
THE COMPLEXITY OF GREEDOID

TUTTE POLYNOMIALS

A thesis submitted for the degree of Doctor of Philosophy

by

Christopher N. Knapp

Department of Mathematics, Brunel University London

ABSTRACT

We consider the computational complexity of evaluating the Tutte polynomial of three particular

classes of greedoid, namely rooted graphs, rooted digraphs and binary greedoids. Furthermore we

construct polynomial-time algorithms to evaluate the Tutte polynomial of these classes of greedoid

when they’re of bounded tree-width. We also construct a Möbius function formulation for the char-

acteristic polynomial of a rooted graph and determine the computational complexity of computing

the coefficients of the Tutte polynomial of a rooted graph.

1

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude to my supervisor, Steve Noble. This thesis is a

reflection of his expertise, innovation and progressive ideas. Not only this, but it also reflects the

many hours he spent tirelessly guiding me with the upmost patience. His charisma and sense of

humour both contributed to making our meetings so engaging, and I will be forever indebted to him

for having confidence in me even when I didn’t have it in myself.

I would also like to thank my second supervisor, Rhiannon Hall, for her much-needed support and

constructive criticism, and the administrative staff in the department, in particular Frances Foster

and Linda Campbell, for going above and beyond to answer all of my daily queries.

I dedicate this thesis to my two biggest supporters - my mum and my nana, both of

whom I sadly lost in 2016.

2

Contents

Abstract 1

Acknowledgements 2

1 Introduction 5

1.1 Introduction . 5

1.2 Graphs and Matroids . 6

1.3 Rooted Graphs, Rooted Digraphs and Greedoids . 10

1.4 Complexity . 27

1.5 The Tutte Polynomial of a Graph . 30

1.6 The Complexity of Computing the Tutte Polynomial of a Graph 32

1.7 The Tutte Polynomial of an Arbitrary Greedoid, a Rooted Graph and a Rooted Digraph 33

2 The Computational Complexity of Evaluating the Tutte Polynomial at a Fixed

Point 39

2.1 Introduction . 39

2.2 Greedoid Constructions . 40

2.3 Rooted Graphs . 47

2.3.1 Introduction . 47

2.3.2 Proof of Main Theorem . 48

2.4 Rooted Digraphs . 61

2.5 Binary Greedoids . 73

3 Polynomial-Time Algorithms for Evaluating the Tutte Polynomial 77

3.1 Introduction . 77

3

3.2 Rooted Graphs . 83

3.2.1 Complexity of the Algorithm . 97

3.3 Rooted Digraphs . 100

3.3.1 Complexity of the Algorithm . 109

3.4 Binary Greedoids . 110

4 The Characteristic Polynomial and the Computational Complexity of the Coef-

ficients of the Tutte Polynomial of a Rooted Graph 117

4.1 The Characteristic Polynomial . 117

4.2 The Coefficients . 128

4.2.1 Coefficients of T (G;x, 0) . 135

4.3 A Convolution Formula for the Tutte Polynomial of an Interval Greedoid 139

4

Chapter 1

Introduction

1.1 Introduction

This thesis comprises four chapters. Chapter 1 contains the foundations for the thesis. Two combina-

torial structures, namely matroids and their generalization greedoids, are discussed and relationships

between particular classes of them are explored. We discuss the fundamental ideas of computational

complexity theory and delve into the wide range of results surrounding the renowned Tutte polyno-

mial.

Evaluating the Tutte polynomial of a graph at most fixed rational points is shown to be #P-

hard in [31]. The k-thickening operation plays a significant role in the proof of this result. We begin

Chapter 2 by generalizing the k-thickening operation to greedoids. We introduce two more greedoid

constructions and give expressions for the Tutte polynomials resulting from these constructions. We

then use these to find analogous results to those in [31] by completely determining the computational

complexity of evaluating the Tutte polynomial of a rooted graph, a rooted digraph and of a binary

greedoid at a fixed rational point. For the rooted graph case we also strengthen our results by

restricting the problem to cubic, planar, bipartite rooted graphs.

Many computational problems that are intractable for arbitrary graphs become easy for the class

of graphs of bounded tree-width. In [42] Noble illustrates this result by constructing a polynomial-

time algorithm to evaluate the Tutte polynomial of a graph of bounded tree-width. In Chapter 3 we

construct polynomial-time algorithms to evaluate the Tutte polynomials of the classes considered in

the previous chapter when each is of bounded tree-width.

5

The characteristic polynomial of a matroid is a specialization of the Tutte polynomial. In [64]

Zaslavsky gives an expression for the characteristic polynomial of a matroid in terms of the Möbius

function. Gordon and McMahon generalize the characteristic polynomial to greedoids in [22] and

show that several of the matroidal results have direct greedoid analogues. In Chapter 4 we begin

by constructing a Möbius function formulation for the characteristic polynomial of a rooted graph.

In [2] Annan determines the computational complexity of computing the coefficients of the Tutte

polynomial of a graph. He shows that for fixed non-negative integers i and j, computing the

coefficient of xiyj in the Tutte polynomial of a graph is #P-hard. We continue Chapter 4 by finding

analogous results for the coefficients of the Tutte polynomial of a rooted graph. We then study the

smallest integer i such that the coefficient of xi in the Tutte polynomial expansion of a rooted graph

is non-zero. In [34] Kook et al present a convolution formula for the Tutte polynomial of a matroid.

A natural question would be to ask if we could extend this convolution formula to greedoids. We

conclude Chapter 4 by conjecturing that if the conditions hold in the proof of this convolution

formula for an interval greedoid then that interval greedoid is a matroid.

1.2 Graphs and Matroids

We assume familiarity with the basic ideas of graph theory. For a more in-depth introduction to

graphs, the reader is referred to [14] or [24], for example, from where the following definitions and

basic results are taken.

A graph G is a pair of sets (V (G), E(G)) where the elements of V (G) and E(G) are vertices

and edges of G respectively. We can omit the argument when there is no fear of ambiguity. For the

following graph definitions assume G = (V,E) and let A ⊆ E and S ⊆ V . Two vertices of a graph

are adjacent if there exists an edge between them. Similarly two edges are adjacent if they share a

common endpoint. An edge is incident to a vertex if the vertex is an endpoint of the edge. A set of

edges are in parallel if they all share the same endpoints. The parallel class of an edge e ∈ E is the

maximal set of edges that are in parallel with e in G, including e itself. The multiplicity of e is the

cardinality of its parallel class, denoted by m(e). A set of pairwise non-adjacent vertices is said to

be independent. A subgraph of G is a graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. A subgraph G′

of G is spanning if V (G′) = V (G).

The graph obtained by restricting the edges to those in A is given by G|A = (V,A). The graphs

6

obtained by deleting the sets A and S are given by G \A = (V,E −A) and G \S = (V −S,E −E′)

respectively such that E′ is the set of edges incident to any vertex in S. If e is an edge of a graph

G, then the graph G/e, the contraction of e from G, is obtained by removing e and identifying

its endpoints into a single new vertex. If e and f are edges of G, then G/e/f = G/f/e, so the

definition of contraction may be generalized to sets of edges without any ambiguity. Moreover,

G/e \ f = G \ f/e, so we define a minor of G to be any graph obtained from G by deleting and

contracting edges. The order of the deletions and contractions does not matter.

We say G is connected if there is a path between any two vertices in G. A component of a graph

is a maximal connected subgraph. We denote the number of components of G|A by κG(A) and let

κ(G) = κG(E(G)). The rank of A, denoted by rG(A), is given by rG(A) = |V (G)| − κG(A). We let

r(G) = rG(E(G)). We can omit the subscripts in κG(A) and rG(A) when the context is clear.

A graph is planar if it can be embedded in the plane without any of its edges crossing, and it is

a plane graph if it is embedded in the plane in such a way. Every plane connected graph G has a

dual graph G∗ formed by assigning a vertex of G∗ to each face of G, and j edges between vertices

in G∗ whenever the corresponding faces of G share j edges in their boundaries. For a plane non-

connected graph G we define the dual G∗ to be the union of the duals of each connected component.

Clearly duality is an involution, that is (G∗)∗ = G for all G. If G is plane and A ⊆ E(G) we have

rG∗(A) = |A| − r(G) + rG(E −A). A more generalized variation of this result is proven in [62].

A loop of a graph is an edge whose endpoints are the same vertex, and a coloop, otherwise known

as a bridge or an isthmus, is an edge whose deletion would increase the number of components. Thus

a coloop is an edge that is not contained in any cycle. Note that contracting or deleting a loop gives

the same graph. We say G is simple if it contains no loops and m(e) = 1 for all e ∈ E(G). We do

not restrict ourselves to simple graphs unless otherwise stated.

If G contains no cycles then it is a forest, and if in addition it is connected then it is a tree.

The leaves of a graph are the vertices with degree 1. A leaf edge is an edge incident to a leaf. If

a subgraph of G is a tree then it is called a subtree of G. A loop is contained in no spanning tree,

whereas a coloop is contained in every spanning tree.

An orientation of a graph G is an assignment of a direction to every edge in G. We say that

an orientation of G is acyclic if it contains no directed cycles, and totally cyclic if every edge is

contained in a directed cycle. A vertex v is a source (respectively a sink) if all incident edges are

directed away from (respectively towards) v.

7

An isomorphism of graphs G and G′ is a bijection f : V (G) → V (G′) between the vertex sets

of G and G′, such that any pair of vertices u and v are adjacent in G if and only if f(u) and f(v)

are adjacent in G′. If an isomorphism exists between two graphs G and G′ then they are said to be

isomorphic to one another and we write G ∼= G′.

A matroid is a structure that generalizes linear independence in vector spaces. Matroids were

first introduced by Whitney in 1935 in his founding paper [62]. Many connections between matroids

and other fields have been found in the ensuing decades, with notable contributors Tutte, Rota and

Welsh, to name a few. Edmonds later used them to characterize the class of optimization problems

that can be solved using greedy algorithms [16]. There are many equivalent definitions of a matroid,

for a full collection along with proofs of their equivalence see [43]. We now present the definition in

terms of independent sets.

Definition 1.2.1 (Matroid - Independent Sets). A matroid is an ordered pair (E, I) consisting of

a finite set E and a non-empty collection I of subsets of E satisfying the following three axioms:

(M1) ∅ ∈ I;

(M2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I;

(M3) If I, I ′ ∈ I and |I ′| < |I|, then there exists some element x ∈ I − I ′ such that I ′ ∪ x ∈ I.

Axiom (M3) is often referred to as the augmentation axiom. If M is the matroid (E, I), then

E is the ground set of M and the members of I are the independent sets of M . Two matroids

M1 = (E1, I1) and M2 = (E2, I2) are isomorphic, denoted by M1
∼= M2, if there exists a bijection

f : E1 → E2 that preserves the independent sets.

Every graph G has an associated matroid (E, I) called the cycle matroid of G, where E = E(G)

and a subset of edges A is in I if and only if G|A is a forest. Any matroid which is isomorphic to

a cycle matroid is called graphic. It is easy to see that all matroids on three elements are graphic.

We let M(G) denote the cycle matroid of a graph G.

Let N be an m × n matrix over some field F and let vi be the i-th column of N , viewed as a

vector in Fm. Let E = {1, 2, . . . , n} and let I be the set containing all subsets A of E such that

{vi : i ∈ A} is linearly independent. Then (E, I) is a matroid called the vector matroid of N . We

let M(N) denote the vector matroid of a matrix N .

A basis of a matroid is a maximal independent set. Axiom (M3) implies that every basis of a

8

matroid has the same cardinality. An element x ∈ E is a loop in M if it is not contained in any

independent set of M , and is a coloop in M if it is contained in every basis of M .

We can extend the notion of the rank function from graphs to matroids as follows. Given a

matroid M = (E, I) and a subset A of E, let rM (A) = max{|A′| : A′ ⊆ A,A′ ∈ I}. We can omit the

subscript in rM (A) when the context is clear. Let r(M) = rM (E) and consequently r(M) is the size

of any basis of M . The set of bases and the rank function both determine the matroid, for the set

A is independent if and only if it is contained in some basis, or if and only if it satisfies r(A) = |A|.

We can generalize the deletion and contraction operations to matroids. These are best defined

using the rank function, so we need the following characterization.

Proposition 1.2.2. The rank function r of a matroid M with ground set E takes integer values

and satisfies each of the following:

(MR1) For any subset A of E, 0 ≤ r(A) ≤ |A|;

(MR2) For any subsets A and B of E with A ⊆ B, r(A) ≤ r(B);

(MR3) For any subsets A and B of E, r(A) + r(B) ≥ r(A ∩B) + r(A ∪B).

Moreover if E is a finite set and r is a function from the subsets of E to the integers, then r is

the rank function of a matroid with ground set E if and only if r satisfies conditions (MR1)–(MR3)

above.

Let M = (E, r) be a matroid specified by its rank function and let A be a subset of E. Then

the deletion of A from M , denoted by M \ A, has ground set E − A and rank function rM\A,

where rM\A(X) = rM (X) for all subsets X of E − A. The contraction of A from M , denoted by

M/A, has ground set E −A and rank function rM/A, where rM/A(X) = rM (X ∪A)− rM (A) for all

subsets X of E−A. It is straightforward to check that both the deletion and contraction are indeed

matroids. Moreover if A and B are disjoint subsets of E, then M/A/B = M/B/A = M/(A ∪ B),

M \A \B = M \B \A = M \ (A ∪B) and M/A \B = M \B/A. Furthermore if e is either a loop

or a coloop, then M/e = M \ e.

It follows from the definition that if I is a subset of E−A, then it is independent in M if and only

if it is independent in M \A. To determine the independent sets of M/A requires a little more work.

Let I ′ be a maximal independent subset of A. Then rM/I′(A−I ′) = rM (A)−rM (I ′) = 0. Thus every

element of A− I ′ is a loop in M/I ′ and M/A = M/I ′ \ (A− I ′). Therefore if I is a subset of E−A,

9

then it is independent in M/A if and only if |I| = rM/I′(I) = rM (I ∪I ′)− rM (I ′) = rM (I ∪I ′)−|I ′|,

which is equivalent to I ∪ I ′ being independent in M .

For a matroid M = (E, I), we define the dual matroid M∗ of M to be the matroid with ground

set E and whose bases are precisely the complements of the bases of M . Obviously we have the

property (M∗)∗ = M . For A ⊆ E we have rM∗(A) = |A| − r(M) + rM (E − A), a result proved in

[62].

1.3 Rooted Graphs, Rooted Digraphs and Greedoids

A rooted graph is a graph with a fixed “special” vertex called the root. Many of the definitions for

graphs can be applied to rooted graphs in the natural way. We let G = (r, V (G), E(G)) denote a

rooted graph with vertex set V (G), edge set E(G) and root vertex r ∈ V (G). We can omit the

argument when there is no fear of ambiguity.

We say (r′, V ′, E′) is a rooted subgraph of (r, V, E) if (V ′, E′) is a subgraph of (V,E) and r′ = r.

We now define analogues of trees and subtrees. These definitions will differ from standard practice

in that we will allow trees to have one or more isolated vertices. This turns out to significantly

simplify the explanation later on. A graph (r, V, E) is a rooted tree if r ∈ V and (V,E) is a forest

such that the components not containing r are isolated vertices. A graph (r′, V ′, E′) is a rooted

spanning subtree of the graph (r, V, E) if it is a rooted tree and V ′ = V and r′ = r.

For A ⊆ E the definitions of G|A and G \A are analogous to those for a graph. To obtain G/A,

we contract the edges of a largest subtree of (r, V,A) and delete the remaining edges from A. This

is equivalent to deleting all the edges of A and replacing the vertices of G which may be reached

from r along paths comprising edges from A with a single vertex. Therefore it does not depend on

the choice of largest subtree. The root vertex is unchanged by these operations except when an edge

incident to the root is contracted, in which case the new vertex created becomes the root. An edge

set A ⊆ E of a rooted graph G = (r, V, E) is feasible if and only if G|A is a rooted subtree. The

rank function of a subset of edges of a rooted graph is dependent on the choice of root vertex. We

define the rank of A to be

ρG(A) = max{|A′| : A′ ⊆ A,G|A′ is a rooted subtree}.

We can omit the subscript when the context is clear. We let ρ(G) = ρG(E). A set of edges A is

10

feasible if and only if ρ(A) = |A| and, if in addition ρ(A) = ρ(G), A is said to be a basis of G.

A rooted digraph is a rooted graph in which every edge has a fixed direction from one endpoint

to the other. Again many of the definitions for graphs can be applied to rooted digraphs in the

natural way. We let D = (r, V (D),
−→
E (D)) denote a rooted digraph with vertex set V (D), directed

edge set
−→
E (D) and root vertex r ∈ V (D). Once again we can omit the argument when there is no

chance of ambiguity.

We say that the underlying rooted graph of a rooted digraph is what we get when we remove

all orientations on the edges. A rooted digraph D is called a rooted arborescence if the underlying

rooted graph of D is acyclic and for every vertex v ∈ V (D) there is either a directed path from the

root to v or v is an isolated vertex. In other words a rooted arborescence is a directed rooted tree in

which all of the edges are directed away from the root. For A ⊆ −→E the definitions of D \A and D|A

are analogous to those for a graph. To obtain D/A, we contract the edges of a largest subdigraph of

(r, V,A) that is a rooted arborescence and delete the remaining edges from A. This is equivalent to

deleting all the edges of A and replacing the vertices of D which may be reached by paths directed

away from r comprising edges from A with a single vertex. Therefore it does not depend on the

choice of the largest arborescence. An edge set A ⊆ −→E of a rooted digraph D = (r, V,
−→
E) is feasible

if and only if D|A is a rooted arborescence.

The rank of A is defined by

ρD(A) = max{|A′| : A′ ⊆ A,D|A′ is a rooted arborescence}.

We can omit the subscript when the context is clear. We let ρ(D) = ρD(
−→
E). A set of edges A is

feasible if and only if ρ(A) = |A| and, if in addition ρ(A) = ρ(D), A is said to be a basis of D.

A greedoid is a generalization of a matroid, first introduced by Korte and Lovász in 1981 in [35].

The initial purpose was to generalize Edmond’s class of optimization problems that are solvable by

greedy algorithms.

Definition 1.3.1 (Greedoid). A greedoid Γ is an ordered pair (E,F) consisting of a finite set E

and a non-empty collection F of subsets of E satisfying the following axioms:

(G1) ∅ ∈ F .

(G2) For all F, F ′ ∈ F with |F ′| < |F | there exists some x ∈ F − F ′ such that F ′ ∪ x ∈ F .

11

The members of F are the feasible sets of Γ, and E is again referred to as the ground set of Γ.

We now prove that we still define a greedoid if we replace axiom (G1) with

(G1′) For all F ∈ F with F 6= ∅, there exists some x ∈ F such that F − x ∈ F .

Proposition 1.3.2. Let Γ = (E,F). Then Γ is a greedoid if and only if it satisfies (G1 ′) and (G2).

Proof. First suppose Γ = (E,F) is a greedoid and let F ∈ F with |F | = k > 0. We claim there exist

feasible sets F0, F1, . . . , Fk with |Fi| = i for all i such that

F0 = ∅ ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fk−1 ⊆ Fk = F.

Clearly F0 exists by (G1). Suppose F0, . . . , Fi exist for 0 ≤ i ≤ k − 1. By (G2) there exists

xi+1 ∈ F − Fi such that Fi+1 = Fi ∪ xi+1 ∈ F . Hence by induction the claim is true.

Let x be the unique element in F − Fk−1. Then F − x = Fk−1 ∈ F . Therefore (G1′) holds.

Now suppose Γ = (E,F) satisfies (G1′) and (G2). Showing that (G1) must also be true is

straightforward because (G1′) implies we can delete an element of a feasible set to obtain a feasible

set whose cardinality is one smaller. We can continue to do this until we get a feasible set with no

elements, i.e. ∅ ∈ F . This completes the proof.

Two greedoids Γ1 = (E1,F1) and Γ2 = (E2,F2) are isomorphic, denoted by Γ1
∼= Γ2, if there

exists a bijection f : E1 → E2 that preserves the feasible sets.

Let G be a rooted graph. Suppose we have Γ = (E,F) such that E = E(G) and a subset A of

E is in F if and only if G|A is a rooted subtree. We claim that Γ is a greedoid. When A = ∅, G|A

is the rooted subtree comprising entirely isolated vertices, hence ∅ ∈ F . Let A and B be subsets of

E such that both G|A and G|B are rooted subtrees of G and |B| > |A|. Then there is some vertex

x to which there is a path P from r in G|B but not in G|A. The path P must include an edge e

joining a vertex connected to r in G|A to a vertex not connected to r in G|A. Then e ∈ B −A and

G|(A ∪ e) is a rooted subtree of G. Therefore our claim is true. Any greedoid which is isomorphic

to a greedoid arising from a rooted graph in this way is called a branching greedoid. The branching

greedoid of a rooted graph G is denoted by Γ(G).

Similarly suppose we have a rooted digraph D and let Γ = (E,F) such that E =
−→
E (D) and a

subset A of
−→
E is in F if and only if D|A is a rooted arborescence. Then Γ is a greedoid. The proof

of this is analogous to that mentioned above. Any greedoid which is isomorphic to a greedoid arising

12

from a rooted digraph in this way is called a directed branching greedoid. They were originally called

“search greedoids” in [35], where they were introduced. The directed branching greedoid of a rooted

digraph D is denoted by Γ(D).

Let Γ = (E,F) be a greedoid. We now generalize the rank function from rooted graphs and

rooted digraphs to greedoids. The rank of A ⊆ E is given by

ρΓ(A) = max{|A′| : A′ ⊆ A,A′ ∈ F}.

We can omit the subscript when the context is clear. Let ρ(Γ) = ρΓ(E). A set A is feasible if and

only if ρ(A) = |A|, and a basis if in addition ρ(A) = ρ(Γ). Axiom (G2) implies that every basis has

the same cardinality. Note that the rank function determines Γ but the collection of bases does not.

For example suppose a greedoid Γ = (E,F) has E = {1, 2} and unique basis {1, 2}. Then F could

either be {∅, {1}, {1, 2}}, {∅, {2}, {1, 2}} or {∅, {1}, {2}, {1, 2}}. Note that the greedoids defined by

the former two sets are isomorphic to one another.

The rank function of a greedoid can be characterized in a similar way to the rank function of a

matroid [36].

Proposition 1.3.3. The rank function ρ of a greedoid G with ground set E takes integer values and

satisfies each of the following.

(GR1) For any subset A of E, 0 ≤ ρ(A) ≤ |A|;

(GR2) For any subsets A and B of E with A ⊆ B, ρ(A) ≤ ρ(B);

(GR3) For any subset A of E, and elements e and f , if ρ(A) = ρ(A ∪ e) = ρ(A ∪ f), then ρ(A) =

ρ(A ∪ e ∪ f).

Moreover if E is a finite set and ρ is a function from the subsets of E to the integers, then ρ is

the rank function of a greedoid with ground set E if and only if ρ satisfies conditions (GR1)–(GR3)

above.

The following lemma will be useful both in the proof of this result and later.

Lemma 1.3.4. Let E be a finite set and ρ be a function from the subsets of E to the integers

satisfying (GR1)–(GR3). Let A and B be subsets of E such that for all b ∈ B, ρ(A ∪ b) = ρ(A).

Then ρ(A ∪B) = ρ(A).

13

Proof. We prove the result by induction on |B|. If |B| ≤ 1 then the result is immediate. Suppose

then that |B| ≥ 2. Let b1, b2 be distinct elements of B. Then by induction ρ(A ∪ (B − b1 − b2)) =

ρ(A ∪ (B − b1)) = ρ(A ∪ (B − b2)). So (GR3) implies that ρ(A ∪B) = ρ(A ∪ (B − b1 − b2)) = ρ(A),

as required.

Proof of Proposition. Suppose that Γ = (E,F) is a greedoid and ρ(A) = max{|A′| : A′ ⊆ A,A′ ∈

F}. Properties (GR1) and (GR2) follow immediately from the definition of ρ. Now suppose that

ρ(A) = ρ(A ∪ e) = ρ(A ∪ f). Assume for contradiction that ρ(A) 6= ρ(A ∪ e ∪ f). Then from (GR2)

it follows that ρ(A) < ρ(A∪ e∪ f). Let F1 and F2 be the largest feasible subsets of A and A∪ e∪ f

respectively. Then |F2| > |F1| so there exists x ∈ F2 − F1 such that F1 ∪ x is feasible. The element

x cannot come from A without contradicting the definition of F1 so it must be either e or f . But

this contradicts ρ(A) = ρ(A ∪ e) = ρ(A ∪ f). Thus ρ(A) = ρ(A ∪ e) = ρ(A ∪ f) = ρ(A ∪ e ∪ f).

Now suppose that ρ is an integer valued function defined on the subsets of E. Let F = {A :

ρ(A) = |A|}. We shall show that (E,F) is a greedoid. From (GR1) we have ρ(∅) = 0, so ∅ ∈ F

and (G1) is satisfied. Let X and Y satisfy ρ(X) = |X |, ρ(Y) = |Y | and |Y | > |X |. If e ∈ Y − X

and ρ(X ∪ e) > ρ(X) then it follows from (GR1) that ρ(X ∪ e) = |X ∪ e| and (G2) is satisfied.

Suppose then, for contradiction, that for all e ∈ Y −X , ρ(X ∪ e) ≤ ρ(X) and therefore by (GR2)

ρ(X ∪ e) = ρ(X). It follows from Lemma 1.3.4 that ρ(X ∪ Y) = ρ(X ∪ (Y −X)) = ρ(X) < ρ(Y)

which contradicts (GR2).

An element of a greedoid is a loop if it does not belong to any feasible set. Thus if G = (r, V, E)

is a rooted graph then an edge e is a loop of Γ(G) if it does not lie on any path from r. Similarly if

D = (r, V, E) is a directed rooted graph then an edge e is a loop of Γ(D) if it does not lie on any

directed path from r.

Let Γ = (E,F) be a greedoid and e, f ∈ E. Then e and f are said to be parallel in Γ if for all

A ⊆ E we have

ρ(A ∪ e) = ρ(A ∪ f) = ρ(A ∪ e ∪ f).

Lemma 1.3.5. Any two loops in a greedoid are parallel.

Proof. Let Γ = (E,F) be a greedoid and let l1, l2 ∈ E be loops. Then, because neither l1 nor l2

belong to any feasible set, for all A ⊆ E we have

ρ(A ∪ l1) = ρ(A ∪ l2) = ρ(A ∪ l1 ∪ l2) = ρ(A).

14

Therefore l1 and l2 are parallel in Γ.

Lemma 1.3.6. No loop is parallel with a non-loop in a greedoid.

Proof. Let Γ = (E,F) be a greedoid and let l be a loop and e be a non-loop in Γ. Repeatedly applying

(G1′), shows that there are feasible sets F ′ and F ′′ with F ′′ − F ′ = {e}. Now ρ(F ′ ∪ e) = ρ(F ′′),

whereas ρ(F ′ ∪ l) = ρ(F ′′)− 1 since l does not belong to any feasible set. Therefore e and l cannot

be parallel in Γ.

We now show that being parallel in a greedoid is an equivalence relation. If e and f are parallel

in a greedoid we write e ⊲⊳ f .

Lemma 1.3.7. ⊲⊳ is an equivalence relation.

Proof. Let Γ = (E,F) be a greedoid. Proving ⊲⊳ is reflexive and symmetric is easy. Now suppose

we have e, f, g ∈ E such that e ⊲⊳ f and f ⊲⊳ g. Then for all A ⊆ E we have

ρ(A ∪ e) = ρ(A ∪ f) = ρ(A ∪ e ∪ f)

and

ρ(A ∪ f) = ρ(A ∪ g) = ρ(A ∪ f ∪ g).

Therefore ρ(A ∪ e) = ρ(A ∪ f) = ρ(A ∪ g). Applying (GR3) to the set A ∪ f and elements e and g,

we see that ρ(A ∪ e ∪ f ∪ g) = ρ(A ∪ f). Now by (GR2),

ρ(A ∪ e) = ρ(A ∪ f) = ρ(A ∪ e ∪ f ∪ g) ≥ ρ(A ∪ e ∪ g) ≥ ρ(A ∪ e).

So equality must hold throughout and ρ(A∪ e∪ g) = ρ(A∪ e) = ρ(A∪ g). Hence e ⊲⊳ g and ⊲⊳ is an

equivalence relation.

Let Γ = (E,F) be a greedoid and e ∈ E. The parallel class of e is the equivalence class of the

equivalence relation ⊲⊳ on Γ that contains e. The multiplicity of e is the cardinality of its parallel

class, denoted by m(e).

The deletion and contraction constructions generalize to greedoids in the following way. Let

Γ = (E,F) be a greedoid and A ⊆ E. Define the deletion of A from Γ by Γ \ A = (E − A,F1)

where F1 = {X ⊆ E − A : X ∈ F}, and when A is feasible we define the contraction of A from Γ

15

by Γ/A = (E − A,F2) where F2 = {X ⊆ E − A : X ∪ A ∈ F}. We now show that Γ \ A and Γ/A

are in fact both greedoids.

Lemma 1.3.8. Let Γ = (E,F) be a greedoid. Then

1. Γ \A is a greedoid for all A ⊆ E.

2. Γ/A is a greedoid for all feasible A ⊆ E.

Proof. 1. Let Γ \ A = (E − A,F1) where F1 = {X ⊆ E − A : X ∈ F} and A ⊆ E. It

is straightforward to see that ∅ ∈ F1 since it is in F . The sets in F1 are in one-to-one

correspondence with those in F that do not contain any elements of A. That is F ∈ F1 if

and only if F ∈ F and F ∩ A = ∅. Suppose we have F, F ′ ∈ F1 such that |F ′| > |F |. Then

F, F ′ ∈ F and F ∩ A = F ′ ∩ A = ∅. By (G2) there exists x ∈ F ′ − F such that F ∪ x ∈ F .

Now (F ∪ x) ∩ A = ∅ so F ∪ x ∈ F1. Hence Γ \A is a greedoid.

2. Let Γ/A = (E − A,F2) where F2 = {X ⊆ E − A : X ∪ A ∈ F} and A ⊆ E is feasible. It

is straightforward to see that ∅ ∈ F2 since ∅ ∪ A = A ∈ F . The sets in F2 are in one-to-one

correspondence with those in F that contain A. That is F ∈ F2 if and only if F ∪ A ∈ F

and F ∩ A = ∅. Suppose we have F, F ′ ∈ F2 such that |F ′| > |F |. Then F ∪ A,F ′ ∪ A ∈ F

and F ∩ A = F ′ ∩ A = ∅. By (G2) there exists x ∈ (F ′ ∪ A) − (F ∪ A) = F ′ − F such that

F ∪ A ∪ x ∈ F . Therefore F ∪ x ∈ F2. Hence Γ/A is a greedoid.

Note that Γ/A is a greedoid if and only if A is feasible, otherwise ∅ /∈ F2. Deletion and contraction

on a greedoid are commutative. That is, for A feasible in Γ and Γ \B we have

F((Γ/A) \B) = F((Γ \B)/A).

Similarly if A and B are disjoint subsets of E, then (Γ \A) \B = (Γ \B) \A. If, additionally, A, B

and A ∪B are all feasible then (Γ/A)/B = (Γ/B)/A.

For all X ⊆ E −A, we have

ρΓ\A(X) = ρΓ(X)

16

and providing A is feasible in Γ, for all X ⊆ E −A, we have

ρΓ/A(X) = ρΓ(X ∪A)− ρΓ(A). (1.1)

We now define a large class of greedoids, characterized by the ‘interval property’. An interval

greedoid is a greedoid Γ = (E,F) satisfying the interval property:

(IG) For A ⊆ B ⊆ C with A,B,C ∈ F , if there exists x ∈ E−C such that A∪x ∈ F and C∪x ∈ F ,

then B ∪ x ∈ F .

Every greedoid of rank less than three satisfies the interval property. An example of an interval

greedoid is given by Γ = ({1, 2, 3, 4, 5},F) where

F ={∅, {1}, {2}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4},

{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 3, 4}, {2, 4, 5}}.

Interval greedoids tend to behave better than general greedoids in many respects. For instance we

can contract arbitrary subsets of an interval greedoid as opposed to restricting ourselves to feasible

subsets. Let Γ = (E,F) be an interval greedoid and A ⊆ E. Let X be a maximal feasible subset of

A. The contraction Γ/A is obtained by contracting X and then deleting A−X .

We show that contraction of arbitrary sets is well-defined in interval greedoids. We require the

following two lemmas, the first of which is a restatement of the interval property in terms of the

rank function. All of these results are adaptations of results from [37].

Lemma 1.3.9. A greedoid (E, ρ) is an interval greedoid if and only if whenever A, B and C are

subsets of E with A ⊆ B ⊆ C and x is an element of E − C satisfying ρ(A ∪ x) > ρ(A) and

ρ(C ∪ x) > ρ(C), we have ρ(B ∪ x) > ρ(B).

Proof. The condition is clearly sufficient because the special case where A, B and C are all feasible

is the interval property. Let FA be a maximal feasible subset of A. As FA is a feasible subset of

B, it may be extended to a maximal feasible subset FB of B. Similarly FB may be extended to a

maximal feasible set FC of C. Because ρ(A ∪ x) > ρ(A), there is a feasible subset F of A ∪ x with

|F | > |FA|. Hence there is an element y of F −FA such that FA ∪ y is feasible. But y cannot belong

to A without contradicting the maximality of FA. Consequently y = x and FA ∪x is feasible. Using

17

exactly the same argument FC ∪x is feasible. Hence, by the interval property, FB ∪x is feasible and

ρ(B ∪ x) ≥ |FB ∪ x| > |FB | = ρ(B).

Lemma 1.3.10. Let Γ = (E, ρ) be an interval greedoid, X and Y be subsets of E and F be a feasible

set of Γ with ρ(X ∪ F) = ρ(X). Then ρ(X ∪ Y ∪ F) = ρ(X ∪ Y).

Proof. Let U = {e ∈ F : ρ(X ∪ Y ∪ e) = ρ(X ∪ Y)}, and let FU be a maximal feasible subset of U .

If FU = F then the result follows by applying Lemma 1.3.4 with A = X ∪Y and B = F . So we may

assume, for contradiction, that FU 6= F . Thus there exists x in F −FU such that FU ∪ x is feasible.

We have FU ⊆ X∪U ⊆ X∪U∪Y and ρ(FU∪x) > ρ(FU), by the definition of x. Furthermore, by the

maximality of FU , x /∈ U , so ρ(X∪U ∪Y ∪x) ≥ ρ(X ∪Y ∪x) > ρ(X∪Y) = ρ(X ∪U ∪Y), where the

last equality follows by applying Lemma 1.3.4 with A = X ∪ Y and B = U . Applying Lemma 1.3.9,

we deduce that ρ(X ∪ U ∪ x) > ρ(X ∪ U). On the other hand X ⊆ X ∪ U ⊆ X ∪ U ∪ x ⊆ X ∪ F .

Thus ρ(X) ≤ ρ(X∪U) ≤ ρ(X ∪U ∪x) ≤ ρ(X ∪F). But we have ρ(X) = ρ(X ∪F) and consequently

equality holds throughout. So ρ(X ∪ U) = ρ(X ∪ U ∪ x), giving a contradiction.

We are now ready to prove that contraction of arbitrary sets in an interval greedoid is well-defined.

Proposition 1.3.11. Let (E,F) be an interval greedoid, let A be a subset of E and X be a subset

of E − A. Let F1 and F2 be maximal feasible subsets of A. Then F1 ∪ X is feasible if and only if

F2 ∪X is feasible.

Proof. Suppose that F1 ∪ X is feasible. We apply Lemma 1.3.10. We have ρ(F1 ∪ F2) = ρ(F2).

Consequently

ρ(F2 ∪X) = ρ(F1 ∪ F2 ∪X) ≥ ρ(F1 ∪X) = |F1 ∪X | = |F2 ∪X |,

with the last equality following because |F1| = |F2| and X ∩ A = ∅. Thus F2 ∪ X is feasible. The

converse is identical.

We now show that Γ \A and Γ/A are in fact interval greedoids.

Lemma 1.3.12. Let Γ = (E,F) be an interval greedoid. Then

1. Γ \A is an interval greedoid for all A ⊆ E.

2. Γ/A is an interval greedoid for all A ⊆ E.

18

Proof. 1. Let Γ\A = (E−A,F1) where F1 = {X ⊆ E−A : X ∈ F} and A ⊆ E. By Lemma 1.3.8

Γ \ A is a greedoid. We have F ∈ F1 if and only if F ∈ F and F ∩ A = ∅. Suppose we have

B,C,D ∈ F1 such that B ⊆ C ⊆ D. Then B,C,D ∈ F and B ∩ A = C ∩ A = D ∩ A = ∅.

Suppose there exists x ∈ (E − A) −D such that B ∪ x,D ∪ x ∈ F1, then B ∪ x,D ∪ x ∈ F .

By (IG) we have C ∪ x ∈ F . Now (C ∪ x) ∩A = ∅ since x /∈ A, so we have C ∪ x ∈ F1. Hence

Γ \A is an interval greedoid.

2. It suffices to prove the result when A is feasible. The general case follows by combining this with

part 1. Let Γ/A = (E −A,F2) where F2 = {X ⊆ E −A : X ∪ A ∈ F} and A ⊆ E is feasible.

By Lemma 1.3.8 Γ/A is a greedoid. We have F ∈ F2 if and only if F ∪A ∈ F and F ∩A = ∅.

Suppose we have B,C,D ∈ F2 such that B ⊆ C ⊆ D. Then B ∪ A,C ∪ A,D ∪ A ∈ F and

B∩A = C∩A = D∩A = ∅. Suppose there exists x ∈ (E−A)−D such that B∪x,D∪x ∈ F2,

then B ∪ A ∪ x,D ∪ A ∪ x ∈ F . By (IG) we have C ∪ A ∪ x ∈ F . Now (C ∪ x) ∩ A = ∅ since

x /∈ A, so we have C ∪ x ∈ F2. Hence Γ/A is an interval greedoid.

We now present results on the relationship between interval greedoids and two particular classes

that they specialize to.

Theorem 1.3.13. Let Γ = (E,F) be an interval greedoid with x ∈ F for all non-loop elements

x ∈ E. Then Γ is a matroid.

Proof. We want to show that the feasible sets of an interval greedoid satisfying this property are

closed under taking subsets. Let F ∈ F . We use induction on |F |. When |F | = 1 there exists one

element x ∈ F . The subsets of F are therefore ∅ and {x}, both of which are feasible.

Assume for some integer k ≥ 1 every subset of a feasible set F of size k is feasible. Take F ′ ∈ F

with |F ′| = k + 1. Then by (G1′) there exists an x ∈ F ′ such that F ′′ = F ′ − x is feasible. By

induction all subsets of F ′′ are feasible. We now need only show that the subsets of F ′ containing

x are feasible. Let F ′′ = F ′ − x and S ⊆ F ′′. The subsets of F ′ containing x are the subsets S ∪ x

for all possible S. Now by (IG) if we let A = ∅, B = S and C = F ′′, then since x ∈ E − F ′′ and

∅, x, S, F ′′ and F ′ are feasible, so is S ∪ x. Therefore every subset of a feasible set of size k + 1 is

feasible. This completes the proof.

Theorem 1.3.14. Every branching greedoid is an interval greedoid.

19

Proof. Let G = (r, V, E) be a rooted graph and Γ = (E,F) such that Γ = Γ(G). Recall that a

set E′ ⊆ E is feasible in G if and only if G|E′ is a rooted subtree. Let A,B,C ∈ F such that

A ⊆ B ⊆ C. Suppose there exists an element x ∈ E − C such that G|(A ∪ x) and G|(C ∪ x) are

rooted subtrees. Since A, B and A ∪ x are feasible, we know that the components of G|(B ∪ x) not

containing the root are isolated vertices. Moreover C ∪x is feasible so G|(B ∪x) cannot contain any

cycles. Thus B ∪ x is feasible. Therefore Γ(G) is an interval greedoid.

A similar proof is required to show that all directed branching greedoids are interval greedoids.

We now define a class of greedoids called the Gaussian elimination greedoids whose structure

underlies the Gaussian elimination algorithm, hence its name.

Let M be an m × n matrix over an arbitrary field. For a positive integer n, we let [n] =

{1, 2, . . . , n}. It is useful to think of the rows and columns of M as being labelled by the elements

of [m] and [n] respectively. If X is a subset of [m] and Y is a subset of [n] then MX,Y denotes the

matrix obtained from M by deleting all the rows except those with labels in X and all the columns

except those with labels in Y . The Gaussian elimination greedoid (E,F) [19] of M is a greedoid

such that E = [n], the columns of M , and

F = {A ⊆ E : the submatrix M[|A|],A is non-singular}.

By convention the empty matrix is considered to be non-singular. We now prove that this does in

fact define a greedoid. The axiom (G1) is a consequence of the convention that the empty set is

non-singular. To establish (G2), it is helpful to prove that (G1′) holds. Suppose that the submatrix

M[|A|],A is non-singular and |A| ≥ 2. Then the determinant of M[|A|],A is non-zero, so its cofactor

expansion about its bottom row, must include a term with a non-zero cofactor. Such a cofactor

corresponds to an element e of A with M[|A|−1],A−e non-singular. This establishes (G1′). Now

suppose that the submatrices M[|A|],A and M[|B|],B are non-singular and |B| > |A|. Because (G1′)

holds, it suffices to prove that (G2) holds in the case when |B| = |A| + 1. The columns of M[|A|],A

form a linearly independent set of size |A|. Consequently the columns of M[|A|+1],A also form a

linearly independent set. The columns of M[|B|],A form a larger linearly independent set in the same

vector space, so there is an element e of B−A such that the columns of M[|A|+1],A∪e form a linearly

independent set. Thus M[|A|+1],A∪e is non-singular. Therefore (G2) holds.

A Gaussian elimination greedoid over the field F is called F -representable. We let Γ(M) denote

20

the F -representable greedoid corresponding to the matrix M with entries from F . A greedoid that

is Z2-representable is called binary.

Example 1.3.15. Let

M =









1 2 3 4

1 0 0 1

1 0 1 0

0 1 1 1









.

The binary greedoid Γ(M) has ground set {1, 2, 3, 4} and feasible sets

{∅, {1}, {4}, {1, 3}, {1, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4}}.

Lemma 1.3.16. Let M be an m × n binary matrix with columns E = {1, 2, . . . , n} and let M ′ be

obtained from M by adding row i to row j where i < j. Then Γ(M ′) ∼= Γ(M).

Proof. Let A ⊆ E and consider N = M[|A|],A and N ′ = M ′
[|A|],A. If |A| < j then N = N ′ so A is

feasible in Γ(M) if and only if it feasible in Γ(M ′). If |A| ≥ j then N ′ is obtained from N by adding

row i of N to row j. Row operations do not affect the rank of a matrix, so A is feasible in Γ(M) if

and only if it is feasible in Γ(M ′).

If Γ is a binary greedoid then it follows from Lemma 1.3.16 that there is a binary matrix M

with linearly independent rows such that Γ = Γ(M). In certain results concerning M and Γ(M) it

is necessary to assume that the rows of M are linearly independent. For instance if M has linearly

independent rows, then a loop in Γ(M) is represented by a column of zeros in M .

Lemma 1.3.17. Let N be a binary matrix with linearly independent rows. Then the bases of Γ(N)

coincide with the bases of the vector matroid M(N).

Proof. Let m denote the number of rows of N . Then ρ(N) = r(N) = m. Let X be a subset of

columns of N with |X | = m. A square matrix is non-singular if and only if its columns form a

linearly independent set.

If X is a basis of M(N) then the restriction of N to the columns of X is a non-singular square

submatrix of N of rank m and is consequently a basis of Γ(N).

If X is a basis of Γ(N) then X has rank m and the columns of X are linearly independent.

Consequently X is a basis of M(N).

21

We define the simplification of a rooted graph, or more generally a greedoid, to be that obtained

by deleting all but one element from every parallel class. If G′ is the simplification of G then G is

said to simplify to give G′.

Lemma 1.3.18. Let Γ and Γ′ be greedoids such that Γ′ is the simplification of Γ. Then

1. Γ is a branching greedoid if and only if Γ′ is a branching greedoid.

2. Γ is a binary greedoid if and only if Γ′ is a binary greedoid.

Proof. Suppose that Γ is a branching greedoid and Γ = Γ(G) for some rooted graph G. Then adding

or removing parallel elements to or from Γ yields a greedoid Γ′ = Γ(G′) where G′ is obtained from

G by adding or deleting parallel edges. Now suppose that Γ is a binary greedoid and Γ = Γ(M) for

some matrix M with linearly independent rows. Then adding or removing parallel elements to or

from Γ yields a greedoid Γ′ = Γ(M ′) where M ′ is formed from M by adding or deleting duplicate

columns.

Let M be an m×n binary matrix and let e be the label of a column with entry 1 in the first row

of M . We let Me denote the matrix obtained by adding the first row of M to every other row of M

in which the entry in column e is equal to one. This leads to a matrix in which the only non-zero

entry in column e is in the first row. We now show that the class of binary greedoids is closed under

contraction.

Lemma 1.3.19. Let Γ = (E,F) where Γ = Γ(M) for some m × n binary matrix M , and let

{e} ∈ F . Let N be the binary matrix obtained by deleting the first row and the column with label e

of the matrix Me. Then Γ/e = Γ(N).

Proof. Suppose matrix M has columns labelled 1, 2, . . . , n− 2, n− 1, e. Then Me has the form

Me =






e

x 1

N 0






where x is a 1 × (n − 1) matrix and N is a (m − 1) × (n − 1) matrix. By Lemma 1.3.16 we have

Γ(Me) = Γ. Let Γ′ = Γ(N). Then A ⊆ E−e is feasible in Γ′ if and only if A∪e is feasible in Γ(Me).

Thus Γ′ is binary and Γ′ = Γ/e.

22

Providing the rows of M are linearly independent, note that when we delete the first row of Me,

all columns corresponding to elements parallel to e will now comprise entirely zeros and thus are

now loops in Γ(N). The following example illustrates this lemma.

Example 1.3.20. We can reduce the matrix from our previous example using row operations to get

M1 =









1 2 3 4

1 0 0 1

0 0 1 1

0 1 1 1









.

Now by deleting the first row and column 1 we get

N =






2 3 4

0 1 1

1 1 1




.

The binary greedoid of N is given by Γ(N) = ({2, 3, 4},F ′) where

F ′ = {∅, {3}, {4}, {2, 3}, {2, 4}}.

These are precisely the sets X ⊆ {2, 3, 4} such that X ∪ 1 ∈ F .

We now present several results on the relationship between binary greedoids and branching

greedoids. We show that all binary greedoids of rank 2 are branching greedoids, and then state the

requirements for a branching greedoid to be a binary greedoid.

Proposition 1.3.21. All binary greedoids of rank 2 are branching greedoids.

Proof. Let Γ be a binary greedoid of rank two. By the remarks after Lemma 1.3.16 we may assume

that Γ = Γ(M) where M has two rows. Now let N be the matrix obtained by deleting all duplicate

columns and any columns comprising entirely zeros in M .

Then N must be of one of the following forms (obviously the columns of these matrices can be

23

rearranged without affecting the associated binary greedoid).






1 2

1 0

1 1




 ,






1 2

1 0

0 1




 ,






1 2

1 1

0 1




 ,






1 2 3

1 0 1

0 1 1




.

The respective binary greedoids associated to these matrices are ({1, 2},Fi) for i = 1, 2, 3, 4 where

F1 = F2 = {∅, {1}, {1, 2}}, F3 = {∅, {1}, {2}, {1, 2}} and F4 = {∅, {1}, {2}, {1, 2}, {1, 3}, {2, 3}}. It

is easy to check that all of these are branching greedoids. Their corresponding graphs are given in

Figure 1.1.

Note that by adding duplicates of existing columns or columns comprising entirely zeros to any

of these matrices would create parallel edges and loops in the rooted graphs associated to these

branching greedoids respectively.

r r r

Figure 1.1: The three graphs referred to in the proof of Proposition 1.3.21.

We now show that the branching greedoid associated to a rooted graph that possesses a particular

property is not binary. This is unlike matroids since every graphic matroid is binary.

Lemma 1.3.22. Let G = (r, V, E) be a rooted graph in which the root is adjacent to at least three

vertices. Then Γ(G) is not binary.

Proof. Let M be a binary matrix such that Γ(G) = Γ(M) and let i, j and k be three non-parallel

edges that are incident to r in G. The first row ofM must contain ones in the columns corresponding

to i, j and k. Each of {i, j}, {i, k} and {j, k} is feasible in Γ. In order that {i, j} and {i, k} are

feasible, the second row of M must contain either a zero in column i and ones in columns j and k,

or a one in column i and zeros in columns j and k. But in either case M[2],{j,k} is singular giving a

24

contradiction.

We now determine when a branching greedoid whose associated rooted graph has a root with

degree 1 is binary.

Lemma 1.3.23. Let G = (r, V, E) be a rooted graph and let G′ = (r′, V ′, E′) be the graph obtained

from G by attaching a path of length k to r for some k ∈ N and making the other end of the path r′.

Then Γ(G) is binary if and only if Γ(G′) is binary.

Proof. Suppose that Γ(G) = Γ(M) for some binary matrix M . Let

M ′ =






Ik 0

0 M




 .

We claim that Γ(G′) ∼= Γ(M ′). To prove this we show that they both have the same feasible sets.

Let A be a feasible set of Γ(M ′) and let |A| = t for t > 0. If t ≤ k then A = {1, . . . , t}. If t > k

then A = {1, . . . , k} ∪F where F is a feasible set of Γ(M). A set A with |A| = t for t > 0 is feasible

in Γ(G′) if and only if G′|A is a rooted tree. Therefore if we label the path 1, 2, . . . , k such that 1

is incident to r′ and edge i is adjacent to edges i − 1 and i+ 1 for 2 ≤ i ≤ k − 1, then we similarly

have A = {1, . . . , t} if t ≤ k and A = {1, . . . , k} ∪ F for some feasible set F of Γ(G) if t > k. Thus

Γ(G′) ∼= Γ(M ′).

Now suppose that G′′ is a rooted graph in which the root has degree 1 and that Γ(G′′) = Γ(M ′′)

for some binary matrix M ′′. Let e denote the edge incident to the root in G′′. Then {e} is a singleton

feasible set in Γ(G′′). By Lemma 1.3.19, Γ(M ′′)/e is binary and furthermore Γ(G′′/e) = Γ(G′′)/e =

Γ(M ′′)/e. Using induction it follows that if Γ(G′) is binary then so is Γ(G).

We can now completely determine which branching greedoids, whose associated rooted graphs

are connected, are binary greedoids.

Proposition 1.3.24. Let G = (r, V, E) be a connected rooted graph. Then Γ(G) is binary if and

only if after simplifying and removing loops G is either:

1. The path of length n ≥ 0 with the root r at one endpoint and two leaves attached at the other.

2. The path of length n ≥ 0 with the root r at one endpoint and the triangle attached at the other.

3. The path of length n ≥ 0 with the root r at one endpoint.

25

These graphs are given in Figure 1.2.

Proof. It is easy to check that if G is simplified and has one of the forms described then Γ(G) is

binary with one of the following representations, where in each case n is the length of the path:

In ,






In 0

0 Q




 ,






In 0

0 R




 ,

such that

Q =






1 1

1 0




 and R =






1 1 0

1 0 1




 .

By Lemma 1.3.18, it follows that if the simplification of G has one of the forms listed, then Γ(G) is

binary.

Now suppose that G = (r, V, E) is a rooted graph and Γ(G) is binary. Let G′ denote the graph

obtained after simplifying G and removing loops. If deg(r) = 0 in G′ then G′ belongs to the third

category in the proposition. If deg(r) ≥ 3 in G′ then Lemma 1.3.22 implies that Γ(G′) is not binary.

Suppose deg(r) = 1 in G′ and let e be the edge incident to r. By Lemma 1.3.23 the greedoid Γ(G′) is

binary if and only if Γ(G′/e) is binary, so we continue to contract the edge incident to the root until

we have deg(r) 6= 1. Now suppose deg(r) = 2 in G′. Let i, j be the edges incident to the root. Now

if there are no more edges in G′ (i.e. G′ is two leaf edges) then Γ(G′) is binary with a representation

given by






i j

1 1

1 0




.

If there is one more edge k in G′ such that k is adjacent to both i and j (i.e. G′ is a triangle), then

Γ(G′) is binary with a representation given by






i j k

1 1 0

1 0 1




.

Now suppose there is an edge k adjacent to i but not j in G′. Let e1, . . . , et be the remaining edges

in G′. Then {i, k} ∈ F but {j, k} /∈ F . If Γ(G′) were binary then the first row in a representation

26

of Γ(G′) would be of the form

(
i j k e1 . . . et

1 1 0 0 . . . 0

)

.

Now the second row must have a 1 in the column for k so that {i, k} ∈ F . However this would

imply {j, k} ∈ F . Hence if deg(r) = 2 in G′ then Γ(G′) is binary if G′ is either two leaf edges or a

triangle.

r1.

n

r2.

n

r3.

n

Figure 1.2: The graphs referred to in Proposition 1.3.24.

1.4 Complexity

Computational complexity theory determines the practical limits on the capabilities of a computer.

The term ‘computer’ is quite ambiguous, which is why we commonly use the Turing machine as our

chosen mathematical model of computation. It is a theoretical device that manipulates a finite set of

symbols contained on a strip of tape. In Turing’s thesis [54] he states that if a problem can be solved

by an algorithm, then there exists a Turing machine that can solve it. We consider two particular

types of Turing machine, namely a deterministic Turing machine (DTM) and a non-deterministic

Turing machine (NDTM). A DTM is the most basic Turing machine which follows a fixed set of

rules to determine all future actions, eventually halting with a “yes” or a “no”. Before the DTM

starts, the input or description of the instance of the problem to be solved is written on the tape.

If the algorithm halts in the “yes” state for an instance x, it is said to accept x, otherwise it is

27

said to reject x. A NDTM is composed of two separate stages, the first being a guessing stage, and

the second a checking stage which proceeds to compute in a normal deterministic manner. For a

problem instance I, the first stage merely guesses some string S. Both I and S are then provided

as the input to the checking stage. So instead of having just one possible action on a given input, it

has a different one for every possible guess. For a comprehensive introduction to complexity theory

and a detailed description of the structure of these Turing machines along with examples, see [18]

and [44].

The time complexity function of an algorithm expresses its time requirements by giving, for each

possible input length, the largest amount of time needed by the algorithm to solve a problem instance

of that size. We use the Big ‘O’ notation to describe the asymptotic behaviour of an algorithm. This

excludes coefficients and lower order terms. Letting T (n) denote the maximum time taken by the

algorithm on any input of size n, we say that the algorithm runs in constant-time if T (n) = O(1),

linear-time if T (n) = O(n) and polynomial-time if T (n) = O(nk) for some constant k. It is widely

agreed that a problem has not been well solved until a polynomial-time algorithm is known for it.

Time complexity is a worst-case measure: the fact that an algorithm has complexity n3 say, means

only that at least one problem instance of size n requires that much time. In [18] it is claimed that

even though an algorithm having time complexity O(n100) might not be considered likely to run

quickly in practice, the polynomially solvable problems that arise naturally tend to be solvable with

polynomial time bounds that have degree 2 or 3 at worst.

In practice, standard encoding schemes used to describe instances of a problem differ in size at

most polynomially. Consequently any algorithm for a problem having polynomial-time complexity

under one encoding scheme will have polynomial-time complexity under all other reasonable encoding

schemes. For example in [18] they give three ways of encoding a graph and verify that the input

lengths that each determines differ at most polynomially from one another.

Suppose we have two computational problems π1 and π2. We say that π2 is Turing reducible

to π1 if there exists a deterministic Turing machine which solves π2 in polynomial time using an

oracle for π1 which returns an answer in constant-time. When π2 is Turing reducible to π1 we write

π2 ∝T π1 and we say that solving problem π1 is at least as hard as solving problem π2.

The class of problems solvable in polynomial time is closed under Turing reduction.

A decision problem is one whose solution to an algorithm is either yes or no (or 1 or 0 in binary).

The complexity class P (or PTIME) contains all decision problems that can be solved in polynomial

28

time using a DTM. The problems in this class are said to be “efficient” or “easy”. The complexity

class NP contains all decision problems that can be verified in polynomial time using a NDTM.

Consider the following subset-sum problem. Suppose we have a set of integers as our input, and we

wish to know whether some of these integers sum to zero. As we increase the number of integers

in our input set, the number of subsets grows exponentially and therefore so would the time of any

algorithm which examines all the possible subsets. However, if we are given a particular subset, we

can easily verify whether or not the integers in the subset sum to zero. Therefore the subset-sum

problem is in NP because the guesses may be interpreted as encoding different subsets and verifying

can be done in polynomial time.

A polynomial reduction from a decision problem π′ to a decision problem π is a function f

mapping instances of π′ to instances of π such that f is computable in time polynomial in the size

of its input and x is a “yes” instance of π′ if and only if f(x) is a “yes” instance of π. A decision

problem π is NP-complete if it belongs to NP and π′ ∝T π for every π′ in NP. The NP-complete

are often thought of as the hardest problems in NP. Because the ∝T relation is transitive, to prove

that a decision problem π in NP is NP-complete it is only necessary to show that π′ ∝T π for some

NP-complete problem π′.

Although there are many more computational classes, we need only define one more that will

be of significant importance in later sections, and will be useful when we need more than just a

“yes” or “no” output. We define #P to be the counting analogue of NP, that is the class of all

counting problems corresponding to the decision problems in NP. More specifically, a problem is

in #P if it counts the number of accepting computations of a problem in NP. Consider the NP

problem of determining whether a graph has an independent set of size k. The corresponding #P

problem would be to determine how many independent sets of size k the graph has. A problem in

#P must be at least as hard as the corresponding problem in NP. If it is easy to count the accepting

computations, then it must be easy to tell if there is at least one.

A computational problem π is said to be #P-hard if π′ ∝T π for all π′ ∈ #P, and #P-complete

if, in addition, π ∈ #P. These problems are thus said to be the “hardest” members of #P. Examples

of #P-complete problems include counting the number of 3-colourings of a graph, and counting the

number of subtrees of a graph, the latter is a result due to Jerrum [32].

To prove that a problem π is #P-hard we need only show that there exists one problem π′ that

is #P-hard such that π′ ∝T π, since by transitivity this would imply π is Turing reducible to every

29

problem in #P.

1.5 The Tutte Polynomial of a Graph

The Tutte polynomial is a renowned tool for analyzing graphs or, more generally, matroids. It is an

extensively studied, two-variable polynomial with rich theory and wide applications. Constructed

by W. T. Tutte in 1947 [55], the Tutte polynomial has the universal property that essentially any

graph invariant f with f(G ∪H) = f(G)f(H) for any two graphs G and H that have no edges and

at most one vertex in common, and with a deletion/contraction reduction, must be an evaluation

of it. The Tutte polynomial has many different, yet equivalent, definitions. Below we give the rank

generating function definition of the Tutte polynomial followed by its deletion/contraction recursion.

In Chapter 4 we explore a convolution formula for the Tutte polynomial.

The Tutte polynomial of a graph G = (V,E) is given by

T (G;x, y) =
∑

A⊆E

(x− 1)r(G)−r(A)(y − 1)|A|−r(A).

The exponent |A| − r(A) is often referred to as the nullity of A and essentially counts the minimum

number of elements that need to be removed from A in order to make G|A a forest (or more generally

an independent set of a matroid).

If there exists e ∈ E(G) which is neither a loop nor a coloop, then

T (G;x, y) = T (G \ e;x, y) + T (G/e;x, y).

Otherwise, G consists of i coloops and j loops and

T (G;x, y) = xiyj .

Suppose G ∪H is the disjoint union of graphs G and H , and G ∗H is the vertex-join of G and

H , that is the graph formed by identifying a vertex of G with a vertex of H , then we have

T (G ∪H ;x, y) = T (G ∗H ;x, y) = T (G;x, y)T (H ;x, y).

The Tutte polynomial encodes many interesting properties of a graph. Some interpretations for

30

evaluations of the Tutte polynomial of a graph G = (V,E) are given below:

• T (G; 1, 1) = the number of spanning trees of G if G is connected, or the number of maximal

spanning forests of G otherwise, where a maximal spanning forest comprises a spanning tree

of each component.

• T (G; 2, 1) = the number of subgraphs of G with vertex set V (G) and containing no cycles.

• T (G; 1, 2) = the number of spanning subgraphs of G having the same number of components

as G.

• T (G; 2, 2) = 2|E| = the number of orientations of G = the number of spanning subgraphs of

G.

• T (G; 2, 0) = the number of acyclic orientations of G [51].

• T (G; 0, 2) = the number of totally cyclic orientations of G [57].

• T (G; 1, 0) = the number of acyclic orientations of G with one predefined source vertex per

component of G [25].

For a full list of evaluations see [17].

The chromatic polynomial P (G;λ) of a graph G = (V,E) was first introduced by Birkhoff [4]

in an attempt to solve the famous four-colour problem. Using a palette of λ colours, it counts the

number of ways of vertex colouring a graph such that no two adjacent vertices are assigned the same

colour. These are called the proper colourings of the graph. The chromatic polynomial is related to

the Tutte polynomial of a graph as follows

P (G;λ) = (−1)r(G)λκ(G)T (G; 1− λ, 0).

Suppose that the edges of G are given an orientation. A nowhere zero λ-flow is a mapping from

the edges of G to {1, . . . , λ − 1} such that at each vertex v the difference between the sum of the

labels on edges entering v and the sum of the labels on edges leaving v is divisible by λ. It is not

difficult to see that the number of nowhere zero λ-flows is independent of the choice of orientation.

The flow polynomial χ∗(G;λ) of a graph G gives the number of nowhere zero λ-flows of G. It is a

31

specialization of the Tutte polynomial given by

χ∗(G;λ) = (−1)|E|−r(G)T (G; 0, 1− λ).

If G is planar then χ∗(G;λ) = 1
λκ(G)P (G∗;λ).

Before demonstrating a direct relationship between the Tutte polynomial and statistical physics,

we first need to define a family of hyperbolae which will play a special role in the remaining chapters.

For α ∈ Q − {0} let Hα = {(x, y) ∈ Q2 : (x − 1)(y − 1) = α}, and let Hx
0 = {(1, y) : y ∈ Q} and

Hy
0 = {(x, 1) : x ∈ Q}. Along Hq, for any positive integer q, the Tutte polynomial specializes to the

partition function of the q-state Potts model and, in particular, the partition function of the Ising

model when q = 2.

For a planar graph G with dual graph G∗ it should be straightforward to check that

T (G;x, y) = T (G∗; y, x).

1.6 The Complexity of Computing the Tutte Polynomial of

a Graph

Along the hyperbola H1 the Tutte polynomial of a graph G = (V,E) reduces to

T (G;x, y) = x|E|(x− 1)r(G)−|E|

which is easily computed. The complete classification of the complexity of computing the Tutte

polynomial at any point is given by Jaeger, Vertigan and Welsh in [31]. Here they consider points

in an extension field of Q containing i =
√
−1 and j = e2πi/3. We shall only present their results on

the hardness of rational points because these will be what we work with in the following chapters.

Theorem 1.6.1 (Jaeger, Vertigan, Welsh). Evaluating the Tutte polynomial of a graph at any fixed

point (a, b) in the rational xy-plane is #P-hard apart from when (a, b) lies on H1, or when (a, b)

equals (−1, 0), (0,−1), (−1,−1) or (1, 1), when there exists a polynomial-time algorithm.

Vertigan strengthened this result to planar graphs in [58] and then together with Welsh in [59]

to bipartite graphs. These results are summarized in the following theorem.

32

Theorem 1.6.2 (Vertigan, Welsh). Evaluating the Tutte polynomial of a bipartite planar graph at

any fixed point (a, b) in the rational xy-plane is #P-hard apart from when (a, b) lies on H1 or H2,

or when (a, b) equals (−1,−1) or (1, 1), when there exists a polynomial-time algorithm.

Both cases of these results extend to the extension field ofQ subject to including (i,−i), (−i, i), (j, j2)

and (j2, j) as easy points. Note that Theorem 1.6.1 implies that evaluating the partition function

of the Ising model is #P-hard and similarly evaluating the chromatic polynomial P (G;λ) and the

flow polynomial χ∗(G;λ) are #P-hard for λ /∈ {0, 1, 2} and λ /∈ {1, 2} respectively.

The Tutte polynomial of a graph G can be expressed in the form

T (G;x, y) =
∑

i,j≥0

bi,j(G)xiyj.

We can lose the argument in bi,j(G) when the context is clear. Computing the complexities of the

coefficients of the Tutte polynomial of a graph was considered by Annan in [2]. Here Annan reduces

the problem of counting the number of 3-colourings of a graph (a well-known #P-complete problem)

to that of computing b1,0, i.e. the coefficient of x in the Tutte polynomial of the graph. One of the

main theorems from [2] is presented below.

Theorem 1.6.3 (Annan). For all fixed nonnegative integers i, j, the coefficients bi+1,j and bi,j+1

are #P-complete to compute.

1.7 The Tutte Polynomial of an Arbitrary Greedoid, a Rooted

Graph and a Rooted Digraph

Originally motivated by the Tutte polynomial of a matroid, McMahon and Gordon define the Tutte

polynomial of a greedoid in [21]. In particular they define it of a rooted graph and of a rooted

digraph. We begin by presenting the rank generating function definition and the deletion/contraction

recursion of the Tutte polynomial of an arbitrary greedoid and then present results specifically on

the Tutte polynomial of a rooted graph and of a rooted digraph.

The Tutte polynomial of a greedoid Γ = (E,F) is given by

T (Γ;x, y) =
∑

A⊆E

(x− 1)ρ(Γ)−ρ(A)(y − 1)|A|−ρ(A). (1.2)

33

For a rooted graph G we let T (G;x, y) = T (Γ(G);x, y). Similarly to the Tutte polynomial of a

matroid we can compute T (Γ;x, y) recursively by contracting and deleting a feasible singleton in Γ,

more specifically an edge incident to the root of G if Γ = Γ(G) where G is a rooted graph.

Proposition 1.7.1. Let Γ = (E, ρΓ) be a greedoid specified by its rank function.

1. If e is an element of Γ with ρΓ(e) = 1 then

T (Γ;x, y) = T (Γ/e;x, y) + (x− 1)ρ(Γ)−ρ(Γ\e)T (Γ \ e;x, y).

2. If e is a loop of Γ then

T (Γ;x, y) = yT (Γ \ e;x, y).

Proof. 1. Let e be an element of Γ with ρΓ(e) = 1. The Tutte polynomial of Γ can be expressed

in the following way.

T (Γ;x, y) =
∑

e∈A⊆E

(x − 1)ρ(Γ)−ρΓ(A)(y − 1)|A|−ρΓ(A)

+
∑

e/∈A⊆E

(x − 1)ρ(Γ)−ρΓ(A)(y − 1)|A|−ρΓ(A).

(1.3)

Suppose that A is a subset of E containing e. Let A′ = A − e. Then by Equation 1.1

ρΓ/e(A
′) = ρΓ(A) − 1. In particular ρ(Γ) = ρ(Γ/e) + 1. Therefore we can write the first

summation in Equation 1.3 as follows.

∑

e∈A⊆E

(x− 1)ρ(Γ)−ρΓ(A)(y − 1)|A|−ρΓ(A) =
∑

A′⊆E−e

(x− 1)ρ(Γ/e)−ρΓ/e(A
′)(y − 1)|A

′|−ρΓ/e(A
′)

= T (Γ/e;x, y).

Now suppose that A is a subset of E − e. Then ρΓ\e(A) = ρΓ(A). The Tutte polynomial of

Γ \ e is given by

T (Γ \ e;x, y) =
∑

A⊆E−e

(x− 1)ρ(Γ\e)−ρΓ\e(A)(y − 1)|A|−ρΓ\e(A).

34

Therefore we can write the second summation in Equation 1.3 as follows.

∑

e/∈A⊆E

(x− 1)ρ(Γ)−ρΓ(A)(y − 1)|A|−ρΓ(A) = (x− 1)ρ(Γ)−ρ(Γ\e)T (Γ \ e;x, y).

2. Let e be a loop of Γ. For any subset A of E − e, we have ρΓ(A ∪ e) = ρΓ(A) = ρΓ\e(A). In

particular ρ(Γ) = ρ(Γ \ e). Thus proceeding in a similar way to the first part

T (Γ;x, y) =
∑

A⊆E−e

(x− 1)ρ(Γ\e)−ρΓ\e(A) ·
(

(y − 1)|A|−ρΓ\e(A) + (y − 1)|A|+1−ρΓ\e(A)
)

= y
∑

A⊆E−e

(x− 1)ρ(Γ\e)−ρΓ\e(A)(y − 1)|A|−ρΓ\e(A)

= yT (Γ \ e;x, y).

Using the deletion/contraction recursion outlined in Proposition 1.7.1, we now derive the Tutte

polynomial of a branching greedoid whose corresponding rooted graph is a path rooted at one of the

endpoints.

Proposition 1.7.2. Let Γ = Γ(Pk) where Pk is the rooted path of length k such that the root is one

of the leaves. Then

T (Γ;x, y) = 1 +

k∑

i=1

(x− 1)iyi−1.

Proof. We use induction on k. When k = 0 the graph P0 comprises the root vertex and no edges.

Thus T (Γ(P0);x, y) = 1. Now assume the result holds for k = j. Let e be the edge incident to the

root vertex in Pj+1, i.e. e is an element of Γ(Pj+1) with ρΓ(Pj+1)(e) = 1. By Proposition 1.7.1 we

have

T (Γ(Pj+1);x, y) = T (Γ(Pj+1)/e;x, y) + (x− 1)j+1T (Γ(Pj+1) \ e;x, y)

= T (Γ(Pj);x, y) + (x− 1)j+1yj

= 1 +

j
∑

i=1

(x− 1)iyi−1 + (x− 1)j+1yj

= 1 +

j+1
∑

i=1

(x− 1)iyi−1.

35

Note that if Γ = Γ(Pk) then Γ will be isomorphic to a greedoid with ground set [k] and feasible

sets {∅, [1], [2], . . . , [k]}. The following proposition is also simple to prove using induction.

Proposition 1.7.3. Let Γ = Γ(Sk) where Sk is the rooted star graph with k edges emanating from

the root. Then

T (Γ;x, y) = xk.

Unlike the Tutte polynomial of a matroid, the Tutte polynomial of a greedoid can have negative

coefficents. For example by Proposition 1.7.2 we have T (Γ(P2);x, y) = x2y − 2xy + x+ y.

Equation 1.2 can be specialized to rooted graphs in the following way. The Tutte polynomial of

a rooted graph G = (r, V, E) is given by

T (G;x, y) =
∑

A⊆E

(x− 1)ρ(G)−ρ(A)(y − 1)|A|−ρ(A). (1.4)

Let T1 and T2 be rooted trees with no isolated vertices. It follows from Gordon and McMahon

[21] that if T (T1;x, y) = T (T2;x, y) then T1
∼= T2. This implies that a rooted tree without isolated

vertices is completely determined by its Tutte polynomial.

Suppose we have two disjoint rooted graphs G1 and G2, rooted at vertices r1 and r2 respectively.

Define the direct sum G1 ⊕G2 of G1 and G2 to be the rooted graph formed by glueing G1 and G2

together with new root vertex created by identifying r1 and r2. Gordon and McMahon [21] show

that

T (G1 ⊕G2;x, y) = T (G1;x, y)T (G2;x, y). (1.5)

The Tutte polynomial of a rooted graph shares many of the same evaluations as the Tutte

polynomial of a graph. Let G be a rooted graph.

• T (G; 1, 1) = the number of spanning trees of the connected component containing the root in

G.

• T (G; 2, 1) = the number of rooted subtrees of G.

• T (G; 1, 2) = the number of spanning subgraphs of G in which the component containing the

root in G is also a connected component, meaning every vertex connected to the root in G is

also connected to the root in the spanning subgraph.

36

• T (G; 2, 2) = 2|E| = the number of spanning subgraphs of G.

• T (G; 1, 0) = the number of acyclic orientations of G with a unique source. If G has more than

one component containing an edge, then T (G; 1, 0) = 0. This result follows from Greene and

Zaslavsky’s interpretation [25] of the Tutte polynomial of an unrooted graph at (1, 0).

Let G be a connected rooted graph and let G′ be the underlying unrooted graph of G. Then

T (G; 1, y) = T (G′; 1, y).

That is, the Tutte polynomial of a connected rooted graph coincides with the Tutte polynomial

of the corresponding unrooted graph along the line x = 1. This is easy to prove by noting that

ρ(G) = r(G′) and that the subsets A ⊆ E with non-zero terms in Equation 1.4 when x = 1 are

precisely those with ρG(A) = ρ(G). Moreover rG′(A) = r(G′) if and only if ρG(A) = ρ(G). This

result will be of particular importance in the next chapter where we use the complexity of computing

T (G′; 1, y) to find the complexity of computing T (G; 1, y).

We now present a specialization of the Tutte polynomial of a rooted graph. The characteristic

polynomial of a rooted graph (more generally a greedoid) was first introduced by Gordon and

McMahon in [22] and is a generalization of the chromatic polynomial of a graph. For a rooted graph

G, the one-variable characteristic polynomial p(G;λ) is defined by

p(G;λ) = (−1)ρ(G)T (G; 1− λ, 0). (1.6)

The Tutte polynomial of a rooted digraph D is defined by T (D;x, y) = T (Γ(D);x, y). Proposi-

tion 1.7.1 implies that T (D;x, y) satisfies a delete/contract recurrence. The direct sum of two rooted

digraphs is defined in exactly the same way as for rooted graphs and the analogue of Equation 1.5

holds. Let D be a rooted digraph. A subgraph T of D is said to be full if every vertex that is

reachable by a directed path from the root in D is also reachable by a directed path from the root

in T . If T is also a rooted arborescence then it is called a full arborescence. We now present some

evaluations of the Tutte polynomial of the rooted digraph D = (r, V,
−→
E).

• T (D; 1, 1) = the number of spanning subgraphs of D that are full arborescences.

• T (D; 2, 1) = the number of spanning subgraphs of D that are arborescences.

37

• T (D; 1, 2) = the number of spanning subgraphs of D that are full.

• T (D; 2, 2) = 2|
−→
E | = the number of spanning subgraphs of D.

• T (D; 1, 0) = 1 if G is acyclic and every vertex can be reached by a directed path in D, and 0

otherwise.

The last evaluation will be discussed in more detail in Section 2.4.

Proposition 1.7.4. Let D be rooted digraph. Then T (D; 1, 2) = 1 if and only if D is a rooted

arborescence.

Proof. Let D be a rooted digraph with root vertex r. If D is a rooted arborescence then clearly

T (D; 1, 2) = 1.

Now assume T (D; 1, 2) = 1 and D is not a rooted arborescence. Since D only has one spanning

subgraph that is full, the underlying unrooted graph of D must not contain any cycles. Suppose

there exists a vertex v such that there is no directed path from r to v in D. Since D is not a rooted

arborescence we can let v be a vertex that is not isolated. Let e1, . . . , et be the edges incident to v

in D. These are all loops in the corresponding greedoid. Let D′ be the subgraph of D obtained by

deleting the edges incident with v. By Proposition 1.7.1 we have

T (D;x, y) = ytT (D′;x, y).

Therefore T (D; 1, 2) = 2tT (D′; 1, 2). Since t ≥ 1 we have T (D; 1, 2) 6= 1, which is a contradiction.

This implies that there are no vertices in D that are not reachable by a directed path. Furthermore

since the underlying unrooted graph of D is acyclic, D must be a rooted arborescence.

38

Chapter 2

The Computational Complexity of

Evaluating the Tutte Polynomial at

a Fixed Point

2.1 Introduction

By Theorem 1.6.1 we know that evaluating the Tutte polynomial of a general graph is #P-hard

at most fixed points in the rational xy-plane. In this chapter we present analogous results which

completely determine the complexity of evaluating the Tutte polynomial of a rooted graph, a rooted

digraph and of a binary greedoid at any fixed point in the rational xy-plane. For the rooted graph

case we also strengthen our results by restricting ourselves to planar, bipartite rooted graphs.

The following two graph operations play a significant role in the proof of Theorem 1.6.1. The

k-stretch Gk of a graph G is obtained by replacing every edge of G by a path of length k, and the

k-thickening Gk of G is obtained by replacing every edge of G by k parallel edges. Note that both

of these operations can be generalized to matroids [11]. The following lemma illustrates the effect

of the k-stretch and k-thickening operations on the Tutte polynomial of a graph (more generally a

matroid) [10].

Lemma 2.1.1. Let G = (V,E) be a graph. The Tutte polynomial of the k-stretch Gk of G when

39

x 6= −1 is given by

T (Gk;x, y) = (1 + x+ . . .+ xk−1)|E|−r(G)T

(

G;xk,
y + x+ . . .+ xk−1

1 + x+ . . .+ xk−1

)

.

When x = −1 we have

T (Gk;−1, y) =







(y − 1)|E|−r(G) if k is even;

T (G;−1, y) if k is odd.

The Tutte polynomial of the k-thickening Gk of G when y 6= −1 is given by

T (Gk;x, y) = (1 + y + . . .+ yk−1)r(G)T

(

G;
x+ y + . . .+ yk−1

1 + y + . . .+ yk−1
, yk
)

.

When y = −1 we have

T (Gk;x,−1) =







(x − 1)r(G) if k is even;

T (G;x,−1) if k is odd.

Any encoding of the information specifying a graph can be transformed into the encoding of the

k-stretch and k-thickening of G in polynomial time.

2.2 Greedoid Constructions

In this section we introduce three greedoid constructions and give expressions for the Tutte polyno-

mial of greedoids resulting from these constructions.

The first construction is just the generalization of the k-thickening operation from matroids to

greedoids. Given a greedoid Γ = (E,F), its k-thickening is the greedoid Γk that, informally speaking,

is formed from Γ by replacing each edge by k parallel edges. More precisely, Γk has element set

E′ = E × [k] and collection F ′ of feasible sets as follows. Define µ to be the projection operator

µ : 2E×[k] → 2E so that element e ∈ µ(A) if and only if (e, i) ∈ A for some i. Now a subset A is

feasible in Γk if and only if µ(A) is feasible in Γ and |µ(A)| = |A|. The latter condition ensures that

A does not contain more than one element replacing a particular element of Γ.

It is clear that Γk is a greedoid and moreover ρΓk(A) = ρΓ(µ(A)). In particular ρ(Γk) = ρ(Γ).

40

For any element e of Γ the elements (e, i) and (e, j) are parallel. The effect of the k-thickening

operation on the Tutte polynomial of a greedoid is given in the following theorem. In fact, the

formula is consistent with that in Lemma 2.1.1.

Theorem 2.2.1. Let Γ = (E,F) be a greedoid. The Tutte polynomial of the k-thickening Γk of Γ

when y 6= −1 is given by

T (Γk;x, y) = (1 + y + . . .+ yk−1)ρ(Γ)T

(

Γ;
x+ y + . . .+ yk−1

1 + y + . . .+ yk−1
, yk
)

. (2.1)

When y = −1 we have

T (Γk;x,−1) =







(x − 1)ρ(Γ) if k is even;

T (Γ;x,−1) if k is odd.

Proof. Let Γk = (E′,F ′) be the k-thickened greedoid. Then E′ = E × [k]. Let µ be the mapping

defined in the discussion at the beginning of this section. To ensure that we do not divide by zero

in our calculations, we prove the case when y = 1 separately.

For each A′ ⊆ E′ we have ρΓk(A′) = ρΓ(µ(A
′)) and furthermore ρ(Γk) = ρ(Γ). The Tutte

polynomial of Γk when y /∈ {−1, 1} is thus given by

T (Γk;x, y) =
∑

A′⊆E′

(x− 1)ρ(Γ
k)−ρ

Γk (A′)(y − 1)|A
′|−ρ

Γk (A
′)

=
∑

A⊆E

∑

A′⊆E′:
µ(A′)=A

(x− 1)ρ(Γ)−ρΓ(µ(A
′))(y − 1)|A

′|−ρΓ(µ(A
′)) (2.2)

=
∑

A⊆E

(x− 1)ρ(Γ)−ρΓ(A)(y − 1)−ρΓ(A)
∑

A′⊆E′:
µ(A′)=A

(y − 1)|A
′|

=
∑

A⊆E

(x− 1)ρ(Γ)−ρΓ(A)(y − 1)−ρΓ(A)(yk − 1)|A|

=
∑

A⊆E

(x− 1)ρ(Γ)−ρΓ(A)(y − 1)−ρΓ(A)(yk − 1)|A|−ρΓ(A)

(
1

yk − 1

)ρ(Γ)−ρΓ(A)

(yk − 1)ρ(Γ)

= (1 + y + . . .+ yk−1)ρ(Γ)
∑

A⊆E

(
(x− 1)(y − 1)

yk − 1

)ρ(Γ)−ρΓ(A)

(yk − 1)|A|−ρΓ(A)

= (1 + y + . . .+ yk−1)ρ(Γ)T

(

Γ;
x+ y + . . .+ yk−1

1 + y + . . .+ yk−1
, yk
)

.

41

When y = 1 we get non-zero terms in Equation 2.2 if and only if |A′| = ρΓ(µ(A
′)), which implies

that |A′| = |A|. For each A ⊆ E there are k|A| choices for A′ such that |A′| = |A| (k choices for each

of the elements in A). Therefore we have

T (Γk;x, 1) =
∑

A⊆E:
ρΓ(A)=|A|

(x− 1)ρ(Γ)−ρΓ(A)
∑

A′⊆E′:
µ(A′)=A,
|A′|=|A|

1

=
∑

A⊆E:
ρΓ(A)=|A|

(x− 1)ρ(Γ)−ρΓ(A)kρΓ(A)

=
∑

A⊆E:
ρΓ(A)=|A|

(
x− 1

k

)ρ(Γ)−ρΓ(A)

kρ(Γ)

= kρ(Γ)T

(

Γ;
x+ k − 1

k
, 1

)

which agrees with Equation 2.1 when y = 1.

When y = −1 we have

T (Γk;x,−1) =
∑

A⊆E

∑

A′⊆E′:
µ(A′)=A

(x− 1)ρ(Γ)−ρΓ(µ(A
′))(−2)|A′|−ρΓ(µ(A

′))

=
∑

A⊆E

(x− 1)ρ(Γ)−ρΓ(A)(−2)−ρΓ(A)
∑

A′⊆E′:
µ(A′)=A

(−2)|A′|

=
∑

A⊆E

(x− 1)ρ(Γ)−ρΓ(A)(−2)−ρΓ(A)((−1)k − 1)|A|

=







(x − 1)ρ(Γ) if k is even;

T (Γ;x,−1) if k is odd.

Note that the only contribution to T (Γk;x,−1) when k is even is from the empty set.

The second construction is a little more involved. To motivate it we first describe a natural

construction operation on rooted graphs. Let G and H be disjoint rooted graphs with G being

connected. Then the H-attachment of G, denoted by G ∼ H is formed by taking G and ρ(G)

disjoint copies of H , and identifying each vertex of G other than the root with the root vertex of

one of the copies of H . The root of G ∼ H is the root of G.

Let V (G) = {r, v1, . . . , vρ(G)}, where r is the root of G, let E0 be the edge set of G and let Ei be

42

the edge set of the copy of H attached at vi. A set F is feasible in Γ(G ∼ H) if and only if each of

the following conditions holds.

1. F ∩ E0 is feasible in Γ(G).

2. For all i with 1 ≤ i ≤ ρ(G), F ∩Ei is feasible in Γ(H).

3. For all i with 1 ≤ i ≤ ρ(G), if vi is not connected to the root in G|(F ∩E0) then F ∩ Ei = ∅.

In order to extend these ideas to general greedoids, we first describe the notion of a closed set,

which was first described for greedoids by Korte and Lovasz [35]. Let Γ = (E, ρ) be a greedoid

defined in terms of its rank function. Given a subset A of E, its closure σΓ(A) is defined to be

σΓ(A) = {e : ρ(A ∪ e) = ρ(A)}. We will drop the dependence on Γ whenever the context is

clear. Note that it follows from the definition that A ⊆ σ(A). Moreover Lemma 1.3.4 implies that

ρ(σ(A)) = ρ(A). Furthermore if e /∈ σ(A), then ρ(A ∪ e) > ρ(A), so axiom (GR2) implies that

ρ(σ(A) ∪ e) > ρ(σ(A)) and hence σ(σ(A)) = σ(A). A subset A of E satisfying A = σ(A) is said to

be closed. Every subset of E of the form σ(X) for some X is closed.

We now introduce what we call an attachment function. Let Γ = (E,F) be a greedoid with

rank ρ = ρ(Γ). A function f : F → 2[ρ] is called a Γ attachment function if it satisfies both of the

following.

1. For each feasible set F , we have |f(F)| = ρ(F).

2. If F1 and F2 are feasible sets and F1 ⊆ σ(F2) then f(F1) ⊆ f(F2).

These conditions ensure that if F1 and F2 are maximal feasible subsets of a setA, then f(F1) = f(F2).

Given greedoids Γ1 and Γ2 with disjoint element sets, and Γ1 attachment function f , we define

the Γ2-attachment of Γ1, denoted by Γ1 ∼f Γ2 as follows. The element set E is the union of the

element set E0 of Γ1 together with ρ = ρ(Γ1) disjoint copies E1, . . . , Eρ of the element set of Γ2.

In the following we shall say that for i > 0, a subset of Ei is feasible in Γ2 if the corresponding

subset of the elements of Γ2 is feasible. A subset F of E is feasible if and only each of the following

conditions holds.

1. F ∩ E0 is feasible in Γ1.

2. For all i with 1 ≤ i ≤ ρ, F ∩ Ei is feasible in Γ2.

3. For all i with 1 ≤ i ≤ ρ, if i /∈ f(F ∩ E0) then F ∩Ei = ∅.

43

Proposition 2.2.2. For any greedoids Γ1 and Γ2, and Γ1 attachment function f , the Γ2-attachment

of Γ1 is a greedoid.

Proof. We use the notation defined above to describe the element set of Γ1 ∼f Γ2. Clearly the empty

set is feasible in Γ1 ∼f Γ2. Suppose that F1 and F2 are feasible sets in Γ1 ∼f Γ2 with |F2| > |F1|.

If there is an element e of F2 ∩E0 which is not in σΓ1 (F1 ∩E0) then (F1 ∩E0) ∪ e is feasible in Γ1.

Moreover F1 ∩ E0 ⊆ σΓ1((F1 ∩ E0) ∪ e), so f(F1 ∩ E0) ⊆ f((F1 ∩ E0) ∪ e). Consequently F1 ∪ e is

feasible in Γ1 ∼f Γ2.

On the other hand suppose that F2 ∩E0 ⊆ σΓ1(F1 ∩E0). Then f(F2 ∩E0) ⊆ f(F1 ∩E0) and for

some i ∈ f(F2 ∩ E0) we must have |F2 ∩ Ei| > |F1 ∩ Ei|. Thus there exists e ∈ (F2 − F1) ∩ Ei such

that (F1 ∩ Ei) ∪ e is feasible in Γ2. Hence F1 ∪ e is feasible in Γ1 ∼f Γ2.

Every greedoid Γ has an attachment function formed by setting f(F) = [|F |] for each feasible set

F . However there are other examples of attachment functions. Let G be a connected rooted graph

in which the vertices other than the root are labelled v1, . . . , vρ. There is an attachment function

f defined on Γ(G) as follows. For any feasible set F , define f(F) so that i ∈ f(F) if and only if

vi is connected to the root in the subtree G|F . It is straightforward to verify that f is indeed an

attachment function. Furthermore if H is another rooted graph then Γ(G ∼f H) = Γ(G) ∼f Γ(H).

We now consider the rank function of Γ = Γ1 ∼f Γ2. We keep the same notation as above for

the elements of Γ. Let A be a subset of E(Γ) and let F be a maximal feasible subset of A ∩ E0.

Then

ρΓ(A) = ρΓ1(A ∩ E0) +
∑

i∈f(F)

ρΓ2(A ∩ Ei). (2.3)

Observe that the number of subsets of E(Γ) with specified rank, size and intersection with E0 does

not depend on the choice of f . Consequently the Tutte polynomial of Γ1 ∼f Γ2 does not depend on

f . We now make this idea more precise by establishing an expression for the Tutte polynomial of

an attachment.

Theorem 2.2.3. Let Γ1 and Γ2 be greedoids, and let f be an attachment function for Γ1. Then the

Tutte polynomial of Γ1 ∼f Γ2 is given by

T (Γ1 ∼f Γ2;x, y) = T (Γ2;x, y)
ρ(Γ1)T

(

Γ1;
(x − 1)ρ(Γ2)+1y|E(Γ2)|

T (Γ2;x, y)
+ 1, y

)

,

providing T (Γ2;x, y) 6= 0.

44

Proof. Let Γ = Γ1 ∼f Γ2. We use the notation defined above to describe the element set of Γ. It is

useful to extend the definition of the attachment function f to all subsets of E0 by setting f(A) to

be equal to f(F) where F is a maximal feasible set of A. The definition of an attachment function

ensures that this is well-defined. It follows from Equation 2.3 that ρ(Γ) = ρ(Γ1)(ρ(Γ2) + 1). We

have

T (Γ;x, y) =
∑

A⊆E(Γ)

(x− 1)ρ(Γ)−ρΓ(A)(y − 1)|A|−ρ(A)

=
∑

A0⊆E0

(x− 1)ρ(Γ1)−ρΓ1 (A0)(y − 1)|A0|−ρΓ1 (A0)

·
∏

i∈f(A0)

∑

Ai⊆Ei

(x− 1)ρ(Γ2)−ρΓ2 (Ai)(y − 1)|Ai|−ρΓ2 (Ai)

·
∏

i/∈f(A0)

∑

Ai⊆Ei

(x− 1)ρ(Γ2)(y − 1)|Ai|

=
∑

A0⊆E0

(x− 1)ρ(Γ1)−ρΓ1 (A0)(T (Γ2;x, y))
ρΓ1 (A0)

·
(
(x− 1)ρ(Γ2)y|E(Γ2)|

)ρ(Γ1)−ρΓ1 (A0)
(y − 1)|A0|−ρΓ1 (A0)

= (T (Γ2;x, y))
ρ(Γ1)

∑

A0⊆E0

(y − 1)|A0|−ρΓ1 (A0)

·
((x − 1)ρ(Γ2)+1y|E(Γ2)|

T (Γ2;x, y)

)ρ(Γ1)−ρΓ1 (A0)

= T (Γ2;x, y)
ρ(Γ1)T

(

Γ1;
(x− 1)ρ(Γ2)+1y|E(Γ2)|

T (Γ2;x, y)
+ 1, y

)

.

The third construction is called the full rank attachment. Given greedoids Γ1 = (E1,F1) and

Γ2 = (E2,F2) with disjoint element sets, the full rank attachment of Γ2 to Γ1 denoted by Γ1 ≈ Γ2

has element set E1 ∪ E2 and a set F of elements is feasible if either of the two following conditions

holds.

1. F ∈ F1;

2. F ∩ E1 ∈ F1, F ∩ E2 ∈ F2 and ρΓ1(F ∩ E1) = ρ(Γ1).

It is straightforward to prove that Γ1 ≈ Γ2 is a greedoid.

45

Suppose that Γ = Γ1 ≈ Γ2 and that A is a subset of E(Γ). Then

ρ(A) =







ρ(A ∩ E(Γ1)) if ρ(A ∩ E(Γ1)) < ρ(Γ1),

ρ(A ∩ E(Γ1)) + ρ(A ∩ E(Γ2)) if ρ(A ∩ E(Γ1)) = ρ(Γ1).

This observation enables us to prove the following identity for the Tutte polynomial.

Theorem 2.2.4. Let Γ1 and Γ2 be greedoids, and let Γ = Γ1 ≈ Γ2. Let E, E1 and E2 denote the

element sets of Γ, Γ1 and Γ2 respectively. Then

T (Γ1 ≈ Γ2;x, y) = T (Γ1;x, y)(x − 1)ρ(Γ2)y|E2| + T (Γ1; 1, y)(T (Γ2;x, y)− (x− 1)ρ(Γ2)y|E2|).

Proof. We have

T (Γ1 ≈ Γ2;x, y)

=
∑

A⊆E

(x − 1)ρ(Γ)−ρΓ(A)(y − 1)|A|−ρΓ(A)

=
∑

A1⊆E1:
ρΓ1 (A1)<ρ(Γ1)

(x− 1)ρ(Γ1)−ρΓ1 (A1)(y − 1)|A1|−ρΓ1 (A1)
∑

A2⊆E2

(x − 1)ρ(Γ2)(y − 1)|A2|

+
∑

A1⊆E1:
ρΓ1 (A1)=ρ(Γ1)

(y − 1)|A1|−ρΓ1 (A1)
∑

A2⊆E2

(x− 1)ρ(Γ2)−ρΓ2 (A2)(y − 1)|A2|−ρΓ2 (A2)

=
∑

A1⊆E1

(x− 1)ρ(Γ1)−ρΓ1 (A1)(y − 1)|A1|−ρΓ1 (A1)(x− 1)ρ(Γ2)y|E2|

+
∑

A1⊆E1:
ρΓ1 (A1)=ρ(Γ1)

(y − 1)|A1|−ρΓ1 (A1)

·
(∑

A2⊆E2

(x− 1)ρ(Γ2)−ρΓ2 (A2)(y − 1)|A2|−ρΓ2 (A2) − (x− 1)ρ(Γ2)y|E2|
)

= T (Γ1;x, y)(x − 1)ρ(Γ2)y|E2| + T (Γ1; 1, y)
(
T (Γ2;x, y)− (x− 1)ρ(Γ2)y|E2|

)
.

One case where this operation will be useful later is when Γ1 and Γ2 are binary greedoids with

Γ1 = Γ(M1) and Γ2 = Γ(M2) where M1 has full row rank. Then Γ1 ≈ Γ2 = Γ(M) where M has the

46

form

M =






M1 0

0 M2




 .

2.3 Rooted Graphs

2.3.1 Introduction

In this section we restrict ourselves to rooted graphs that are connected. The main result of this

section is stated below.

Theorem 2.3.1. Evaluating the Tutte polynomial of a connected rooted graph at any fixed point

(a, b) in the rational xy-plane is #P-hard apart from when (a, b) equals (1, 1) or when (a, b) lies on

H1. In these exceptional cases we can evaluate the Tutte polynomial in polynomial time.

Our results concern three computational problems. The most general of these is to compute

the Tutte polynomial of a connected rooted graph. We present the problem below in the standard

format of complexity theory. Let G be the class of connected rooted graphs.

π1[G] : #ROOTED TUTTE POLYNOMIAL

Input G ∈ G.

Output The coefficients of T (G;x, y).

The second problem is the evaluation of the Tutte polynomial of a connected rooted graph at

a fixed point (a, b) such that a, b ∈ Q. Due to computational problems caused by representing real

numbers in a computer, we are unable to allow a, b to be arbitrary reals. For simplicity we stick

with rationals.

π2[G, a, b] : #ROOTED TUTTE POLYNOMIAL AT (a, b)

Input G ∈ G.

Output T (G; a, b).

Finally we consider the computational problem of evaluating the Tutte polynomial of a connected

rooted graph along a curve L in the xy-plane. We restrict our attention to the case where L is a

47

rational curve given by the parametric equations

x(t) =
p(t)

q(t)
and y(t) =

r(t)

s(t)

of L where p, q, r and s are polynomials over Q.

π3[G, L] : #ROOTED TUTTE POLYNOMIAL ALONG L

Input G ∈ G.

Output The coefficients of the rational function of t given by evaluating T (G;x(t), y(t)).

It should be straightforward to see that

π2[G, a, b] ∝T π3[G, H(a−1)(b−1)] ∝T π1[G].

Our results will determine when the opposite reductions hold. We now restate Theorem 2.3.1 in

terms of the computational problem π2[G, a, b].

Theorem 2.3.2. The problem π2[G, a, b] is #P-hard for all (a, b) except when (a, b) equals (1, 1) or

when (a, b) lies on H1. In each of these exceptional cases π2[G, a, b] is easy.

The remainder of this section will focus on proving Theorem 2.3.2.

2.3.2 Proof of Main Theorem

Here we begin by reviewing the exceptional points of Theorem 2.3.2. We first present a simple proof

to show that evaluating the Tutte polynomial of a rooted graph along the hyperbola H1 can be done

in polynomial time. This is consistent with the situation in unrooted graphs.

If a point (a, b) lies on the hyperbola H1 then we have (a− 1)(b− 1) = 1 by definition. Thus the

48

Tutte polynomial of a rooted graph G evaluated at such a point is given by

T (G; a, b) =
∑

A⊆E

(a− 1)ρ(G)−ρ(A)(b − 1)|A|−ρ(A)

= (a− 1)ρ(G)
∑

A⊆E

(
1

a− 1

)|A|

= (a− 1)ρ(G)

|E|
∑

k=0

(|E|
k

)(
1

a− 1

)k

= (a− 1)ρ(G)−|E|a|E|,

which is easily computed.

By the previous chapter the Tutte polynomial of a connected rooted graph coincides with that of

the corresponding connected unrooted graph along the line x = 1. Consequently the classifications

of the complexity of the points (1, y) also coincide. Evaluating the Tutte polynomial of a graph at

the point (1, 1) is easy by Theorem 1.6.1. Therefore the problem π2[G, 1, 1] is easy.

Theorem 2.2.1 implies that for any k ∈ N computing T (Γ2k;x,−1) is easy for an arbitrary

greedoid Γ provided its rank is specified or can be easily computed. That is, the Tutte polynomial

of a greedoid in which every parallel class has an even number of elements is easy to evaluate along

the line y = −1.

Note that we have Γ(Gk) = (Γ(G))k, that is, the thickening operations in rooted graphs and

greedoids are compatible. The k-thickening Gk of a rooted graph G is obtained by replacing every

edge in G by k parallel edges. An example of the k-thickening operation on a rooted graph is given

in Figure 2.1. By Theorem 2.2.1 the effect of the k-thickening operation on the Tutte polynomial of

a rooted graph is given in the following lemma.

Lemma 2.3.3. Let G be a rooted graph. The Tutte polynomial of the k-thickening Gk of G when

y 6= −1 is given by

T (Gk;x, y) = (1 + y + . . .+ yk−1)ρ(G)T

(

G;
x+ y + . . .+ yk−1

1 + y + . . .+ yk−1
, yk
)

. (2.4)

49

When y = −1 we have

T (Gk;x,−1) =







(x − 1)ρ(G) if k is even;

T (G;x,−1) if k is odd.

r

G

r

G2

r

G3

Figure 2.1: Example of the 2 and 3-thickening operation on G.

An example of the H-attachment operation on a connected rooted graph G is given in Figure 2.2.

By Theorem 2.2.3 the effect of the H-attachment operation on the Tutte polynomial of a connected

rooted graph is given in the following lemma.

Lemma 2.3.4. Let G = (r, V, E) and H = (r′, V ′, E′) be disjoint rooted graphs with G connected.

The Tutte polynomial of the H-attachment of G is given by

T (G ∼ H ;x, y) = T (H ;x, y)ρ(G)T

(

G;
(x− 1)ρ(H)+1y|E

′|

T (H ;x, y)
+ 1, y

)

,

providing T (H ;x, y) 6= 0.

rG

G

rH

H

rG

G ∼ H

Figure 2.2: Example of the H-attachment operation on G.

For an arbitrary rooted graph G, the k-stretch Gk of G can be constructed in exactly the same

50

way as in an unrooted graph. However we are unable to express the Tutte polynomial of Gk in terms

of the Tutte polynomial of G because we cannot easily express the rank of a set of edges in Gk in

terms of the corresponding set in G.

We will now review the hard points of Theorem 2.3.2. We begin by stating the following definition

from linear algebra which we have generalized slightly compared with its standard form.

Definition 2.3.5 (Vandermonde Matrix V). A Vandermonde matrix is an m × n matrix V such

that Vi,j = yiz
j−1
i , i.e. the terms in each row give a geometric progression. When V is a square

matrix, the determinant det(V) of V can be expressed as

det(V) =
m∏

i=1

yi
∏

1≤i<j≤m

(zj − zi).

It should be clear that if zi 6= zj whenever i 6= j and yi 6= 0 for all i, then det(V) 6= 0. The

determinant result is demonstrated in the following example.

Example 2.3.6. When V is a 3× 3 Vandermonde matrix we have

V =









y1 y1z1 y1z
2
1

y2 y2z2 y2z
2
2

y3 y3z3 y3z
2
3









.

Therefore

detV = y1y2y3 det









1 z1 z21

1 z2 z22

1 z3 z23









=

3∏

i=1

yi
[
(z2z

2
3 − z22z3)− (z1z

2
3 − z21z3) + (z1z

2
2 − z21z2)

]

=

3∏

i=1

yi [(z3 − z2)(z3 − z1)(z2 − z1)]

=

3∏

i=1

yi
∏

1≤i<j≤3

(zj − zi).

We now present three propositions which together show that at most fixed rational points (a, b),

evaluating the Tutte polynomial of a connected rooted graph at (a, b) is just as hard as evaluating it

51

along the curve H(a−1)(b−1). The first proposition considers the case when a 6= 1 and b /∈ {−1, 0, 1}.

Proposition 2.3.7. Let L = Hα for some α ∈ Q−{0}. Let (a, b) ∈ L such that b /∈ {−1, 0}. Then

π3[G, L] ∝T π2[G, a, b].

Proof. For a point (x, y) ∈ L we have y 6= 1. Therefore z = y − 1 6= 0 and so α/z = x − 1. Let

G ∈ G. Along L the Tutte polynomial of G has the form

T (G;x, y) = T (G; 1 + α/z, 1 + z) =
∑

A⊆E

(α

z

)ρ(G)−ρ(A)

z|A|−ρ(A) =

|E|
∑

i=−ρ(G)

tiz
i,

for some t−ρ(G), . . . , t|E|.

We will now show that we may determine all of the coefficients ti in polynomial time from

T (Gk; a, b) for k = 1, . . . , |E|+ ρ(G) + 1. By Lemma 2.3.3 we have

T (Gk; a, b) = (1 + b+ . . .+ bk−1)ρ(G)T

(

G;
a+ b+ . . .+ bk−1

1 + b+ . . .+ bk−1
, bk
)

.

Since b 6= −1 we have 1+ b+ . . .+ bk−1 6= 0. Therefore we may compute T
(

G; a+b+...+bk−1

1+b+...+bk−1 , b
k
)

from T (Gk; a, b). The point
(

a+b+...+bk−1

1+b+...+bk−1 , b
k
)

will also be on the curve L since

(
a+ b+ . . .+ bk−1

1 + b + . . .+ bk−1
− 1

)

(bk − 1) = (a− 1)(b− 1).

In order to evaluate the one-variable Tutte polynomial of G along the curve L, we need the points
(

a+b+...+bk−1

1+b+...+bk−1 , b
k
)

to be pairwise distinct for k = 1, 2, . . . , |E| + ρ(G) + 1. Since b /∈ {−1, 0, 1} we

have bk distinct for k = 1, 2, . . . , |E| + ρ(G) + 1 and so all of the points must be pairwise distinct,

regardless of a.

Therefore by evaluating T (Gk; a, b) for k = 1, 2, . . . , |E| + ρ(G) + 1 where b /∈ {−1, 0, 1} we

obtain
∑|E|

i=−ρ(G) tiz
i for |E| + ρ(G) + 1 distinct values of z. Denote these distinct values of z by

zk for 1 ≤ k ≤ |E| + ρ(G) + 1. This gives us |E| + ρ(G) + 1 linear equations for the coefficients

ti. Let Tk = T (G; 1 + α/zk, 1 + zk) and A = (T1 T2 . . . T|E|+ρ(G) T|E|+ρ(G)+1)
T . Now if t =

(t−ρ(G) t−ρ(G)+1 . . . t|E|−1 t|E|)
T these linear equations can be represented in matrix form by

A = Vt where V is a Vandermonde matrix with Vk,j = z
−ρ(G)+j−1
k for 1 ≤ k, j ≤ |E| + ρ(G) + 1.

Since all zk are distinct and non-zero, V is non-singular and we can solve A = Vt to obtain the

52

coefficients ti in polynomial time [15].

The next proposition considers the case when a = 1. Recall Hx
0 = {(1, y) : y ∈ Q} and

Hy
0 = {(x, 1) : x ∈ Q}.

Proposition 2.3.8. Let L = Hx
0 and let b ∈ Q− {−1, 0, 1}. Then

π3[G, L] ∝T π2[G, 1, b].

Proof. For a point (x, y) ∈ L we have x = 1. Let G ∈ G. Along L the Tutte polynomial of G has

the form

T (G; 1, y) =
∑

A⊆E:
ρ(A)=ρ(G)

(y − 1)|A|−ρ(G) =

|E|
∑

i=−ρ(G)

tiy
i,

for some t−ρ(G), . . . , t|E|.

The proof now follows in a similar way to that of Proposition 2.3.7 by determining all of the

coefficients ti in polynomial time from T (Gk; 1, b) for k = 1, 2, . . . , |E|+ ρ(G) + 1.

The following proposition considers the case when b = 1.

Proposition 2.3.9. Let L = Hy
0 and a ∈ Q− {1}. Then

π3[G, L] ∝T π2[G, a, 1].

Proof. For a point (x, y) ∈ L we have y = 1. Let G ∈ G. Along L the Tutte polynomial of G has

the form

T (G;x, 1) =
∑

A⊆E:
ρ(A)=|A|

(x− 1)ρ(G)−ρ(A) =

ρ(G)
∑

i=0

tix
i,

for some t0, . . . , tρ(G).

We will now show that we may determine all of the coefficients ti in polynomial time from

T (Gk; a, 1) for k = 1, 2, . . . , ρ(G) + 1. By Lemma 2.3.3 we have

T (Gk; a, 1) = kρ(G)T

(

G;
a+ k − 1

k
, 1

)

.

Therefore we may compute T
(
G; a+k−1

k , 1
)
from T (Gk; a, 1). Since a 6= 1, the points

(
a+k−1

k , 1
)
are

pairwise distinct for k = 1, 2, . . . , ρ(G)+1. By evaluating T (Gk; a, 1) for k = 1, 2, . . . , ρ(G)+1 where

53

a 6= 1 we obtain
∑ρ(G)

i=0 tix
i for ρ(G) + 1 distinct values of x. This gives us ρ(G) + 1 linear equations

for the coefficients ti. Again the matrix corresponding to these equations is a Vandermonde matrix

with non-zero entries, therefore we may recover the coefficients ti in polynomial time.

We now summarize the preceding propositions.

Proposition 2.3.10. Let L be either Hx
0 , H

y
0 , or Hα for α ∈ Q − {0}. Let (a, b) ∈ L such that

(a, b) 6= (1, 1) and b /∈ {−1, 0}. Then

π3[G, L] ∝T π2[G, a, b].

Proof. Follows directly from Propositions 2.3.7, 2.3.8 and 2.3.9.

We now consider the exceptional case when b = −1. For reasons that will soon become apparent,

we recall T (P2;x, y) = x2y − 2xy + x + y and T (Sk;x, y) = xk from Propositions 1.7.2 and 1.7.3

respectively.

Proposition 2.3.11. Let L be the line y = −1. For a /∈ { 12 , 1} we have

π3[G, L] ∝T π2[G, a,−1].

Proof. Let G = (rG, VG, EG) be a rooted graph and let z = x− 1. Along L the Tutte polynomial of

G has the form

T (G;x,−1) =
∑

A⊆EG

zρ(G)−ρ(A)(−2)|A|−ρ(A) =

ρ(G)
∑

i=0

tiz
i

for some t0, . . . , tρ(G).

We will now show that we may determine all of the coefficients ti in polynomial time from

T (G ∼ Sk; a,−1) for k = 0, 1, . . . , ρ(G), apart from at a few exceptional values of a. By Lemma 2.3.4

we have

T (G ∼ Sk; a,−1) = akρ(G)T

(

G;
(a− 1)k+1(−1)k

ak
+ 1,−1

)

.

Providing a 6= 0 we may compute T
(

G; (a−1)k+1(−1)k

ak + 1,−1
)

from T (G ∼ Sk; a,−1). For a /∈

{ 12 , 1} we claim that the points
(

(a−1)k+1(−1)k

ak + 1,−1
)

are pairwise distinct for k = 0, 1, 2, . . . , ρ(G).

54

Suppose otherwise, i.e. that for some m 6= n we have

(a− 1)m+1(−1)m
am

+ 1 =
(a− 1)n+1(−1)n

an
+ 1.

This can be reduced to
(
1− a

a

)m−n

= ±1.

The case

(
1− a

a

)m−n

= −1 is impossible, and it should be clear to see that

(
1− a

a

)m−n

= 1 is

only satisfied when a = 1
2 or m = n (or both).

Therefore by evaluating T (G ∼ Sk; a,−1) for k = 0, 1, 2, . . . , ρ(G) where a /∈ {0, 12 , 1}, we

obtain
∑ρ(G)

i=0 tiz
i for ρ(G) + 1 distinct values of z. This gives us ρ(G) + 1 linear equations for the

coefficients ti. Again the matrix corresponding to these equations is a Vandermonde matrix with

non-zero entries, and so the coefficients may be recovered in polynomial time. Hence evaluating the

Tutte polynomial of a connected rooted graph along the line y = −1 is Turing reducible to evaluating

it at a point (a,−1) for a /∈ {0, 12 , 1}.

We now look at the case when a = 0. Note that T (P2; 0,−1) = −1. Applying Lemma 2.3.4 to G

and P2 gives

T (G ∼ P2; 0,−1) = (−1)ρ(G)T

(

G;
(−1)3(−1)2
−1 + 1,−1

)

= (−1)ρ(G)T (G; 2,−1).

Therefore we have the reductions

π3[G, L] ∝T π2[G, 2,−1] ∝T π2[G, 0,−1].

Since the Turing reduction relation is transitive, this implies that evaluating the Tutte polynomial

at the point (0,−1) is at least as hard as evaluating it along the line y = −1. This completes the

proof.

We now begin to classify the complexity of evaluating the Tutte polynomial of a connected rooted

graph.

Proposition 2.3.12. The computational problem π2[G, 1, b] is #P-hard apart from when b = 1, in

55

which case it is easy.

Proof. This follows directly from Theorem 1.6.1 and the equivalence of evaluating the Tutte polyno-

mial of a connected rooted graph and the Tutte polynomial of the corresponding connected unrooted

graph along x = 1.

The next results will establish hardness for a few special cases, namely when b ∈ {−1, 0, 1}.

Proposition 2.3.13. The computational problem π2[G, a,−1] is #P-hard apart from when a = 1/2,

in which case it is easy.

Proof. First note that (12 ,−1) is easy since it lies on H1. Now let L be the line y = −1. By

Proposition 2.3.11 we have

π3[G, L] ∝T π2[G, a,−1]

for a /∈ { 12 , 1}. This implies

π2[G, 1,−1] ∝T π2[G, a,−1]

for a 6= 1/2. By Proposition 2.3.12 we know that π2[G, 1,−1] is #P-hard.

Proposition 2.3.14. The computational problem π2[G, a, 0] is #P-hard apart from when a = 0, in

which case it is easy.

Proof. Let G ∈ G. First note that evaluating the Tutte polynomial of G at the point (0, 0) is easy

since it lies on the hyperbola H1. Applying Lemma 2.3.4 to G and Sk gives

T (G ∼ Sk; a, 0) = akρ(G)T (G; 1, 0).

Since a 6= 0 we may compute T (G; 1, 0) from T (G ∼ Sk; a, 0). Therefore evaluating the Tutte

polynomial of a connected rooted graph at any point on the line y = 0, apart from at (0, 0), is just

as hard as evaluating it at the point (1, 0), which is #P-hard by Proposition 2.3.12.

Recall from Equation 1.6 that along y = 0 the Tutte polynomial of a rooted graph specializes to

the characteristic polynomial. Therefore we have the following corollary.

Corollary 2.3.15. Computing the characteristic polynomial p(G; k) of a connected rooted graph G

is #P-hard for all k ∈ Q− {1}. When k = 1 the computation is easy.

56

Proof. Let k ∈ Q. Evaluating the characteristic polynomial of G when λ = k gives

p(G; k) = (−1)ρ(G)T (G; 1− k, 0).

By Proposition 2.3.14 evaluating T (G; 1 − k, 0) is #P-hard providing k 6= 1. Furthermore when

k = 1 we have

p(G; 1) = (−1)ρ(G)T (G; 0, 0) =







1 if G is empty;

0 otherwise,

and so it is easy to compute (as expected since (0, 0) lies on H1).

The following proposition determines the complexity of evaluating the Tutte polynomial of a

connected rooted graph along the line y = 1. First we need to state a computational problem for

finding the number of subtrees of an unrooted graph. Let G be the class of connected unrooted

graphs.

#SUBTREES

Input Graph G ∈ G.

Output The number of subtrees of G.

Jerrum considered the complexity of this problem in [32] and showed it to be #P-complete,

settling an open problem of Valiant. He proves this result by reduction from the computational

problem stated below.

#CUBICHAM

Input A cubic graph G ∈ G.

Output The number of Hamiltonian paths of G.

Jerrum also shows in [32] that #SUBTREES remains #P-complete when the input graph is

restricted to being planar.

Proposition 2.3.16. The computational problem π2[G, a, 1] is #P-hard when a 6= 1.

Proof. Let G be a connected unrooted graph with V (G) = {v1, . . . , vt}. Now let Gj be the connected

rooted graph obtained from G by choosing vj to be the root where 1 ≤ j ≤ t. Let ρj denote the

57

rank function of Gj and ai(Gj) be the number of rooted subtrees of Gj with i edges. Then

T (Gj ;x, 1) =
∑

A⊆E:
ρj(A)=|A|

(x− 1)ρ(Gj)−|A| =
∑

A⊆E:
Gj |A is a rooted subtree

(x− 1)ρ(Gj)−|A|

=

ρ(Gj)∑

i=0

ai(Gj)(x − 1)ρ(Gj)−i.

Let ai(G) denote the number of subtrees of G with i edges. Then

ai(G) =

t∑

j=1

ai(Gj)

i+ 1
.

This is because every subtree T of G with i > 0 edges has i+1 vertices and corresponds to a rooted

subtree in any of the rooted graphs where one of these i + 1 vertices is the root. There are |V (G)|

subtrees with no edges and each of the rooted graphs has exactly one rooted subtree with no edges.

Therefore if we compute ai(Gj) for all j, then we can compute ai(G) in polynomial time. If

we do this for all i where 0 ≤ i ≤ ρ(G) then we can recover the total number of subtrees of G in

polynomial time.

Hence evaluating the Tutte polynomial of a connected rooted graph along the line y = 1 is at

least as hard as counting the number of subtrees of the corresponding connected unrooted graph,

i.e.

#SUBTREES ∝T π3[G, Hy
0].

By Proposition 2.3.10 we have

#SUBTREES ∝T π3[G, Hy
0] ∝T π2[G, a, 1]

for a 6= 1. The transitivity of the reduction relation implies π2[G, a, 1] is #P-hard for a 6= 1 by

Jerrum’s result.

We now summarize our results and prove Theorem 2.3.2.

Proof of Theorem 2.3.2. Let (a, b) ∈ Hα for some α ∈ Q − {0, 1}. By Proposition 2.3.10 we have

π3[G, Hα] ∝T π2[G, a, b] providing (a, b) 6= (1, 1) and b /∈ {−1, 0}. The hyperbola Hα crosses the

x-axis at the point (1 − α, 0). By Proposition 2.3.14 the problem π2[G, 1 − α, 0] is #P-hard to

58

compute since α 6= 1. This gives us a #P-hard point on each of these curves and therefore implies

π3[G, Hα] is #P-hard to compute for α ∈ Q−{0, 1}. Hence π2[G, a, b] is #P-hard for (a, b) ∈ Hα with

α ∈ Q−{0, 1} and b 6= −1. The rest of the proof now follows directly by Propositions 2.3.12, 2.3.13

and 2.3.16, and the discussion concerning the easy points at the beginning of the subsection.

Following Vertigan and Welsh we now strengthen our result by restricting the class of input

connected rooted graphs to be planar bipartite. By Theorem 1.6.2 the complexity of computing the

Tutte polynomial of a connected planar bipartite graph along the line x = 1 is the same as that

of an arbitrary graph. Note that all of the reductions we have used preserve the property of being

planar and bipartite. It is therefore straightforward to see that we can find an analogous proof to

Theorem 2.3.2 for connected planar bipartite rooted graphs, apart from when b = 1 which is not so

obvious.

Along y = 1 we need extra consideration because we use Jerrum’s result to classify the complexity

along this line. In [32] Jerrum shows that the problem of counting the number of subtrees of a

connected graph G remains #P-complete when the input graph is restricted to being planar. By

using this we are only able to classify the complexity of evaluating the Tutte polynomial of connected

planar rooted graphs along y = 1 as opposed to planar bipartite. We now aim to show that Jerrum’s

result can in fact be strengthened to connected planar bipartite graphs, allowing us to similarly

strengthen our result along y = 1.

First we state a computational problem with the intention of showing #SUBTREES reduces to

it. Let B be the class of bipartite connected graphs.

#BISUBTREES

Input Bipartite graph G ∈ B.

Output The number of subtrees of G.

We say that an edge of a graph G is external in a subtree T if it is not contained in E(T). Let

ti,j(G) be the number of subtrees of G with i external edges having precisely one endpoint in the

tree, and j external edges having both endpoints in the tree.

The following proposition gives a formula for counting the number of subtrees of the k-stretched

graph Gk in terms of ti,j(G). Let t(Gk) denote the number of subtrees of Gk.

59

Proposition 2.3.17. The number of subtrees of the k-stretched graph Gk is given by

t(Gk) =




∑

i,j≥0

ti,j(G)ki
(
k + 1

2

)j


+
k(k − 1)|E|

2
. (2.5)

Proof. Let E(G) = {e1, e2, . . . , em}. Let Et be the set of edges replacing et in Gk for 1 ≤ t ≤ m,

thus E(Gk) =
⋃

t Et. Let f be the function mapping a subtree T in Gk to a subtree T ′ in G such

that V (T ′) = V (T)∩V (G) and et ∈ E(T ′) if and only if Et ⊆ E(T). Note that f may map a subtree

to a graph with no vertices or edges. We will count such a graph as a subtree for the moment.

Let T ′
i,j be a subtree of G with at least one vertex, i external edges having precisely one endpoint

in T ′
i,j and j external edges having both endpoints in T ′

i,j .

If T ∈ f−1(T ′
i,j) then it must contain all of the edges in Gk that replace the edges in E(T ′

i,j).

Suppose there exists an edge et = v1v2 in G that is external in T ′
i,j with v1 ∈ V (T ′

i,j) and

v2 /∈ V (T ′
i,j). There are k choices for the proper subsets of Et in Gk such that T is a subtree (k

possible paths of edges in Et connected to v1 in Gk).

Now suppose there exists an edge et = v1v2 in G that is external in T ′
i,j with v1, v2 ∈ V (T ′

i,j).

There are
(
k+1
2

)
choices for the proper subsets of Et in Gk such that T is a subtree (

(
k+1
2

)
ways of

choosing possible paths of edges in Et connected to v1, v2 or both, providing they don’t meet, in

Gk). Therefore we have

|f−1(T ′
i,j)| = ki

(
k + 1

2

)j

.

It remains to count the subtrees of Gk mapped by f to a graph with no vertices. Such a subtree

T satisfies V (T)∩ V (G) = ∅. There are (k− 1)|E(G)| subtrees of Gk comprising a single vertex not

in V (G), and
(
k−1
2

)
|E(G)| subtrees of Gk with at least one edge not containing any vertex in V (G).

Hence

t(Gk) =




∑

i,j≥0

ti,j(G)ki
(
k + 1

2

)j


+
k(k − 1)

2
|E(G)|.

We have maxi,j≥0{i+2j : ti,j(G) > 0} ≤ maxi,j≥0{i+2j : i+ j ≤ |E(G)|} = 2|E(G)|. Therefore

t(Gk) is a polynomial of degree at most 2|E(G)|. So we can write

t(Gk) =

2|E(G)|
∑

p=0

apk
p.

60

Thus if we compute t(Gk) for 2|E(G)| + 1 distinct values of k we can recover the polynomial and

hence t(G1) = t(G) which is the number of subtrees of G. Note that G2, . . . , G4|E(G)|+2 are all

bipartite. Therefore we have the required reduction

#SUBTREES ∝T #BISUBTREES.

We have shown that counting the number of subtrees of a connected planar bipartite graph is

#P-complete. Therefore we are able to determine the complexity along y = 1 when we restrict

ourselves to connected planar bipartite graphs. The following theorem concludes this section and is

a strengthening of Theorem 2.3.2.

Theorem 2.3.18. Evaluating the Tutte polynomial of a connected planar bipartite rooted graph at

any fixed rational point (a, b) in the xy-plane is #P-hard apart from when (a, b) equals (1, 1) or when

(a, b) lies on the hyperbola H1. In these exceptional cases it is easy.

2.4 Rooted Digraphs

We present analogous results to those in the previous section by finding the computational complexity

of evaluating the Tutte polynomial of a rooted digraph at a fixed rational point. We say that a rooted

digraph is root connected if every vertex is reachable by a directed path from the root. In this section

we mainly restrict our attention to root connected digraphs.

The k thickening Dk of a root connected digraph D is obtained by replacing every edge e in D

by k parallel edges that have the same orientation as e. Theorem 2.2.1 can be specialized to root

connected digraphs in the following way.

Lemma 2.4.1. Let D be a root connected digraph. The Tutte polynomial of the k-thickening Dk of

D when y 6= −1 is given by

T (Dk;x, y) = (1 + y + . . .+ yk−1)ρ(D)T

(

D;
x+ y + . . .+ yk−1

1 + y + . . .+ yk−1
, yk
)

. (2.6)

When y = −1 we have

T (Dk;x,−1) =







(x − 1)ρ(D) if k is even;

T (D;x,−1) if k is odd.

61

By Theorem 2.2.3 the effect of the H-attachment operation on the Tutte polynomial of a root

connected graph is given in the following lemma.

Lemma 2.4.2. Let D = (r, V,
−→
E) and H = (r′, V ′,

−→
E ′) be disjoint rooted digraphs with D root

connected. The Tutte polynomial of the H-attachment of D is given by

T (D ∼ H ;x, y) = T (H ;x, y)ρ(D)T

(

D;
(x− 1)ρ(H)+1y|

−→
E ′|

T (H ;x, y)
+ 1, y

)

,

providing T (H ;x, y) 6= 0.

We now consider the computational complexity of evaluating the Tutte polynomial of a root

connected digraph at a fixed point in the rational xy-plane. In parallel with Section 2.3 we draw

our attention to the following three computational problems. Let D denote the class of all root

connected digraphs, let a, b ∈ Q and let x(t) = p(t)/q(t), y(t) = r(t)/s(t) be parametric equations of

L where p, q, r and s are polynomials over Q.

π4[D] : #ROOTED DIRECTED TUTTE POLYNOMIAL

Input D ∈ D.

Output The coefficients of T (D;x, y).

π5[D, a, b] : #ROOTED DIRECTED TUTTE POLYNOMIAL AT (a, b)

Input D ∈ D.

Output T (D; a, b).

π6[D, L] : #ROOTED DIRECTED TUTTE POLYNOMIAL ALONG L

Input D ∈ D.

Output The coefficients of the rational function of t given by evaluating T (D;x(t), y(t)).

The main result from this section is as follows.

Theorem 2.4.3. The problem π5[D, a, b] is #P-hard for all (a, b) except when (a, b) equals (1, 1),

when (a, b) lies on H1, or when b = 0. In these exceptional cases π5[D, a, b] is easy.

The proof of the following proposition is analogous to that of Proposition 2.3.10, thus we omit

it from this section.

62

Proposition 2.4.4. Let L be either Hx
0 , H

y
0 , or Hα for α ∈ Q − {0}. Let (a, b) ∈ L such that

(a, b) 6= (1, 1) and b /∈ {−1, 0}. Then

π6[D, L] ∝T π5[D, a, b].

We now define two root connected digraphs and state their Tutte polynomials.

• Let Pk be the root connected directed path of length k with the root being one of the leaves.

Then T (Pk;x, y) = 1 +
∑k

i=1(x− 1)iyi−1.

• Let Sk be the root connected directed star with k edges emanating from the root. Then

T (Sk;x, y) = xk.

These are easy to prove in a similar way to Propositions 1.7.2 and 1.7.3 using induction on k. The

proof of the following proposition is analogous to that of Proposition 2.3.11 and uses the Tutte

polynomials of P2 and Sk.

Proposition 2.4.5. Let L be the line y = −1. For a /∈ { 12 , 1} we have

π6[D, L] ∝T π5[D, a,−1].

In a similar way to Section 2.3, we begin the proof of Theorem 2.4.3 by examining the easy

points. Let D = (r, V,
−→
E) be a rooted digraph, then for any point (a, b) lying on the hyperbola H1

we have

T (D; a, b) = (a− 1)ρ(D)−|
−→
E |a|

−→
E |.

This can be computed in linear time.

We now show that evaluating T (D; a, 0) is easy for all a ∈ Q. In [23] Gordon and McMahon

define the following characteristic polynomial p(D;λ) of a rooted digraph D and show that if D is

root connected and has precisely s sinks, then

p(D;λ) =







(−1)ρ(D)(1 − λ)s if D is acyclic;

0 if D has a directed cycle.

Using the relation T (D; 1− λ, 0) = (−1)ρ(D)p(D;λ) we arrive at the result

63

T (D;x, 0) =







xs if D is acyclic;

0 if D has a directed cycle.

This can easily be computed, therefore the problem π5[D, a, 0] is easy for any a ∈ Q.

Now suppose we have a rooted digraph D = (r, V,
−→
E) with |V | = n. The n×n Laplacian matrix

Q(D) of D can be constructed as follows.

• Entry qi,j for distinct i, j equals −m where m is the number of edges from i to j.

• Entry qi,i equals the in-degree of i minus the number of loops at i.

Although the original paper proves difficult to find, the following theorem is a result by Tutte

and can be found in [56]. The proof of the theorem makes use of the so-called Kirchoff matrix.

Theorem 2.4.6. Let D be a rooted digraph. The number of spanning full arborescences is equal to

the determinant of the matrix obtained by removing the row and column of r in the Laplacian matrix

Q(D).

Example 2.4.7. Consider the graph given in Figure 2.3.

r

1 2

D

Figure 2.3

The Laplacian matrix Q(D) of D is given by

Q(D) =









r 1 2

r 1 −1 −1

1 −1 1 −2

2 0 0 3









.

64

The determinant of the matrix obtained by deleting the row and column corresponding to r is 3. The

three subdigraphs of D that are spanning full arborescences are given in Figure 2.4.

r r r

Figure 2.4

Computing the determinant of a matrix takes polynomial time [15]. Since T (D; 1, 1) counts

the number of spanning full arborescences of a rooted digraph D we have shown that computing

π5[D, 1, 1] can be done in polynomial time and is therefore easy.

We now review the hard points of Theorem 2.4.3. We begin by classifying the complexity of

evaluating π5[D, 1, b] for b /∈ {0, 1}. Provan and Ball [45] define a reliability measure that computes

the probability of a rooted digraph D = (r, V,
−→
E) being root connected. Given p ∈ R with 0 ≤ p ≤ 1

they impose a stochastic structure on D in which the edges of D are subject to random failure,

independently and each with equal probability p. Edges that have not failed are said to be operative.

They let

g(D; p) = P(there is a path of operative edges from r to every other vertex in D)

=

|
−→
E |
∑

j=0

gjp
j(1− p)|

−→
E |−j

where

gj = the number of sets of edges of cardinality j whose complement admits a path from r to every

other vertex in D.

65

Example 2.4.8. For D in Example 2.4.7 we have

g(D; p) =
6∑

j=0

gjp
j(1− p)6−j

= (1− p)6 + 5p(1− p)5 + 10p2(1− p)4 + 9p3(1− p)3 + 3p4(1− p)2.

In particular we have g(D; 1
2) =

7
16 . Note that when p = 1

2

g(D; p) =
Number of spanning subdigraphs of D that are root connected

Total number of spanning subdigraphs of D
=

T (D; 1, 2)

T (D; 2, 2)

for any rooted digraph D.

Provan and Ball show that the following computational problem is #P-complete for fixed ratio-

nal p with 0 < p < 1, and easy when p = 0 or p = 1. Note that we have restricted the input digraph

to being root connected in the problem which Provan and Ball did not, but this does not make a

difference because if it is not root connected then clearly g(D; p) = 0.

#CONNECTEDNESS RELIABILITY

Input D ∈ D.

Output g(D; p).

We now use this result to classify a range of points along the line x = 1.

Proposition 2.4.9. The computational problem π5[D, 1, b] is #P-hard for b > 1.

Proof. Let D = (r, V,
−→
E) be a root connected digraph, and let

tj = the number of sets of edges of cardinality j that admit a path from the root of D to every

other vertex in D

= the number of sets of edges of cardinality j with full rank.

66

Then for 0 < p < 1 we have

g(D; p) =

|
−→
E |
∑

j=0

gjp
j(1− p)|

−→
E |−j =

|
−→
E |
∑

j=0

tjp
|
−→
E |−j(1− p)j

=
∑

A⊆
−→
E :

ρ(A)=ρ(D)

p|
−→
E |−|A|(1 − p)|A| = p|

−→
E |−ρ(D)(1− p)ρ(D)

∑

A⊆
−→
E :

ρ(A)=ρ(D)

(
1− p

p

)|A|−ρ(A)

= p|
−→
E |−ρ(D)(1− p)ρ(D)T

(

D; 1,
1

p

)

.

Evaluating g(D; p) is therefore Turing-reducible to evaluating T (D; 1, 1p) for 0 < p < 1. Further-

more the problem π5[D, 1, b] is #P-hard to compute for b > 1.

In order to determine the complexity of the point (1,−1) we introduce a new operation on root

connected digraphs called the k-digon-stretch. We define a tailed k-digon from u to v to be the

digraph comprising a path of length 1 from vertex u to vertex w and a path of k digons (directed

cycles of length 2) from vertex w to vertex v. Let D be a root connected digraph, the k-digon stretch

Dk of D is constructed by replacing every directed edge uv in D by a tailed k-digon from u to v.

Theorem 2.4.10. Let D = (r, V,
−→
E) be a root connected digraph. The Tutte polynomial of the

k-digon-stretched graph Dk = (r, Vk,
−→
E k) of D when x = 1 is given by

T (Dk; 1, y) = (k + 1)|
−→
E |−ρ(D)yk|

−→
E |T

(

D; 1,
k + y

k + 1

)

.

p0
p1 p2 pk

q1 q2 qk
v0 v1 v2 v3 vk vk+1

Figure 2.5: A tailed k-digon from vertex v0 to vertex vk+1.

Proof. Figure 2.5 shows a tailed k-digon in Dk replacing an edge e in D. Let S be a subset of edges

of the tailed k-digon. If S contains all elements p0, p1, p2, . . . , pk then S is said to admit a strong

path through the tailed k-digon. The vertices v1, v2, . . . , vk are the internal vertices of the tailed

k-digon.

Let A ⊆ −→E k and B(A) be the set of edges in D such that A contains a strong path through their

67

corresponding tailed k-digons.

We have ρ(A) = ρ(Dk) if and only if

(i) for each tailed k-digon and for each internal vertex vi, A contains a path p0p1p2 . . . pi−1 or

qkqk−1qk−2 . . . qi, and

(ii) ρ(B(A)) = ρ(D).

Now

ρ(Dk) = k|−→E |+ ρ(D)

= k|−→E | − k|B(A)| + (k + 1)|B(A)| + ρ(D)− |B(A)|.

We can write A as the disjoint union A =
⋃

e∈
−→
E
Ae where Ae is the intersection of A with the

edges of the tailed k-digon replacing e. Let α = k|−→E | − k|B(A)| + (k + 1)|B(A)| + ρ(D) − |B(A)|.

The Tutte polynomial of Dk along the line x = 1 is therefore given by

T (Dk; 1, y) =
∑

A⊆
−→
Ek:

ρ(A)=ρ(Dk)

(y − 1)|A|−ρ(Dk) =
∑

B⊆
−→
E :

ρ(B)=ρ(D)

∑

A⊆
−→
Ek:

ρ(A)=ρ(Dk)
B(A)=B

(y − 1)|A|−ρ(Dk)

=
∑

B⊆
−→
E :

ρ(B)=ρ(D)

∑

A⊆
−→
Ek:

ρ(A)=ρ(Dk),
B(A)=B




∏

e∈
−→
E

(y − 1)|Ae|



 (y − 1)−α

=
∑

B⊆
−→
E :

ρ(B)=ρ(D)

∑

A⊆
−→
Ek:

ρ(A)=ρ(Dk),
B(A)=B








∏

e∈
−→
E

e/∈B(A)

(y − 1)|Ae|















∏

e∈
−→
E :

e∈B(A)

(y − 1)|Ae|








(y − 1)−α

=
∑

B⊆
−→
E :

ρ(B)=ρ(D)

∑

A⊆
−→
Ek:

ρ(A)=ρ(Dk),
B(A)=B








∏

e∈
−→
E :

e/∈B(A)

(y − 1)|Ae|−k








︸ ︷︷ ︸

(1)








∏

e∈
−→
E :

e∈B(A)

(y − 1)|Ae|−(k+1)








︸ ︷︷ ︸

(2)

(y − 1)|B(A)|−ρ(D) (2.7)

(1) Here e /∈ B(A). Therefore not all of the edges p0, p1, . . . , pk can belong to Ae. Suppose

that p0, p1, . . . , pj ∈ Ae but pj+1 /∈ Ae for some j < k. Since ρ(A) = ρ(Dk) the remaining

vertices vj+1, . . . , vk must be reachable by a directed path from vk+1. Thus qk, qk−1, . . . , qj+2 ∈

Ae. The minimum number of edges in Ae is therefore k. Now we have the remaining edges

68

pj+2, . . . , pk, qj+1, . . . , q1, each of which could be included in our subset Ae or not. There are

k− (j+1)+ (j+1) = k edges in this list. The presence of t of these edges in our set Ae would

give |Ae| = k + t. There are k + 1 choices of j. So summing
∏

e∈
−→
E :

e/∈B(A)

(y − 1)|Ae|−k over all

choices of Ae gives

(

(k + 1)

k∑

t=0

(
k

t

)

(y − 1)t

)|
−→
E |−|B|

=
(
(k + 1)yk

)|
−→
E |−|B|

.

(2) Here e ∈ B(A). Therefore the edges p0, p1, . . . , pk must belong to Ae. The minimum number

of edges in Ae is therefore k+1. Now we have the remaining edges q1, q2, . . . , qk, each of which

could be included in our subset Ae or not. There are k edges in this list. The presence of t of

these edges in our set Ae would give |Ae| = k + 1 + t. So summing
∏

e∈
−→
E :

e∈B(A)

(y − 1)|Ae|−(k+1)

over all choices of Ae gives

(
k∑

t=0

(
k

t

)

(y − 1)t

)|B|

= (yk)|B|.

Thus Equation 2.7 becomes

∑

B⊆
−→
E :

ρ(B)=ρ(D)

(yk)|B|
(
(k + 1)yk

)|
−→
E |−|B|

(y − 1)|B|−ρ(D)

= (yk)|
−→
E |

∑

B⊆
−→
E :

ρ(B)=ρ(D)

(k + 1)ρ(B)−|B|+|
−→
E |−ρ(D)(y − 1)|B|−ρ(B)

= (yk)|
−→
E |(k + 1)|

−→
E |−ρ(D)T

(

D; 1,
y + k

k + 1

)

.

We now complete the classification of the complexities along the line Hx
0 .

Proposition 2.4.11. The computational problem π5[D, 1, b] is #P-hard for b /∈ {0, 1}.

Proof. For b /∈ {−1, 0, 1} the proof follows immediately from Propositions 2.4.4 and 2.4.9. By

Theorem 2.4.10 forming the 2-digon-stretch of a root connected digraph D = (r, V,
−→
E) and setting

y = −1 yields

T (D2; 1,−1) = 3|
−→
E |−ρ(D)T

(

D; 1,
1

3

)

.

69

Therefore evaluating the Tutte polynomial of a root connected digraph at the point (1,−1) is at

least as hard as evaluating it at (1, 1
3), which we have just shown to be #P-hard.

We now show that evaluating the Tutte polynomial of a root connected digraph at most points

on the hyperbola Hα for α 6= 0 is at least as hard as evaluating it at the point (1 + α, 2).

Proposition 2.4.12. Let (a, b) ∈ Hα for α ∈ Q − {0} with b /∈ {−1, 0}, then

π5[D, 1 + α, 2] ∝T π5[D, a, b].

Proof. The hyperbola Hα for α ∈ Q − {0} crosses the line y = 2 at the point (1 + α, 2). By

Proposition 2.4.4 we know that for any point (a, b) ∈ Hα with b /∈ {−1, 0} we have π5[D, 1+α, 2] ∝T

π6[D, Hα] ∝T π5[D, a, b].

We will now show that evaluating the Tutte polynomial of a root connected digraph at most of

the points on the line y = 2 is #P-hard. This will enable us to classify the complexity of most points

lying on the hyperbola Hα for all α ∈ Q− {0}.

Proposition 2.4.13. The computational problem π5[D, a, 2] is #P-hard for a 6= 2.

Proof. We begin by proving that when L is the line y = 2 we have the reduction

π6[D, L] ∝T π5[D, a, 2]

for a /∈ {1, 2}. Let D = (r, V,
−→
E) be a root connected digraph and let z = x− 1. Along L the Tutte

polynomial of D has the form

T (D;x, 2) =
∑

A⊆
−→
E

zρ(D)−ρ(A) =

ρ(D)
∑

i=0

tiz
i

for some t0, t1, . . . , tρ(D). We will now show that we may determine all of the coefficients ti in

polynomial time from T (D ∼ Sk; a, 2) for k = 0, 1, . . . , ρ(D), apart from at some exceptional values

of a. By Lemma 2.4.2 we have

T (D ∼ Sk; a, 2) = akρ(D)T

(

D;
2k(a− 1)k+1

ak
+ 1, 2

)

.

70

Therefore we may compute T
(

D; 2k(a−1)k+1

ak + 1, 2
)

from T (D ∼ Sk; a, 2) when a 6= 0. For a /∈ { 23 , 1}

the values of
(

2k(a−1)k+1

ak + 1, 2
)

are pairwise distinct for k = 0, 1, . . . , ρ(D). Suppose otherwise, that

is for some m 6= n we have

2m(a− 1)m+1

am
+ 1 =

2n(a− 1)n+1

an
+ 1.

This can be reduced to
(
2(a− 1)

a

)m−n

= 1.

It should be straightforward to see that this is only satisfied when a = 2, m = n or a = 2
3 and

m − n = 2t for some t ∈ Z. Therefore by evaluating T (D ∼ Sk; a, 2) for k = 0, 1, . . . , ρ(D) where

a /∈ {0, 23 , 1, 2} we obtain
∑ρ(D)

i=0 tiz
i for ρ(D) + 1 distinct values of z. This gives us ρ(D) + 1

linear equations for the coefficients ti, and so they may be recovered in polynomial time. Hence

evaluating the Tutte polynomial of a root connected digraph along the line y = 2 is Turing-reducible

to evaluating it at the point (a, 2) for a /∈ {0, 23 , 1, 2}.

We now consider the cases where a = 0 and a = 2
3 . By Lemma 2.4.2 we have

T (D ∼ P2; 0, 2) = 2ρ(D)T

(

D;
(−1)322

2
+ 1, 2

)

= 2ρ(D)T (D;−1, 2).

Therefore we have the reduction

π5[D,−1, 2] ∝T π5[D, 0, 2].

Similarly we have

T

(

D ∼ P2;
2

3
, 2

)

= 2ρ(D)T

(

D;
(− 1

3)
322

2
+ 1, 2

)

= 2ρ(D)T

(

D;
25

27
, 2

)

.

Therefore we have the reduction

π5[D, 25/27, 2] ∝T π5[D, 2/3, 2].

71

By Proposition 2.4.11 we already know that evaluating the Tutte polynomial of a root connected

digraph at the point (1, 2) is #P-hard. For a /∈ {1, 2} we now have the following reductions

π5[D, 1, 2] ∝T π6[D, L] ∝T π5[D, a, 2].

This completes the proof.

Theorem 2.4.14. For (a, b) ∈ Hα for α ∈ Q − {0, 1} with b 6= 0, the computational problem

π5[D, a, b] is #P-hard.

Proof. By Proposition 2.4.12 we have π5[D, 1 + α, 2] ∝T π5[D, a, b] for b /∈ {−1, 0}. By Proposi-

tion 2.4.13 we have π5[D, a, 2] is #P-hard to compute for a 6= 2. Therefore since α 6= 1 and b 6= 0

we have π5[D, a, b] is #P-hard for b 6= −1.

Now by Proposition 2.4.5 we have π5[D, 1,−1] ∝T π5[D, a,−1] for a 6= 1/2. By Proposition 2.4.11

π5[D, 1,−1] is #P-hard to compute. Therefore since a 6= 1
2 π5[D, a,−1] is #P-hard.

The only remaining points we need to classify are those lying on the line y = 1. To do this we

prove that the problem of evaluating the Tutte polynomial of a root connected digraph at most fixed

points along this line is at least as hard as the analogous problem for rooted graphs.

Theorem 2.4.15. The computational problem π5[D, a, 1] is #P-hard for a ∈ Q− {1}.

Proof. Let G = (r, V, E) be a connected rooted graph. Suppose we construct a root connected

digraph D = (r, V,
−→
E) from G by replacing every edge in G by a digon with one edge oriented in

each direction. We can define a natural map f : 2
−→
E → 2E with f(

−→
A) = A such that A ⊆ E is the

set of edges in G that are replaced by edges of
−→
A ⊆ −→E in D.

If ρG(A) = |A| then G|A is a rooted tree, possibly with isolated vertices. Similarly if ρD(
−→
A) = |−→A |

then G|−→A is a rooted arborescence, possibly with isolated vertices. For every subset A of E with

ρG(A) = |A|, there is precisely one choice of
−→
A ⊆ −→E with ρD(

−→
A) = |−→A | and f(

−→
A) = A. This is

obtained by directing all the edges of A away from r. On the other hand if ρ(
−→
A) = |−→A | then by

removing the directions from the edges of
−→
A , we obtain a set A with ρ(A) = |A| and f(

−→
A) = A.

Thus there is a one-to-one correspondence between subsets A of E with ρG(A) = |A| and subsets
−→
A

72

of
−→
E with ρD(

−→
A) = |−→A |, and this correspondence preserves the sizes of the sets. Therefore we have

T (D;x, 1) =
∑

−→
A⊆

−→
E :

|
−→
A |=ρD(

−→
A)

(x− 1)ρ(D)−|
−→
A | =

∑

A⊆E:
|A|=ρG(A)

(x− 1)ρ(G)−|A|

= T (G;x, 1).

By the reduction π2[G, a, 1] ∝T π5[D, a, 1] and Proposition 2.3.16 we have proved that π5[D, a, 1]

is #P-hard for a 6= 1.

2.5 Binary Greedoids

In this section we determine the computational complexity of evaluating the Tutte polynomial of a

binary greedoid at a fixed rational point.

Let Γ = Γ(M) for some binary matrix M . The k-thickening Γk of Γ is the binary greedoid Γ(M ′)

where M ′ is the matrix obtained by replacing each column of M by k copies of the column. We have

Γ(M ′) = (Γ(M))k, so Theorem 2.2.1 can be specialized to binary greedoids in the following way.

Lemma 2.5.1. Let Γ be a binary greedoid. The Tutte polynomial of the k-thickening Γk of Γ when

y 6= 1 is given by

T (Γk;x, y) = (1 + y + . . .+ yk−1)ρ(Γ)T

(

Γ;
x+ y + . . .+ yk−1

1 + y + . . .+ yk−1
, yk
)

.

When y = −1 we have

T (Γk;x,−1) =







(x − 1)ρ(Γ) if k is even;

T (Γ;x,−1) if k is odd.

We now determine the Tutte polynomial of the binary greedoid Γ(Ik) where Ik is the k × k

identity matrix.

Proposition 2.5.2. The Tutte polynomial of the binary greedoid Γ(Ik) is given by

T (Γ(Ik);x, y) = 1 +

k∑

j=1

(x− 1)jyj−1.

73

Proof. We prove this result by performing induction on k. When k = 1 the matrix I1 is given by

a single entry 1. The Tutte polynomial of Γ(I1) is therefore given by T (Γ(I1);x, y) = 1 + (x − 1).

Now assume the result holds for k = t. Let Γ = Γ(It+1). Let M ′ be obtained by deleting the first

column of It+1 and M ′′ be obtained by deleting the first row and column of It+1. Suppose that

e is the element of Γ labelling the first column. Then Γ(It+1) \ e = Γ(M ′) and by Lemma 1.3.19

Γ(It+1)/e = Γ(M ′′). Note that M ′′ = It and every element of Γ(M ′) is a loop. Thus

T (Γ;x, y) = 1 +

t∑

j=1

(x − 1)jyj−1 + (x − 1)t+1yt

= 1 +

t+1∑

j=1

(x − 1)jyj−1

as required.

We now present a special case of Theorem 2.2.4.

Proposition 2.5.3. Let Γ be a binary greedoid and let Γ′ = Γ(Ik). Then

T (Γ ≈ Γ′;x, y) = T (Γ;x, y)(x− 1)kyk + T (Γ; 1, y)
(

1 +

k∑

j=1

(x− 1)jyj−1 − (x− 1)kyk
)

.

Proof. The proof follows immediately from Theorem 2.2.4 and Proposition 2.5.2.

In a similar way to previous sections we concentrate on three particular computational problems.

Let B denote the class of all binary greedoids, let a, b ∈ Q and let x(t) = p(t)/q(t), y(t) = r(t)/s(t)

be parametric equations of L where p, q, r and s are polynomials over Q.

π7[B] : #BINARY GREEDOID TUTTE POLYNOMIAL

Input Γ ∈ B.

Output The coefficients of T (Γ;x, y).

π8[B, a, b] : #BINARY GREEDOID TUTTE POLYNOMIAL AT (a, b)

Input Γ ∈ B.

Output T (Γ; a, b).

74

π9[B, L] : #BINARY GREEDOID TUTTE POLYNOMIAL ALONG L

Input Γ ∈ B.

Output The coefficients of the rational function of t given by evaluating T (Γ;x(t), y(t)).

The main result from this section is as follows.

Theorem 2.5.4. The problem π8[B, a, b] is #P-hard for all (a, b) except when (a, b) lies on H1. In

this exceptional case π8[B, a, b] is easy.

The proof of the following proposition is analogous to that of Proposition 2.3.10, thus we omit

it from this section.

Proposition 2.5.5. Let L be either Hx
0 , H

y
0 , or Hα for α ∈ Q − {0}. Let (a, b) ∈ L such that

(a, b) 6= (1, 1) and b /∈ {−1, 0}. Then

π9[B, L] ∝T π8[B, a, b].

We begin by examining the easy points of Theorem 2.5.4. Let Γ = (E,F) be a binary greedoid,

then for any point (a, b) lying on the hyperbola H1 we have

T (Γ; a, b) = (a− 1)ρ(Γ)−|E|a|E|,

which is easy to compute.

A binary matroid is a matroid that can be represented over the finite field Z2. Every graphic

matroid is also binary, so Theorem 1.6.1 and Lemma 1.3.17 imply that π8[B, 1, b] is #P-hard pro-

viding b 6= 1. By combining this with the following unpublished result by Vertigan, we are able to

begin examining the hard points of Theorem 2.5.4.

Theorem 2.5.6 (Vertigan). Evaluating the Tutte polynomial of a binary matroid is #P-hard at the

point (1, 1).

We now classify the complexity of evaluating the Tutte polynomial of a binary greedoid along

the lines Hx
0 and Hy

0 . It is worth noting that the following two propositions are the only results that

rely on Proposition 2.5.6.

Proposition 2.5.7. The computational problem π8[B, 1, b] is #P-hard for all b.

75

Proof. This follows from Theorem 2.5.6 and the remarks before it.

Proposition 2.5.8. The computational problem π8[B, a, 1] is #P-hard for all a.

Proof. By Proposition 2.5.5 we have π9[B, Hy
0] ∝T π8[B, a, 1] for a 6= 1. The result now follows from

Proposition 2.5.7.

We now classify the complexity of evaluating the Tutte polynomial of a binary greedoid along

y = 0 and y = −1.

Proposition 2.5.9. The computational problem π8[B, a, 0] is #P-hard for all a 6= 0.

Proof. First note that (0, 0) lies on H1. Let Γ be a binary greedoid and let Γ′ = Γ(Ik). Now by

Proposition 2.5.3 we have

T (Γ ≈ Γ′; a, 0) = aT (Γ; 1, 0).

Therefore when a 6= 0 we have the reduction π8[B, 1, 0] ∝T π8[B, a, 0]. The result now follows from

Proposition 2.5.7.

Proposition 2.5.10. The computational problem π8[B, a,−1] is #P -hard for all a 6= 1
2 .

Proof. By applying Proposition 2.5.3 with k = 1, after a little rearrangement we obtain

(2a− 1)T (Γ; 1,−1) = T (Γ ≈ Γ′; a,−1) + (a− 1)T (Γ; a,−1).

Thus, providing a 6= 1
2 , an algorithm solving π8[B, a,−1] in polynomial time could be used to

determine both T (Γ ≈ Γ′; a,−1) and T (Γ; a,−1), and hence T (Γ; 1,−1). The result follows by

applying Proposition 2.5.7.

The following final proposition of this section completes the proof of Theorem 2.5.4.

Proposition 2.5.11. Let (a, b) ∈ Hα for α ∈ Q − {0, 1} with b 6= −1, then the computational

problem π8[B, a, b] is #P-hard.

Proof. The hyperbola Hα for α ∈ Q − {0, 1} crosses the x-axis at the point (1 − α, 0). By Propo-

sition 2.5.5 since b 6= −1 and (a, b) 6= (1, 1) we have π8[B, 1 − α, 0] ∝T π8[B, a, b]. The result now

follows from Proposition 2.5.9.

76

Chapter 3

Polynomial-Time Algorithms for

Evaluating the Tutte Polynomial

3.1 Introduction

From Chapter 2 we know that evaluating the Tutte polynomial of three particular classes of greedoids

is #P-hard at most fixed rational points. Here we restrict each class to those that are of bounded

tree-width and furthermore construct algorithms using a linear number of arithmetic operations to

evaluate the Tutte polynomial of each of them at a fixed rational point. The theory of our algorithms

closely follows the work of Noble in [42] in which he gives a polynomial-time algorithm to evaluate

the Tutte polynomial of a graph of bounded tree-width. The main result from [42] is as follows.

Theorem 3.1.1 (Noble). For every k ∈ N, there is an algorithm Ak that will input a graph G

having tree-width at most k, and rationals x = px

qx
, y =

py

qy
, and evaluate T (G;x, y) in time at most

O(f(k)(n + p)(n+m)s log((n+m)s) log log((n+m)s))

where s = log(|px|+ |qx|+ |py|+ |qy|+ 1), p is the largest size of a set of mutually parallel edges in

G and f(k) is given by

f(k) = k5(2k + 1)(2k−1)((4k + 5)(4k+5)(2(2k+5)/3)(4k+5))(4k+1).

77

Before we can discuss the notion of a graph having bounded tree-width, we must first define a

tree-decomposition of a graph which essentially, as its name suggests, decomposes the graph into

pieces connected in a tree-like fashion. The notion of a tree-decomposition of a graph was first

developed by Halin in [26], and later rediscovered by Robertson and Seymour in [46] where they use

it to find a polynomial-time algorithm to determine whether a graph has a subgraph contractible to

a fixed planar graph. Our incentive is to represent any graph as a tree because many algorithms on

graphs become easy when the input is restricted to being a tree. We will refer to the “vertices” of

a tree-decomposition as nodes and to the edges as branches.

Definition 3.1.2 (Tree-Decomposition). Let G = (V,E) be a graph. A tree-decomposition of G is

a pair ({Si|i ∈ I}, T = (I, B)) such that T is a tree with branches B, and for every node i of T , we

have a subset Si ⊆ V , called the bag of i, satisfying the following axioms:

(TD1)
⋃

i∈I Si = V .

(TD2) for every edge {v, w} ∈ E, there exists an i ∈ I such that {v, w} ⊆ Si.

(TD3) for all i, j, k ∈ I, if j is on the path from i to k in T , then Si ∩ Sk ⊆ Sj .

Figure 3.1 illustrates an example of a tree-decomposition of a graph. Of course one could simply

construct a trivial tree-decomposition of a graph with just one node containing all vertices of the

graph, however this will not be of any computational interest. Note that a tree-decomposition of

a graph is not unique and that two non-isomorphic graphs can share the same tree-decomposition.

The property that we essentially want to carry over from trees is that the deletion of a very small

set of vertices breaks the graph into disconnected components. A graph G is called a k-tree if and

only if either G is the complete graph with k vertices, or G has a vertex v with degree k such that

vertices adjacent to v form a complete graph and G \ v is a k-tree. A partial k-tree is any subgraph

of a k-tree. An example of a 2-tree is given in Figure 3.2.

The concept of tree-width was introduced by Robertson and Seymour in their work on graph

minors [46], and almost simultaneously by Arnborg and Proskurowski in their work on partial k-trees

[3]. We will exclusively focus on the definition in terms of tree-decompositions, however it is worth

noting that a graph has tree-width at most k if and only if it is a partial k-tree, a result obtained

independently by Wimer [63] and Scheffler [49].

78

a b

c d

e f

gh

d, e

b, c, d d, e, g, h

a, b, c, d b, c e, g, h e, f, g

a, b, d f

Figure 3.1: Graph with a corresponding tree-decomposition

Figure 3.2: Example of a 2-tree

Definition 3.1.3 (Tree-Width). Let τ = ({Si|i ∈ I}, T = (I, B)) be a tree-decomposition of a

graph G. The width w(τ) of τ is given by

w(τ) = max
i∈I
|Si| − 1. (3.1)

The tree-width tw(G) of G is then said to be the minimum width taken over all possible tree-

79

decompositions of G.

A graph G has tree-width 1 if and only if it is a tree or a forest. The −1 in the tree-width

definition is somewhat arbitrary and ensures that a tree does in fact have tree-width 1. A graph

G = (V,E) has tree-width 0 if and only if E = ∅. Examples of other well-studied graphs along with

their tree-width include series-parallel graphs which have tree-width 2, and the complete graphs Kn

which have tree-width n−1 for n ≥ 1. Intuitively, a graph has small tree-width if it can be recursively

decomposed into small subgraphs that have small overlap. More precisely, it gives information about

the connectivity of the graph. Therefore tree-width essentially measures the graph’s deviation from

a tree, i.e. the smaller the tree-width of G, the more “tree-like” the structure of G. Arnborg et al

discovered that determining the tree-width of a graph is NP-complete [3].

The tree-width of a graph is a parameter which has proven to be very important in algorithmic

graph theory. This is because many algorithmic problems that are intractable for arbitrary graphs,

can be solved efficiently in polynomial and often linear time when restricted to the class of graphs

of bounded tree-width. A well-known example of such a problem that becomes easy when the input

graph is of bounded tree-width is given below.

#MAXIMUM INDEPENDENT SET

Input G ∈ G.

Output The size of a maximum independent set of vertices of G.

Before continuing with our approach to construct a fast algorithm to evaluate the Tutte poly-

nomial of a rooted graph of bounded tree-width, we now discuss an independent approach due to

Makowsky and coauthors using monadic second order logic (MSOL).

Let G = (V,E) be a graph and let R ⊆ V ×E be a binary relation such that R(v, e) if and only

if v is an endpoint of e in G. For technical reasons, in order to be able to incorporate polynomials

such as the Tutte polynomial into the framework, we require that the graph comes with an arbitrary

linear order on its vertices accessed by means of a successor relation S. More precisely S(u, v) for

vertices u and v if and only if u immediately precedes v in the linear order. The MSOL of graphs

has variables vi for vertices, ei for edges, Vj for subsets of vertices, Ej for subsets of edges, and is

built from

80

(i) the atomic formulae

vi ∈ Vj , ei ∈ Ej , R(vi, ei), S(vi, vj), vi = vj , ei = ej,

(ii) the quantifiers ∀ and ∃ over the variables vi, ei, Vj , Ej , and

(iii) the standard logical connectives ¬,∧,∨,→ and ↔.

Thus MSOL permits quantification over vertices, edges, subsets of vertices and subsets of edges. The

monadic qualifier forbids quantification over functions or relations, which is, however, permitted in

the full second order logic.

Suppose, for simplicity, that G = (V,E) is loopless. Then the following MSOL formula states

that G is 3-colourable.

∃A,B,C ⊆ V ((∀v ∈ V ((v ∈ A) ∨ (v ∈ B) ∨ (v ∈ C)))

∧(∀v1, v2 ∈ V, ∀e ∈ E

((R(e, v1) ∧R(e, v2) ∧ (((v1 ∈ A) ∧ (v2 ∈ A)) ∨ ((v1 ∈ B) ∧ (v2 ∈ B)) ∨ ((v1 ∈ C) ∧ (v2 ∈ C))))

→ (v1 = v2))))

In the formula the sets A, B and C denote the sets of vertices receiving each of the three colours.

The first part of the formula ensures that every vertex belongs to at least one of A, B and C. The

second part ensures that there is no edge joining two vertices belonging to the same set. The formula

permits a vertex to belong to more than one of the sets A, B and C, or in other words to receive

more than one colour. This does not create any difficulties because if the formula is true then there

are certainly disjoint sets A, B and C that also satisfy it.

In [40] Makowsky and Mariño define MSOL-polynomials to be polynomials of the form

p(G) = c
∑

subgraphs H

(
∏

case1

w1 · . . . ·
∏

caseα

wα

)

where the summation ranges over an MSOL-definable family of subgraphs H of G, the products

range over all edges and vertices of H with an MSOL-definable finite case distinction where each

case receives the same weight, and c is a constant.

The following result is proved in [38] using the spanning tree definition of the Tutte polynomial

81

of a graph.

Lemma 3.1.4. The Tutte polynomial of a graph is an MSOL-polynomial.

In [38] Makowsky uses the results from [12] to prove the following theorem.

Theorem 3.1.5. Let K be a class of graphs of tree-width at most k. Let p(G) be an MSOL-

polynomial. Then p(G) can be computed on K in polynomial time.

This gives a polynomial-time algorithm to evaluate the Tutte polynomial of a graph of bounded

tree-width.

Makowsky [39] has informed us that the results of this section and the next can be obtained

using techniques based on MSOL. There are many extensions of MSOL, for example, working with

coloured graphs rather than ordinary graphs, as in [38]. But checking that the methods generalize to

a specific case such as rooted graphs or the directed rooted graphs of the next section is very difficult

as the proofs rely on several, long model-theoretic papers of Courcelle. The results presented here

apparently do not follow directly from any published result using MSOL techniques of which we are

aware. An advantage of our methods is that they give an explicit algorithm.

If there exists a branch {u, v} ∈ B in a tree-decomposition ({Si|i ∈ I}, T = (I, B)) such that

Su ⊆ Sv, then we can contract the branch {u, v} and obtain a smaller tree-decomposition with the

same width.

We say that a tree-decomposition is good if for some k ∈ N we have

1. |Si| = k + 1 for all i ∈ I, and

2. |Si ∩ Sj | = k if {i, j} ∈ B.

Figure 3.3 illustrates an example of a good tree-decomposition of a graph. Given a tree-decomposition

of a graph, we can construct a good tree-decomposition of the graph with the same width in poly-

nomial time.

Bodlaender gives a linear time algorithm for finding tree-decompositions of minimum width of a

graph of bounded tree-width [7].

Theorem 3.1.6 (Bodlaender 1996). For all k ∈ N, there exists a linear-time algorithm in size

of G that tests whether a given graph G = (V,E) has tree-width at most k and, if so, outputs a

tree-decomposition of G with width at most k.

82

a, d, e, h

a, b, d, e d, e, g, h

a, b, c, d e, f, g, h

Figure 3.3: A good tree-decomposition of the graph given in Figure 3.1

Note that Bodlaender’s algorithm can easily be modified to produce a good tree-decomposition

of the input graph.

3.2 Rooted Graphs

In this section we deal exclusively with rooted graphs. The concept of a tree-decomposition and

furthermore tree-width can naturally be defined for rooted graphs as opposed to unrooted graphs.

The definitions remain the same and do not depend on the choice of root vertex. To simplify the

presentation of our algorithm we borrow the concept of a nice tree-decomposition of a graph from

[5], in which Blaser and Hoffman use it to construct a fast algorithm to evaluate the multivariate

interlace polynomial of a graph of bounded tree-width. This will allow us to explain the intermediate

steps of the algorithm in more detail. From now onwards assume that for every tree-decomposition

({Si|i ∈ I}, T = (I, B)) of a rooted graph G = (r, V, E) we let T be rooted with an arbitrarily chosen

node ρ with r ∈ Sρ as the root and all branches directed away from ρ. If (i, j) is a branch of T then

we say that i is the parent of j, and j is the child of i. If there is a directed path from node i to

node j then we say j is a descendant of i.

Definition 3.2.1 (Nice Tree-Decomposition). Let G = (r, V, E) be a rooted graph. A nice tree-

decomposition of G is a tree-decomposition τ = ({Si|i ∈ I}, T = (I, B)) of G with T rooted as

described above, such that

(ND1) every node i ∈ I must be one of the following types:

• Leaf: node i is a leaf of T .

83

• Join: node i has exactly two child nodes j and k in T and Si = Sj = Sk.

• Introduce: node i has exactly one child j in T , and there is a vertex a ∈ V − Sj with

Si = Sj ∪ a.

• Forget: node i has exactly one child j in T , and there is a vertex a ∈ V − Si with

Sj = Si ∪ a.

(ND2) for every node i ∈ I which isn’t a forget node, there exists a leaf l of T such that Si = Sl.

Figure 3.4 illustrates an example of a nice tree-decomposition of a rooted graph.

a, d, e, h

a, d, e, h a, d, e, h

a, d, e, ha, d, e, h

a, d, e

d, e, h

a, b, d, e

d, e, g, h

a, b, d, e a, b, d, e

d, e, g, h d, e, g, h

a, b, d

e, g, h

a, b, c, d

e, f, g, h

Figure 3.4: A nice tree-decomposition of the graph given in Figure 3.1 (suppose it is rooted at a)

Proposition 3.2.2. Given a rooted graph G = (r, V, E) of tree-width k, there exists a nice tree-

decomposition ({Si|i ∈ I}, T = (I, B)) of G of width k. Moreover, given a good tree-decomposition

84

of G with width k, it is possible to construct a nice tree-decomposition of G with width k in time

O(nk).

Proof. Given a rooted graph G of tree-width k, we can apply Bodlaender’s algorithm to the under-

lying unrooted graph to find a good tree-decomposition of width k.

We show that |I| = n− k for any good tree-decomposition τ = (S = {Si|i ∈ I}, T = (I, B)) of

an unrooted graph H of width k by using induction on |I|. When |I| = 1 we have one bag with

n = k+ 1 vertices in τ , so clearly |I| = n− k. When |I| > 1 let l be a leaf of T with parent node l′.

Since τ is good we have |Sl − Sl′ | = 1. Using (TD3) the unique member of Sl − Sl′ is not contained

in any other bag in τ . Let τ ′ be obtained from τ by deleting l from T and removing Sl from the

collection S.

Now τ ′ is a good tree-decomposition of H − (Sl − Sl′) with w(τ ′) = k and |I| − 1 nodes. Using

induction we have |I| − 1 = n− |Sl − Sl′ | − k, so |I| = n− 1− k + 1 = n− k as required.

We have shown that we can use Bodlaender’s algorithm to return a good tree-decomposition

τ = (S = {Si|i ∈ I}, T = (I, B)) of width k and n− k nodes.

Now choose ρ with r ∈ Sρ to be the root of T and orient the branches away from ρ. We now

modify τ to get a new tree-decomposition τ ′ = (S ′ = {S′
i|i ∈ I ′}, T ′ = (I ′, B′)) where T ′ is a rooted

binary tree and for every Si ∈ S there is a leaf l of T ′ such that Si = S′
l .

Suppose we have a node 0 in I with children 1, 2, . . . , d and corresponding bags S0, S1, . . . , Sd.

Replace the node 0 in I by nodes 01, 02, . . . , 0d+1 such that nodes i and 0i+1 are the children of 0i

for 1 ≤ i ≤ d, and 01 is the child of the parent of 0 if it exists. Let S′
0i = S0 and S′

i = Si for all

1 ≤ i ≤ d. We apply this procedure to every node in I. Notice that in this procedure we double the

number of branches. To see this note that the total outdegree of nodes replacing node 0 is twice the

outdegree of 0 in τ . Hence τ ′ has 2(n− k)− 1 nodes.

We have constructed a tree-decomposition τ ′ = (S ′ = {S′
i|i ∈ I ′}, T ′ = (I ′, B′)) of H such that

T ′ is a rooted tree in which every node has at most two children and for every distinct bag S′
i ∈ S ′

there exists a leaf node l ∈ I ′ such that S′
i = S′

l and w(τ ′) = k.

We now modify τ ′ by inserting ‘introduce’ and ‘forget’ nodes to form a nice tree-decomposition

of H . Suppose we have a node j in T ′ with parent node i such that S′
i 6= S′

j . Let S′
i − S′

j = a and

S′
j − S′

i = b. Insert nodes ı̂, ̂ into the branch (i, j) so that îı̂j is a directed path from i to j. Let

S′
ı̂ = S′

i and S′
̂ = S′

j − b. Note S′
ı̂ − a = S′

̂. This procedure adds 2(n− k − 1) nodes to T ′ since we

add 2 nodes for every branch of T .

85

Hence the final tree-decomposition has at most 4(n − k) − 3 nodes. These steps can clearly be

done in O(nk) time.

The procedures discussed in this proof to construct a nice tree-decomposition of a rooted graph

from a good tree-decomposition of the graph do not increase the width since we only ever add bags

of size k or k + 1.

Consider a nice tree-decomposition ({Si|i ∈ I}, T = (I, B)) of a rooted graph G = (r, V, E) with

root node ρ. For each node i ∈ I we let

Vi =
⋃

j≤i

Sj

where the union is taken over every leaf j such that j = i or j is a descendant of i in T .

By (ND2) it is possible to partition the edges of G amongst the leaves of T such that an edge

{x, y} ∈ E is associated to a leaf i with {x, y} ⊆ Si. Let Di be the set of edges associated to leaf i.

For graphs with parallel edges we ensure that if two edges are in the same parallel class then they

belong to the same set Di. If e ∈ Di let m(e) denote the size of the parallel class containing e. For

each node i ∈ I we let

Ei =
⋃

j≤i

Dj (3.2)

where the union is again taken over every leaf j such that j = i or j is a descendant of i in T .

Therefore for every node i ∈ I in the nice tree-decomposition we have a corresponding subgraph

Gi = (Vi, Ei) and G =
⋃

i∈I Gi.

Noble’s algorithm begins by finding all partitions of a bag Si, for some leaf node i, induced by

subsets of edges of Ei. This allows it to know about the connectivity of each possible subgraph of

Gi. Not only will we also need to know about the connectivity of our rooted subgraphs, but we

will need to distinguish which vertices, if any, are connected to the root. For this we introduce the

following definition of a state of a set which partitions the set into what we call “parts”.

Definition 3.2.3 (State). A state α of a set S is a partition of S with one distinguished part B0(α)

which, with a slight abuse of terminology, may be empty. We denote the other parts, which will

always be non-empty, by B1(α), . . . , Bt(α). Let |α| denote the number of parts of α not counting

B0(α), i.e. |α| = t.

Let Υ(S) be the set of all states of S.

86

In the following example to differentiate between the parts, we place a “×” adjacent to the part

B0. If there is no × then this signifies that B0 is empty.

Example 3.2.4. The states of the set S = {a, b, c} are

abc ab|c ac|b a|bc a|b|c

abc× ab|c× ab×|c ac|b× ac×|b

a|bc× a×|bc a|b|c× a|b×|c a×|b|c

Note that the set of partitions of a set S is a subset of the set of states of S. Below we present a

formula to calculate the number of states of a set which will be useful when calculating the running

time for the algorithm. Let B(n) denote the n-th Bell number of a set with n elements.

Lemma 3.2.5. The number of states of a set with t elements is B(t+ 1)

Proof. Let Π(S) denote the set of all partitions of a set S. For x /∈ S we define h : Υ(S)→ Π(S ∪x)

to be the function mapping the state α of S to a partition α′ of S ∪ x formed by adding x to B0(α).

This is obviously a one-to-one correspondence between the states of S and the partitions of S∪x.

Example 3.2.6. In our previous example we had S = {a, b, c}. Therefore the number of states of

S is B(4) = 15.

We now give an informal idea of the role of states. The algorithm works up the tree from the

leaves doing some computations on Gi only when the corresponding computations at the children

of i have been done. Each subset A of the edges of Gi induces a partition of the vertices in Si

given by the connected components of Gi|A. We shall see that the contribution of A to T (G;x, y)

depends only on certain information concerning A, including this partition rather than the precise

edges comprising A.

Given a rooted graphG, S ⊆ V (G), A ⊆ E(G) and B0 ⊆ S, we will now define a state α(S,A,B0)

of S.

Let C1, . . . , Ct be the connected components of G|A. Let C′
i = V (Ci) ∩ S. If there exists i such

that C′
i ∩B0 and C′

i∩ (S−B0) are both non-empty, i.e. if there is a path in G|A from a vertex in B0

to a vertex in S−B0, then α(S,A,B0) is undefined. Otherwise let B0(α) = B0 and B1(α), . . . , Bs(α)

be the sets C′
i that are non-empty and are contained in S −B0. If α = α(S,A,B0) then let f(A,α)

87

be the number of vertices in V (G)− S that are not connected to a vertex in S −B0 in G|A, and let

F (A,α) be the set of such vertices. Now let g(A,α) = |A| − |V (G)|+ f(A,α) + |B0|+ |α|. Suppose

without loss of generality that for 1 ≤ i ≤ s, Ci is the connected component of G|A such that

Bi(α) = V (Ci) ∩ S. We claim that g(A,α) counts the sum over i of |E(Ci)| − (|V (Ci)| − 1) and the

number of edges that do not have both endpoints in V (Ci) for 1 ≤ i ≤ s. Note that

|V (G)| =
s∑

i=1

|V (Ci)|+ f(A,α) + |B0|

=
s∑

i=1

(|V (Ci)| − 1) + f(A,α) + |B0|+ |α|.

Hence

s∑

i=1

(|E(Ci)| − (|V (Ci)| − 1)) + |A| −
s∑

i=1

|E(Ci)|

= |A| − |V (G)|+ f(A,α) + |B0|+ |α| = g(A,α).

As |E(Ci)|− (|V (Ci)|− 1) ≥ 0 for all i, it follows that g(A,α) ≥ 0. Informally g(A,α) is the number

of edges that can be removed from A without changing the state α.

For each node i in a nice tree-decomposition of a rooted graph G and α ∈ Υ(Si), we define

T (Gi, α;x, y) by

T (Gi, α;x, y) =
∑

A⊆Ei:
α(Si,A,B0(α))=α

(x− 1)f(A,α)(y − 1)g(A,α). (3.3)

Note that we are summing over all subsets of edges of Ei that induce the state α of Si.

We will now describe the computation done at a leaf node in our algorithm. Note that for a leaf

node i in T we have V (Gi) = Si, hence f(A,α) = 0 for all A ⊆ Ei and α ∈ Υ(Si). Let Êi contain

one representative from each parallel class of edges contained in Ei. Therefore for each leaf node i

in T , when y 6= 1 we can express T (Gi, α;x, y) in the form

T (Gi, α;x, y) =
∑

A⊆Êi:
α(Si,A,B0(α))=α

(y − 1)|A|−|V (Gi)|+|B0(α)|+|α|
∏

e∈A





m(e)
∑

j=1

(
m(e)

j

)

(y − 1)j−1





=
∑

A⊆Êi:
α(Si,A,B0(α))=α

(y − 1)−|V (Gi)|+|B0(α)|+|α|
∏

e∈A

(

ym(e) − 1
)

.

88

For the special case when y = 1 we have

T (Gi, α;x, y) =
∑

A⊆Êi:
α(Si,A,B0(α))=α,

|A|−|V (Gi)|+|B0(α)|+|α|=0

∏

e∈A

m(e).

If m(e) = 1 for all e ∈ Ei then we simply have

T (Gi, α;x, y) =
∑

A⊆Ei:
α(Si,A,B0(α))=α

(y − 1)|A|−|V (Gi)|+|B0(α)|+|α|.

Suppose we have a tree-decomposition of a graph such that node i has children nodes j and k.

There is a step in Noble’s algorithm which finds all partitions of Si that can occur by combining the

partitions of Sj and Sk in the following way.

Definition 3.2.7 (Partition Join). Consider two partitions π1 and π2 of a set S. Their partition

join π1 ∨ π2 is defined to be the partition of S for which the parts are minimal sets such that if two

elements are in the same part of π1 or π2, then they are in the same part of π1 ∨ π2.

Obviously the partition join is commutative and associative. We will now incorporate this into

our definition on how to join two states. We say that two states α1 and α2 of a set S are compatible

if B0(α1) = B0(α2), and we denote their compatibility by α1 ∼ α2.

Definition 3.2.8 (State Join). The join of two compatible states α1 and α2 of a set S is given by

α1 ∨ α2 where the parts are labelled to ensure that B0(α1 ∨ α2) = B0(α1) = B0(α2).

Example 3.2.9. Let α1 = ab|cd|e|f |gh× and α2 = a|bcde|f |gh× be two states of the set S =

{a, b, c, d, e, f, g, h}. Clearly α1 ∼ α2 since B0(α1) = {g, h} = B0(α2). Their state join is given by

α1 ∨ α2 = abcde|f |gh×.

The following analysis will allow us to describe the computation done at a join node in our

algorithm.

Lemma 3.2.10. Let i be a join node in a nice tree-decomposition with children nodes j and k.

Let Aj ⊆ Ej, Ak ⊆ Ek and Ai = Aj ∪ Ak. Let B0 be a subset of Si. Suppose that the states

αj = α(Si, Aj , B0) and αk = α(Si, Ak, B0) are defined. Then α = α(Si, Ai, B0) is defined and

89

1. α = αj ∨ αk,

2. f(Ai, α) = f(Aj , αj) + f(Ak, αk), and

3. g(Ai, α) = g(Aj , αj) + g(Ak, αk) + |α| − |αj | − |αk|+ |Si| − |B0|.

Proof. Neither Gi|Aj nor Gi|Ak has a component containing vertices of both B0 and Si − B0, so

Gi|Ai has no such component. Consequently α is defined.

1. Construct graphs Hj and Hk both having vertex set Si − B0 and such that vw is an edge of

Hj if v and w are connected in Gi|Aj , and similarly for Hk. Thus Hj and Hk are both disjoint

unions of cliques. The parts of αj and αk correspond to the vertex sets of the cliques of Hj

and Hk respectively.

Now let Hi = Hj ∪Hk. Then v and w are connected in Hi if and only if they are connected

in Gi|(Aj ∪ Ak). Thus the parts of α other than B0 correspond to the connected components

of Gi|(Aj ∪ Ak) and are exactly the parts of αj ∨ αk other than B0.

2. Let S = Si = Sj = Sk. We claim that (Vj − S) ∩ (Vk − S) = ∅. Suppose otherwise that

there exists a vertex v ∈ (Vj − S) ∩ (Vk − S). Then v must be in the bags corresponding to a

descendant node of j and a descendant node of k in the tree-decomposition. By (TD3) v must

then also be in S, which is a contradiction. Therefore F (Aj , αj) ∩ F (Ak, αk) = ∅.

We now prove F (Ai, α) ⊆ F (Aj , αj) ∪ F (Ak, αk). Let v ∈ F (Ai, α), then v ∈ Vj − S or

v ∈ Vk − S. Suppose without loss of generality v ∈ Vj − S. We know that Gj |Aj ⊆ Gi|Ai so if

v is not connected to S −B0 in Gi|Ai then it is not connected to S −B0 in Gj |Aj . Therefore

v ∈ F (Aj , αj).

We now prove F (Ai, α) ⊇ F (Aj , αj) ∪ F (Ak, αk). Let v ∈ F (Aj , αj) ∪ F (Ak, αk). Suppose

without loss of generality v ∈ F (Aj , αj) and that there is a path from v to S − B0 in Gi|Ai.

Then there is a path v . . . vpvq . . . s with vp ∈ Vj − S, vq ∈ Vk − S and s ∈ S − B0. This

means that {vp, vq} ⊆ St for some t ∈ I. However t 6= i because neither vp nor vq is a

member of S. Furthermore t cannot be a descendant of j because (TD3) would imply that

vq ∈ S. Similarly t cannot be a descendant of k. Hence we have a contradiction. Therefore

v ∈ F (Ai, α). Since F (Aj , αj)∩F (Ak, αk) = ∅ and F (Ai, α) = F (Aj , αj)∪F (Ak, αk) we have

f(Ai, α) = f(Aj , αj) + f(Ak, αk).

90

3. We have g(Ai, α) = |Ai| − |V (Gi)|+ f(Ai, α) + |B0|+ |α| by definition. Now since |V (Gi)| =

|V (Gj)|+ |V (Gk)| − |Si| and |Ai| = |Aj |+ |Ak|,

g(Ai, α) = |Aj |+ |Ak| − (|V (Gj)|+ |V (Gk)| − |Si|) + f(Ai, α) + |B0|+ |α|. (3.4)

Using part 2, Equation 3.4 equals

|Aj |+ |Ak| − |V (Gj)| − |V (Gk)|+ |Si|+ f(Aj , αj) + f(Ak, αk) + |B0|+ |α|.

Finally we can deduce the following equation using the formulae for g(Aj , αj) and g(Ak, αk):

g(Ai, α) = g(Aj , αj) + g(Ak, αk) + |α| − |αj | − |αk|+ |Si| − |B0|.

Let i be a join node in T with children nodes j and k. For α, αj , αk ∈ Υ(Si), by Lemma 3.2.10

we can express T (Gi, α;x, y) in the form

T (Gi, α;x, y)

=
∑

Ai⊆Ei:
α(Si,Ai,B0(α))=α

(x− 1)f(Ai,α)(y − 1)g(Ai,α)

=
∑

Aj⊆Ej ,Ak⊆Ek:
α(Si,Aj∪Ak,B0(α))=α

(x− 1)f(Aj∪Ak,α)(y − 1)g(Aj∪Ak,α)

=
∑

αj ,αk:
αj∼αk,

αj∨αk=α

∑

Aj⊆Ej:
α(Sj ,Aj,B0(αj))=αj

∑

Ak⊆Ek:
α(Sk,Ak,B0(αk))=αk

(x− 1)f(Aj ,αj)+f(Ak,αk)(y − 1)g(Aj∪Ak,α)

=
∑

αj ,αk:
αj∼αk,

αj∨αk=α

T (Gj, αj ;x, y)T (Gk, αk;x, y)(y − 1)|α|−|αj|−|αk|+|Si|−|B0(α)|.

We now describe the computation done at a forget node in our algorithm. We let α \ a denote

the state obtained by deleting a in α and removing any empty part created if a is a singleton part

of α other than B0(α).

Lemma 3.2.11. Let i be a forget node in T and j be the child of i. Let a be the unique element of

91

Sj − Si. Then for β ∈ Υ(Si) we have

T (Gi, β;x, y) =
∑

α:
α\a=β,
|α|=|β|

T (Gj , α;x, y)(x − 1)h(α) (3.5)

where h(α) = 1 if a ∈ B0(α) and h(α) = 0 otherwise.

Proof. Suppose A ⊆ Ei is such that β = α(Si, A,B0(β)) and Gi|A has connected components

C1, . . . , Ct. Without loss of generality let a ∈ V (Ca) where 1 ≤ a ≤ t.

• If V (Ca) ∩ (Si − B0(β)) = ∅ then a is not connected to any vertex of Si − B0(β) in Gi|A, so

a ∈ F (A, β). Let α be the state of Sj with Bs(α) = Bs(β) for s 6= 0 and B0(α) = B0(β) ∪ a.

Clearly |α| = |β| and α \ a = β. Since Gj = Gi the graph Gj |A has the same connected

components as Gi|A. Hence α = α(Sj , A,B0(α)).

Now F (A, β) = F (A,α) ∪ a so we have f(A, β) = f(A,α) + 1. Also |β| = |α| and |B0(β)| =

|B0(α)| − 1 so g(A, β) = g(A,α).

• If V (Ca)∩ (Si −B0(β)) 6= ∅ then a is connected to some other vertex b of Si −B0(β) in Gi|A.

Let Bb(β) be the part containing b in β. Let α be the state of Sj with Bs(α) = Bs(β) for

s 6= b and Bb(α) = Bb(β) ∪ a. Again it is clear to see that |α| = |β|, α \ a = β and that Gj |A

has the same connected components as Gi|A. Hence α = α(Sj , A,B0(α)).

Now F (A, β) = F (A,α) so we have f(A, β) = f(A,α). Also |β| = |α| and |B0(β)| = |B0(α)|

so g(A, β) = g(A,α).

We have shown that for A ⊆ Ei with β = α(Si, A,B0(β)), there exists α = α(Sj , A,B0(α)) such

that α \ a = β and |α| = |β|.

Now suppose instead we take A ⊆ Ej with α = α(Sj , A,B0(α)) such that α \ a = β and

|α| = |β|. The last condition ensures that a is not a part of α unless B0(α) = a. We have Gi = Gj

so the connected components of Gi|A are the same as the connected components of Gj |A. Hence

β = α(Si, A,B0(β)). We have shown that every term in the expansion of T (Gi, β;x, y) appears

as a term in the expansion of one of the summands on the right-hand-side of Equation 3.5, and

vice-versa.

We now describe the computation done at an introduce node in our algorithm.

92

Definition 3.2.12 (Introduce States). Let S be a set with a ∈ S and α ∈ Υ(S). We say that α is

an introduce state of a in S if:

• a ∈ B0(α), or

• a /∈ B0(α) and a is in a singleton part in α.

We denote the set of introduce states of a in S by I(S, a).

Lemma 3.2.13. Let i be an introduce node in T and j be the child node of i. Let a be the unique

element of Si − Sj. We can express T (Gi, α;x, y) in the form

T (Gi, α;x, y) =







T (Gj , α \ a;x, y) if α ∈ I(Si, a);

0 otherwise.

Proof. By (TD3) a cannot be in any bag corresponding to a descendant node of i in T . Therefore

any edges incident to a in G cannot be in Ei. This means that a must be an isolated vertex in Gi|A

for any A ⊆ Ei. So if α /∈ I(Si, a) then T (Gi, α;x, y) = 0.

If α ∈ I(Si, a) and A ⊆ Ei then α = α(Si, A,B0(α)) if and only if α \ a = α(Sj , A,B0(α) − a).

Moreover F (A,α) = F (A,α \ a) and

g(A,α) = |A| − |V (Gi)|+ f(A,α) + |B0(α)|+ |α|

= |A| − (|V (Gj)|+ 1) + f(A,α \ a) + |B0(α) − a|+ |α \ a|+ 1

= g(A,α \ a).

We now describe the computation done in our algorithm after we have computed T (Gρ, α;x, y)

for all α ∈ Υ(Sρ).

Lemma 3.2.14. If G = (r, V, E) is connected then the Tutte polynomial of G is given by

T (G;x, y) =
∑

α:|α|=1

T (Gρ, α;x, y)(x− 1)|B0(α)|. (3.6)

Proof. Let C1, . . . , Ct be the connected components of G|A for some A ⊆ E. Let C1 be the compo-

nent containing the root vertex.

93

We claim that every subset A of E contributes to precisely one of the terms in the summation

on the right-hand side of Equation 3.6. To see this note that the set A contributes to the term

corresponding to the state α with B0(α) =
⋃

s6=1(V (Cs) ∩ Sρ) and B1(α) = V (C1) ∩ Sρ. Any other

state α satisfying α = α(Gρ, A,B0(α)) would have |α| ≥ 2.

Since G = Gρ the connected components of Gρ|A are the same as the connected components of

G|A.

Now since |V (Gρ)| = |V (C1)|+ f(A,α) + |B0(α)| we have

ρ(G)− ρ(A) = (|V (G)| − 1)− (|V (C1)| − 1)

= |V (Gρ)| − (|V (Gρ)| − f(A,α)− |B0(α)|)

= f(A,α) + |B0(α)|,

and

|A| − ρ(A) = |A| − (|V (C1)| − 1)

= |A| − (|V (Gρ)| − f(A,α)− |B0(α)| − 1)

= |A| − |V (Gρ)|+ f(A,α) + |B0(α)|+ |α|

= g(A,α).

Combining Lemmas 3.2.11, 3.2.13 and 3.2.14 and the discussion on the computations done at a

leaf and join node, we see that Algorithm 1 correctly computes T (G;x, y) when G is connected. If

G is not connected then every edge which does not lie in the connected component containing the

root is a loop in the greedoid Γ(G). Thus if G is a rooted graph, G′ is the connected component

containing the root and L is the number of edges in components other than G′, then

T (G;x, y) = yLT (G′;x, y). (3.7)

Example 3.2.15 (Evaluating T (G;x, y)). In Figure 3.5 we have a rooted connected graph G =

(a, V, E) with a nice tree-decomposition τ = ({Si|i ∈ I}, T = (I, B)) of G of width 2 with root node

ρ and the corresponding partition D1 = {1, 4, 7} and D2 = {2, 3, 5, 7}. In what follows if a state α

94

Algorithm 1 Evaluating T (G;x, y) where G is a rooted graph.

Require: G = (r, V, E) a rooted connected graph of tree width at most k; x, y ∈ Q; τ = ({Si, i ∈
I}, T = (I, B)) a nice tree-decomposition of G; {Di|i is a leaf node of τ} the corresponding par-
tition of E; m : E → N.
ρ← the root node of T
Tρ ← T
z ← maxe∈E{m(e)}
Compute y, . . . , yz

while Tρ 6= ∅ do
i← a node at the greatest depth in Tρ

if i is a leaf in T then

while α ∈ Υ(Si) do
if y 6= 1 then

T (Gi, α;x, y)←
∑

A⊆Êi:
α(Si,A,B0(α))=α

(y − 1)−|V (Gi)|+|B0(α)|+|α|
∏

e∈A

(
ym(e) − 1

)

else

T (Gi, α;x, y)←
∑

A⊆Êi:
α(Si,A,B0(α))=α

(y − 1)|A|−|V (Gi)|+|B0(α)|+|α|
∏

e∈A m(e)

end if

end while

end if

if i is a forget node in T then

j ← the child of i
a← the unique element of Sj − Si

while α ∈ Υ(Si) do
T (Gi, α;x, y)←

∑

β:
β\a=α,
|β|=|α|

T (Gj , β;x, y)(x− 1)h(β)

end while

end if

if i is an introduce node in T then

j ← the child of i
a← the unique element of Si − Sj

while α ∈ I(Si, a) do
T (Gi, α;x, y)← T (Gj , α \ a;x, y)

end while

end if

if i is a join node in T then

{j, k} ← the children of i
while α ∈ Υ(Si) do
T (Gi, α;x, y)←

∑
αj ,αk:
αj∼αk,

αj∨αk=α

T (Gj , αj ;x, y)T (Gk, αk;x, y)(y − 1)|α|−|αj|−|αk|+|Si|−|B0(α)|

end while

end if

delete i
end while

T (G;x, y)←∑
α:

|α|=1
T (Gρ, α;x, y)(x − 1)|B0(α)|

return T (G;x, y)

95

and the value of T (G,α;x, y) are not listed in a table below, then T (G,α;x, y) = 0.

a b

dc

2

4

1 3

7

6
5

a, c, d

a, c, d a, c, d

a, d

a, b, d

D1 = {1, 4, 7}

D2 = {2, 3, 5, 6}

Sρ

S1 S4

S3

S2

Figure 3.5: Rooted graph G with a corresponding nice tree-decomposition τ

We begin by computing T (G2, α;x, y) for the leaf node 2 in T for all α ∈ Υ(S2).

α abd ab|d a|bd ad|b a|b|d

T (G2, α;x, y) y2 + 2y + 2 1 1 y + 1 1

α ab|d× a|bd× ad|b× a|b|d× a|d|b×

T (G2, α;x, y) 1 y y + 1 1 1

Delete node 2 from Tρ. We now compute T (G3, β;x, y) for the forget node 3 in T for all β ∈ Υ(S3).

β ad a|d a|d×

T (G3, β;x, y) y2+xy+x+y+1 x+ 1 xy − y + 1

Delete node 3 from Tρ. We now compute T (G4, γ;x, y) for the introduce node 4 in T for all

γ ∈ I(S4, c).

96

γ ad|c ad|c× a|d|c

T (G4, γ;x, y) y2+xy+x+y+1 y2+xy+x+y+1 x+ 1

γ a|d|c× a|c|d× a|cd×

T (G4, γ;x, y) x+ 1 xy − y + 1 xy − y + 1

Delete node 4 from Tρ. We now compute T (G1, δ;x, y) for the leaf node 1 in T for all δ ∈ Υ(S1).

δ acd ac|d a|cd a|c|d

T (G1, δ;x, y) y y y y

δ ac|d× a|cd× a|c|d× a|d|c×

T (G1, δ;x, y) y y2 y y

Delete node 1 from Tρ. We now compute T (Gρ, ǫ;x, y) for the join node ρ in T for all ǫ ∈ Υ(Sρ).

ǫ acd ad|c a|c|d× a|cd ac|d

T (Gρ, ǫ;x, y) y4 + xy3 + 2y3 +

2xy2+2xy+2y2+2y

y3 + xy2 +

xy + y2 + y

xy2−y2+y xy + y xy + y

ǫ ad|c× a|cd× ac|d× a|c|d a|d|c×

T (Gρ, ǫ;x, y) y3+xy2+xy+y2+y xy3−y3+y2 xy2−y2+y xy + y xy + y

Delete node ρ from Tρ. We now compute T (G;x, y).

T (G;x, y) = y4 + xy3 + 2y3 + 2xy2 + 2xy + 2y2 + 2y + (x− 1)(y3 + xy2 + xy + y2 + y)

+ (x− 1)(xy2 − y2 + y) + (x− 1)2(xy3 − y3 + y2)

= y4 + x3y3 − 3x2y3 + 3x2y2 + x2y + 5xy3 − 2xy2 + 3xy + 3y2.

3.2.1 Complexity of the Algorithm

Here we calculate the time complexity of our algorithm, that is, the maximum running time for each

input length. For a rooted graph G = (r, V, E) we let t(n,m, k, x, y, z) be the maximum number of

operations required to evaluate T (G;x, y) if n = |V |, m = |E|, z = maxe∈E{m(e)} and G has tree-

width at most k. We let δ = δ(n,m, k, x, y, z) denote the maximum time taken for one arithmetical

97

operation during the algorithm. Let

h(k) = k5(2k + 1)(2k−1)((4k + 5)(4k+5)(2(2k+5)/3)(4k+5))(4k+1).

We now compute the complexity of the four preprocessing steps whose outputs are required by our

algorithm.

1. Finding a tree-decomposition of width at most k can be done in time O(h(k)n) using the

algorithm given in [7].

2. Constructing a nice tree-decomposition from a tree-decomposition of width at most k can be

done in time O(nk) by Proposition 3.2.2

3. Computing the partition {Di, i is a leaf node in the nice tree-decomposition} can be done in

time O(m+ nk2).

4. Computing y, . . . , yz can be done in time O(zδ) since there are z values, each taking the

maximum time δ to compute.

Therefore the combined maximum running time of the preprocessing steps is

O(h(k)n +m+ zδ).

In order to check whether two states α1 and α2 of a set S are compatible, we need to check that

B0(α1) = B0(α2). Each of B0(α1) and B0(α2) have at most k + 1 elements, so the time required

to do this is O(k2). To determine whether α1 = α2 we check that if u and v are in the same part

in α1, then they are in the same part in α2. This takes time O(k2) since there are at most k + 1

parts in each state. Suppose we construct graphs H1 and H2, both having vertex set S such that

two vertices are connected in H1 if and only if they are in the same part in α1, and similarly for H2.

Now to compute the state α1 ∨ α2 we can construct the graph H1 ∪H2 and perform a breadth-first

search to find the connected components of it. There will be at most k + 1 connected components,

and these components will be the parts of α1 ∨ α2. These operations can be done in O(k2) time.

Therefore joining two states in our algorithm takes an overall time of O(k2).

Clearly the time taken to run the main part of the algorithm, that is omitting the preprocessing

steps, is O(nt′(n,m, k, x, y, z)) where t′ = t′(n,m, k, x, y, z) is the maximum time required to com-

98

pute T (Gi, α;x, y) for a join node i where α ∈ Υ(Si). Recall that the number of states of a set with

t elements is B(t+1). For a join node we combine at most (B(k+2))2 states, with the contribution

from each pair taking at most O(k2 + δ) time to compute by the preceding discussion. Computing

the running time for the main part of our algorithm in terms of δ therefore takes time

O(n(k2 + δ)(B(k + 2))2).

The following analysis allows us to calculate δ. To add, subtract, multiply or divide two l-bit

integers takes time O(l log l log log l) by [1]. Therefore we need to find the largest possible integer in

our algorithm.

Recall that for a node i in a nice tree-decomposition and for some state α ∈ Υ(Si) we define

T (Gi, α;x, y) =
∑

A⊆Ei:
α(Si,A,B0(α))=α

(x− 1)f(A,α)(y − 1)g(A,α).

Let

x =
px
qx

and y =
py
qy

,

where px, qx, py, and qy are integers such that px and qx are coprime, and py and qy are coprime.

We have

T (Gi, α;x, y) =
∑

A⊆Ei:
α(Si,A,B0(α))=α

(x − 1)f(A,α)(y − 1)g(A,α)

=
∑

A⊆Ei:
α(Si,A,B0(α))=α

(
px − qx

qx

)f(A,α)(
py − qy

qy

)g(A,α)

=

∑

A⊆Ei:
α(Si,A,B0(α))=α

(px − qx)
f(A,α)(py − qy)

g(A,α)q
|Vi|−|Si|−f(A,α)
x q

|Ei|−g(A,α)
y

q
|Vi|−|Si|
x q

|Ei|
y

.

99

For the denominator we have q
|Vi|−|Si|
x q

|Ei|
y ≤ |qx|n|qy|m. For the numerator we have

∑

A⊆Ei:
α(Si,A,B0(α))=α

(px − qx)
f(A,α)(py − qy)

g(A,α)q|Vi|−|Si|−f(A,α)
x q|Ei|−g(A,α)

y

≤ 2m|px − qx|n|py − qy|m|qx|n|qy|m ≤ (|px|+ |qx|+ |py|+ |qy|+ 2)2n+3m.

We have shown that δ ≤ l log l log log l where l = (2n+ 3m) log(|px|+ |qx|+ |py|+ |qy|+ 2). The

running time for the main part of the algorithm is therefore

O(n(k2 + (n+m) log(|px|+ |qx|+ |py|+ |qy|+ 2) log l log log l)(B(k + 2))2).

Suppose that our input graph has no parallel edges. Assume that we have at most one loop at any

vertex (any additional loop is considered to be a parallel edge). We now find the maximum number

of edges in our graph G in terms of its tree-width k. Suppose we have a good tree-decomposition

({Si|i ∈ I}, T = (I, B)) as defined in the proof of Proposition 3.2.2. We count the number of edges

in G by working down the nodes of T from the root. There are at most
k(k + 1)

2
+ (k + 1) edges in

G between the vertices that are in Sρ. For every other node i ∈ I in T there is precisely one vertex

in Si which does not appear in any of the bags corresponding to its parent node. So between the

vertices in Si there are at most k+1 edges which have not been previously counted. Since |I| = n−k

the total number of edges in G is at most

(|I| − 1)(k + 1) +
k(k + 1)

2
+ (k + 1) =

(k + 1)(2n− k)

2
.

Therefore if the input graph to our algorithm has no parallel edges, the total running time is

O(n(k2 + nk log(|px|+ |qx|+ |py|+ |qy|+ 2) log l log log l)(B(k + 2))2).

3.3 Rooted Digraphs

For this section all definitions and terminology relating to tree-decompositions are the same as those

in the previous section, however we now impose an orientation on every edge. This will not affect

the time it takes to construct a nice tree-decomposition or the bound on the number of nodes it has.

100

When we discussed the partitioning of the edges of our graph amongst the leaf nodes in our nice

tree-decomposition, we spoke about only processing one edge from each parallel class. This will still

be the case, however a parallel class is now defined to be the set of edges that are directed from and

to the same vertices. The size of a parallel class is still denoted by m(e) for a directed edge e. We

have a different definition of a state in the directed case.

Definition 3.3.1 (State). A state α of a set S is a partial order ≤ in which the elements of the

partial order correspond to disjoint non-empty subsets B1(α), . . . , Bt(α) of S. We let B0(α), which

may be empty, denote S −⋃iBi(α). We will refer to these subsets as parts of α.

To simplify notation we say that x ≤ y in some state α if x ∈ Bi(α), y ∈ Bj(α) and Bi(α) ≤ Bj(α)

for some 1 ≤ i, j ≤ t.

For any state α we can construct a digraph H(α) where the vertices correspond to the elements

v1, . . . , vp of S −B0(α) such that there exists a directed edge from vi to vj if vi ≤ vj in α.

Example 3.3.2. Let S = {a, b, c, d, e} and let α be the state of S with parts B1(α) = {a, b}, B2(α) =

{c}, B3(α) = {d} and B0(α) = {e} such that B2(α) ≤ B1(α) ≤ B3(α). Then H(α) is given in

Figure 3.6.

d

a

c

b

Figure 3.6

We say that two states α1 and α2 of a set S are compatible if B0(α1) = B0(α2), and we denote

their compatibility by α1 ∼ α2.

As there is no known formula to compute the number of partially ordered sets with t elements,

we now provide an upper bound for the number of states of a set.

Lemma 3.3.3. The number of states of a set with t elements is at most 2t
2

.

Proof. A state α is completely determined by the set B0(α) and the digraph H(α). If α is a state

of a set with t vertices then there are at most 2t choices for B0(α) and once B0(α) has been chosen,

the number of possibilities for H(α) is equal to the number of simple digraphs on t−|B0(α)| vertices

101

which is at most the number of digraphs on t vertices, namely 2t(t−1). Hence the number of states

is at most 2t · 2t(t−1) = 2t
2

.

These states play the same role in our algorithm as the states do in the previous section. Given

a rooted digraph G, S ⊆ V (G), A ⊆ −→E (G) and B0 ⊆ S, a state α(S,A,B0) of S is undefined if there

is a directed path in G|A from a vertex in S − B0 to a vertex in B0. Otherwise we let B0(α) = B0

and B1(α), . . . , Bt(α) be the non-empty parts of α(S,A,B0) such that two vertices v, w ∈ S − B0

are in the same part of α(S,A,B0) if and only if there are directed paths from v to w and from w to

v in G|A. So the parts B1(α), . . . , Bt(α) are the non-empty intersections of the strong components

of G|A with S −B0.

Now in the partial order for i, j 6= 0, we have Bi(α) ≤ Bj(α) if there is a directed path in G|A

from some vertex in Bi(α) to some vertex in Bj(α). It follows from the definition of the parts that

this is equivalent to there being a directed path from every vertex in Bi(α) to every vertex in Bj(α).

Let b(α) denote the number of minimal parts of α(S,A,B0), that is the number of parts Bi(α)

in S −B0 with Bj(α) � Bi(α) for all j with j 6= i.

If α = α(S,A,B0) then let f(A,α) be the number of vertices in V (G) − S to which there is no

directed path in G|A from a vertex in S − B0, and let F (A,α) be the set of such vertices. Now let

g(A,α) = |A| − |V (G)| + f(A,α) + |B0|+ b(α).

Let Υ(S) be the set of all states of S. For each node i in a nice tree-decomposition of a rooted

digraph G and α ∈ Υ(Si), we define T (Gi, α;x, y) by

T (Gi, α;x, y) =
∑

A⊆
−→
E i:

α(Si,A,B0(α))=α

(x− 1)f(A,α)(y − 1)g(A,α). (3.8)

We will now describe the computation done at a leaf node in our algorithm. Note that for a leaf

node i in T we have V (Gi) = Si, hence f(A,α) = 0 for all A ⊆ −→E i and α ∈ Υ(Si). Let Êi contain

one representative from each parallel class of edges contained in
−→
E i. Therefore for each leaf node i

in T , when y 6= 1 we can express T (Gi, α;x, y) in the form

102

T (Gi, α;x, y) =
∑

A⊆Êi:
α(Si,A,B0(α))=α

(y − 1)|A|−|V (Gi)|+|B0(α)|+b(α)
∏

e∈A





m(e)
∑

j=1

(
m(e)

j

)

(y − 1)j−1





=
∑

A⊆Êi:
α(Si,A,B0(α))=α

(y − 1)−|V (Gi)|+|B0(α)|+b(α)
∏

e∈A

(

ym(e) − 1
)

.

For the special case when y = 1 we have

T (Gi, α;x, y) =
∑

A⊆Êi:
α(Si,A,B0(α))=α,

|A|−|V (Gi)|+|B0(α)|+b(α)=0

∏

e∈A

m(e).

If m(e) = 1 for all e ∈ −→E i then we simply have

T (Gi, α;x, y) =
∑

A⊆
−→
E i:

α(Si,A,B0(α))=α

(y − 1)|A|−|V (Gi)|+|B0(α)|+b(α).

We now focus on the computation done at a join node in our algorithm.

Definition 3.3.4 (State Join). The join of two compatible states α1 and α2 of a set S is given by the

state α1 ∨α2 of S where B0(α1 ∨α2) = B0(α1) = B0(α2), and the sets Bi(α1 ∨α2) are given by the

vertex sets of the strong components of H(α1)∪H(α2) for 1 ≤ i ≤ t. Now Bi(α1∨α2) ≤ Bj(α1∨α2)

if there exists a directed path from an element in Bi(α1 ∨ α2) to an element in Bj(α1 ∨ α2) in

H(α1) ∪H(α2).

Lemma 3.3.5. Let i be a join node in a nice tree-decomposition with children nodes j and k.

Let Aj ⊆
−→
E j, Ak ⊆

−→
E k and Ai = Aj ∪ Ak. Let B0 be a subset of Si. Suppose that the states

αj = α(Si, Aj , B0) and αk = α(Si, Ak, B0) are defined. Then α = α(Si, Ai, B0) is defined and

1. α = αj ∨ αk,

2. f(Ai, α) = f(Aj , αj) + f(Ak, αk), and

3. g(Ai, α) = g(Aj , αj) + g(Ak, αk) + b(α)− b(αj)− b(αk) + |Si| − |B0|.

Proof. Suppose there is a directed path in Gi|Ai from a vertex in Si − B0 to a vertex in B0. In

the shortest such path, the initial and final vertices are the only ones in Si. As there are no edges

103

between a vertex in V (Gj)−Si and a vertex in V (Gk)−Si either all the internal vertices of the path

are in V (Gj)−Si or they are in V (Gk)−Si. Consequently the edges are all from Aj or all from Ak.

Thus there is either a path from a vertex in Si −B0 to a vertex in B0 in Gi|Aj or in Gi|Ak, giving

a contradiction. Consequently we deduce that α is defined.

1. Construct directed graphs Hj and Hk both having vertex set Si − B0 and such that vw is a

directed edge of Hj if there is a directed path from v to w in Gi|Aj , and similarly for Hk. The

parts of αj and αk correspond to the vertex sets of the strongly connected components of Hj

and Hk respectively.

Now let Hi = Hj ∪ Hk. There is a directed path from v to w in Hi if and only if there is a

directed path from v to w in Gi|(Aj ∪ Ak). Thus the parts of α other than B0 correspond to

the strongly connected components of Gi|(Aj ∪Ak) and are exactly the parts of αj ∨αk other

than B0.

2. Showing that F (Aj , αj) ∩ F (Ak, αk) = ∅ is identical to that in the proof of Lemma 3.2.10.

We now prove F (Ai, α) ⊆ F (Aj , αj) ∪ F (Ak, αk). Let v ∈ F (Ai, α), then v ∈ Vj − S or

v ∈ Vk − S. Suppose without loss of generality v ∈ Vj − S. We know that Gj |Aj ⊆ Gi|Ai so if

v is not reachable by a directed path from a vertex in S−B0 in Gi|Ai then it is not reachable

by a directed path from a vertex in S −B0 in Gj |Aj . Therefore v ∈ F (Aj , αj).

We now prove F (Ai, α) ⊇ F (Aj , αj) ∪ F (Ak, αk). Let v ∈ F (Aj , αj) ∪ F (Ak, αk). Suppose

without loss of generality v ∈ F (Aj , αj) and that there is a directed path from a vertex

s ∈ S−B0 to v in Gi|Ai. Then there is a path s . . . vqvp . . . v with vq ∈ Vk−S and vp ∈ Vj−S.

This means that {vp, vq} ⊆ St for some t ∈ I. However t 6= i because neither vp nor vq is a

member of S. Furthermore t cannot be a descendant of j because (TD3) would imply that

vq ∈ S. Similarly t cannot be a descendant of k. Hence we have a contradiction. Therefore

v ∈ F (Ai, α). Since F (Aj , αj)∩F (Ak, αk) = ∅ and F (Ai, α) = F (Aj , αj)∪F (Ak, αk) we have

f(Ai, α) = f(Aj , αj) + f(Ak, αk).

3. We have g(Ai, α) = |Ai| − |V (Gi)|+ f(Ai, α) + |B0|+ b(α) by definition. Now since |V (Gi)| =

|V (Gj)|+ |V (Gk)| − |Si| and |Ai| = |Aj |+ |Ak|,

g(Ai, α) = |Aj |+ |Ak| − (|V (Gj)|+ |V (Gk)| − |Si|) + f(Ai, α) + |B0|+ b(α). (3.9)

104

Using part 2, Equation 3.9 equals

|Aj |+ |Ak| − |V (Gj)| − |V (Gk)|+ |Si|+ f(Aj , αj) + f(Ak, αk) + |B0|+ b(α).

Finally we can deduce the following required equation using the formulae for g(Aj , αj) and

g(Ak, αk):

g(Ai, α) = g(Aj , αj) + g(Ak, αk) + b(α)− b(αj)− b(αk) + |Si| − |B0|.

Let i be a join node in T with children nodes j and k. For α, αj , αk ∈ Υ(Si), by Lemma 3.3.5

we can express T (Gi, α;x, y) in the form

T (Gi, α;x, y) =
∑

Ai⊆
−→
E i:

α(Si,Ai,B0(α))=α

(x− 1)f(Ai,α)(y − 1)g(Ai,α)

=
∑

Aj⊆
−→
E j ,Ak⊆

−→
E k:

α(Si,Aj∪Ak,B0(α))=α

(x− 1)f(Aj∪Ak,α)(y − 1)g(Aj∪Ak,α)

=
∑

αj ,αk:
αj∼αk,

αj∨αk=α

∑

Aj⊆
−→
E j :

α(Sj ,Aj,B0(αj))=αj

∑

Ak⊆
−→
Ek:

α(Sk,Ak,B0(αk))=αk

(x− 1)f(Aj ,αj)+f(Ak,αk)(y − 1)g(Aj∪Ak,α)

=
∑

αj ,αk:
αj∼αk,

αj∨αk=α

T (Gj, αj ;x, y)T (Gk, αk;x, y)(y − 1)b(α)−b(αj)−b(αk)+|Si|−|B0(α)|.

The following analysis will describe the computation done at a forget node in our algorithm.

First we define a particular subset of states of a set.

Definition 3.3.6 (Forget States). Let S be a set with a ∈ S and α ∈ Υ(S). We say that α is a

forget state of a in S if:

• a ∈ B0(α), or

• a /∈ B0(α) and a is not in a singleton part in α, or

• a /∈ B0(α) and a is in a singleton part Bs(α) in α with Bt(α) ≤ Bs(α) for some t 6= s.

105

We denote the set of forget states of a in S by J(S, a) and we let α \ a denote the state α with

a deleted.

Lemma 3.3.7. Let i be a forget node in T and j be the child of i. Let a be the unique element of

Sj − Si. Then for β ∈ Υ(Si) we have

T (Gi, β;x, y) =
∑

α:
α\a=β,

α∈J(Sj ,a)

T (Gj, α;x, y)(x − 1)h(α) (3.10)

where h(α) = 1 if a ∈ B0(α) and h(α) = 0 otherwise.

Proof. Suppose A ⊆ −→E i is such that β = α(Si, A,B0(β)) and Gi|A has strongly connected compo-

nents C1, . . . , Ct. Without loss of generality let a ∈ V (Ca) where 1 ≤ a ≤ t.

• Suppose V (Ca) ∩ (Si −B0(β)) = ∅ and a is not reachable by a directed path from a vertex in

Si−B0(β) in Gi|A. Then a ∈ F (A, β). Let α be the state of Sj with Bs(α) = Bs(β) for s 6= 0

and B0(α) = B0(β) ∪ a. Since Gj = Gi the strongly connected components of Gj |A are the

same as those of Gi|A. Hence α = α(Sj , A,B0(α)). Clearly α ∈ J(Sj , a) and α \ a = β.

Now F (A, β) = F (A,α)∪ a so we have f(A, β) = f(A,α) + 1. Also b(β) = b(α) and |B0(β)| =

|B0(α)| − 1 so g(A, β) = g(A,α).

• Suppose V (Ca)∩ (Si−B0(β)) = ∅ and a is reachable by a directed path from some vertex b in

Si−B0(β) in Gi|A. The existence of the path from b to a ensures that a /∈ B0(β). As V (Ca)∩

(Si − B0(β)) = ∅ the vertex a must appear as a singleton part in α. Moreover the existence

of the path from b to a ensures that this part is not minimal. Since Gj = Gi the strongly

connected components of Gj |A are the same as those of Gi|A. Hence α = α(Sj , A,B0(α)).

Clearly α ∈ J(Sj , a) and α \ a = β.

Now F (A, β) = F (A,α) so we have f(A, β) = f(A,α). Also b(β) = b(α) and |B0(β)| = |B0(α)|

so g(A, β) = g(A,α).

• Suppose V (Ca) ∩ (Si − B0(β)) 6= ∅. Then a belongs to the same strong component of Gi|A

as some other vertex b in Si − B0(β). Let Bb(β) be the part containing b in β. Let α be the

state of Sj with Bs(α) = Bs(α) for s 6= b and Bb(α) = Bb(β) ∪ a. Since Gj = Gi the strongly

connected components of Gj |A are the same as those of Gi|A. Hence α = α(Sj , A,B0(α)).

Clearly α ∈ J(Sj , a) and α \ a = β.

106

Now F (A, β) = F (A,α) so we have f(A, β) = f(A,α). Also b(β) = b(α) and |B0(β)| = |B0(α)|

so g(A, β) = g(A,α).

We have shown that for A ⊆ −→E i with β = α(Si, A,B0(β)), there exists α = α(Sj , A,B0(α)) such

that α ∈ J(Sj , a) and α \ a = β.

Now suppose instead we take A ⊆ −→E j such that α = α(Sj , A,B0(α)) with α ∈ J(Sj , a) and

α \ a = β. Since Gi = Gj the strongly connected components of Gi|A are the same as the strongly

connected components of Gj |A. Hence β = α(Si, A,B0(β)). Therefore we have shown that each

subset A of
−→
E i makes the same contribution to both sides of Equation 3.10.

We now describe the computation done at an introduce node in our algorithm.

Definition 3.3.8 (Introduce States). Let S be a set with a ∈ S and α ∈ Υ(S). We say that α is

an introduce state of a in S if:

• a ∈ B0(α), or

• a /∈ B0(α) and a is in a singleton part B such that for each other part B′ neither B′ ≤ B nor

B ≤ B′.

We denote the set of introduce states of a in S by I(S, a). Note that if a /∈ B0(α), then it follows

immediately from the definition of an introduce state that a forms a minimal part of α.

Lemma 3.3.9. Let i be an introduce node in T and j be the child node of i. Let a ∈ Si − Sj. We

can express T (Gi, α;x, y) in the form

T (Gi, α;x, y) =







T (Gj, α \ a;x, y) if α ∈ I(Si, a)

0 otherwise.

Proof. By (TD3) a cannot be in any bag corresponding to a descendant node of i in T . Therefore

any edges incident to a in G cannot be in
−→
E i. This means that a must be an isolated vertex in Gi|A

for any A ⊆ −→E i. So if α /∈ I(Si, a) then T (Gi, α;x, y) = 0.

If α ∈ I(Si, a) and A ⊆ −→E i then α = α(Si, A,B0(α)) if and only if α \ a = α(Sj , A,B0(α)− a).

107

Moreover F (A,α) = F (A,α \ a) and

g(A,α) = |A| − |V (Gi)|+ f(A,α) + |B0(α)|+ b(α)

= |A| − (|V (Gj)|+ 1) + f(A,α \ a) + |B0(α) − a|+ b(α \ a) + 1

= g(A,α \ a).

We now describe the computation done in our algorithm after we have computed T (Gρ, α;x, y)

for the root node ρ.

Lemma 3.3.10. If G = (r, V,
−→
E) is root-connected then the Tutte polynomial of G is given by

T (G;x, y) =
∑

α:b(α)=1
r is in the unique

minimal part

T (Gρ, α;x, y)(x − 1)|B0(α)|. (3.11)

Proof. We show that each subset A of E contributes to exactly one term on the right-hand side of

Equation 3.11. Let C1, . . . , Ct be the strongly connected components of G|A for some A ⊆ E. Let

J be the subset of [t] defined so that j ∈ J if and only if there is no directed path from r to any

vertex in Cj . Let B0 =
⋃

j∈J (V (Cj) ∩ Sρ) and let α = α(Sρ, A,B0). Then α is defined and since

there is a directed path in G|A from r to each vertex that is not in B0, the only minimal part of α

other than B0 is the one containing r. If α is any other state of Sρ satisfying α = α(Sρ, A,B0(α)),

then α has at least two minimal parts besides B0(α).

Now |V (Gρ)| = ∪j /∈J |V (Cj)|+ f(A,α) + |B0(α)|. Therefore

ρ(G)− ρ(A) = (|V (G)| − 1)−
(
∪j /∈J |V (Cj)| − 1

)

= |V (Gρ)| − (|V (Gρ)| − f(A,α)− |B0(α)|)

= f(A,α) + |B0(α)|,

108

and

|A| − ρ(A) = |A| −
(
∪j /∈J |V (Cj)| − 1

)

= |A| − (|V (Gρ)| − f(A,α)− |B0(α)| − 1)

= |A| − |V (Gρ)|+ f(A,α) + |B0(α)| + b(α)

= g(Aρ, α).

Hence we have shown that each subset A of
−→
E makes the same contribution to both sides of

Equation 3.11

Combining Lemmas 3.3.7, 3.3.9 and 3.3.10 and the discussion on the computations done at a leaf

and join node, we see that T (G;x, y) can be computed using an algorithm analogous to Algorithm 1,

when G is root connected. If G is not root connected then every edge that is not contained in a

directed path from the root to some vertex in G is a loop in the greedoid Γ(G). Thus if G is a rooted

digraph, G′ = G|A where A is the set of edges with both endpoints being reachable by a directed

path from the root in G, and L is the number of edges in G that are not in G′, then

T (G;x, y) = yLT (G′;x, y).

3.3.1 Complexity of the Algorithm

For a rooted digraph G = (r, V,
−→
E) we let t(n,m, k, x, y, z) be the maximum number of operations

required to evaluate T (G;x, y) if n = |V |, m = |−→E |, z = max
e∈

−→
E
{m(e)} and G has tree-width at

most k. We let δ = δ(n,m, k, x, y, z) denote the maximum time taken for one arithmetical operation

during the algorithm. Let

h(k) = k5(2k + 1)(2k−1)((4k + 5)(4k+5)(2(2k+5)/3)(4k+5))(4k+1).

The complexity for each preprocessing step is the same as that for the algorithm described in

the previous section. Therefore the maximum running time for the preprocessing steps is O(h(k)n+

m+ zδ).

In order to check whether two states α1 and α2 are compatible, we need to check that B0(α1) =

B0(α2), each of which has at most k + 1 elements. The time required to do this is O(k2). Let α1

109

and α2 be two compatible states. To determine whether α1 = α2 we simply check that they have

the same parts which can be done in O(k2) time since there are at most k + 1 parts in each state

and check that they have the same partial order which can also be done in O(k2) time. To compute

α1∨α2 for compatible states α1 and α2 we can construct the graph H(α1)∪H(α2) and then perform

Tarjan’s algorithm [52] to find the strongly connected components of the graph. This would give us

the parts of α1 ∨α2. The edges between the strong components give us the partial order of α1 ∨α2.

Again these operations can be done in O(k2) time. Therefore joining two states in our algorithm

takes an overall time of O(k2).

Clearly the time taken to run the main part of the algorithm, that is omitting the preprocessing

steps, is O(nt′(n,m, k, x, y, z)) where t′ is the maximum time required to compute T (Gi, α;x, y) for

a join node i and some state α ∈ Υ(Si). Recall that the number of states of a set with t elements

is bounded above by 2t
2

. For a join node we combine at most 22(k+1)2 states, with the contribution

from each pair taking at most O(k2 + δ) time to compute by the preceding discussion. Computing

the running time for the main part of our algorithm in terms of δ therefore takes time

O(n(k2 + δ)22(k+1)2).

As in the previous section we can show that δ ≤ l log l log log l where l = (2n + 3m) log(|px| +

|qx|+ |py|+ |qy|+ 2). The running time for the main part of the algorithm is therefore

O(n(k2 + (n+m) log(|px|+ |qx|+ |py|+ |qy|+ 2) log l log log l)22(k+1)2).

Suppose that our input graph has no parallel edges. Then the running time for the algorithm

becomes

O(n(k2 + nk log(|px|+ |qx|+ |py|+ |qy|+ 2) log l log log l)22(k+1)2).

3.4 Binary Greedoids

In this section we construct a polynomial-time algorithm to evaluate the Tutte polynomial of par-

ticular binary greedoids of bounded tree-width. We will use an important result by Hlinĕný that

provides a polynomial-time algorithm to compute the Tutte polynomial of a representable matroid

over a finite field of bounded branch-width. The notion of branch-width of a graph was first in-

110

troduced by Robertson and Seymour as their main tool for proving Wagner’s Conjecture in their

pioneering work on graph minors [47]. Like tree-width, it has since then proven very useful in

computational complexity theory as many intractable graph optimization problems may be solved

efficiently for graphs of bounded branch-width. Although the graph parameter tree-width has un-

doubtedly proven to be more popular in the fields of graph theory and theoretical computer science,

see [6] for example, it is branch-width that has drawn the attention of many matroid theorists. This

is because, unlike tree-width, branch-width directly generalizes to matroids as its definition makes

no explicit reference to graph vertices.

We begin by defining branch-width of a graph and more generally a matroid, and then present

several results regarding this parameter. A graph is said to be a binary tree if it is a tree and every

vertex has either degree 1 or 3.

Definition 3.4.1 (Branch-Decomposition of a Graph). A branch-decomposition of a graph G is a

pair (T, τ) where T is a binary tree and τ is a bijection from the set of edges of G to the vertices of

degree 1 of T .

Let (T, τ) be a branch-decomposition of a graph G and let e ∈ E(T). Let T1 and T2 be the

connected components of T \ e. Let L1 and L2 denote the set of vertices of degree 1 of T1 and T2

respectively. This deletion induces a partition of E(G) into sets E1 = τ−1(L1) and E2 = τ−1(L2).

The size of e is the number of vertices that are an endpoint of both an edge in E1 and an edge in

E2.

Definition 3.4.2 (Branch-Width of a Graph). The width of a branch-decomposition (T, τ) of a

graph G is the maximum size of any edge e ∈ E(T). The branch-width of G, denoted by bw(G), is

the minimum width taken over all possible branch-decompositions of G.

The notion of a branch-decomposition can naturally be extended to matroids in the following

way. A branch-decomposition of a matroid M is a pair (T, τ) where T is a binary tree and τ is a

bijection from the elements of the ground set E(M) to the vertices of degree 1 of T . Let (T, τ)

be a branch-decomposition of a matroid M and let e ∈ E(T). Let T1 and T2 be the connected

components of T \ e. Let L1 and L2 denote the set of vertices of degree 1 of T1 and T2 respectively,

and let E1 = τ−1(L1) and E2 = τ−1(L2). The size of e is given by r(E1) + r(E2) − r(M) + 1, and

the branch-width of a matroid M , denoted by bw(M), is defined analogously.

In [50] Seymour and Thomas show that computing the branch-width of a general graph is NP-

111

hard, and computing that of a planar graph can be done in polynomial time. The latter result is

somewhat surprising as the analogous computational problem for tree-width is still open. Kloks,

Kratochvil and Muller consider the computational complexity of determining the branch-width of

several classes of graphs in [33]. In particular they show that computing the branch-width of a

bipartite graph is NP-complete.

Bodlaender and Thilikos [8] prove that, for any fixed k ∈ N, one can construct a linear-time algo-

rithm that checks whether a graph has branch-width ≤ k and, if so, outputs a branch-decomposition

of minimum width. In [28] Hlinĕný shows that for each positive integer k and finite field F, there

is an algorithm which inputs a matrix A with entries from F such that M(A) has branch-width at

most k and outputs a branch-decomposition of M(A) with width at most 3k.

It is natural to ask whether the notion of tree-width can also be generalized to matroids. It is not

immediately obvious that this can be done since the definition of the tree-width of a graph makes

considerable use of the vertices. However, in [30] Hlinĕný and Whittle define tree-width of a graph

without reference to the vertices of the graph in a way which we shall now discuss.

A tree-decomposition of a matroid M is a pair (T, τ) where T is a tree and τ : E(M) → V (T)

is an arbitrary mapping. For a node (vertex) x of T , denote the connected components of T \ x by

T1, T2, . . . , Td and set Fi = τ−1(V (Ti)) ⊆ E(M). The node-width of x is given by

r(M)−
d∑

i=1

[r(M)− r(M \ Fi)] ,

and the width of the tree-decomposition (T, τ) is the maximum width of any node of T . The tree-

width of M is then said to be the minimum width taken over all possible tree-decompositions of

M .

The main theorem from [30] is stated below.

Theorem 3.4.3. Let G be a graph with at least one edge, and let M = M(G) be the cycle matroid

of G. Then the tree-width of G equals the tree-width of M .

The following result was proven by Hicks and McMurray Jr [27] and independently by Mazoit

and Thomassé [41].

Theorem 3.4.4. Let G be a graph with a cycle of length at least 2 and M = M(G) be the cycle

matroid of G. Then the branch-width of G equals the branch-width of M .

112

We now discuss the relationship between tree-width and branch-width of a graph and discover

that the two parameters differ by a small linear factor. In [47] Robertson and Seymour give the

following theorem.

Theorem 3.4.5. Let G be a graph with tree-width k and branch-width b > 1. Then

b− 1 ≤ k ≤
⌊
3b

2

⌋

− 1.

This implies that a class of graphs has bounded tree-width if and only if it has bounded branch-

width. Hlinĕný and Whittle extend this result to all matroids in [30].

Theorem 3.4.6. Let M be a matroid of tree-width k and branch-width b > 1. Then

b− 1 ≤ k ≤ max (2b− 2, 1).

Similarly this implies that a class of matroids has bounded tree-width if and only if it has

bounded branch-width. Let M be a representable matroid over a finite field. In [29] Hlinĕný

presents a recursive formula to compute the Tutte polynomial of M using a so-called parse tree of a

tree-decomposition of M . This formula provides a polynomial-time algorithm with a fixed exponent

to compute the Tutte polynomial of M when M is of bounded branch-width. An important result

from [29] is given below.

Corollary 3.4.7. Let F be a finite field, and let b be an integer constant. Suppose that x, y ∈ Q can

be written as x = p
q and y = r

s such that the combined length of p, q, r, s is l bits, and that M is an

n-element F-represented matroid of branch-width at most b. Then the Tutte polynomial T (M ;x, y)

can be evaluated in time O(n3 + n2l log(nl) log log(nl)).

Note that this almost matches the performance of the algorithm to evaluate the Tutte polynomial

of a graph of bounded tree-width given in [42]. By Theorem 3.4.6 this provides a polynomial-time

algorithm to evaluate the Tutte polynomial of a representable matroid of bounded tree-width.

Let N be an m× n matrix. We let Ni denote the submatrix of N with columns 1, 2, . . . , n and

rows 1, 2, . . . , i for some 1 ≤ i ≤ m.

Theorem 3.4.8. Let N be an m× n binary matrix with linearly independent rows. Let Γ = Γ(N)

and M = M(N) be the binary greedoid and vector matroid of N respectively. Let Mi = M(Ni) and

let M0 be the matroid comprising n loops. Then

113

T (Γ;x, y) = T (M ; 1, y) +
m∑

i=1

[

T (Mm−i; 1, y)− (y − 1)T (Mm−i+1; 1, y)

]

(x− 1)i. (3.12)

Proof. By Lemma 1.3.17 the bases of Γ coincide with the bases of M . Moreover ρ(Γ) = r(M) = m.

Let E denote the set of columns of N . We prove this theorem by showing that if each Tutte

polynomial in Equation 3.12 is expressed as a sum over the subsets of its edges then the contribution

of a subset A of E is the same on both sides of Equation 3.12. We let [A]T (M ;x, y) denote the

contribution of A to the term T (M ;x, y). Now

T (Γ;x, y) =
∑

A⊆E

(x− 1)ρ(Γ)−ρ(A)(y − 1)|A|−ρ(A)

=
∑

A⊆E:
ρ(A)=ρ(Γ)

(y − 1)|A|−ρ(A) +
∑

A⊆E:
ρ(A) 6=ρ(Γ)

(x− 1)ρ(Γ)−ρ(A)(y − 1)|A|−ρ(A).

The contribution of A to the LHS of Equation 3.12 is therefore

(y − 1)|A|−ρ(A) if ρ(A) = ρ(Γ), and

(x− 1)ρ(Γ)−ρ(A)(y − 1)|A|−ρ(A) if ρ(A) 6= ρ(Γ).

Now suppose ρ(A) = ρ(Γ), then

[A]T (M ; 1, y) = (y − 1)|A|−ρ(Γ)

and

[A]T (Mm−i; 1, y) = (y − 1)|A|−ρ(Γ)+i.

Therefore the contribution of A when ρ(A) = ρ(Γ) to the RHS of Equation 3.12 is

(y − 1)|A|−ρ(Γ) +

r(M)
∑

i=1

[

(y − 1)|A|−ρ(Γ)+i − (y − 1)(y − 1)|A|−ρ(Γ)+i−1

]

(x− 1)i

= (y − 1)|A|−ρ(Γ).

114

Now suppose ρ(A) < ρ(Γ), then

[A]T (Mj ; 1, y) =







0 if j > ρ(A), and

(y − 1)|A|−j if j ≤ ρ(A).

Therefore the contribution of A when ρ(A) < ρ(Γ) to the RHS of Equation 3.12 is

r(M)
∑

i=ρ(Γ)−ρ(A)

(y − 1)|A|−ρ(Γ)+i(x − 1)i − (y − 1)

r(M)
∑

i=ρ(Γ)−ρ(A)+1

(y − 1)|A|−ρ(Γ)+i−1(x− 1)i

= (x− 1)ρ(Γ)−ρ(A)(y − 1)|A|−ρ(A).

Hence A has the same contribution to both sides of Equation 3.12.

We now present the main theorem of this section.

Theorem 3.4.9. For every k ∈ N there exists an algorithm Ak that will input an m × n binary

matrix N with linearly independent rows such that for each i with 1 ≤ i ≤ m the vector matroid

M(Ni) has tree-width at most k, and rationals x = px

qx
, y =

py

qy
, and evaluate T (Γ(N);x, y) in time

at most

O(m(n3 + n2l log(nl) log log(nl)))

where l = log(|px|+ |qx|+ |py|+ |qy|+ 1) and Γ(N) is the binary greedoid of N .

Proof. Let Mi = M(Ni). By Corollary 3.4.7 and the discussion preceding Theorem 3.4.8 there

exists a polynomial-time algorithm to evaluate T (Mi;x, y) for all i with 1 ≤ i ≤ m such that Mi

has bounded tree-width k. The result now follows by Equation 3.12. Moreover we can evaluate

T (Γ(N);x, y) by calling Hlinĕný’s algorithm to evaluate T (Mi;x, y) for each i, thus taking time at

most O(m(n3 + n2l log(nl) log log(nl))).

Note that we need the condition that every vector matroid Mi has tree-width at most k for all

1 ≤ i ≤ m in Theorem 3.4.8 otherwise we may have tw(Mi−1) > tw(Mi). For example consider the

115

following binary matrix representation of the path with three edges

N =









1 0 1

0 1 1

1 1 1









.

Clearly the path has tree-width 1. By Theorem 3.4.3 this implies M(N) has tree-width 1. Now if we

delete the bottom row of N we obtain a binary matrix representation of the triangle. The triangle

has tree-width 2 and so by Theorem 3.4.3 M(N2) has tree-width 2.

116

Chapter 4

The Characteristic Polynomial and

the Computational Complexity of

the Coefficients of the Tutte

Polynomial of a Rooted Graph

4.1 The Characteristic Polynomial

In this section we present a new expression for the characteristic polynomial of a rooted graph in

terms of the Möbius function.

The total number of ways of vertex colouring a graph G = (V,E) using a palette of λ colours is

λ|V |. For A ⊆ E the number of ways we may assign colours to the vertices of G|A so that adjacent

vertices share the same colour is λκ(A). Using the principle of inclusion/exclusion, Whitney [60]

gives the following definition for the chromatic polynomial

P (G;λ) =
∑

A⊆E

(−1)|A|λκ(A).

117

The characteristic polynomial of a matroid M = (E, I) is defined by

p(M ;λ) =
∑

A⊆E

(−1)|A|λr(M)−r(A).

Let M = M(G) be the cycle matroid of a graph G = (V,E). Since r(M) = r(G) we have

p(M ;λ) =
∑

A⊆E

(−1)|A|λr(G)−r(A) =
∑

A⊆E

(−1)|A|λκ(A)−κ(G)

= λ−κ(G)
∑

A⊆E

(−1)|A|λκ(A) =
1

λκ(G)
P (G;λ).

We now show that the characteristic polynomial of a matroid M = (E, I) is a specialization of the

Tutte polynomial of M :

p(M ;λ) =
∑

A⊆E

(−1)|A|λr(M)−r(A) =
∑

A⊆E

(−1)|A|−r(A)+r(A)−r(M)+r(M)λr(M)−r(A)

= (−1)r(M)
∑

A⊆E

(−λ)r(M)−r(A)(−1)|A|−r(A) = (−1)r(M)T (M ; 1− λ, 0). (4.1)

The characteristic polynomial therefore follows a deletion/contraction recursion. Let e ∈ E such

that e is neither a loop nor a coloop. We have r(M \ e) = r(M) and r(M/e) = r(M)− 1. Therefore

p(M ;λ) = (−1)r(M) [T (M \ e; 1− λ, 0) + T (M/e; 1− λ, 0)]

= (−1)r(M\e)T (M \ e; 1− λ, 0) + (−1)r(M/e)+1T (M/e; 1− λ, 0)

= p(M \ e;λ)− p(M/e;λ).

If e ∈ E is a coloop then M/e = M \ e. It is easy to check that T (M ;x, y) = xT (M \ e;x, y). We

have r(M \ e) = r(M)− 1. Therefore

p(M ;λ) = (−1)r(M\e)+1(1− λ)T (M \ e; 1− λ, 0) = (λ− 1)p(M \ e;λ).

Similarly p(M ;λ) = (λ− 1)p(M/e;λ).

If there exists e ∈ E that is a loop then M/e = M \ e. It is easy to check that T (M ;x, y) =

yT (M \ e;x, y). Therefore

p(M ;λ) = 0.

118

Suppose we have a partially ordered set P and let x, y ∈ P . The Möbius function µP of P is

defined by

µP (x, y) =







1 if x = y,

−∑x≤z<y µP (x, z) if x < y, and

0 otherwise.

Let M = (E, I) be a matroid and A ⊆ E. The set A is a flat of M if for any x ∈ E −A we have

r(A∪x) = r(A)+ 1. Let S be a finite set and ≤ be a partial ordering on S. Given elements x and y

of S, the element z of S is an upper bound for {x, y} if x ≤ z and y ≤ z. It is a least upper bound if

z ≤ z′ for every upper bound z′. The notion of a greatest lower bound is defined similarly. A partial

order is a lattice if every pair of elements has both a least upper bound and a greatest lower bound.

In a lattice we say that an element X covers an element Y if Y ≤ X and there is no element Z such

that Y ≤ Z ≤ X .

We define the lattice L(M) of a matroid M to be the lattice where the elements correspond to

the flats of M , and X ≤ Y if X ⊆ Y . The Möbius function µM of M is given by µM (X,Y) =

µL(M)(X,Y). Note that the Möbius function of a matroid can naturally be specialized to that of

a graph. See [64] for a detailed discussion on the Möbius function of a matroid. Suppose F is an

element of L(M), then we define

µM (F) =







µM (∅, F) if M is loopless, and

0 otherwise.

The following two propositions are originally due to Brylawski [9] and Rota [48] respectively.

Proposition 4.1.1. Let M = (E, I) be a matroid and e ∈ E. Then

•

µM (E) =







µM\e(E − e)− µM/e(E − e) if e is not a coloop, and

−µM\e(E − e) = −µM/e(E − e) otherwise.

• If M = M1 ⊕ M2 where M1 = (E1, I1) and M2 = (E2, I2) are matroids, then µM (E) =

µM1(E1)µM2(E2).

Proposition 4.1.2. The Möbius function of a matroid M is non-zero and alternates in sign. More

119

{1, 2, 3, 4}

{1, 4}{1, 3}{1, 2} {2, 3} {2, 4} {3, 4}

{2}{1} {3} {4}

∅

Figure 4.1: Lattice L(M).

precisely for X,Y ∈ L(M) with X ≤ Y we have

(−1)r(Y)−r(X)µM (X,Y) > 0.

Zaslavsky [64] gives the following expression for the characteristic polynomial of a matroid. Let

M be a matroid, then

p(M ;λ) =
∑

F∈L(M)

µM (F)λr(M)−r(F). (4.2)

Example 4.1.3. Let M = (E, I) be the matroid with E = {1, 2, 3, 4} and

I = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} .

The lattice L(M) is given in Figure 4.1. The flats of M together with their corresponding Möbius

function are presented in the table below.

F ∈ L(M) ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3, 4}

µM (F) 1 −1 −1 −1 −1 1 1 1 1 1 1 −3

Using Equation 4.2 we compute

p(M ;λ) = λ3 − 4λ2 + 6λ− 3.

We now relate the Möbius function of a graphic matroid to the orientations of the corresponding

120

graph. Let A(G) denote the collection of all acyclic orientations of a graph G with one predefined

source vertex.

Proposition 4.1.4. Let M = M(G) be the cycle matroid of the connected graph G = (V,E). Then

µM (E) = (−1)r(M)|A(G)|.

Proof. By Equations 4.2 and 4.1 we have

T (M ; 1, 0) = (−1)r(M)p(M ; 0) = (−1)r(M)
∑

F∈L(M):
r(F)=r(M)

µM (F) = (−1)r(M)µM (E). (4.3)

The last equality follows from E being the unique flat of M with full rank. The result now follows

immediately by recalling from Section 1.5 that, since G is connected, T (M ; 1, 0) gives the number

of acyclic orientations of G with one predefined source vertex.

Gordon and McMahon generalize the characteristic polynomial to greedoids in [22]. Let Γ be a

greedoid. Then the characteristic polynomial of Γ is given by

p(Γ;λ) = (−1)ρ(Γ)T (Γ; 1− λ, 0). (4.4)

They also show that several of the matroidal results have direct greedoid analogues.

Using Equation 4.4 and Proposition 1.7.1, we now prove that the characteristic polynomial of

a greedoid satisfies the following deletion/contraction recursion. This result is originally given in

[22]. Let Γ = (E,F) be a greedoid and let e ∈ E such that {e} ∈ F . We have ρ(Γ/e) = ρ(Γ) − 1.

Therefore

p(Γ;λ) = (−1)ρ(Γ)T (Γ; 1− λ, 0)

= (−1)ρ(Γ)
[

T (Γ/e; 1− λ, 0) + (−λ)ρ(Γ)−ρ(Γ\e)T (Γ \ e; 1− λ, 0)
]

= (−1)ρ(Γ)
[

(−1)ρ(Γ/e)p(Γ/e;λ) + (−λ)ρ(Γ)−ρ(Γ\e)(−1)ρ(Γ\e)p(Γ \ e;λ)
]

= λρ(Γ)−ρ(Γ\e)p(Γ \ e;λ)− p(Γ/e;λ). (4.5)

Another result from [22] is that the direct sum property holds for the characteristic polynomial

121

of a greedoid. That is for greedoids Γ,Γ1 and Γ2 such that Γ = Γ1 ⊕ Γ2, we have

p(Γ;λ) = p(Γ1;λ)p(Γ2;λ).

This follows immediately from Equation 4.4 and the direct sum property of the Tutte polynomial of

a greedoid.

Also given in [22] is the result that the coefficients of the characteristic polynomial still alternate

in sign when defined for a greedoid. That is, by expressing p(Γ;λ) in the form

p(Γ;λ) =

ρ(Γ)
∑

k=0

wkλ
ρ(Γ)−k,

the sign of wk is (−1)k.

Gordon and McMahon [22] find an analogous result to Equation 4.2 for antimatroids, a particular

well-behaved class of greedoids.

Definition 4.1.5 (Antimatroid). An antimatroid Γ = (E,F) is a greedoid that satisfies the following

axiom:

(AM) If F1, F2 ∈ F then F1 ∪ F2 ∈ F .

That is, a greedoid is an antimatroid if its feasible sets are closed under taking unions. Let

Γ = (E,F) be an antimatroid and let A ⊆ E. The set A is said to be convex if E −A ∈ F . These

are the sets whose complements are feasible. Let C denote the collection of convex sets of Γ. We

can construct a lattice LC(Γ) of Γ such that the elements correspond to the convex sets of Γ and an

element X covers an element Y if Y ⊆ X and |X | = |Y | + 1. Suppose A is an element of LC(Γ),

then we define

µΓ(A) =







µΓ(∅, A) if Γ is loopless, and

0 otherwise.

Gordon and McMahon [22] prove the following theorem.

Theorem 4.1.6. Let Γ = (E,F) be an antimatroid, then

p(Γ;λ) = (−1)|E|
∑

A∈LC(Γ)

µΓ(A)λ
|A|. (4.6)

122

{1, 2, 3, 4}

{1, 2, 4}{1, 2, 3} {2, 3, 4}

{2, 4}{2, 3}{1, 2} {3, 4}

{1} {2} {3} {4}

∅

Figure 4.2: Lattice LC(Γ)

Example 4.1.7. Let Γ = (E,F) be the antimatroid with E = {1, 2, 3, 4} and

F = {∅, {1}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}} .

The lattice LC(Γ) of Γ is given in Figure 4.2. The convex sets of Γ together with their corresponding

Möbius function are presented in the table below.

A ∈ LC(Γ) ∅ {1} {2} {3} {4} {1, 2} {2, 3}

µC(A) 1 −1 −1 −1 −1 1 1

A ∈ LC(Γ) {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {2, 3, 4} {1, 2, 3, 4}

µC(A) 1 1 0 0 −1 0

Using Equation 4.6 we compute

p(Γ;λ) = 1− 4λ+ 4λ2 − λ3.

For a rooted graph G we let p(G;λ) = p(Γ(G);λ). The remainder of this section will focus

on constructing a Möbius function formulation for the characteristic polynomial of a rooted graph.

First we present and prove several results stated in [23].

123

Proposition 4.1.8. Let G = (r, V, E) be a rooted graph and let H = (r, V, E′) be the subgraph of G

obtained by deleting all but one edge from each parallel class of G, then

p(G;λ) = p(H ;λ).

Proof. By Equation 4.4 we have p(G;λ) = (−1)ρ(G)T (G; 1− λ, 0). It is not difficult to see that

T (G;x, y) =
∑

A⊆E′

(x− 1)ρ(H)−ρH (A)(y − 1)−ρH (A)
∏

e∈A

(ym(e) − 1).

Now

T (G; 1− λ, 0) =
∑

A⊆E′

(−λ)ρ(H)−ρH (A)(−1)|A|−ρH(A) = T (H ; 1− λ, 0).

The result now follows since ρ(G) = ρ(H).

Proposition 4.1.9. Let Γ be a greedoid with at least one loop, then

p(Γ;λ) = 0.

Proof. This follows immediately from Proposition 1.7.1 and Equation 4.4.

We now relate the characteristic polynomial of a rooted graph to the orientations of the graph.

Let O(G) denote the collection of all acyclic orientations of a rooted graph G such that the root is

the unique source. Note that an isolated vertex in a graph is considered to be neither a source nor

a sink.

Proposition 4.1.10. Let G be a connected rooted graph. Then

|O(G)| = (−1)ρ(G)p(G; 0).

Proof. This follows immediately from Equation 4.4 and the interpretation of the evaluation of

T (G; 1, 0).

A special case of a result of Tedford [53] states that if G = (r, V, E) is a rooted graph then

p(G;λ) = (−1)ρ(G)

ρ(G)
∑

k=0

ak(G)(1 − λ)k, (4.7)

124

where ak(G) is the number of acyclic orientations of G with k sinks such that r is the unique source.

We now determine p(G;λ) for three special classes of rooted graphs.

Proposition 4.1.11. 1. Let T be a rooted tree with l leaves (excluding the root if it is a leaf).

Then p(T ;λ) = (−1)|E(T)|(1− λ)l.

2. Let Cn be the rooted cycle graph with n vertices. Then p(Cn;λ) = (−1)n−1(n− 1)(1− λ).

3. Let Kn be the rooted complete graph with n vertices. Then p(Kn;λ) = (−1)n−1(n− 1)!(1−λ).

Each evaluation can be shown using induction on the number of vertices in the graph. We omit

the proof of the first two results and prove only the evaluation for the characteristic polynomial of

a complete graph because this is considered to be the most complex.

Proof. 3. When n = 2 the complete graph K2 comprises a single edge incident to the root vertex.

The only orientation in which the root is the unique source is that where the edge is oriented

away from the root. Therefore by Equation 4.7 we have p(K2;λ) = λ − 1 = (−1)1!(1 − λ).

Assume the result holds for n = d− 1 where d > 2, i.e. p(Kd−1;λ) = (−1)d−2(d − 2)!(1 − λ).

Suppose e1, e2, . . . , ed−1 are the edges incident to the root vertex in Kd. Using Equation 4.5

and Proposition 4.1.8, we have

p(Kd;λ) = p(Kd \ e1;λ)− p(Kd−1;λ) = . . .

= p(Kd \ {e1, e2, . . . , ed−2};λ)− (d− 2)p(Kd−1;λ)

= λd−1p(Kd \ {e1, e2, . . . , ed−1};λ)− (d− 1)p(Kd−1;λ).

Now Kd \{e1, . . . , ed−1} is a disconnected graph with at least one edge not incident to the root

since d > 2. By Proposition 4.1.9 we have p(Kd \ {e1, . . . , ed−1};λ) = 0. Therefore

p(Kd;λ) = −(d− 1)p(Kd−1;λ) = (−1)d−1(d− 1)!(1− λ),

as required.

Lemma 4.1.12. Let G = (r, V, E) be a connected rooted graph and let S ⊆ V − r. Then there is

an acyclic orientation of G with unique source r such that every vertex in S is a sink if and only if

G \ S is connected and S is independent.

125

Proof. As G is connected, every vertex of G is reachable by a directed path from r in any acyclic

orientation of G where r is the unique source.

Suppose that every vertex of S is a sink in an acyclic orientation o ∈ O(G). Clearly S is

independent as we cannot have adjacent vertices both being sinks. Suppose G \ S is disconnected.

Let v be a vertex in G \S that is not in the same connected component as r. This means that there

is a directed path r . . . s . . . v in o for some s ∈ S. This cannot happen as s is a sink in o and thus

does not have any incident edges directed away from s. Hence G \ S must be connected.

Now let S be an independent set and G \ S be connected. Since G \ S is connected there exists

an acyclic orientation o of G \ S such that r is the only source. Now since S is independent we can

orient the edges incident to vertices in S towards the vertices in S, obtaining an acyclic orientation

in which r is the only source and every vertex of S is a sink.

Definition 4.1.13. Let G = (r, V, E) be a connected rooted graph and let G′ be its underlying

unrooted graph. Let M(G′) be the cycle matroid of G′. A flat F of M(G′) is called full if there

exists a set S ⊆ V − r such that F = E(G′ \ S) where S is independent and G \ S is connected.

Let G = (r, V, E) be a rooted graph. Let S be the collection of subsets S of V − r that are

independent and such that G\S is connected. For every S ∈ S there is a one-to-one correspondence

between O(G \ S) and O(G) where each vertex of S is a sink (with possibly other sinks) obtained

by directing edges incident to vertices of S towards the vertices of S.

If G is connected and G′ is its underlying unrooted graph, then |O(G)| = |A(G′)| since the

number of acyclic orientations of G′ with a predefined source vertex is independent of the choice of

source for a connected graph.

Let A ⊆ E. Then µM(G′\S)(A) = µM(G′)(A) if no element in A is incident to a vertex in S in

G′. Also recall r(G′) = ρ(G) when G is connected.

We now present the main theorem of this section.

Theorem 4.1.14. Let G = (r, V, E) be a connected rooted graph and let G′ be its underlying unrooted

graph. Let M = M(G′) be the cycle matroid of G′, then

p(G;λ) =







∑

F∈L(M):
F is full

µM (F)λρ(G)−ρ(F) if Γ(G) has no loops, and

0 otherwise.

.

126

Proof. The result p(G;λ) = 0 when Γ(G) has greedoid loops is given by Proposition 4.1.9.

Let S(o) be the set of sinks in the orientation o ∈ O(G). Let S be the collection of subsets S of

V − r that are independent and such that G \ S is connected. We have

p(G;λ) = (−1)ρ(G)
∑

o∈O(G)

(1− λ)|S(o)|

= (−1)ρ(G)
∑

o∈O(G)

∑

U⊆S(o)

(−λ)|U|

= (−1)ρ(G)
∑

U∈S

(−λ)|U|
∑

o∈O(G):
U⊆S(o)

1

= (−1)ρ(G)
∑

U∈S

(−λ)|U|
∑

o∈O(G\U)

1

= (−1)ρ(G)
∑

U∈S

(−λ)|U|
∑

o∈A(G′\U)

1

= (−1)ρ(G)
∑

U∈S

(−λ)|U|(−1)r(G′\U)µM(G′\U)(E(G′ \ U))

= (−1)ρ(G)
∑

U∈S

(−λ)|U|(−1)r(G′)−|U|µM(G′)(E(G′ \ U))

=
∑

U∈S

λ|U|µM(G′)(E(G′ \ U))

=
∑

F∈L(M):
F is full

µM(G′)(F)λρ(G)−ρ(F).

Example 4.1.15. Let G be the rooted graph with root vertex r given in Figure 4.3 and let G′ be its

underlying unrooted graph. The lattice L(M(G′)) is given in Figure 4.4 in which the flats that are

full in G are coloured red.

r
1

3

4 2
5

Figure 4.3: Rooted graph G

127

{1, 2, 3, 4, 5}

{1, 4}{1, 3}{1, 2, 5} {2, 3} {2, 4} {3, 4, 5}

{3}{2}{1} {4} {5}

∅

Figure 4.4: Lattice L(M(G′))

The full flats of G together with their corresponding Möbius function are presented in the table

below.

Full F ⊆ L(M(G′)) {5} {1, 4} {1, 2, 5} {3, 4, 5} {1, 2, 3, 4, 5}

µM(G)(F) −1 1 2 2 −4

Using Theorem 4.1.14 we compute

p(G;λ) = −λ2 + 5λ− 4.

4.2 The Coefficients

In this section we determine the complexity of computing the coefficients of the Tutte polynomial of

a rooted graph. We also find an expression for the minimum number of sinks taken over all acyclic

orientations of a rooted graph in which the root is the unique source.

The Tutte polynomial of a graph can be expressed in the form

T (G;x, y) =
∑

i,j≥0

bi,j(G)xiyj.

We can omit the argument G when there is no risk of ambiguity.

Brylawski [9] discovered that the coefficients of the Tutte polynomial of a graphG (more generally

128

a matroid) satisfy a collection of linear relations. In particular

b0,0(G) = 0 if G has at least one edge, and

b0,1(G) = b1,0(G) if G has at least two edges.

Note that the first relation states that there is no constant term in the Tutte polynomial of a graph

with at least one edge.

The complexities of computing the coefficients of the Tutte polynomial of a graph were first

considered by Annan in [2]. Annan reduces the well-known #P-complete 3-colouring problem to

that of computing the coefficient b1,0, and furthermore b0,1 by Equation 4.8. He then deduces that for

all fixed non-negative integers i, j the coefficients bi,j+1 and bi+1,j are also #P-complete to compute.

We now present analogous results for the coefficients of the Tutte polynomial of a rooted graph.

Let G = (r, V, E) be a rooted graph. We can similarly express the Tutte polynomial of G in the

form

T (G;x, y) =
∑

i,j≥0

bi,j(G)xiyj.

Again we can omit the argument when the context is clear. By Equations 4.4 and 4.7 we have

T (G;x, 0) =
∑

i≥0

bi,0(G)xi =







∑

o∈O(G) x
|S(o)| if O(G) 6= ∅, and

0 otherwise.
(4.8)

Therefore the coefficients bi,0(G) give the number of acyclic orientations of G with i sinks in which

r is the unique source. This implies bi,0 ≥ 0 for all i ≥ 0.

Example 4.2.1. Figure 4.5 shows a rooted graph G = (r, V, E) and the acyclic orientations of G

where r is the unique source. The sinks in each orientation are coloured red. Therefore b1,0(G) =

3, b2,0(G) = 1 and bi,0(G) = 0 for all i /∈ {1, 2}. It is straightforward to check that T (G;x, 0) =

x2 + 3x.

We now find an interpretation for the order of the characteristic polynomial of a rooted graph,

and determine the computational complexity of computing it. Let G = (r, V, E) be a rooted graph.

From Equation 4.7 we may express the characteristic polynomial of G in the following form:

p(G;λ) = (−1)ρ(G)

ρ(G)
∑

k=0

ak(G)(1 − λ)k.

129

r

r r r r

Figure 4.5

This implies that the order of p(G;λ) is equal to the maximum number of sinks taken over all acyclic

orientations in O(G). Recall that Ḡ is the class of connected unrooted graphs. Consider the following

well-known NP-complete computational decision problem.

INDEPENDENT SET

Input G ∈ Ḡ, integer k.

Question Does G have an independent set of vertices of size at least k?

We now determine the complexity of the following computational decision problem. Recall that

G is the class of connected rooted graphs.

ORDER OF CHARACTERISTIC POLYNOMIAL

Input G ∈ G, integer k.

Question Is the order of p(G;λ) at least k?

Proposition 4.2.2. The computational problem ORDER OF CHARACTERISTIC POLYNOMIAL

is NP-complete.

Proof. The problem is clearly in NP. Let H ∈ Ḡ. Let G be the rooted graph formed by adding

a new vertex r adjacent to every vertex in H and making r the root. We claim that H has an

independent set of size at least k if and only if the characteristic polynomial of G has degree at

130

least k. If the characteristic polynomial of G has degree at least k, then by Equation 4.7, G has an

acyclic orientation with r as the unique source and at least k sinks. These k sinks do not include r

and, by Lemma 4.1.12, form an independent set. Thus H has an independent set of size at least k.

Now suppose that H has an independent set S of size at least k. Then S is independent in G and

as r is adjacent to every other vertex in G, the graph G \ S is connected. Thus there is an acyclic

orientation of G with unique source r having every vertex of S as a sink. So the degree of p(G;λ)

is at least k. Therefore the claim is true and the problem INDEPENDENT SET is reducible to

ORDER OF CHARACTERISTIC POLYNOMIAL.

We will now determine the complexity of computing the coefficient b1,0(G) where G is a con-

nected rooted graph.

#COEFFICIENT OF x

Input G ∈ G.

Output b1,0(G).

Theorem 4.2.3. The computational problem #COEFFICIENT OF x is #P-hard to compute.

Proof. Let H ∈ Ḡ. Create a rooted graph G from H by adding a vertex r adjacent to every vertex in

H and making r the root. As H is connected, the number of acyclic orientations of H with a single

predefined source is given by T (H ; 1, 0). By replacing any orientation by the one formed by reversing

the direction of each edge we see that T (H ; 1, 0) also counts the number of acyclic orientations of H

with a single predefined sink. Let s be a vertex of H . By orienting the edges incident to r away from

r, we obtain a one-to-one correspondence between acyclic orientations of H in which s is the unique

sink and acyclic orientations of G in which r is the unique source and s is the unique sink. There

are |V (H)| possibilities for s, so b1,0(G) = |V (H)|T (H ; 1, 0). Therefore computing b1,0 is #P-hard

by Theorem 1.6.1.

Note that when G is disconnected the problem of computing b1,0(G) becomes easy since O(G) = ∅

and therefore b1,0(G) = 0.

In [20] Gordon extends Brylawski’s relations to rooted graphs. The first two affine relations are

131

listed below:

b0,0(G) = 0 if G has at least one edge, (4.9)

b0,1(G) = b1,0(G) if G has at least two edges. (4.10)

Note that Equation 4.9 agrees with the fact that there are no acyclic orientations of a rooted graph

with no sinks and the root being the unique source. It is now straightforward to determine the

complexity of computing the coefficient b0,1(G).

#COEFFICIENT OF y

Input G ∈ G.

Output b0,1(G).

Theorem 4.2.4. The computational problem #COEFFICIENT OF y is #P-hard to compute.

Proof. This follows directly from Theorem 4.2.3 and Equation 4.10.

Again the problem of computing b0,1(G) becomes easy when G is disconnected.

Let S be the rooted graph obtained by attaching j ≥ 0 loops to the root of the star graph Si.

By the direct sum property of the Tutte polynomial of a rooted graph we have

T (S;x, y) = xiyj.

Now let H be a rooted graph with Tutte polynomial

T (H ;x, y) =
∑

m,n≥0

bm,n(H)xmyn.

Let G be the rooted graph obtained by identifying the root of S with the root of H . Then

T (G;x, y) = T (H ;x, y)T (S;x, y) =
∑

m,n≥0

bm,n(H)xm+iyn+j . (4.11)

We now extend our hardness results to include the remaining coefficients following Annan’s ap-

proach [2]. Let i and j be fixed non-negative integers. Consider the following two computational

132

problems.

#COEFFICIENT bi,j+1

Input G ∈ G.

Output bi,j+1(G).

#COEFFICIENT bi+1,j

Input G ∈ G.

Output bi+1,j(G).

Theorem 4.2.5. #COEFFICIENT bi,j+1 and #COEFFICIENT bi+1,j are #P-hard to compute.

Proof. Given H , let G be as defined in the discussion after Theorem 4.2.4. By Equation 4.11 we have

bi+1,j(H) = b1,0(G) and bi,j+1(H) = b0,1(G). Hence computing the coefficient bi+1,j and computing

the coefficient bi,j+1 are both #P-hard problems by Theorems 4.2.3 and 4.2.4.

We now present results for determining the complexity of the coefficients dependent on the input

size of the rooted graph, i.e. the number of vertices and the number of edges of the graph. Let α

and c be fixed constants with 0 ≤ α < 1 and 0 < c ≤ 1. Consider the following two computational

problems.

#COEFFICIENT b⌊αn(G)+1⌋,0

Input G ∈ G with n(G) vertices.

Output b⌊αn(G)+1⌋,0(G).

#COEFFICIENT b⌊n(G)−n(G)c+1⌋,0

Input G ∈ G with n(G) vertices.

Output b⌊n(G)−(n(G))c+1⌋,0(G).

Lemma 4.2.6. #COEFFICIENT b⌊αn(G)+1⌋,0 and #COEFFICIENT b⌊n(G)−n(G)c+1⌋,0 are #P-

hard to compute.

133

Proof. Given a rooted graph H , let G be as in the proof of Theorem 4.2.5 with i = ⌊αn(H)
1−α ⌋ and

j = 0. We have b
1+⌊αn(H)

1−α ⌋,0(G) = b1,0(H). Hence computing the coefficient b
1+⌊αn(H)

1−α ⌋,0(G) is #P-

hard by Theorem 4.2.3. We want to show that 1 +

⌊
αn(H)

1− α

⌋

= 1 + ⌊αn(G)⌋. Let
αn(H)

1− α
= t + k

where t ∈ Z+ and 0 ≤ k < 1. We have

αn(G) = αn(H) + α

⌊
αn(H)

1− α

⌋

=
(1− α)αn(H)

1− α
+ αt

= (t+ k)(1 − α) + αt

= t+ (1− α)k.

Since 0 < 1− α ≤ 1 and 0 ≤ k < 1 we have (1 − α)k < 1. Therefore

⌊αn(G)⌋ = ⌊t+ (1− α)k⌋ = t =

⌊
αn(H)

1− α

⌋

.

Now repeat with i = ⌊(n(H))1/c−n(H)⌋ and j = 0. By Equation 4.11 we have b1+⌊(n(H))1/c−n(H)⌋,0(G) =

b1,0(H). Hence computing the coefficient b1+⌊(n(H))1/c−n(H)⌋,0(G) is #P-hard by Theorem 4.2.3.

Since

n(H) = n(G)− ⌊(n(H))1/c − n(H)⌋

we have n(G) = ⌊(n(H))1/c⌋. We want to show that 1+⌊(n(H))1/c−n(H)⌋ = 1+⌊n(G)− (n(G))c⌋,

i.e. that ⌊(n(H))1/c − n(H)⌋ = ⌊n(G)− (n(G))c⌋. We have

⌊n(G) − (n(G))c⌋ = n(G) + ⌊−(n(G))c⌋ = n(G) − ⌈(n(G))c⌉

= n(G)−
⌈

⌊(n(H))1/c⌋c
⌉

= n(G)− n(H)

= ⌊(n(H))1/c − n(H)⌋.

Consider the following two computational problems:

#COEFFICIENT b0,⌊αm(G)⌋+1

Input G ∈ G with m(G) edges.

134

Output b0,⌊αm(G)⌋+1(G).

#COEFFICIENT b0,⌊m(G)−(m(G))c⌋+1

Input G ∈ G with m(G) edges.

Output b0,⌊m(G)−(m(G))c⌋+1(G).

Lemma 4.2.7. #COEFFICIENT b0,⌊αm(G)⌋+1 and #COEFFICIENT b0,⌊m(G)−(m(G))c⌋+1 are #P-

hard to compute.

Proof. The proof of this is similar to that of Lemma 4.2.6 by letting j =

⌊
αm(H)

1− α

⌋

(respec-

tively ⌊(m(H))1/c −m(H)⌋) in Equation 4.11 to show that the coefficient b0,⌊αm(G)⌋+1 (respectively

b0,⌊m(G)−(m(G))c⌋+1) is #P-hard to compute.

4.2.1 Coefficients of T (G; x, 0)

Here we will study the minimum integer i such that for a rooted graph G, the coefficient of xi in

T (G;x, 0) is non-zero. First we discuss the corresponding situation for unrooted graphs.

We say that a connected graph G is separable if there exists a vertex v such that G \ v is

disconnected, and nonseparable otherwise. If such a vertex exists then it is called a cut-vertex of

G. If a connected graph G contains a cut-vertex v then it is the vertex join of two connected

subgraphs G1 and G2 such that G1 ∪ G2 = G, G1 ∩G2 = v and both G1 and G2 have at least one

edge. Therefore T (G;x, y) = T (G1;x, y)T (G2;x, y). Since b0,0(G1) = b0,0(G2) = 0 we must have

b1,0(G) = 0. Hence G must be nonseparable if b1,0(G) > 0.

A block of a graph G is a maximal connected subgraph of G that is nonseparable. The Tutte

polynomial of an unrooted graph is the product of the Tutte polynomials of its blocks. Moreover

if G is nonseparable and is not a loop then b1,0(G) > 0. So if G has no loops then the minimum

integer i such that the coefficient of xi in T (G;x, 0) is strictly positive equals the number of blocks

of G.

The following graph tool was originally defined by Whitney in [61]. It can be used to characterize

several important classes of graphs and improve the running time of some graph algorithms.

Definition 4.2.8 (Ear-Decomposition). Let G = (V,E) be a graph. An ear-decomposition of G

is a partition of E into an ordered collection of edge-disjoint sets P0, P1, . . . , Pt such that P0 is a

135

cycle, and for 1 ≤ i ≤ t, Pi is either a cycle with precisely one vertex in P0 ∪ . . . ∪ Pi−1 or a path

with both endpoints but no internal vertices in P0 ∪ . . . ∪ Pi−1. The Pis are called the ears of the

decomposition.

If Pi is a path for all 1 ≤ i ≤ t, then the ear decomposition is said to be open.

Figure 4.6 shows a graph G alongside an open ear-decomposition of G.

v1 v2 v3

v4 v5 v6 v7

v8

v1

v2

v6

v5

v4

v7
v3

v8

P0

P2
P3

P1

G

Figure 4.6

The definition of an open ear-decomposition can naturally be extended to rooted graphs.

The following is a result by Whitney [61].

Lemma 4.2.9. A connected graph G = (V,E) with |E| ≥ 2 is nonseparable if and only if it has an

open ear-decomposition.

Let G = (V,E) with |E| ≥ 2 be a nonseparable graph. By adapting the proof from [61], if G

has an open ear-decomposition, then it is possible to choose any cycle of G to be the first ear P0.

Moreover in a nonseparable graph, every pair of vertices is contained in a cycle. The next theorem

is probably well-known, but we have been unable to find it stated anywhere.

Theorem 4.2.10. Let G = (V,E) be a nonseparable loopless, unrooted graph with at least one edge.

For any pair r and s of vertices of G, there is an acyclic orientation of G for which the unique

source is r and the unique sink is s.

Proof. If G has only one edge, then the edge is not a loop and the result is obvious. So we may

suppose that G has at least two edges. Now since G is nonseparable with |E| ≥ 2 there exists

an open ear-decomposition of G by Lemma 4.2.9. Let P0, P1, . . . , Pt be the ears of the open ear-

decomposition. By the discussion immediately preceding the theorem, we may choose P0 to be a

cycle containing r and s.

136

We perform induction on the number of ears at a particular stage in the construction of our open

ear-decomposition of G to show that there always exists an orientation in O(G) with precisely one

sink.

At the stage when we have just one ear in the open ear-decomposition it will comprise solely P0.

We can orient the edges away from r and towards s in P0 as it is a cycle. This orientation is clearly

acyclic and has precisely one source r and one sink s.

Now assume that at the stage when we have ears P0, P1, . . . , Pw in our open ear-decomposition

there exists an acyclic orientation o of the edges such that r is the unique source and s is the unique

sink.

Suppose we were to attach the ear Pw+1 to this open ear-decomposition with endpoints u and

v. If either endpoint is r then we orient all edges in Pw+1 away from it, similarly if either endpoint

is s then we orient all edges in Pw+1 towards it. If there already exists a directed path from u to

v in o then we orient the edges from u to v in Pw+1. If none of these are the case then we orient

the edges either from u to v or from v to u in Pw+1. In each of these cases it should be clear that

we do not create any additional sources nor sinks in the orientation. Note also that orientating the

edges in these ways will preserve the property of the orientation being acyclic. Suppose otherwise,

that orientating the edges in Pw+1 from u to v creates a cycle in the orientation. Then there exists

a directed path from v to u already in o which means that we would have oriented the edges from

v to u in Pw+1. If there exists a cycle between u and v regardless of which way we orient the edges

in Pw+1, then there must already be a cycle between u and v in o, which is a contradiction as o is

acyclic.

Therefore there exists an acyclic orientation of G with r being the unique source and s being the

unique sink.

By Theorem 4.2.10 we know that for a nonseparable loopless, rooted graph G with at least one

edge, we have b1,0(G) > 0. If instead G is separable, the following graph tool will allow us to

determine the smallest integer k such that bk,0(G) > 0.

Definition 4.2.11 (Block Graph). For a connected graph G let B(G) and C(G) be the set of

blocks and cut-vertices of G respectively. The block graph B(G) of G is the graph with vertex set

B(G) ∪ C(G) for which ci ∈ C(G) is adjacent to bj ∈ B(G) if and only if ci ∈ bj .

Figure 4.7 shows a connected graph G and the block graph B(G). It should be straightforward

137

c1

c2 c3

G

c1 c3

c2

b1 b2 b3

b4 b5 b6

b7

B(G)

Figure 4.7

to see that the block graph B(G) is a bipartite tree with partite sets B(G) and C(G). We say that

a block of G is a leaf block if it is a leaf vertex in B(G). Let LB(G) be the set of leaf blocks of G.

Theorem 4.2.12. Let G = (r, V, E) be a connected rooted graph and let B(G) be the block graph of

G. The smallest integer k such that bk,0(G) > 0 is given by

k =







|LB(G)| if r is not in a leaf block of G or r ∈ C(G);

|LB(G)| − 1 if r is in a leaf block of G and r /∈ C(G).

Proof. We focus on the case when r is not a cut-vertex of G. The proof of the remaining case is

similar and therefore omitted. An orientation of G is acyclic if and only if its restriction to each

block is acyclic. In any acyclic orientation of a graph there is at least one source and one sink.

Consequently in any acyclic orientation of G the restriction to each leaf block contains at least one

source and one sink and either one or none of these is in C(G). Hence the claimed value for k is a

lower bound for the number of sinks. In a nonseparable graph we can acyclically orient the edges

such that two vertices of our choice are the unique source and sink.

Let br be the block of G containing r. Regard B(G) as a tree rooted at vertex br with edges

oriented away from br. We now discuss how we orient the edges for each type of block in G.

• Suppose br has adjacent vertices c1, . . . , cd in B(G). We acyclically orient the edges in br in G

such that r is the unique source and any of the vertices c1, . . . , cd is the unique sink.

• Let bi be a non-leaf block that does not contain r. By definition there must be at least two

cut vertices in bi. Suppose c1, . . . , cd are the cut vertices in bi for d ≥ 2 such that c1 is the

138

cut-vertex with the shortest path from br in B(G). We acyclically orient the edges in bi in G

such that c1 is the unique source and any of the vertices c2, . . . , cd is the unique sink.

• Let bi be a leaf block that does not contain r. By definition there must be exactly one cut-

vertex c1 in bi. We acyclically orient the edges in bi in G such that c1 is the unique source and

any other vertex in bi is the unique sink.

Let o be an orientation of G defined as above. We claim that no cut-vertex is a source or a sink

in o. Suppose that c is a cut-vertex. Let b denote the block adjacent to c on the shortest path from

c to br in B(G). Then c is not a source in the restriction of o to b, so it is not a source in o. Moreover

c is adjacent to at least one other block b′ in B(G) and c is a source in the restriction of o to b′, so

c is not a sink in o. The orientation o creates a sink in each leaf block not containing r at a vertex

that is not a cut-vertex and a source at r, but otherwise, when restricted to a block only creates

sources or sinks at the cut-vertices. Therefore r is the only source in o and the only sinks are those

in the leaf blocks that do not contain r. If r is in a leaf block then there are |LB(G)| − 1 of these,

otherwise there are |LB(G)| of them.

4.3 A Convolution Formula for the Tutte Polynomial of an

Interval Greedoid

Although this subsection may feel a little out of place, it would have been a missed opportunity to

not include it in this thesis since all preliminary definitions have already been given in Chapter 1.

As we shall see, Kook et al give a nice result for matroids so it was only natural for us to see if it

holds for greedoids.

In [34] Kook, Reiner and Stanton give a convolution formula for the Tutte polynomial of a

matroid. For a matroidM = (E, I) and for all A ⊆ E, Kook et al express T (M ;x, y) as a convolution

product of the flow polynomial and the chromatic polynomial of M |A and M/A respectively.

Theorem 4.3.1 (Kook, Reiner, Stanton). The Tutte polynomial T (M ;x, y) of a matroid M = (E, I)

satisfies

T (M ;x, y) =
∑

A⊆E

T (M |A; 0, y)T (M/A;x, 0).

139

Before presenting an overview of the proof of Theorem 4.3.1, we first define a convolution product

of two functions on matroids into the ring Z[x, y]. For a matroid M = (E, I) let

(f ◦ g)(M) =
∑

A⊆E

f(M |A)g(M/A).

We now show that ◦ is associative, a result stated but not proved in [34]. We have

[(f ◦ g) ◦ h](M) =
∑

A⊆E(M)

(f ◦ g)(M |A)h(M/A)

=
∑

A⊆E(M)

∑

B⊆E(M|A)

f(M |A|B)g(M |A/B)h(M/A)

=
∑

B⊆E(M)

∑

C⊆E(M/B)

f(M |B)g(M |B ∪ C/B)h(M/B ∪ C) by writing A = B ∪ C

=
∑

B⊆E(M)

∑

C⊆E(M/B)

f(M |B)g(M/B|C)h(M/B/C) (4.12)

=
∑

B⊆E(M)

f(M |B)(g ◦ h)(M/B)

= [f ◦ (g ◦ h)](M).

Equation 4.12 follows from the property that contraction on a matroid is commutative.

The identity element δ of ◦ is defined by

δ(M) =







1 if M = ∅;

0 otherwise.

Following results of Crapo [13], Kook et al let ζ(x, y) = xr(M)yr(M
∗). They prove ζ(x, y)−1 =

ζ(−x,−y) using the property r(M/A) = r(M) − r(M |A) for all subsets A ⊆ E(M). They then go

on to show T (M ;x+ 1, y + 1) = (ζ(1, y) ◦ ζ(x, 1))(M) and subsequently

∑

A⊆E(M)

T (M |A; 0, y + 1)T (M/A;x+ 1, 0) = ((ζ(1, y) ◦ ζ(−1, 1)) ◦ (ζ(1,−1) ◦ ζ(x, 1)))(M)

= (ζ(1, y) ◦ (ζ(−1, 1) ◦ ζ(1,−1)) ◦ ζ(x, 1))(M) (4.13)

= (ζ(1, y) ◦ ζ(x, 1))(M)

= T (M ;x+ 1, y + 1).

140

Equation 4.13 follows from the associativity of ◦.

A natural question would be to ask if we could extend this convolution formula to greedoids.

There are two important properties of a matroid that Kook et al use in the proof of Theorem 4.3.1.

The first is that for a matroid M = (E, I) the rank function satisfies r(M/A) = r(M)− r(A) for all

A ⊆ E. The second is that contraction on a matroid is commutative, that is for every pair X and

Y of disjoint subsets of M , we have M/(X ∪ Y) = M/X/Y .

We now show that for the first property to still hold in the more general greedoid setting we

need M to be an interval greedoid satisfying a particular property. Let Γ = (E,F) be a greedoid

and let S be the set of all elements x ∈ E such that {x} ∈ F . If ρ(Γ) = ρ(S) then Γ is said to be

singleton-full.

Proposition 4.3.2. Let Γ = (E,F) be an interval greedoid. Then Γ is singleton-full if and only if

ρ(Γ/A) = ρ(Γ)− ρΓ(A).

Proof. Suppose that Γ is not singleton-full. Let A = {e ∈ E : ρ(e) = 0}. Then A is non-empty. Note

that by applying (G1′) repeatedly we see that every non-empty feasible set contains an element e

with ρ(e) = 1. Thus ρΓ(A) = 0 and Γ/A = Γ \ A. Now every basis of Γ contains an element of A,

so ρ(Γ/A) = ρ(Γ \A) < ρ(Γ). Thus ρ(Γ/A) < ρ(Γ)− ρΓ(A).

Now suppose that Γ is singleton-full. Let A be a subset of E and let X = {e ∈ E : ρ(e) = 1}. As

Γ is singleton-full, it has a basis B with B ⊆ X . Let Y be a maximal feasible set of A containing

as many elements of X as possible. We have ρΓ(A) = |Y |. By applying (G1) repeatedly, there is

a sequence of feasible sets F0 = Y ⊆ F1 ⊆ · · · ⊆ Fρ(Γ)−ρΓ(A) = B′ such that |Fi − Fi−1| = 1 and

B′ ⊆ Y ∪B. Suppose that e ∈ (B′ − Y) ∩ A. Then {e} is feasible and for some i, Fi − Fi−1 = {e}.

We have ∅ ⊆ Y ⊆ Fi−1, so the interval property implies that Y ∪ e is feasible, contradicting the

choice of Y . Thus (B′ − Y) ∩ A = ∅. We have Γ/A = Γ/Y \ (A − Y), so B′ − Y is a basis of Γ/A.

Hence ρ(Γ/A) = |B′ − Y | = |B′| − |Y | = ρ(Γ)− ρΓ(A).

We now show that if contraction on a singleton-full interval greedoid is commutative, then the

greedoid is a matroid.

Proposition 4.3.3. Let Γ = (E,F) be a singleton-full interval greedoid. If for every pair X and Y

of disjoint subsets of Γ, we have Γ/(X ∪ Y) = Γ/X/Y then Γ is a matroid.

Proof. Suppose that Γ is not a matroid. Then by Theorem 1.3.13, there is an element x in E such

that {x} is not feasible, but x belongs to a basis B. Let X = {x} and Y = B − x. Then every

141

element of Γ/(X∪Y) is a loop, so ρ(Γ/(X∪Y)) = 0. As {x} is infeasible, Γ/X = Γ\X . Because Γ is

singleton-full, it has a basis that does not contain x, so ρ(Γ/X) = ρ(Γ). Moreover Γ/X is singleton

full, so ρ(Γ/X/Y) = ρ(Γ/X)− ρΓ/X(Y) ≥ ρ(Γ)− |B − x| ≥ 1.

We have shown that if both of the properties of matroids used in Kook et al’s proof hold for

an interval greedoid then that interval greedoid is a matroid and the convolution formula must also

hold. There may be an alternative way to prove the convolution formula but this seems unlikely, so

we make the following conjecture.

Conjecture 4.3.4. If Γ is an interval greedoid and the convolution formula of Theorem 4.3.1 holds

for Γ, then Γ is a matroid.

142

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley Longman Publishing Co., Inc., 1st edition, 1974.

[2] J.D. Annan. The complexities of the coefficients of the Tutte polynomial. Discrete Applied

Mathematics, 57(2):93 –103, 1995.

[3] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.

SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[4] G. D. Birkhoff. A determinant formula for the number of ways of coloring a map. Annals of

Mathematics, 14(1/4):42–46, 1912.

[5] M. Bläser and C. Hoffman. On the complexity of the interlace polynomial. 25th International

Symposium on Theoretical Aspects of Computer Science, pages 97–108, 2008.

[6] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1–21, 1993.

[7] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.

SIAM Journal on Computing, 25(6):1305–1317, 1996.

[8] H. L. Bodlaender and D. Thilikos. Constructive linear time algorithms for branchwidth. In Au-

tomata, Languages and Programming, volume 1256, pages 627–637. Lecture Notes in Computer

Science, 1997.

[9] T. Brylawski. A decomposition for combinatorial geometries. Transactions of the American

Mathematical Society, 171:235–282, 1972.

143

[10] T. Brylawski. The Tutte polynomial part I: General theory. In A. Barlotti, editor, Matroid

Theory and its Applications. Proceedings of the Third International Mathematical Summer

Center (C.I.M.E. 1980), 1982.

[11] T. Brylawski and J. Oxley. The Tutte polynomial and its applications. In N. White, editor,

Matroid Applications. Cambridge University Press, 1992.

[12] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph

enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics,

108(1):23–52, 2001.

[13] H. H. Crapo. The Tutte polynomial. Aequationes Mathematicae, 3(3):211–229, 1969.

[14] R. Diestel. Graph Theory. Springer, 2006.

[15] J. Edmonds. Systems of distinct representatives and linear algebra. Journal of Research of the

National Bureau of Standards, B 71(4):241–241, 1967.

[16] J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1(1):127–136,

1971.

[17] J. Ellis-Monaghan and C. Merino. Graph polynomials and their applications I: The Tutte

polynomial. In M. Dehmer, editor, Structural analysis of complex networks. Birkhäuser Boston,

2011.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[19] O. Goecke. A greedy algorithm for hereditary set systems and a generalization of the Rado-

Edmonds characterization of matroids. Discrete Applied Mathematics, 20(1):39 – 49, 1988.

[20] G. Gordon. Linear relations for a generalized Tutte polynomial. Electronic Journal of Combi-

natorics, 22(1), 2015.

[21] G. Gordon and E. McMahon. A greedoid polynomial which distinguishes rooted arborescences.

Proceedings of the American Mathematical Society, 107(2):287–298, 1989.

[22] G. Gordon and E. McMahon. A greedoid characteristic polynomial. Contemporary Mathematics,

197:343–351, 1996.

144

[23] G. Gordon and E. McMahon. A characteristic polynomial for rooted graphs and rooted digraphs.

Discrete Mathematics, 232(1):19–33, 2001.

[24] R. Gould. Graph Theory. Dover Publications, 2012.

[25] C. Greene and T. Zaslavsky. On the interpretation of Whitney numbers through arrangements

of hyperplanes, zonotopes, non-radon partitions, and orientations of graphs. Transactions of

the American Mathematical Society, 280(1):97–126, 1983.

[26] R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.

[27] I. V. Hicks and N. B. McMurray. The branchwidth of graphs and their cycle matroids. Journal

of Combinatorial Theory, Series B, 97(5):681–692, 2007.

[28] P. Hlinĕný. A parametrized algorithm for matroid branch-width. SIAM Journal on Computing,

35(2):259–277, 2005.

[29] P. Hlinĕný. The Tutte polynomial for matroids of bounded branch-width. Combinatorics,

Probability and Computing, 15(3):397–409, 2006.

[30] P. Hlinĕný and G. Whittle. Matroid tree-width. European Journal of Combinatorics,

27(7):1117–1128, 2009.

[31] F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational complexity of the Jones

and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society,

108(1):35–53, 1990.

[32] M. Jerrum. Counting trees in a graph is #P-complete. Information Processing Letters,

51(3):111–116, 1994.

[33] T. Kloks, J. Kratochvl, and H. Müller. Computing the branchwidth of interval graphs. Discrete

Applied Mathematics, 145(2):266–275, 2005.

[34] W. Kook, V. Reiner, and D. Stanton. A convolution formula for the Tutte polynomial. Journal

of Combinatorial Theory Series B, 76(2):297–300, 1999.

[35] B. Korte and L. Lovász. Mathematical structures underlying greedy algorithms. In Ferenc

Gécseg, editor, Fundamentals of Computation Theory: Proceedings of the 1981 International

FCT-Conference, pages 205–209. Springer Berlin Heidelberg, 1981.

145

[36] B. Korte and L. Lovász. Shelling structures, convexity and a happy end. Inst. für Ökonometrie

u. Operations-Research, 1983.

[37] B. Korte and L. Lovász. Structural properties of greedoids. Combinatorica, 3(3/4):359–374,

1983.

[38] J. A. Makowsky. Coloured Tutte polynomials and Kauffman brackets for graphs of bounded

tree width. Discrete Applied Mathematics, 145(2):276–290, 2005.

[39] J. A. Makowsky. Private communication, 2015.

[40] J. A. Makowsky and J. P. Mariño. Farrell polynomials on graphs of bounded tree width.

Advances in Applied Mathematics, 30(1):160–176, 2003.

[41] F. Mazoit and S. Thomassé. Branchwidth of graphic matroids. In Surveys in Combinatorics

2007, London Mathematical Society Lecture Notes 346, pages 275–286, 2007.

[42] S. Noble. Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics,

Probability and Computing, 7(3):307–321, 1998.

[43] J. G. Oxley. Matroid Theory. Oxford University Press, 1992.

[44] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[45] J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability

that a graph is connected. SIAM Journal on Computing, 12(4):777–788, 1983.

[46] N. Robertson and P. D. Seymour. Graph minors. III. planar tree-width. Journal of Combina-

torial Theory, Series B, 36(1):49–64, 1984.

[47] N. Robertson and P. D. Seymour. Graph minors. X. obstructions to tree-decomposition. Journal

of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[48] G. Rota. On the foundations of combinatorial theory I. theory of Möbius functions. Zeitschrift

für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2(4):340–368, 1964.

[49] P. Scheffler. Linear-time algorithms for NP-complete problems restricted to partial k-trees.

Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik, 1987.

146

[50] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241,

1994.

[51] R. P. Stanley. Acyclic orientations of graphs. Discrete Mathematics, 5(2):171–178, 1973.

[52] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,

1(2):146–160, 1972.

[53] S. J. Tedford. A characteristic polynomial for rooted mixed graphs. Discrete Mathematics,

304(1):121–127, 2005.

[54] A. M. Turing. On computable numbers, with an application to the Entscheidungs problem.

Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

[55] W. T. Tutte. A ring in graph theory. Mathematical Proceedings of the Cambridge Philosophical

Society, 43:26–40, 1947.

[56] W. T. Tutte. Graph Theory. Cambridge University Press, 2001.

[57] M. Las Vergnas. Acyclic and totally cyclic orientations of combinatorial geometries. Discrete

Mathematics, 20:51–61, 1977.

[58] D. L. Vertigan. The computational complexity of Tutte invariants for planar graphs. SIAM

Journal on Computing, 35(3):690–712, 2005.

[59] D. L. Vertigan and D. J. A. Welsh. The computational complexity of the Tutte plane: the

bipartite case. Combinatorics, Probability and Computing, 1(2):181–187, 1992.

[60] H. Whitney. A logical expansion in mathematics. Bulletin of the American Mathematical

Society, 38(8):572–580, 1932.

[61] H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical

Society, 34(2):339–362, 1932.

[62] H. Whitney. On the abstract properties of linear dependence. American Journal of Mathematics,

57(3):509–533, 1935.

[63] T. V. Wimer. Linear Algorithms on K-terminal Graphs. PhD thesis, Clemson University, 1987.

147

[64] T. Zaslavsky. The Möbius function and the characteristic polynomial. In N. White, editor,

Combinatorial Geometries. Cambridge University Press, 1987.

148

