDHH is initially applied on each local 

feature (EOH, LBP and LPQ) vector separately. This is to evaluate the performance of each individual 

descriptor with the FDHH feature extracted. These are denoted as EOH_FDHH, LBP_FDHH and 

LPQ_FDHH respectively. The final feature is the concatenation of the three local feature vectors, to 

produce a feature size of 384 + 944 + 256 = 1,584 components. FDHH is applied on top of this 

feature vector to produce the feature denoted as MIX_FDHH. This feature is reshaped to contain 

𝑀 × 1,584 = 4,752 components, which is for each Northwind and Freeform video. When producing 

the final feature for the next stage, the Northwind and Freeform feature vectors are concatenated to 

produce a 2 × 4,752 = 9,510 component vector.  

For the deep learning route, pre-trained features using the AlexNet network are extracted at layers 16 

& 18, which are FC1 & FC2. The same is done for VGGFace, extracting layers 32 & 34 which are the 

FC1 & FC2 layers. Each of these has FDHH applied to it, to produce vectors of 5 × 4,096 = 20,480 

dimensions. With both Northwind and Freeform feature sets combined, this becomes a total of 40,960 

dimensions. Each of which is denoted as A16_FDHH & A18_FDHH for AlexNet, and V32_FDHH & 

V34_FDHH for VGGFace.  

The feature dimensions for both approaches become large when combined. To help reduce the 

dimensions, PCA is applied producing a total of 49 components. This is the maximum principal 

components that can be used as the full MIX_FDHH matrix, as the training set is 50 × 9,510; which is 

50 samples containing 9,510 feature components. This produces a final feature of 50 × 49 components 

for the training set. The same process is applied to each of the Deep features, as they are individually 

tested. The development and testing sets are also reduced to 49 components, using the covariance matrix 

obtained from the training set.  

Before the machine learning is applied, all of the feature sets are rank normalised between 0 and 1. This 

is to give boundaries to the feature values which helps the speed and performance of the regression 

method. This normalisation is achieved by looking at a component at a time across all samples from the 

training set. Equation 6.10 shows the Rank normalisation calculation, where 𝑋𝑖 the 𝑖𝑡ℎ column of the 
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feature matrix, 𝛼𝑚𝑖𝑛 is the minimum value of the 𝑖𝑡ℎ column,  𝛼𝑚𝑎𝑥 is the maximum of the 𝑖𝑡ℎ column, 

and  𝑋̂𝑖 is the normalised column.  

 𝑋̂𝑖 =
𝑋𝑖 − 𝛼𝑚𝑖𝑛

𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛
 (6.10) 

   

Once the features are normalised, PLS regression and Linear regression are applied separately to the 

feature sets to observe their individual performances. The fusion of the regression predictions is applied 

after, using the weighted sum rule. This technique is optimised by looking at how well the regression 

technique performs on the development partition.  

The framework for the vocal branch, as shown in Figure 6.6, involves extracting the selected 

combination of audio features from the provided set of features. Initially, the short segment features are 

used, that have 2268 total features that comprise of those mentioned in Table 6.1 and Table 6.2. This 

feature is denoted as (Audio) and will also be tested as a whole feature. From these set of features, the 

combined audio features of Flatness, Band1000, POV, PSY Sharpness, Shimmer and ZCR are used, 

comprising of 285 from the 2268 features. This is denoted as (Comb). The final set of the audio features 

is the MFCC. This is used alone to see how it performs compared to the rest. This is denoted as 

(MFCC). Once the selected features are used, they are reduced in dimensionality using PCA. This has 

the same setting as the visual branch, producing 49 principal components that will be used as the 

reduced feature. And then the audio features are learnt through PLS and LR, from which decision level 

fusion occurs and the scales of depressions are predicted.  

6.6.2 Experiment 6A – Deep Depression Analysis 

The experiment will be split into 3 parts. The first part is to test the FDHH algorithm on hand-crafted 

and deep features individually using the development partition. The second part is to test the Audio 

feature sets on both the development and testing partitions. Then finally, the visual and audio feature 

sets are combined and tested on the test partition to produce the final evaluation for the features. 

Individual performances of the best visual features are also tested on the test partition to compare the 

best unimodal feature. In each of the tests, each individual feature is first tested using PLS regression, 

then followed by Linear regression, and then the fusion of both. The Audio fusion takes place after the 

individual feature tests. This is to allow a fair comparison with the framework shown in Figure 5.12.  

The initial tests in Table 6.3 demonstrate the performance of the hand-crafted features and deep features 

combined with FDHH. One of the clear indications is that the deep features performed better than all 

the combinations of the hand-crafted features. LPQ_FDHH has performed the best compared to EOH 

and LBP, and the fusion of all three performing better when decision level fusion is applied. For the 

deep features, A16_FDHH and V32_FDHH have the lowest errors in terms of their pre-trained 

networks, indicating that the FC1 layer is once again better to extract than the FC2 Layer. The AlexNet 
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network has performed better than the VGGFace network by 0.30 for RMSE and 0.26 for MAE. When 

compared to MIX_FDHH, AlexNet has 0.46 lower RMSE and 0.78 for MAE. 

Table 6.3 - Performances of hand-crafted and Deep features taken from the visual sequence, with FDHH applied to capture 

feature variations. The systems are trained on the Training partition and tested on the Development partition. RMSE and 

MAE are used to evaluate the performance. 

Visual 

Feature 

PLS LR PLS + LR 

RMSE MAE RMSE MAE RMSE MAE 

EOH_FDHH 11.09 8.87 12.39 9.92 11.39 9.14 

LBP_FDHH 11.16 9.34 12.68 9.86 11.15 9.18 

LPQ_FDHH 10.88 8.79 11.49 9.73 10.63 8.70 

MIX_FDHH 9.68 7.72 10.05 7.52 9.48 7.44 

A16_FDHH 9.02 6.66 9.52 6.96 9.05 6.68 

A18_FDHH 9.36 7.19 9.43 7.23 9.39 7.16 

V32_FDHH 9.52 7.25 9.32 6.90 9.34 6.91 

V34_FDHH 9.52 7.08 9.53 7.09 9.55 7.04 

 

Table 6.4 - Performances of the Audio feature sets that are trained on the Training partition and tested on the Development 

partition, as well as the Testing partition. 

Audio Feature + 

Partition 

PLS LR 

RMSE MAE RMSE MAE 

Audio (Develop) 10.08 8.25 10.21 8.39 

Comb (Develop) 11.52 9.31 11.64 9.42 

MFCC (Develop) 10.70 8.86 10.92 8.86 

Audio (Test) 10.46 8.42 10.73 8.45 

Comb (Test) 10.49 8.52 10.33 12.99 

MFCC (Test) 10.42 8.04 10.28 8.07 

 

The results for the Audio features are presented in Table 6.4, demonstrating their performances on both 

development and test partitions. From the tests on the development partition, the Audio descriptor has 

performed the best, followed by the MFCC features. However, the test set puts MFCC as the best audio 

feature set, which is followed by Audio, then Comb. The difference between the audio and visual 

features is significant, with a difference of 1.06 for RMSE and 1.59 for MAE when comparing Audio 

and A18_FDHH on the development set. 
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Table 6.5 - Final test that evaluates the best set of combinations from the visual and audio sets of features. Each combined 

feature is tested on the  

Feature 
PLS LR PLS + LR 

RMSE MAE RMSE MAE RMSE MAE 

MIX_FDHH+MFCC 9.15 7.28 8.98 7.11 8.95 7.10 

A16_FDHH+MFCC 8.19 6.58 8.45 6.87 8.27 6.60 

A18_FDHH+MFCC 7.96 6.44 8.57 7.10 8.07 6.50 

V32_FDHH+MFCC 7.44 6.14 7.59 6.31 7.43 6.14 

V34_FDHH+MFCC 7.56 6.14 7.80 6.51 7.55 6.18 

A18_FDHH 9.12 7.50 9.45 7.89 9.25 7.66 

V32_FDHH 8.01 6.68 8.23 6.90 8.04 6.68 

 

The proposed framework also included the fusion of the visual and audio modalities, to investigate is 

having sets of features extracted from various sources can improve performance. In Table 6.5, there is 

a clear indication that going for a bimodal approach does improve the system of a unimodal approach. 

In this test, the MIX_FDHH and all deep feature sets are fused with the MFCC audio descriptor, which 

is tested on the test partition for final evaluation. The MIX_FDHH feature did not perform as well as 

the deep feature combinations, with a decrease in its performance compared to the performance 

achieved in the development partition. The route of taking deep features rather than hand-crafted has 

proven to be a clear winner when using the FDHH algorithm. In terms of using FC1 or FC2 for the pre-

trained networks, both performed very closely, with FC1 for VGGFace predicting the best. 

The V32_FDHH feature has performed the best as an individual feature with an RMSE of 8.01 and 

MAE of 6.68, outperforming all the features in Table 5.21. When both visual (V32_FDHH) and audio 

(MFCC) features are fused, the error is dropped even lower to 7.43 RMSE and 6.14 MAE. Figure 6.10 

shows how the output prediction looks like of the Test partition using the V32_FDHH + MFCC feature. 

It follows the general trend of the ground-truth labels, showing similar ups and downs. 

6.6.2.1 Experiment 6A Highlights 

This experiment has demonstrated a framework for Depression analysis based on temporal content. The 

framework captures features using advanced deep networks as feature extractors. These features are 

further processed using the developed and proposed FDHH algorithm, to observe patterns of variations 

that occur in the feature space. Multiple modalities are explored and fused together to produce a 

competing performance against the proposed approaches by others in Table 6.6. The table has two sets 

of results to demonstrate performances based on using single or multiple modalities, sorted in terms of 

best RMSE performance. The first part compares single modality techniques, including the approach 

proposed in Chapter 5 using the TSMHH descriptor.  
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Figure 6.10 - Predictions of the Test partition produced by the V32_FDHH + MFCC feature 

The comparison of single modality shows our proposed descriptor V32_FDHH produce the lowest 

RMSE and MAE of 8.01 and 6.68 respectively. The next best performance is produced by Dhall et al. 

[162], who achieved an RMSE of 8.91 and MAE of 7.08. V32_FDHH produces a significant 

improvement for single modality techniques of 0.90 for RMSE and 0.40 for MAE. The following best 

result is achieved by the TSMHH descriptor proposed in our earlier works.  

For the multi-modality comparison, Williamson et al. [163] had previously held the top performance. 

This Chapter included the audio modality as a separate branch in the framework, which has been fused 

with the visual branch in the later stages. The MFCC feature on its own doesn’t perform as well as some 

of the techniques from the visual modality. However, when it is combined with a visual technique, it 

provides a boost in performance. For the V32_FDHH feature, there was a boost of 0.58 for RMSE and 

0.54 for MAE. This was enough of a boost to surpass the lowest error produced by Williamson et al. 

[163] quite significantly to become the new state-of-the-art in this area.  

This experiment has also demonstrated how deep features can provide better feature descriptions than 

some of the popular hand-crafted techniques, for the application of Depression analysis. The 

Mix_FDHH + MFCC feature produced good results, better than most of the other approaches apart 

from Williamson et al. [163], but fell behind the both AlexNet and VGGFace pre-trained deep features. 

The proposed framework also demonstrated a better use of deep learning techniques when compared to 

Chao et al. [174] and Zhu et al. [37] Chao et al. [174] adopted an idea that may work well for visually 

apparent tasks such as Action recognition and Facial expressions recognition. But for Depression 

analysis, their approach discounts many factors such as spatial resolution, that can help understand the 

slight changes in facial structure caused by the affected emotions in depressed subjects. Improvements 
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can be made if they adopt a better deep network approach such as the VGGFace network, or others 

trained on faces. 

Table 6.6 - Comparison of performances against other approaches applied on the Test partition, including the previous 

state-of-the-art results and performance achieved from Figure 5.12. Table is split into two halves, first showing 

performances using only a single modality, and the other showing performances using more than one modality. 

Methods Modality RMSE MAE 

Ours (V32_FDHH) Visual 8.01 6.68 

Dhall et al. [162] Visual 8.91 7.08 

Ours (TSMHH) Visual 9.32 7.62 

Zhu et al. [37] Visual 9.55 7.47 

Kaya et al. [166] Visual 9.61 7.69 

Jain et al. [165] Visual 10.24 8.39 

MFCC (Test) Audio 10.28 8.07 

Baseline [13] Visual 10.86 8.86 

Mitra [185] Audio 11.10 8.83 

Perez et al. [164] Visual 11.91 9.35 

Ours (V32_FDHH + MFCC) Audio + Visual 7.43 6.14 

Williamson et al. [163] Audio + Visual 8.12 6.31 

Ours (MIX_FDHH) Audio + Visual 8.95 7.10 

Kaya et al. [166] Audio + Visual 9.61 7.69 

Kachele et al. [186] Multimodal 9.70 7.28 

Chao et al. [174] Audio + Visual 9.98 7.91 

Gupta et al. Multimodal 10.33 - 

Senoussaoui et al. [173] Audio + Visual 10.43 8.33 

Perez et al. [164] Audio + Visual 10.82 8.99 

 

Zhu et al. [37] achieve reliable performance with their system, but they decided to train a new network 

from scratch based on a face recognition database with ~495K images. They also trained a deep network 

to learn from optical flow images generated from the AVEC14 samples. They may have achieved better 

facial features by using existing networks that are trained on millions of faces, and that have been trained 

thoroughly for weeks. Another possible downfall could be using a deep network to learn the optical 

flow images from the AVEC14 samples. There is a limited amount of data for the deep network to train 

from and using such a large network architecture can result in severe overfitting.  
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6.6.3 Experiment 6B – Emotional Impact of Movies 

This experiment is based on the challenge of the Emotional impact of movies that took place at the 

MediaEval16 workshop. Therefore, the rules and guidelines were followed based on the challenge. 

Only 5 submissions were allowed, which made it difficult to fully explore the framework proposed for 

the task, making this experiment short and concise. 

There are 5 test runs submitted to the challenge, 2 of which are based on deep learning with FDHH, 

another 2 with deep learning using FDHH and audio, and 1 final submission based on just the audio.  

Table 6.7 - Results of the Emotional Impact of Movies challenge, based on 5 submissions to predict the Arousal and Valence 

of induced emotion. The results are based on the Test data partition provided by the challenge host. 

Submission 
Arousal Valence 

MSE PCC MSE PCC 

DCNN_EUC 1.443 0.248 0.231 0.143 

DCNN_MSE 1.431 0.263 0.231 0.149 

Audio 1.525 0.143 0.236 0.125 

DCNN_EUC + Audio 1.462 0.251 0.236 0.143 

DCNN_MSE + Audio 1.441 0.271 0.237 0.144 

Table 6.7 shows the results of each submission, based on their evaluation of MSE and PCC score. The 

goal is to have a low MSE and a high PCC. The best performance based on both Arousal and Valence 

was by the DCNN with MSE loss function during the stage 1 & 3 training process. The worse 

performance was using the Audio features alone, which didn’t include any deep learning or use the 

FDHH algorithm. When both DCNN_MSE and audio features are combined, only the PCC for the 

Arousal is improved. This demonstrates that in this case, the visual features perform better than the 

audio and that the audio features only provide a little boost in PCC to the performance when combined 

with the visual features.  

Table 6.8 - Comparison of Emotional Impact of Movies task with other participants in the challenge, performance is 

measured in MSE and PCC. 

Submission 
Arousal Valence 

MSE PCC MSE PCC 

Ours (DCNN_MSE) 1.431 0.263 0.231 0.149 

Yang et al. [28] 1.185 0.174 0.378 - 

Chen et al. [26] 1.479 0.467 0.218 0.312 

Ma et al. [25] 1.531 0.266 0.214 0.295 

 

Due to the large data size, it was difficult for many to participate in the challenge. Therefore, there are 

not many other techniques to compare the performance too. Table 6.8 shows the performance 
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comparison with the remaining participants of the challenge. They show a similar performance, with 

Yang et al. [28] having the lowest MSE for Arousal. However, their performance for PCC is the worst, 

along with the MSE for the Valence label. Our performance for Arousal in terms of the MSE was the 

next best, followed by Chen et al. [26] and then Ma et al. [25]. For Valence, Ma et al. [25] produce the 

lowest MSE but Chen et al. had the highest PCC. Our MSE for Valence came in very close to both of 

theirs. From these results, it is difficult to get a clear image of what works best as all the evaluation 

metrics produced different responses with each method. Both Chen et al. and Ma et al. also incorporated 

deep learning techniques in their system, whilst Yang et al. projected high dimensional features into a 

low dimensional space, whilst keeping similar values from Arousal and Valence together and separating 

the dissimilar values far away from each other.  

6.6.3.1 Experiment 6B Highlights 

The experiment was brief yet demonstrated how deep learning and the FDHH algorithm can be utilised 

in a creative framework to tackle a large temporal database. The system was based on a 3-stage 

framework, with each stage playing a key role in the system. The first stage was a deep auto-encoder 

designed to process the raw data and remove any unwanted artefacts. The second stage applied the 

FDHH algorithm to the improved data from the first stage. The last stage was a deep network designed 

specifically to learn the FDHH feature histograms and map them separately to the Arousal and Valence 

ground-truth labels. Audio features were also utilised to see if there was any performance gain using 

the popular toolbox openSMILE. For 2 of the submissions, the audio features were fused with the Deep 

features and PLS regression was used for prediction.  

The outcome from all 5 submissions indicated that using just the DCNNs provided the best performance 

for both Arousal and Valence predictions. Audio had performed the worst and the combined efforts of 

Audio and DCNN fell short behind the DCNN alone. Another finding from the experiment was that 

using the MSE loss for training the deep auto-encoder and deep convolutional network in stages 1 & 3 

respectively, was better than using Euclidean loss. When our performance is compared to others, it is 

in a similar range, not being the best nor worst technique.  

6.7 Evaluation and Discussion 

In this Chapter, we investigated the use of deep learning techniques on dynamic emotion applications. 

The FDHH algorithm was also introduced to observe and captures variations that occur across the 

feature space along a sequence of feature vectors. Both ideas were combined and proposed in a set of 

frameworks to handle the tasks of Depression analysis and predicting Induced emotions.  

For Depression analysis, state-of-the-art performances were achieved with the proposed framework. 

This demonstrates the capability of using the FDHH feature and deep features together. In Chapter 4, 

we investigated the use of pre-trained deep networks (namely VGGFace and AlexNet) for facial 
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expression recognition. Here we observed some interesting results that indicated that a network trained 

on millions of objects performs better at FER than a network trained specifically on faces. The 

conclusion from this was that the VGGFace network struggled because it is trained to learn if faces are 

the same, which can result in producing similar features for a subject portraying an angry facial 

expression and the same subject portraying a surprise emotion. This is because the facial structure is off 

the same person, from which the network is trained to detect.  

However, for Depression analysis, the VGGFace network has the best performance. This can be 

expected because the network is more suited to this task as we specifically aim to understand the face 

detected in each frame. In our framework, we do not use the network to specifically determine between 

different facial expressions, but to detect the facial parts and structure of the face across each frame. 

The FDHH algorithm has been designed and developed to detect the changes in the facial parts and 

structure that occur across the sequence of pre-trained features. The AlexNet pre-trained network has 

shown once again to be powerful for a job it is not trained for. However, it did not overcome the 

VGGFace network but gave an impressive performance that challenged many other approaches and 

techniques. This demonstrates that a well-trained deep network on a lot of images can capture useful 

information no matter the data type. 

If Depression analysis is to become a service that can be used in real-time, then the speed of running 

the framework from start to end is a crucial factor for artificial intelligence systems. To get a better 

understanding of how long the framework takes to run, a table is compiled showing the time each stage 

of the system takes to execute. The time is based on a 6-second segment of a video sample for all tests 

to allow a fair comparison. The deep learning and hand-crafted approaches are observed, where the 

system has already been trained, and a new sample is being fed in for analysis. 

The tests are run on the Windows 10 operating system using MATLAB 2017a. The PC has an i7-6700K 

processor @ 4.3GHz, with a Titan X (Pascal) GPU using the MatConvNet toolbox [142]. The tests are 

based on how the experiments were run, as a baseline performance. Further optimisations can take place 

with the code and tools to achieve faster speeds. 

Table 6.9 shows the deep feature framework when using a GPU having a total time of less than the 

sample time (6s). This means that it could potentially process the information in real-time, which can 

be done by creating video segments. The hand-crafted features perform fast, except for LPQ. This 

feature also affects the Combined performance, but if the LPQ code is efficiently optimised further, it 

should reach under 6s. The pre-trained networks training time is unknown. However, as we did not 

retrain it, it does not need to be included in the timing. The regression and PCA stages don’t apply the 

training process as this is only done once in a system. This is because in a real-time situation, the 

regression techniques will already be trained, and each new test sample will be processed individually. 
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For systems that require updating the trained information, a form of batch processing can be applied to 

take care of this process are certain intervals that do not impact process on the live stream of data. 

Table 6.9 - Computation time compilation for running the proposed Depression analysis framework based on testing new 

sample of 6 seconds. Each main computational step is computed with the total time taken for it. The deep learning and hand-

crafted approaches are demonstrated. 

Video clip with 180 frames 

(6 second) 

Feature 

Extraction 
FDHH PCA 

Regression 

PLS+LR 

Total 

Time 

VGGFace with GPU 3.265s 0.0356s 0.0027s 0.0034s 3.3067s 

VGGFace no GPU 34.07s 0.0356s 0.0027s 0.0034s 34.1117s 

LBP 1.080s 0.0119s 0.0004s 0.0033s 1.0956s 

EOH 1.146s 0.0104s 0.0006s 0.0041s 1.1611s 

LPQ 6.830s 0.0084s 0.0005s 0.0053s 6.8442s 

Combined 

(EOH+LBP+LPQ) 
9.056s 0.0146s 0.0012s 0.0045s 9.0763s 

 

When understanding the nature of inducing emotions, there are many ways possible. Media is a source 

capable of inducing all sorts of emotions from happy, joy, surprise to fear and anger. It is all linked to 

the content, personality and subjective assessments of the viewer. To try and capture this behaviour and 

model it is a very challenging task, as there is also a big dependency on the viewer. The emotional 

impact of movies task takes on the challenge to try and model this behaviour. They use a large set of 

short movie scenes and a crowdsourcing concept to get feedback from the public on the induced 

emotions they feel viewing them. We look to try and understand what patterns can be found from the 

data and the provided feedback that has been constructed in the form of Arousal and Valence. 

The experiment on induced emotion demonstrated a framework designed to learn about the data itself 

before learning the main objective. The idea was to see how big data can be managed and understood 

to work more efficiently and be relatable to the task. The new representations were used with the FDHH 

algorithm to observe the occurrences of 5 variation patterns. This was to essentially summarise the 

movement of features across each sequence to a set of 5 histograms. These movements were learnt 

using a deep convolutional neural network in the final stage of the system. This network was trained 

from scratch to try and understand feature movement. The option for using a pre-trained deep network 

as a feature extractor, as done in Experiment 6A, was not investigated. This decision was made because 

the data is not in the form of images and has more than 3 channels. The final predictions were produced 

by two deep networks, one trained specifically for Arousal, and the other for Valence. 

The results indicate that the proposed framework shows it is a capable idea that performs well, with 

room for improvement. Deep learning on the large quantity of visual data containing non-controlled 
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scenes has proven to be better than using the audio features used in the experiment and even performs 

better when used alone. The FDHH feature demonstrated its usefulness in both experiments, justifying 

the nature of how it works as a high-quality descriptor.  

The deep auto-encoder design was chosen for the task of understanding the content from the mixture of 

data. This was applied as a pre-processing tool to make the task easier for the rest of the system. The 

idea was to learn the common components found in the scenes for each sample, with the hopes that it 

will disregard the anomalies. When reconstructing an image sample, the deep auto-encoder, after being 

trained using MSE loss, had the effect of blurring out and even removing parts of the image that did not 

respond to the learnt parameters. This showed signs that the auto-encoder performed how it was 

designed too. 

Experiment 6A on Depression analysis had some limitations that can influence the system if exploited. 

Firstly, the BDI-II self-report system may not be the best available measurement for depression, as it 

may not be able to understand the complete level of depression the user has. It is essentially limited by 

the questions asked, from which the responses may not accurately portray the true depressed feelings 

of the patient. There have been attempts by the same host to use other approaches in their later 

challenges (AVEC2016 [18]) where they adopt a PHQ-8 questionnaire (The PHQ-8 as a measure of 

current depression in the general population [51]). However, this dataset was not chosen as the host 

does not provide any raw visual content, which is what the proposed framework heavily relies on.  

 

Figure 6.11 - Distribution of BDI-II score across the Training ground-truth labels, with a range of 0 to 44. 

The BDI-II score is also limited in the samples provided, as it reaches a maximum of 44 in the training 

set, and 45 in the remaining development and testing. The distribution of scores for the training labels 

can be seen in Figure 6.11, and for all 3 partitions combined in Figure 6.12. These plots show a larger 

number of samples for the lower BDI-II scores. This could be an issue for some systems that get a new 

sample that has a BDI-II score higher than 45 and may not understand what it fully means.  
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Figure 6.12 - Distribution of BDI-II score across all the ground-truth labels, with a range of 0 to 45. 

Another limitation of the AVEC2014 dataset is that it is based on German patients that all seem to be 

of a Caucasian race. This could potentially affect the system performance when other ethnicities are 

provided as samples. However, the proposed features do mainly work on the grayscale image, and with 

the deep pre-trained networks, they have been trained on a variety of ethnicities beforehand. Also, the 

features are based on edges and patterns on the face, so it should not impact the performance that much. 

For the Induced emotions task, there is a lot in that area that can be improved to make the task easier 

and produce systems that can learn the objective more. The labels for Arousal and Valence are based 

on a crowdsourcing concept, which is not always a reliable source compared to using professional 

psychologists. The judgement for Arousal and Valence will swing more accurately towards those that 

understand exactly what each means. If someone was to observe a sample that will induce a lot of 

emotion and rated it highly, to then receive a new sample that induced, even more, emotion than the 

scale may not extend far enough to cover this.  

6.8 Summary 

This chapter has presented novel techniques and frameworks to tackle emotion-based applications. 

Deep learning was explored in the form of a pre-trained feature extractor for Depression analysis, and 

as a deep auto-encoder combined with a trained classifier for determining induced emotions from 

movies. The experiments showed that the combination of FDHH and deep learning can challenge the 

best of frameworks out there. The following was achieved from this chapter: 

• A novel algorithm called Feature Dynamic History Histogram was developed to observe the 

variations that occur in the temporal feature space. The technique looks for motion but in the 

higher quality mathematical representations of the image frames. 
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• The applications of Depression analysis and Induced emotions through movies addressed with 

novel frameworks that incorporate the FDHH algorithm along with deep learning techniques.  

• The state-of-the-art performance was achieved for Depression analysis, using a pre-trained deep 

CNN as a feature extractor on each frame from a sequence. This is paired with the FDHH 

descriptor to capture the variations across the sequence of features, to produce a feature vector 

to predict the depression scales. 

• Real-time performance can be achieved for Depression analysis  

• An auto-encoder approach was used in the induced emotion task, to try and filter common 

properties across a large set of video sequences. FDHH was captured from the responses to 

produce feature vectors that are trained by another CNN to predict the induced emotions. 

o The results indicated a robust performance against others that participated in the same 

challenge. 
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 Conclusions and Future Works 
 

The overall goal of this thesis was to understand and improve emotion-based studies using a host of 

technologies and frameworks. Deep learning was also introduced and applied to improve the area of 

analysing and recognising emotions. Several frameworks were proposed, along with a novel algorithm, 

and several extensions for an existing temporal motion descriptor. State-of-the-art result have been 

published for Depression analysis, along with other published work to support the contributions made. 

7.1 Conclusion of Contributions 

For facial expression recognition, there has been a lot of research done to attempt and improve the area. 

This includes: 

• In Chapter 3, a thorough test of FER was implemented of various features captured from the 

2D texture and 3D geometric information. From the experiments, the combination of both 

modalities through feature fusion provided a significant increase in performance. 

• Chapter 4 observed and obtained key facial parts using a framework of various facial pre-

processing techniques, along with deep learning techniques for learning.  

• Chapter 5 extended towards temporal data and proposed extensions for the MHH descriptor. 

They have achieved an improvement over MHH and competing results against state-of-the-art 

techniques such as LBP-TOP.  

• Chapter 6 attempted to capture movement within temporal data at the feature level, and a novel 

algorithm (FDHH) was developed for this. FDHH was integrated into a framework consisting 

of deep learning and produced state-of-the-art results. 

7.2 Future Works 

Amongst all the works produced, there are areas to progress and improve further. These can address 

problems found with the proposals for each task.  

7.2.1 Extensions of Motion Descriptor 

The proposed motion extensions produced some interesting results from the experiments in Chapter 5. 

There is a clear indication that the proposed extensions give an improvement over the original MHH 

descriptor. Some extensions benefit certain applications more than others, but generally, always better 

than the MHH descriptors. However, there are still some issues with the proposed extensions that can 

be worked on to improve the algorithms further. These are: 

• It is hard to determine some of the hyper-parameters to select without using searching for 

the best using trial and error 
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• The descriptor can become very large, especially for large frames where there are areas that 

contain no motion 

• The descriptor can vary significantly for applications that have sample sequences with 

different durations 

Further improvements can be implemented to make a more efficient and all-around descriptor for a 

broader range of applications. The TSMHH descriptor can have spatial pooling applied, along with 

some statistical modelling to minimise the number of pattern histograms to capture. This can help 

optimise the descriptor as it can be difficult to know what to set the hyperparameter values for certain 

applications. An indicator that can determine which motion speeds are better to capture can improve 

the quality of the resulting motion histograms and make it easier to determine the right hyperparameter 

values to choose. Removing sparsity from the histograms can make descriptor a lot more efficient in 

memory and speed. In most cases, majority of the motion histograms contain empty bins that contribute 

towards a feature vector large.  

A further processing stage can be developed to highlight the hotspots in which there is significant 

motion captured, to provide a better summarisation of the total motion. For our framework, we proposed 

to use local descriptors like LBP, LPQ and EOH. This may not be the best option as they are not 

designed specifically to work with motion information. Therefore, something more specific to motion 

can provide higher quality motion descriptors, potentially yielding better results. All of these 

improvements can be further work to this descriptor.  

7.2.2 Improvement for Facial Expression Recognition 

In this thesis, there were many works tested for facial expression recognition using texture and 

geometric data. Deep learning was integrated to replace the hand-crafted descriptors to investigate if 

there is an improvement. Based on the outcomes, the following can be considered to further improve 

the works. 

• The deep learning techniques lack sufficient data to be the most effective it can. Therefore, it 

may be good to pre-train a deep CNN on many other databases prior and apply a fine-tuning 

process. 

• Geometric information can be included in the training process that can consist of landmarks 

and depth maps of the face and facial parts. 

• Future tests can include applying the framework, including facial pre-processing, and tougher 

facial images that are obtained in the wild. This can highlight any weakness to the framework 

in a harsh environment. 

This works using the Joint Bayesian approach was a start in the area for FER and deep learning. Further 

works in this area can produce a more effective and robust system. These can include: 
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• Providing further integration to the CNN by incorporating a loss function that can contribute 

towards the training process of the CNN. This can produce a better feature at the fully connected 

layer that is tailored to the metric learning stage. 

• Investigating a binary verification process for each expression, to determine how similar a new 

sample is to 6 separately trained dictionaries. A OneVSAll approach can be used for training 

CNNs separately. 

• Investigate what layer of the network will produce the features to achieve the best Mahalanobis 

distance metric. Facial parts can also be trained individually and combined using Joint 

Bayesian, rather than parameter sharing. 

7.2.3 Dynamic Framework with FDHH 

Chapter 6 demonstrated a novel dynamic descriptor as FDHH, along with the innovative frameworks 

for applications based on emotions. For both tasks, improvements can be made that may help towards 

the performance of the task. With the framework for Depression analysis, a face detection procedure 

can be used to isolate the face across the frames. The generated features are likely to contain less noise 

and perform better. For lengthier episodes of samples and maybe for live streaming, the video can be 

equally segmented throughout the sequence, and a continuous reading between segments can be 

produced. Having short segments can be a way to deal with sudden reactions and emotional stimuli as 

it can be isolated in the segment, and therefore, not affect the whole sequence. 

The FDHH feature can capture better information and consolidate the pattern information better. There 

are other areas of improvement that can make the descriptor more effective for all tasks it is used for. 

These can be applied to: 

• Apply a pre-processing step to ensure that the sequence duration does not create biases towards 

the pattern histograms. 

• Preservation of the original feature in some form may improve the descriptor quality, as 

currently only the changes are kept. 

• Creating a manifold space that can mould the features and show how they change over time. 

• Automatically determine the number of histograms required based analysing the patterns as 

they are detected. 

All the mentioned improvements can be set as future work towards updating the algorithm and its goal. 

By making the process of the frameworks generic, they can be designed to work with applications that 

meet the data format. There definitely is room for improvement here, along with the following stages 

of the framework. 

The scale for inducing emotions can have a different approach by having discrete emotions for this task. 

This can provide a common understanding that most of the public is familiar with, making their 
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emotions more accurate for them to portray. The proposed framework can also be improved in some 

aspects of its goal. The auto-encoder idea can be improved by applying more research in this area. Some 

suggestions include: 

• To pre-train the auto-encoder on specific entities so that the initial parameters already have an 

idea of what to learn.  

• Use a more constructive loss function that can give feedback on how much data is retained 

within that image. 

• Investigate different architectures and the depths of the convolutional filters to see the detail of 

information kept. 

• Investigate if multiple stacked auto-encoders is better than a large single auto-encoder when 

dealing with a large database. 

It may also be better to consider using the convolutional layer for the next stage rather than the output. 

The convolutional layer will contain feature maps of different responses rather than one feature map 

combining all responses like the output does. The FDHH algorithm can then be used on certain feature 

maps with the highest responses to capture variations that are more critical to the objective. All of these 

can be future works to improve individual parts of the system that can be used in many applications, 

and not just specific to the previously demonstrated applications.  
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