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Abstract

Three of the most widely studied software dependency types are the structural,

logical and semantic dependencies. Logical dependencies capture the degree of co-

change between software artifacts. Semantic dependencies capture the degree to

which artifacts, comments and names are related. Structural dependencies capture

the dependencies in the source code of artifacts.

Prior studies show that a combination of dependency analysis (e.g., semantic

and logical analysis) improves accuracy when predicting which artifacts are likely

to be impacted by ripple effects of software changes (though not to a large extent)

compared to individual approaches. In addition, some dependencies could be hid-

den dependencies when an analysis of one dependency type (e.g., logical) does not

reveal artifacts only linked by another dependency type (semantic). While previous

studies have focused on combining dependency information with minimal benefits,

this Thesis explores the consistency of these measurements, and whether hidden

dependencies arise between artifacts, and in any of the axes studied.

In this Thesis, 79 Java projects are empirically studied to investigate (i) the

direct influence and the degree of overlap between dependency types on three axes

(logical – structural (LSt); logical – semantic (LSe); structural – semantic (StSe))

(structural, logical and semantic), and (ii) the presence of hidden coupling on the

axes. The results show that a high proportion of hidden dependencies can be

detected on the LSt and StSe axes. Notwithstanding, the LSe axis shows a much

smaller proportion of hidden dependencies. Practicable refactoring methods to mit-

igate hidden dependencies are proposed in the Thesis and discussed with examples.
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Chapter 1

Introduction

Software systems increasingly and unavoidably evolve to keep up with user require-

ments and maintenance needs [152, 197]. Small program or source code changes

can have unexpected and non-local ripple effects in software systems [102] and this

can complicate software maintenance. For example, adding new functionality to a

component or class in object-oriented (OO) software (composed of inter-dependent

objects with states and behaviours) can affect the behaviour of other essential (and

directly dependent) features throughout the software [170]. As a result of the non-

locality of the impact of change, it is important to ensure that the process of pre-

dicting or identifying the classes that might be impacted by a given change request

(the change impact set) is as efficient or as precise as possible. In other words,

the estimated impact set should mirror the actual change impact set as much as

possible [1, 103, 114]. This process is known as change impact analysis (CIA).

1.1 Change impact analysis

The goal of Change Impact Analysis (CIA) is to reveal potential change impact

sets [102, 159]: software artifacts that might be affected by given change requests

[39]. Techniques and tools have been designed based on static structural [39] and

logical software dependencies [102, 209] to identify artifacts that make up change

1



Introduction: Chapter 1 Dimensions of software coupling

impact sets and to predict further changes that will have to be made when an

artifact is changed. For example, when a software programmer makes a change to a

software artifact, a tool might help suggest further artifacts that will probably need

modifications. According to Zimmermann et al. [210], the tool ROSE correctly

predicts 26% of further files to be changed based on historical co-evolution data.

Briand et al. [34] in their study on CIA adopted the static coupling between objects

(CBO) metric introduced by Chidamber and Kemerer [46] as a binary indicator (0

or 1) of whether two classes are coupled or not, when one class uses the functionality

of another class.

When maintaining OO software systems, developers need to deal with various

inter-dependencies between classes or artifacts [34, 40, 104]. Studies in the area

of software maintenance and evolution have introduced novel dependency identi-

fication techniques that expose new and “Hidden” Dependencies (HD) [190, 205]

between classes, sometimes not captured by source code (structural dependencies)

and also assessed differently from structural dependency assessment. As an exam-

ple of a hidden dependency, File A could be structurally unaware of the existence

of File B in a software system (i.e., when they share no structural dependency), but

it frequently co-evolves with File B [205]. A study by Briand et al. [34] revealed

that

‘if developers are required to handle a large set of dependencies, they

would omit a significant number of them’.

1.2 Dimensions of software coupling

Coupling is a measure of the interdependence between software artifacts [34]. Soft-

ware engineering researchers have proposed tools and techniques to predict where

change impact sets will arise. Most approaches rely on the software coupling infor-

mation derived from static analysis [1, 102].

Various coupling measures have been proposed over the years, such as, dynamic

2
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coupling (i.e., call relationships between classes during program execution), struc-

tural coupling (i.e., structural relationships between classes, such as the number of

method calls between them) [187], logical coupling (i.e., the use of historical data to

identify classes that always co-change) [66] and semantic coupling (i.e., the degree

to which identifiers and comments from classes relate to each other) [155]. While

structural and semantic dependencies play major roles in software evolution, their

relationship has not been empirically investigated in a large-scale empirical study.

Dynamic coupling is centred around call relationships between software artifacts

during program execution (when the software is in use) [11]. Notwithstanding,

investigating dynamic coupling is expensive [12] because of the processes involved,

i.e., extracting data during program execution as well as analyzing the data after

execution. Some researchers have tried to come up with static techniques [120]

for studying dynamic coupling as opposed to dynamic methods. The complexities

involved in analyzing dynamic coupling has led to the other three static forms of

coupling (logical, structural and semantic) becoming widely adopted in software

maintenance and evolution research.

Logical coupling refers to evolutionary or change dependencies that are estab-

lished among software artifacts that are frequently changed together (although not

necessarily structurally related) [102, 148]. It is a measure of the degree to which

software artifacts co-change. This information is derived from historical data [9, 66]

by analyzing patterns, relationships and relevant information of source code changes

mined from multiple versions of software systems in software repositories (e.g.,

GitHub and Subversion) with appropriate repository mining tools (e.g., CVSAnaly

[26, 168, 169]). The research domain concerned with extracting information from

software repositories is widely known as mining software repositories (MSR) [88].

Structural coupling (also known as syntactic dependencies) [148] occurs when-

ever a compilation unit depends on another at compilation or linkage time. Adapt-

ing the definition of coupling as presented in [71]: “There is a directed dependency

between software components A and B if A depends on B in such a way that A

3
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is not operational without B”. In the case of the Java programming language, this

means that A would not compile1 in the absence of B.

In the last few years, a new dimension has been identified as an implicit or hidden

dependency (HD) type, termed “Semantic” coupling [102, 155, 156]. Researchers

have speculated that this coupling type could have an influence on structural and

logical coupling but this has not been empirically investigated in prior research [148].

Simply expressed, semantic coupling is a measure of how loosely or closely related

two software artifacts are, by considering the semantic information embedded in

their comments and identifiers. According to Bavota et al. [21]:

‘the peculiarity of the semantic coupling measure allows it to better

estimate the mental model of developers than the other coupling mea-

sures (i.e., structural or logical). This is because, in several cases, the

interactions between classes are encapsulated in the source code vocab-

ulary (...)’.

1.3 Coupling axes

In Section 1.2, we introduced the different dimensions of software coupling - dy-

namic and static (structural, logical and semantic) software coupling. The different

aforementioned forms of static software coupling (structural, logical and semantic)

capture different and interesting aspects of coupling between software artifacts and

these have previously been combined to derive metrics to support various software

maintenance and evolution activities such as program comprehension to understand

software links [155], change impact analysis (CIA) [75, 102, 103, 145, 163], refac-

toring, fault-proneness [7, 163], and change prediction [89, 126, 185, 202].

These coupling dimension combinations have formed three main coupling axes;

LSe (logical ↔ semantic), StSe (structural ↔ semantic) and LSt (logical ↔ struc-
1Transforming high-level computer programs into machine understandable instructions for ex-

ecution.
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tural). Figure 1.1 depicts the three different axes composed of the coupling dimen-

sions and studied in this Thesis.

Figure 1.1: The three explored coupling axes in this Thesis based on identified gaps in the
literature (see Chapter 2)

On the logical and structural coupling axis, researchers have studied how differ-

ent types of structural relationships between classes influence change propagation

[147]. Others have performed cross-project change prediction using open source

projects [126]. On the logical and semantic coupling axis studies have been con-

ducted on combining semantic and logical couplings to support change impact anal-

ysis in source code [102, 103]. Lastly, on the structural and semantic coupling axis,

structural and semantic information have been combined to capture feature cou-

pling in OO software [163]. Researchers have also performed studies to compare

semantic coupling with structural coupling metrics [75, 155], carry out semantic

decoupling2 [145], capture method level coupling with a combination of structural

and textual information in object-oriented software [163], and also developed new

coupling metrics with a combination of structural and semantic coupling [7].
2reducing the impact of requirement changes
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1.4 Hidden coupling

Kagdi and Maletic have concluded that there is a hidden dependency (HD) between

two classes or two methods if the classes or the methods are changed at the same

time in the past [100]. As Yu et al. stated [205]: ‘hidden dependencies among

software artefacts make both understanding and maintenance difficult’.

In a similar way to logical coupling, complex dependencies are captured by

semantic information which is hard to detect by traditional program analysis tech-

niques [190]. The motivation behind logical and semantic coupling is to capture

dependencies not derived from analysing structural coupling [21].

Petrenko and Rajlich state that “some CIA tools do not discover hidden de-

pendencies, and it is the responsibility of the programmer to correctly identify and

trace hidden dependencies during change impact analysis” [154].

Hidden dependencies arise in the three axes described in Section 1.3 when one

dependency type between class pairs is not mirrored by another dependency type.

With reference to the coupling axes described in Section 1.3, there are three main

scenarios in Table 1.1, which are as follows:

• The class pairs are linked by both types of coupling along the axis (e.g.,

structurally and semantically linked classes). In this case there is an overlap

of coupling types and there are no hidden dependencies. An analysis of either

structural or semantic coupling captures both classes as being linked.

• The class pairs are only linked by one out of the two coupling types along

the axis (e.g., ONLY structurally or semantically or logically linked classes).

In this case there is a hidden dependency depending on the type of coupling

analysis performed (e.g., an analysis of structural dependencies not noticing

a semantic coupling).

• The class pairs do not share any link.

As an example, the contingency Table 1.1 shows the possible occurrences along

6
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the structural and semantic coupling axis.

When pairs of classes are linked both structurally and semantically, we posit

that a dependency is established (denoted ‘E’). If a structural link is present, but

not a semantic one, there could be a strong (denoted ‘S’) missing dependency. On

the contrary, if there is a semantic link, but not the structural one, a weak (denoted

‘W’) missing dependency is detected. When neither a semantic nor structural link is

detected, no dependency (denoted ‘x’) is established. If the structural and semantic

class dependency types are established, the precision achieved when predicting rip-

ple effects of changes can be improved. On the other hand, when dependencies are

hidden or weak, developers will detect a smaller number of dependencies capable of

propagating further change.

The described notion (E, S, W and x) is a novel contribution to the state of

the art in software coupling. This notion and Table 1.1 will be adopted when

demonstrating the proportion of unnoticed class dependencies defined along the

other two studied axes3 in the rest of the Thesis.

For example when there is no co-change history for a pair of classes but these

classes share a structural or semantic link between them, an analysis of co-evolution

or logical coupling will not reveal such connected class pairs. The same applies

when there is a semantic link but not a structural one, and an analysis of structural

coupling does not reveal the class pair because they share only a semantic link. In

this Thesis, we refer to the unnoticed dependencies as hidden.

Table 1.1: Hidden dependencies example

Structural vs Semantic Dependencies
semantic not semantic

structural E S
not structural W x

3The logical and structural coupling axis, and the logical and semantic coupling axis.
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1.4.1 Links between hidden coupling

Previous research [71, 148] has identified that a majority of structural dependencies

are not linked to logical coupling. Among the aims of this Thesis is to investigate

the link between logical and semantic coupling to identify their direct influence on

each other.

A potential finding is the likelihood of a proportion of the hidden dependencies

in the logical and structural axis (class pairs with a logical but not a structural link)

being linked with those in the logical and semantic coupling axis (class pairs with

a logical but not a semantic link) because both structural and semantic dependen-

cies are propagators of ripple effects of change [104, 126]. The interplay between

the three coupling types logical, structural and semantic based on prior work is

introduced in Section 1.5.

1.5 Interplay on the coupling axes

In this Thesis, the term interplay refers to the direct influence of pairs of coupling

dimensions described in Section 1.2 over each other along the three coupling axes

in Figure 1.1.

The interplay between the widely explored coupling dimensions (logical, struc-

tural and semantic coupling) described in Section 1.2 has not been extensively

studied and the degree of their relationship in OO software systems remains vague

[148]. This problems form the core of this Thesis. Thus, the focus of this Thesis is

to empirically investigate the interplay between the three widely studied static OO

software dependencies; the structural, logical and semantic coupling at the class (or

file) level of granularity. This will highlight the extent to which the coupling types

overlap and the proportion of hidden dependencies that need refactoring [190].

We expect that the empirical investigations carried out in this Thesis will reveal

a large overlap between semantic and logical dependencies but a smaller overlap

between structural and semantic dependencies or logical dependencies. This is be-
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cause, prior research by Bavota et al. showed that in several cases, the interactions

between classes are encapsulated in the source code comments and identifiers of

classes and methods [21] and not explicit structural relationships. Other researchers

have identified that semantic dependencies are change propagators [103].

Researchers have laid emphasis on the need to study the interplay between the

semantic and structural coupling as well as between semantic and logical coupling.

Logical coupling has been studied in relation to structural coupling [71, 147, 148,

203] and software quality [54, 210]. However, only one study has investigated the

linear relationship between degrees of structural and logical coupling and on a

limited software sample [203].

Results from prior research has shown that, in general, it is more likely that

two OO software classes will not co-change just because one structurally depends

on the other. However, the rate with which a class co-changes with another is

higher when the former structurally depends on the latter [147]. On the logical

or change coupling side, prior research has reported several cases where software

changes could not be justified using structural dependencies. This means that co-

changes are possibly induced by other indirect kinds of software relationships (e.g.,

semantic coupling) [71, 148].

Geipel and Schweitzer [71] stated that “the question about the causes of change

propagation has been skipped in many studies on change prediction [89, 126, 185,

202, 210] in favour of a predictive approach in which these causes are implicitly

contained in a prediction function or as inputs to a machine learning algorithm".

For these reasons, it is important to empirically investigate the interplay between

the trio of static software coupling types: logical, structural and semantic coupling

in depth. In Section 2.5 of Chapter 2, we describe the interplay between the coupling

dimensions along the three coupling axes: LSt, LSe and StSe.

9
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1.6 Research apparatus

The overarching aim of this Thesis is to synthesize the interplay between the trio of

widely used coupling measurements (structural, logical and semantic) among classes

in object-oriented software.

Research in the area of change impact analysis (CIA) has identified that static

structural coupling metrics are generally associated with change-proneness and an

advantage of studying coupling measures in relation to change propagation is that

they are inherently related to ripple effects since common changes are usually due

to relationships between classes [174] in OO software. However, little focus has been

placed on how frequent pairs of classes are changed together in relation to semantic

as well as the relationship between software architecture and semantic coupling.

These are investigated in this Thesis with a sample of 79 different OSS projects

used in a variety of domains (games, music, teaching, etc.).

Hypotheses help to steer the direction of research as well as predict expected

outcomes [144]. For each research objective, we define related research questions

and hypothesis as summarized in Table 1.2. Related statistical tests are summarized

in Table 1.3 and elaborated upon in Chapter 3.

1.6.1 Research aims and objectives

Following the interplay along the three coupling axes that compose the empirical

studies in this Thesis as outlined in Section 1.5, the following are the detailed

objectives of this Thesis:

Obj1 [To investigate the interplay between structural and logical soft-

ware dependencies] The objective is to evaluate the impact of structural

and logical class dependencies on each other. This will be achieved by inves-

tigating the presence of a linear relationship between the strengths of both

types of coupling between classes and statistically analyzing the overlap of

the coupling types between class pairs to detect the proportion of hidden

10
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dependencies and propose viable refactoring techniques.

Obj2 [To investigate the interplay between logical and semantic software

dependencies] The objective is to evaluate the impact of semantic and log-

ical class dependencies on each other. This will be achieved by investigating

the presence of a linear relationship between the strengths of both types of

coupling between classes and statistically analyzing the overlap of the coupling

types between class pairs to detect the proportion of hidden dependencies

and propose viable refactoring techniques.

Obj3 [To investigate the interplay between structural and semantic soft-

ware dependencies] The objective is to evaluate the impact of structural

and semantic class dependencies on each other. This will be achieved by in-

vestigating the presence of a linear relationship between the strengths of both

types of coupling between classes and statistically analyzing the overlap of

the coupling types.

Solutions to maximize the overlap between structural and semantic dependen-

cies will also be proposed. To improve testing efforts, as well as computational

efficiency and detection of hidden dependencies during class dependency-

based change impact analysis in OO software.

Rationale: In relation to Obj1, Obj2 and Obj3, establishing whether there is

an interplay and a large overlap between the three forms of software depen-

dencies (structural, logical and semantic) at the class level of granularity in

OO software has several applications in the software engineering and main-

tenance domain, including:

1. Prediction of software changes: Geipel and Schweitzer [71] state that

the question about the causes of change propagation has been overlooked

by many researchers in favour of a predictive approach. As such, these

causes are implicitly contained in a prediction function or as input to a

11
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machine learning algorithm in change prediction studies [89, 126, 185,

202, 210]. A strong relationship between logical and structural as well

as semantic coupling provides statistical support for these models and

predictions, thus helping to achieve more focused software maintenance.

2. Focused refactoring effort: if an analysis of structural coupling re-

veals a system designed with low code coupling between classes; when the

analysis of the change history of classes in a software system revealed a

high degree of logical coupling between classes, this will be an indication

of possible targets for restructuring to decrease unnoticeable coupling

between classes in the system [203]. The same scenario applies to the

interplay between structural and semantic coupling.

3. Focused testing effort: the relationship between structural and se-

mantic coupling to change coupling or ripple effects [1, 4, 102, 156] can-

not be overestimated. When changes are made to one class, other classes

with strong structural or semantic coupling to that class also need to be

tested. This is to ensure that the changes in one class do not introduce

regression faults in other classes. If the overlap between structural and

semantic dependencies is large, then these tests only have to be car-

ried out once. Either ONLY semantically coupled class pairs or ONLY

structurally coupled pairs will need to be tested.

4. Architecture reconstruction and monitoring: A strong link be-

tween semantic and structural coupling will help to monitor and update

the software architecture as well as reconstruct it. Research by Dragomir

et al. shows that existing tools for architecture reconstruction and mon-

itoring still lack the needed “ingredients” for reconstructing software ar-

chitecture in the absence of documentation to support the understanding

of a software [56]. Findings from the structural and semantic coupling

axis provide applicable knowledge for architecture reconstruction and

monitoring tools.

12
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1.6.2 Research questions

Research questions were derived from each research objective in Section 1, and

testable hypotheses formulated, as summarised in Table 1.2. An overview of

statistical tests adopted in various parts of the Thesis to test the hypotheses are

outlined in Table 1.3 and further explained in Chapter 3.

1.6.3 Research contributions and beneficiaries

The contributions of this thesis are six-fold5, and can be presented as follows:

C1 – An interplay between software dependencies. This Thesis has probed

and synthesized the interplay between three types of software dependencies

(structural, logical and semantic coupling). This contribution adds knowledge

to the state of the art in the software engineering literature.

C2 – The role of hidden dependencies. This Thesis reveals the percentage of

hidden dependencies in OO software. This is based on an analysis of any

one of the three types of static coupling (logical, structural and semantic)

investigated.

C3 – Refactoring the hidden dependencies. Refactoring approaches are pro-

posed where hidden dependencies occur between structural and semantic cou-

pling. The overall aims of these approaches are to reduce testing and main-

tenance efforts.

C4 – Prediction of software changes. Using structural coupling information to

predict unplanned future co-changes of classes is a realistic objective [147].

But we contribute that this objective is realistic with the support of semantic

coupling metrics. The rationale is the small overlap between structural and

logical dependencies as well as between semantic and logical coupling.
5The contributions and beneficiaries of this Thesis are described in detail in Chapter 7.
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Table 1.2: Summary of research questions

Research Objective Research Questions Null Hypotheses H0 Alternative Hypotheses H0
Obj1 Is there a large

overlap between
structural and
logical coupling?
Is there a linear re-
lationship between
structural and logi-
cal class dependen-
cies?

H0.1 There is no lin-
ear relationship be-
tween the strengths
of structural and
logical class depen-
dencies.

H1.1 There is a linear
relationship between
the strengths of struc-
tural and logical class
dependencies.

Obj2 Is there a large
overlap between se-
mantic and logical
coupling?
Is there a linear re-
lationship between
semantic and logi-
cal class dependen-
cies?

H0.2 There is no lin-
ear relationship be-
tween the strengths
of semantic and log-
ical class dependen-
cies.

H1.2 There is a linear
relationship between the
strengths of semantic and
logical class dependencies.

Obj3 Is there a linear re-
lationship between
structural and se-
mantic class depen-
dencies?
Is there a statis-
tically significant
association be-
tween structural
and semantic class
dependencies?

H0.3 There is no
linear relation-
ship between the
strengths of seman-
tic and structural
class dependencies.
H0.4 There is no
significant associa-
tion between struc-
tural and semantic
class dependencies.

H1.3 There is a linear
relationship between the
strengths of semantic and
structural class dependen-
cies.
H1.4 There is a significant
association between struc-
tural and semantic class
dependencies.
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Table 1.3: Summary of statistical tests per hypothesis

Hypotheses Statistical test What the test establishes
H0.1, H0.2, H0.3 Spearman’s rank correla-

tion ρ in the R sta-
tistical environment (e.g.,
cor.test(vector1, vector2,
method = “spearman”)4)

The strength of the link
between two variables. In
this case, the strength
of the three types of
static software dependen-
cies (structural, logical
and semantic) between
OO software classes.

H0.4 Chi-Squared and Fisher’s
exact independence test in
the R statistical environ-
ment (e.g., chisq.test(x),
fisher.test(x))

If there is a significant
association between two
variables. In this case
pairs of types of class cou-
pling in OO software.

C5 – Computational efficiency. Results have revealed that an identifier-based

technique is more efficient than the corpora-based technique and reflects rel-

atively analogous semantic similarity metrics.

C6 – Tool. This Thesis presents a tool developed and adopted to automate the

extraction of semantic coupling metrics using a corpora based approach 6.

The following are those who have been anticipated to benefit from the contri-

butions of this Thesis:

1. Software testers: Software testers are part of the beneficiaries of the work.

n this Thesis as they will be able to focus their testing efforts assisted with

knowledge about the interplay between software dependencies. As an exam-

ple, when changes are made to one software class, other classes that have

strong semantic or structural coupling to that class also need to be tested.

2. Software comprehension, evolution and maintenance tool develop-

ers:

Software maintenance tools need to consider semantic and structural depen-

dencies because these types of software relationships are essential in minimiz-
6The tool can be downloaded at: https://github.com/najienka/SemanticSimilarityJava
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ing maintenance efforts, and propagate ripple effects of change. As such, their

comprehension is important in improving software understanding and testing.

3. Software maintainers:

Structural and semantic dependencies are propagators of ripple effects. “If

developers are required to handle a large set of dependencies, they would

miss a significant number” [34]. We have proposed techniques to bridge the

gap between semantic and structural dependencies (software architecture).

1.7 Thesis structure

The following parts of this Thesis are structured as follows:

Chapter 2 presents an indepth review of the literature context of this study

on several areas including change impact analysis, software maintenance, semantic,

structural and logical coupling as well as the interplay between the three coupling

types. Chapter 3 presents the research methodology of this study including the case

study selection criteria, data extraction, coupling measurement and adopted statis-

tical tests. Chapter 4 presents an empirical study carried out on 79 OSS projects to

understand the interplay between structural and logical class dependencies in OO

software.

Chapter 5 presents a study carried out on the same sample of 79 OSS projects to

investigate the interplay between semantic and logical class dependencies. Chapter

6 probes the interplay between semantic and structural class dependencies in OO

software and their overlap in the same sample of software projects.

Empirical studies in Chapters 4, 5 and 6 each include a worked example. The

examples use software projects of varying sizes which are representative of the stud-

ied sample to illustrate the methodology adopted to resolve the research questions.

Chapter 7 concludes this Thesis with directions for further research.

Section A.1 in Appendix A summarizes the software coupling metrics adopted in

the literature till date. In Appendix B, Section B.1 shows the statistical outcomes
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of the empirical analysis carried out and described in Chapter 4. Section C.1 in

Appendix C exhibits the outcomes of the empirical analysis carried out in the

study presented in Chapter 5. In Appendix D, Section D.1 presents the statistical

outcomes of the empirical study demonstrated in Chapter 6.

A list of cited research publications in this Thesis immediately follows Chapter

7. Afterwards, a glossary of frequently adopted software engineering terminologies

in this Thesis is presented.

1.8 List of publications
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Chapter 2

State of the art

2.1 Introduction

In the previous chapter, we gave an introduction to the Thesis and outlined its

structure. In this chapter, we describe related work to the research carried out

in this Thesis. First related concepts are defined, such as empirical software engi-

neering, software maintenance and evolution and OO software. Thereafter, issues

in maintaining evolving software systems are outlined. Finally software measure-

ment metrics, coupling metrics and types of coupling (interdependence) between

OO software classes are described.

The chapter is structured as follows: in Section 2.2 we describe the issues around

maintaining evolving software systems in order to ensure that they are usable,

reliable and satisfy all necessary requirements. In Section 2.3 we explore the research

in the areas of software change impact analysis and changeability prediction in OO

software in relation to coupling. In Section 2.4 we discuss state of the art in coupling

and introduce coupling sub-types in Subsections 2.4.1, 2.4.2 and 2.4.3. Finally, the

three coupling types are synthesized and we explore studies on their interplay in

Subsection 2.5. A summary of this chapter is presented in Section 2.6.
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2.2 Software maintenance and evolution

Software systems frequently evolve to meet new change requirements [86] as al-

most all software that is useful and successful stimulates user-generated requests

for change and improvements [27].

It is not uncommon for such systems to progress through years of development

history, a number of developers, and a multitude of software artifacts including

millions of lines of code. Software evolution is sometimes described as software

maintenance [27]. However, the two terms refer to the same overall phenomenon

but with different emphasis. The term “evolution” brings the focus on the gradual

changes implemented into the system. When using the term “maintenance”, the

emphasis is on maintaining stakeholder satisfaction [86] with the software over its

application lifetime [47, 61].

Software maintenance tasks have been split into three categories:

• Corrective: correction of faults.

• Adaptive: improving usability in a changed environment.

• Perfective: improving performance, maintainability or other software attributes.

Burd and Munro [38] added a fourth category – Preventive: updating the software in

order to improve upon its future maintainability without changing its current func-

tionality. Von Mayrhauser and Vans [193] added two further categories – Reuse:

understanding the problem, finding a solution in a closely related software com-

ponent, locating and integrating that component in the system. Code Leverage:

restructuring solution to fit into the use of predefined software components. This

categorization has been reproduced in several software engineering (SE) research

articles [44, 118, 119, 132, 158, 178].

In the context of OO software, Kung et al. [114] classified source code changes

into four types:
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• Data change. Updating the definition, declaration, access scope, access mode

and initialization of any datum (a global variable, a local variable, or a class

data member).

• Method change. A member function can be changed in various ways. This is

classified into three types: component changes, interface changes, and control

structure changes.

Component changes include: (1) adding, deleting, or changing a predicate, (2)

adding, deleting a local data variable, and (3) changing a sequential segment

Structure changes include: (1) adding, deleting, or modifying a branch or a

loop structure, and (2) adding, or deleting a sequential segment.

The interface of a member function consists of its signature, access scope and

mode, its interactions with other member functions (for example, a function

call). Any change on the interface is called an interface change of a member

function.

• Class change. Direct modifications of a class can be classified into three types:

component changes, interface changes and relation changes. Any change on

a defined/redefined member function or a defined data attribute is known as

a component change. A change is said to be an interface change if it adds, or

deletes a defined or redefined attribute, or changes its access mode or scope.

A change is said to be a relation change if it adds, or deletes an inheritance,

aggregation or association relationship between two classes.

• Class library change. These include: (1) changing the defined members of a

class, (2) adding, or deleting a class and its relationships with other classes.

(3) adding, or deleting a relationship between two existing classes, (4) adding,

or deleting an independent class.

Software maintenance is the dominant lifecycle (Figure 2.1) activity for most

practical systems [28]. The cost of software is essential. Improving software mainte-
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Figure 2.1: A simple view of software development ([189])

nance and development is an involved and costly task, with direct financial impact.

In 2010 for example, global software expenditures amounted to $229 billion [29].

Maintenance, in its widest sense of “post deployment software support” is likely to

continue to represent a very large fraction of total system costs [197]. As a result,

it has become one of the most complex, crucial and costly disciplines within soft-

ware engineering [106, 197]. Knowledge of the product(s) maintained, maintenance

processes and communication skills is very important for achieving quality software

and for improving maintenance and development processes [105].

Program comprehension is a major factor in providing effective software main-

tenance and enabling successful evolution of software [193]. Burd and Munro [38]

proposed a number of metrics for the assessment of code maintainability while mak-

ing the assumption that such assessments can at least partly be expressed in terms

of comprehensibility.
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The famous eight laws of software evolution by Lehman et al. have been widely

used in software evolution research [136]. These laws emphasize the E-type Systems;

software systems that solve a problem or implement applications in the real world

[115]. Research suggests that several kinds of issues arise as these systems evolve.

The 17 most important research challenges in software evolution have been outlined

by Mens et al. [137].

2.3 Static change impact analysis (CIA)

Maintainability is largely determined by how well a system supports typical mainte-

nance tasks, such as change impact analysis or regression testing [34]. Interestingly,

prevalent OO programming languages have been reported to be a difficult case for

impact analysis [197]. For instance, typical of OO systems is that implementations

of methods or functions in classes tend to be much smaller than subroutines in

a procedural system. Often, methods in one class just invoke methods in other

classes, thus passing requests to another class.

A ripple effect is a phenomenon that affects other parts of a system on account of

a proposed change. Small source code changes can have unexpected and non-local

effects in software systems and this complicates software maintenance, e.g., adding

a new method to a class may affect the behaviour of other methods throughout

the program [170]. Hence, software developers or maintainers need to be aware of

the methods or classes that will be affected by changes when a class or methods is

changed [34, 181].

The task of an impact analysis technique is to estimate the (complete closure

of) ripple effects and prevent side effects of a proposed change. The scope of the

analyzed and estimated software artifacts may include requirements, design, source

code, and/or test cases [102].

According to Ryder and Tip [170], “change impact analysis is a collection of

techniques used to determine the effects of a set of source code changes”; this
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involves analyzing programs to detect software artifacts that are likely to be affected

by a given change or a set of source code changes made in software systems. In

other words “providing an ordering of software artifacts where ripple effects are

more likely” [34] (i.e., “if you change this, you will also have to change this/these”.

Dependency analysis (impact analysis of software artifacts across the same levels

of abstraction, e.g., source code to source code) and traceability analysis (impact

analysis of software artifacts across different levels of abstractions, e.g., source code

to documentation or design) are the two primary methodologies for performing

impact analysis [103].

Dependency-based change impact analysis techniques can be divided into two

(i.e., static and dynamic). Static techniques involve collecting structural, logical and

semantic dependency information depending on whether the first feature or class

to changed is known or not [74] given a change request. Static is preferred over

dynamic techniques because dynamic analysis are associated with high costs, as it

involves the monitoring and collection of dependency information of software during

execution, it usually produces false negatives, i.e., some of the actual impact sets are

not identified [181]. However, in cases where textually similar information cannot

be identified in the classes, an estimated impact set based on semantic information

will have low precision. In addition, in cases where there is no historical data or

new artifacts have been introduced which are likely to be co-changed in following

revisions, historical change information will yield an estimated impact set with a

low precision1. This will also lead to unnoticeable dependencies [32].

A typical dependency based CIA technique takes a software entity in which a

change is proposed or identified, and estimates other entities that are also potential

change candidates, referred to as an estimated impact set, which is then compared

with an actual impact set to evaluate the accuracy of the technique [102, 210]. It

is noteworthy that this actual impact set can vary because changes can be imple-
1Precision is a measure of the exactness of a prediction set, while recall is a measure of its

completeness [123].
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mented differently [181].

Queille et al. [159] proposed an interactive process in which the programmer,

guided by dependencies among program components (i.e., classes, functions), in-

spects components one-by-one and identifies the ones that are going to change.

Structural coupling measures have been used to support CIA in OO software

[34, 198]. Wilkie and Kitchenham [198] investigated if classes with a high CBO

(Coupling Between Objects) metric are more likely to be affected by ripple effects

of change. The CBO for a class is the count of the number of other classes to which

a class is structurally coupled. Although CBO was found to be an indicator of

change-proneness, it was not sufficient to account for all possible co-changes.

Briand et al. [34] investigated the use of coupling measures and derived deci-

sion models for identifying classes likely to be changed during impact analysis in a

commercial C++ system. The results of an empirical investigation of the structural

coupling measures and their combinations showed that the coupling measures can

be used to focus the underlying dependency analysis and reduce impact analysis

effort because ripple effects are linked to structural coupling. On the other hand,

the study revealed a substantial number of ripple effects, which are not accounted

for by the highly structurally coupled classes.

Prior research [92, 162, 166] has proposed tools that can help navigate and prior-

itize system dependencies during various software maintenance tasks. For example,

let us assume that during maintenance a given class A.java is identified to require

modifications. Based on a static source code analysis, a tool could quickly provide

the maintainer with a list of other classes to which class A.java is coupled to, ranked

by their degree or strength of coupling with A.java. This would restrict the scope

for a more refined, focused and detailed dependency analysis, and help to contain

the explosion of dependencies that we usually observe in OO software [34].

Semantic coupling has also been applied during CIA. Poshyvanyk et al. [156]

investigate the use of the conceptual coupling measures during change impact anal-

ysis. The paper reports the findings of a case study in the source code of the
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Mozilla web browser. Kagdi et al. [102] combined conceptual and logical coupling

for change impact analysis. Firstly, they select the first software entity (e1) for

which IA needs to be performed. Secondly, they compute the conceptual coupling

of e1 and other entities from the version of a software from where it is selected. Af-

ter that, they mine commits (only commits relating to versions before the version

in the previous step are considered) from the source code repository and compute

the entities that are logically coupled to e1. Finally, they compute the estimated

impact set (EIS) from the set of computed conceptual and logical couplings. They

found out that combining both approaches out-performed using each approach on

its own at the class and method level or granularity. Similarly, Sun et al. identified

that combining semantic and logical class dependency information produces esti-

mate impact sets with higher accuracy compared to individual techniques [74] and

combinations (structural + logical, semantic + structural). However, the precision

produced in their study for this combination was low (0.38) with recall of 0.61.

According to Oliva and Gerosa [148], an integrated view of both types of depen-

dencies (logical and structural) should improve the effectiveness of both software

change and maintenance activities. Research that aims to build visualization tools

that comprise both types of dependencies will also be feasible. Table 2.1 summarizes

the contributions and gaps identified in the studies evaluated in this section.

2.4 Software dependencies

Henderson-Sellers et al. [90] state that strong coupling complicates a system since

a module is harder for a software engineer to understand, and change, if it is highly

interrelated with other modules. “Software complexity can be reduced by designing

systems with the weakest possible coupling between modules” [90].

Present-day software development projects result in systems containing a large

number of interdependent (interrelated) programs or components [189]. Studies

have demonstrated the relationship between coupling and external software quality
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Table 2.1: Summary of findings on software dependencies and change impact analysis

Study Contributions Gaps
[159] An interactive process in which the

programmer, guided by dependen-
cies among program components (i.e.,
classes, functions), inspects compo-
nents one-by-one and identifies the ones
that are going to change.

[198] Investigated if classes with high struc-
tural CBO (Coupling Between Objects)
coupling metric values are more likely
to be affected by change ripple effect.

CBO was found to be an indica-
tor of change-proneness in gen-
eral, but it was not sufficient
to account for all possible co-
changes [34].

[34] Coupling measures can be used to focus
the underlying dependency analysis and
reduce impact analysis effort.

CBO highlighted the change-
proneness of only a subset of
classes [34].

[92, 162, 166] Tools that can help navigate and priori-
tize system dependencies during various
software maintenance tasks.

[156] Investigated the use of the conceptual
coupling measures during change im-
pact analysis.

It is possible that not all change
dependencies can be captured by
semantic coupling measurement
only [1]. In Chapter 5 the inter-
play between logical and seman-
tic dependencies is investigated.

[102] Combined conceptual and logical cou-
pling for change impact analysis.

CIA method based on evolution
history is based on past opera-
tions and already existing change
dependencies [175]. Therefore, it
can lead to incorrect or incom-
plete results notably when new
artifacts are introduced in the
software.
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attributes, such as fault-proneness, and the application of coupling to software

maintenance tasks, such as impact analysis, finding bugs, guiding testing effort,

and assessing change impact [163]. Coupling metrics are OO software metrics that

measure the interdependence between a given component and other components in

software projects.

According to Capiluppi et al. [41], coupling “is the union of all the includes,

dependencies and functions calls (i.e., the common coupling) of all source files”.

Various coupling measures have been proposed over the years: logical coupling is

a measure of the degree to which two or more components change together or co-

evolve, based on the historical data of modifications; semantic coupling captures

the degree to which the identifiers and comments from different classes relate to

each other [21, 22, 73, 156, 160]; structural coupling is a measure of the structural

or source code dependencies between software components e.g. classes, such as

the number of method calls between them, or the inheritance relationships, while

dynamic coupling is based on dynamic analysis of systems [11, 140, 163]. This

Thesis is centered around three of these four types of coupling; structural, semantic

and logical. In Subsections 2.4.1, 2.4.2 and 2.4.3 we discuss these three types of

software coupling in the context of OO software.

2.4.1 Logical coupling

In software engineering, the term “logical coupling” (also known as “change cou-

pling” [149]) captures the extent to which software artifacts have been co-changed

and this information is derived by analyzing historical patterns, relationships and

relevant information of source code changes mined from multiple versions (of soft-

ware systems) in software repositories (e.g., Subversion and Bugzilla) [102, 203].

If two classes in an OO software system are frequently changed together during

development, in other words, both classes have often been part of the same commits

(changes simultaneously submitted to the version archive) this reveals an implicit

dependency and since this information stems from the evolution of the software,
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this coupling concept is also called evolutionary coupling2 [24, 25, 53, 150].

The concept of “logical coupling” was first introduced by Gall et al. [66] to detect

implicit relationships between modules [53]. The technique that they proposed uses

information from the CVS version control system to detect change dependencies

between the modules of a software system. They used logical coupling to analyze the

dependencies between the different modules of a large telecommunications software

system and showed that the approach can be used to derive useful insights into the

architecture of the system.

Kagdi [99] infers that by using the version history of a software system it is

possible to identify or to predict software artifacts that are likely to co-change.

This is done by analyzing revisions or commits, i.e., co-changed artifacts checked in

together and associated metadata (e.g., date and text message), stored in software

repositories (repositories store metadata such as user-IDs, timestamps, and com-

mit comments in addition to the source code artifacts and their differences across

versions). In this Thesis, we are only interested in commits that include files with

the .java extension. We have studied software written in the Java programming

language in this Thesis because Java is a popular language among open-source soft-

ware projects [111, 138, 201] and because of the wide range of tools available to

analyze software projects built using the Java programming language. The related

terminologies associated with logical coupling are further defined.

A “Software change history” (SCH) is a set of change-sets (commits) submitted

to the source-control repository during the evolution of a system in the time interval

λ. A revision is a committed change in the history of a file or set of files. It is one

snapshot in a constantly changing project. A repository is the master copy where

source-control or version-control systems (e.g., CVS, Subversion, Github) store a

projects full revision history. Each project has exactly one repository [6]. These

terminologies are used in various chapters of this Thesis. Examples of repositories
2Evolutionary coupling and Logical coupling refer to the same concept (change dependency).

For example, when file A changes, file B also changes.
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are modern source-control systems, such as Github, Subversion and version-control

systems such as CVS are used to infer logical couplings between artifacts [100].

“Logical couplings are then used to infer prediction rules of the form e1 → e2. Such

rules indicate that should the software entity e1 change, the entity e2 is also likely

to co-change” [99].

Logical coupling is measured in terms of two established measures, support and

confidence [24] introduced by Zimmermann et al. [208]. Support and confidence

thresholds are used to filter logical dependencies (to filter out dependencies whose

value of confidence is too low when extracting logical coupling data from version

control systems) [150]. The support value of a coupling counts how often the two

coupled software artifacts were changed together. Additionally, the confidence value

of a coupling normalizes the support by the total number of changes of one of the

artifacts and it is a measure of the strength of their co-evolution. While support is

a symmetric metric, confidence is not because of its asymmetric normalization.

According to Yu [203], it should be noted that the value for support does not

fully represent the co-evolution of two software components. Logical coupling is

directional thus A −→ B and B −→ A will have different meanings. The former cause-

effect rule states that changes made to file/class A resulted in changes in B, while

the later states that changes in B caused changes in A. The support ratios for these

two rules will be different.

The process of analyzing data in repositories to extract information on logical

couplings of software artifacts is called mining software repositories (MSR) [102].

Several tools and approaches have been used in the literature to mine software

repositories, logs, commits to extract logical couplings among software artifacts. In

this Thesis we have adopted the CVSAnaly developed by other researchers [167, 168]

tool to mine the repositories of the software projects studies to extract their change

history. The tool is compatible with CVS, Subversion (SVN) and Git and has been

widely used in MSR research. It extracts the data out of logs and stores them in

SQL database tables.
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Working at a finer granularity level, Zimmermann et al. [210] used CVS logs

for detecting logical coupling between source code entities. Association rules based

on itemset mining were then formed from the change-sets and used for change-

prediction. Ying et al. [202] used a similar technique for identifying files that fre-

quently change together.

Gall et al. [66] used window-based heuristics on revision logs for uncovering

change patterns, and [72] for studying characteristics of different types of changes.

Sun et al. [182] classified various change types (CT) at different granularity levels

of OO programs (class, method and field) - particularly for Java programs. Ta-

bles 2.2, 2.3 and 2.4 show these change types (CT) and their meanings. Table 2.2

demonstrates the types of modifications that can be made to classes in OO soft-

ware. Table 2.3 demonstrates the types of changes that can be made to methods or

functions in software. Lastly, Table 2.4 shows the types of changes that are made

to fields in software.

Table 2.2: Class change types

CT Meanings
AC Add a common class (a class declaration)
DC Delete a class (including all its members)
IAC Increase "accessibility" of the class("private" is modified to "public")
DAC Decrease "accessibility" of the class("public" is modified to "private")
AFC Add modifier "final" to the class
DFC Delete modifier "final" of the class
ASC Add modifier "static" to the class
DSC Delete modifier "static" of the class
AAbC Add modifier "abstract" to the class
DAbC Delete modifier "abstract" of the class
CNC Change name of the class
APC Add a "parent" to the class
DPC Delete a "parent" of the class
CPC Change the "parent" of the class

2.4.2 Structural coupling

According to Poshyvanyk and Marcus [155], structural coupling is measured or

determined by program analysis and it is directional [203]. There is a directed
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Table 2.3: Method change types

CT Meanings
AM Add a common method (a method declaration)
DM Delete a method (including all its statements)
IAM Increase the "accessibility" of the method("private" is modified to "public")
DAM Decrease the "accessibility: of the method("public" is modified to "private")
CM Change the statements within the method body
AFM Add modifier "final" to the method
DFM Delete modifier "final" of the method
ASM Add modifier "static" to the method
DSM Delete modifier "static" of the method
AAbM Add modifier "abstract" to the method
DAbM Delete modifier "abstract" of the method
CRM Change "return type" of the method
CNPM Change "name of the parameters" of the method
CPM Change "parameters" of the method except for the CNPM
CNM Change "name" of the method

Table 2.4: Field change types

CT Meanings
AF Add a common field (a field declaration)
DF Delete a field
IAF Increase "accessibility" of the field("private" is modified to "public")
DAF Decrease "accessibility" of the field("public" is modified to "private")
AFF Add modifier "final" to the field
DFF Delete modifier "final" of the field
ASF Add modifier "static" to the field
DSF Delete modifier "static" of this field
CTF Change "type" of the field
CNF Change "name" of the field
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dependency between two classes A and B if A depends on B in such a way that A

is not operational without component B [71].

Singh et al. have stated that “an incoming coupling exists when a class provides

its services to other classes”. “While an outgoing coupling exists when a class uses

the services of another class” [177]. They represent incoming coupling with an arrow

from the caller class to the called class and results in their study show a low negative

correlation between incoming coupling and change as well as outgoing coupling and

change. In their example representation C⇒A⇒B; class A is incoming coupled with

C because its method provides service to a method in C. On the other hand, A is

outgoing coupled with class B because its method used a method of class B.

In the case of the Java programming language; this means that A would not

compile (converted into a machine-code or lower-level form in which the program

can be understood and executed by a computer) in the absence of B. Furthermore,

the relationships “class A depends on class B” and “class B depends on class A”

have different effects on software evolution. Geipel and Schweitzer [71] infer that

if A structurally depends on B, changes made to B can lead to changes to A, but

not the other way round. However, this will not be the case if the coupling type is

symmetric or bi-directional (e.g., semantic coupling, described in Section 2.4.3).

Geipel and Schweitzer [70] model OO software as a network of classes which are

dependent on each other. Consequently, this network may be represented as a call

graph containing nodes and edges or as an adjacency matrix. They refer to the

dependency matrix as D were Di,j = 1 means that i depends on j. Di,j = 0 on the

other hand is interpreted as independence. There is a dependency between classes

i and j if i extends or implements j, i calls a method provided by j, i references

members of j, or i uses j as member or variable [70]. In each of these cases Di,j

is set to 1. It is important to note that D is an asymmetric matrix and D is only

valid at one particular point in time because software systems evolve, so does their

structure or dependency network: classes are changed, old ones removed, new ones

added to the system and so too dependencies between classes.
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The constructs of most OO programming languages such as C, C++, and Java

can induce various types of structural relationships [63, 157, 197]. A method calls

another method, a class extends another class, or a class aggregates objects of

another class - all of these call relationships create a direct structural dependency

between two classes. These static structural code dependencies are most frequently

used when analyzing or leveraging structural coupling [24]. In this study, we have

leveraged these metrics when computing the strength of the structural coupling

between two classes.

Structural coupling (simply called “coupling” in some studies [117, 146, 203, 204]

is still considered to be an imprecise measure of software complexity [146]. Many

researchers have empirically investigated and identified the relationship between

structural coupling and the external quality factors of software systems such as

fault-proneness and maintenance [21, 84], change impact analysis [34, 74, 102, 156,

156, 163], re-engineering, reuse, change propagation, and clone management [21].

The well known CBO metric (coupling between objects) has been proposed in

the past to quantitatively define the structural coupling of a class by Chidamber

and Kemerer [46]. Wilkie and Kitchenham [198] state that the “CBO for a class is

a count of the number of other classes to which it is (structurally) linked”. In these

studies ([13, 122, 126]) they performed change predictions implicitly using static

(structural) coupling metrics initially proposed by [46], such as coupling between

objects (CBO), response for a class (RFC), lack of cohesion (LCOM), weighted

methods per class (WMC) and in addition, sources lines of code (SLOC) as the

input for their prediction models.

Briand et al. [34] analyzed the C++ classes in a commercial OO software. Using

its OO software metrics, they evaluated the impact of future changes. The set of

OO coupling measures explored in the study [34] include the: CBO (coupling be-

tween objects); MPC (Message passing coupling, i.e., number of references between

classes); the number of static invocations in class C of methods in class D); DAC

(Data abstraction coupling, i.e., the number of attributes in a class C that have
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class D as their type); and PIM (number of method invocations in C of methods in

D. . Takes polymorphism into account).

Briand et al. [32] developed a framework to compare various forms of coupling.

They stated that it is often difficult to determine how various coupling measures

relate to one another and for which application they can be used. As a conse-

quence, it is very difficult for practitioners and researchers to obtain a clear picture

of the state of the art in order to select or define measures for OO systems [32, 33].

Morasca et al. [143] also state that “a large number of measures have been proposed

in the literature to measure software attributes (e.g., size, complexity cohesion and

coupling)”. Those proposed measures might not be adequate for the software at-

tributes they purport to measure. The authors showed how a hierarchical axiomatic

framework can be constructed to support the definition of consistent measures for

a given software attribute at different levels of measurement [143].

2.4.3 Semantic coupling

Some studies [16, 21, 22, 23, 103, 156, 160] have used the term “semantic”, while

others have used the term “conceptual” [73] to describe the same concept. Poshy-

vanyk et al. [156] state that conceptual coupling captures the degree to which the

identifiers and comments from different classes relate to each other. Gethers et

al. [73] add a twist to the definition and state that conceptual coupling captures

the extent to which domain concepts and software artifacts are related to each

other. However, both definitions have things in common. They are limited to the

underlying meanings of unstructured text in the source code of software entities

(e.g., classes) and how these underlying meanings relate to each other. Further-

more, this relationship is derived in the form of metrics (-1 to 1, where 1 = high

semantic coupling [155]).

Identifiers used by programmers for names of classes, methods, or attributes

in source code or other artifacts contain important information and account for

approximately half of the source code in software [102]. These names often serve
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as a starting point in many program comprehension tasks. Hence, it is essential

that these names clearly reflect the concepts that they are supposed to represent, as

self-documenting identifiers decrease the time and effort needed to acquire a basic

comprehension level for a programming task [102].

In most studies, semantic coupling was used (alongside structural or logical

coupling) to support a number of software activities such as change impact analysis

[102, 103], file coupling [75], feature coupling [73, 163], fault proneness [7] and

modularisation [17, 18, 22].

Kuhn et al. [113] proposed the use of information retrieval techniques to exploit

linguistic information found in source code, such as identifier (i.e., class or method)

names and comments. They introduce semantic clustering, a technique based on

latent semantic indexing (LSI) and clustering to group software artifacts that use

similar vocabulary. A highlight of their approach is that it is language independent

as it works at the level of identifier names.

The underlying mechanism widely used in majority of the studies to extract and

analyze the semantic information from the source code is Latent Semantic Indexing

(LSI)3 or Vector Space Model (VSM)4. The steps taken to extract and analyze the

semantic information from source code as explained in [163] and adapted by other

studies - are explained further in Chapter 3.

An example of semantic coupling between methods is presented in [102]. The

study shows how two methods addShape() and removeShape() shown in Figures 2.2

and 2.3 are highly semantically related (semantic similarity = 0.78) due to them

containing similar terms (the term "shape" is highlighted to visualize its contribu-

tion to the computed metric). A tool to automate the semantic coupling metrics

extraction process for Java classes in OO software systems has not been developed

as at the time of writing this Thesis and compared to previous studies, we have ad-

dressed this gap by developing a tool. Rilling et al. [165] identified diverse tasks in
3LSI is an advanced information retrieval (IR) technique which identifies the relationships be-

tween terms and concepts in unstructured text.
4Transforming documents into vectors and computing their cosine similarities
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Figure 2.2: A method named addShape() from KOffice showing the conceptual information that
is latent in (some of the) identifier names, adapted from [102]

software maintenance where the use of semantic technologies can be beneficial, such

as traceability, system comprehension, software artifact analysis, and information

integration.

2.5 Interplay on the coupling axes

OO software usually evolves to satisfy modification requirements [86]. Understand-

ing the characteristics and initiators of changes aids testers and system designers

to improve the quality of software [194]. In Sections 2.4.1, 2.4.2 and 2.4.3 the three

software coupling dimensions explored in this Thesis are introduced and described.

In this section, we will evaluate prior research on the interplay between the

coupling dimensions along three different axes; LSt, LSe and StSe described in

Section 1.2 of Chapter 1.
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Figure 2.3: A method named removeShape() from KOffice showing the conceptual information
that is latent in (some of the) identifier names, adapted from [102]

2.5.1 Interplay on the logical and structural (LSt) coupling axis

In a seminal study on the Linux kernel, 12 classes (written in C) were studied from

the kernel. It was shown that structural coupling between classes causes them to

be co-changed and that plays an important role in the measurement of co-evolution

(i.e., coupling leads to co-evolution) [203].

D’Ambros et al. [55] studied the relationship between co-changes and bugs, and

found a relationship. The authors enriched their findings by using OO software

metrics, but the correlation between these metrics and co-change patterns were not

analyzed. In this Thesis, we analyze the linear correlation between the degree of the

structural and logical as well as semantic coupling between class pairs in a sample

of OO software projects.

Kafura et al. [91, 98] found strong correlations between software metrics based

on information flow among system components and the number of changed source

lines in the Unix operating system. Kitchenham et al. [110] were not able to validate

the findings in [98]. However, they found that change was related to other metrics

such as fan-out, size and number of branches.
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Using a syntactic complexity metric (SynC), Basili et al. [15] observed a corre-

lation between this metric and software change in 19 student developed software

projects. Binkley and Schach [31] found out that their coupling dependency met-

ric (CDM) and change were correlated. In summary, as discussed by Shepperd

and Ince [176], some researchers found strong relationships between static measures

and change or defects but other researchers observed weaker relationships. Most

of those studies mentioned by Shepperd and Ince involved correlation analysis or

linear regression models.

Gall et al. [66] were the first to use co-evolution to represent coupling. They

developed a technique called CAESAR for detecting change patterns and applied

it to a large Telecommunication Switching System with a 20-version history. Their

approach identified logical dependencies among modules (hidden in source code) in

such a way that potential structural shortcomings could be identified and further

examined, pointing to restructuring or re-engineering opportunities. Rather than

dealing with millions of lines of code they used structural information about pro-

grams, modules, and subsystems, together with their version numbers and change

reports for a release to discover common change behavior (i.e., change patterns) of

modules and identified potential dependencies among modules, and validated these

potential dependencies by examining change reports that contain specific change

information for a release.

Zimmermann et al. [208] analysed the revision history of individual components

and functions to detect the fine-grained coupling (they noticed that components

with strong co-evolution also have strong structural coupling but did not provide

empirical evidence). In this study, we empirically investigate the interplay between

structural, logical and semantic coupling using statistical methods described in

Chapter 3.

Differently from this study which focuses on the class level of granularity in OO

software, at the method or feature level of granularity Mondal et al. [142] have in-

vestigated the effects of method sharing (among different functionality) on method
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co-changeability and source code modifications. They proposed and empirically

evaluated two software metrics, (i) COMS (Co-changeability of Methods), and (ii)

CCMS (Connectivity of Co-changed Method Groups) and investigated the impact

of CCMS on COMS and source code modifications. Their comprehensive study on

hundreds of revisions of six open-source software projects covering three program-

ming languages (Java, C and C#) suggests that higher CCMS causes higher COMS

as well as increased source code modifications.

Revelle et al. [163] argued that there is a growing focus on the study of features

in software, and features (methods) are often implemented across multiple classes,

meaning class-level coupling measures are not applicable. They asked the question

“is measuring coupling at the feature-level also useful?” and defined new feature

coupling metrics based on structural and textual source code information and ex-

tend the unified framework for coupling measurement to include these new metrics.

The metrics proved to be good predictors of fault-proneness and useful tools for

developers performing feature-level software maintenance tasks.

Hanakawa [87] proposed a visualisation technique and software complexity met-

rics for software based on co-evolution and coupling. The idea was that modules in-

cluding strong coupling should have strong co-evolution, thus co-evolve or co-change.

Yu [203] conducted a study on 12 Linux kernel modules, comparing 12 pairs of co-

evolution data and structural coupling data and based on findings – established

that a linear relationship exists between co-evolution and structural coupling and

thus proved that the dependencies between software components induced via the

system architecture have noticeable effects on component co-evolution. However,

as highlighted in Chapter 1, the p-value used to evaluate the significance of the

linear correlation results was 0.1 (10% error margin) and the author acknowledged

this as one of the threats to the internal validity of the study. Evaluating the linear

relationship (correlation) between logical and structural coupling strengths on a

different sample of software projects with a p-value of 0.05 or 0.01 could produce

distinct findings [192]. In this Thesis we attempt to resolve this issue with a lower
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p-value as described in Chapter 3.

Recent studies [64] [71] [147] [148] have shown that it is possible that structural

and logical coupling are caused by other subtle and implicit types of relationships

(e.g., semantic dependencies) as they have identified a significant number of logi-

cally coupled classes without structural coupling links between them and vice versa.

Fluri et al. [64] investigated the degree to which co-changes are caused by struc-

tural changes (source code changes) and textual modifications (e.g., software license

updates and white-spaces between methods spaces). A preliminary evaluation in-

volving the compare plugin of Eclipse showed that more than 30% of all change

transactions did not include any structural change. Therefore, more than 30% of

all change transactions have nothing to do with structural coupling. They also

found that more than 50% of change transactions had at least one non-structural

change. They hypothesize that this could be the result of code ownership/commit

habit (a developer works all day in his files and commits everything by the end of

the day) and frequent license changes.

Oliva and Gerosa [148] analyze Java files of the first 150 thousand commits

from Apache software repository to investigate and quantify the proportion of logi-

cal dependencies that involve non-structurally related elements and the proportion

of structural dependencies that involve non-logically related elements. They con-

cluded that in 91% of the cases logical dependencies involve non-structurally related

files, most logical dependencies are not directly caused by structural dependencies.

Furthermore, structural dependencies very frequently involve files that are not logi-

cally related, hence there is a very small intersection between sets of structural and

logical dependencies.

Geipel and Schweitzer [71] analyze the link between structural dependency and

co-change. Their study takes into consideration only the latest code snapshot when

extracting structural dependencies. They argue that structural dependencies be-

tween two classes i and j are somewhat "stable" from the creation of the younger

class until the removal of either i or j. This assumption did not hold for the projects
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studied in [147]. According to their results, many structural dependencies are never

involved in change propagation and state that if most active 10% of the dependen-

cies are responsible for over 70% of the co-changes, as is the case in Eclipse, then

the co-change behaviour is hardly a mirror image of the dependency structure.

Building on their previous work [148] and other studies [71] [89] [127], Oliva and

Gerosa [147] conducted a study in which they investigate the influence of structural

dependencies on change propagation in four Java open-source software of different

sizes in terms of number of classes. They consider that there is a structural depen-

dency from f1 to f2 only if f1 depends on “something” that changed in f2 (e.g., a

field definition or a method’s body), and their results indicate that the rate with

which an artifact co-changes with another is higher when the former structurally

depends on the latter. Their results indicate that there is a causal relationship be-

tween structural coupling and co-evolution (co-evolution is dependent on structural

coupling [203]).

2.5.2 Interplay on the logical and semantic (LSe) coupling axis

It is important to note that overall the measurement of semantic coupling is more

affected by the difference in granularity than logical coupling. For the conceptual

couplings, going from the coarse granularity of files to the finer granularity of meth-

ods resulted in the reduction of the sizes of the documents. The documents are

reduced in terms (and frequency). That is, a corpus for a class is typically much

“bigger” than a corpus for a method [102]. For logical coupling some commits did

not contain changes made to methods while some did not contain changes made

to classes, so there is no way to map changes made to classes and methods. This

informs our choice of studying the software artifacts at the class level of granularity

in this Thesis.

Kagdi et al. [102] in their study on combining logical and semantic coupling to

support change impact analysis found that finer granularity decreases accuracy of

all approaches, it does not prevent the combination of the two from out-performing
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the standalone techniques. That is, the gain acquired by combining conceptual and

logical coupling exists regardless of the granularity (file-level and method-level)

considered in the study.

2.5.3 Interplay on the structural and semantic (StSe) coupling axis

To improve maintainability, software systems are usually organized into subsystems

using the constructs of packages or modules. However, during software evolution the

structure of the system undergoes continuous modifications, drifting away from its

original design, often reducing its quality. Bavota et al. [17] proposed an approach

for helping maintainers to improve the quality of software modularization. The pro-

posed approach analyzes the (structural and semantic) relationships between classes

in a package identifying chains of strongly related classes. The identified chains are

used to define new packages with higher cohesion than the original package.

It can be inferred from the studies highlighted in Sections 2.5.1, 2.5.2 and 2.5.3

that static metrics are generally associated with change-proneness. An advantage

of studying coupling measures in relation to co-changes is that they are inherently

related to ripple effects since common changes are usually due to relationships

between classes [34, 174]. However, Geipel and Schweitzer [71] state: “the question

about the causes of change propagation has been skipped by many researchers [89,

126, 185, 202, 210] in favour of a predictive approach in which these causes are

implicitly contained in a prediction function or as inputs to a machine learning

algorithm”.

These studies on the relationship and interplay between structural and logical

coupling in Section 2.5.1 have shown that the sets of structurally coupled pairs of

classes are always smaller than the sets of co-changed pairs. According to Geipel

and Schweitzer [71], this indirectly means that any model that tries to infer struc-

tural coupling from logical coupling or co-evolution will produce a lot of false posi-

tives. On the other hand, using the structural coupling information between pairs

of classes to infer their future co-change is a more realistic objective [147]. The haz-
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ardous effects of change propagation to software maintenance have been discussed

in seminal works [36, 131, 152]. If software is difficult to maintain or modify to

keep up with user requirements, this will add to its swift deterioration. A process

Parnas [152] refers to as “software aging”.

Tables 2.5 (logical and structural), 2.6 (logical and semantic) and 2.7 (structural

and semantic) summarize the contributions and gaps identified along the interplay

axes evaluated in this section.

Table 2.5: Summary of findings on the interplay between logical and structural coupling

Study Contributions Gaps

[203] Structural coupling between compo-

nents leads to their logical coupling.

Studied only files written in C and in

one project. The p-value adopted to

evaluate the significance of the results

was 0.1 (a 10% error margin) [203] and

the author acknowledged this a one of

the threats to validity of the study.

Replicating the study on a larger sam-

ple of projects and evaluating the corre-

lations results with a p-value of 0.05 or

0.01 can produce distinct findings. This

gap is resolved in Chapter 4.

[55] Found a relationship between co-

changes and bugs.

The correlation between these metrics

and co-change patterns were not ana-

lyzed.

[91, 98] Strong correlations between software

metrics based on information flow

among system components and the

number of changed source lines in the

Unix operating system.

Results from a different study [110] did

not validate the information flow met-

rics used [98].

[110] Change is related to metrics such as

fan-out, size and number of branches.

Continued on next page
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Table 2.5 – Continued from previous page

Study Contributions Gaps

[15] Using a syntactic complexity metric

(SynC), they observed a correlation be-

tween this metric and change in 19 stu-

dent software projects.

[31] Proposed coupling metric (CDM) and

change are correlated.

[66] Identified logical dependencies among

modules (hidden in source code) in such

a way that potential structural short-

comings can be identified and further

examined, pointing to restructuring or

re-engineering opportunities

[208] Components with strong co-evolution

also have strong structural coupling.

No empirical evidence provided. This

gap is investigated in Chapter 4.

[64] More than 30% of all change trans-

actions did not include any structural

change and more than 50% of change

transactions had at least one non-

structural change. They hypothesize

that this could be the result of code

ownership/commit habit (a developer

works all day on their files and commits

everything by the end of the day) and

frequent license changes.

No study on semantic coupling and co-

change of classes. This gap is addressed

in Chapter 5.

Continued on next page
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Table 2.5 – Continued from previous page

Study Contributions Gaps

[71] Argue that structural dependencies be-

tween two classes i and j are some-

what “stable” from the creation of the

younger class until the removal of either

i or j. This assumption did not hold for

the projects studied in [147].

The question about the causes of

change propagation has been skipped

by many researches in favour of a pre-

dictive approach in which these causes

are implicitly contained in a predic-

tion function or as inputs to a machine

learning algorithm [89, 126, 185, 202,

210].

[147] There is a link between coupling and co-

evolution and that co-evolution is de-

pendent on coupling.

Only four OSS in studied sample of

software projects (the results lack the

power of generalizeability). In this The-

sis we have studies a larger sample of 79

OSS projects as described in Chapter 3.

[71, 147] Any model that tries to infer struc-

tural coupling from logical coupling or

co-evolution will produce a lot of false

positives. On the other hand, using

the structural coupling information be-

tween pairs of classes to infer their fu-

ture co-change is a more realistic objec-

tive.

Structural dependency measurement

alone cannot predict co-change with a

high precision as structural dependen-

cies do not capture semantic or hidden

dependencies [1, 32]. In Chapter 6, we

investigate the interplay between struc-

tural and semantic coupling. This will

contribute to the understanding of the

degree to which structural and semantic

class dependencies overlap in OO soft-

ware.
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Table 2.6: Summary of findings on the interplay logical and semantic coupling

Study Contributions Gaps

[64] More than 30% of all change trans-

actions did not include any structural

change and more than 50% of change

transactions had at least one non-

structural change. They hypothesize

that this could be the result of code

ownership/commit habit (a developer

works all day on their files and commits

everything by the end of the day) and

frequent license changes.

No study on semantic coupling and co-

change of classes. This gap is addressed

in Chapter 5.

[102] Finer granularity decreases accuracy of

conceptual and logical coupling mea-

surement approaches. For logical

coupling some commits did not con-

tain changes made to methods while

some did not contain changes made

to classes, so there is no way to map

changes made to classes and meth-

ods. for conceptual coupling, the cor-

pus (term documents) generated at the

method level are smaller.

No study on the interplay between se-

mantic and structural coupling. These

types of coupling propagate ripple ef-

fects. Also, the authors did not inves-

tigate why an analysis of either seman-

tic or structural coupling will not yield

a complete or almost precise estimate

of change impact sets. This gap is ad-

dressed in Chapter 6.

[174] An advantage of studying coupling

measures in relation to co-changes is

that they are inherently related to rip-

ple effects since common changes are

usually due to relationships between

classes

No study on the interplay between se-

mantic coupling and logical coupling.

This gap is addressed in Chapter 5.

Continued on next page
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Table 2.6 – Continued from previous page

Study Contributions Gaps

[71, 147, 148] It is possible that coupling and co-

evolution are caused by other types of

relationships (e.g., conceptual depen-

dencies)

(1) Their computation of structural

coupling metrics between classes was

not based on actual facts but based on

estimates. Therefore reliability of find-

ings is questionable [148]. Our compu-

tation of structural coupling takes a dif-

ferent methodology described in Chap-

ter 3.

(2) The interplay between semantic and

logical dependencies has not been stud-

ied [71, 147, 148]. This gap is addressed

in Chapter 5.

(3) There is a need for a tool to au-

tomate the measurement of semantic

coupling between corpora of software

classes. Such a tool will ease the pro-

cess for non-experts in data mining and

information retrieval (IR) techniques,

provide a standard unified framework

for the extraction process as well as pro-

mote better comparison of results in

this field [165]. We address this gap

with the development and evaluation of

a tool in Chapter 5.
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Table 2.7: Summary of findings on the interplay between structural and semantic coupling

Study Contributions Gaps

[71, 147] Any model that tries to infer struc-

tural coupling from logical coupling or

co-evolution will produce a lot of false

positives. On the other hand, using

the structural coupling information be-

tween pairs of classes to infer their fu-

ture co-change is a more realistic objec-

tive.

Structural dependency measurement

alone cannot predict co-change with a

high precision as structural dependen-

cies do not capture semantic or hidden

dependencies [1, 32]. In Chapter 6, we

investigate the interplay between struc-

tural and semantic coupling. This will

contribute to the understanding of the

degree to which structural and semantic

class dependencies overlap in OO soft-

ware.

[163] A combination of structural and tex-

tual source code information for fault-

proneness prediction at the feature-

level.

Prior research has demonstrated the in-

efficiencies related to measuring seman-

tic coupling at the feature or method

level of granularity. In this study we

have measured semantic coupling at the

class level of granularity.

2.6 Summary of the chapter

In this chapter we have reviewed and summarized the state of the art in the areas

of software maintenance and dependencies and identified various gaps as listed in

Tables 2.1, 2.5, 2.6, and 2.7. The studies on change impact analysis have probed

ripple effects to infer a list of possible components that will need to be changed

using coupling metrics and CIA techniques; however they have not focused on the

starting point from which these changes propagate; the direct dependencies between

class pairs.
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There have also been studies on the interplay between structural and logical

coupling but most of these studies are done on an average of 10 open-source systems,

thus there is a need to make these results more generalizeable by conducting large

scale empirical studies on more systems. While studies have been carried out on the

interplay between structural and logical dependencies, none have been carried out

on the interplay between semantic and (1) structural or (2) logical dependencies as

rightly identified by Oliva and Gerosa [147, 148]. They state that “investigating the

interplay between logical, structural dependencies and other kinds of dependency

(e.g. conceptual [155]) should be fertile research topics”. This also brings about

the need for a tool to identify and extract the semantic coupling metrics for pairs

of software classes automatically as well as comparing this tool to other simple

Information Retrieval (IR) techniques. The benefits of the application of semantic

technologies to software maintenance have been highlighted in [165].

It is important that software co-changes should be predictable with a high pre-

cision to curtail maintenance efforts and costs. “To limit change propagation, we

should make them as foreseeable as possible” [147]. In Chapter 3, the methodology

of this study is described in detail.
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Methodology

3.1 Introduction

In previous chapters, this Thesis introduced three static software dependency types

(i.e., structural, logical and semantic) including existing gaps identified in prior

research in the area of the interplay between these dependency types. Studying

their interplay requires adequate data sources as well as validated measurement

tools that can be adopted to automatically measure the three dependency types.

This chapter will explain in detail the selection of the analyzed case studies (OO

software projects); data extraction and tools, measurement techniques adopted to

capture the three types of dependencies between classes in the case studies and

finally the empirical tests conducted to resolve the research questions described in

Chapter 1. At the end of this chapter will be a summary followed by an introduction

of the empirical studies conducted along the three coupling axes described in Section

1.3 of Chapter 1.

3.2 Data sampling

Open-source software (OSS) is software provided with a licence which permits any-

one to study, modify and distribute the software to anyone for any purpose. In
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this study, we have analyzed OO OSS, using their archived source code. This ap-

proach will provide insights into how developers and maintainers maintain software

coupling and in turn provide knowledge into coupling trends across a variety of

software projects of different domains. We use tools described in Section 3.4 of the

chapter, to extract the structural, logical and semantic dependency metrics.

Prior to identifying sources of open-source software data, we defined a set of

selection criteria for our study sample, as follows:

1. OSS projects which (i) provide public access to source code and (ii) use a

version control system that allows us to extract the historical information

[52];

2. Were implemented in Java to allow the extraction of the structural coupling

between classes, since structural coupling varies between languages [148];

3. Randomly sampled projects;

4. Multiple revisions/commits (> 20 revisions in order to exclude trivial projects)1,

and a relatively long history log;

5. Have a large group of users.

Leveraging the FlossMole project [57, 95, 173], we used its latest available data

dump to determine the population of GoogleCode: a total of 2,593,222 projects

were listed in the database2. Given their language descriptions, we extracted the

subset of Java projects from that population, obtaining 49,459 Java projects. Each

project in the subset was given a unique ID: the sizing of the sample was achieved

by considering a 95% confidence level (α = 0.05) resulting in a random sample of

380 IDs extracted, and linked to the Java projects’ names.
1Prior research [107] shows that 75% of OSS projects on Github have over 20 commits and

90% have less than 50 commits. We selected projects with above 20 commits to include a mix of
projects with varying levels of activity in our sample, improve generalizeabiliy of the study as well
as extract substantial change history to understand logical coupling.

2The data is available at http://flossdata.syr.edu/data/gc/2012/2012-Nov/
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According to Geipel and Schweitzer [71] “Java, unlike other popular languages

such as C++ was designed from scratch to be an OO language. Each class is de-

fined in a separate file. For this reason, file changes can be directly mapped to

class changes. Furthermore, Java enjoys a high popularity in the Open Source com-

munity: On SourceForge (http://www.sf.net) — the largest Open Source incubator

site — Java is used in approximately 25 percent of the projects (as at August 2007).

This makes Java the most popular language used [37, 138] with a high availability

of tools for analyzing Java source code.

Below is the formula we used in calculating the sample size of the OSS forge:

Samplesize = N

1 + (N(e2)) (3.1)

Where:

e = error margin (0.05)

N = total population

3.3 Data extraction

The CVSAnalY tool3. adopted in this study helps a researcher to manually inspect

version control systems (e.g., CVS) meta-data from OSS projects repositories [188].

It automatically extracts and stores this data in a MySQL database. It currently

supports the CVS, SVN and Git version control systems. The data it extracts

includes developers’ actions during software corrective maintenance activities [168].

Figure 3.1 shows the names of tables automatically generated by CVSAnalY

in a MySQL database while Figure 3.2 illustrates the generated database schema.

The database schema “is the artifact responsible for maintaining the integrity of

stored data” [133] in the database. As an example, one of the tables is the actions
3The CVSAnaly tool has been developed by other researchers and adopted in this study when

measuring logical coupling
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table described in Figure 3.3. This table accommodates information regarding the

changes made to artifacts including the file identifier, commit identifier and branch

identifier all from a version control system. The repositories table contains the IDs

and names of repositories mined.

Table 3.1: CVSAnalY database tables

The first phase of the data extraction activity was focused on obtaining the meta-

data (e.g, name of developers, date and time of changes to the classes, etc.) of each

OO software project in the sample. The repository of each project was downloaded

and stored, with its meta-data, using the CVSAnalY4 tool5. The meta-data exposed

the list of revisions for each class, and for each project as a whole.
4http://metricsgrimoire.github.io/CVSAnalY/
5Installation steps can be found at: https://sites.google.com/site/arnamoyswebsite/Welcome/updates-

news/howtoinstallandruncvsanaly2inubuntu1110
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Table 3.2: CVSAnalY database schema
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Table 3.3: CVSAnalY actions table

3.4 Software dependency metrics extraction

Measurement is a mapping of empirical objects to statistical objects with consider-

ation given to all structures and relationships [59]. In this Thesis structural, logical

and semantic dependency metrics are adopted and their relationships are empiri-

cally investigated in the context of OO and OSS. Software metrics are widely used in

software engineering measurements to aid decision making, assess software quality

and quantity (e.g., number of lines of code). The attributes measured by software

metrics can be categorized into two groups: internal and external attributes [144].

The internal attributes of a software system include size, coupling or dependencies

between artifacts and the amount of code reused in the system, while the exter-

nal attributes include usability, reliability and security of a system [59]. In this

research we are concerned with coupling of software components, thus we measure

the internal attributes of the studied systems.

In Subsections 3.4.1, 3.4.2, and 3.4.3 the tools and techniques adopted to extract

the logical, structural and semantic software dependencies between classes from the

studied sample are described.
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3.4.1 Logical coupling measurement

This task was a pure SQL extraction task, so it did not pose a time issue: for

each project we extracted the number of revisions, based on the tables built by the

CVSAnalY tool in a MySQL database. For each revision, we extracted the list of

all possible pairs of classes that were co-changed in that revision.

The maximum number of classes co-changed in one revision was found to be

1,220 in one software project. Large commits have been often associated with a

restructuring, or a bulk rewording of a software license[93]. Revisions with over 100

changed artifacts have been excluded from previous empirical studies and irrelevant

co-changes have been filtered out of commits [149]. In their study on change impact

analysis, Kagdi et al. discarded all non-source code files from commits, as their

methodology was focused primarily on source code. In addition, commits with over

10 source files were also discarded [102]. This type of filtering is usually used when

mining software repositories to reduce noise in logical coupling measurement, and to

mitigate factors such as updating the license information on every file or performing

merging and copying ([101, 210]. We have also adopted this approach in this Thesis.

Following the methodology in [102], we removed all files that did not have the

.java extension and revisions without .java files since we are focusing on source code

analysis [148]. In addition based on an interquartile range (IQR) analysis of the

number of revisions per project in the sample of 380 projects, the projects with less

than 20 (below first quartile – Q1) revisions were excluded 6. That left us with a

total of 79 open-source projects and this subset forms the studied sample of this

Thesis. This final dataset and the source code of tools/scripts built to analyze it

are shared in an open repository7. The projects are listed with brief descriptions

from the source code authors in Section A.2.

There is a probability that attempting to prune before re-sampling will not
6This was suggested in the review received for a paper submitted to the empirical software

engineering journal. A small number of revisions will not provide substantial information regarding
logical coupling, for example in “projects with only two revisions one of which is the initial commit”

7https://figshare.com/projects/AN_EMPIRICAL_STUDY_ON_OBJECT-ORIENTED_
SOFTWARE_DEPENDENCIES_LOGICAL_STRUCTURAL_AND_SEMANTIC/24466
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yield a larger sample of non-trivial projects that meet the selection criteria because

pruning before re-sampling could result in a larger number of trivial projects with

less than 79 non-trivial projects left in the new sample. Previous studies have also

excluded a number of OSS projects after their initial sampling. Samoladas et al.

[171] and Gousios et al. [78] applied certain selection criteria to exclude projects

from their initial selection. Midha and Palvia [139] based on certain project selection

criteria, reduced their initial sample from 887 to 283.

Haefliger and Spaeth [79] reduced their selected sample of projects to 6 OSS

projects with variance on their sampling criteria. The studied sample included a

wide variety of software products such as office software, games, a hardware driver,

and an instant messenger client and this reduced sampling bias [180]. Similarly

in this study, the resulting non-trivial sample of 79 OSS projects are of different

domains, sizes and levels of activity. The sample selection criteria widely used in

OSS research [52, 161] and adopted by Haefliger and Spaeth, includes: 1) the project

is under active development, allowing the tracking of its development activity, 2)

the source code modifications of the project need to be available online, and 3) the

project should have been in existence for at least a year.

An overall average of 6 classes co-evolving per revision was observed in the

sample. After the extraction of pairs of co-evolving classes, we could then identify

pairs of classes that frequently co-evolve or frequent association rules and compute

logical coupling for each pair. According to Wiese et al., “change coupling is a phe-

nomenon associated with recurrent co-changes found in the software history” [196].

The historical information in software repositories “is an extension of the collective

developer or development knowledge” [74].

Logical dependencies or evolutionary dependencies are based on the change his-

tory of two classes, and is a measurement of the observation those classes always

co-evolve or change together [55, 66, 67, 195]. They are commonly treated as asso-

ciation rules [210], which means that when X1 is changed, X2 is also changed [148].

Furthermore, X1 and X2 are called the antecedent (also known as, left-hand-side,
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LHS) and the consequent (also known as, right-hand-side, RHS) of the rule, re-

spectively. For example, the rule {A, B}→ C found that in the sales data of a

supermarket indicates that a customer who buys A and B together, is also likely to

buy C [148].

The logical coupling of two software artifacts are measured in terms of support

and confidence [208]. The confidence value determines the strength of their asso-

ciation, in this case the degree or extent to which they co-evolve. Support is the

count of times a pair of artifacts undergo co-change. These two metrics are further

explained:

• Support – The support determines the number of revisions that two files are

changed and committed together, in other words it is the number of changes

made on file B while A is changed. E.g. if GestionScore.java was altered

in 10 transactions (where 10 is the “Transaction Count” [203]. Of these 10

transactions, 8 also included changes of the file Score.java. Therefore, the

support for the logical coupling of GestionScore.java ↔ Score.java is 8.

Support(A => B) = P (A ∪B)

• Confidence – The confidence determines the strength of the consequence of a

given logical coupling, it is the support count / transaction count. E.g. If we

assume that the file GestionScore.java was changed in total of 8 transactions,

the confidence for Score.java → GestionScore.java is 8/8 = 1.0. In other

words, we are 100% confident that GestionScore.java will be changed when

Score.java is changed.

Confidence(A => B) = P (A|B) = P (A ∪B)
P (A)

Where P(A) is the probability of cases containing A. In this case revisions it

is the revisions containing changes made to A.
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This data can be computed using statistically evaluated tools such as WEKA

[85] and the arules association rule mining library in R [81]. We have also adopted

the arules package in the R statistical environment [81, 82, 206]. Canfora et al.

[39] also adopted the arules package in computing logical coupling metrics in terms

of support and confidence. In this Thesis we will focus more on the confidence of

association rules. This is because we are more interested in the degree to which

class pairs co-change in relation to structural and semantic coupling. In addition

the support metric is only a count of the number of times two classes A and B are

co-changed. While the confidence metric can be used to determine the probability

of changing A if B is change or changing B if A is changed. Logical coupling

measurement is not symmetric. In order words, the probability of changing B when

A is changed is not the same as the probability of changing A when B is changed.

Therefore, the confidence metric is adopted in this Thesis when evaluation logical

coupling.

Likewise in previous research [108], the support and confidence thresholds have

been set to 0.01 and 0.1, respectively. This is because increasing the support and

confidence increases precision but lowers recall, thus identifying only a small num-

ber of association rules. The number of identified co-evolving sets reduces based on

increase in confidence and such pruning looses important information [210]. Oliva

and Gerosa classified confidence metrics as: [0.00-0.33] low logical coupling, [0.33-

0.66] medium logical coupling and [0.66-1.00] high logical coupling and identified

that highly logically coupled classes suffered slightest influence from structural cou-

pling. In addition, the arules library in the R statistical environment has been used

with a high precision and minimal false positives in prior research across different

disciplines [80, 83, 108] when mining frequent item sets from data.

Figures 3.4 and 3.5 illustrate a computation of the logical coupling strengths of

identified association rules in the 2dtetris OSS project from our studied sample with

the commands highlighted in blue. Each row consists of the antecedent (left hand

side or lhs) and the consequent (right hand side or rhs) of a given rule, the support
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Figure 3.4: Association rule mining with the arules package in R

and confidence. The arules package provides a third metric which is the lift. This

is a ratio of the actual confidence value and the expected confidence value to check

whether each rule is listed by random chance [135]. A lift ratio greater than 1.0

means that the relationship between the antecedent and the consequent is more

significant than would be expected if the two sets were independent. The larger the

lift ratio, the more significant and interesting the association rule [135, 206].

Lift(A => B) = Confidence(A => B)
P (B) = P (A ∪B)

P (A)P (B)

In Figure 3.4, the first command loads the arules package, followed by a com-

mand which import the comma delimited (.csv) file (containing the data co-change

history of Java class pairs in a software project) to be read. The third command

used the apriori() function within the arules package which counts transactions to

identify frequent itemsets and derive association rules from them. The following

results after the last command shows that 74 association rules were identified out

of which the top 30 sorted by the confidence metric are displayed in Figure 3.5.
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Figure 3.5: Output of association rule mining with the arules package in R

3.4.2 Structural coupling measurement

The first study on software metrics was by Gilb [76] in which lines of code (LOC) was

used to measure software quality and productivity. Chidamber and Kemerer [46]

proposed static (structural) coupling metrics which have been widely used in soft-

ware engineering (SE) research studies to measure software attributes8. Table 1 in

Appendix A.1 summarizes the software dependency metrics proposed in the litera-

ture thus far based on the three dependency types studied in this Thesis.

While logical or evolutionary coupling computation is based on a time interval,

structural coupling is defined for a specific time instant [71, 148] and is static. Geipel

and Schweitzer [71] analyzed the link between structural dependency and co-change
8Such as coupling between objects (CBO), response for a class (RFC), lack of cohesion (LCOM),

weighted methods per class (WMC) and sources lines of code (SLOC)
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of classes. In calculating the linear relationship between structural dependency and

co-evolution metrics they only take into consideration the latest code snapshot when

extracting structural dependencies. However, they used either 0 or 1 to represent the

absence or existence of a structural link between classes. They state that structural

dependencies between two classes i and j are somewhat stable from the creation of

the younger class until the removal of either i or j. Taking cues from Geipel and

Schweitzer [71], we compute structural and semantic coupling metrics by analyzing

the latest snapshot of the software projects in our sample.

From the last snapshot of the archived source code of each software project we

retrieve the metrics for the strength of structural dependency between any pair

of classes including; “the number of external operational calls or references (direct

call relationships such as method calls, inheritance, or extension of another class,

or a class aggregating objects of another class) [148] between “caller” and “called”

classes, the number of methods making the calls from the “caller” to and the num-

ber of methods being called in the “called” classes using Scitools UNDERSTAND

command line tool und 9 via multiple commands in a Perl script [125]. This phase of

the methodology was very laborious, given the vast number of revisions to analyse:

with an average of 2 minutes to extract the coupling data of a revision.

Oliva and Gerosa measured structural coupling using the Message Passing Cou-

pling (MPC) metric. This is a measure of the number of external operation calls, i.e.

the number of calls from methods of a class to operations of other classes. Yu [203]

represented the reference (structural) coupling between classes with the dependency

path count between two classes (dependency path is a path from the definition of

the function func (int i) or variable gv in class C1 to the use of the function in class

C2 [203]). Accordingly, the strength of the structural coupling from the caller C2

to the called class C1 in Figure 3.6 is 4 (2 for function call func(int), 2 for global

variable gv) [203].
9https://scitools.com/
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Figure 3.6: Structural dependency path between two OO software classes – Caller (C2) using a
function and variable defined in Called (C1) [203]

3.4.3 Semantic coupling measurement

Prior research [102] has exposed the fact that semantic coupling between classes

in OO systems is best measured at the file or class level of granularity. This is

because the measurement of semantic coupling is more affected by the difference

in granularity than logical coupling. For the semantic couplings, going from the

coarse granularity of classes to the finer granularity of features or methods results

in the reduction of the sizes of the documents or derived corpora. The documents

are reduced in terms (and their frequency). That is, a corpus for a class is typically

much “bigger” than a corpus for a method [102]. For logical coupling some commits

do not contain changes made to methods while some do not contain changes made

to classes, so there is no way to map changes made to classes and methods. For

these reasons, we have chosen to study OO software at the class level of granularity

in this Thesis.

Up till the time of carrying out this study, there has been a lack of adequate

tools to automate the extraction of semantic coupling metrics based on the cor-

pora of Java classes. The large size and complexity of today’s software systems

necessitates the development of tools to effectively and efficiently help in automat-

ing program comprehension tasks [179]. The underlying mechanisms widely used

in prior research to extract and analyze the semantic information from the source

code are Latent Semantic Indexing (LSI) and the Vector space model (VSM).
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3.4.3.1 Semantic coupling measurement using class corpora

The steps taken to extract and analyze the semantic information from source code

as explained in previous work [155, 163, 187] and adapted by other studies are as

follows:

1. Building the corpus: a corpus (“dictionary” of terms derived from comments,

identifiers in source code) is built based on the level of granularity such that

if a method level of granularity is chosen, after the source code is parsed –

the extracted corpus (documents) will include method names and comments.

At the class level of granularity, this will also include class identifiers and

comments or documentation within the source code [74].

2. NLP: once the corpus is generated, it is preprocessed using natural language

processing (NLP) techniques [74]. Mappings between methods, classes, and

their indexes, respectively in the system corpus are generated in this step. Pre-

processing of the system corpus is performed to eliminate common keywords,

stop words, stem words, and to split identifiers [130]. In other words, all

stop words (e.g., “a” and “the”) are removed, other words are stemmed (e.g.,

“fixes” to “fix”) [207].

3. Indexing the corpus: LSI (a variant of the vector space model) indexes the gen-

erated corpus and generates a real-valued vector description for each document

[163]. In other words, LSI uses the corpus to create a term-by-document ma-

trix (TDM), which captures the distribution of terms in methods (if extracted

at the method level of granularity). The rows of the matrix correspond to the

words from identifiers and comments and the columns represent the methods

or classes. A cell mij in the TDM represents a measure of the importance of

the ith word in the jth class or method [74]. Singular Value Decomposition

(SVD) is then used then to construct a subspace, called the LSI subspace

(or semantic space). Each document from the corpus (i.e., method from the
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source code if extracted at the method level of granularity) is represented as

a vector in the LSI subspace.

In contrast to the VSM approach, the method used by LSI to capture es-

sential semantic information is dimensionality reduction; selecting the most

important dimensions from a co-occurrence matrix (words by documents)

decomposed using singular value decomposition (SVD) in order to exclude

“inessential information” [163]. According to Revelle et al. “LSI was origi-

nally developed in the context of information retrieval as a way of overcoming

problems with polysemy and synonymy that occurred with VSM approaches”,

e.g., the co-occurrence of terms like computer and laptop in the same doc-

ument. It allows documents to be indexed by concepts rather than simple

terms thus reducing noise. Some words occur in the same contexts, and a

vital part of word usage patterns is dimmed by accidental and inessential in-

formation. In LSI the dimensionality of a corpus is the number of distinct

topics represented in it. Notwithstanding, LSI has its own downsides 10.

4. Computing semantic similarities: Finally, once the corpus is indexed the co-

sine between two vectors is used as a measure of semantic similarity between

two documents [96]. Just as cosine values range from −1 to 1, so do textual

similarities. The closer a value is to one, the more similar the texts of the

documents are 11.

With regards to the vector space model (VSM), the similarity between any

two documents is the cosine similarity between their corresponding vectors

and can be computed as follows [96]:

CosineSimilarity(d1, d2) = Dotproduct(d1, d2)
||d1|| ∗ ||d2||

10In LSI, the co-occurence matrix is decomposed by singular value decomposition (SVD), and
its dimensionality is reduced by removing small singular values. Differences between VSM and LSI
are discussed in Section A.3 in Appendix A

11http://www.ccs.neu.edu/home/jaa/CSG339.06F/Lectures/vector.pdf
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Where the numerator represents the dot product (also known as the inner

product) of the vectors ~V (d1) and ~V (d2), while the denominator is the product

of their Euclidean lengths 12.

Dotproduct(d1, d2) = d1[0] ∗ d2[0] + d1[1] ∗ d2[1] ∗ . . . ∗ d1[n] ∗ d2[n]

||d1|| = squareroot(d1[0]2 + d1[1]2 + ...+ d1[n]2)

||d2|| = squareroot(d2[0]2 + d2[1]2 + ...+ d2[n]2)

Where d1 and d2 are n-dimensional vectors over the term set T = t0, . . . ,

tn . Each dimension represents a term with its weight in the document, which

is non-negative [96]. Based on this, the cosine similarity is non-negative and

bounded between [0,1].

The last two steps involving VSM and LSI, have been implemented using MAT-

LAB13 in previous research [155].

It is important to note that the semantic similarity between any two documents

is symmetric. That is, the similarity betweenmi andmj is the same as the similarity

between mj and mi. Therefore, the values of the semantic similarity between two

methods are the same [102] irrespective of the order (addShape()↔ removeShape()

and removeShape() ↔ addShape()). It is noteworthy that this does not apply to

structural or logical coupling measurements. For structural coupling, the number

of calls or references from a class A to another class B are usually not the same in

both directions. For logical coupling, the probability that a class A will be changed
12http://nlp.stanford.edu/IR-book/html/htmledition/dot-products-1.html
13MATLAB is a proprietary tool composed of a high-level technical computing language and

interactive environment for algorithm development, data analysis and visualization
http://uk.mathworks.com/products/matlab/.
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when a change is made to B is not the same as the likelihood of changing B in

response to a change in A.

Having outlined the steps above in computing semantic coupling between classes,

certain gaps which have also been identified in Chapter 2 become obvious. Among

the gaps are; (1) the process is convoluted with the adoption of different tools for

different steps, (2) the absence of a tool to automate semantic coupling measurement

by analyzing the corpora of .java classes in OO software and finally (3) analyzing

the corpora of classes is a slower process compared to analysing only class identifiers.

Especially when an OO software project is composed of thousands of classes and

lines of code. In Subsection 3.4.3.2, we discuss a pilot study carried out to compare

the measurement of semantic coupling using only the corpora of classes against

their identifiers.

3.4.3.2 Semantic coupling measurement using class identifiers vs their

corpora

In a prior pilot study [4], we have extended a tool written in Java14 to automate

the VSM approach to support the corpus-based measurement of semantic coupling

at the class level of granularity in OO systems developed in the Java programming

language15. The study was carried out on two software systems out of our overall

sample to investigate whether the metrics derived from the corpora-based measure-

ment echo those derived from using simple information retrieval techniques on the

identifiers of the classes [4].

In this section, we outline the findings derived from extending the study on a

larger subset of 35 projects out of our sample of projects to validate the results.

Furthermore, based on the findings of the empirical comparison of measurement

techniques, we will adopt the metrics derived from the most efficient measurement
14The extended tool supports step 1 in the corpus-based approach and was developed by the

Software Engineering Maintenance and Evolution Research Unit at the College of William and
Mary, Williamsburg, US. We contacted them and they gave us the permission to make use of their
program written in Java

15https://github.com/najienka/SemanticSimilarityJava
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technique in an investigation of the interplay between logical and semantic class

couplings in Chapter 5 as well as the interplay between semantic and structural

coupling in Chapter 6.

In the aforementioned pilot study [4], two sentence similarity measurement tech-

niques namely N-Gram16 and DISCO word synonym17 category were compared

against a corpus-based technique for calculating the semantic similarity between

.java classes belonging to two OO software systems. The aim was to determine the

feasibility of computing the semantic coupling of classes based on the similarity of

their names rather than analyzing their content (source code). The results from

the study extension are outlined in the following paragraphs.

To compare the corpora and identifier-based techniques, it is imperative to adopt

a statistical test for independence or association to test for the association between

the semantic coupling measurement techniques (identifier vs. corpora). Such a test

will help establish the correlation between the metrics derived from the two types of

semantic coupling calculation techniques (e.g., N-Gram vs. VSM). for this purpose,

we adopted the Chi-square statistical independence test.

The first step is to populate a 2X2 contingency table, composed of row (i.e.,

groups) and column (i.e., outcomes) variables for each project. The first contingency

table visible in Table 3.1 is a generic 2x2 contingency table, with the corpus-based

outcomes (VSM) as the outcomes variable, and the identifier-based outcomes (N-

Gram and Disco) as the groups variable. For the statistical test, three semantic

dissimilarity thresholds t = 0.1, 0.2, and 0.5 used in previous studies [50, 51, 58, 109,

172, 183] on text similarity were selected and the correlation test results compared

to identify the dissimilarity threshold at which there is a similarity in the semantic

coupling metrics derivable from the measurement methods.

Where s is the semantic similarity between pairs, and using a semantic dissim-
16A Java implementation of the N-Gram distance algorithm is available at https://github.com/

tdebatty/java-string-similarity\#n-gram
17The DISCO sentence similarity measures the semantic similarity between sentences according

to the synonyms of their words. A Java implementation of the tool is publicly available at https:
//sourceforge.net/projects/semantics/?source=directory
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ilarity threshold t (with a lower t implying a weaker similarity), the items of the

contingency table are:

• A: pair of classes with s ≥ t for both Corpora-based and Identifier-based

techniques;

• B: pair of classes with s < t for one technique but ≥ t for the other;

The following are the possible outcomes observed for the threshold t – for the

Identifier-based technique:

• C: pair of classes with s ≥ t for one technique but < t for the other;

• D: pair of classes with s < t for both techniques.

Table 3.1: Contingency tables: generic (top) and populated (middle and bottom) with identifier
(either N-Gram or Disco) vs. corpus-based (VSM) techniques

Generic Contingency Table
Corpora-Based (VSM)

Identifier-Based A B
C D

VSM vs. N-Gram Comparison - Geocoder-Java project (p=.0104)
≥ 0.1 < 0.1

≥ 0.1 208 8
< 0.1 439 47

VSM vs. Disco Comparison - Geocoder-Java project (p= < .0001)
≥ 0.1 < 0.1

≥ 0.1 120 96
< 0.1 182 304

The other two tables (middle and bottom of Table 3.1) report the values and

results for (i) VSM as the column variable, and N-Gram as the row variable and (ii)

VSM as the column variable, and Disco as the row variable for a worked example

– Geocoder-Java Project (t = 0.1).
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Table 3.2: Geocoder-Java - summary of Chi-Square (contingency table) test results

Test ID Project Chi-Square Test
(Technique A vs.
B)

Semantic Dissimi-
larity Threshold t

p-value Reject or
Fail to
Reject
H0?

1

Geocoder-Java

VSM ↔ N-Gram 0.1 0.010 Reject
2 VSM ↔ Disco < 0.0001 Reject
3 VSM ↔ N-Gram 0.2 < 0.0001 Reject
4 VSM ↔ Disco < 0.0001 Reject
5 VSM ↔ N-Gram 0.5 < 0.0001 Reject
6 VSM ↔ Disco 0.001 Reject

After populating the contingency Tables, we compute tests for association be-

tween the semantic similarity measures derived from the pairs of techniques (the

identifier and corpus-based) using the Chi-square test method (chisq.test) in R18.

This test is used to compare categorical data. It asserts the independence of the two

techniques, with a null hypothesis H0 of no association between their outcomes. We

set the p-value at 0.01 as the threshold to reject the null hypothesis and compute

the Chi-square tests for each project (99% confidence level).

Table 3.2 shows the p-values derived for the three semantic dissimilarity thresh-

olds from the worked example – Geocoder-Java project. Based on the p-values

in Table 3.2, we can see that the semantic similarity metrics derived from the

identifier-based techniques reflect those derived from the corpora based technique

at a dissimilarity threshold of 0.2. The p-values at this threshold are all below

0.01, thus we reject the null hypothesis at this dissimilarity threshold. Table 5 in

Appendix C also shows that similarly to other projects in the sample, the identifier-

based techniques (0.003 minutes) are faster in terms of computation time compared

to the corpora-based (0.006 minutes) method for the Geocoder-Java project.

Analysing the rest of the projects, Figure 3.7 illustrates that at a dissimilarity

threshold of 0.1, not all the p-values derived from the Chi-square test are less than

or equal to 0.01. As a result, we cannot reject the null hypothesis. When the

threshold is set to 0.2, an identical condition for 0.1 also applies for the VSM ↔
18http://courses.statistics.com/software/R/Rchisq.htm
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N-Gram tests with many outliers above the 0.01 mark. Yet the VSM↔ Disco tests

revealed a lower number of outliers while the rest of the p-values are less than or

below 0.01. At a dissimilarity threshold of 0.5, the number of p-vlaues below the

0.01 mark are higher with only a few outliers especially in the VSM ↔ N-Gram

tests. Thus there is substantial evidence to reject the null hypothesis using this

dissimilarity threshold based on the Chi-square statistical test.
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Figure 3.7: Chi-square association test results for class corpora (VSM) vs. identifier (N-Gram,
Disco word synonym category) based semantic similarity techniques (box-plot distribution of

p-values for threshold t = 0.1, 0.2 and 0.5)

Notwithstanding this feature, to further verify the independence test outcomes

described in Section 5.4.1, in addition to the Chi-square test we compute the linear

correlation between the corpora based semantic similarity measurement technique

and the identifier-based techniques to verify whether the semantic coupling metrics

reported by the different techniques for the same pairs of classes co-vary.

Spearman’s rank correlation results indicated a moderate to large positive cor-

relation (0.3 - 0.8) in at least half of the projects with a few outliers (negative

correlation coefficients). Nevertheless, these negative correlation coefficients are

statistically insignificant; the p-values are greater than 0.01 meaning the negative
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correlation is identified by chance.

Based on these findings there is not substantial evidence to reject the null hy-

pothesis. This is because of the absence of a linear relationship but an association

observed between identifier and corpora-based metrics (with Chi-squared tests).

Thus, the conclusion is that semantic coupling metrics that leverage identifiers

echo metrics derived when the whole class corpora are analyzed more often at a

dissimilarity threshold of 0.5. The findings also prove that N-gram and Disco are

much more computationally efficient than corpora-based techniques, time-wise.

The Disco technique compares words based on the similarities of their synonyms

while the N-Gram technique is based on the edit distance and shared sub-strings

of length n between sentences and has been widely used in the literature on text

analysis [109]. We have used n-grams of size 4 in this study because research in

the area of text mining [109, 134] has shown that n=4 maximizes precision when

analyzing words or terms in several languages including English, French, German,

Italian and Swedish. In addition, long lengths of n increase lexicon size, will not

represent short words well and research has shown processing n-grams sizes larger

than 10 is very slow [109].

The N-gram technique is more efficient than the Disco technique, precision-wise:

the latter is heavily dependent on the English dictionary, as it considers words with

similar English synonyms as semantically related. This study has shown that over

50% of the software projects analyzed do not contain classes with only English

identifiers, therefore the Disco technique will produce many false negatives if used

in the context of semantic coupling between OO software classes. In Chapters 5

and 6, we will leverage the N-Gram technique when computing semantic coupling.

While identifier-based techniques are more efficient when measuring seman-

tic coupling between classes, the corpus-based technique is useful when recovering

traceability links between source code and design documents [128, 199]. Identifier-

based techniques are unable to extract the meaning or semantics of the documen-

tation and source code to produce similarity measures that can be used to identify
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traceability links. This is because the identifier of a design document will be too

vague and will likely be unrelated to a number of class identifiers. But when parts

of the documents are parsed and compared with the terms embedded within the

comments and source code of classes, then parts of design documents can be linked

to classes in an OO software. Traceability is particularly useful when a developer is

trying to comprehend someone else’s code and following any provided documenta-

tion as is usually required during maintenance and evolution. This is usually done

manually and can be time consuming (especially with large systems consisting of

millions of lines of code) without tools that can automatically recover traceability

links between source code and documentation.

3.5 Data analysis

Measurement is an indispensable approach in empirical software engineering. The

findings of empirical studies are based on the values measured on research variables.

Thus, the nature of measurements and their outcomes are important [192]. Statis-

tics is useful for researchers to provide replicable and quantifiable conclusions from

their research. According to Mubarak [144], “researchers are usually interested in

measuring the relationship between two or more variables”. These variables might

be related in various ways; positively, not linked at all or negatively linked.

Table 1.3 in Chapter 1 summarizes the statistical tests adopted in this thesis. We

have adopted the Spearman’s rank correlation coefficient (ρ) for correlation analysis

on the strengths or degree of class dependencies and the Fisher’s exact independence

test for investigating whether there is a statistically significant association between

the class dependency types.

Spearman’s correlation is a non-parametric test, i.e., it can be applied to data

that is not normally distributed. We cannot guarantee that the strengths of the

dependencies among class pairs in open-source software projects will be normally

distributed across various revisions, neither can we guarantee the absence of out-
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liers [164, 177]. Thus our rationale for applying non-parametric tests. The value

of the correlation coefficient lies in the range [−1; 1], where −1 indicates a strong

negative correlation and 1 indicates a strong positive correlation. We adapt the

categorization for correlation coefficients used in [129] ([0− 0.1] to be insignificant,

[0.1 − 0.3] low, [0.3 − 0.5] moderate, [0.5 − 0.7] large, [0.7 − 0.9] very large, and

[0.9− 1] almost perfect) if the rank correlation coefficient proves to be statistically

significant at the α = 0.01 level. Various correlation coefficients have been con-

sidered including Pearson, Kendall and Spearman. However, for Pearson’s to be

valid the data has to follow a normal distribution [151, 203] (the mean, median and

mode have to be the same) while Kendall’s tau is used in small sample sizes and

where there are multiple values with the same score [62] and interpreted based on

the probability of concordant and discordant observations. Finally, p-values derived

from Kendall’s tau are more accurate with smaller sample sizes.

The Fisher’s exact independence test is adopted when comparing two categorical

variables. It asserts the independence of the variables, with a null hypothesis H0 of

no association between their outcomes. We have used this test to analyze the asso-

ciation between measures derived from pairs of techniques for measuring semantic

dependencies. This is to identify whether the measurements derived from applying

one technique reflect those derived from a second technique. We have also adopted

the test in investigating whether there is a significant association between pairs of

class coupling types. The test performs better than the Chi-square X2 test when

there are empty cells in 2x2 contingency tables and we cannot strongly guarantee

that all the cells in all contingency tables analyzed in this Thesis when comparing

categorical variables will be populated. All the statistical tests are carried out using

related functions in the RStudio19 statistical environment.
19https://www.rstudio.com
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3.6 Replicability

According to Lewis and Ritchie [116], “reliability is generally understood to concern

the replicability of research findings and whether or not they would be repeated if

another study, using the same or similar methods, was undertaken”. Nahid [77]

outlined three types of reliability with regards to quantitative research, as: (1) the

degree to which a measurement, given repeatedly, remains the same (2) the stability

of a measurement over time; and (3) the similarity of measurements within a given

time period.

Hence, it is highly important for other researchers to be able to replicate and

validate our study and findings as reliable. Based on this, we have ensured that the

datasets and tools used in this study are publicly available and accessible. Three

main empirical studies have been presented in this Thesis in Chapters 4, 5 and 6.

In Chapter 4, the interplay between structural and logical coupling is presented.

When measuring logical coupling, the repository of each project was downloaded

and stored, with its meta-data, using the CVSAnalY20 tool21. The meta-data

exposed the list of revisions for each class, and for each project as a whole. Each

version of the project is then parsed using the arules association rule mining library

in RStudio22 to measure the confidence of the identified frequently co-changing

classes.

In the structural coupling dataset, the coupling or dependency metrics measured

are; “the number of external operational calls or references (direct call relationships

such as method calls, inheritance, or extension of another class, or a class aggregat-

ing objects of another class) [148] between “caller” and “called” classes, the number

of methods making the calls from the “caller” to and the number of methods being

called in the “called” classes using Scitools UNDERSTAND command line tool und
20http://metricsgrimoire.github.io/CVSAnalY/
21Installation steps can be found at: https://sites.google.com/site/arnamoyswebsite/Welcome/updates-

news/howtoinstallandruncvsanaly2inubuntu1110
22https://www.rstudio.com
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23 via multiple commands in a Perl script [125].

In Chapter 5, the interplay between logical and semantic coupling is investigated.

In addition, identifier-based semantic coupling measurements are compared against

a corpora-based method (Vector Space Model or VSM). While the identifier-based

techniques have already been implemented and automated by other open-source

software developers, the vector space model is automated by means of a tool we have

developed in the Java programming language. This tool is one of our contributions

and is further described in Section 3.6.1. The identifier-based techniques are; N-

Gram24 and DISCO word synonym25

In Chapter 6, we have studied the correlation between structural and semantic

class dependencies and their overlap. The structural and semantic coupling metrics

derived when carrying out the studies in Chapters 4 and 5 were adopted in this

chapter.

The coupling datasets for the 79 open-source projects and the source code of

tools/scripts built to analyze it are shared in an open repository26. The projects

are listed with brief descriptions from the source code authors in Section A.2.

3.6.1 Corpora-based semantic coupling measurement tool

The tool we have developed for computing the semantic coupling of classes in Java

projects based on their corpora can be publicly accessed on GitHub27. This tool

is one of the contributions of this Thesis and has been outlined as part of our

overall contributions in Chapters 1 and 7. As described in these chapters, this tool

automates all the steps in Section 3.4.3.1. Previously, the last two steps had been

carried out using Matlab which is distinct from the tool used to carry out the first
23https://scitools.com/
24A Java implementation of the N-Gram distance algorithm is available at https://github.com/

tdebatty/java-string-similarity\#n-gram
25The DISCO sentence similarity measures the semantic similarity between sentences according

to the synonyms of their words. A Java implementation of the tool is publicly available at https:
//sourceforge.net/projects/semantics/?source=directory

26https://figshare.com/projects/AN_EMPIRICAL_STUDY_ON_OBJECT-ORIENTED_
SOFTWARE_DEPENDENCIES_LOGICAL_STRUCTURAL_AND_SEMANTIC/24466

27https://github.com/najienka/SemanticSimilarityJava
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two steps.

Instructions on how to make use of the tool to compute the semantic coupling

between classes can also be found in the GitHub repository28 and are as follows:

• Copy the Java software project(s) folder(s) for which you want to compute the

class level semantic similairty for and paste it in the Testcases/input folder.

To test the tool, two Java software projects have been added to this folder in

the repository.

• In your IDE (e.g. Eclipse), open the MainSemanticCoupling.java class (this

is the main class and can be found in SemanticSimilarityJava/src/edu/wm/c-

s/semeru/integration) and run it.

• This will identify the Java classes, build the corpus for each of them (eliminat-

ing common key/stop words, splitting words and stemming class and method

identifiers) and will compute the semantic similarity between all possible class

pairs (
(n

x

)
, where n is the number of .java classes in the project and x = 2)

using the Vector Space Model (VSM) technique.

• The output - the tool outputs the following: corpus for each class in your Java

project, a .txt file containing the semantic similarity metrics between pairs of

classes in each project will be saved in the home folder of this tool/project (Se-

manticSimilarityJava) and computation time in nano seconds for each project

parsed (e.g., for the ps3MediaServer project, the tool outputs “time taken to

compute VSM - 779562396021 nano seconds”).

The important files in the project repository and created by the tool when

parsing projects at the class level of granularity using the ps3MediaServer project

as an example include:

• StopWords.txt - contains the stop words.
28https://github.com/najienka/SemanticSimilarityJava
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• inputFileNamesps3mediaserver.txt - in the files folder, shows the names of the

Java classes parsed.

• ps3mediaserverClassLevelSemanticCoupling.txt - in the VSM folder, shows

the output of the semantic similarity between class pairs as computed based

on the Vector Space Model (Cosine similarity).

• Corpus-ps3mediaserver-AfterSplitStop.corpusRawClassLevelGranularity - in

the corpora folder, shows for each line the corpora of each class listed in the

files folder. Other files in the corpora folder show the raw source code per

line for each class, before pre-processing of the system corpus is performed to

eliminate common keywords, stop words, split and to stem identifiers.

3.7 Summary of the chapter

In summary, we have outlined the set of techniques that have been adopted to con-

duct our empirical research; starting from the data extraction to the computation

of static software class dependency metrics and statistical techniques adopted to

explore the relationship between the software dependency types (i.e., logical, struc-

tural and semantic). To quantify the strength of the structural coupling from class

to class, we extract the number of references (operational calls) between them. For

logical coupling, we measure the confidence of frequently co-changed class pairs and

on the semantic coupling axis, we measure the semantic similarity of class pairs.

Both the logical and semantic coupling metrics range from 0 to 1.

Chapter 4 presents the first empirical study of this Thesis. The chapter will

explore the interplay between the logical and structural coupling dimensions on the

LSt axis in our sample of 79 OO OSS projects.
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Interplay on the logical and

structural (LSt) coupling axis

4.1 Introduction

In the previous chapter, we explored the techniques that are applied in subsequent

parts of the Thesis. To recap, the main aim of this Thesis is to understand the

interplay between types of class dependencies in OO software; structural, logical

and semantic dependencies. In this chapter, we investigate the interplay between

the logical and structural coupling dimensions on the LSt axis.

Previous studies have provided contradicting results on distinct and limited

samples of OSS projects. While some have stated that structural coupling always

leads to co-evolution with both class dependency types sharing a linear relationship

based on Spearman’s rank correlation ρ [203], others have identified that a signif-

icant number of logical dependencies between classes cannot be accounted for by

structural dependencies alone and vice versa [64, 71, 147, 148].

According to Oliva and Gerosa [147], controlling dependency levels in practice is

still challenging. One of the reasons is that the way and the extent to which changes

propagate by means of structural dependencies are still not clear. Learning from
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the inconsistencies and gaps in previous research, it is important to investigate the

interplay between structural and logical coupling on a large scale and a completely

distinct sample of OSS projects than those already investigated.

Structural signifies the set of class pairs with source code dependencies between

them, while Logical signifies the set of classes observed to have co-changed in the

past. In this chapter, we will lay emphasis specifically on the interplay between

structural and logical dependencies between OO software classes. The rest of this

chapter is structured in the following way. In the next section the motivation

for this study is presented. For replicability, in Section 4.3, a description of the

data collected and the investigated research questions are presented with a worked

example in Section 4.4. Section 4.5 outlines the results for the overall sample of

OSS projects while Section 4.6 discusses refactoring methods to resolve unnoticed

class dependencies (e.g., class pairs linked logically but not structurally). Finally,

a summary of the chapter in presented in Section 4.7.

4.2 Motivation

In Chapter 2 we defined the terms ‘structural coupling’ and ‘logical coupling’ and

their operationalisation. In that chapter we also identified several gaps in the litera-

ture in relation to the interplay between structural and logical class dependencies in

OO software. Researchers in this domain have produced contradicting findings, and

as a result the interplay between structural and logical class dependencies is still

less well-understood. Being better equipped with a firm finding and understanding

of these dependency types has several impacts in software engineering research and

software maintenance such as better prediction of software changes [1, 202, 209],

focusing refactoring and testing efforts.

These contradicting findings need verification on a contrasting sample of OSS

projects of different sizes. While it has been identified that structural coupling

leads to logical coupling on a small sample of 12 classes written in C [203], other
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researchers have identified that most of the change dependencies have not occurred

as a result of structural links between classes and vice versa [71, 147, 148].

The strength of the generalizeability of a previous research by Yu in which only

12 classes written in C were studied [203] to investigate the relationship between

structural and logical coupling needs to be further improved with a larger sample

of OSS projects [5]. Furthermore, the chosen p-value of 0.1 (α = 0.1) could have

resulted in a type I error – mistakenly rejecting a null hypothesis [49]. To reduce

this threat, Yu planned to increase the confidence level to 95% (reducing the α

value to 0.05) for more accuracy in future research. In a different study, they have

estimated the CBO metric (the number of other classes structurally coupled to a

class) [148] when computing structural coupling.

4.3 Empirical investigation

In this study, we will address the shortcomings of the previous research using a

larger and contrasting sample of OSS projects. The main objective of this study

is Obj1 described in Chapter 1 – investigating the interplay between structural

and logical class dependencies in OO software. The premise is that the results will

provide clearer and statistically verified findings on the interplay between structural

and logical class dependencies in OO software.

The overarching null hypothesis H0 to be verified in this study is: There is no

linear relationship between the strengths of logical and structural class dependencies

in OO software.

4.3.1 Studied sample of OSS projects

In Chapter 3, we outlined our project selection criteria and methodology. As a

result of the criteria and methodology, 79 OSS projects formed our study sample.

A brief description of each project is outlined in Section A.2 of Appendix A. Table
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4.1 presents meta-data1. relating to these projects including an inter-quartile range

analysis of the number of structurally coupled class pairs, logically coupled class

pairs and the number of revisions per project. The lowest number of observed

revisions in the studied sample of projects (21) was found in two projects audao and

ngamejava; while the project with the highest observed number of revisions (769)

is ps3mediaserver. The OSS project named dbmigrate has the lowest number of

structurally coupled classes while semanticdiscoverytoolkit has the highest observed

number of structurally coupled classes.

Table 4.1: Summary of project sample in terms of number of class dependencies and revisions.

Min. Q1 Median Mean Q3 Max.
Structural Dependencies 13 75 252 675 714 6,594

Logical Dependencies 26 394 1,648 21,640 10,441 529,590
Revisions 21 36 56 117 111 769

The box-plot in Figure 4.1 sums up the studied sample of OSS projects by the

number of .java classes and revisions. The median number of revisions between 50

and 100. This is similar for the number of classes per project. As the upper out-

liers, Semantic discovery toolkit2) has some 1,500 classes, while Ps3 media server3

underwent 769 revisions.

4.3.2 Data collected

OO software metrics have been used to measure quality attributes such as cohesion,

coupling [8] and to predict fault proneness [3] as well as changeability of classes. In

this study we are concerned with the strengths of the coupling of Java classes both

structurally and logically.

In previous research, the structural and logical coupling strengths of classes

is measured by the number of references between the classes [148, 203] and the

confidence of their association rule [210]. These two metrics are at the core of
1Derived by conducting descriptive/summary statistics on the dependency metrics and number

of revisions derived for each project using the R Studio statistics tool
2https://github.com/git2020agile/semanticdiscoverytoolkit
3https://github.com/zrevai/ps3mediaserver
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Figure 4.1: Summary of classes and revisions in overall studied sample of OSS projects

the computations and statistical analysis of this research. A description of the

computation of the metrics from our studied sample of OSS projects is outlined in

Chapter 3.

4.3.3 The research questions

This study is composed of two research questions (RQ1 and RQ2). These two main

research questions to be answered are as follows:

• RQ1: Is there a large overlap between structural and logical coupling? This

research question is based on the prevalence of results which state that the

structural coupling of classes usually leads to their co-evolution [203]. Other

studies have also mentioned that a majority of the logical or change couplings

do not include structural dependencies and vice versa [71, 147, 148].

• RQ2: Is there a linear relationship between logical and structural coupling?

This question is based on the premise that there is no linear relationship

between the number of structural or operational calls between classes and the

degree or strength of their co-evolution. This is because a previous study has
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identified a linear relationship with a high chance of false positives with a

p-value of 0.1 [203].

4.4 Worked example

In this section, we analyse one OSS project from our sample of projects as an

example in order to describe the approach taken in this study. The project under

analysis is the bluecove4 project (project ID = 28 in Table 2).

According to the project owners, “BlueCove is a JSR-82 J2SE implementation

that currently interfaces with the Mac OS X, WIDCOMM, BlueSoleil and Microsoft

Bluetooth stack found in Windows XP SP2 and newer. Originally developed by

Intel Research and currently maintained by volunteers. BlueCove runs on any

JVM starting from version 1.1 or newer on Windows Mobile, Windows XP and

Windows Vista, Mac OS X. details”. At the time of the data extraction for this

study, the project had undergone 258 revisions and composed of 753 structural class

dependencies, 63,404 logical class dependencies.

4.4.1 RQ1: Overlap between logical and structural coupling

To recap, RQ1 posed the research question “Is there a large overlap between struc-

tural and logical coupling?” Once pairwise structural and logical couplings were

extracted per project, we parsed the data for each project to identify distinct struc-

turally and logically coupled class pairs. After this we could then establish what

percentage of structural couplings (number of references from caller to called classes

> 0) includes logically related class pairs and what percentage of established logical

couplings comprises of structurally related class pairs. This step is fundamental to

answering RQ1.

For the bluecove OSS project we observed the following:

• 607 distinct class pairs belonged to the intersection set – both structurally
4code.google.com/p/bluecove
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and logically coupled.

• 81% of structurally coupled class pairs were observed to have co-evolved fre-

quently.

• ONLY 1% of co-evolved classes were structurally related (co-changed in one

or more revisions).

This observation is further presented in Figure 4.2.

146 62,797

A B

607

Structural dependencies Logical dependencies

Figure 4.2: Intersection of structurally and logically coupled classes in bluecove

Several findings which can be drawn from these results, include:

• Structurally related classes usually undergo co-change. Table 3 in Appendix

B shows that in this project, 81% of the structural class dependencies went

through co-changes.

• Differently from [203], trying to infer structural coupling from co-evolution

data will produce a lot of false positives [71].

4.4.2 RQ2: Linear relationship between logical and structural cou-

pling

To answer the second research question (“Is there a linear relationship between

structural and logical class dependencies?”) we adopt the Spearman’s rank corre-

lation ρ described in Table 1.3 of Chapter 1. The input of the test is two vectors
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derived from the number of references between class pairs and the confidence of

their co-evolution. As explained in Section 3.4.2, the references metric was ex-

tracted from the latest snapshot of the source code of each project in line with the

state of the art [71] and reviews received for this study. The class pairs that form

these vectors are those in the intersection set of RQ1 (a total of 607).

The null hypothesis H0 as outlined in Section 4.3 to be tested is as follows:

• H0: There is no linear relationship between the strengths of logical and struc-

tural class dependencies in OO software.

We have evaluated the correlation between the two vectors using the Spearman’s

rank correlation coefficient [203] because it is rare for either the structural or logical

coupling values to have a normal distribution in each project.

We reject the null hypothesis at the 99% confidence level to minimise the chance

of a type I error – mistakenly rejecting a null hypothesis. In other words, if the rank

correlation coefficient proves to be statistically significant at the α <= 0.01 level,

we will reject the null hypothesis and fail to reject the alternative hypothesis H1:

There is a linear relationship between the logical coupling and structural coupling of

OO software classes.

A threat to the statistical validity of [203] is the chosen confidence level (90%).

In that study, the chosen α = 0.1 could have resulted in a type I error. For more

accuracy, the selected value is reduced in this research to mitigate this threat. Using

the cor() function in the R statistical environment5, we loop through the data for

each OSS project in our sample and compute the Spearman’s rank correlation to

examine the linear relationship between the two coupling types being studied.

In the bluecove project, although co-changed more than once (in only a subset of

revisions), the strength of co-evolution for all of the co-evolved classes was observed

to be very weak (confidence metric = 0). This meant that there was no variance

in the confidence metric (second vector) used in computing the correlation. As a
5http://www.statmethods.net/stats/correlations.html
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result, the output of the correlation computation for both the correlation coefficient

and the p-value was ‘NA’. This applies to other projects with a similar trend in our

sample. Based on this result, there is no evidence of a correlation between the

strengths of the structural and logical couplings between classes in the bluecove

project.

4.5 Results: Overall sample of OSS projects

After illustrating the methodology adopted to answer both research questions (RQ1

and RQ2) in Section 4.4, we repeat the methodology with the overall sample of 79

studied OSS projects. The general results are forthwith presented in Sections 4.5.1

and 4.5.2. After this we discuss the findings, threats to the study and end the

chapter with an overall summary.

4.5.1 RQ1: Overlap between logical and structural coupling

The core aim of this research question is to get a picture of the overlap of structural

and logical class couplings in OO software projects by having a view of the propor-

tion of distinct class pairs belonging to the intersection of the sets of structurally

coupled and change coupled classes.

Figure 4.3 shows two summary box-plots with the following percentages:

CSD(%) = Structural ∩ Logical
Structural

(4.1)

CLD(%) = Structural ∩ Logical
Logical

(4.2)

The co-changed structural dependencies ratio (CSD) is the percentage of struc-

turally coupled class pairs that have been observed to be usually modified at the

same time, in the same revisions.

The coupled logical dependencies ratio (CLD) is the percentage of logically
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Figure 4.3: CLD and CSD Percentages per OSS project (KEY: CSD = co-changed structural
dependencies; CLD = coupled logical dependencies)

coupled class pairs that have source code dependencies between them. The two box

plots are exemplary of a common pattern: the median CSD ratio is around 80%,

meaning that, for all the projects, a majority of the structurally coupled pairs also

co-evolve. On the other hand, the median CLD shows that, for most projects, only

a minority of the class pairs that co-evolve have source code links.

The 1st field in Table 3 in Appendix B shows the project IDs; the 2nd field shows

the project names; the 3rd field shows the number of structural dependencies; the

4th field shows the number of logical dependencies; the 5th field shows the number

of dependencies in the intersection set; the 6th field further shows the percentage

of structural dependencies in the intersection set (CSD (%)); finally, the 7th field

shows the percentage of logical dependencies in the intersection set (CLD (%)).

The table is sorted by the 1st field in ascending order for better readability. Table

4.2 shows a subset (10 OSS projects) of Table 3.
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Table 4.2: Intersection of structural and logical dependencies in a subset of 10 OSS projects.
(KEY: Str. Dep. = structural dependencies; Log. Dep. = logical dependencies; CSD =

co-changed structural dependencies; CLD = coupled logical dependencies)

ID Project Str. Dep. Log. Dep. Int. Set CSD (%) CLD (%)

12 alleywayreinvented 118 680 118 100 17

88 javacoder 16 104 16 100 15

97 jbandwidthlog 57 468 57 100 12

119 jsbe 23 70 23 100 33

189 sjava-logging 53 408 53 100 13

71 hobbylinkchecker 476 35,923 473 99 1

41 daedalum 252 4,854 249 99 5

136 migrator-postgresql 78 476 76 97 16

60 fyllgen 674 14,318 656 97 5

152 onslaught 297 5,739 289 97 5

For instance, we can infer from Table 3 that the OSS project catchnthrow with

project ID = 31 has 68% of structurally coupled classes that include change de-

pendencies. On the flip side, only 21% of the logical or change class dependencies

include structurally coupled classes in the same project. This is a persistent trend

in a majority of the other projects as is visible in Table 3. In 81% of the OSS

projects in the studied sample of 79 projects, the results prove that structurally

related classes usually consist of logically related classes (65 of 79 projects). In the

remaining 14 projects, the percentage of co-changed structurally linked classes fall

below 60%.

Two Venn diagrams Figure 4.4 (left and right) have been adopted to illustrate

the two main observed trends in the results. The smaller circle represents the

set of structural class dependencies while the larger circle represents the set of

logical class dependencies. The top Venn diagram presents a scenario whereby

ALL the structurally coupled class pairs in a project include logically or change

related classes. These classes are observed to have always been co-changed instead
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of undergoing independent alterations. An example of this scenario is observed in

the jbandwidthlog project (project ID = 97).

Figure 4.4: Venn Diagrams (weighted) showing the two sets of coupling in two scenarios: project
ID=97 (left) and project ID=69 (right)

The second most common trend identified in the results is illustrated using the

bottom Venn diagram in Figure 4.4 (right), showing the guitarjava project (project

ID = 69). A subset of pairs of coupled classes do not need co-change, while the

majority of the others still do. Again, in this project the majority of its other

co-changes are not in favour of structural coupling.

In summary, a large proportion of the OO software projects have provided ev-

idence to indicate that logically related classes do not usually involve structurally

coupled classes. Furthermore, the proportion of logically related classes that in-

volve structurally coupled classes OO software is very low in all projects studied.

A previous study has shown that ripple effects are propagated across the path of

source code links in OO software [147].

Geipel and Schweitzer [71] have demonstrated that the proportion of co-changed

structural dependencies (CSD) are always larger than the proportion of structurally

coupled logical dependencies (CLD) in open-source software projects. Similarly,

based on a different sample of OSS projects, other researchers have found that

the distribution of change dependencies is always larger than the distribution of
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structural dependencies [147, 148].

Differently from other research results, that tend to highlight the 80-20 Pareto

distribution in most of the metrics on single software artifacts (complexity [45],

defect density [60], number of changes [112]), the results from this study provide

the evidence that structural dependencies in OO software projects do not follow

such distributions.

Structural dependencies often include logical dependencies but not inversely

4.5.2 RQ2: Linear relationship between logical and structural cou-

pling

Similarly to the worked example in Section 4.4.2, we have applied the Spearman’s

rank correlation method and the same OO structural and logical coupling metrics

to answer RQ2 for the overall sample of OSS projects.

Using the Spearman’s rank correlation, we tested for the null hypothesis H0:

There is no linear relationship between the strengths of logical and structural class

dependencies in OO software (with α = 0.01). Figure 6.3 shows the generic correla-

tion outcomes, alongside the p-values derived from the Spearman’s rank correlation

analysis computation.

Correlation results are also outlined in Table 4 in Appendix B. As visible in the

Table, a significant correlation (i.e., p-value <= 0.01) is not observed in any of the

projects. In the majority of the projects; while some produced an insignificant (i.e.,

p-value > 0.01) negative Spearman’s correlation between the structural coupling

strength (i.e., references between classes) and their co-evolution strength (i.e., con-

fidence), others produced an insignificant positive correlation coefficient [5]. Table

4.3 outlines results derived from a subset of 10 projects in the overall sample.
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Figure 4.5: Structural and logical coupling - Spearman’s rank correlation results with p-values

Table 4.3: Structural and logical coupling correlation outcomes of a subset of 10 OSS projects

ID Project Correlation Coefficient p-value

1 2dtetris 0.1 0.4

2 4-connect 0.01 0.94

7 ahs-scheduling 0.01 0.93

14 amock 0.02 0.31

18 apjava 0.3 0

30 castanea 0.1 0.003

31 catchnthrow 0.2 0.01

41 daedalum NA NA

45 dbmigrate -0.1 0.7

51 echo-nest-java-api NA NA
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In a previous study, when using α <= 0.1 and analyzing only a very small

sample of twelve classes [203], it was inferred that there is a ‘significant’ correlation

between the structural and the logical coupling of 12 classes of the Linux Kernel.

On the contrary, using α <= 0.01, this study has shown otherwise. From these

results, one can infer that a stronger coupling between two classes is not a predictor

of the likelihood of more changes to the same pair of classes. In summary, there is

no solid evidence to reject H0 presented in Section 4.4.2.
There is no significant correlation between structural and logical class coupling

strengths; they have minimal impacts on each other

4.6 Points of action

The results presented in this chapter have statistically proven that not all classes

that have previously co-changed are structurally linked. On the other hand, struc-

turally coupled classes will usually lead to co-change. As such the overlap between

structural and logical class dependencies is partially minimal because the relation-

ship in one direction (structural → logical) is stronger than the other (logical →

structural).

While structural coupling usually leads to co-change, not all co-changes will be

identified during impact analysis solely based on an analysis of structural coupling.

This implies that there could be other types of implicit dependencies linked to

co-change such as semantic or conceptual coupling [102, 148].

Since not all the structurally coupled classes are been co-changed, one could

infer that their structural links are somewhat stable or do not require modifications.

As such, we cannot enforce a co-change between stable structurally related classes

simply to maximize the overlap between structural and logical coupling as doing so

can lead to unnecessary maintenance efforts. Therefore, the appropriate point of

action will be to investigate the whether there is a significant relationship between

semantic and logical dependencies.
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4.7 Summary of the chapter

In this chapter, we have investigated the interplay on the LSt axis by focusing on

the interplay between structural and logical class dependencies in 79 OO software

projects. Firstly, we investigated the overlap between both coupling types by quan-

tifying the proportion of class pairs belonging to the intersection set (both source

code and change related class pairs) per project. Results showed that co-evolving

classes are not always related by operational calls. However, a majority of source

code related classes will undergo co-change. Secondly, adopting Spearman’s rank

correlation which is a statistical test used to probe the linear relationship between

two variables, we found no strong evidence in favour of a linear relationship between

structural and logical coupling strengths. This means that a stronger structural

coupling strength does not imply a higher chance of co-evolution.

These results are useful for the software engineering community and have several

impacts in software engineering and maintenance: majority of co-changes cannot

be accounted for by source code links therefore, structural class dependencies will

usually include logical dependencies therefore, coupled classes should be co-tested

after modifications to a class to mitigate the chance of future faults.

Investigating the interplay between semantic and logical coupling will be a fertile

research topic. The rationale is the possibility of accounting for co-changes to classes

by means of their semantic similarities. Another rationale is the use of semantic

coupling metrics to inform practitioners about the strength of the co-evolution of

class pairs without the need to analyze historical data which in some cases might

simply be unavailable. In Chapter 5, the interplay on between logical and semantic

coupling dimensions on the LSe axis.
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Chapter 5

Interplay on the logical and

semantic (LSe) coupling axis

5.1 Introduction

In the previous chapter, an investigation into the interplay between structural and

logical class dependencies in OO software was carried out. The goal of that study

was to investigate the presence of a linear relationship between structural and logical

coupling, as well as a directional relationship identified in prior studies on distinct

samples of OSS projects.

To recap, one of the highlights of Chapter 4 is structural dependencies between

OO software classes give rise to their co-evolution. However, not all the logical class

dependencies could be accounted for by structural dependencies. The implication

of that is most of the logical dependencies between classes in the analyzed sample

of OSS projects could have been brought about by means of other types of depen-

dencies (for example, semantic coupling). Another lesson learned from Chapter 4

is that one cannot assume that there is a structural link between two classes based

on a high co-evolution degree.

Semantic coupling is based on the textual similarities between the terms em-
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bedded within the source code of OO software classes, including their comments

and identifiers while logical coupling is based on an observation of the historical

co-evolution of classes. In this chapter we will lay emphasis specifically on the

interplay between the logical and semantic coupling dimensions on the LSe axis.

The rest of this chapter is structured in the following way. In the next section the

motivation for this study is presented. For replicability, in Section 5.3 a description

of the data collected and the investigated research questions are presented with a

worked example in Section 5.4. Section 5.5 outlines the results for the overall sample

of OSS projects. In Section 5.6 we discuss points of action in scenarios whereby

one coupling type does not reflect another (e.g., classes linked semantically do not

share a logical link). This is followed by a summary of the chapter in Section 5.7.

5.2 Motivation

In a prior study, Yu [203] has identified that there is a linear relationship between

structural and logical coupling and that structural coupling leads to co-evolution

though on a small sample of C classes. No large scale empirical study has been

carried out to understand the interplay between logical and semantic class depen-

dencies. Oliva and Gerosa have identified this to be a fertile research topic [148].

This is because the structural coupling of classes could not account for all the logical

dependencies between classes. These gaps form the motivation of this study and

we propose the premise that a large proportion of semantic class dependencies in

each OSS project in the studied sample of software projects will consist of logical

dependencies [21]. Figure 5.1 embeds this premise (highlighted in orange) in the

body of prior knowledge on class dependencies.

According to Bavota et al. [21], “the peculiarity of the semantic coupling mea-

sure allows it to better estimate the mental model of developers than the other cou-

pling measures. This is because, in several cases, the interactions between classes are

encapsulated in the source code vocabulary”. Therefore, it is important to leverage
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Figure 5.1: Motivating example: structural coupling → co-evolution [203] and semantic coupling
→ co-evolution (premise)

the information embedded in the identifiers and comments of classes which are not

captured by an analysis of structural dependency when carrying out static change

impact analysis [156]. This is because developers are likely to use similar terms and

comments in related classes to describe the shared features among classes. This

study aims to address the aforementioned gaps.

5.3 Empirical investigation

The main objective of this study is Obj2 described in Chapter 1: to investigate the

interplay between semantic and logical coupling among classes in OO software. In

this section, we describe the study methodology with worked examples.
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5.3.1 Studied sample of OSS projects

The overall sample of OSS projects analysed in this study are described in Section

3.4.1 and Table 4.1. We have also described the project sampling techniques in

Chapter 3. To briefly recap, the lowest number of observed revisions in the studied

sample of projects (21) was found in two projects audao and ngamejava; the project

with the highest observed number of revisions (769) is ps3mediaserver. The same

project sample has been studied throughout this Thesis.

5.3.2 Data collected

OO software metrics are used to measure the quality attributes of software such as

coupling or dependencies of components [35, 198], fault proneness [3] and cohesion

[30, 97]. This study is primarily focused on the semantic and logical coupling of

classes in OO software projects. In Chapter 2 we described semantic and logical

coupling of OO software classes and explained the computation of associated metrics

in Chapter 3.

To recap, semantic coupling [155] is a measure of the degree of the semantic

similarity of the terms embedded in the source code, comments and identifiers of

classes, while the confidence metric [210]1 of identified association rules or frequently

co-changing classes is a measure of the degree of their co-evolution. Both metrics

lie between the range of 0 and 1, where 0 is the minimum and 1 is the maximum.

This metric pair are adopted in the statistical analyses of this chapter. We also

determined in Chapter 3 that the N-Gram sentence similarity technique performs

better on English and non-English terms. Therefore, semantic coupling metrics in

this study are based on the N-Gram sentence similarity technique.

5.3.3 The research questions

Based on the identified gaps and motivations, several research questions were con-

ceived to be answered in this study. Thus, this study aims to answer the following
1for logical coupling
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research questions:

• RQ1: Is there a large overlap between semantic and logical coupling?

This question is based on established results from previous research on the link

between structural and logical coupling. It is also important to understand

the degree to which semantic coupling influences co-change of classes in OO

software projects.

• RQ2: Is there a linear relationship between semantic and logical coupling?

Answering this question will shed more light on the extent to which semantic

coupling between classes influences the degree of their co-evolution. Previous

research has established a linear correlation between structural and logical

coupling strengths. For the sake of change impact analysis, it is also imper-

ative to have an understanding of the degree to which semantic similarity of

classes and the strength of their co-evolution co-vary.

5.4 Worked example project

For the purpose of replicability we describe the study methodology using theGeocoder-

Java OSS project as an example from our sample. The project is the third version

of an implementation of a Java API for Google geocoder.

5.4.1 RQ1: Overlap between logical and semantic coupling

In order to answer RQ1, it is essential to identify pair-wise semantic and logical class

dependencies. Once the class dependencies are identified, a spreadsheet is popu-

lated with the following columns; LHS (antecedent), RHS (consequent), semantic

similarity, and confidence. To recap, as described in Chapter 3 the antecedent and

consequent are derived from mining association rules in the evolution history of

classes. Based on frequently co-changing classes, the consequent is a class that is
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usually changed when a change is made to the antecedent and the strength of this

co-change is the confidence metric [210].

After pair-wise class dependencies are identified with associated semantic and

logical dependency metrics, we built the aforementioned spreadsheet. Using a Shell

script, we parsed the data and identified the proportion of semantic dependencies

that involve non-logical dependencies (i.e., A − B from the sets in Figure 5.2),

the proportion of logical dependencies that involved non-semantic dependencies

(i.e., B − A from Figure 5.2) as well as the intersection set of pairs of classes

that are both semantically and logically related (i.e., A ∩ B from Figure 5.2). In

an example OSS project Geocoder-Java, we identified 441 semantic dependencies,

379 logical dependencies and 379 class pairs in the intersection set. This means

that in this project, 100% of the logical dependencies include classes with semantic

relationships. On the other hand, not all the semantically related classes were

co-changed.

62 0

A B

379

Semantic dependencies Logical dependencies

Figure 5.2: Intersection of semantically and logically coupled classes in Geocoder-Java

5.4.2 RQ2: Linear relationship between logical and semantic cou-

pling

In this section, we describe for the sake of replications the calculation of the sta-

tistical test for RQ2. To recap, RQ2 poses the research question “Is there a linear

relationship between semantic and logical coupling?”.
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We created two vectors, one with the values of the logical coupling strength

(i.e., the confidence metrics) and the second one with the values of the semantic

coupling strength per pair of classes, and along their string of revisions.

The observations in the two vectors include the semantic coupling metric and

the confidence metric of the co-evolution of two classes. The semantic coupling

metric is a symmetric metric meaning that the semantic coupling is the same in

both directions (for example a pair of classes i and j in a software project Y, i → j

will have the same semantic coupling metric as j → i). The logical coupling metric

however is not symmetric. The association rule i → j measures the strength of

the following observation: “when i is modified, there will always be a change in j”

[208]. Therefore, i → j and j → i are not treated as the same association rule (the

confidence metric could be different but the semantic coupling metrics is the same)

and are considered as different observations in the created vectors. Both vectors

will be composed of the same number of observations with the confidence metric in

one and the semantic coupling metric in the other.

The null hypothesis H0 to be tested is as follows:

• H0: There is no linear relationship between the strengths of logical and se-

mantic dependencies.

The correlation between the two vectors is evaluated using the Spearman’s rank

correlation coefficient [203]. In this study we calculated the Spearman’s rank corre-

lation coefficients using the built-in cor() fucntion in the R statistical environment

(example usage in R, cor.test(vector1, vector2, method = “spearman” 2)). As de-

scribed in Chapter 3, Spearman’s metric (non-parametric) was selected over other

correlation techniques because we cannot guarantee that either the semantic or logi-

cal coupling metrics will follow a normal distribution. We reject the null hypothesis

for all studied projects at the 99% confidence level.

Simply put, if the calculated Spearman’s rank correlation coefficient proves to be
2http://www.gardenersown.co.uk/education/lectures/r/correl.htm#cor_sig

101



Interplay on LSe: Chapter 5 RQ1: Overlap

statistically significant at the α = 0.01 level, we will reject the null hypothesis and

fail to reject the alternative hypothesisH1: There is a linear relationship between the

semantic coupling and logical coupling of OO software classes. The results derived

for all projects are described in Section 5.5.2. The α = 0.01 level was chosen as

suggested in Yu’s study [203]. One of the threats to the statistical validity to their

study was the selection of the significance level. In that study, they chose α = 0.1

which might have resulted in a type I error - mistakenly rejecting a null hypothesis.

To reduce this threat, they planned in future research to increase the α value to 0.05

for more accuracy (which we have done herein with α = 0.01). In project Geocoder-

Java, the calculated Spearman’s rank correlation coefficient of 0.06 is insignificant

with a p-value of 0.21.

5.5 Results: Overall sample of OSS projects

Applying identical research methodology and statistical tests described in Section

5.4 for the worked example OSS project on the overall sample of 79 OSS projects,

we describe the results in this section.

5.5.1 RQ1: Overlap between logical and semantic coupling

With the goal of contributing to the body of knowledge on the interplay between

semantic class dependencies and their co-evolution, we further empirically probed

the absence or presence of a large overlap between semantic and logical coupling.

This is to understand the effect of semantic coupling on co-change and vice versa

if any. In Chapter 3, we have discussed with empirical results, the association

between class identifier and corpus-based semantic similarity calculation techniques

at a semantic dissimilarity threshold of 0.1. We also identified that the N-Gram

sentence similarity used in calculating class identifier similarity performed better

on non-English terms. Accordingly, in this section the semantic coupling between

classes is calculated based on their identifiers only and we have considered class
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pairs to be semantically related if their semantic similarity is between 0.1 and 1. In

order to answer RQ1, it is imperative to gain an understanding of the intersection

of the logical and semantic coupling per project. This intersection set is depicted

by the shaded area in Figure 5.2. This set of classes per project is defined as the

proportion of class pairs linked both logically and semantically.

Table 6 in Section C.1 shows for each OSS project in our sample of 79 projects,

the number of distinct semantic dependencies in the third column, the number of

distinct logical dependencies in the fourth column, the number of dependencies in

the intersection set – pairs of classes that co-change and are semantically related,

the percentage of semantic dependencies in the intersection set shown in the sixth

column (see equation 5.1), while the last column shows the proportion of logical

dependencies in the intersection set (see equation 5.2).

Equations 5.1 and 5.2 are at the core of RQ1. Two formulas are presented: the

Co-changed Semantic Dependencies (CSD, measured in percentages) and Semantic

Logical Dependencies (SLD, also a percentage). These two formulas are used as a

measure of the class dependencies that belong to the intersection set (both logically

and semantically related classes). The CSD(%) represents co-changed semantic de-

pendencies; these are class pairs that share a semantic and modification relationship

(frequently co-changed). The SLD(%) represents classes that are logically or change

related and also share a semantic relationship. Some classes might only share either

a semantic relationship only or a logical relationship only and these classes do not

belong to the intersection set.

Figures 5.3 exhibits two summary plots with the following percentages:

CSD(%) = Semantic ∩ Logical
Semantic

(5.1)

SLD(%) = Semantic ∩ Logical
Logical

(5.2)

Table 6 in Appendix C is sorted by the project IDs and names for readability.
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The table shows that there is a directional connection between co-change and se-

mantic coupling. When the identifiers of pairs of classes contain similar terms (i.e.,

the classes are semantically related) they usually require modifications at the same

time. This also holds in the opposite direction.

The results mentioned above are illustrated with two box-plots each in Figure

5.3. The plots show the distribution of class pairs belonging to the intersection set

(classes with both semantic and logical dependencies; see equations 5.1 and 5.2).

The results indicate a bi-directional relationship between semantic relationships and

co-change, especially in Figure 5.3 where both distributions are relatively high in

the overall sample of studied OSS projects. Therefore, we reject the null hypothesis

(H0) for RQ1 presented in Table 1.2 (Chapter 1) and fail to reject the alternative

hypothesis: There is a directional relationship between the semantic and logical

dependencies among OO software classes.

0 10 20 30 40 50 60 70 80 90 100

CSD %

SLD %

CSD and SLD Percentages per OSS Project

Figure 5.3: CSD and SLD percentages per OSS project (KEY: CSD = co-changed semantic
Dependencies; SLD = semantic logical dependencies; semantic dependencies calculated with

N-Gram identifier-based technique)
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Semantic dependencies often include logical dependencies and this also applies

inversely for identifier-based semantic similarity technique not sensitive to only

English terms

5.5.2 RQ2: Linear relationship between logical and semantic cou-

pling

Results in Section 5.5.1 have shown that commonly, semantic class dependencies will

include logical class dependencies in OO software projects. In this section, following

the methodology in Section 5.4.2 we aim to answer RQ2 with an investigation of the

overall sample of 79 OSS projects. This is to determine the effect of the strengths

of the semantic and logical coupling of class pairs on one another. The strength

of the logical coupling is measured in terms of the confidence metrics of identified

association rules or frequently co-changed class pairs. This metric ranges between

0 and 1. Previous studies on the relationship between the class dependency types

have not answered RQ2 or investigated whether a high semantic similarity will lead

to a high degree of the co-evolution of class pairs. In answering RQ2, we test for

the following null hypothesis:

• H0: There is no linear relationship between the strengths of logical and se-

mantic dependencies.

The measurement of how loosely or closely two classes are semantically coupled

is based on the class identifier-based method (N-gram) described in Chapter 3.4.3.

The reason for this is that we have identified the computational efficiency of the

identifier-based methods compared to the corpora based method in Section 3 as well

as a linear relationship between their outputs (semantic coupling measurements).

The linear correlation between both metrics is investigated and the results are now

presented. Answering RQ2 will shed more light on whether or not the strengths

of the semantic and logical (change) coupling of OO software classes co-vary. For
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instance, if they do co-vary, such statistical results will enable the prediction of the

co-change frequency of class pairs based on the strength of their semantic coupling.

Adopting the Spearman’s rank statistical test for correlation (ρ), we created

two vectors as its input per studied OSS project. The first one with the semantic

coupling metrics of class pairs and the second one with the confidence metrics, a

measure of the co-evolution degree of frequently co-changing class pairs.

Figure 5.4 shows the correlation outcomes along with p-values obtained for

the identifier-based semantic similarity measurement techniques. The underlying

Spearman’s rank correlation data is also presented in Table 7 in Appendix C. Fig-

ure 5.5 gives a clearer picture of the distribution of the p-values. Identically to the

Chi-squared test for independence explained in Section 5.5.1, we reject the null hy-

pothesis at the 99% confidence level with only a 1% error margin for the Spearman’s

rank correlation.
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Figure 5.4: Correlation between N-Gram based semantic similarity measures and confidence

Figure 5.4 shows a lack of any substantial evidence to infer that a precise type

of correlation (+ve or -ve) exists between semantic and logical coupling strengths.

There is a positive correlation in some projects, while a negative correlation in
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Figure 5.5: Correlation between N-Gram based semantic similarity measures and confidence
(box-plot distribution of p-values)

others. The p-values in Figure 5.5 further shows that the correlations might have

been identified by chance and are not statistically significant. This is because most

of the p-values are above 0.01 except for only a few of the sample of studied projects.

Therefore, due to the lack of any considerable evidence to suggest that there is

a linear correlation between semantic and logical coupling strengths or related OO

software classes, we fail to reject the null hypothesis (H0) for RQ3: There is no

linear relationship between the strengths of logical and semantic dependencies.

In summary, to answer RQ2 we have computed the linear correlation between

the strengths of the semantic and logical coupling class pairs, We have used the

semantic similarity of class identifiers and the confidence of their co-evolution. The

results indicate that these coupling strengths do not co-vary, so that they should

be considered independent. A pair of classes with a higher chance to be co-evolved

are not necessarily bound to be linked by a semantic link. This overall observation

has two effects:

1. inferring the co-evolution degree of class pairs based on the strength of their

semantic coupling and vice versa will produce many false positives.
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2. Using semantic coupling information to predict co-evolution will produce a

prediction model with very low precision.

Previous research by Abdeen et al. [1] has shown that combining semantic and

structural coupling information when prediction co-change outperforms using either

of them individually. However, semantic coupling metrics produced better recall

values compared to structural coupling metrics. Research has also shown that the

lack of a linear correlation does not imply a lack of causation [153]. As such the

absence of a linear correlation between semantic and logical coupling does not infer

that the absence of a directional relationship between the coupling types.
The degree of the co-evolution of classes and their semantic coupling are not

significantly correlated

5.6 Points of action

In this chapter, results derived from analysing 79 OSS projects show that there is a

large overlap between semantic and logical dependencies (see Section 5.5.1). A high

number of semantic dependencies include some degree of logical dependency. This

observation also applies in the opposite direction when semantic coupling measure-

ment techniques based strictly on English terms are not adopted in the software

domain.

Therefore, in this chapter further action is not recommended to maximize the

overlap between semantic and logical class dependencies as a majority of the co-

change between classes is captured by their implicit semantic dependency. Fur-

thermore, when semantically coupled classes do not require co-changes, it is not

helpful to enforce an irrelevant co-change. That will lead to unnecessary main-

tenance efforts and ripple effects on other classes without the aim of improving

software quality.

Notwithstanding, in the previous chapter we observed that not all the structural

dependencies can be accounted for by logical coupling and it is not clear whether all
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the semantic dependencies share a structural relationship. As such, it is imperative

to investigate the interplay between semantic and structural dependencies. If there

happens to be a minimal overlap between both types of dependencies, then the ap-

propriate point of action will be to maximize their overlap to minimize unnoticeable

coupling during change impact analysis.

5.7 Summary of the chapter

In this chapter, we have probed the relationship between semantic and logical class

dependencies on the LSe axis with the aim of understanding the implicit causes of

co-change, identify any direct influence of semantic coupling on logical coupling and

to mitigate unnoticeable class dependencies during change impact analysis.

On the causality of coupling, findings show there is a large overlap between

semantic and logical (change) class dependencies. If two classes are semantically

coupled, there is a high change that they will co-evolve in the future. However,

differently from RQ2 we have shown that the degree of these dependency types

do not show a linear correlation. On the strengths of coupling, results showed

that there is no linear correlation between the degree or strengths of the semantic

similarity between classes and the frequency of their co-change. Statistical results

prove that not all highly semantically related classes require frequent co-changes.

The last results on the linear correlation are particularly important: for example,

two (semantically similar) class pairs A ↔ Â and B ↔ B̂ could share a semantic

similarity of 0.7, but not the same degree of co-change: the pair A ↔ Â could

change much more often than B ↔ B̂. Even so, what this chapter shows is that

it is highly likely that the pairs A ↔ Â and B ↔ B̂ will co-change at least once

or more. In addition, Spearman’s rank correlation coefficient only assesses linear

relationships but some relationships can be curvillinear [14]. Earlier research has

shown that lack of correlation does not imply lack of causation [94, 191, 200].

Following the results presented in this chapter and Chapter 4, it is evident
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that the ripple effects of changes are propagated along semantic and structural

dependencies. In addition, the presence of semantic and structural coupling between

classes in OO software projects cannot be inferred based on an observation of logical

dependencies.

Therefore, it is more reasonable to investigate the relationship between semantic

and structural class dependencies, with the goal of maximizing the overlap between

the two dependency types for advancing change impact analysis. The premise is

that an understanding of their direct influence on each other and maximizing their

overlap (intersections set - classes with both structural and semantic link) will

minimize coupling analysis efforts, testing efforts and improve the identification of

hidden class dependencies during CIA. Therefore, the interplay between semantic

and structural coupling dimensions on the StSe axis is investigated in Chapter 6.
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Interplay on the structural and

semantic (StSe) coupling axis

6.1 Introduction

In Chapters 4 and 5, we have empirically investigated the interplay between struc-

tural and logical class dependencies, and semantic and logical class dependencies

respectively. An important outcome of these chapters is that the strengths of struc-

tural or semantic dependencies do not share a linear relationship with the strength

of logical dependencies.

The results in Chapters 4 and 5 demonstrate that not all the logical dependencies

can be captured by either ONLY structural or semantic dependencies. This is of

great significance and has a high impact on dependency based CIA. This is because

depending on the type of coupling links between classes under analysis (structural

or semantic) during CIA of OO systems, classes with only one type of dependency

or link to other classes will be discovered. It is important for developers to be able

to precisely trail the path along which the effects of modifications to classes might

propagate in a software system. This will reduce future maintenance efforts as well

as testing efforts.
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In this chapter, we will focus specifically on the interplay between structural

and semantic dependencies between OO software classes along the StSe axis with

the goal of reducing unnoticeable dependencies during CIA. The rest of this chapter

is structured in the following way. In the next section the motivation for this study

is presented. For replicability, in Section 6.3, a description of the data collected and

the investigated research questions are presented with a worked example in Section

6.4. Section 6.5 outlines the results for the overall sample of OSS projects. Based on

these results, refactoring techniques that can maximise the overlap between struc-

tural and semantic class couplings are proposed with worked examples in Section

6.6, which is followed by a summary of the chapter in Section 6.7.

6.2 Motivation

Researchers [64, 71, 147, 148] have identified the need to study the interplay between

structural and semantic dependencies, as not all structural or semantic dependencies

are related to change dependencies.

Structural and semantic dependencies play a large role in software evolution

and change propagation in OO software. It has been shown with a small sample

of classes, that structural dependencies exhibit a linear relationship with logical

dependencies [203], but it remains unclear whether a stronger structural link implies

a strong semantic link. Past research, specifically focused on establishing a link

between class dependency types [64, 71, 147, 148] have identified that there is a

need to study the interplay between structural and semantic dependencies, as not

all structural dependencies are related to co-evolution. Until now, the interplay

between semantic and structural coupling has not been investigated, despite the

fact that an analysis of only semantic dependencies during CIA will not reveal

some structural dependencies and vice-versa [1, 102, 156]

According to Yu and Rajlich [205], hidden dependencies make both software

comprehension and maintenance hard. They play an important role in software
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maintenance and evolution because they spread changes among the classes and

they can be hard to detect. Kagdi and Maletic have estimated that hidden de-

pendencies are those that cannot be captured by source code analysis alone [100].

Therefore, developers will miss a significant number of them by relying on source

code information alone during change impact analysis for example [34].

An example of developers missing a significant number of dependencies is pre-

sented the study by Kagdi et al. [102] on software coupling based change impact

analysis. Therein, they integrated logical and semantic dependency metrics for im-

pact set identification. When comparing the estimated and actual change impact

sets, the different dependency metrics estimated different and incomplete sets of

classes that might get impacted by given change requests. They also identified that

the union of these metrics produced a higher accuracy than their intersection and

larger periods of history improve the accuracy of the logical couplings and their

combination with semantic coupling. However, there will be cases where historical

data is absent. Abdeen et al. [1] performed inter-system and intra-system change

impact prediction using structural, semantic dependencies and a combination of

both, then compared results. Abdeen et al. identified that using semantic coupling

produces better recall values, in particular, in the intra-system scenario. They men-

tioned that the inclusion of semantic coupling data provided extra information that

deals with the complexity of structural dependencies in the learning phase. On the

other hand, they identified that using structural dependencies or a combination of

both types of dependencies out-performed the use of semantic dependencies ONLY.

This study takes a different point of view from previous studies in the literature:

while previous studies focused on the benefits of combining the two information

sources (structural and semantic coupling) [1, 102], this study argues that the need

to combine the sources because they are not consistent is an issue in itself as it

involves analysing dependencies in multiple ways to achieve a maintenance goal.

Ideally, coupled class pairs should be linked structurally and semantically. If a

class makes operational calls to another class, then it expected that the caller and
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called classes will both consist of related comments describing the feature being

relied upon by the caller class. Previous research has demonstrated that this is not

the case and forms the core motivation for this study [1, 102, 104, 156].

In contingency Table 6.1, we classified the class dependencies of OO systems

into four possible scenarios based on structural and semantic coupling with the use

of a 2x2 contingency table. When pairs of classes are linked both structurally and

semantically, we posit that their dependency is established (‘E’) as in Table 6.1. If a

structural link is present, but not a semantic one, there could be a strong (denoted

‘S’) missing dependency. On the contrary, if the semantic link is present, but not

the structural one, a weak (‘W’) missing dependency is detected. When neither a

semantic or structural link is detected, no dependency (‘x’) is established.

The non-ideal class pairs are those that lead to unnoticed class dependencies

during dependency based CIA, as in cells S and W in Table 6.1.

Table 6.1: Established, hidden and weak dependencies

Structural vs. Semantic Dependencies
semantic not semantic

structural E S
not structural W x

The ideal class pairs adhere to the following software dependency rule: for any

pair of semantically (symmetrically) coupled classes A, B (A↔ B); A and B should

at least be structurally (asymmetrically) coupled in any direction (A→ B or B→ A)

while class pairs not symmetrically coupled should not be asymmetrically coupled.

An understanding of the interplay between structural and semantic class depen-

dencies has several applications in software engineering and maintenance; (1) it will

help increase the precision of estimated impact sets when compared to actual change

impact sets, as unnoticeable dependencies based on either a structural or seman-

tic dependency analysis will come to light if the overlap between both dependency

types is maximised (2) it will help to point out refactoring opportunities in OO

software and finally (3) minimise testing efforts as class with EITHER structural
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OR semantic coupling links and not BOTH will be tested after a change request is

implemented. It is noteworthy that the actual impact set can vary because changes

can be carried out differently [181], thus affecting the precision of estimated impact

sets to a certain degree. In this study we will investigate the interplay between

structural and semantic class dependencies in our sample of OSS projects.

6.3 Empirical investigation

This study empirically investigates the interplay between structural and semantic

coupling, which is Obj3 described in Chapter 1. This section describes the method-

ology adopted in carrying out this study for replicability on a different sample of

OSS projects.

6.3.1 Studied sample of OSS projects

In this study, we have analysed the same sample of 79 OSS projects studied in

Chapters 4 and 5. These are all written in Java, of varying sizes and domains, and

publicly available as OSS. The meta-data for each project is presented in Table 2

and each project is briefly described in Section A.2.

6.3.2 Data collected

The strengths of the structural and semantic coupling between class pairs are mea-

sured by the number of operational calls between them and their semantic similarity

respectively. For each of the 79 OSS projects under investigation, we have collected

this pair of metrics for all pairs of Java classes following the methodologies outlined

in Chapter 3. There is a structural dependency between two classes if the number of

operational calls from caller to called class is greater than zero. There is a semantic

link between two classes if their semantic similarity >= 0.5.
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6.3.3 The research questions

If the structural and semantic class dependency types are established, the prediction

of ripple effects across the system can be run more precisely. On the other hand,

when dependencies are unnoticed or weak, developers will detect a smaller number

of dependencies capable of propagating further change. Based on these premises,

this study aims to answer the following research questions:

• RQ1: Is there a significant association between structural and semantic de-

pendencies in OO software?

This research question is based on a gap in the literature regarding the absence

of an investigation of the interplay between structural and semantic class

dependencies in OO software projects. Their interplay has not been studied,

even with the fact that an analysis of only semantic dependencies during CIA

will not reveal some structural dependencies and vice versa [1, 102, 156]

The premise is that overall there will be a small overlap between structural

and semantic class dependencies in the studied sample of OSS projects.

• RQ2: Is there a significant linear relationship between the strengths of struc-

tural and semantic coupling? Similarly to RQ1, it remains unclear whether

one can infer a strong semantic similarity between classes based on an obser-

vation of a high number of operational calls from a caller to a called class.

6.4 Worked example

In Chapter 3, we defined structural and semantic coupling as well as their extraction

of related metrics. In the same chapter we also identified the efficiency gained by

measuring the semantic coupling between classes based on their identifiers. We

further identified that the N-Gram sentence similarity technique performs better

on English and non-English terms compared to information retrieval techniques for

sentence similarity which rely on the English language dictionary for the meaning
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of words. Thus, semantic coupling metrics in this study are based on the N-Gram

sentence similarity technique.

In this section, we demonstrate the study methodology with a project from our

sample as a worked example for replicability. The project under analysis is the

monome-pages1 project (project ID = 142 in Table 2). According to the project

owners, “Pages is a monome application that allows the simultaneous execution of

multiple other monome applications on any number of devices. There are many

built in applications as well, including MIDI interfaces (keyboard, triggers, faders,

sequencers), Ableton clip launcher interfaces, and a way to easily script your own

programs with Groovy”. As at the time of the data extraction for this study, the

project had undergone 256 revisions and composed of 835 structural class depen-

dencies, 1,429 semantic class dependencies.

6.4.1 RQ1: Overlap between structural and semantic coupling

By answering RQ1, we test for the following null hypothesis H0: Structural and

semantic class dependencies are independent.

In order to answer RQ1, it is imperative to identify the number of distinct

structural and semantic dependencies in each project. Afterwards, the contingency

table is populated as in Table 6.1. Table 6.2 illustrates the populated contingency

table for the example project - monome-pages. This project has a total of:

• 167 class pairs with both structural and semantic links in cell E;

• 582 class pairs with ONLY structural links in cell S;

• 555 class pairs with ONLY semantic links in cell W, and;

• 12 class pairs without any links in cell x.

This observation is further presented in Figure 6.1.
1code.google.com/p/monome-pages
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582 555

12

A B

167

Structural dependencies Semantic dependencies

Figure 6.1: Intersection of structurally and semantically coupled classes in monome-pages

Table 6.2: Established, hidden and weak dependencies

Structural vs. Semantic Dependencies in Monome-Pages
semantic not semantic

structural 167 582
not structural 555 12

We take two examples of class pairs in cells W and S of Table 6.2 from the latest

snapshot of the source code for further analysis.

As an example of class pairs in cell W, we consider the semantic dependency

AbletonClipDelay.java↔AbletonClipLauncherPage.java. This pair of .java classes

do not have any operational calls between them or source code links. However, con-

ceptually, their identifiers are related because of the presence of similar terms upon

splitting the identifiers (i.e., “Ableton”, and “Clip”). In line with this, their semantic

similarity metric as derived from the N-Gram technique is 0.6, above the dissimilar-

ity threshold of 0.5 and these classes have been co-changed in four revisions. This

demonstrates that ripple effects are not only propagated via structural couplings

or source code links. Semantic dependencies are also related to co-evolution, as

demonstrated by empirical results in Chapter 5.

A closer look into the source code of these classes, reveals that they also share

similar terms in their comments. Listings 6.1 and 6.2 illustrate excerpts from the

source code of the classes textttAbletonClipDelay.java and AbletonClipLauncher-

Page.java, respectively. The listings show that the source code and comments of
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1 package org.monome.pages.ableton;
2
3 import org.monome.pages.Main;
4 import org.monome.pages.configuration.Configuration;
5
6 /**
7 * Delays sending a play clip command to Ableton, used by the Live Looper page to cut

loops.
8 *
9 * @author Tom Dinchak

10 *
11 */
12 public class AbletonClipDelay implements Runnable {
13
14 /**
15 * Amount of time to delay in ms.
16 */
17 private int delay;
18
19 /**
20 * The track number where the clip lives, from left to right starting at 0.
21 */
22 private int track;
23
24 /**
25 * The clip number, from top to bottom starting at 0.
26 */
27 private int clip;
28 ...

Code 6.1: AbletonClipDelay.java

both classes contain a high occurrence of the term “clip” embedded within them.

This is visible in lines 7, 20, and 25 of Listing 6.1 and lines 3, 6, 8, 12, 13 of Listing

6.2. There is no source code link between these classes.

As an example of class pairs in cell S of Table 6.2 we shall consider the structural

dependency Configuration.java → AbletonClipDelay.java. The caller class here

is AbletonClipDelay.java with three operational references to Configuration.java.

These three source code links can be seen in lines 2, 5, and 18 of Listing 6.3. Excerpts

of Configuration.java are also shown in Listing 6.4. It is immediately clear from

Listing 6.3 why there is no semantic link between both classes. The lines with

operational calls to Configuration.java do not have any comments within the source

code in Listing 6.3 to explain them. Comments hold valuable information that can
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1 ...
2 /**
3 * Sends "/live/play/clip track clip" to LiveOSC.
4 *
5 * @param track The track number to play (0 = first track)
6 * @param clip The clip number to play (0 = first clip)
7 */
8 public void playClip(int track, int clip) {
9 this.monome.configuration.getAbletonControl().playClip(track, clip);

10 }
11
12 public void stopClip(int track, int clip) {
13 this.monome.configuration.getAbletonControl().stopClip(track, clip);
14 }
15
16 /**
17 * Sends "/live/arm track" to LiveOSC.
18 *
19 * @param track The track number to arm (0 = first track)
20 */
21 public void armTrack(int track) {
22 this.monome.configuration.getAbletonControl().armTrack(track);
23 ...

Code 6.2: AbletonClipLauncherPage.java

help developers in understanding the source code and is leveraged when measuring

semantic coupling and cohesion [156]. It has been recommended that there should

always be sufficient comments or documentation within source code. This will

describe what has been implemented2. This will further introduce a semantic link

between the classes in Listings 6.3 and 6.4. As a result they will belong to set of

established class dependencies in cell E of Table 6.2.

After generating the 2x2 contingency table for the project, we further carry out

independence tests to investigate the presence of a significant association between

structural and semantic class dependencies. In this study we have adopted the

Fisher’s exact independence test. It asserts the independence of two categorical

variables. In this study, the variables under analysis are structural and semantic

class dependencies. This test is adopted because it performs better than the Chi-

square X2 test when some cells in the contingency tables have values of zero (0). If
2Comments within source code improve program comprehension for software developers and

maintainers [124]
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1 ...
2 private Configuration configuration;
3 ...
4 public AbletonClipDelay(int delay, int track, int clip, Configuration configuration)

{
5 this.configuration = configuration;
6 this.delay = delay;
7 this.track = track;
8 this.clip = clip;
9 }

10
11 public void run() {
12 try {
13 Thread.sleep(this.delay);
14 } catch (InterruptedException e) {
15 // TODO Auto-generated catch block
16 e.printStackTrace();
17 }
18 this.configuration.getAbletonControl().playClip(track, clip);
19 }
20 ...

Code 6.3: AbletonClipDelay.java

the test returns a p-value of > 0.01, we reject the null hypothesis associated with

RQ1. Similarly to the empirical study in Chapter 4, in this study we reject the null

hypothesis at the 99% confidence level to minimise the chance of a type I error –

mistakenly rejecting a null hypothesis.

Based on the data in Table 6.2, the Fisher’s exact test of independence results

returned a p-value of less than 0.01 (4.8e-197). A relatively similar value is also

returned by the Chi-square statistical test (2.8e-1). As a result of the outcome of

the Fisher’s exact test for independence, we reject the null hypothesis and fail to

reject the alternative hypothesis H1: Structural and semantic class dependencies

are significantly associated.

From these statistical results, we can infer that when there is a structural link

between classes we should expect a semantic link but no semantic links if there is no

structural link. In other words, there is a significant association between structural

and semantic class dependency. However, looking at Table 6.2 it is evident that

there is a higher number of coupled classes in cells S and W compared to cell E. This
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1 ...
2 /**
3 * This object stores all configuration about all current monomes and pages. It
4 * also stores global options like Ableton OSC port selection and enabled MIDI
5 * devices.
6 *
7 * @author Tom Dinchak
8 *
9 */

10 public class Configuration implements Receiver {
11
12 /**
13 * The name of the configuration.
14 */
15 private String name;
16
17 /**
18 * The number of monomes currently configured.
19 */
20 private int numMonomeConfigurations = 0;
21
22 /**
23 * An array containing the MonomeConfiguration objects.
24 */
25 private ArrayList<MonomeConfiguration> monomeConfigurations = new

ArrayList<MonomeConfiguration>();
26
27 /**
28 ...

Code 6.4: Configuration.java
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observation calls for refactoring techniques to minimise the number of links in cells

S and W and maximise the number of links in cell E to reduce unnoticeable class

dependencies during change impact analysis based on either structural or semantic

coupling information.

6.4.2 RQ2: Linear relationship between structural and semantic

coupling

In resolving RQ2, we test for the following null hypothesis H0: There is no linear

relationship between the strengths of structural and semantic class dependencies. In

this Thesis, we have tested for linear relationships by means of the Spearman’s rank

correlation test as described in Chapter 3.

To conduct the Spearman’s rank correlation test, we have generated two vectors

based on the strengths of structural and semantic class dependencies in cell E of the

contingency Table 6.2. The rationale behind this is that we want to probe whether

the number of structural and operational links between classes has an effect on the

degree of their semantic similarity and vice versa. One vector represents the number

of operational calls between the classes while the second represents the semantic

similarity metric of the classes. This test will determine whether these two metrics

co-vary; whether a high semantic similarity means a high number of structural links

between the classes and vice versa.

Spearman’s rank correlation output for the example project – monome-pages

reveals a low positive correlation coefficient of 0.1. However, the p-value is 0.07 and

insignificant (> 0.01) considering our chosen α=0.01. Based on these results, we

cannot reject the null hypothesis for RQ2 for monome-pages.

6.5 Results: Overall sample of OSS projects

In this section we report the results derived from the analysis of the overall sample

of OSS projects following the methodology in Section 6.4 in answering RQ1 and
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RQ2 and testing for their associated null hypotheses.

6.5.1 RQ1: Overlap between structural and semantic coupling

To recap, RQ1 posed the following question: Is there a significant association be-

tween structural and semantic dependencies in OO software? To answer RQ1, firstly

we populate the contingency table (i.e., Table 6.1) per project. Table 8 presents

the data for each cells of the contingency table per project and p-values derived

from the Fisher’s exact independence tests. An excerpt of this table is presented in

Table 6.3.

The first column shows the project names, the next four columns show the num-

ber of established dependencies (E), strong hidden dependencies (S), weak hidden

dependencies (W) and class pairs without any dependencies (x). The sixth column

shows the p-values derived from the Fisher’s exact Independence test per project

while the seventh column shows the p-values derived from the Chi-square statistical

test.

As shown in Table 6.3, three projects have no class pairs in cell x. This is

because all the classes in those projects either have an outgoing or incoming source

code link to one or more classes; a semantic similarity above the threshold of 0.5

between the identifiers of each class to at least one other class in the project or both

a structural and semantic link to on or more classes.

Overall, the p-values returned by the Fisher’s exact independence test indicate

that structural and semantic coupling share a significant relationship. A majority

of projects showed a significant association between structural and semantic class

coupling. We further derived similar results (p-values < 0.01) for a significant

majority of the projects using the Chi-square test for independence to confirm initial

Fisher’s exact test results and check whether the low p-values derived from the

Fisher’s test are due to overflow errors (the influence of larger values in some cells).

Chi-square independence test results for all the OSS projects in the studied sample

are presented in Table 9. Therefore, based on statistical results, we can reject the
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Table 6.3: E, S, W and x sets of class pairs (excerpt from 20 studied OO software projects)

Project Name E S W x p (Fisher’s) p (Chi-square)
2dtetris 16 64 5 0 0.0006 0.0005
4-connect 0 18 0 1 1 Nan
ahs-scheduling 6 52 1 3 0.4 >0.9
aima-java 547 2,875 2,627 193 0 0
alexo-chess 111 527 266 1 0 3.7e-115
algmusic 37 179 166 29 0 1.5e-42
alleywayreinvented 10 101 12 16 0.0001 4.2e-05
alto 258 1,328 1,809 28 0 0
amock 119 931 72 2 0 0
apjava 8 35 8 4 0.003 0.004
appletbomberman 40 222 77 1 0 1.98e-41
ascrblr 33 126 59 6 0 1.8e-21
audao 88 220 832 38 0 3.1e-131
bitlyj 45 141 76 3 0 2.2e-26
bluecove 142 559 1,338 423 0 0
castanea 18 122 22 6 0 5.6e-13
catchnthrow 5 42 10 0 0 5.6e-08
daedalum 35 211 98 78 0 4.2e-19
dbmigrate 9 4 2 0 1 1
echo-nest-java-api 10 103 15 21 0 1.5e-05

null hypothesis for the overall sample and fail to reject the alternative hypothesis

H1: Structural and semantic class dependencies are significantly associated.

Table 6.4 outlines descriptive statistics for the p-values derived from Fisher’s

exact independence test. This table further shows that on average, we stand a 5%

chance of wrongly rejecting the null hypothesis. We observed p-values of 1 when

more than one cell of the contingency table is empty. For example in the project-

armageddon OSS project with blank W and x cells, and 4-connect OSS project with

blank E and W cells.

Looking at Figure 6.2 which summarizes the proportion of links belonging to

each contingency table cell in the overall sample, it becomes obvious that cells S and

W have a larger proportion of class dependencies. It is imperative to rework these

class coupling links to facilitate the reduction of unnoticeable class dependencies

during dependency based change impact analysis. This is because (as shown in

Figure 6.2) only 10% of the links in our sample on average will be noticeable by
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Table 6.4: Descriptive statistics of Fisher’s exact independence test p-values

Metric Value
Mean 0.05
Median 0
Mode 0
Skewness 4.4
Range 1
Minimum 0
Maximum 1
Count 79

both structural and semantic coupling analysis. Around 58% of the coupling links

will be noticed by an analysis of only structural coupling. This is a high proportion

of unnoticed dependencies and propagators of ripple effects during CIA. Finally,

around 30% of the links will be noticed by semantic analysis alone.
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Figure 6.2: Proportion of class pairs belonging to each cell in contingency Table 6.1 per OSS
project in studied sample

Statistical results provide evidence that structural and semantic class depen-

dencies are significantly associated. The S and W sets of class pairs in Table

6.3 demonstrate the importance of refactoring. For the purpose of reducing

unnoticeable coupling during change impact analysis.
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6.5.2 RQ2: Linear relationship between structural and semantic

coupling

In this section, we report Spearman’s rank correlation outcomes for the overall

sample of OSS projects. The rationale behind RQ2 is investigating whether the

structural and semantic class coupling strengths co-vary or have a significant impact

on each other. For instance, we want to detect whether a high number of structural

links between classes means a high semantic coupling between the classes.

Overall results are presented in Table 10. An excerpt of that table with cor-

relation results of 20 OSS projects from the studied sample is shown in Table 6.5.

The first column shows the project names, the second column shows the correlation

coefficient per project, while the third and last column shows the derived p-value

(measure of significance). A p-value of less than or equal to 0.01 indicates a signifi-

cant correlation between structural and semantic class dependency strengths (with

99% confidence). Based on the values in Table 6.5, a majority of the projects in

our sample do not exhibit a significant correlation. This result is echoed by the

box-plots in Figure 6.3, the median p-value therein is around 0.4.
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�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spearman's Rank Correlation Metrics

Figure 6.3: Structural and semantic coupling - Spearman’s rank correlation results with p-values
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Table 6.5: Spearman’s rank correlation (excerpt from 20 OSS projects))

Project Name Correlation Coefficient p-value
2dtetris 0.1 0.6
aima-java 0.2 < 0.001
alexo-chess -0.4 < 0.001
algmusic -0.2 0.4
alleywayreinvented -0.1 0.7
alto 0.1 0.1
amock 0.0 0.9
apjava -0.4 0.3
appletbomberman 0.0 0.8
ascrblr 0.0 0.9
audao 0.0 0.8
bitlyj -0.3 0.1
bluecove 0.1 0.4
castanea -0.2 0.3
daedalum 0.1 0.6
dbmigrate -0.1 0.9
echo-nest-java-api -0.3 0.4
fyllgen -0.1 0.5
geocoder-java -0.2 0.2
google-voice-java 0.3 0.1

Highlighted in Table 6.5 are the results with significant p-values (<= 0.01).

Two projects exhibit a significant but low to moderate correlation. The aima-java

project exhibits a significant low positive correlation coefficient of 0.2 with a p-value

of 0.00001, while alexo-chess exhibits a significant moderate negative correlation

coefficient of -0.4 and a p-value of 0.00003. A negative correlation between two

variables means that as one variable increases, the other variable decreases. A

deeper look into the structural and semantic coupling strengths between class pairs

in alexo-chess, reveals that the higher the number of operational calls between the

.java classes, the lower the semantic similarity of the classes. This is illustrated

with Figure 6.4

In Table 10, there are two outlier projects with positive correlation coefficients

higher than 0.3. The first one is the jmemcache project with a correlation coefficient

of 0.5, however the p-value is 0.3. The second is the robost-coupe project with a

significant and large positive correlation coefficient of 0.8 and a p-value of 0.
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Figure 6.4: Structural vs. semantic coupling strengths in the alexo-chess OSS project

However, based on the overall results we cannot infer that there is a significant

correlation in OSS projects given the absence of any significant evidence in a ma-

jority of the projects to support this claim. Therefore, we have failed to reject the

null hypothesis for RQ2 H0: There is no linear relationship between the strengths

of structural and semantic class dependencies.
Structural and semantic coupling strengths have minimal effects on each other

and do not significantly co-vary. A strong structural link cannot be inferred

from a strong semantic link

6.6 Points of action

Results derived from analysing 79 OSS projects and presented in Section 6.5.1

have shown that there is a small overlap between structural and semantic class

dependencies but a significant association between these two coupling types.

A majority of projects exhibit a larger number of class pairs in cells S and W

of the motivating contingency Table 6.1. Having identified that it is imperative
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to decrease unnoticeable coupling during CIA and ss a means of resolving RQ3

presented in Section 6.3.3, we are proposing two practical techniques to maximize

the overlap between structural and semantic class dependencies in OO software.

Mitigating unnoticeable class coupling during CIA has several applications in

software engineering and maintenance as outlined in Section 6.5.1. The two tech-

niques are presented in Section 6.6.1 and 6.6.2 and are geared towards:

• Resolving the S dependencies, and

• Resolving the W dependencies

6.6.1 Solving the S dependencies: ‘rename class’ design pattern

In Section 6.4.1, we presented an example of class pairs belonging to the S cell (i.e.,

the hidden dependencies). These classes are structurally linked but not semantically

linked. An analysis of semantic coupling during change impact analysis will not

reveal these classes to be coupled because of the absence of similar terms and

phrases in their identifiers or source code.

Prior studies have laid a great emphasis on the benefits of meaningful identifiers

and comments within source code because of the vital information they provide

[129] when analysing coupling and co-change. Ujhazi et al. propose the impor-

tance of improving the quality of the underlying textual information in source code

because semantic coupling metrics rely on this information. This can be done by

“applying advanced source code pre-processing techniques for splitting and expanding

identifiers and comments in software” [187].

Both Fisher’s and Chi-square statistical independence test results in Section

6.5.1 have shown a significant association between structural and semantic class

coupling. Therefore, with the goal of minimizing the number of hidden dependencies

during CIA and strengthening this association, we propose two refactoring activities

for OO software class pairs belonging to the S cell:
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• the addition of meaningful comments in both the caller and called classes as

well as the affected methods;

• the use of conceptually related identifiers by means of renaming related meth-

ods and classes, using the "Rename Class" design pattern [68].

For example, operations of classes referenced by other classes should be de-

scribed with proper comments in both the class being referenced and the class mak-

ing the reference. Analysis of the information embedded in identifiers and comments

is useful for a number of software development and evolution tasks [10, 42, 124].

6.6.2 Solving the W dependencies: a novel semantic and structural

link ’extract class’ design pattern

In this section, we propose a new ’extract class’ refactoring pattern for resolving

the W dependencies in OO software.

Design patterns provide a common vocabulary for designers to communicate,

document and explore design alternatives. A good set of design patterns effec-

tively raises the level at which one programs [69]. They can be considered micro-

architectures that contribute to the overall software architecture.

Gamma et al. [69] defined design patterns, their classification, a means to de-

scribe them using a design pattern template and a catalog of design patterns they

had discovered. In this section, we have adopted the design pattern description

template in describing our proposed pattern for resolving the W set of class depen-

dencies in OO software. Our proposed semantic and structural link design pattern

is described as follows:

Intent. The intent of a pattern answers several questions including: What does the

design pattern do? What is its intent and rationale? What design problem

does it solve?

The proposed pattern serves to maximize the overlap between structural and

semantic class dependencies in OO software where there are semantic but no

131



Interplay on StSe: Chapter 6 Points of action

structural links between classes. A lack of an overlap will increase maintenance

efforts when attempting to carry out impact analysis or proposed changes.

Motivation. The motivation of a pattern is concerned with a scenario in which

the design pattern is applicable, the particular design problem or issue the

design pattern addresses and the class and object structures that address the

issue [69].

Results in Section 6.5.1, showed that the projects in our sample have a signifi-

cant number of class pairs in cell W of contingency Table 6.1. Differently from

class pairs that belong to cell S, these are linked conceptually but not struc-

turally. Among the examples presented in Section 6.4.1, the class pair Able-

tonClipDelay.java and AbletonClipLauncherPage.java have strongly related

identifiers, as well as words in the comments embedded in their source code.

The research domain that can facilitate the refactoring of the class pairs in

the W subset is referred to as Extract Class (EC) refactoring [19]. EC is a

refactoring approach that analyzes the (structural and/or semantic) similarity

of the methods in a class in order to identify chains of strongly related methods

(i.e., method chains). Those identified method chains are further adapted

to define new classes with higher cohesion than the original class. Using a

shared definition, cohesion is the “degree to which elements of a module belong

together” [30] and classes are a set of responsibilities [129]. Past findings

in this context states that “classes with unrelated methods often need to be

restructured by distributing some of their responsibilities to new classes, thus

reducing their complexity and improving their cohesion” [19].

Research has shown that the EC approach is able to identify meaningful

refactoring operations and new cohesive classes. Bavota et al. [19] improved

on their previous work [20] by proposing a better extract class refactoring

approach beginning with one class to automate extract class refactoring with

the goal of improving the cohesion of classes in OO software. Their approach
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combines structural and semantic coupling and cohesion information.

With lessons learned from earlier research, we are proposing an improved EC

approach based on the semantic similarity of methods belonging to class pairs

in cell W (Table 6.1). This is geared towards minimizing the variance in

the class dependencies detected by structural and semantic coupling analysis

during CIA. Differently from the previous approach proposed by Bavota et al.,

our approach also extracts chains of related methods from the class pairs, but

based on the semantic similarity of the methods. It is noteworthy that this

is ONLY done when the classes do not have a strong internal structure based

on semantic cohesion [43, 129], which is also an important attribute of OO

software classes. According to Kabaili et al. [97] “some classes have multiple

methods that share no variables but perform related functionalities and putting

each method in a different class would be against good OO design”.

Applicability. The applicability of a pattern answers several questions such as

what are the situations in which the design pattern will be applied? what are

examples of poor design that the pattern can address? [69].

Enabling conditions for using the proposed pattern are:

• the structural and semantic dependency pattern of an OO software must

be analysed.

• there must be semantically related and non-structurally related classes

in Cell W as illustrated in Table 6.1.

Based on these enabling conditions, our proposed pattern is applicable:

• when there are classes with semantic links but no structural links in and

OO software.

To become useful, a design pattern should be applicable in multiple problem

domains [69]. Software maintenance domains where our proposed pattern is
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applicable are the CIA, software test emulation and fault prediction domains

given a wide overlap between semantic and structural class links.

Participants. Patterns vary in their level of granularity and level of abstraction

and are thought of in terms of two orthogonal criteria. Jurisdiction which

is the level of abstraction (class, object, or compound) and characterization

(i.e., what a pattern does: structural, creational or behavioral).

Our proposed semantic and structural link extract class design pattern spans

the class jurisdiction because it deals with the relationships between classes

and their composition (methods). Its characteristic spans structural because

it is concerned with the composition of classes [69].

Participants are the classes and objects participating in the design pattern

and their responsibilities [69]. The participants in our proposed pattern are

the target pair of classes (semantically related and non-structurally related

classes in Cell W Table 6.1) from which method chains are extracted which

lead to new or modified classes.

Diagram. Design patterns provide a target for the reorganization or restructuring

of software artifacts at various levels of granularity (e.g., classes and methods)

[65][69]. As such, design patterns are automatable as refactorings [184]. For

example, the singleton3 refactoring converts an empty class into a singleton.

Figure 6.5 presents a pictorial view of the refactoring automation of our pro-

posed pattern in the form of an extract class refactoring workflow.

Consequences and Implementation. In Figure 6.5 we propose that the newly

created classes are a combination of already existing structurally coupled,

classes and their closest semantically coupled extracted method chain from

only classes with weak internal structures. This design decision was taken

in order to not increase the overall coupling, and to preserve the software
3The singleton pattern is a design pattern in software engineering that restricts the instantiation

of a class to only one object.
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Class A

attribute1
….

attributem
method1

…..
methodn

Class B

attribute1
….

attributem
method1

…..
methodn

Method
extraction

method-by-method
matrix

Identified chains of 
methods

Merging chains 
with the
most semantically 
coupled classes 
(with structural 
links to other 
classes) 

Chain1+Class X

Chain2+Class Y

Candidate Class 1

Candidate Class 2

Create new 
   classes

Fixed 
point
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Fixed 
point not
reached

High 
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Figure 6.5: Extract class refactoring for pairs of semantically related and non-structurally related
classes in Cell W Table 6.1), partly adapted from [19] Fig. 1. (dashed components are our novel

additions to the original model)
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architecture, while increasing the semantic cohesion of classes. If new classes

are created only using the extracted chain of semantically related methods,

the hidden dependencies would remain undetected during CIA: those classes

would be semantically cohesive, but without structural links to other classes.

This is one of the pitfalls to be aware of when implementing this pattern.

To avoid having new classes with a very low number of methods, Bavota

et al. [19] merged each trivial method chain with the most coupled non-

trivial method chain to obtain the final set of classes to be extracted from the

original class. In our adapted approach, each method chain is merged with

the most semantically coupled (already existing) class, which in turn must

have structural links to one or more classes.

6.7 Summary of the chapter

In this chapter, we have probed the association and overlap between structural and

semantic coupling. While previous studies have focused on combining structural

and semantic coupling information, we have argued that the inconsistency in their

information is a gap in itself due to the inefficiency in measuring coupling in multiple

ways to achieve one maintenance goal. Firstly, we statistically investigated whether

a significant association exists between structural and semantic class dependencies.

Although Fisher’s as well as Chi-square independence test results showed that

there is a significant association between the coupling types; for some projects the

values in cell S are larger than those of cell E of Table 6.1. Therefore, the conclusion

based on results of RQ1 is that usually classes associated by a structural link are

not semantically linked. This means that a small overlap between semantic and

structural class coupling has been observed in our studied sample of OSS projects.

In addition, carrying out dependency based change impact analysis based on either

structural or semantic coupling information in our studied sample of projects will

lead to unnoticeable coupling among classes.
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Secondly, we have investigated the presence of a linear relationship between

structural and semantic class dependencies in all the 79 OSS projects in our sample.

This is to find out whether a high number of operational calls between classes

translates to a high degree of semantic similarity between the classes. Interestingly,

we revealed by means of the Spearman’s rank correlation that this is not the case.

A strong semantic similarity cannot be inferred from an observation of a structural

link between any class pair.

Finally, having identified a small overlap between structural and semantic class

dependencies, we presented two techniques in Sections 6.6.1 and 6.6.2 that can

help to maximize the overlap between structural and semantic class dependencies,

minimize testing efforts as well as minimize unnoticeable class coupling during de-

pendency based change impact analysis in OSS projects at the class level of gran-

ularity. Chapter 7 consists of a summary of the Thesis and planned actions for

further research.

137



Chapter 7

Conclusion

7.1 Introduction

The Thesis is composed of a three-fold empirical study on the influence of three

software dependency types on one another. This chapter synthesizes the highlights

of this Thesis. Firstly, the relationship between structural and logical dependencies

was investigated. This was immediately followed by an investigation of the interplay

between semantic and logical dependencies. Lastly, the interplay between semantic

and structural class dependencies was investigated in the context of .java classes in

OO software.

This Chapter begins with an overall summary of the empirical studies conducted

in Section 7.2; including the main contributions in Section 7.3, their beneficiaries

and impact on software engineering research and practice. In Section 7.4, achieve-

ments derived from the research experience are summarized. After that, the re-

search limitations are discussed and with feasible directions for future research in

Sections 7.5 and 7.6, respectively.
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7.2 Research summary

The main research objectives of this Thesis as summarized in Section 1.6 of Chapter

1, are to investigate the interplay between:

1. Structural and logical software dependencies

2. Logical and semantic software dependencies

3. Structural and semantic software dependencies

In order to address the aforementioned research objectives, we carried out a

review of the literature as described in Chapter 2 to identify existing findings and

gaps in the body of existing knowledge. After this, we described the methodology

of the research in Chapter 3, including the sampling of the studied sample of OO

software projects, statistical tests and software metrics applied in this research.

The initial empirical study was investigated and described in Chapter 4. This

study was carried out to probe the relationship between the structural and logical

coupling of classes in OO software. The results of this study demonstrated that

the majority of the class pairs with a structural link are expected to undergo co-

changes. However, not all the logical class dependencies are structurally linked.

This investigation also showed that the degree of the structural relationship between

classes has no effect on the degree of their co-evolution frequency. Differently from

prior empirical studies, that tend to emphasise on the 80-20 Pareto distribution1

in most of the software metrics on single software artifacts (complexity [45], defect

density [60], number of changes [112]), the results from Chapter 4 have provided

statistical evidence that structural and logical class dependencies in OO software

projects do not follow such distributions.
Majority of the class pairs linked structurally are expected to undergo

co-changes but not all co-changes classes share a structural link.

1the law of the vital few states that 80% of the effects come from 20% of the causes
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In Chapter 5, the interplay between semantic and logical class dependencies was

investigated. An investigation of whether the semantic similarities of class pairs

can be measured by their identifiers alone in comparison to analysing the terms

embedded internally was also investigated in this chapter. The results from Chapter

5 have shown that measuring semantic coupling at the class level of granularity is

more efficient just by analysing class identifiers split in form of short sentences.

Similarly to Chapter 4, the results of this study also demonstrated that majority

of the semantic class dependencies would normally undergo co-changes. However,

not all the logical class dependencies are conceptually linked. This investigation

also showed that the degree of the semantic relationship between classes has no

effect on the degree of their co-evolution. In addition, the semantic and logical

class dependencies in OO software projects do not adhere to the Pareto’s rule of

the vital few.
Semantically related classes would normally undergo co-changes but the

degree of the semantic relationship between classes has no effect on the

degree of their co-evolution.
With the OO software class dependency insights gained from Chapters 4 and

5 on the interplay between structural and semantic class dependencies and co-

evolution, in Chapter 6 we set out to understand the link between structural and

semantic class dependencies. In contrast to previous studies that have combined

these two sources of information when carrying out change impact analysis (CIA),

we identified the inefficiency in this combination as it involves duplicated efforts in

measuring coupling. The idea was to investigate the relationship between structural

and semantic class coupling and maximize their overlap to minimize CIA efforts.

Results showed that their overlap was small and a high structural dependency

cannot be inferred based on an observation of a high semantic dependency between

OO software classes.

There is a small overlap between structural and semantic coupling.

As a result, we proposed a pair of refactoring techniques to maximize the over-
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lap in two scenarios. In the first scenario, classes are linked semantically but not

structurally. In this scenario, we proposed an extract class refactoring approach.

In the second scenario, class pairs are linked structurally but not semantically. In

this scenario, we have proposed the use of the class renaming design pattern as well

as the inclusion of adequate comments embedded in the source code of classes to

describe the structural link and features shared between them.

7.3 Research contributions and beneficiaries

The contributions of this thesis as outlined in Chapter 1 are six-fold, and can be

presented as follows:

C1 – An interplay between software dependencies. This Thesis has probed

and synthesized the interplay between three types of software dependencies.

Namely, structural, logical and semantic coupling. This contribution is novel

and has added knowledge to the state of the art in the software engineering

literature. Both a linear and directional relationship was explored among

the software coupling types and a highlight of the findings is the existence of

evolutionary consequences of structural and semantic coupling in a significant

sample of OSS software projects.

C2 – The role of hidden dependencies. This Thesis has contributed to the

body of knowledge on software dependencies by revealing the proportion of

hidden dependencies in OO software based on an analysis of anyone of the

three types of static coupling (logical, structural and semantic) investigated.

Our empirical studies have shown that only 10% of the couplings in our sample

are noticeable by both structural and semantic coupling analysis; 58% of the

couplings are be noticed by an analysis of only structural coupling, and around

30% of the couplings are noticed by semantic analysis alone. This is a high

proportion of unnoticed dependencies and propagators of ripple effects.
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C3 – Refactoring the hidden dependencies. We have proposed novel refac-

toring approaches based on structural and semantic coupling metrics by which

the number of hidden dependencies can be minimized during impact analysis

at the class level of granularity depending on the type of coupling analyzed.

This is to better improve software maintenance and assist practitioners in

minimizing ripple effects of software changes more efficiently. If the over-

lap between structural and semantic dependencies is large, then these tests

only have to be carried out once. Either ONLY semantically coupled class

pairs or ONLY structurally coupled pairs will need to be tested. The pro-

posed approaches can inform the implementation of tools such as integrated

development environment (IDE) plug-ins to support software development

and maintenance and to reduce unnoticeable coupling during change impact

analysis and impact set prediction.

C4 – Prediction of software changes. Geipel and Schweitzer [71] state that

the question about the causes of change propagation has been overlooked

by many researchers in favour of a predictive approach. As such, these causes

are implicitly contained in a prediction function or as input to a machine

learning algorithm [89, 126, 185, 202, 210]. A strong relationship between

logical and structural as well as semantic coupling provides statistical sup-

port for these models and predictions, thus helping to achieve more focused

software maintenance.

Geipel and Schweitzer rightly state that any model that tries to infer struc-

tural coupling from co-change data will produce a lot of false positives [71]

because the proportion of change dependencies are always larger than the

proportion of structural dependencies [147, 148]. On the other hand, using

the structural coupling information between pairs of classes to predict un-

planned future co-changes is a more realistic objective as identified by Oliva

and Gerosa [147]. But we suggest that this is a realistic objective with the
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support of semantic coupling metrics.

The reason is that the overlap between structural and logical dependencies is

not large. Also the overlap between semantic and logical coupling is not large.

More importantly, we have identified that structural and semantic dependen-

cies do not account for exactly the same set of co-changes. Therefore, one

cannot claim that only one form of coupling out of structural and semantic

coupling can better predict co-change as done in [156] where it was stated

that conceptual coupling metrics proved to be better predictors for classes

impacted by changes compared to structural coupling metrics.

Their findings were not supported in a recent study by Abdeen et al. [1]. Our

contributions statistically confirm the results in their study. They performed

inter-system and intra-system change impact prediction using structural, se-

mantic dependencies and a combination of both and compared results. Their

results show that using semantic coupling produces better recall values, in

particular, in the intra-system scenario. They stated the addition of seman-

tic coupling data adds extra information that deals with the complexity of

structural dependencies in the learning phase. On the other hand, they iden-

tified that using structural dependencies or a combination of both types of

dependencies out-performs semantic dependencies.

C5 – Computational efficiency. Prior to this study, no study had investigated

the efficiency gained when computing semantic coupling between classes us-

ing only their identifiers. This Thesis presents an extensive comparison of

identifier-based methods to a corpora-based method of semantic coupling

measurement. This has been done in order to identify the most efficient

ways of computing semantic coupling of OO software classes. It has been

identified that identifier-based techniques adopted are more efficient than the

corpora-based technique. This will save researchers effort and time in seman-

tic coupling measurement and also provide guidance along the lines of the
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development of software maintenance tools.

C6 – Tool chain. With regards to semantic coupling measurement, there had

been no tool to automate the process of analysing the corpora of Java classes

and parsing their corpora to an information retrieval technique like the vector

space model.

This Thesis proposed and implemented a tool written in the Java program-

ming language that automates the extraction of semantic coupling metrics

using a corpora based approach has been developed. The tool is also publicly

available on the GitHub software repository 2.

Based on the core contributions of this Thesis, those who are envisaged to stand

to benefit from the aforementioned research contributions as well as the impact of

these findings in the software engineering and maintenance domain as defined in

Chapter 1 are follows:

1. Software testers: Software testers benefit from this Thesis since they will be

able to focus their testing efforts with knowledge about the interplay between

software dependencies. The relationship between class dependencies and co-

evolution would help in software testing. When changes are made to one

software class, other classes that have strong semantic or structural coupling

to that class also need to be tested. This is to ensure that the changes in one

class do not introduce regression faults in other classes.

However, this means that testing will need to done more than once – based

on structural and semantic coupling. But we have proposed refactoring tech-

niques to increase the overlap between semantic and structural coupling as

well as reduce unnoticed dependencies during class coupling based change

impact analysis. Increasing the overlap between structural and semantic cou-

pling will reduce testing efforts. This is because testing will only be done

ONCE based on structural OR semantic coupling information.
2The tool can be downloaded at: https://github.com/najienka/SemanticSimilarityJava

144



Conclusion: Chapter 7 Research contributions and beneficiaries

2. Researchers in empirical software engineering and maintenance:

In this Thesis we have identified the need for a tool to automate the pro-

cess of extracting semantic coupling between classes based on their corpora

and using IR techniques in the literature. We developed a scalable tool that

can automate this process for OSS java projects of different sizes. The tool

also makes the semantic coupling measurement process less convoluted. As a

result, researchers in the area of semantic coupling in empirical software engi-

neering benefit from this Thesis by using the publicly available tool chain in

computing the semantic coupling between software classes of both large and

small OSS projects written in Java. The tool eases the process for non-experts

in data mining and information retrieval (IR) techniques, provide a standard

unified framework for the extraction process as well as promote better com-

parison of results in this field.

3. Software comprehension, evolution and maintenance tool chain de-

velopers:

Software maintenance tools need to consider semantic, structural dependen-

cies because these types of software relationships are essential in minimizing

maintenance efforts, improving software understanding and testing.

Furthermore, relying only on class names or identifiers for semantic coupling

measurement yields reasonable results – and it is much cheaper with regards

to computational performance compared to analyzing the corpora (the source

code) of class pairs. These findings can be used to guide researchers or devel-

opers developing future generations of tools supporting program comprehen-

sion and software change impact analysis. The findings will also save time in

future semantic coupling research and program comprehension for researchers

who are non-experts in data analysis.

We also proposed refactoring techniques to increase the overlap between se-

mantic and structural coupling as well as reduce unnoticed dependencies dur-
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ing class coupling based change impact analysis. These refactoring techniques

can be semi-automated via the use of developed plugins for software develop-

ment environments.

4. Software maintainers:

Structural and semantic dependencies are propagators of ripple effects. How-

ever, Briand et al. showed that if developers are required to handle a large

set of dependencies, they would miss a significant number of them [34]. We

have proposed novel ways by which the gap between semantic and structural

dependencies (software architecture) can be curtailed. This will help to bridge

the model-code gap, architecture monitoring, minimize the number of ’hid-

den’ dependencies not captured during change impact analysis when only one

dependency type is analyzed. This will in turn make impact analysis process

more efficient.

7.4 Personal achievement

Much has been achieved over the course of this research. Firstly, in order to carry

out research on a particular topic, the knowledge of the researcher on that topic

must be improved. This was achieved over the course of this research by conducting

an extensive review of the literature, staying updated with the latest research and

attending relevant consortia and conferences.

This helped to identify gaps in the literature, initiate research collaborations

with peers, led to the publication of high quality research papers and in turn derive

the objective of this research. Notably, the area of semantic coupling is relatively

new with the research being done among a closed circle of researchers. The outcome

of the knowledge gained during the course of reviewing the literature on semantic

coupling is a tool developed with additional features to improve the measurement of

semantic coupling. Our contribution to knowledge in the area of semantic coupling

has been contributed in a top ranking software engineering conference.
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Secondly, it is important for researchers to collaborate and publicise their work.

Through workshops and delivering presentations at seminars, collaborations have

been built and lessons learned on tailoring presentations to different audiences based

on their understanding of the subject area.

Finally, going through the journey of this research has advanced the ability to

read and write critically and has improved interpersonal and presentation skills.

7.5 Research limitations

The threats to the validity of this research are summarized by Thesis Chapters 3,

4, 5 and 6 in Subsections 7.5.1, 7.5.2 and 7.5.3. These threats include; internal,

external and construct. They are defined [141] as follows:

• Internal validity is defined as the accuracy of the conclusion about the study

in this research.

• External validity is defined as the generalised validity of the conclusions of

the research in this thesis.

• Construct validity refers to the degree to which a conclusion can be made

following the theoretical constructs on which the approach was based.

7.5.1 External validity

EV1 – Generalisability (Ch4, Ch5, Ch6). One of the threats to the external

validity of this is the analysis of only seventy nine OSS projects. Notable, this

consists of projects of different sizes and domains. However, we acknowledge

that this sample might not be representative of all OSS projects in existence

or a different sample of projects and this threatens the generalisability of the

results.

EV2 – Commercial software (Ch4, Ch5, Ch6). We have analysed only OSS

projects. Therefore, it is imperative to identify whether the same results will
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apply to commercial software. We have considered this as one of the plans

for future research.

7.5.2 Internal validity

IV1 – Class identifier-based semantic coupling measurement (Ch5, Ch6).

the measurement of the semantic similarity of classes based on their class iden-

tifiers. While this is useful in an analysis of coupling, studying the cohesion of

classes will require an analysis of their internal structure. We have also com-

pared the metrics derived from analysing class identifiers with those derived

from analysing their corpora in Chapter 3.

IV2 – Non-parametric statistical test (Ch4, Ch5, Ch6). We have adopted

a non-parametric statistical test (Spearman’s rank correlation) when comput-

ing the correlation between the studied coupling types. This test was adopted

because it cannot be guaranteed that the degree of co-change or structural or

semantic coupling will follow a normal distribution (mean = median = mode).

We have also not tested for a poisson distribution. Notwithstanding, we have

adopted a very low value for α (≤ 0.01). This is to limit the probability or

possibility of identifying a significant relationship by chance [207]. The levels

of significance are high and the conclusions derived based on the statistical

tests are unlikely to differ.

IV3 – Semantic coupling measurement validation (Ch3, Ch5, Ch6). When

computing semantic coupling we have manually inspected all class pairs in

smaller projects (≤ 20 classes) to validate the similarity metrics derived from

the tools. That may have led to a bias while computing semantic coupling.

This is because as the number of classes reduces, the dependency and author-

ship reduces.

IV4 – Class level of granularity (Ch4, Ch5, Ch6). All the empirical studies

in this Thesis have been conducted at the class level of granularity. This is

148



Conclusion: Chapter 7 Future work

because overall,the measurement of semantic coupling is more affected by the

difference in granularity than logical or evolutionary coupling. A previous

study has shown that for the semantic dependencies, going from the coarse

granularity of classes to the finer granularity of methods results in the re-

duction of the sizes of the documents [102]. The documents are reduced in

terms (and frequency). That is, a corpus for a class is typically much "bigger"

than a corpus for a method [102]. For logical coupling some commits do not

contain changes made to methods while some do not contain changes made

to classes, so there is not way to map changes made to classes and methods.

This informs the choice of the class level of granularity.

7.5.3 Construct validity

CV1 – Association rule mining for logical coupling measurement (Ch4, Ch5).

We acknowledge the fact that support and confidence values of association

rules could produce misleading results [148]. For example, if a Java file A

joint-changed 7 times with B and afterwards, A changed alone for other 3

times (B did not change anymore). Although the confidence for the logical

coupling A → B is 0.7, it may be the case that B does not actually depend

on A anymore (e.g., after both files changed together for the 7th and last

time, B was removed from the system or the structural link from B to A was

removed).

7.6 Future work

In this section, we propose and discuss ideas that will drive the future direction of

this research.
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7.6.1 Empirical studies

Firstly, in this Thesis we have carried out empirical studies on OO software which

are all OSS. As such, it is imperative to carry out the same analysis on software

which is not OO or OSS. As part of plans for future work, we intend analysing a

different sample of OO software which are commercial and not OSS to determine

whether our findings are limited to only OSS software.

Secondly, we have studied only software written in the Java programming lan-

guage. It will be interesting to investigate software written in other languages (e.g.,

Python, C++) to identify any divergence in findings. In addition, we have studied

the interplay between three software coupling types in pairs (e.g., semantic and

logical, structural and semantic, and structural and logical). As part of further

empirical research, the triangulation of coupling types will be investigated. For

example, identifying the portion of classes per project linked by both a logical and

semantic relationship. But not a structural relationship or linked by both a logical

and structural relationship but not a semantic relationship.

Thirdly, the change impact analysis domain faces a yet to be resolved chal-

lenge. As prior research has identified, “it is noteworthy that this actual impact

set can vary because changes can be implemented differently” [181]. In this The-

sis, it has been demonstrated that change related classes are usually semantically

linked. Thus, a feasible experiment will be to investigate the precision of estimated

impact sets based on semantic coupling metrics when compared to distinct change

implementations by different developers.

Fourthly, this Thesis has not included an investigation of the impact of different

design patterns on the studied coupling types and their relationships. For instance,

the strategy design pattern will not identify structural couplings but strategies

might be semantically linked. It will worth investigating the link between different

design patterns and the coupling types studied in this Thesis.

Lastly, Marcus et al. [128] advocated the use of latent semantic indexing (LSI) as

the supporting information retrieval technique to extract and analyze the semantic
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information from the source code and associated documentation with the following

assumption:

“our main assumption is that developers use the same natural language

(e.g., English, Romanian, etc.) in writing internal documentation and

external documentation.”

However, our studied software sample and results have shown that the reverse is

the case. This is because developers are likely to name classes and write comments

in their native language. Current information retrieval approaches for text mining

(e.g., latent semantic analysis) rely on the building of models based on key topics in

the documents upon which conceptual similarity is computed. But such models will

not scale when used to analyze documents composed of multiple languages as terms

will need to be translated before building a unified model for multiple languages.

Prior studies have not resolved the problem of measuring semantic coupling in

multi-lingual software projects. Therefore, we believe a feasible research topic for

future work will be to investigate and develop techniques for the measurement of

semantic coupling between multi-lingual OO software classes.

7.6.2 Tool development

In this Chapter 3, we introduced a tool developed to ease the computation of

semantic coupling at the class level of granularity in OO software. As plans for

future work, we shall extend the tool to capture fine-grained semantic coupling

analysis at the method level of granularity. This will also measure the semantic

cohesion of classes to support the proposed refactoring approach in Chapter 6. In

addition, we plan to build a user interface for the tool to improve its user friendliness.

Finally, we have proposed extract class refactoring approaches in Chapter 6.

These approaches are currently carried out manually. Therefore, it is imperative to

provide tool support for semi-automation. We plan to in future develop a tool in
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Conclusion: Chapter 7 Future work

form of a plug-in for IDEs (e.g., Eclipse 3) to semi-automate the proposed refactoring

approaches.

7.6.3 Studied domains

Games

CMS

Web Development

Project Management

Networking

Software Library

User Interface

Software Monitoring

Database

Software Testing

Music

Education

Figure 7.1: Distribution of studied sample of OO software projects by domain

Figure 7.1 depicts a distribution of the studied sample of OO software project by

domain. The domains with the highest number of projects are games and software

library. As part of the empirical studies for future work, we will investigate the

observed results along the various software domains to identify the presence or

absence of any interesting patterns or trends.

3http://www.eclipse.org/
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Glossary of software

engineering terms

Class A class is a template that defines the attributes and functions of an

object.

Coupling Coupling is the intensity of the interconnection between artifacts,

such as classes.

Cohesion Cohesion is the degree of how linked or focused the responsibilities

of an artifact are, e.g., the functions of a class.

Co-evolution Co-evolution is the degree to which two artifacts are co-changed.

Commit A commit is a change or set of changes to a file or set of files.

Interplay The manner by which two or more things directly influence each

other.

Method A method is a procedure or functionality defined and implemented

in a class. It defines the role of instances of that class, an object.

Object An object in object-oriented software is an instance of a class. It

can contain variables, functions or actions and data structures such as lists,

arrays, etc.
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Object-oriented software Also known as OO software is software composed

of inter-dependent objects.

Open-source software Open-source software (OSS) is software that is pub-

licly available and open to modification, and distribution by anyone.

Outlier A person or thing that is very different from the rest of a group or

set.

Software License A software licence is an instrument that dictates the rights

associated with the modification and redistribution of software.

Refactoring Refactoring is changing the internal structure of software with-

out altering its outward behaviour.

Repository A software repository is a storage location from which software

may be recovered.

Reuse Reuse is the use of already built software to build or advance existing

software functionality without rewriting any functionality from scratch.

Revision Another name for “commit”, a revision is a change or set of changes

to a file or set of files.

Software architecture Software architecture is the definition of the inter-

nal structure of a software including its components, their relationships and

external parts.

Software metrics Software metrics are measurements used to assess the

quality of software projects

Version control system A version control system is one which keeps track

of changes or sets of changes or commits of a software project.
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Appendix A

Appendix A consists of a summary of the studied sample of OO OSS projects in

this Thesis.

A.1 Software dependency metrics

Table 1 summarizes proposed software dependency metrics. The first column states

the name of each metric, followed by the study in which they are proposed in the

second column, the dependency type4 concerned in the third column and the year

in which the study was published presented in the fourth and last column.

A.2 OSS project sample description

In this Thesis, we have studied 79 distinct OSS projects developed in the JAVA

programming language and summarized in Table 2. Each project from the studied

sample is described briefly below:

1. 2dtetris: java Tetris developed using SCRUM.

2. 4-connect:

3. ahs-scheduling: a java scheduling application built to schedule high school

courses.
4picked from the three studied dependency types in the Thesis.
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Table 1: Summary of software dependency metrics

Metric Study Dependency Type Published
Lines of code (LOC) Gilb [76] Structural 1977
Methods per class (NM) Lorenz and Kidd

[121]
Structural 1994

Number of Public Methods per class
(NPM)

Lorenz and Kidd
[121]

Structural 1994

Number of Variables per class (NV) Lorenz and Kidd
[121]

Structural 1994

Number of Public Variables per
class (NPV)

Lorenz and Kidd
[121]

Structural 1994

Number of Methods Inherited
(NMI)

Lorenz and Kidd
[121]

Structural 1994

Number of Methods Overridden
(NMO)

Lorenz and Kidd
[121]

Structural 1994

Number of Methods Added(NMA) Lorenz and Kidd
[121]

Structural 1994

Average Methods Size (AMS) Lorenz and Kidd
[121]

Structural 1994

Number of times a Class is Reused
(NCR)

Lorenz and Kidd
[121]

Structural 1994

Number of Friends of class (NF) Lorenz and Kidd
[121]

Structural 1994

Coupling between objects (CBO) Chidamber et
al. [46]

Structural 1994

Response for a class (RFC) Chidamber et
al. [46]

Structural 1994

Message passing coupling (MPC) Chidamber et
al. [46]

Structural 1994

Lack of cohesion (LCOM) Chidamber et
al. [46]

Structural 1994

Weighted methods per class (WMC) Chidamber et
al. [46]

Structural 1994

Method Inheritance Factor (MIF) Abreu and Cara-
puca [2]

Structural 1994

Attribute Inheritance Factor (AIF) Abreu and Cara-
puca [2]

Structural 1994

Coupling Factor (CF) Abreu and Cara-
puca [2]

Structural 1994

Polymorphism Factor (PF) Abreu and Cara-
puca [2]

Structural 1994
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Metric Study Dependency Type Published
Method Hiding Factor (MHF) Abreu and Cara-

puca [2]
Structural 1994

Attribute Hiding Factor (AHF) Abreu and Cara-
puca [2]

Structural 1994

Support and Confidence Zimmermann et
al. [208]

Logical 2003

Conceptual coupling of classes
(CoCC)

Poshyvanyk and
Marcus [155]

Semantic 2006

Conceptual Similarity between
Methods (CSM)

Poshyvanyk and
Marcus [155]

Semantic 2006

Conceptual similarity between two
classes (CSBC)

Poshyvanyk and
Marcus [155]

Semantic 2006

Relational Topic based Coupling
(RTC)

Gethers and
Poshyvanyk [75]

Semantic 2010

Coupling between Object Classes
(CCBO)

Ujhazi et al.
[187]

Semantic 2010

4. aima-java: a java implementation of algorithms from Russell And Norvig’s

“Artificial Intelligence - A Modern Approach”.

5. alexo-chess: java chess engine. It plugs into WinChess, based on UBT.

6. algmusic: algmusic is a java web application that can be used to organize mp3

files.

7. alleywayreinvented: a small java game similar to the old Game Boy game.

The core game logic is the same but we are adding lost of other features.

8. alto: alto is the collection of interfaces implemented in the syntelos and

syntelos-sx packages 5.

9. amock: amock automatically generates java interaction-based unit tests from

system tests.

10. apjava:

11. appletbomberman: bomberman game in a java applet.
5The project owners mention that “separation of system interfaces into an independent project

aids development”
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Table 2: Summary of Sample of OO OSS projects studied

Project ID Name # Classes # Revisions
1 2dtetris 26 203
2 4-connect 12 29
7 ahs-scheduling 20 141
8 aima-java 870 258
10 alexo-chess 142 105
11 algmusic 110 56
12 alleywayreinvented 45 61
13 alto 297 75
14 amock 207 456
18 apjava 23 35
20 appletbomberman 66 64
22 ascrblr 53 53
24 audao 154 21
26 bitlyj 60 46
28 bluecove 389 258
30 castanea 48 33
31 catchnthrow 22 72
41 daedalum 72 26
45 dbmigrate 8 25
51 echo-nest-java-api 45 40
56 fdelimitedtextutilities 14 25
60 fyllgen 123 51
64 geocoder-java 36 61
65 google-voice-java 61 172
66 gorobot 450 32
67 gp-net-radius 31 22
68 guavatools 270 56
69 guitarjava 102 94
71 hobbylinkchecker 193 29
79 jangod 153 36
81 jaque 70 123
84 java-chess-web 143 96
86 java-weather-api 36 34
88 javacoder 22 23
92 javastepbystep 137 81
96 jbal 121 117
97 jbandwidthlog 28 53
99 jease 296 350
103 jeudi-tech-spring 35 41
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Project ID Name # Classes # Revisions
107 jiopi 36 47
109 jmemcache 19 24
112 jnoob 65 29
113 jothelo 20 33
115 jprg2-assg 23 71
118 jroguedps 124 72
119 jsbe 11 54
122 jtowerdefense 84 87
123 jugile-util 88 61
124 jutf8search 15 42
127 kryo 148 289
130 lemyriapode 447 292
136 migrator-postgresql 31 35
140 mobs 45 43
141 mocrap 17 90
142 monome-pages 163 256
148 ngamejava 66 21
149 object-procedural-bridge 297 73
152 onslaught 84 26
157 p2ploan 197 192
164 powerjava 28 41
165 powermock 755 689
166 prettyfaces 163 75
168 product-center 283 86
169 project-armageddon 14 31
170 projet-qcm-java 55 104
172 ps3mediaserver 215 769
179 restfb 92 215
180 robust-coupe 69 51
183 scikit 272 515
184 semanticdiscoverytoolkit 1,436 435
185 semweb4j 482 366
186 seoma 307 167
188 simplenamingservice 75 35
189 sjava-logging 21 44
195 squabble 144 51
197 subitizer 16 38
201 tabulasoftmed 323 89
202 tabuvrp–study 36 39
211 usemon 1,090 39
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12. ascrblr: a java application programming interface (API) for Audioscrobbler

Protocols and Web Services. Audioscrobbler is a service that tracks listening

habits.

13. audao: audao is a tool for generating SQL - DDL and DAO libraries. Its input

is a configuration file (XML) describing the database entities and relations.

The output is a set of SQLs (CREATE/DROP/INSERT) and a java jar library

plus Javadoc (optional).

14. bitlyj: a java interface to the bit.ly and j.mp APIs.

15. bluecove: blueCove is a java bluetooth API implementation that interfaces

with the Mac OS X, WIDCOMM, BlueSoleil and Microsoft Bluetooth stack

in Windows XP SP2. The software was initially built by Intel Research and

presently managed by volunteers.

16. castanea: a java project built for exploring the possibilities of java game

development.

17. catchnthrow: a java control project for the "catch and throw" process.

18. daedalum: daedalum is an experimental pure java video player framework

built on top of the Xuggler ffmpeg wrapper.

19. dbmigrate: this java library aids the management of database upgrades for

java applications.

20. echo-nest-java-api: this is a java API and assorted tools and helpers for

the Echo Nest API (at http://developer.echonest.com>developer.echonest.

com).

21. fdelimitedtextutilities:a group of java classes to build a delta files based de-

limited text files

22. fyllgen: a java based tool for collecting and distributing family data.
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23. geocoder-java: java API for Google geocoder version 3.

24. google-voice-java: an Unofficial java API for Google Voice.

25. gorobot: java program to play the board game go.

26. gp-net-radius: a java radius protocol stack.

27. guavatools: this software consists of a set of generic java tools that assist with

project management when moving from company to company.

28. guitarjava: guitar Hero game on a java Applet.

29. hobbylinkchecker: a java based link checker. This is a specialized link checker

built to parse a particular format of webpages. additionally, it will support a

basic dfs link checking format that will parse the html and add all the links to

a queue. it will then search/verify the links (http, https, or ftp), and return

which links failed and which passed.

30. jangod: java Django template engine.

31. jaque: this library provides type safe language integrated query capabilities

to Java language.

32. java-chess-web: java-chess-web is an implementation of the game of chess

written in Java, with a front end Ajax web application.

33. java-weather-api: very simple API for getting basic weather information from

various providers. It is aimed for simplifying retrieval of weather information

in applications. It supports three weather providers namely: Google weather

service, Yahoo weather service and Weather underground.

34. javacoder:

35. javastepbystep: a java study tool to learn java programming language.

186



36. jbal: this project aims to develop a java library to access different bibliographic

record types with a uniform interface api. The starting point is some code

developed for an open-source open public access catalog (opac) engine.

37. jbandwidthlog: the JBandwidth logger is a java implementation of a band-

width monitor and logger for Windows XP, Vista and 7.

38. jease: jease eases the development of content- database-driven web-applications

with java.

39. jeudi-tech-spring: jeudi-tech-spring is a Java web-app demo that uses several

modules of the Spring Framework. The purpose of this project is to learn

Spring.

40. jiopi: jiopi is the abbreviation of java Interface-Oriented Programming initia-

tive . Its mission is to create open specification for building a java system

which is composed of modules.

41. jmemcache: This project is intended to allow easy cache management in local

memory for java projects.

42. jnoob: according to the author of this software repository, “JNoob is my

personal java repository, can I use google code for this ? ;) Really, since I’m

learning java I decided to create a google code repository to keep my files from

my home to work and college, so I can happy code them anytime”.

43. jothelo: Othelo game developed in java Language.

44. jprg2-assg: this is a java application created to meet the requirements of a

JPRG 2 Module, a university project.

45. jroguedps: a java application to provide a World of Warcraft DPS simulation

for the Rogue Class.

46. jsbe: a simple java Sub Editor to Resync and edit your .srt files.
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47. jtowerdefense: This game is a tower defense done in java. This is the basis

for a 2D game engine.

48. jugile-util: java utilities to make coding more convenient.

49. jutf8search: an efficient string matching library in java for UTF-8 encoded

text.

50. kryo: kryo is a fast and efficient object graph serialization framework for

java. The goals of the project are speed, efficiency, and an easy to use API.

The project is effective when objects need to be persisted, whether to a file,

database, or over the network.

51. lemyriapode: this software consists of a set of java projects for various educa-

tional topics in physics, and maths.

52. migrator-postgresql: software in java to do a migration of data from one

postgre DB to another.

53. mobs: this is project for university mobile services subject. Here You can find

application, for monitoring information from the GPS or GSM device through

RS232 serial port, or log file. It draws provided coordinites as a point with

computed bias on specified map. A set of Vilnius maps is also provided.

54. mocrap: java motion capture editing experiment.

55. monome-pages: pages is a monome application that allows the simultaneous

execution of multiple other monome applications on any number of devices.

There are many built in applications as well, including MIDI interfaces (key-

board, triggers, faders, sequencers), Ableton clip launcher interfaces, and a

way to easily script your own programs with Groovy.

56. ngamejava: java library for game creation.
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57. object-procedural-bridge: this is a framework for building Java applications

that use Oracle PL/SQL.

58. onslaught: java implementation of the Onslaught flash game

59. p2ploan: java application to conduct business loans between users.

60. powerjava: a parser to transform powerjava code into java 1.5 code.

61. powermock: powerMock is a java framework that allows you to unit test code

normally regarded as untestable.

62. prettyfaces: prettyFaces is an Open-Source URL-rewriting library with en-

hanced support for JavaServer Faces – JSF versions 1.1, 1.2 and 2.0 – enabling

creation of bookmark-able, pretty URLs. PrettyFaces solves the “RESTful

URL” problem, including features such as: seamless integration with faces

navigation, managed parameter parsing, page-load actions, dynamic view-id

assignment, and configuration-free compatibility with other web frameworks.

63. product-center:

64. project-armageddon: raiden-esque java Game

65. projet-qcm-java: a java tool for quality control management.

66. ps3mediaserver: PS3 media server is a digital living network alliance (DLNA)

compliant universal plug and play (UPNP) Media Server for the PS3, written

in Java, with the purpose of streaming or transcoding any kind of media

files, with minimum configuration. It is also includes robust Mplayer/FFmpeg

packages.

67. restfb: a simple java interface for the Facebook Graph and old representational

state transfer (REST) API.

68. robust-coupe: robust-coupe aims to provide some features to improve the

robust of java application.
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69. scikit: java scientific library which facilitates graphics visualization and user

interaction. Contains threading support, plotting functionality, data contain-

ers, and more.

70. semanticdiscoverytoolkit: java utilities for AI problem solving.

71. semweb4j: semweb4j project provides libraries to do complicated things with

Java and RDF. Very little semantic web knowledge is required in order to

make use of it.

72. seoma: multiplayer java game.

73. simplenamingservice: a java implementation of the CORBA Naming Service

API.

74. sjava-logging: a java library for logging with high performance.

75. squabble: squabble is a content management system (CMS) and chat system

written in Java.

76. subitizer: a java program to practice subitizing and/or counting. The Pro-

gram tracks the users statistics and can be executed as an applet.

77. tabulasoftmed: tabulasoftmed is a java Web Framework, which consists of

several sub-projects, such as a server and graphical user interface tools. A

preview version of the server is available for Windows and Linux.

78. tabuvrp–study: tabu search for vehicle routing problem. Toy java implemen-

tation as case study.

79. usemon: usemon is a monitoring system for usage trends, response time and

dependency analysis of plain java applications or big multi-clustered java En-

terprise applications running in production.
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A.3 Advantages of the vector space model (VSM) com-

pared to latent semantic indexing (LSI) informa-

tion retrieval (IR) approach

The main disadvantage of LSI (compared to VSM) when applied in the computation

of sentence similarity is the lack of potentially important syntactic information. For

example, the sentences “The dog chased the man” and “The man chased the dog”

are viewed as identical by LSI.

Also, negations and antonyms are not processed by LSI [48, 186]. Research

has shown that LSI is less effective at discriminating strongly from weakly-related

words because LSI implicitly contains the theory of synonymy.

Lastly, LSI is also not scalable when new documents, not analyzed during model

building are parsed using pre-built models, as the concepts or topics in such docu-

ments are not captured in the model which has to be re-built.
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Appendix B

Appendix B contains the results for Chapter 4.

B.1 Structural and logical coupling interplay outcomes

Table 3 includes results on the intersection between structural and logical class de-

pendencies. The first column includes the project IDs, followed by the names of

projects in the second column, the third column contains the number of structural

dependencies per project, the fourth column contains the number of logical depen-

dencies per project, the fifth column contains the intersection set (classes linked

by both structural and logical dependencies). The sixth column contains the per-

centage of structural dependencies in the intersection set while the last and seventh

column contains the proportion of logical dependencies in the intersection set.

Table 3: Intersection of structural and logical dependencies in the studied 79 OSS projects.
(KEY: Str. Dep. = structural dependencies; Log. Dep. = logical dependencies; CSD =

co-changed structural dependencies; CLD = coupled logical dependencies)

ID Project Str. Dep. Log. Dep. Int. Set CSD (%) CLD (%)

1 2dtetris 91 166 44 48 27

2 4-connect 18 80 17 94 21

7 ahs-scheduling 65 118 39 60 33

8 aima-java 4,082 190,432 3,200 78 2

10 alexo-chess 655 9,603 499 76 5

11 algmusic 218 3,812 163 75 4

Continued on next page
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Table 3 – Continued from previous page

ID Project Str. Dep. Log. Dep. Int. Set CSD CLD

12 alleywayreinvented 118 680 118 100 17

13 alto 1,662 78,481 1,567 94 2

14 amock 1,084 2,969 545 50 18

18 apjava 67 196 61 91 31

20 appletbomberman 282 1,255 230 82 18

22 ascrblr 161 1,396 128 80 9

24 audao 317 6,838 198 62 3

26 bitlyj 194 1,036 162 84 16

28 bluecove 753 63,404 607 81 1

30 castanea 157 624 100 64 16

31 catchnthrow 50 164 34 68 21

41 daedalum 252 4,854 249 99 5

45 dbmigrate 13 26 10 77 38

51 echo-nest-java-api 143 1,116 127 89 11

56 fdelimitedtextutilities 31 34 8 26 24

60 fyllgen 674 14,318 656 97 5

64 geocoder-java 120 379 58 48 15

65 google-voice-java 160 724 81 51 11

66 gorobot 2,914 88,731 2,173 75 2

67 gp-net-radius 76 522 61 80 12

68 guavatools 407 6,899 363 89 5

69 guitarjava 309 3,681 248 80 7

71 hobbylinkchecker 476 35,923 473 99 1

79 jangod 802 15,220 697 87 5

81 jaque 368 1,065 205 56 19

84 java-chess-web 659 2,596 337 51 13

86 java-weather-api 52 220 37 71 17

88 javacoder 16 104 16 100 15

92 javastepbystep 259 1,795 109 42 6

Continued on next page
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Table 3 – Continued from previous page

ID Project Str. Dep. Log. Dep. Int. Set CSD CLD

96 jbal 480 12,986 461 96 4

97 jbandwidthlog 57 468 57 100 12

99 jease 1,365 39,842 861 63 2

103 jeudi-tech-spring 80 310 47 59 15

107 jiopi 73 532 52 71 10

109 jmemcache 24 94 21 88 22

113 jothelo 55 148 42 76 28

112 jnoob 57 417 48 84 12

115 jprg2-assg 83 332 79 95 24

118 jroguedps 673 6,255 532 79 9

119 jsbe 23 70 23 100 33

122 jtowerdefense 231 2,191 210 91 10

123 jugile-util 237 3,088 144 61 5

124 jutf8search 43 152 41 95 27

127 kryo 675 5,372 580 86 11

130 lemyriapode 1,045 10,520 809 77 8

136 migrator-postgresql 78 476 76 97 16

140 mobs 127 672 96 76 14

141 mocrap 47 74 21 45 28

142 monome-pages 835 10,362 727 87 7

148 ngamejava 189 1,196 139 74 12

149 object-procedural-bridge 1,526 27,343 852 56 3

152 onslaught 297 5,739 289 97 5

157 p2ploan 1,185 10,041 750 63 7

164 powerjava 49 150 29 59 19

165 powermock 2,372 105,733 1,828 77 2

166 prettyfaces 519 12,987 500 96 4

168 product-center 1,018 7,220 530 52 7

169 project-armageddon 50 68 30 60 44

Continued on next page
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Table 3 – Continued from previous page

ID Project Str. Dep. Log. Dep. Int. Set CSD CLD

170 projet-qcm-java 191 868 122 64 14

172 ps3mediaserver 1,177 29,313 983 84 3

179 restfb 407 4,045 303 74 7

180 robust-coupe 367 1,648 182 50 11

183 scikit 1,457 10,958 924 63 8

184 semanticdiscoverytoolkit 6,594 177,962 4,741 72 3

186 seoma 1,341 16,929 1,104 82 7

185 semweb4j 3,954 68,309 2,551 65 4

188 simplenamingservice 274 1,593 205 75 13

189 sjava-logging 53 408 53 100 13

195 squabble 376 4,578 267 71 6

197 subitizer 59 176 47 80 27

201 tabulasoftmed 1,652 58,420 1,373 83 2

202 tabuvrp–study 121 442 72 60 16

211 usemon 4,094 529,590 3,845 94 1

Table 4 contains the results derived from computing the Spearman’s rank cor-

relation between strengths of structural and logical coupling of classes in the 79

projects studied. The first column contains the project IDs, followed by project

names in the second column, the correlation coefficient in the third column and

finally the associated p-values in the fourth and last column.

Table 4: Structural and logical coupling Spearman’s rank correlation coefficient outcomes with
p-values

ID Project Correlation Coefficient p-value

1 2dtetris 0.06 0.4

2 4-connect 0.01 0.9

Continued on next page
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Table 4 – Continued from previous page

ID Project Correlation Coefficient p-value

7 ahs-scheduling 0.007 1.0

8 aima-java NA NA

10 alexo-chess NA NA

11 algmusic NA NA

12 alleywayreinvented NA NA

13 alto NA NA

14 amock 0.02 0.31

18 apjava 0.28 0

20 appletbomberman 0.02 0.54

22 ascrblr NA NA

24 audao NA NA

26 bitlyj NA NA

28 bluecove NA NA

30 castanea 0.11 0.003

31 catchnthrow 0.19 0.01

41 daedalum NA NA

45 dbmigrate -0.08 0.7

51 echo-nest-java-api NA NA

56 fdelimitedtextutilities -0.65 0

60 fyllgen NA NA

64 geocoder-java 0.06 0.23

65 google-voice-java 0.06 0.07

66 gorobot NA NA

67 gp-net-radius NA NA

68 guavatools NA NA

69 guitarjava NA NA

71 hobbylinkchecker NA NA

79 jangod NA NA

81 jaque 0.01 0.78

Continued on next page
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Table 4 – Continued from previous page

ID Project Correlation Coefficient p-value

84 java-chess-web NA NA

88 javacoder 0.15 0.12

92 javastepbystep -0.01 0.58

86 java-weather-api 0.08 0.20

96 jbal NA NA

97 jbandwidthlog 0.36 0

99 jease NA NA

103 jeudi-tech-spring -0.05 0.32

107 jiopi NA NA

109 jmemcache 0.05 0.62

112 jnoob 0.18 < 0.001

113 jothelo 0.26 0.001

115 jprg2-assg 0.23 0

118 jroguedps NA NA

119 jsbe 0.28 0.02

122 jtowerdefense NA NA

123 jugile-util NA NA

124 jutf8search 0.13 0.12

127 kryo NA NA

130 lemyriapode NA NA

136 migrator-postgresql 0.13 0.006

140 mobs 0.1 0.01

141 mocrap -0.3 0.01

142 monome-pages NA NA

148 ngamejava NA NA

149 object-procedural-bridge NA NA

152 onslaught NA NA

157 p2ploan NA NA

164 powerjava NA NA

Continued on next page
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Table 4 – Continued from previous page

ID Project Correlation Coefficient p-value

165 powermock NA NA

166 prettyfaces NA NA

168 product-center NA NA

169 project-armageddon -0.07 0.51

170 projet-qcm-java NA NA

172 ps3mediaserver NA NA

179 restfb NA NA

180 robust-coupe NA NA

183 scikit NA NA

184 semanticdiscoverytoolkit NA NA

185 semweb4j NA NA

186 seoma NA NA

188 simplenamingservice -0.01 0.66

189 sjava-logging NA NA

195 squabble NA NA

197 subitizer 0.07 0.32

201 tabulasoftmed NA NA

202 tabuvrp–study 0.03 0.47

211 usemon NA NA
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Appendix C

Appendix C contains the results for Chapter 5.

C.1 Semantic and logical coupling interplay outcomes

Table 5 summarises the projects analysed in a pilot study in which we compared

the measurement of semantic coupling between classes in two distinct ways: (1)

using only their identifiers, and; (2) using the whole corpora.

Table 6 includes results on the intersection between semantic and logical class

dependencies. The first column includes the project IDs, followed by the names of

projects in the second column, the third column contains the number of semantic

dependencies per project, the fourth column contains the number of logical depen-

dencies per project, the fifth column contains the intersection set (classes linked by

both semantic and logical dependencies). The sixth column contains the percentage

of semantic dependencies in the intersection set while the last and seventh column

contains the proportion of logical dependencies in the intersection set.
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Table 5: Characteristics of the software systems analyzed for semantic coupling measurement
comparison

Project Classes Class Pairs LOC
(with
com-
ments)

Time to
Analyze
Corpora
(mins)

Time to
Analyze
Identifiers
(mins)

∆ mins

4-connect 10 45 1,160 0.003 0.005 <1%
alexo-chess 119 7,021 22,986 1.01 0.07 143%
alto 315 49,455 101,379 20 1 19%
audao 152 11,476 20,347 1.1 0.1 10%
bitlyj 22 231 1,255 0.002 0.002 0%
bluecove 390 75,855 75,237 18 1 17%
daedalum 68 2,278 10,172 0.2 0.01 19%
dbmigrate 7 21 1,337 0.003 < 0.001 598%
echo-nest-java-api 36 630 6,903 0.1 0.005 19%
fdelimitedtextutilities 11 55 1,769 0.003 0.001 2%
geocoder-java 27 351 1,732 0.006 0.003 1%
google-voice-java 56 1,540 10,078 0.3 0.02 14%
gp-net-radius 25 300 2,469 0.01 0.002 4%
guitarjava 87 21 18,331 0.5 0.03 16%
jangod 127 8,001 10,789 0.4 0.02 19%
java-chess-web 111 6,105 7,983 0.2 0.04 4%
java-weather-api 35 595 2,041 0.01 0.004 2%
jbal 109 5,886 21,285 2 0.04 49%
jbandwidthlog 13 78 2,472 0.01 0.001 9%
jiopi 22 231 2,260 0.003 0.001 2%
jmemcache 14 91 1,035 0.002 0.001 1%
kryo 52 1,326 6,356 0.1 0.01 9%
migrator-postgresql 29 406 2,282 0.01 0.002 4%
monome-pages 158 12,403 64,942 9 0.08 112%
powermock 673 226,128 73,985 21 3 6%
prettyfaces 229 26,106 26,104 2 0.08 24%
projet-qcm-java 53 1,378 4,661 0.04 0.01 3%
ps3mediaserver 189 17,766 39,816 6 0.05 119%
restfb 75 2775 16,041 0.8 0.06 12%
scikit 109 5,886 18,224 1 0.03 32%
semanticdiscoverytoolkit 1,421 1,008,910 268,564 695 7.2 98%
seoma 280 39,060 37,007 2.4 0.3 7%
sjava-logging 19 171 1,514 0.002 0.001 1%
tabuvrp–study 28 378 2,524 0.01 0.002 4%
usemon 1,090 593,505 219,546 980 4 244%
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Table 6: Intersection of semantic and logical dependencies in the studied 79 OSS projects.
Semantic coupling measured using N-Gram technique (KEY: Sem. Dep. = semantic

dependencies; Log. Dep. = logical dependencies; CSD = co-changed semantic dependencies; SLD
= semantic logical dependencies)

ID Project Sem. Dep. Log. Dep. Int. Set CSD (%) SLD (%)

1 2dtetris 213 166 166 78 100

2 4-connect 55 80 54 98 68

7 ahs-scheduling 144 118 118 82 100

8 aima-java 190,694 190,432 189,812 100 100

10 alexo-chess 9,759 9,603 9,603 98 100

11 algmusic 3,867 3,812 3,812 99 100

12 alleywayreinvented 668 680 668 100 98

13 alto 77,600 78,481 77,505 100 99

14 amock 3,508 2,969 2,969 85 100

18 apjava 202 196 196 97 100

20 appletbomberman 1,307 1,255 1,255 96 100

22 ascrblr 1,429 1,396 1,396 98 100

24 audao 6,957 6,838 6,838 98 100

26 bitlyj 1,068 1,036 1,036 97 100

28 bluecove 63,358 63,404 63,212 100 100

30 castanea 681 624 624 92 100

31 catchnthrow 180 164 164 91 100

41 daedalum 4,855 4,854 4,852 100 100

45 dbmigrate 29 26 26 90 100

51 echo-nest-java-api 1,132 1,116 1,116 99 100

56 fdelimitedtextutilities 57 34 34 60 100

60 fyllgen 14,316 14,318 14,298 100 100

64 geocoder-java 441 379 379 86 100

65 google-voice-java 767 724 694 90 96

66 gorobot 89,362 88,731 88,627 99 100

67 gp-net-radius 537 522 522 97 100

68 guavatools 6,923 6,899 6,879 99 100

Continued on next page
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Table 6 – Continued from previous page

ID Project Sem. Dep. Log. Dep. Int. Set CSD (%) SLD (%)

69 guitarjava 3,412 3,681 3,351 98 91

71 hobbylinkchecker 35,890 35,923 35,887 100 100

79 jangod 15,126 15,220 15,030 99 99

81 jaque 1,228 1,065 1,065 87 100

84 java-chess-web 2,902 2,596 2,590 89 100

86 java-weather-api 231 220 216 94 98

88 javacoder 104 104 104 100 100

92 javastepbystep 1,945 1,795 1,795 92 100

96 jbal 12,903 12,986 12,884 100 99

97 jbandwidthlog 468 468 468 100 100

99 jease 40,346 39,842 39,842 99 100

103 jeudi-tech-spring 343 310 310 90 100

107 jiopi 553 532 532 96 100

109 jmemcache 97 94 94 97 100

112 jnoob 426 417 417 98 100

113 jothelo 137 148 124 91 84

115 jprg2-assg 336 332 332 99 100

118 jroguedps 6,394 6,255 6,253 98 100

119 jsbe 70 70 70 100 100

122 jtowerdefense 2,212 2,191 2,191 99 100

123 jugile-util 3,175 3,088 3,082 97 100

124 jutf8search 152 152 150 99 99

127 kryo 5,465 5,372 5,370 98 100

130 lemyriapode 10,732 10,520 10,496 98 100

136 migrator-postgresql 478 476 476 100 100

140 mobs 703 672 672 96 100

141 mocrap 100 74 74 74 100

142 monome-pages 10,462 10,362 10,354 99 100

148 ngamejava 1,246 1,196 1,196 96 100

Continued on next page
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Table 6 – Continued from previous page

ID Project Sem. Dep. Log. Dep. Int. Set CSD (%) SLD (%)

149 object-procedural-bridge 27,983 27,343 27,309 98 100

152 onslaught 5,747 5,739 5,739 100 100

157 p2ploan 10,476 10,041 10,041 96 100

164 powerjava 168 150 148 88 99

165 powermock 105,828 105,733 105,291 99 100

166 prettyfaces 12,968 12,987 12,949 100 100

168 product-center 7,708 7,220 7,220 94 100

169 project-armageddon 88 68 68 77 100

170 projet-qcm-java 937 868 868 93 100

172 ps3mediaserver 29,497 29,313 29,303 99 100

179 restfb 4,139 4,045 4,035 97 100

180 robust-coupe 1,833 1648 1,648 90 100

183 scikit 11,489 10,958 10,956 95 100

184 semanticdiscoverytoolkit 179,777 177,962 177,928 99 100

185 semweb4j 69,401 68,309 68,009 98 100

186 seoma 17,166 16,929 16,929 99 100

188 simplenamingservice 1,662 1,593 1,593 96 100

189 sjava-logging 408 408 408 100 100

195 squabble 4,687 4,578 4,578 98 100

197 subitizer 188 176 176 94 100

201 tabulasoftmed 58,497 58,420 58,218 100 100

202 tabuvrp–study 491 442 442 90 100

211 usemon 529,180 529,590 528,932 100 100
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Table 7: Spearman’s rank correlation results for the linear relationship between logical and
semantic coupling strengths in the overall sample of OSS projects

ID Project Correlation Coefficient p-value

1 2dtetris 0.2 0

2 4-connect -0.3 0.02

7 ahs-scheduling 0.01 0.9

8 aima-java NA NA

10 alexo-chess NA NA

11 algmusic NA NA

12 alleywayreinvented NA NA

13 alto NA NA

14 amock 0.04 0.01

18 apjava 0.3 8.8-e06

20 appletbomberman 0.1 0.01

22 ascrblr NA NA

24 audao NA NA

26 bitlyj NA NA

28 bluecove NA NA

30 castanea 0.1 0.03

31 catchnthrow 0.03 0.8

41 daedalum NA NA

45 dbmigrate 0.1 1

51 echo-nest-java-api NA NA

56 fdelimitedtextutilities -0.04 0.7

60 fyllgen NA NA

64 geocoder-java 0.1 0.2

65 google-voice-java -0.02 0.5

66 gorobot NA NA

67 gp-net-radius NA NA

68 guavatools NA NA

69 guitarjava NA NA

Continued on next page
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Table 7 – Continued from previous page

ID Project Correlation Coefficient p-value

71 hobbylinkchecker NA NA

79 jangod NA NA

81 jaque 0.1 0.1

84 java-chess-web NA NA

86 java-weather-api 0 1

88 javacoder -0.1 0.3

92 javastepbystep 0.04 0.1

96 jbal NA NA

97 jbandwidthlog -0.2 7.2e-06

99 jease NA NA

103 jeudi-tech-spring 0.3 3.5e-07

107 jiopi NA NA

109 jmemcache 0.1 0.2

112 jnoob 0.1 0.3

113 jothelo 0.3 0

115 jprg2-assg 0.02 0.6

118 jroguedps NA NA

119 jsbe 0.2 0.04

122 jtowerdefense NA NA

123 jugile-util NA NA

124 jutf8search 0.4 2.5e-06

127 kryo NA NA

130 lemyriapode NA NA

136 migrator-postgresql 0.2 4.8-e06

140 mobs 0.02 0.8

141 mocrap 0.03 0.7

142 monome-pages NA NA

148 ngamejava NA NA

149 object-procedural-bridge NA NA

Continued on next page
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Table 7 – Continued from previous page

ID Project Correlation Coefficient p-value

152 onslaught NA NA

157 p2ploan NA NA

164 powerjava 0.02 0.8

165 powermock NA NA

166 prettyfaces NA NA

168 product-center NA NA

169 project-armageddon 0.1 0.9

170 projet-qcm-java -0.1 0.5

172 ps3mediaserver NA NA

179 restfb NA NA

180 robust-coupe NA NA

183 scikit NA NA

184 semanticdiscoverytoolkit NA NA

185 semweb4j NA NA

186 seoma NA NA

188 simplenamingservice 0.1 0.01

189 sjava-logging 0.1 0.1

195 squabble NA NA

197 subitizer 0.1 0.1

201 tabulasoftmed NA NA

202 tabuvrp–study 0.1 0

211 usemon NA NA
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Appendix D

Appendix D contains the results for Chapter 6.

D.1 Structural and semantic coupling interplay out-

comes

Table 8 consists of the results derived from computing the Fisher’s independence

tests to determine the presence or absence of a significant association between struc-

tural and semantic class dependencies. The first column contains the project names,

and the second column contains the number of class pairs linked both structurally

and semantically. The third column contains the number of class pairs linked struc-

turally but not semantically while the fourth column contains the number of class

pairs linked semantically but not structurally.

The fifth column in Table 8 contains the number of class pairs that are not

linked either structurally or semantically. The last column contains the resulting

p-values used to reject or fail to reject the null hypothesis which asserts that there

is not a significant association between structural and semantic class dependencies.

Table 8: Structural and semantic coupling 2x2 contingency table outcomes with Fisher’s
independence test p-values – overall sample of OSS projects

ID project E H W x p-value

1 2dtetris 16 64 5 0 <0.001

Continued on next page
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Table 8 – Continued from previous page

ID project E H W x p-value

2 4-connect 0 18 0 1 1

7 ahs-scheduling 6 52 1 3 0.4

8 aima-java 547 2,875 2,627 193 0

10 alexo-chess 111 527 266 1 5.5e-137

11 algmusic 37 179 166 29 1.2e-46

12 alleywayreinvented 10 101 12 16 8.2e-05

13 alto 258 1,328 1,809 28 0

14 amock 119 931 72 2 1.6e-58

18 apjava 8 35 8 4 0.00266

20 appletbomberman 40 222 77 1 4.4e-45

22 ascrblr 33 126 59 6 0

24 audao 88 220 832 38 9.7e-123

26 bitlyj 45 141 76 3 2.5e-30

28 bluecove 142 559 1,338 423 5.8e-146

30 castanea 18 122 22 6 1.04e-11

31 catchnthrow 5 42 10 0 7.0e-08

41 daedalum 35 211 98 78 1.31e-19

45 dbmigrate 9 4 2 0 1

51 echo-nest-java-api 10 103 15 21 2.4e-05

56 fdelimitedtextutilities 3 28 1 0 0.13

60 fyllgen 65 578 229 15 3.3e-130

64 geocoder-java 39 64 43 0 2.1e-14

65 google-voice-java 31 88 59 1 6.5e-23

66 gorobot 375 2,410 1,822 69 0

67 gp-net-radius 39 35 65 6 1.3e-07

68 guavatools 128 274 668 75 9.3e-93

69 guitarjava 55 212 65 18 1.9e-21

71 hobbylinkchecker 192 275 772 91 7.6e-78

79 jangod 89 692 575 24 2.1e-252

Continued on next page
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Table 8 – Continued from previous page

ID project E H W x p-value

81 jaque 74 262 53 2 1.4e-27

84 java-chess-web 121 499 251 0 8.4e-126

86 java-weather-api 24 27 19 0 1.5e-05

88 javacoder 2 14 11 5 0.003

92 javastepbystep 39 194 116 44 2.2e-29

96 jbal 45 431 174 49 1.1e-74

97 jbandwidthlog 14 35 18 4 6.3e-05

99 jease 240 1,117 1,215 78 0

103 jeudi-tech-spring 17 63 20 2 2.8e-09

107 jiopi 18 54 17 4 5.6e-06

109 jmemcache 6 17 3 1 0.1

112 jnoob 18 34 32 12 <0.001

113 jothelo 0 44 2 3 0.01

115 jprg2-assg 19 54 20 0 6.5e-10

118 jroguedps 190 418 473 10 1.4e-133

119 jsbe 1 16 1 2 0.1

122 jtowerdefense 41 180 76 12 3.2e-29

123 jugile-util 50 157 207 21 0

124 jutf8search 6 34 5 1 0.002

127 kryo 137 494 449 7 5.2e-168

130 lemyriapode 146 815 550 213 1.3e-132

136 migrator-postgresql 7 59 19 7 9.4e-09

140 mobs 26 99 20 5 2.8e-08

141 mocrap 6 41 5 2 0.003

142 monome-pages 167 582 555 12 4.8e-197

148 ngamejava 39 127 71 3 2.4e-28

149 object-procedural-bridge 289 1,214 1,216 5 0

152 onslaught 57 219 144 29 1.2e-40

157 p2ploan 264 869 530 8 2.4e-218

Continued on next page
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Table 8 – Continued from previous page

ID project E H W x p-value

164 powerjava 3 45 4 4 0.01

165 powermock 428 1,883 1,487 91 0

166 prettyfaces 103 403 329 7 7.7e-129

168 product-center 389 626 840 27 1.1e-183

169 project-armageddon 4 40 0 0 1

170 projet-qcm-java 35 107 69 0 1.2-29

172 ps3mediaserver 139 925 390 88 3.3e-154

179 restfb 65 319 127 18 1.4-52

180 robust-coupe 31 290 76 0 0

183 scikit 119 1,289 327 30 4.9e-213

184 semanticdiscoverytoolkit 1212 4,587 3,538 137 0

185 semweb4j 331 2,759 1,030 95 0

186 seoma 121 912 283 67 2.6e-128

188 simplenamingservice 50 181 58 1 0

189 sjava-logging 6 44 16 6 6.94e-07

195 squabble 125 178 348 14 4.3e-60

197 subitizer 12 34 5 0 0.003

201 tabulasoftmed 175 1,270 787 58 0

202 tabuvrp–study 25 73 18 0 1.1e-09

Similarly to Table 8, Table 9 consists of the results derived from computing the

Chi-square independence tests to determine the presence or absence of a significant

association between structural and semantic class dependencies. The first column

contains the project names, and the second column contains the number of class

pairs linked both structurally and semantically. The third column contains the

number of class pairs linked structurally but not semantically while the fourth

column contains the number of class pairs linked semantically but not structurally.

The fifth column in Table 9 contains the number of class pairs that are not

210



linked either structurally or semantically. The last column contains the resulting

p-values used to reject or fail to reject the null hypothesis which asserts that there

is not a significant association between structural and semantic class dependencies.

Table 9: Structural and semantic coupling 2x2 Contingency table outcomes with Chi-square
independence test p-values – overall sample of OSS projects

ID project E H W x p-value

1 2dtetris 16 64 5 0 <0.001

2 4-connect 0 18 0 1 NaN

7 ahs-scheduling 6 52 1 3 0.9

8 aima-java 547 2,875 2,627 193 0

10 alexo-chess 111 527 266 1 3.7e-115

11 algmusic 37 179 166 29 1.5e-42

12 alleywayreinvented 10 101 12 16 4.2e-05

13 alto 258 1,328 1,809 28 0

14 amock 119 931 72 2 0

18 apjava 8 35 8 4 0.004

20 appletbomberman 40 222 77 1 2.0e-41

22 ascrblr 33 126 59 6 1.8e-21

24 audao 88 220 832 38 3.1e-131

26 bitlyj 45 141 76 3 2.2e-26

28 bluecove 142 559 1,338 423 0

30 castanea 18 122 22 6 5.6e-13

31 catchnthrow 5 42 10 0 5.6e-08

41 daedalum 35 211 98 78 4.2e-19

45 dbmigrate 9 4 2 0 1

51 echo-nest-java-api 10 103 15 21 1.5e-05

56 fdelimitedtextutilities 3 28 1 0 0.24931

60 fyllgen 65 578 229 15 6.2e-123

64 geocoder-java 39 64 43 0 1.9e-11

65 google-voice-java 31 88 59 1 2.91e-19

Continued on next page
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Table 9 – Continued from previous page

ID project E H W x p-value

66 gorobot 375 2,410 1,822 69 0

67 gp-net-radius 39 35 65 6 5.5e-07

68 guavatools 128 274 668 75 1.1e-91

69 guitarjava 55 212 65 18 1.4e-21

71 hobbylinkchecker 192 275 772 91 1.1e-78

79 jangod 89 692 575 24 1.3e-212

81 jaque 74 262 53 2 5.4e-27

84 java-chess-web 121 499 251 0 3.7e-104

86 java-weather-api 24 27 19 0 <0.001

88 javacoder 2 14 11 5 0.004

92 javastepbystep 39 194 116 44 3.5e-28

96 jbal 45 431 174 49 1.8e-73

97 jbandwidthlog 14 35 18 4 9.2e-05

99 jease 240 1,117 1,215 78 0

103 jeudi-tech-spring 17 63 20 2 8.0e-09

107 jiopi 18 54 17 4 1.1e-05

109 jmemcache 6 17 3 1 0.2

112 jnoob 18 34 32 12 <0.001

113 jothelo 0 44 2 3 0.002

115 jprg2-assg 19 54 20 0 1.3e-08

118 jroguedps 190 418 473 10 1.4e-110

119 jsbe 1 16 1 2 0.7

122 jtowerdefense 41 180 76 12 5.9e-28

123 jugile-util 50 157 207 21 1.2e-44

124 jutf8search 6 34 5 1 0.002

127 kryo 137 494 449 7 7.8e-138

130 lemyriapode 146 815 550 213 7.3e-126

136 migrator-postgresql 7 59 19 7 9.8e-09

140 mobs 26 99 20 5 1.9e-08

Continued on next page
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Table 9 – Continued from previous page

ID project E H W x p-value

141 mocrap 6 41 5 2 0.002

142 monome-pages 167 582 555 12 2.8e-163

148 ngamejava 39 127 71 3 1.0e-24

149 object-procedural-bridge 289 1,214 1,216 5 0

152 onslaught 57 219 144 29 5.7e-38

157 p2ploan 264 869 530 8 2.6e-181

164 powerjava 3 45 4 4 0.004

165 powermock 428 1,883 1,487 91 0

166 prettyfaces 103 403 329 7 4.5e-107

168 product-center 389 626 840 27 2.3e-155

169 project-armageddon 4 40 0 0 NaN

170 projet-qcm-java 35 107 69 0 4.3e-24

172 ps3mediaserver 139 925 390 88 8.2e-151

179 restfb 65 319 127 18 1.1e-50

180 robust-coupe 31 290 76 0 2.4e-56

183 scikit 119 1,289 327 30 9.1e-228

184 semanticdiscoverytoolkit 1,212 4,587 3,538 137 0

185 semweb4j 331 2,759 1,030 95 0

186 seoma 121 912 283 67 9.8e-133

188 simplenamingservice 50 181 58 1 8.2e-27

189 sjava-logging 6 44 16 6 1.1e-06

195 squabble 125 178 348 14 5.8e-54

197 subitizer 12 34 5 0 0.005

201 tabulasoftmed 175 1,270 787 58 1.1e-313

202 tabuvrp–study 25 73 18 0 9.0e-09

Table 10 contains the results derived from computing the Spearman’s rank cor-

relation between strengths of structural and semantic coupling of classes in the 79
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projects studied. The first column contains the project names followed by the cor-

relation coefficient in the second column and finally the associated p-values in the

third and last column.

Table 10: Spearman’s rank correlation results for the linear relationship between structural and
semantic coupling strengths in the overall sample of OSS projects

ID Project Correlation Coefficient p-value

1 2dtetris 0.1 0.6

2 aima-java 0.2 1.2e-05

7 alexo-chess -0.4 2.6e-05

11 algmusic -0.2 0.4

12 alleywayreinvented -0.1 1

13 alto 0.1 0.1

14 amock -0.02 1

18 apjava -0.4 0.3

20 appletbomberman -0.04 1

22 ascrblr 0.03 1

24 audao -0.03 1

26 bitlyj -0.3 0.1

28 bluecove 0.1 0.4

30 castanea -0.2 0.3

31 catchnthrow 0.2 1

41 daedalum 0.1 0.6

45 dbmigrate -0.1 1

51 echo-nest-java-api -0.3 0.4

60 fyllgen -0.1 1

64 geocoder-java -0.2 0.24

65 google-voice-java 0.3 0.1

66 gorobot 0.002 1

67 gp-net-radius 0.2 0.4

68 guavatools 0.3 0.004

Continued on next page
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Table 10 – Continued from previous page

ID Project Correlation Coefficient p-value

69 guitarjava -0.01 1

71 hobbylinkchecker 0.1 0.3

79 jangod 0.2 0.13

81 jaque -0.1 1

84 java-chess-web 0.1 0.3

86 java-weather-api -0.1 1

92 javastepbystep -0.42 0.01

96 jbal -0.2 0.2

97 jbandwidthlog 0.1 1

99 jease 0.04 1

103 jeudi-tech-spring -0.04 1

107jiopi -0.03 1

109 jmemcache 1 0.3

112 jnoob -0.2 0.4

115 jprg2-assg 0.4 0.1

118 jroguedps 0.03 0.7

122 jtowerdefense -0.04 0.8

123 jugile-util -0.1 0.6

127 kryo -0.02 0.8

130 lemyriapode 0.02 0.8

136 migrator-postgresql 0.01 1

140 mobs 0.2 0.4

142 monome-pages 0.1 0.1

148 ngamejava 0.3 0.1

149 object-procedural-bridge 0.2 0.003

152 onslaught -0.3 0.02

157 p2ploan -0.2 9.6e-05

164 powermock 0.1 0.001

166 prettyfaces 0.1 0.5

Continued on next page
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Table 10 – Continued from previous page

ID Project Correlation Coefficient p-value

168 product-center 0.04 0.4

169 project-armageddon 0.1 0.9

170 projet-qcm-java -0.4 0.01

172 ps3mediaserver -0.02 0.8

179 restfb 0.1 0.6

180 robust-coupe 1 1.6e-07

183 scikit 0.2 0.1

184 semanticdiscoverytoolkit 0.1 0.01

185 semweb4j -0.03 0.5

186 seoma -0.1 0.5

188 simplenamingservice -0.4 0.002

189 sjava-logging 0.1 0.8

195 squabble -0.1 0.6

197 subitizer 0.1 0.7

201 tabulasoftmed 0.04 0.6

202 tabuvrp–study -0.3 0.1
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