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Abstract 

In this thesis, three key issues that restrict networks from scaling up so as to be able 

to cope with the rapid increase in traffic are investigated and series of approaches are 

proposed and tested for overcoming them.  

Firstly, scalability limitations owing to the use of a broadcast mechanism in one 

collision domain are discussed. To address this matter, servers under software-defined 

network architectures for eliminating discovery messages (SSED) are designed in this 

thesis and a backbone of floodless packets in an SDN LAN network is introduced. SSED 

has an innovative mechanism for defining the relationship between the servers and SDN 

architecture. Experimental results, after constructing and applying an authentic testbed, 

verify that SSED has the ability to improve upon the scalability of the traditional 

mechanism in terms of the number of switches and hosts. This is achieved by removing 

broadcast packets from the data and control planes as well as offering a better response 

time.  

Secondly, the scalability restrictions from using routers and the default gateway 

mechanism are explained. In this thesis, multiple distributed subnets using SDN 

architecture and servers to eliminate router devices and the default gateway mechanism 

(MSSERD) are introduced, designed and implemented as the general backbone for 

scalable multiple LAN-based networks. MSSERD’s proposed components handle 

address resolution protocol (ARP) discovery packets and general IP packets across 

different subnets. Moreover, a general view of the network is provided through a multi-

subnets discovery protocol (MDP). A 23 computers testbed is built and the results verify 

that MSSERD scales up the number of subnets more than  traditional approaches, 

enhances the efficiency significantly, especially with high load, improves performance 

2.3 times over legacy mechanisms and substantially reduces complexity. 

Finally, most of the available distributed-based architectures for different domains 

are reviewed and the aggregation discovery mechanism analysed to establish their impact 

on network scalability. Subsequently, a general distributed–centralised architecture with 

open-level control plane (OLC) architecture and a dynamic discovery hierarchical 

protocol (DHP) is introduced to provide better scalability in an SDN network. OLC can 

scale up the network with high performance even during high traffic.  
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Chapter 1  Introduction 
 

 

Introduction 

 

1.1 Introduction 
 

The Internet has changed the world, regarding how we lead our daily lives. In recent 

years, network load has increased rapidly [1][2], because different network technologies 

and internet applications have appeared, such as the Internet of things (IoT), Internet 

applications including social media (e.g. Facebook, Instagram, etc.), VoIP applications 

(e.g. Viber, What’s up, etc.) and high definition (HD) video on demand applications (e.g. 

YouTube, Dailymotion, etc.). These technologies and applications are used for 

communication among people/things for different purposes, including education (e.g. 

distance learning), business (e.g. video conferencing), to keep in touch with family friends 

as well as for entertainment and smart environment purposes. Moreover, it seems that this 

trend is very unlikely to stop as we are becoming increasingly surrounding by smart 

devices [3]–[5]. 

As a consequence, the load on networks will continue to increase in terms of the 

number of devices added and also regarding the amount of user data and control messages 

generated, the massive amount of huge control traffic is putting more and more pressure 

on network busses. The extensive traffic on the network, which it is not designed for, 

leads to congestion that, in turn, slows down the network [6], possibly even shutting down 

the connection with customers (i.e. enterprises/individuals) [7] or causing other reliability 

issues [8]. Accordingly, the spotlight is put on the scalability of the network as this 

remains an unsolved issue [3][9].  
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The legacy network mechanisms, devices and architectures have various limitations, 

which prevent networks from being scale up to cope with demand requirements. Firstly, 

using traditional mechanisms, such as a broadcast discovery, limits the number of hosts 

in one collision domain [10]. Secondly, using legacy middlebox devices (e.g. routers) 

leads to degrading of the number of requests that the network can deal with per second, 

because of congestion on ports [11], whilst using the default gateway mechanism leads 

to an increase in the number of control packets in network. Thirdly, using conventional 

fully distributed architecture and an aggregation discovery mechanism results in an 

extensive amount of control signals in data plane that have a negative effect on discovery 

and rediscovery times in the intra and inter domains, which in turn prevents scaling up of 

the network.  

There are different definitions for scalability, in general [12] and in networks, in 

particular. Scalability of a network is the ability to increase the number of serviced 

customers without degrading the performance of network. some researchers [13]–[15]  

attribute it to the performance of the controller, while others associate it with the number 

of requests that can be handled per second [12]. This raises the following two questions: 

 

 How can the scalability in a network be defined?  

 What metrics should be used for measuring it? 

To overcome the scalability challenges that occur owing to legacy network elements 

(i.e. devices, architectures and mechanisms) a number of different studies aimed  at 

enhancing network scalability have been carried out. These include eliminating broadcast 

messages [16][17] inside the subnets, using virtual middlebox devices (e.g. virtual 

devices) instead of hardware ones [18][19] in order to enhance the router abilities and 

introducing different architectures [20][21].  

However, most of the proposals have not solved the scalability issue completely, 

whilst at the same time taking into account other network factors, such as security [22], 

complexity [23] and reliability [24]. In addition, none have appeared as standard or 

officially used, as yet. Furthermore, most of them not involve enhancing the scalability 

with peak or overloaded traffic, which is the main cause of the scalability issue. 

In Section 1.2, the thesis’s motivation is explained, while the aim and objectives are 

provided  in Section 1.3. The challenges are explained in Section 1.4 and Section 1.5 
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presents the contributions of this thesis. Finally, the thesis scope and content, with some 

scalability percentages of achievements, are covered in Sections 1.6 and 1.7, respectively. 

 

1.2 Motivations 
 

The motivations for carrying out this study are as follows. 

 The scalability of networks remains a salient issue that needs to be considered by 

the research community [3][25]. 

 The elements of the traditional network have various limitations that hinder 

scaling up. Firstly, in terms of the traditional mechanism element, a collision 

domain (e.g. a subnet) cannot scale up practically to more than 500 hosts, as 

recommended by Cisco [10], because of the broadcast discovery mechanism, 

which is an insufficient number for meeting IoT requirements. Secondly, in terms 

of the algorithm element, the back-off algorithm used in collision networks to 

solve collisions, theoretically, leads to the number of hosts being limited to 1,024 

[26], which also raises the scalability problem in these networks. Thirdly, 

regarding the protocol element, the Spanning Tree Protocol (STP), which is one 

of the important ones for preventing loop storm and hence, is essential for any 

network, supports only seven hops as a maximum bridged LAN diameter [27], 

thus restricting network growth. Fourthly, in terms of legacy devices, A growing 

amount of traffic puts more pressure on the middlebox devices (e.g. routers), 

which increases the likelihood of congestion [11]. Moreover, when routing 

packets, routers modify the layer two header in the Ethernet frame at each hop 

[28], which increases latency and in turn, affects network performance and 

scalability. In addition, using router devices leads to the compulsory default 

gateway mechanism, which has broadcast mechanism limitations, hence 

inhibiting scalability [10]. Finally, in relation to traditional architectures, the use 

of a distributed architecture with aggregation discovery mechanism in different 

domains leads to the data plane being used to transfer the discovery packets 

through the network, which results in more load and the consumption of the 

resources of that plane. This, consequently, has a negative effect on the discovery 

and convergence time, which, in turn, impacts on the number of subnets that can 
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be discovered in a network, because the discovery time for any new event in the 

fully distributed architecture has a direct relationship with network size [29]. 

 In a traditional network, different protocols are used to perform the discovery 

process, where for example the Link Layer Discovery Protocol (LLDP) [30] is 

used inside a subnet to discover switches, while for intra domains among routers 

the Open Shortest Path First (OSPF)[31] is commonly used to discover the 

network. In addition, the Border Gateway Protocol (BGP) [32] is used to discover 

the inter-domains. As consequence, there is a need to decrease the number of 

protocols to reduce the complexity and the effort and configuration times. 

 The distributed ARP and DHCP servers are neglected by most of the proposed 

architectures despite having an important role to play in real networks [33] and 

they can be used to enhance scalability. 

 

1.3 Aim and Objectives 
 

 The overall aim for this thesis is to introduce mechanisms, architectures and 

protocols that enhance the scalability of network, whilst at the same time taking into 

account improving other network factors (e.g. reliability, security, efficiency, 

performance and complexity) in intra and inter domains. This aim is addressed through 

the pursuit of the following objectives: 

 

1. Investigating in one collision domain (i.e. subnet) how to reduce the response 

time even with overloaded customer traffic, reducing overhead on control and 

data planes during operation time and bootstrap time as well as reducing CPU 

usage of network components in order to enhance subnet scalability; 

2. Discovering in one network (i.e. containing multi-subnets) how to reduce the 

response time during load, reduce overhead on control and data planes, reduce 

the percentage of packet loss during heavy load and reduce discovery and 

rediscovery time for any new network's events; 

3. Investigating intra and inter domains (e.g. a campus network and a core 

network) regarding how to reduce discovery and rediscovery time for any 

event in these domains even with very high load (millions of items of traffic) 

as well as reducing overhead resulting from discovery messages; 



5 

 

1.4 Challenges  

 

The following challenges had to be met during the implementation of the proposed 

models:  

 Building a testbed containing SDN technology from scratch is a real challenge 

requiring much effort to develop SDN components that work with standard 

protocols as well as solving many technical issues. In addition, regarding the 

building of a real test bed, about seven days is needed to setup the environment 

for each experiment. Each of 23 computers needs to be setup, configured, cable 

connections require changing and then the experiments run. Errors need to be 

checked for and each result repeated at least five times to be sure it is a correct 

result, all of which requires much effort by the researcher.  

 High and even overloaded traffic must be implemented in a testbed so as to mimic 

a real future network environment in order to verify the proposed models in this 

thesis and to test the ability to enhance the scalability of these models. The limited 

number of computers available in the testbed (i.e. 23 PCs) could be problematic 

in relation to this objective, because a real network will in all likelihood have more 

than that number. To address this, the virtualisation principle using virtual 

machines needs to be used on the host side to reach more than 500 hosts, which 

is the maximum number in one collision domain. In addition, special programs 

for generating high rates of packets need to be designed. 

 

1.5 Contributions 
 

There are six main contributions of this thesis, which are as follows: 

1. It introduces a Multi-to-One (MTO) mechanism to define the relation between the 

servers and the SDN architecture proactively and reactively so as to reduce the 

overhead in the control and data planes as well as reducing CPU usage of network 

components;  

2. It proposes Servers under Software-Defined Network Architectures to Eliminate 

Discovery Messages in a subnet (SSED) architecture and mechanism for 

discovery in a subnet and forwards packets between sources and destinations so 
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as to enhance response time. As a consequence of contributions 4 and 5, the 

following results in terms of scalability have been achieved: 

 SSED with MTO scales the network approximately up to 161 switches 

when compared to the broadcast mechanism; 

 In terms of the number of hosts, SSED with MTO scales up the host 

number to 2500 hosts when compared to the traditional mechanism in one 

collision domain; 

 In terms of CPU usage, SSED scales up the number of hosts that can be 

handled to 3,076 with same CPU usage as the legacy mechanism needs to 

deal with 500 hosts.  

In addition, SSED, in order to find balance among the network parameters, 

(scalability, security, reliability, etc.) offers a unique design for solving different 

network issues, including IP confliction, security and Head-Of-Line blocking 

(HOL); 

3. It provides an innovative multi-subnets dynamic discovery method by introducing 

the Multi-subnets Discovery Protocol (MDP), which delivers dynamic fast 

discovery time in distributed architectures; 

4. It introduces Multiple Distributed Subnets using SDN Architecture and Servers to 

eliminate router devices and the Default Gateway Mechanism (MSSERD) to 

discover multiple distributed subnets. It also forwards packets between sources 

and destinations in a way that enhances response time efficiency in Ethernet 

networks, even with high traffic loads. As a consequence of contributions 6 and 

7, the scalability of network in terms of number of subnets, scale up to 52 subnets 

comparing to traditional mechanisms and architectures when dealing with the 

same response time;  

5. It introduces a multi-subnets/networks dynamic discovery method by developing 

the Dynamic Discovery Hierarchal Protocol (DHP) that supplies dynamic fast 

discovery time in distributed-centralised architectures; 

6. An Open-Levels Control plane architecture (OLC) is proposed, which is an 

innovative architecture and mechanism for working in intra and inter domains so 

as to, thereby providing better scalability.  As a consequence of contributions 8 

and 9 the following result in term of scalability have been achieved: 
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 In terms of the number of subnets regarding discovery time the OLC can 

scale their number by up to 3.2 times when compared to the fully 

distributed architectures;  

 In terms of the number of subnets in relation to rediscovery time, the OLC 

can scale up the number of subnets to 31 subnets when compared to the 

fully distributed architectures;  

 In terms of the number of subnets regarding the number of packets in the 

data plane, OLC can scale up the number of subnets to 82 subnets when 

compared to the fully distributed architectures.  

 

1.6 Thesis Scope and Limitations 
 

This thesis involves drawing on aspects of different paradigms that are at the forefront 

of contemporary research, namely, SDN, virtualization, wired communication and 

network architecture, which are wide ranging. Consequently, it was essential to clarify 

the scope of this thesis in order for the objectives and main goal to be met within the time 

line.  

Firstly, in the SDN area, this study involves using the main principles of its 

technology, which concern decoupling the control plane from the data plane and proactive 

behaviour in order to scale up the network. Secondly, in term of virtualisation [34], this 

principle is deployed on the host side with the aim of growing the number of hosts using 

a limited number of PCs to test and verify the ability of proposed systems with very high 

network traffic. Thirdly, regarding the network architecture field, this study investigates 

the legacy architectures, concepts, mechanisms and protocols in order to discover the 

main reasons inhibit scaling up of a network. Then, systems (i.e. mechanisms, 

architectures and protocols) for overcoming these are proposed. Finally, regarding the 

wired communication field, its powerful features, especially Ethernet wired technology 

cannot be neglected and hence, in this study is used as the backbone of deployed system.  

 

Regarding the limitations of the proposed models, these three-fold, as explained 

below. 

 The proposed models are pure SDN-based models, so they need to be developed 

to support hybrid network devices (i.e. legacy and SDN devices); 
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 All the SDN controllers and switches must use LLDP-based protocols to perform 

the discovery processes; 

 IPv6 is the newer version of address system in computer network, which offers a 

much larger pool of addresses. However, the proposed models have been 

experimentally tested using IPv4 rather than IPv6, because most users nowadays 

use the former, with just 20% of them using IPv6 [35]. Nevertheless, theoretically 

there is no conflict in deploying IPv6 with the proposed models. 

 

1.7 The Thesis Structure 
 

This thesis is organized into seven chapters, each starting with a brief introduction 

providing an overview of the main contributions in that chapter. At the end of each 

chapter a brief summary is given.  

 

Chapter 2: This chapter presents the background of the technologies that could be used 

to provide a scalable network environment. In addition, it defines the scalability term and 

explains how this can be measured.  

 

Chapter 3: This chapter contains discussion on the three main causes of restrictions to 

network up scaling. Subsequently, previous works that have set out to improve network 

scalability and overcome legacy network system limitations are reviewed. Finally, the 

relevant gaps these other studies’ have failed to address are presented in the summary. 

 

Chapter 4: This chapter starts with analysis of the current network discovery mechanism 

inside a subnet, with mathematical formulae being generated for that mechanism. Then, 

the MTO mechanism is introduced to define the relation between the servers and the SDN 

architecture proactively and reactively so as to reduce overhead in the control and data 

planes as well as reducing CPU usage of network components. Subsequently, SSED 

architecture and mechanism are proposed for discovering subnet and forwarding packets 

between sources and destinations in a manner that enhances response times. Next, seven 

scenarios involving extensive experiments with a testbed of 23 PCs are built to verify the 

effectiveness of the proposed model.  
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Chapter 5: This chapter reviews the current router and default gateway mechanisms, also 

identifying the limitations of both. Next, mathematical formulae are developed to 

evaluate, theoretically, some legacy statistics relating to the use of middlebox devices and 

the default gateway mechanism. Subsequently, the MDP protocol, which provides 

dynamic fast discovery/rediscovery time in a fully distributed architecture is introduced. 

Then, the MSSERD architecture and mechanism is proposed for discovering multiple 

distributed subnets and forwarding packets between sources and destinations in a way 

that enhances scalability. The testbed is built at the end of this chapter, with five scenarios 

using 23 PCs and extensive experiments.  

 

Chapter 6: This chapter discusses the traditional distributed control plane architectures 

with their aggregation mechanism and the limitations regarding this. Several equations 

are evaluated to for theoretically analyzing this architecture and mechanism. Then, the 

Dynamic Discovery Hierarchal Protocol (DHP), which provides dynamic fast 

discovery/rediscovery time in a distributed-centralized architecture is introduced. 

Subsequently, the OLC model is proposed as an innovative open-level control plane 

architecture and mechanism for working in intra and inter domains for better scalability.  

Finally, a large testbed is built using up-to-date hardware and software components to 

verify the practical efficiency of OLC.  

 

Chapter 7: The study findings and conclusions are summarised in this chapter as well as 

the impacts of study outcomes being briefly explained. Finally, the recent developments 

are discussed and suggestions for short and long-term future work are put forward. 
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Chapter 2 calability F undamenta ls  

 

Scalability Fundamentals 

 

2.1 Introduction 
 

This chapter begins by answering the two questions that were advanced in chapter 1 

regarding how scalability can be defined and how it can be measured. Then, it provides 

background knowledge about the network technologies that will be used in order to 

implement the proposed models in this study so as to scale up the network. These 

technologies have been chosen for their features and advantages as well as taking into 

account up-to-date ones. 

 

2.2 Scalability 
 

Generally, Scalability is a claimed feature for systems (i.e. a sought after attribute 

that is beneficial to system behaviour; it does not refer to the same concept for everyone 

so there is no consensus regarding its definition [12]. That is, inspired by the term 

Isoeffeciency [36], scalability of a network is the ability to increase the number of 

serviced customers without degrading the performance of network.  This means the 

scalability is not an independent issue and designers need to take care of other network 

parameters, such as overhead, efficiency, reliability, complexity [36].  

When increasing the number of hosts and amount of traffic, this requires optimal use 

of resources in order to provide an environment that passes traffic fast and accurately.  

For example, some researchers argue that SDN networks lack scalability owing to 

increased load that leads to more pressure on the controller, whereby it has to process 

higher rates of flow per second [37]. However, they overlook the optimal of use of the 

network resources that could be achieved using SDN technology owing to the powerful 
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proactive feature that it has, which could significantly enhance scalability without extra 

overhead in the control plane. 

 

  Scalability metrics and measurement 

 

Some researchers consider the control plane in an SDN network as a platform for 

evaluating scalability, whereby they focus on the power of processing of the controller, 

the number of requests can it handle per second and flow setup latency as metrics for 

measuring it. Similarly, some other studies [13]–[15] use the performance of the 

controllers in relation to load in an SDN network as a tool (i.e. metric) for evaluating 

scalability. While other researchers consider the data plane as a medium for calculating 

scalability by evaluating the ratio of flows entering the network through the data plane 

[38][39]. It is contended here that scalability should be measured according to the 

performance of the whole network (i.e. not focusing on a single part such as the SDN 

controller and ignoring other parts) and it should involve taking into account both the 

control plane and the data plane. The contention is that two metrics, namely, the response 

time and availability of network resources, e.g. bandwidth, are the most important. 

Accordingly, in this study, the focus is on enhancing the response time and the availability 

of links’ bandwidth and use these as metrics to verify the enhancements in network 

scalability. The measurement for these metrics must be performed whilst increasing in 

the amount of traffic (i.e. load) and the number of end devices. In addition, other 

parameters of the network, such as complexity, reliability, flexibility and so on, need to 

be measured concurrently, in order to get a balance between solving the scalability and 

other network issues.  

 

2.3 SDN technology 
 

It is a promising technology that has not yet reached a standardised form and hence, needs 

more study. It has been created for several reasons: 

 

• Meeting the increase in the demand for traffic owing to the appearance of different 

new technologies and Internet applications, such as IoT [1][40]; 

• Because of the limitations of current network architectures [12]; 
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• Introducing standardised hardware boxes that are manipulated by separated 

software in order to provide more interoperability and flexibility as well as 

minimising the cost of hardware [1]. 

 

This technology has several advantages, such as: 

• It can be used to ease modifying all network features programmatically [12], which 

gives more flexibility, less complexity in configuring and managing the network 

and less effort from the administrators; 

• It provides dynamic behaviour by supporting proactive and reactive modes that are 

available through the general view of the whole network, which is one of the 

powerful features of SDN technology. This behaviour provides enhanced use of 

resources, management flows among data plane devices [41][12], migrating Virtual 

Machines (VM), proactive updating of the routing tables by detecting network 

event changes [41] and recalculated link cost (i.e. weight);  

• It allows for centralise system features, such as the administrator’s centralised 

monitoring; 

• It simplifies network design [1], which lead to less effort being required by the 

designers; 

• It simplifies troubleshooting, which leads to reduce operational costs [1]. 

 

SDN technology works by disaggregating the control plane from data plane, which 

results in network resources being used in a more effective way. It is not like traditional 

network architecture, where switches and routers forward incoming packets depending 

on one or a few parameters in the packet headers (e.g. IP address, MAC address, etc.), for 

with SDN more attributes can be compared in order to make matching rules prior to 

forward packets [12]. It uses SDN protocols, such as the OpenFlow protocol, for this 

purpose. Figure 2.1 shows the differences between the legacy and SDN architectures. 

 

  OpenFlow protocol 

 

It was proposed by Stanford University [42] as the first and only SDN standard 

protocol [1] for linking the control plane with the data plane in SDN networks. Many 

service providers, such as AT&T and Google as well as many networking venders [1], 
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use it. It has the advantages of ease of use, many parameters for deployment in matching 

rules and it has many flexibility management features. The OpenFlow protocol has 

multiple versions (1.0, 1.1, 1.2, 1.3, 1.4 and 1.5). 

 

 

Figure 2.1: Legacy and SDN basic architectures 

 

2.4 Ethernet  
 

Ethernet is a widespread technology used in local and metropolitan zones, where 

Local Area Networks (LANs) and Metropolitan Area Networks (MANs) are deployed, 

because of its low-price, high speed, centralised administration and sharing of peripheral 

device features. In more detail, the Ethernet protocol is a link layer protocol used as a 

backbone for different types of network, such as home, campus and enterprise networks. 

Its popularity came from providing services for its own layer and all the upper layers’ 

protocols as well as its simplicity [43]. Ethernet devices have one or more Ethernet ports, 

which have been pre-set by the manufacturer to have unique MAC addresses that each 

have 48 bit pairs (e.g. 00:11:23:45:5A:22) containing numbers and letters and it can be 

scaled up well to cover a new product. In addition, Ethernet is used perform the main 

functions of a network automatically [43], such as the plug and play function. Moreover, 

it has a high bit rate of 100 Gigabyte per second (Gbit/sec) and the anticipated rate in the 

future is 400 Gbit/sec [44]. Finally, Ethernet switches are fast network switches with low 

cost [45][46]. 
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As a consequence of the Ethernet features, it has been deployed widely, being used in 

many architectures, including wired data centre networks and High Performance 

Competing (HPC). More than 40% of super computers apply it [47] and in space 

communication it is deployed to produce images and information because of its reliability 

[46].  

 

 

2.5 Network address translation (NAT) 
 

The increase in end system devices led to an increase in demand for IPv4 addresses, 

which have been playing an important role in the Internet and network backbone even 

after the appearance of IPv6 and they can be classified into two types. Firstly, there are 

public IP addresses, which are used at the edge of networks, such as an enterprise 

network, where each network can have one or several public IP addresses, depending on 

the number of hosts that need to connect to the Internet. This type of IP is assigned by the 

Internet Assigned Numbers Authority (IANA) [48]. Secondly, there are private IP 

addresses, which are used for Internal purposes, such as inside one company. Packets 

with private IP addresses are not suitable for forwarding directly to the Internet. In order 

to send a packet outside the network, mapping from the private to the public address has 

to be perform and inserted into the packet by the edge device (e.g. router) by using the 

NAT map mechanism. NAT maps multiple private IP addresses to a single public IP 

address and it can be used to map private to private or public to public addresses [48]–

[50].  

Using the above technologies the testbed is built using 23 PCs, as can be seen in 

Figure 2.2, twenty of which have the specifications of core 2 Quad, 2.66 GHz, 2.9 GiB 

memory and an Ubuntu 14.04 operation system. Of the remaining three PCs, one is with 

the specifications of core i7, 3.40 GHz, 3.8 GiB memory and an Ubuntu 14.04 operation 

system. The final two computers are Samsung laptops, both having the specifications of 

core i7, 2.20 GHz, 7.8 GiB memory and an Ubuntu 14.04 operating system. A Ryu SDN 

controller is used as the network operating system, that provides tools and libraries for 

design SDN components, which was written using the Python language for fast, easy and 

community supportive development. 
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2.6 Summary 
 

The scalability term has been defined in this chapter as stable system performance 

during load (e.g. traffic/end-devices), with the response time and ratio of packets in the 

control and data planes being proposed as metrics for measuring it. In addition, SDN, 

Ethernet and NAT technology concepts, which represent the backbone for the models in 

this study, have been described and their advantages have been stated.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: SDN Testbed environment with 23 computers 
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Chapter 3 Literature Review 
 

Literature Review 

3.1 Introduction 
 

Having defined and explained the importance of scalability for networks and as well 

as considering how it could be measured, this chapter will discuss the three main reasons 

why legacy architecture hinders scaling up. Subsequently, the limitations arising from 

each feature are discussed in detail with practical evidence. The recent salient studies that 

have been undertaken to improve network scalability are reviewed, listing their 

advantage(s) and disadvantage(s), Finally, the gaps pertaining to all of these studies are 

summed up. The extant literature that has attempted to improve scalability can be 

classified into three types according to the different aspects focused upon.  

 

3.2 Broadcast discovery mechanism in one domain (e.g. subnet) 
 

This is the first reason that prevents a one collision domain from scaling up. Despite 

broadcast and multicast protocols having the advantage of providing different services, 

such as getting destination MAC addresses, obtaining new IPs, loop free networking and 

discovering neighbouring nodes, the compulsory broadcast mechanism has resulted in 

multiple negative consequences.  

 

 The weaknesses owing to the broadcast discovery mechanism 

The negative impact from broadcasting is five-fold, as explained below. 

 As a consequence of broadcast packets, broadcast storms can happen in network 

topologies with multi-levels of connection, such as tree topology, causing further 
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problems, such as congesting links, overloading the controller’s/switch’s CPU (it 

was observed that experimentally the CPUs overloaded 100 %  during 

approximately 0.5 sec of a storm) and generating MAC address flaps. The STP 

protocol in legacy networks is used to overcome the loop storm, however, it has 

the limitation of generating multicast traffic, which consumes bandwidth and 

supports only seven hops as a maximum bridged LAN diameter [27], thus 

restricting the network to scale. Practically, when increasing this to more than 

seven, the bridging loop problem takes down the whole the network as happened 

in [51], one of the worst IT crises in history.     

 The broadcast mechanism leads to leaks in security, such as when the Address 

Resolution Protocol (ARP) is used for different types of attacks, such as broadcast 

attacks, poisoning, spoofing and flooding, which result in the network being 

completely stopped or make resources unavailable, such as through a Denial of 

Service (DoS) flooding attack. In addition, sniffing can occur, whereby broadcast 

packets reach all of the hosts, even if they did not make a request, which can lead 

to data being intercepted by unauthorised hosts.  

 Broadcasting leads to increased network traffic resulting in collision and 

competition at the same link, which leads to loss of packets, congestion and 

negative impact on response time. Hence, Cisco recommends in [10], which is a 

practical study, using no more than 500 devices in one collision domain. However, 

this limit to the Ethernet network means it cannot meet the needs of recent 

technology, such as the Internet of Things (IoT). In addition, the back-off 

algorithm used in collision networks to solve collisions, theoretically leads to the 

number of hosts being limited to 1,024 [26], which raises the scalability problem 

in these networks.  

 The broadcast mechanism leads to increased CPU usage by the hosts, where 

practically hosts capture many broadcast packets which are irrelevant to them 

[22].  

 All of the above limitations become worse, if the number of requests per second 

per workstation increases.  

In sum, the above issues have resulted in Ethernet-based network being subject to lack of 

scalability [9], security leaks and limited reliability. 
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 Related work aimed at handling broadcast limitations  

 

To solve the challenges that are related to the broadcast discovery mechanism, 

different architectures and techniques have been proposed for scaling Ethernet networks 

by other researchers that can be classified into two groups, according to the architecture 

of the different types of switches that they use.  

 

3.2.2.1 Related work with legacy switches 

 

With this group, the proposed architectures use legacy switch architecture in their 

design to solve broadcast issues. In SEATTLE [52], the scalability is enhanced by using 

short path routing and a hash table, whilst no configuration (plug and play) is required, 

because it uses flat addressing. However, it adds another software program to the switch 

to perform some functions that are not supported by all types of switches, which leads to 

a lack of backward compatibility. Moreover, this switch requires an increase in the cache 

size when the number of hosts increases, for it has the responsibility of storing their 

additional information and also, it costs more than a traditional switch. In EtherProxy 

[53], a new device is introduced and inserted into the network, which partially stops 

broadcasting, but still causes a delay in response times owing to sniffing and analysis of 

each packet so as get its information. In addition, it uses distributed multiple EtherProxy 

devices that can find it difficult to synchronize the resolution tables among them. 

Moreover, a failing EtherProxy device can lead to isolation of all the switches and hosts 

behind it from the operation. In contrast, SAL [54] uses a distributed database in which 

the edge bridges store the host information. It does not completely eliminate the 

broadcast, because it still uses it among these edge bridges to retrieve the destination 

information and if a failure occurs in them all the switches and hosts will become isolated.  

 

3.2.2.2 Related work with the SDN switches concept 

 

These proposals use SDN concept architecture in their design to eliminate or reduce the 

effect of broadcasted protocols. In Portland [55], a dedicated centralised fabric manager 

device is introduced that contains information about the network. It adds another MAC 

format that is Pseudo MAC (PMAC) to encode the hosts’ position in the topology. The 
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PMAC packet is forwarded to the Portland switch that contains special software for 

converting it back to Actual MAC (AMAC), which increases the complexity of the 

network and the processing time in the switch. The other disadvantage of this method is 

that it cannot work with other switches, because the Portland switch has specific features, 

such as announcements to itself periodically. In Po-Wen, et al.’s framework [22] and the 

CPA framework [16] an ARP proxy in the Ethernet network is proposed as a module 

inside the SDN controller for handling ARP packets. It forwards every broadcast ARP 

request to the controller plane and generates an ARP reply message, which it sends back 

to the requested host.  In addition, the former framework builds the Dynamic Host 

Configuration Protocol (DHCP) function inside the SDN controller to deal with the 

DHCP broadcast packets. In FSDM [17], an ARP proxy and DHCP relay is introduced 

inside the SDN controller to handle ARP and DHCP broadcasted packets. The DHCP 

relay logically links the hosts and the DHCP server, which leads to an increase in the 

number of packets the controller deals with, thus increasing the overhead on it. In 

SDARP[56], a Software Defined Address Resolution Proxy is proposed as a centralised 

ARP application inside the controller to suppress broadcast messages by centrally 

answering ARP messages. It differs than other proxy models in using only the ARP 

messages to build the ARP table inside the controller. However, it still broadcasts ARP 

messages, if the ARP table does not have the information regarding the destination host. 

For all the last three proposals (FSDM, CPA , the Po-Wen framework and SDARP), 

proxy techniques are used inside the SDN controller, which has several disadvantages, 

such as lack of scalability in large networks at peak load due to increased request rates, 

resolution updates and mobility. This results in greater latency and response times, which 

get increasingly worse over time. In addition, there are controller overhead issues, fault-

tolerance issues and single point of failure problems. Moreover, this increases the 

probability of attacks and as a consequence raises security issues, which is considered the 

most important problem nowadays, as reported by the SDN community [56]. 

 

3.2.2.3 Virtual LAN (VLAN) 

 

VLAN is a broadcast domain, which contains a group of end-devices that logically have 

the same requirements regardless of their location in the network. As a consequence, in 

order to communicate VLANs layer3 devices must be used [57]. VLAN has the benefit 
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of minimising the size of each domain by increasing the number of domains (i.e. same as 

the router function). However, the number of end devices still cannot exceed more than 

500 hosts in a one collision domain. 

 

3.3 Middlebox devices between subnets  
 

In order to build a large network, such as a Campus Area Network (CAN) or a 

Metropolitan Area Network (MAN) a LAN is interconnected with other LANS using 

middlebox devices, e.g. (router/default gateway). A router is a complex system [58] 

which can be a software or hardware device. It forwards packets at least between two 

subnets using Internet Protocol (IP), as directed by the routing table and the IP packet 

header control information . It works on behalf of IP-based hosts in its subnet, when they 

need to connect outside their subnets/networks, which it does either by a static default 

gateway or proxy ARP [57] settings. As a consequence, using a router as a middlebox 

device results in several limitations.  

 

 Different limitations owing to using a router device 

 

The router and the default gateway mechanism negative consequences are as follows.  

 Configuration limitation on the host side. A network with a router currently needs 

to use a default gateway setting, which means that every host in the network must 

add this setting to its routing table before it is allowed to send packets outside its 

network, otherwise a “Network is Unreachable” message will appear when using 

the ping command. Default gateway configuration can be performed on the host 

side either automatically, if it has dynamic IP configuration that lets the host use 

the information (i.e. gateway IP address) obtained from a Dynamic Host 

Configuration Protocol (DHCP) server to connect outside its subnet, or it can be 

set manually by the user. Regarding automatic configuration using DHCP the 

drawback is that if just a single DHCP server is used and it fails, the new hosts 

cannot get the IP address of the default gateway, which leads to them being 

isolated from communicating with other networks. Moreover, if the router that is 

configured as the default gateway stalls, there is no dynamic way of identifying 

the new router device and its default gateway IP address [59][60] and hence, all 

hosts cannot connect to outside the network during that period. 
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While regarding the manual configuration by the user (the latter method), human 

error could lead to misconfiguration the default gateway IP address, especially if 

multiple routers use in the same subnet, and also manual configuration takes up 

user time. As consequence of this limitation, the network is complex as well as 

lacking flexibility and reliability. 

 Regarding the inner edge of the router side, each router, when connected to the 

network for the first time, needs to be manually configured by the administrator 

in terms of different settings, such as internal and external IPs, buffer sizes and 

Quality of Service (QoS) that are a time cost. Moreover, this configuration is 

prone to mistakes owing to human error. For example, different venders have 

different default settings for the router’s internal IP, such as Apple routers having 

10.0.1.1, whilst Netgears’ routers have 192.168.0.1 or 192.168.0.227 [61]. This 

can make it confusing for the administrator, if the decision is to use the default 

setting, as there needs to be consistency with DHCP pool IPs. In addition, adding 

additional services, such as IP telephony or a video service (e.g. IPTV), leads to 

more complicated configuration, which also makes the network more complex. 

 If the router is set up as a proxy ARP, this means it offers its MAC address when 

receiving ARP requests from clients that are making it work on behalf of its 

subnet, which leads to every device in the subnet having to make ARP resolution 

to the router before connecting to outside its subnet. This, in turn, leads to 

scalability limitation especially in relation to broadcasting issues. In addition, 

using a router as an ARP proxy can reduce reliability, because it does not have a 

fall back mechanism and masquerading in some situations could be confusing 

[62]. Moreover, if multiple routers are deployed in the same subnet, problems 

such as MAC flapping can occur [60]. 

 Another issue related to configuring a router as a proxy ARP is the security issue, 

whereby misconfiguration leads to a DoS attack. In such cases, black holes might 

happen as a consequence of the router not having the ability to correctly forward 

received packets to their destination hosts and hence, dropping them [63].  

 Regarding outside of the router, if we need to make the network bigger by adding 

another subnet, then the outer IPs for both routers must be in the same subnet (i.e 

same Ethernet segment) in order to reach each other using an Ethernet connection. 

For example, a router with outer IP 172.168.0.100 cannot connect to another 
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router with outer IP 172.166.0.99 as they are in a different subnet. In addition, if 

the router is connected to multiple routers using multiple ports then the 

administrator needs to be careful to perform the configuration correctly otherwise 

the packets will be dropped at the router. This restricts the administrator, because 

if any change is required to the outer IP of one of the routers this leads to a 

sequence of modification for all affected routers in the same network. This leads 

to effort and time costs for the administrator and greater complexity especially 

when configuring a large network [64]. 

 If a subnet has one router and a fault happens to it, then there will be no connection 

to another subnet until it is changed for another, which raises a reliability issue.  

 If a network contains Virtual LANs (VLANs) or if the subnets in the same 

network connect in a topology that, as a result, could take the form of a loop 

topology, such as mesh topology, then the Spanning Tree Protocol (STP) [27] 

should be activated in the routers to make a loop free network, such as in Cisco 

routers [65], especially if static routing is used. In turn, using STP leads to 

restricting the network to seven hops as the maximum diameter, thereby limiting 

scalability [27].  

 Routers when routing packets, modify the layer two header in the Ethernet frame 

at each hop, which increases latency. 

 Increasing features and the ability of the router lead to it being more expensive 

[66]. 

 A growing amount of traffic puts more pressure on a router, which increases the 

likelihood of a single point of failure owing to congestion [11], which will affect 

the network performance.  

The above limitations result in complexity, along with lack of reliability, flexibility, 

performance and scalability, that restrict the development of Ethernet-based network, 

especially when building large networks. 

 

 Related work handling the scalability issue by focusing on the router device 

concept 

To solve the above issues that appear with multiple subnets different mechanisms and 

architecture have been introduced. The authors in [18] have proposed a model to enhance 

the network’s flexibility, reliability and scalability by connecting different networks using 
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a virtual router under SDN architecture by combining the network functions virtualisation 

(NFV) concept with Multiple Protocols Labels Switching (MPLS). Similarly, in [19], it 

is claimed that a virtual router in SDN will allow for automatic topology discovery for 

transport networks for better performance. This is achieved through router virtualisation 

in the core network, while the edge network still uses the router device. Both these studies 

merely introduced the concepts that would involve changing the hardware router with 

software router one, but the same limitations cited above would be inherited in their 

models. In [67] a static virtual router is applied to an SDN controller in order to enhance 

the round trip time, but this has a scalability issue as it can only connect a limited number 

of subnets. In [24], different types of routers (i.e. MPLS, hybrid, open flow and general 

routers) used in the same network with a single SDN controller are proposed in order to 

perform tunnels splicing system, which improves network scalability. However, in this 

model, using one controller to control all those routers in same network, leads to single 

point of failure issues and deploying different types of routers in same network results in 

the limitations mentioned above.  

In a different context, in [68] the delay issue which affects network performance 

owing to congestion in the edge links in campus networks during load time, is solved by 

using routers with caching ability in an SDN network. However, this solution increases 

the router costs. Moreover, all the above models must use the default gateway settings on 

the hosts side to connect to their network, which leads to several restrictions owing to 

default gateway limitations. 

In CPA [16], the authors claim to minimize ARP broadcast in a data center network 

by using an ARP proxy as a module inside the SDN controller. It forwards every 

broadcast ARP request to the controller plane and generates an ARP reply message, which 

it sends back to the requested host. However, this work is different to our proposed model 

as it is limited to being applied inside a single subnet, which means CPA still needs to 

use L3_devices (e.g. routers) to connect multiple subnets. In addition, proxy techniques 

are used inside the SDN controller, which has several disadvantages, such as lack of 

scalability in large networks at peak load due to increased request rates, resolution updates 

and mobility. Moreover, there are controller overhead issues, fault-tolerance issues and 

single point of failure problems. Furthermore, it increases the probability of attacks and 

as a consequence, raises security issues. 

The model in [69] is identical to the three tier Cisco architecture and is claimed to 

enhance network scalability, however, it has several drawbacks. Firstly, it uses two 
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controllers in the whole network to perform different jobs, which raise consistency issues 

between them. In addition, the overhead on the controllers will increase when scaling up 

the network. Secondly, using in-band control in all SDN switches leads to different 

security and reliability issues, which will increase with load on the network owing to 

control packets using the same plane as the data packets. Thirdly, one of the controllers 

in the core network works an ARP proxy server that replies to all ARP requests, which 

leads to a high response time. Fourthly, using a centralized database leads to a possible 

single point of failure problem. Finally, the model modifies MAC and IP addresses in the 

packet frame in each layer of switches, which is similar to the router function that leads 

to all the router limitations that mentioned above. 

 

3.4 Distributed architectures and their mechanisms 
 

It is hard to extend the traditional fully distributed architecture and distributed 

aggregation mechanism to a large scale, because they suffer several drawbacks by using 

the data plane as a bus to transfer the control discovery messages, which increases the 

traffic on that plane. The SDN appears to overcome the traditional architecture issues by 

decoupling the control plane from the data plane to give more flexibility [70]. However, 

the standard SDN paradigm contains one controller in each network [71], which raises 

other issues, such as difficulties in the scalability of large networks and potential single 

point of failure [72]. Consequently, using multiple controllers and distributing them 

properly at locations in SDN architecture is an essential parameter for scaling the network 

[73]. Various solutions have been proposed to overcome the scalability issue since the 

arrival of SDN, which can be categorised according to the control plane architecture, as 

follows.  

 

 Fully distributed control plane architecture 

 

When designing a network that covers distributed areas, it has to be divided into 

multi-subnets/networks, with each having its own SDN controller. In addition, to scale a 

network with high performance, the proactive behaviour that is a powerful feature of SDN 

should be used, i.e. to install rules proactively along paths between sources and 

destinations, regardless of whether they are in the same subnet/network or belong to 

different ones. The proactive behaviour of SDN relies on providing a general view of the 
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network to each subnet/network in order to find and install routes in the routing tables 

between the edge devices (e.g. routers). This general view in the distributed architecture 

can be obtained by using a well-known discovery mechanism, i.e. a distributed discovery 

aggregation mechanism [20]. The Open Shortest Path First (OSPF) [74] traditional 

protocol is the most commonly used for this purpose for fully distributed architecture in 

intra-domain among subnets/networks within the same Autonomous System (AS), such as 

in [20].   

However, there are several limitations as a consequence of using the aggregation 

discovery mechanism in distributed architecture, which are as follows. 

 The aggregation discovery mechanism by distributing the discovery information 

to all subnets leads to the use one or multiple protocols to implement this 

mechanism, such as in the Disco model [23], where Messenger-Link Layer 

Discovery Protocol (M-LLDP) and Advanced Message Queuing Protocol 

(AMQP) are deployed to discover the network. As a consequence, this leads to an 

increase in the complexity of the controllers and more latency when performing 

the discovery. In addition, as these protocols must work synchronously and they 

need manual configuration, this increases the probability that the whole system 

will fail due to human error.  

 With such an aggregation discovery mechanism, the data plane is used to transfer 

the discovery packets through the network, which results in more load and the 

consumption of the resources of that plane, which consequently has an effect on 

the discovery and convergence time. 

 During peak load, the probability of failing in the discovery process for a new 

event (e.g. add/delete subnets) increases, because both customer data and the 

control discovery signal use the same plane (i.e. data plane), which can lead to 

congestion in the network. Consequently, the fully distributed discovery 

mechanism could lead to reliability issues [75], so the best discovery time with 

the optimum discovery path should have little or even no congestion [76]. 

 Aggregation of the distributed mechanism results in complexity [76], which in 

turn increases the latency of the discovery process, given that a number of phases 

(i.e. rounds) are needed to complete the whole discovery process. 

 The size of discovery packets has a direct relationship with the number of 

subnets/networks [29], whereby the former increase when the best path becomes 
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longer between the furthest edges (i.e. subnets) of the networks. This will be 

conflict with the size of the Maximum Transmission Unit (MTU) of a link that 

passes the discovery messages. This, in turn, leads to performing message 

fragmentation that is used in cases when the MTU size in less than the protocol 

data unit [77]. Dividing the discovery message into pieces and send them 

individually on the data plane leads to an increase in the probability collisions and 

competition, which in turn lengthens the discovery time. In addition, the limited 

number of available fragmentations [e.g. Intermediate System to Intermediate 

System (IS-IS) routing protocol which is limited to 256 fragments] leads to the 

inability of up scaling for large networks [77]. 

Relying on fully distributed control plane architecture, the Onix model [20] is 

proposed for enhancing the scalability of a network. However, it is not efficient for one 

with rapid changes in its conditions and states, whilst it also has the above limitations. 

Moreover, it uses the OSPF protocol to make the discoveries in intra-domains with no 

information about how this could support proactive SDN behaviour. In addition, it is not 

sufficient for discovering inter-domains and hence, it has to rely on other models [20]. 

 

 Distributed architecture with a logically centralized control plane  

 

With this architecture, the controllers are each allocated to a single subnet as with the 

fully distributed architecture; however, a new top layer is defined. Firstly, this layer in 

some proposals, such as in [21] and [78], is used as a data store in order to be the link 

among the subnets’ controllers and in [21] each controller can be used to control all of 

the network. Nevertheless, this architecture also has drawbacks, as each controller in each 

specified time will retrieve the full data from the data store, which will result in each 

having an increased cache size. In addition, each controller will increase its CPU usage 

and power consumption owing to it having to perform the best path calculation for the 

whole network. Secondly, in [21] the top layer is used also as a control channel to make 

connection to transfer commands between the controllers that return the architecture to 

the single point of failure, increase the complexity of the system and increase the response 

time. Thirdly, other studies, such as in [79] use the top layer as a root controller that 

connects directly to the local controllers, which are used as switches proxies for it. In this 
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architecture, a specific protocol needs to be designed to connect the local controllers to 

the root controller, which increase number of protocols that are used for discovery and 

hence, the synchronization among these protocols could affect the general view 

consistency. In addition, there is complexity in the root controller as its role is not just the 

discovery process, for it also has to answer the outgoing requests from that 

subnet/network. In more detail, the outgoing requests from the subnet pass from the local 

switch to the root controller, which installs rules in all local switches along the path to the 

edge device. This leads to increased response time as well as overhead for the root 

controller. As with [79], [71] uses a coordinate controller in the top layer, with one 

controller for each domain, thereby limiting the scalability. In addition, it uses unified 

restful API between the local controllers and coordinating controller, which leads to a 

backwards compatibility problem as well as increased network complexity. However, 

there is no mechanism regarding how to discover domains and how the local controllers 

gather the information. Moreover, the calculation for the global path occurs in the top 

controller after it receives a request (i.e. not in proactive manner), which means that it 

neglects the most powerful feature of an SDN. Furthermore, [71] results in an increase in 

the size of the cache in each local controller, because all the input and output ports of 

each domain have to be stored in them. 

 

3.5 Summary 
 

This chapter has presented the main causes of restrictions to scalability, with the issue 

being dealt with starting from one subnet to multi-subnets and then from intra domain to 

inter domain perspectives. Different studies have been analysed and the gaps in them are 

highlighted as follows: 

 

 Generally, there is no consideration of the peak load in these studies in terms of 

its effect on scalability; 

 Generally, there is no complete architecture combined with a complete 

mechanism to work for all sizes of networks (i.e. inside the subnet, in multi-

subnet and in intra and inter domain; 

 There is significant overhead on the control and data planes;  

 Using different discovery protocols to discovery intra-domain (one subnet and 

multi-subnets) and inter-domain has led to several drawbacks; 
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 Generally, the powerful proactive feature of SDN has been neglected.  

 Generally, using servers in their architectures has been overlooked. 

 None of the previous models have been accepted officially or as standard. 

 The negative consequences of the default gateway mechanism regarding 

response time and number of control packets that are generated as consequence 

of using it, have been completely neglected; 

 Most of these studies have not applied the fundamental requirements, which will 

be covered in chapters 4, 5 and 6. 

 Most previous studies have treated the scalability issue separately from other 

network problems that compromise network efficiency, such as the backward 

compatibility problem, complexity, security, reliability, flexibility among others, 

all of which should be taken into account when designing a network [80]. 
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Chapter 4 Servers under Software-Defined Network Architectures 

 

 

 

ARP and DHCP Servers under Software-

Defined Network Architectures 

 

4.1 Introduction 
 

The Ethernet is the most popular technology in local area networks that can be found 

in small geographic zones, such as in the home, on campuses and in enterprise network 

[81]. It allows for the sharing of resources with high performance, which supports 

virtualization principles and the client-server scheme in relation to the distribution of load 

among the servers as well as assisting in administration. The Ethernet protocol resides in 

the data link layer in the Internet protocol suite, providing services for its own layer and 

up layer protocols, such as broadcast ones like the Address Resolution Protocol (ARP) 

[82] in the data link layer and the Dynamic Host Configuration Protocol (DHCP) [83] in 

the application layer. It also services multicast protocols, such as the Bridge Protocol Data 

Units (BPDUs) [84], which is a multicast packet used by the Spanning Tree Protocol 

(STP) [84] in the link layer and the Multicast Listener Discovery (MLD) protocol [85] in 

the internet layer. 

There are effective features of the Ethernet protocol, such as self-configuration for 

serving the plug and play feature, centralised administration and the use of distributed 

servers, all of which should be retained when designing SDN-LAN architecture. 

However, when designing an SDN-LAN network the aim should be to eliminate 

unwanted features potentially inherited from legacy networks, such as the broadcast and 

multicast features that lead to increases in the number of hosts in one collision domain, 
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minimise the number of protocols that are used in one domain over the Ethernet protocol, 

such as STP and increase the security as well as privacy for users.  In addition, the SDN-

LAN architecture design should possess some mandatory features so as to retain 

compatibility with legacy networks’ hardware and software, such as keeping the stander 

protocols code without touch, thereby allowing for a gradual transfer from these networks 

to SDN. Moreover, no new architecture hardware should be added to the network as this 

would make it extremely difficult to change from the legacy architecture to the new SDN 

one. Finally, so as to allow for the continuing use of legacy switches no new software 

should be added to the host and switch side, otherwise there could be a backward 

compatibility problem among the hosts.  

Hence, so as to satisfy all the aforementioned mandatory features, whilst solving the 

Ethernet broadcast mechanism challenges mentioned in chapter 3, the Servers under 

Software-defined network architectures to Eliminate Discovery messages (SSED) is 

proposed. SSED, firstly, introduces new mechanism for defining the relation between 

servers and the control plane in SDN architectures. Secondly, it handles broadcast and 

multicast messages that are generated by the most important type of broadcast protocols 

in the current Ethernet network paradigm. It eliminates all types of broadcast and 

multicast messages that could be generate by the broadcast or multicast protocols, such 

as ARP, DHCP, Network Time Protocol NTP [86], multicast STP BPDUs and multicast 

MLD protocol as well as any other future broadcast and multicast protocol, through the 

same SSED concept. In addition, it takes into account the peak load traffic and overhead 

issues. 

 

 

4.2 Current system description 
 

In this section, we describe the current broadcast Ethernet system by mathematically 

analyzing the broadcast phase using the learning switch mechanism and then explain the 

supported protocol. 

 

4.2.1 Learning switch mechanism  

Whilst the broadcast protocols are used for different services, such as obtaining 

destination MAC addresses or assigning new IP addresses for hosts, it uses the same 

broadcast mechanism. Generally, there are two different distribution phases to connect 



31 

 

between source and destination hosts or servers. First, there is the broadcast phase from 

the source to request destination information or a service, and second, there is unicast, 

which is from the destination to the source to reply with destination information or in 

response to a requested service. There are some services, such as the DHCP containing 

more than two phases, for which every packet from source to destination before using the 

offering IP address is dealt with in a broadcast manner. The learning switch in SDN 

architecture it has same principles as a legacy switch. For the latter, see Figure 4.1(a), 

when the switch receives the broadcast packet for different types of broadcasted 

protocols, which is usually with the destination MAC address ‘ff:ff:ff:ff:ff:ff ‘, it saves 

the source MAC  address in MAC-to-port table so as to prevent broadcasting 

subsequently, if the switch deals with same address again.  Then it forwards the packet to 

all the other ports in that switch except that which inputted the packet. Then, the next 

switches use the same mechanism until the requested packet reaches the destination host 

or server. In case of the ARP service, the host that matches its IP address with the IP 

address field in the broadcast packet will respond with a unicast message that contains 

the IP and MAC addresses for the source and destination host. This unicast packet is, 

firstly, forwarded back to the switch that is connected to the destination host. After that, 

the switch saves the port and MAC addresses for the source and forward the packet back 

in a unicast manner to the next switch that is already known, because it has already dealt 

with it during the first phase and so on. The learning switch in the SDN architecture can 

be seen in Figure 4.1 (b) and the difference is that the MAC-to-port table is stored in the 

SDN controller.  

The number of packets in a learning switch network for a broadcast phase in the 

control plane and data plane in the SDN architecture depends on the number of switches 

and the number of data links connect to each switch. That is, to reach the destination host 

or server in broadcast mechanism the number of packets that are generated in control 

plane during the broadcast phase is a function of the number of switches F(Ns). The 

number of messages between each switch and the controller is equal to two: one Packet_in 

message to the controller from the switch and one Packet_out from the controller to the 

switch to flood the packet to all the output ports, as in (4.1). 

 

Ncp = Nm * Ns     (4.1) 

 

Where, Ncp denotes the number of packets that are generated in control plane during the 
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broadcast phase, Nm is the number of messages between each switch and the controller, 

whilst Ns is the number of switches. 

The number of packets that are generated in the data plane during the broadcast phase 

is a function of the number of switches and number of links F(Ns, NI), where one packet 

is excluded from each calculation, because it represents the input port and hence, is 

exempted from the flooding. Equation (4.2) represents approximately the number of 

packets generated in the data plane as a result of one requested broadcast packet from the 

host. 

 

 

Figure 4.1: Steps for filling the MAC-to-Port table and broadcast mechanism using legacy and 

SDN switches 
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Ndp =∑ (𝑁𝑠
𝑛=1 NI n -1)    (4.2) 

 

Where, Ndp is the number of packets that are generated in the data plane during the 

broadcast phase, Ns is the number of switches and NI is the number of data links connected 

to each switch. 

 

4.2.2 STP and the learning switch mechanism  

 

Practically, the learning switch forward mechanism needs support protocols that let 

it complete its work without a loop-network issue.  Spanning-tree protocols such as STP, 

Rapid Spanning Tree Protocol (RSTP) [84] are used in spanning loop topologies to 

prevent a broadcast loop (loop-storm). A loop storm can happen between two switches 

that have multiple possible paths connecting them. In this case, the STP manages the 

network logically by ensuring the availability of just one possible path between two 

switches, which thus prevents a loop storm. The main disadvantage of STP is that it is a 

multicast protocol and to do its job it has to multicast BPDU packets among switches 

every 2 seconds [84], which puts more traffic in network and hence, causes delays in 

response time. In addition, in some cases the whole network can break down if it exceeds 

seven hops as the maximum bridged LAN diameter, which thus has to be taken into 

account when designing the network [51].  

 

4.3 SSED design 
 

To deal with all the factors discussed in section 4.1 and to overcome the weaknesses 

in previous architectures, which have explained in chapter 3, the SSED flexible 

framework has been designed by the introduction of Multi-To-One (MTO) collective 

service method and this is introduced first.  SSED is used to define the relation between 

the SDN architecture and the servers proactively and reactively as well as eliminating 

different types of broadcast packet. The flexibility of SSED stems from its ability to 

forward packets to destinations chosen by the controller (not by the host), which depends 

on SDN controller management algorithms. This feature gives the SDN architecture 

flexible behaviours so as to be able to perform different functions, such as load balance, 

management and packet forwarding. Whilst the focus is on the ARP and DHCP broadcast 

messages, the same concept will work for all other broadcast messages.  
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4.3.1 Multi-To-One collective method 

 

A new flexible collective service method that can be deployed in an SDN network is 

proposed, based on the ability to the controller to have a general view of this network. Its 

name comes from its job, which is defined as: 

 

Directing multiple nodes that request the same service to a final node that offers the 

requested service using the unicast concept, in place of the usual broadcast request 

concept, with just one installed forwarding rule for each service.  

Hence, it is called Multi point-To-One point or simply Multi-to-One (MTO). As 

shown in Figure 4.2 (a), MTO is a group communication and routing methodology, for 

which a set of nodes (or points) that needs a specific service is routed logically to a single 

node (or point) independently and in a unicast manner. By so doing, a message can be 

transmitted from any member in that set to the final single node, independently. The main 

features of the method are that the source nodes may not be related to each other, there is 

no limitation for number of nodes between the source nodes and the destination node and 

source node request service in a unicast manner, rather than through broadcast. MTO can 

be applied in different applications, for example, in a single SDN switch MTO connects 

logically multiple input ports from different sources to one output port using a single 

installed rule in the switch forwarding table, as shown in Figure 4.2 (b). The main 

advantage is that the switch can deal with N number of hosts without affecting the size of 

the forwarding table inside the switch, which leads to a decrease in its memory size and 
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hence, lower cost.  

Figure 4.2 (c) shows another example for implementing MTO in multiple switch 

SDN architecture. Nodes (switches) 1,2,3,6 and 7 can connect logically to node (switch) 

10 using MTO collective method with a unicast manner. The main advantage that is added 

when using the SSED architecture is that the controller can have a view of all the switches 

in its data plane by using the discovery mechanisms. So, it can forward the packet 

anywhere in its network, even if the message is not addressed to that destination and does 

this without modifying the packet fields and as a consequence, this supports the client 

server concept. 

 

4.3.2 SSED mechanisms  

 

In the current Ethernet network, the broadcast mechanism plays an important role in 

performing different function, such as looking up MAC  addresses associated with 

destination IP addresses by using the ARP protocol, assigning automatic IP addresses for 

hosts by using the DHCP protocol, solving duplicate IPs by using the ARP protocol and 

keeping time synchronous among hosts with NTP broadcast protocol.  In this chapter, the 

broadcast mechanism is replaced by the SSED mechanism, which makes the SDN 

controller and server share the responsibly of responding to reply messages depending on 

the type of service that is requested by the host. The server’s role is to provide the service 

and the SDN controller’s role is to ensure that it provides the best path to the source host 

and the resultant reduced management leads to lower overhead in its control plane. 

By applying the MTO concept inside an SDN switch, SSED forwards packets that 

need the same service and come from different input ports to one output port. As a 

consequence, the number of rules that are installed in each switch to reach a specific 

server equates to one, regardless of the number of source hosts connected to that switch. 

In addition, the forwarding decision inside the SDN switch will depend on the layer 2 

(packets with destination MAC equal to ‘ff:ff:ff:ff:ff:ff’ ) and layer 3 protocols that are 

supported by the switch to distinguish the type of service that is asked for by the host. For 

instance, the arp_type field needs to be able to distinguish an ARP packet and that the 

service that is needed is hence an ARP one. Moreover, if ports 67 and 68 are inside a 

UDP packet this can be used to distinguish it from a DHCP service and port 123 in such 

a packet can distinguish it from an NTP protocol [87]. By applying the MTO concept 
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outside the SDN switch, the controller in SSED can manage flexibly the requested service 

from a host to any server that offers it with just one rule in each switch. 

The SSED mechanism distributes packets according to packet type directly to a 

specific server using proactive installed rules, so that the number in data plane in the 

Request phase depends on the number of switches in the best path between the host and 

the server Nsb, while no packets enter into the control plane during this phase. During the 

Reply phase, the data plane also will depend on the Nsb, while in the control plane there 

is one Packet_in message from the server plus a number of Packet_out messages equal to 

the Nsb between the server and the requesting host. Equations (4.3) and (4.4) represent 

the number of packets generated in the data plane and control plane, respectively, as a 

result of one requested packet from the host. 

 

Ndp = 2 * Nsb                 (4.3) 

Ncp = 1 + Nsb                   (4.4) 

 

Where, Nsb, Ndp and Ncp denote the number of switches on the best path between the host 

and the server, the number of packets generated in the data plane, and the number of 

packets generated in the control plane, respectively. SSED contains some other 

mechanisms to perform its role, as follows. 

 

4.3.2.1 Relationship between SDN controller and server’s location 

 

With SSED, the server’s location is flexible in that it can be in the nearest switch to 

the controller as a data centre or can connect to any switch distributed in the same subnet. 

The network administrator can benefit from this flexibility in solving network issues, such 

as putting the server near to the switch that has heavy active users so as to reduce service 

access time [88]. In addition, the administrator can spread out the servers in the network 

to share the load among those offering the same service. This behaviour not only supports 

servers with broadcast protocols as it can also be used for any type of server in the same 

subnet.  
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4.3.2.2  SSED operation modes  

In SSED, there are two types of behaviour that the controller uses to manage the 

connection between the servers and the hosts. Firstly, in bootstrap time, it uses the 

proactive mode to install rules in every switch so they can reach the Arp and DHCP 

servers (DHCP and ARP just as example; not limited to these) using the best paths 

available in that particular moment. If the network contains more than one server offering 

the same service, the controller can use distributed load algorithms, such as the Round 

Robin algorithm, to distribute the load amongst them. Secondly, if the network conditions 

change, such as a new server is added or removed, a switch is added or removed. 

Moreover, when there is congestion at the links then the reactive mode can be used to 

redistribute the load among servers or to change paths so as to be the best for reaching 

the servers. 

 

4.3.2.3 SSED failure handling mode    

 

Since there are different types of failure can be happened in an SDN network, SSED 

covers most of the important ones and gives solutions.  

 

4.3.2.3.1  Handling switch failure 

 

The route between sources and destinations can be disrupted owing to failure in the 

routed switch or in its links. The controller in SSED uses a priority feature provided by 

OpenFlow protocol [89] to install two different rules in the same switch: a high priority 

rule for the normal route and a low one for failure mode, which can be used if a failure 

happens in neighbouring switches. In more detail, if a switch fails or the link to one goes 

down, then all the routes going through that switch will be disrupted. However, SSED 

deploys a new failure mode mechanism, whereby the controller identifies where the 

failure has happened by detecting the deleted port from a neighbouring switch and 

reporting a change in the port status. Then the controller reactively installs a new rule in 

the neighbouring switch or this switch will employ the second priority rule, proactively 

installed by the controller, in its forwarding table in order to keep the service offered by 

the servers working.  
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4.3.2.3.2 Handling server failure 

 

The controller, to do its management job properly, needs to create tables to use so it 

can track changes in the network. SSED creates a server-switch table in the controller 

containing the information about which switches are routed to which servers. For 

example, switch1 is set to reach server X that offers service Y. So, if failure happens to 

server X, it is easy to know the switches that direct packets to it and hence, install a new 

rule in switch1 to redirect packets to another server that also offers service Y.  

There is the possibility of a server failing performing any service in any network, not 

just an SDN, SSED uses an echo message that it sends periodically to each server in the 

server-information table that is stored in the controller to check if it still alive or not and 

accordingly, the controller updates the status field in this table as required. SSED, after it 

detects the failed server, will install new rules in the affected switches to route to another 

server that offers same service, if there is one. Otherwise, the controller forwards it to the 

default gateway so as to obtain the same service from servers in another network. 

 

4.3.2.3.3 Handling controller failure 

 

There are several previously devised mechanisms that SSED can use to overcome 

this issue, such as back up with a different SDN controller [90] and using or changing the 

switches to standalone mode so as to take the responsibility for dealing with packets 

without an external controller [91].  

 

4.3.2.4 Handling discovery (join, leave and mobility) 

 

One of the most powerful aspects of SDN is its ability to discover its controlled 

network components in relation to cases of join, leave (normally or in a failure case) or 

mobility. SSED performs discovery with high accuracy and speed as well as dynamically 

detecting changes. There are two types of discovery in SSED a switch discovery 

mechanism and a host (could be a server too) discovery mechanism. 
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4.3.2.4.1 Switch discovery  

 

SSED generates a switch-information table in the initial setup of the network and puts 

it in the SDN controller’s memory. When a new SDN switch connects with the controller, 

there is an exchange of negotiate messages between the two, the information from which 

being used by the controller to register the switch in the switch-information table. Then, 

the controller starts sending discovery packets using the Link Layer Discovery Protocol 

(LLDP) [30] to discover the topology (how these switches are connected together) and 

registers that relation in the same switch-information table as pairs in the hash table. The 

important difference with SSED from other platforms is that it stops sending LLDP, 

because of the fact that any port or switch added to the SDN network must be reported to 

the controller [89]. This use of LLDP leads to a decrease in the excessive number of 

multicast packets that are usually generated [92]. In addition, if a switch leaves, then 

SSED performs the same procedure as for failure mode, as discussed above and then, 

removes the switch from the switch-information table. 

 

4.3.2.4.2 Host discovery  

 

SSED creates host-passport table when first establishing the network and puts it in 

the SDN controller’s memory. If a new host joins the network, then there are two standard 

possible ways for setting up its IP, manually or dynamically, using the DHCP service. In 

both cases, static IP or dynamic IP, the host firstly must send an ARP probe packet, which 

is an ARP request packet with the sender IP address equal to all zeroes and the destination 

IP address equal to checked IP [93]. ARP probes are sent by the host in order to detect if 

there is a conflict IP with other hosts before commencing to use that IP. Then, the switch 

forwards that request packet to the SSED controller, which will register in the host-

passport table all the requesting host’s information, including the IP and MAC addresses 

provided by the host as well as the port number and switch ID resting with the switch. 

After this, the controller will forward the host’s IP and MAC information to all ARP 

servers in the local network. This forwarding to all servers is an important step to load 

balancing among ARP servers that SSED is able to deploy. It is important to note that the 

host sends another type of packet, an ‘ARP Announcement’, which is an ARP request 

packet with the sender’s IP address equal to the destination one, if no ARP conflicting 
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reply message has been received as a result of the generated ARP probe packet [93]. An 

ARP Announcement is sent by the host to tell the other hosts that it is commencing to use 

the announced IP and the controller uses that packet to update the host-passport table with 

the valid IP address. 

The host sends an ARP probe and announcement packet each time its IP changes. If 

the host leaves the network for any reason, such as failure or normal leaving and its 

departure is of no consequence, then no action is taken. However, SSED will wait for a 

set time of no activity for that host and will then delete it from the host-passport table, 

sending update messages to all the ARP servers instructing them to delete it too. The host-

passport table contains a field with the name Last Activity Time (LAT) to record the time 

of the last activity by the host.  Otherwise, if the host moves from one switch to another, 

it sends an announcement message to the controller that leads to the updating of the field 

switch ID just in host-passport table and the host can still use the same IP. 

 

4.3.2.4.3 Server discovery  

 

The controller, when the network is first established, creates a server-information 

table and any server joining the network sends an announcement message using the UDP 

protocol to define itself to the controller, which then inserts the server information in the 

server-information table. The server-information table is a hash table containing the MAC 

address, IP address (usually static IP), join date, leave date, status, pool range (used for 

DHCP), type of service, port number and switch ID fields. If a server leaves by planned 

leave, as stated in the leave date field in the server-information table, then prior to this at 

a set time, the controller will withdraw responsibility from that server and give it to 

another offering same service, such as ARP, DHCP, and NTP among others. For the 

controller to do this, the same procedure in proactive mode that we discussed above to 

install rules in selected switches and forwarding packets to the new server is used. 

However, if any server leaves unplanned, such as in a failure situation, the controller, 

firstly, will remove it from the server-information table and will make another server 

available to provide its service (see subsection 4.3.2.3.2). Finally, in the case of a move 

of a server from one switch to another, such as from one VM to another, the server will 

send an announcement message using the UDP protocol to define its new position and 

which switch it connects with. Then, the controller updates the switch ID field (which 
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records the switch ID that is connected to that server) in the server-information table and 

server-switch table. The controller then updates the affected switches and instructs them 

to forward packets to the server’s new location. 

 

4.3.2.5  SSED without STP 

 

As SSED stops all broadcast and multicast packets as well as taking responsibility 

for managing the forwarding of packets from sources to destinations, there is no 

possibility of a broadcast or multicast storm occurring in a loop network topology. 

Experimentally we stop STP from working in the SSED architecture in a loop network 

topology and we check the network to see that it is free from any storm. In contrast, 

stopping STP is impossible with legacy switches in a loop network topology.  

 

4.3.2.6 Handling other issues related to broadcast  

 

Broadcast packets can be used for different purposes even though they have not been 

actually designed for them, such as an attack on other components of network (controller, 

servers, hosts etc.) that lead to several security issues. In addition, broadcast packets can 

be used to solve duplicate IPs among hosts in same network, but these lead to high 

consumption of bandwidth and congestion at the links.  

 

4.3.2.6.1 Handling security issues  

 

Security matters have yet to be completely solved in legacy networks, as well as in 

SDN ones, as has been widely reported [56]. SSED handles security issues by dealing 

with each leak individually. Firstly, it does not allow any broadcast packet to reach the 

controller, thereby stopping any flood of ARP request or reply that is often used by 

hackers to attack it, stop its work or spoil its tables. In addition, SSED stops any broadcast 

packets among hosts, because all the packets it forwards are to a specific server depending 

on the service requested. This avoids ARP cache poisoning inside a host as can happen 

during a man-in-middle attack, one of the most common forms. Moreover, it results in 

the avoidance an Arp flood attack to a victim host that could stop it functioning or 

consume its resources. Furthermore, there is the absence of flooding packets that consume 
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shared resources in network.  SSED also does not allow any Arp reply packet to transfer 

through the network components except that containing in its IP field the IP for the ARP 

server as the source server. The IP server is completely transparent to users, which leads 

to increased security. Taking all these factors into account, these lead to reduced security 

overhead (high overhead generated as a result of checking each packet) on the controller, 

because the servers work as filters to it and just pass tested active packets. That is, the 

server will check the validation of a request then reply, whilst the controller simply 

undertakes management of it. For example, if host1 is an attacker and sends one or 

multiple ARP requests to attack the SDN controller, the ARP server will detect it is an 

invalid request by using a specific algorithm, and the server will not forward this request 

to the controller. As a consequence, there is reduced probability of an attack on the 

controller and reduced overhead in the control plane. 

 

4.3.2.6.2 Handling duplicate IPs 

 

Duplicate IPs occur when two clients on the same link use the same IP address 

concurrently, as a result, problems happen for one or both clients [93] such as over 

consumption of resources, flood storms and security issues. To solve this issue, usually 

in legacy networks the host, before using the IP address assigned to it by the DHCP server, 

broadcasts ARP Probe packets which is an ARP request with the 'sender IP address' field 

set to all zeroes and the 'destination IP address ‘set to the IP address being probed [93]. 

The purpose of this is to check whether there is the same IP address available in the 

network so as to avoid duplicate IPs. To this end, SSED stops any such broadcast by 

immediately dropping the packet and the duplication problem is solved by a specific code 

in the controller. This is a major feature of the controller’s management, especially when 

the network becomes big with many connected hosts. The controller checks the IP field 

in all the host-passport table rows in case of a new host joining the network or changing 

its IP address as a result of it awakening from sleep mode, changing the network interface 

from inactive to active mode and for other cases of change in connectivity [93]. Then, if 

there is duplication of IPs between at least two hosts, the controller sends an ARP 

conflicting reply message to at least one of the duplicated hosts, the choice depending on 

the registered times for that IP and the newer registered hosts will be chosen to change 

IP(s). Specifically, the conflict message notifies the user through a screen message to 
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change the IP manually or to activate the sending of a DHCP discovery message to the 

DHCP server so as to obtain a new IP.  

 

4.3.2.6.3 Handling Head-Of-Line blocking (HOL) phenomena 

 

SSED deals with the head-of-line blocking (HOL) phenomena, which occurs owing 

to other packets are blocked when the packet at the front of the FIFO queue cannot move. 

The probability of its occurrence increases with the broadcast mechanism as more packets 

are generated on the output ports and so more compete to use them. SSED solves this, 

whereby the controller in SSED has a whole view on its network and installs different 

rules/paths to the ARP server in each switch with different priority levels. Hence, the first 

packet in FIFO is no longer waiting if the output port busy as the packet can go through 

different ports to reach its destination. In addition, SSED by eliminating the broadcast 

mechanism reduces the probability of HOL happening. 

 

 

4.4 SSED implementation 
 

We show in detail how SSED implementation handles ARP and DHCP broadcast 

messages by using a server-based concept with that of MTO. We extend the Ryu 

controller by adding the three SSED components as follows. 

 

4.4.1 SSED bootstrap, proactive and reactive components 

 

SSED combines proactive and reactive mechanisms, as can be seen in Figure 4.3. 

Firstly, SSED-bootstrap starts with establishing the network by joining the SSED SDN 

controller, which directly starts to discover the network under its control. SSED 

establishes a switch-information table that contains a hash table (e.g. Source switch: 

[Destination switch, Source port, Destination port and Cost]), which will start being filled 

when a new switch joins the network. The SSED uses LLDP to discover the network and 

continues filling the switch-information table. The discovery of the switches process will 

be continued until a specific time as configured by the administrator so as to let all the 

available switches join the network. In addition, SSED creates a host-passport table that 
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contains host discovery information and a server-information table that contains 

information about each server joining the network.  

After finishing the bootstrap time, both the switch-information table and the server-

information table will be used in the SSED proactive-mode to find the best path between 

each SDN switch and the ARP and DHCP servers by using Dijkstra's algorithm, after 

some development. SSED proactively installs one forwarding rule for each server in each 

switch so as to let ARP and DHCP broadcast messages be forwarded directly to their 

respective servers without going through the controller. This mode uses the MTO concept 

as SSED completely ignores where the broadcast packets are coming from (i.e. from 

which sources) and just focuses on the output port (the rule is: do not care about input 

ports and go to specific output port). MTO will make one forwarding broadcast rule work 

with an infinite number of hosts to reach the ARP and DHCP servers that has no effect 

on switch memory. Proactive mode is repeated every threshold time to deal with any 
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changes in the switches topology, whilst concurrently the ARP and DHCP components 

start working in the multi-thread concept. If a new switch joins the network, the SSED 

reactive mode adds it to the switch-information table and starts to discover how it 

connects to other switches.  

 

4.4.2 DHCP component 

 

There are two ways to assign an IP address to a host, statically by using manual 

configuration or dynamically by using the DHCP protocol. With a dynamic IP address, 

the host sends broadcasted DHCPDISCOVER message to request an address from the 

DHCP server, which has pool of them to offer. The message will be entered into the 

nearest SDN switch, which connects to that host and the switch uses the MTO rule, which 

has already been installed in proactive mode in the bootstrap time, in all the switches 

along path to the DHCP server so as to forward that message. The DHCP server answers 

with a DHCPOFFER message, which is a unicast one that contains the host’s MAC 

address in the target MAC address field in an Ethernet packet and this server’s MAC 

address in the source MAC address field. This DHCPOFFER contains an offer of an IP 

from an IP pool in the DHCP server. The message will go back to the nearest connected 

SDN switch, which does not have a rule for forwarding and so it sends the message using 

the OpenFlow protocol as Packet-in to the SSED controller. SSED uses just one packet-

in message to complete all stages of the requested service in order to eliminate overhead 

on the controller, especially during peak load. The controller catches the packet-in 

message and decapsulates it to get the DHCP information, subsequently checking the type 

of DHCP packet. Then, the controller checks whether it is a DHCPOFFER packet and 

the source MAC address to see that it belongs to one of the DHCP servers in the server-

information table, for security reasons.  

If NO, the controller will drop the packet, because it has come from an unauthorised 

source, if YES, the controller will look inside the host-passport table to update the existent 

host record and reset the expire-host-timer field that is used to check whether the host is 

still alive. SSED uses the hash function to perform lookup in the host-passport table and 

considers the IP/MAC field in received packets as the key to finding the host’s record. 

Following this, SSED controller finds the best path back to the host that has made the 

DHCPDISCOVER, installs rules to prevent next time Packet-in to the controller and then, 
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forwards DHCPOFFER to the host. The host will generate a DHCPREQUEST message, 

which is also a broadcast message and sends it to the nearest switch that then forwards it 

to the server without notifying the controller with a packet-in, as the MTO rule already 

exists in the switch. The DHCP server will receive a DHCPREQUEST and then sends 

back a DHCPACK as a final agreement that allows the host to use the requested IP 

address. The DHCPACK will be forwarded directly to the host that has made the request 

without notifying the controller as there is a rule already installed in that switch from the 

previous DHCPOFFER phase. 

There are other types of DHCP messages that transfer between the DHCP server and 

host without send notification to controller in the SSED architecture. A DHCPNACK 

message is a unicast from the server to the host, letting it know that the requested IP 

address is not allowed owing to an error, such as it now being used by another host or it 

is no longer valid. In addition, there is DHCPRELEASE, which is broadcast message sent 

by the host to the DHCP server to let the server know it will log out from network. 

Moreover, DHCPDECLINE is a broadcast message from host to server to notify it there 

is an error in the configuration parameters. In exceptional cases, if DHCPDISCOVER, 

DHCPNACK, DHCPACK, DHCPREQUEST, DHCPDECLINE and DHCPRELEASE 
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are sent as Packet-in to the SSED controller, this means that the switch sending the 

messages to the controller has just joined the network and so, the MTO rule has not yet 

been installed. Only a DHCPOFFER message should be sent in the Packet-in to the 

controller and just for the first time, because after that the server knows the route to the 

requesting host, unless there has been a change in the network topology. A detailed 

flowchart of the DHCP component in the proposed model is shown in Figure 4.4. 

 

4.4.3 ARP component 

 

The implemented Arp component contains two parts. Firstly, there is the ARP host 

discovery, which is described in detail in section 4.3 (host discovery mechanism). 

Secondly, the ARP service part refers to when a host needs to connect to other host it first 

having to get its MAC address so as to be able to send messages over the Ethernet. It 

sends an ARP broadcast REQUEST message to the nearest connected switch, which 
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already proactively has had the MTO rule installed in it to forward any broadcast ARP 

REQUEST to the ARP server. Consequently, there is just one rule to forward messages 

from infinite hosts to the ARP server following a unicast concept. The request is 

forwarded along the switches until it reaches the ARP server. The server then 

decapsulates the message and sends an ARP REPLY message with the MAC address for 

the destination host in the source MAC field, if it finds it in the host passport table, if does 

not then the server drops the packet. 

 It is very important to let the server work as a filter just for valid requests so as to 

minimise the overhead on the controller. The switch that is connected to the ARP server 

will encapsulate ARP REPLY in a Packet-in message and sends it to the controller just 

the first time. The ARP component in SSED will be triggered by the ARP packet and 

decapsulates it to find the type of ARP message and the destination host for it. If the 

message is a broadcast request message with a zero in the IP source field or the IP source 

is equal to the IP destination, then SSED deals with the packet as an advertisement 

message. If not, this means there is new switch joining the network and hence, the MTO 

rule has not yet been installed in it. So, SSED finds the best path between that switch and 

the ARP server and installs the MTO rule. However, if the message is ARP REPLY, then 

SSED checks the source field for that message and if it is not from the ARP server it then 

drops the message for security reasons. Otherwise, it looks up the host-passport table to 

update the host information and resets the expire timer, whilst also calculating the best 

path back from the ARP server to the host that has made the request. A detailed flowchart 

of the ARP component in the proposed algorithm is shown in Figure 4.5. 

 

4.5 Testbed results 
 

In this section, comprehensive testbed results are provided to demonstrate the 

performance of the proposed SSED model. The testbed was built using 23 PCs, as can be 

seen in Figure 4.6, twenty of which have the specifications of core 2 Quad, 2.66 GHz, 2.9 

GiB memory and an Ubuntu 14.04 operation system. These can be used either as SDN 

switches by activating an open virtual switch (OVS) or as a host performing role of a 

single host or multiple-virtual hosts, depending on the experimental scenario. Of the 

remaining three PCs, one works as a SDN controller, with the specifications of core i7, 

3.40 GHz, 3.8 GiB memory and an Ubuntu 14.04 operation system. SSED uses a Ryu 

SDN controller as the network operating system (NOS), which was developed by Nippon 
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Telegraph and Telephone (NTT) as an open source operating system [94] that provides 

tools and libraries for design SDN components, which was written using the Python 

language for fast, easy and community supportive development.  

The SSED components are implemented under Ryu using its expansive library. The 

final two computers are Samsung laptops, one of which works as the ARP server and the 

other as the DHCP server, both having the specifications of core i7, 2.20 GHz, 7.8 GiB 

memory and an Ubuntu 14.04 operating system. The SDN controller and OVS switches 

use the OpenFlow protocol [89]. The experiments use one of two types of topology, linear 

or hybrid, depending on the purpose that they are designed to perform. Specifically, the 

linear topology is used in experiments that check the response time, because the effect 

element in this is the distance between the source and the destination, which is defined as 

the number of hops between them.  

The hybrid topology (it is used in real networks) is used in the experiments that are 

designed to evaluate the network traffic ratio (see Figure 4.7), because it is affected by 
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Figure 4.6: Logic diagram of SDN Testbed environment with 23 computers 
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the path that is chosen to reach the destination, which definitely is impacted upon by the 

mechanism that is used to forward packets.  

To prove the efficient performance of SSED, several experimental scenarios were 

designed as follows. Note that the comparison  involves the legacy switch scheme and 

the proposed scheme. There are two parts in this section, with the first dealing with traffic, 

whilst the second pertains response time. 

The first part contains four experiments and concerns traffic in both the control and 

data planes. Ten PCs are used as OVS switches with a hybrid topology, as shown in 

Figure 4.7. 

 The first experiment is performed to measure packet traffic in the control plane during 

120-seconds bootstrap time and idle network behaviour using the SSED model and 

the legacy learning switch model. 

 The second experiment is designed to measure the ratio of the network traffic to 

generation traffic, in both the control and data planes when generating 1 ARP of 

requested traffic under a traditional flooding scheme and the proposed scheme.  

 The third experiment considers resource consumption for uncompleted requests, by 

calculating the ratio of network traffic to the generated failed requests in the control 

and data planes for both the SSED proposed scheme and the legacy scheme.  

 The fourth experiment is performed to measure and compare the controller’s CPU 

usage under the legacy broadcast scheme and SSED.  
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In second part, three experiments are performed to measure the response, latency and 

discovery time with 10 PCs being used as OVS switches in a linear topology. 

 The fifth experiment is performed to evaluate the time for discovering host 

information on the server side and the latency in the controller when dealing with 

discovery packets. This is achieved by generating an ARP discovery packet from the 

host side and recording the receiving time for that packet on the server and controller 

side.  

 The sixth experiment is run to measure the response time for receiving a service that 

is requested by a host.  

 The seventh experiment is performed by increasing the number of hosts' requests per 

second on the SDN network. The aim is to evaluate the performance of the SSED 

during generated light, medium, heavy load from users working concurrently (how 

does increasing the number of requests affect the response time) on this network. It 

differs than previous experiment, in that it involves measuring how the response time 

is affected by sharing the network with multiple users. Then, the performance of 

SSED is compared with that for legacy schemes. 

 

4.5.1 Bootstrap traffic: SSED and legacy scheme comparison   

 

In this experiment, we first fix number of switches in testbed to 10 and use the hybrid 

topology in Figure 4.7. In addition, no hosts are connected to the network so as to avoid 

traffic from them, with the focus thus being on traffic that is generated to establish the 

main parts of network, including the SDN switches and controllers. There are some 

processes start automatically during the bootstrap process without any external input (e.g. 

hosts), for example, the SSED switch discovery process and the legacy switch learning 

process. Thus, during the bootstrap time we can calculate how many packets are in and 

out from the control plane to establish the network before any host is connected to it. The 

experiment is run for 120 seconds, which is approximately enough bootstrap time for the 

discovery of 10 switches and the Wireshark tool is used to measure network traffic in the 

control plane. Gradually, over time, as can be seen in Figure 4.8, the number of Packet_in 

and Packet_out in the control plane by using SSED is increased to reach 8,022 packets.  

That number of packets is being generated because SSED during the bootstrap mode 

generates LLDP packets for management and switch discovery purposes. In addition, it 
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drops all legacy management packets, such as a multicast listener report message in the 

MLD protocol, which is multicast by an IP node to report their interface status to their 

neighbours [85] and a multicast STP, which is used to build loop-free topology in a legacy 

network [84].  

Regarding the traffic from using the legacy learning switch, this is significantly 

greater, rising to 54,653 packets, because it relies on flooding for discovery and on 

management services using MLD and STP. That is, when the time reaches 120 seconds, 

SSED only makes 14.67 % of the overhead (number of packets) on the control plane that 

the legacy learning switch deploys for discovery and management services in the 

bootstrap period and when the network is idle. The idle network statistic is beneficial for 

evaluating the standard calculation that can help administrators find the threshold 

overhead on the control plane, thus potentially allowing for the determination of the 

hardware and software specifications needed for that plane.  

 

4.5.2 Ratio of network traffic to generated traffic: SSED and legacy scheme 

comparison 

In this experiment, we use hybrid topology and increase the number of switches from 

1 to 10 switches. Only one ARP request message is generated from an edge host to the 

 

 

Figure 4.8: Network traffic with SSED compared to the legacy learning switch mechanism 

during the bootstrap and idle network condition when using hybrid topology. 
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edge ARP server, as can be seen in Figure 4.7, where the red circle with an (X) is the 

server and the green one with a (-) is the host. Then, by using the Wireshark tool the ratio 

of network traffic to generation traffic is calculated in both the control and data planes 

under the legacy flooding scheme and the proposed scheme. The main idea is send one 

ARP request packet and to measure how many packets will be generated in these two 

planes to get an ARP reply to the requesting host.  

Regarding the control plane statistics, with an increase in the number of switches in 

the network the number of control message in control plane is approximately still the 

same or just slightly increases when using the SSED proposed model, because the ARP 

reply process needs just one Packet_in as the control message from the server to the 

controller plus a number of Packet_out messages equal to the number of hops for the best 

path between the server and the requesting host. For example, in Figure 4.9 it can be seen 

that no matter whether the network has 6, 7 and 8 switches, the number of control 

messages remains the same, i.e. five control messages, because there is one Packet_in to 

the controller from the server and four Packet_out to install the forwarding rule in the 

switches along the best path from the server to the host. With hybrid topology, sometimes 

the distance stays unchanged between the source (host) and the destination (server) when 

increasing the number of switches in the network, because there are a number of possible 

paths to connect these two entities, which is different to linear topology with only one 

 

 

Figure 4.9: Reduce network traffic in the control plane: comparison of SSED with and 

legacy learning switch mechanism 
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possible path. On the other hand, for the legacy learning switch the network traffic 

increases significantly when the number of switches in the network becomes greater, 

because of the flooding of ARP broadcast packets to reach every switches in the network 

even though some are not on the path for reaching the destination. 

The data plane statistics in Figure 4.10, show that by generating one ARP request 

from an edge host with hybrid topology SSED keeps or uniformly increases (+4 packets 

per new switch) the ratio of packets to handle sending ARP reply packets by the ARP 

server to the host that has made the request (keeping or increasing the ratio depends on 

number of links that is needed to connect the host with the server). In contrast, the legacy 

learning switch increases the ratio practically linearly, because it floods the packet to 

every node in the network. SSED needs just 44.44 % of the number of packets needed by 

the legacy learning switch to deal with 10 switches in order to send back an ARP reply to 

the sender because it benefits from the proactive installed rule in the switches using the 

MTO method to reach quickly the ARP server. In addition, it uses the Dijkstra algorithm 

to find the best path between the server and the host who has made the request.  

 

 

 

Figure 4.10: Network traffic in the data plane: comparison between SSED and the legacy 

learning switch mechanism 
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4.5.3 Effect of retransmission traffic (resources consumption) on the control and 

data planes: comparison between SSED and legacy switches 

To evaluate the effect of retransmitting traffic (that normally occurs in a daily 

network) with SSED, experiments for 10 hosts connected to an edge switch with 10 fixed 

SDN switches in a hybrid topology network is utilised. The hosts generate ARP faulty 

requests in order to obtain the goal of evaluating the effect of retransmitting traffic on 

resources consumption. A failed ARP request refers to not being able to find a requested 

destination’s MAC address in the ARP hash table in the ARP server, which can be 

performed by sending requests to an unreached random destination. As a consequence of 

the failed request, the source starts retransmission of the ARP request multiple times as 

this is the normal behaviour of the Transmission Control Protocol (TCP) [95].  

The main reason for retransmitting is that the source that made the request has not 

received a reply within a specific time period, which could be due to several causes, such 

as network congestion, interface error or buffer overflow. Other reasons for this are that 

the ARP server has not yet registered the destination host in its ARP hash table or the 

server has blocked its address owing to a security issue. Consequently, any ARP request 

asking for that a host’s MAC address will not get a reply and this results in the 

retransmission of the same request from the source. To make the experiment replicate 

daily used network traffic as closely as possible, different ARP request rates are generated 

 

 

Figure 4.11: Effect of the retransmission of traffic in the control plane: comparison between 

SSED and the legacy learning switch mechanism 
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from the 10 hosts at the same time. Regarding control plane evaluation, Figure 4.11 shows 

that with an increasing number of requests there is absolutely no effect on it when using 

SSED, because it proactively gives the responsibility to answer requests to the server that 

uses data plane for the purpose. The server works as a filter for reducing the number of 

requested packets and just passes the valid ones to the controller. This results in reduced 

overhead on the controller and eliminates the possibility of an attack on the controller. In 

contrast, the ratio of traffic using the legacy learning switch increases linearly to reach 

24,000 packets of a  Packet_in and Packet_out form for 4,000 requests in the control 

plane, because it floods every retransmitted request to everywhere in the network. 

In relation to the data plane evaluation (see Figure 4.12), SSED generates 20% of the 

legacy learning switch traffic. That is, it provides a 80% reduction in the consumption of 

network resources in the data plane when the number of failed requests reaches 4,000 

with all hosts working concurrently. In addition, compared with Cisco’s recommendation 

[10], which is that there should be no more than 500 devices in one collision domain, if 

each host is assumed to generate 8 RPS at peak load [53], then from Figure 4.12 the 

legacy architecture with 500 (i.e. 4000/8) hosts generates 36,000 packets in the data plane, 

whilst SSED generates 7,200 .  As a consequence, SSED, with same number of 

packets(i.e 36000) in the data plane of the legacy architecture, can increase the number 

of hosts to 2500, thereby scaling up the number of hosts by 500% when compared to the 

legacy mechanism.  

 

Figure 4.12: Resource consumption during concurrently failed requests in the data plane: 

comparison between SSED and the legacy learning switch mechanism 
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4.5.4 CPU usage in the controller (SSED scalability) 

 

In this experiment, a hybrid topology with 10 switches is connected and N number of 

virtual hosts are created and connected to the network. A fixed request number of a heavy 

user generation rate of 8 ARP requests per second is generated per virtual host with 

random IP addresses for sources and destinations. For this, the system monitor CPU tool 

in Linux is deployed to monitor the CPU usage, the measurement of which before any 

model being applied is 2.9% of core i7 CPU with 3.40 GHz, while it is 3.36% for SSED 

and 4.96 % for the legacy learning switch for the bootstrap communication management 

network. 

As can be seen from Figure 4.13, with a growth in the number of virtual hosts and a 

fixed rate of eight requests per second per host, the average percentage of CPU usage 

under SSED increases slightly from 6.31% to 12.5% for 1 to 500 virtual hosts (at peak 

load), respectively. It can clearly be seen that it reaches approximately a stable state after 

the connection of 50 virtual hosts concurrently owing to SSED’s balanced multithread 

algorithm. This percentage of CPU usage is for handling ARP replies by finding the best 

path and installing rules in switches from the server to the host. However, when using the 

legacy learning switch the increase in (N) leads to an increase CPU usage from 6.42 to 

43.12 for 1 to 500 (peak load host number [10]) virtual hosts, respectively. This is because 

it has to handle many Packets-in and Packets-out per each ARP request owing to the 

flooding scheme as well as the complexity of the algorithm for finding the shortest path 

 

Figure 4.13: Average CPU usage in the controller for SSED and the legacy learning 

switch mechanism 
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to the source.  Next, the results of the second part of the experiments using the same 

constructed testbed, but with linear topology are reported regarding the three experiments 

relating time. 

 

4.5.5  SSED host discovery time and controller latency  

 

In this experiment, with the SSED model, linear topology is used with an increased 

number of switches from 1 to 10 and one host connects to one edge switch, while the 

ARP server connects to another. The host generates an ARP discovery packet, as 

explained in section 4.3, which is entered as Packet_in to the controller, which then 

forwards this to the server. The latency time for the controller to complete the discovery 

packet forwarding process is evaluated and the results can be seen in Figure 4.14. After 

that, the discovery packet will be received by the ARP server, which adds or updates the 

record in host passport table. The time that the discovery packet needs to reach the server 

from the requesting host is evaluated.  

It can be seen from Figure 4.14 that the latency value and discovery host time have 

negligible impact on scalability, i.e. when the number of switches is increased, with the 

average values for these being 5.71 ms and 6.21 ms, respectively.  

 

 

Figure 4.14: Time spent on the host discovery process using SSED 
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This result is because SSED uses the controller as a link between the host and the server 

for the host discovery service, so the number of hops between the host and the sever is 

immaterial. In addition, the time that the host discovery packet spends at links and the 

ARP server is calculated by subtracting the total discovery time from the controller 

latency time, the average being 0.49 ms. This means that the discovery packet needs just 

8.58 % of the time spent in the controller to pass through the links and server, which 

proves that the SDN controller owing to its complex nature (performing multiple jobs at 

the same time) spends more time compared with the distributed services that SSED uses 

to deal with broadcasted packets.  

There are some slight fluctuations in the results, which is firstly because of collisions 

and competition between packets (i.e. OpenFlow negotiation packets and ARP discovery 

packets) using the same links (i.e. links between the controller and source/destination 

switch) at the exact same time. Secondly, the process time inside the controller fluctuates 

depending on the load.   

 

4.5.6 Response time  

 

In this testbed experiment, a linear topology with an increase in the number of 

switches from 1 to 10 and generating one fixed ARP request using the ARPing tool from 

the host connected to an edge switch requests the MAC address for a destination host that 

connects to the network randomly. From Figure 4.15, it is clear that with an increase in 

the number of switches, the ARP response time using SSED increases gradually at 

average of 0.19 ms for each added switch to the network.  

This rate is as a consequence of sending a Packet_out message from the controller to 

the added switch to install the matching rule in order to match and forward the ARP reply 

from the ARP server to the host. By contrast, when using the legacy learning switch the 

growth rate is 3.29 ms on average, when adding a new switch to the path between source 

and destination hosts. This is because each added switch deals in the broadcast phase with 

one Packet_in by sending it to the controller as an ARP request and one Packet_out is 

sent by the controller to instruct the switch to flood that packet to all neighbouring nodes. 

After that, to handle the ARP reply on the way back from the destination host, the added 

switch sends one Packet_in to the controller to look up in the MAC-to-port table the 

source node that has made the request, which in turn, sends one Packet_out in the form 
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of an ARP reply to the requesting host. As a consequence, as can be seen in Figure 4.15, 

the response time practically linearly increases in proportion to the network switch 

scalability. 

Regarding the scalability in relation to this experiment, by using the broadcast 

mechanism the ARP packet during the Request and Reply phases passing 10 switches 

requires 35.57 ms. Whilst SSED with that response time (i.e. 35.57 ms) can pass 

approximately 161 switches (whereas, as can be seen in Figure 4.15, the response time 

for one switch is 4.95 ms and each added switch needs 0.19 ms). As a consequence, SSED 

scales the network approximately 1510% more than the broadcast mechanism. 

 

4.5.7 SSED Performance during different load  

 

The performance and its stability for the proposed model is evaluated by generating 

light, medium, heavy and overloaded traffic from 10 concurrently working hosts. For this 

experiment, 10 fixed switches are connected with a linear topology. There are 10 hosts, 

each being connected to one SDN switch and the ARP server is connected to the fifth 

switch. The different rates of traffic sent concurrently from each host, are 1-4 requests 

per second (RPS) as light traffic users, 5-6 RPS as medium traffic users, 7-8 RPS heavy 

traffic users (at peak load [53]) and 10-12 RPS as overloaded traffic users. Each source 

 

 

Figure 4.15: ARP response time, comparing the proposed SSED model with the legacy 

learning switch mechanism 
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host generates an ARP request for a MAC address for random destinations, each being 

designed to be unique in relation to all other requests from the same host so as to guarantee 

that they are not affected in any way by others’ requests.  

As can be seen Figure 4.16, with a light load traffic of 40 RPS as the total number of 

requests from 10 hosts working at the same time, the proposed model offers a better 

average response time than the legacy learning switch with the values being 16.34 ms and 

23.86 ms, respectively. For a medium load with 6 RPS from each host, SSED also offers 

a better response time, the figures this time being 20.806 ms and 24.481 ms, respectively.  

The same trend occurs for the heavy and overloaded scenarios, lead to the conclusion 

that SSED is efficient in terms of its performance as it well dealing effectively with 

increasing traffic rates. This is mainly because it handles ARP requests with fewer 

Packet_in and Packet_out than the legacy learning switch, which means less traffic is 

transmitted across the network and as a consequence, there is less competition as well as 

congestion at links, which in turn leads to lower response times. However, the average 

response time using the legacy learning switch increases with an increasing number 

requests, whereby each request entered to the switch will generate 1 Packet_in and 1 

Packet_out until reaching the destination through all switches using the broadcast 

mechanism. Subsequently, each reply generates another 1 Packet_in and 1 Packet_out, if 

the switch was chosen as a hop within the shortest return path, otherwise (i.e if the switch 

is not chosen within the return path) the switch deals with just the 1 Packet_in and 1 

 

Figure 4.16: The performance measures according to average ARP response time with 

different request rates from 10 fixed hosts connected to 10 switches 
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Packet_out that were generated during the broadcast phase.  

As can be seen from Figure 4.16, both approaches approximately meet at 8 RPS and 

there is 1 ms difference between them in 10-12 RPS, for two reasons. Firstly, there is the 

use of linear topology, which reduces the detrimental effect of the broadcast mechanism 

and hence, diminishes the response time when using that mechanism. Secondly, SSED, 

by using the ARP server at the middle switch, leads to more competition on that switch 

when increasing the requests and hence, increases the response time 

 

 

4.6 Summary 
 

In this chapter, firstly, the Ethernet network with its current switch features and the 

requirements for designing scalable networks have been discussed. Subsequently, there 

were analyses of the broadcast mechanism, where it was explained that most of Ethernet’s 

drawbacks occur owing to the nature of the usage of broadcast packets. To address these, 

the SSED architecture, design and implementation using several constructed testbed 

experiments with 23 computers to handle broadcasting packets was introduced, in 

particular, with the purpose of overcoming the side effects of broadcasting. The results 

have shown that the proposed model can eliminate broadcast packets from the network, 

providing: a reduction in the consumption of network resources in the data plane by 

27,800 (35,000 - 7,200) packets, a reduction of control packets in the control plane to 

8,022 packets during bootstrap time; less peak overhead on the controller, which prevents 

it experiencing failed requests; a better response time; and more efficient performance. In 

sum, SSED provides better scalability, increasing the capacity of one domain to deal with 

2,500 - 3,076 hosts and 161 switches, when compared with broadcast-based architectures. 
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Chapter 5  Multiple Distributed Subnets using SDN Architecture and Servers  

 

 

Multiple Distributed Subnets using SDN 

Architecture and Servers  

 

5.1   Introduction 
 

Bargain-basement, high speed and plug and play are important features that make 

Ethernet widely utilised in local area networks (LANs), which are the backbone for other 

networks. However, interconnected LANs exhibit several limitations, restricting 

scalability and efficient performance, including the use of router devices between LANs 

and the default gateway mechanism. It would appear that a Software Defined Networking 

(SDN) can help to enhance an Ethernet-based network, in terms of better efficiency and 

scalability. However, it is important not to inherit inferior features from legacy networks 

and instead, develop new architecture, especially when building a large network. That 

new/developed architecture has several requirements to ensure it is compatible (e.g. 

network protocols) with legacy network architecture that will help in the future migration 

from legacy to the SDN network. Firstly, the host side should not be modified by a third 

party program between the host and network protocols so as to prevent compatibility 

issues. Secondly, network transparency so that hosts do not know how the packets will 

be routed to their destinations, thereby delivering better security. Thirdly, there should be 

no new hardware added to the network as this could lead to backward compatibility 

issues. Finally, minimising the number of protocols that use in network will help to reduce 

the complexity. 

Hence, to satisfy all the requirements above and to solve all the listed limitations in 

chapter 3, regarding the use of middlebox devices and the default gateway mechanism, 

as well as to improve network efficiency and scalability using Ethernet technology, 
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Multiple distributed subnets using SDN architecture and Servers to Eliminate Router 

devices and the Default gateway mechanism (MSSERD) is proposed in this chapter. 

MSSERD, firstly, analyses the characteristics of the most important connection packets 

in Ethernet environment, namely, the ARP packets that provide MAC addresses, which 

are essential for Ethernet devices to communicate. Then, a method to connect multiple 

subnets is proposed, which eliminates router devices (either as hardware or software) and 

the default gateway settings completely from the network. In addition, an innovative 

dynamic multiple subnets discovery approach is introduced, which can discover multiple 

distributed SDN-subnets.  

 

5.2 Legacy system description and analytical model formulation 
 

In this section, the current mechanisms for connecting multiple subnets by ARP 

packets using router devices and default gateway settings under legacy and SDN 

architectures are analyzed. In addition, some concepts related to that mechanism are 

covered. 

 

5.2.1 ARP under router based architectures 

The ARP protocol is one of the most important protocols in IP-based Ethernet 

networks, because it performs resolution from IP to MAC addresses in order to connect 

different devices. It can be described as like making a call to setup a channel line between 

two phones, where the ARP component initiates the connection between the source and 

the destination, which is equivalent to the ringing of the destination phone. After the 

metaphorical ring at the destination phone, it answers, which in this case is equivalent to 

an ARP reply generated by the destination and then, communication can occur. The ARP 

having done its job then passes the connection responsibility to the Ethernet protocol to 

continue connecting and transferring different types of packets between the source and 

destination hosts by using layer 2 rules, if they are in the same subnet. However, if the 

two hosts are in different subnets the mechanism is different, because router devices need 

to be used between those subnets to let those hosts be connected and the router continues 

to use layer 3 rules for all future packets between those two hosts. To clarify this idea, 

how the ping process, which contains ARP and ICMP, is performed between two hosts 

across two different subnets is explained.  
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In current network architecture, when the source host (Host1) wants to ping the 

destination host (Host2) in another subnet, there are several packets generated in a legacy 

network, as shown in Figure 5.1 (a). The source host determines whether the target host’s 

IP address in the ARP/Ping command belongs to its same subnet or if it belongs to one 

outside. Host1 does this by finding the network addresses (network ID) for its local IP 

and the destination IP by performing an AND operation for both IPs with the source 

 

 

(a) Routers under legacy architecture 

 

(b) Routers under SDN architecture 

Figure 5.1: Shows generation of different packets to discover the destination MAC address 

between different subnets in legacy and SDN network architectures 
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subnet Mask address [96]. If both network IDs are the same, this means both IPs are in 

the same subnet, otherwise they are in different ones. If the source host discovers that the 

target IP address is in the same subnet, it will just broadcast an ARP request to find the 

local destination MAC address and wait for an ARP reply sent by the destination host to 

provide its MAC address.  

If the target IP address is in a different subnet to the source host, Host1 will, firstly, 

look in its routing table to find the default gateway IP address that has been provided to 

it by the DHCP server or assigned to it through manual setting and if it does not find it, 

the source host will drop the packet. If it does find the gateway, which represents the IP 

address of the internal interface of the router, it will broadcast an ARP request packet to 

discover the default gateway MAC address in its subnet, which appears as the first packet 

① in Figure 5.1 (a). This packet has an IP destination equal to the gateway IP address 

(internal interface address of the router) and destination MAC equal to 

‘00:00:00:00:00:00’. The switch that connected with Host1 receives this packet. Then, in 

turn, each switch in subnet1 continues to broadcast the ARP packet ① until it reaches to 

the router (Router1) that works as default gateway for Subnet1. After that, the Router will 

send back an ARP reply, i.e. packet ②. This pertains to the MAC address, which is sent 

along the shortest path in a unicast concept back to the Host1, which made the request. In 

this way, the router is telling Host1 that “Any types of packets you (Host1) want to send 

it outside our subnet, just send them to me (Router) by using layer2 and I will send it to 

its destination on behalf of you by using layer 3, after which I will send back the reply to 

you when I (Router) get it”.  As a consequence, the legacy system has two rules: 

 

 Legacy Rule1: Host1 will never know the MAC address of the destination host 

(Host2) if they are in different subnets.  

 Legacy Rule2: No ARP packet containing Host1’s MAC address will go outside 

its subnets asking for the MAC addresses of other hosts in other subnets. That is, 

the router in the legacy network will drop any ARP request with an IP destination 

not equal to its IP.  

 

In order to understand how the full ping connection procedure between Host1 and 

Host2 works, the procedure for sending an ICMP packet is described. After Host1 has 

received the MAC address of Router1, it will send an ICMP packet by using the Internet 
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control message protocol, which contains the IP source field equal to Host1’s IP address, 

the IP destination field equal to Host2’s IP address, the MAC source field in the Ethernet 

frame equal to Host1’s MAC address and the destination MAC field in the Ethernet frame 

equal to Router1’s MAC address. The packet is represented in Figure 5.1 by packet ③, 

which goes through the switches by using layer2 rules in the unicast concept to reach 

Router1 in Subnet1. 

Router1 then checks the destination IP in the ICMP packet and looks in its routing 

table to find the matching rule. If it does not find any rule (no matter whether it is set up 

by the static or dynamic concept), it will send the ICMP packet with “unreachable 

destination IP” to host1 [28] in order to prevent it continuing to send another ICMP 

request. However, if the router finds a rule for reaching the next IP hop, it will, firstly, 

check its local ARP cache table and if there is no MAC address for the next hop, then it 

will send an ARP request packet to ask for the next hop’s MAC address, which is packet 

④. After that, a router in subnet2 (Router2) gets an ARP request and it will generate an 

ARP reply with its MAC address and send it back to subnet1, which is packet ⑤. Router1 

in subnet1 will update its ARP table by adding Router2’s MAC address. It then 

encapsulates the ICMP request packet that it received from Host1 in the modified 

Ethernet frame, where the source MAC field equals Rouer1’s external interface MAC 

address, whilst the destination MAC field equals Router2’s external interface MAC 

address. Then it sends the ICMP with the modified Ethernet frame to Router2, which is 

packet ⑥. Router 2 will look in its ARP cache table and if does not find Host2’s MAC 

address, then it broadcasts an ARP request to its local subnet, namely, packet ⑦. The 

destination host receives the ARP request and generates an ARP reply, packet⑧ and 

sends it back with Host2’s IP and MAC addresses in the source fields in the ARP frame, 

with Router2’s internal interface IP and MAC addresses in the destination fields. Packet 

⑧ goes through the switches using the shortest path to reach Router2. 

Router2 will use Host2’s MAC address to encapsulate the ICMP request packet, i.e. 

packet ⑥, that already has been received from Subnet1 in the Ethernet frame with a 

source MAC equal to Router2’s MAC address and a destination MAC equal to Host2’s 

MAC address, namely, packet ⑨, Then, it will be sent to the Host2, which generates an 

ICMP reply packet, packet ⑩, with an IP source field equal to Host2’s own IP address 

and IP destination field equal to Host1’s IP address. Host2 then encapsulates it with the 

Ethernet frame with a source MAC field equal to Host2’s MAC address and a destination 
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MAC field equal to Router2’s internal interface MAC address. Packet⑩ goes through 

the switches in Subnet2 in a unicast concept until it reaches Router2, which then makes 

packet⑪ by encapsulating the ICMP reply packet with a modified Ethernet frame that 

contains Router2’s MAC address in the source MAC field and Router1’s MAC address 

in the destination MAC field and then sends the packet to the Router1. As a consequence 

of this, the legacy system has a third rule: 

 

 Legacy Rule3: Each router must change source MAC address and destination 

MAC address in the Ethernet frame each time it passes packets to another subnet 

or to its own subnet.  

 

Router1, after that, decapsulates the Ethernet frame to check the destination IP in the 

ICMP reply packet. When it realises the destination IP belongs to Host1, it will 

encapsulate the ICMP reply packet in a modified Ethernet frame that contains Host1’s 

MAC address as the destination MAC address and will send packet ⑫ along the shortest 

path in the unicast concept, until it reaches Host1. 

It can be seen that regardless the number of switches in the legacy network, the 

number of different packets that are generated to get the ICMP reply is 12 (6 ARPs and 

6 ICMPs) and the original ICMP packet changes its Ethernet frame 4 times which leads 

to the following equation being derived:  

 

Ndef =Nr*2     (5.1) 

Where, Ndef denotes the number of different Ethernet frames (i.e. the number of 

modifications to the Ethernet frame) for the completed process (1 Request and 1 Reply) 

and Nr is the number of routers along the path. 

It should be noted that the layer2 path between the source and destination needs to 

refresh after a specific time depending on the vender of devices that are performing 

caching. For example, Cisco routers take 4 hours and they do not use entries into the ARP 

table then they will make an ARP requests for the IPs in that entries, whereas for devices 

using Linux and Windows the ARP timeout is 5-20 minutes [97]. Accordingly, the 

equation for driving the number of devices performing caching in legacy architecture, if 

it is assumed that there are just two hosts in different subnets, is equal to: 

Ndc=2 + Nr (5.2) 



69 

 

Where, Ndc denotes the number of devices performing caching and Nr represents the 

number of routers on the path between the source and destination hosts. 

In the example, Ndc=2+2=4 devices and they need to refresh their ARP caching tables 

after each a specific time.  

In SDN architecture, as can be seen from Figure 5.1(b), there is the same procedure 

for legacy architecture and the same principle, whereby it contains SDN controller and 

SDN switches that can be work as normal switches or as an SDN Virtual Router (SVR). 

SDN implements the virtual router inside the controller and chooses one/or more of the 

switches to be routers with virtual IPs for the in and out interfaces. For any packet coming 

to the SVR that it does not have a rule for routing to its destination, then the packet will 

be encapsulated with an OpenFlow protocol frame and sent to the controller to get packet 

information. In addition, any ARP request/reply coming through SVR to the SDN 

controller must go directly to the virtual router module inside in order to update the virtual 

router ARP table. For example, when the SVR in Subnet1 receives the broadcast message 

from Host1 that asks for the default gateway’s MAC address, it forwards that packet to 

the controller in order to cache Host1’s MAC address and generates an ARP Reply 

message with the gateway’s MAC address which is sent to the SVR that directs it back 

to the requesting host (Host1).  

 

5.2.2 Number of packets in router-based SDN architecture  

 

In multiple subnets SDN architecture the parameters that are used to evaluate the 

number of packets in the control plane are number of packets that are exchanged between 

the switches and the controllers (in just the source and destination subnets) plus the 

number of packets exchanged between the routers and controllers (along the subnets’ path 

from the source to destination subnet).  Regarding the number of packets between the 

switches and the controllers, if a switch is in the chosen path between the 

source/destination host and the router, it deals with the controller using 2 packets (1 

Packet_in and 1 Packet_out) in response to an ARP request from the source. In relation 

to the number of packets from the routers to the controllers, the number of subnets (Nsu) 

between the source and the destination affects the calculation, because each router in the 

middle subnets, if it is in the chosen path, broadcasts an ARP discovery request to all 

connected subnets and receives 1 ARP Reply in order to add/modify the entry in its ARP 
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table that lets it uses Ethernet links. Moreover, if the router is in the source/destination 

subnets that enables it to deal with two ARP requests and two ARP replies for one ARP 

request from the source host, as can be seen in Figure 5.1 (b). As a consequence, the 

number of packets in the control plane is a function of the number of switches (Nsw) and 

Nsu, i.e. F(Nsw,Nsu), if it is assumed that each middle subnet has one effective router. 

On the other hand, to evaluate the number of packets in the data plane, the broadcast 

discovery mechanism in a legacy network leads to the parameters that affect multiple 

subnets being distinguished, which is the number of switches in the source and destination 

networks (Nsw), the number of links (NLsw) from those switches (except for 1, the 

incoming port in the broadcast process), the number of subnets(assuming 1 router for 

each) along the path from the source to destination (Nsu) and  the number of links (NLR) 

from those routers (with no exception). As a consequence, the number of packets in the 

data plane in multiple subnets is a function of those parameters, i.e. F(Nsw, NLsw, Nsu, 

NLR). 

 

5.2.3 Switches Vs router concepts 

 

In legacy networks architecture, the connection between the subnets can be built by 

using another middlebox device, which is called a layer3 switch (L3_switch) in addition 

to the router. L3_switch is an intelligent switch with the functions of traditional router: it 

must be assigned an IP address for each interface [98], including the internal default 

gateway address; it can use routing protocol; it has the ability to record routings between 

subnets; a graphic user interface (GUI) is used to configure it; it modifies MAC addresses 

of the Ethernet frame in each hop; and decrements the Time To Live (TTL) in each 

routing packet [28]. As with a router, an L3_switch can be difficult to setup and manage 

in a large distributed network [99] as well as it having the same router limitations. In 

addition, the multi-layer switch, which is another type of middlebox device, is used to 

connect subnets providing low latency and high speed. It uses layers 2 - 4 to make forward 

decisions depending on the MAC address, IP, type of protocol and port number. On other 

hand, the L2_switch is used just inside collision domains (i.e. it cannot be used to connect 

subnets) to forward frames using the destination MAC address.  In subsection (5.3.2), the 

L3_switch will be compared with the standard SDN switch that is used in the proposed 

model. 
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5.2.4 Multiple subnets legacy discovery protocol  

 

Multiple subnets connect with each other to build a network, such as corporate 

networks, which can be centralised or distributed networks, with the latter being more 

scalable. In order to achieve a global view of the network, each router in it should have 

information regarding all the other routers in the network. This global view can be 

achieved either by intervention of the administrators through their knowledge about their 

network design or dynamically by using routing protocols. The global view is needed by 

the administrators to install static routes and by the routers to install dynamic routes inside 

their routing tables. The most well-known routing protocol is Open Shortest Path First 

(OSPF), which is better than static routing or even the Routing Information Protocol (RIP) 

[100]. OSPF has the advantages of loop-free topology and fast convergence time in an 

IP-based network. However, it is a complicated protocol to manage and configure as well 

as being difficult to troubleshoot. In addition, it needs higher processing and storage 

requirements in each router as well as time to configure areas, which is one of its main 

fundamental principles [101].  

 

5.3 MSSERD DESIGN 
 

In order to overcome the limitations and issues relating to legacy multi-subnets 

architecture, others’ proposed mechanisms and architectures in distributed networks as 

well as meeting the requirements stipulated in section 5.1, MSSERD is deigned in this 

section focusing on connecting different subnets to build a large network depending on 

the principles of Ethernet technology without using middlebox devices. MSSERD’s 

framework design involves removing the routers and default gateway settings completely 

from the SDN architecture and using proactive along with reactive behaviours in the 

presence of servers in the network for connecting between sources and destinations in 

different distributed subnets. In addition, MDP protocol is introduced, which is developed 

from LLDP to provide a dynamic flexible mechanism that gives a general view of the 

network. As ARP is the most important protocol in Ethernet network, the focus will be 

on its messages. 

 

 

 



72 

 

5.3.1 MDP design 

 

One of the reason for the complexity of the network is related to the protocols in 

terms of their mechanisms and the number working concurrently, which makes them 

difficult to configure, manage and troubleshot [101].  Owing to LLDP being a well-

known and highly efficiency protocol inside the SDN subnet for discovering its local 

switch, MDP is proposed for the MSSERD architecture, which is based on LLDP, for 

discovering both inside and outside the subnet in order to decrease the number of 

protocols used concurrently in the same network.  Regarding MDP’s design, ease of use 

and dynamic configuration have been taken into account, thus making it a standard 

discovery protocol for an SDN network. MDP is used in distributed SDN subnets to 

discover the whole network’s IPs through an aggregation mechanism, which lets each 

SDN controller in each subnet to have the same general view over the network. This, in 

turn, gives MSSERD the ability to install rules proactively on SDN switches and also 

reactively to changes in subnet circumstances. MDP when compared with legacy 

discovery protocols overcomes their disadvantages and also has its own beneficial 

features, including not needing consumption time from the administrator to undertake 

management and configuration. In addition, it is applied in the SDN controller, so there 

need be no concern about the CPU and memory usage as this controller should be 

powerful computer. Furthermore, it can be scheduled to give the network’s status and 

potential behaviour reports to the administrators at specific times, which makes 

troubleshooting the network easier. It has a significant Dynamic_reaction feature, which 

allows it to dynamically adjust/tune the sending of its multicast/unicast messages in order 

to minimise bandwidth consumption, where MDP defines the discovery_time parameter 

that is adjusted in reaction to the network size and behaviour. For example, the 

discovery_time is affected by network size in that it should be increased when the network 

size increases in order to give sufficient time for far subnets to send their information to 

all other subnets. Specifically, MDP sets the time for discovery_time parameter in each 

subnet depending on its location in the network. Moreover, if the network topology 

reaches a steady state, MDP increases the parameter value so as to reduce number of 

discovery packets and also the particular subnets change from exhibiting MDP multicast 

to MDP unicast behaviour. Another benefit is that, if any type of packet comes from 

neighbouring subnets, then the discovery_time parameter is reset because it gives a sign 
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that the next subnet is still alive. The administrator could also disable the dynamic 

behaviour and control the network manually.  

 

5.3.2 MSSERD’s SDN switches vs legacy Routers/L3_switches 

 

MSSERD architecture has SDN switches, which can use layer 3 and layer 2 in its 

rules [89]. It is important to distinguish a Layer3_switch/router from an SDN switch, 

because both use layer 3, but have different mechanisms and this could be confusing. 

Firstly, the SDN switch in MSSERD does not have IPs for its data plane interfaces nor 

does not need any configuration. In addition, it does not modify MAC addresses of the 

Ethernet frame for passing packets when it is used as juncture to connect its subnet to 

other subnets and simply passes packets the same as inside the subnet. The SDN switch 

that connects its subnet to other subnets is called an Exit_switch and the other SDN 

switches, which are just connected locally inside the subnet are termed Internal_switches, 

so as to distinguish them from each other. It should be noted that each type can change 

into another type at any time by changing the link-connected type (from locally to 

remotely and vice versa) for scalability or recovery purposes, amongst other reasons. 

 

5.3.3 MSSERD general framework advantages/mechanisms 

 

As a router is not used in either hardware or software in MSSERD’s Ethernet 

architecture, this leads to the removal of the three limitations rules defined in subsection 

(5.2.1). In addition, with same network design, the proposed model has the advantage 

over legacy models in that it does not need to define subnets management. That is, 

regarding the routers in legacy architecture, in order to connect to another router in 

another subnet, both of them need to have external IPs which must belong to the same 

subnet that will be defined by using both outer edges IPs of the routers [100]. This subnet 

is different to both subnets’ internal IP addresses and as consequence, when connecting 

two subnets three different subnets are needed in the legacy architecture. However, in 

MSSERD there are no IP interfaces in Exit_switches so it connects to other Exit_switches 

no matter whether they are in the same or different subnets. For example, to connect two 

subnets just two different subnets are needed, thus providing more scalability, flexibility 

and less complexity than with legacy architecture. 
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As explained earlier, ARP is important inside a subnet for translating IP addresses 

into MAC ones.  Regarding MSSERD in this context, having eliminated the legacy 

broadcast mechanism, which is compulsory in legacy network’s design, a mechanism for 

sending ARP packets also outside SDN subnets is introduced in order to get the 

destination MAC address in another subnet in the same network. There should be no 

concern about number of IPs used in the proposed model because, for example, there are 

65,534 different IPs when use class B in the same network. In addition, IP version 6 can 

be utilised, which has plenty of IPs. As consequence, this is an improvement on legacy 

architecture in that it eliminates the need to modify the Ethernet frame at each hop in the 

network, which is time consuming. MSSERD uses both the SDN controllers and servers 

principle to answer ARP requests among different subnets, whereby the controller 

provides the general view of the whole network and installs switching rules proactively 

and reactively between sources/destinations and the servers, whilst the servers provide 

the requesting service, i.e. ARP service [102]. This mechanism of using both servers and 

controllers delivers a loop-free network and removes broadcast concerns outside the 

subnets. This in turn, leads to better performance and less complexity. MSSERD contains 

other mechanisms to perform its role, as follows. 

 

5.3.3.1 ARP servers’ location 

 

MSSERD is proposed as having at least one ARP server in each subnet for a 

distributed network and the servers reply to any ARP requests, whether from their local 

subnet, as in [103], or other subnets in the same network. Server location can be anywhere 

in the subnet depending on the load, for example, connects to a switch that has high 

demanding traffic users to decrease access time or could be put in the network servers’ 

pool, such as in a data centre that supports Network Functions Virtualization (NFV) 

architecture. In addition, by using more than one ARP server in a subnet, this allows for 

load balance and hence, better performance. 

 

5.3.3.2 MSSERD operations mode 

 

The first packet when entering the SDN switch, faces a delay because the switch 

sends it to the controller [103] for the MAC learning process. However, MSSERD uses 
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proactive behaviour to prevent this delay, thereby providing a better response time and 

giving the SDN controller the ability to respond proactively to any change in network 

conditions. MSSERD starts working in bootstrap mode to discover its local and abroad 

subnets, followed by two main different modes, which work concurrently for better 

efficiency. First, there is a proactive mode, which starts working after bootstrap time in 

order to install MSSERD’s rules in the SDN switches (Internal_switches and 

Exit_switches) so as to be ready to forward packets between sources and 

destinations/ARP servers that are located in different/ the same subnets. Second, there is 

the reactive mode, which is triggered when there is a change in network conditions or 

after a specified time. It sends MDP packets to detect any changes and subsequently, 

triggers a proactive mode to install the required rules where necessary. 

 

5.3.3.3 Handling failure 

 

In any network, there are different types of failures that happen as a consequence of 

hardware/software malfunctioning. MSSERD, by focusing on connecting among subnets, 

means that Exit_switch failure is the greatest concern. MSSERD uses the same SDN 

switch element for all switches inside the subnet and so there is no difference between 

the Internal_switches and Exit_switches. In addition, it uses a redundancy link from 

different SDN switches to connect to the same next neighbour subnet. Those two 

parameters give dynamic failure handling, whereby if any Exit_switch has failed then the 

SDN controller will detect it by using the report status port feature from the next 

connected switch, which are available from the Openflow protocol [89]. Then, the SDN 

controller directly changes the working affected switches to use next priority rules, which 

will utilise the other redundant links to connect to the neighbour subnet. On other hand, 

if there is just one link with the next subnet and its Exit_switch has failed, the 

administrator, with the plug and play feature of Ethernet, can easily just plug its link into 

any other Internal_switches, which will be directly detected by the SDN controller as it 

has become an Exit_switch. Consequently, it can be seen this mechanism is completely 

different to the legacy architecture, where it is necessary to change one router with 

another and this consumes time configuring the new router, Figure 5.2 contains examples 

of possible connections to recover failures. 
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Figure 5.2: Examples of possible failure recovery connections among subnets and 

multicast/unicast MDP packets mechanism under MSSERD 

5.3.3.4 Handling discovery 

There are different elements to discovery in an SDN network that give it the ability 

to have a general view of its subnet and other subnets, which are described as follows. 

 

5.3.3.4.1 Local hosts/servers discovery 

 

Each host in each subnet when it joins is assigned an IP dynamically by using DHCP 

or manually. Subsequently, the host generates an ARP probe packets [93], which it sends 

to the SDN controller to register host information, including IP, MAC, Port and switch 

numbers. The controller then sends the same information to all the ARP servers in its 

subnet. If there is no activity from the host for a specified time, the controller will delete 

the host’s entry from its discovery table and then update all the ARP servers to delete it 

too. In each subnet there is at least one ARP server; when one joins the subnet, it connects 

to the SDN controller that leads to the controller registering this server and starting to 
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send requests to it after installing the proactive rules. The SDN controller will check using 

an echo message whether the server is still available after each a specified time and if it 

is not, the controller will remove it and update all the affected switches with the new ARP 

server directions. It should be noted that this discovery mechanism for hosts and servers 

is proposed in [102]. 

 

5.3.3.4.2 Subnet/Switch discovery (join, leave)  

 

First of all, as can be seen in Figure 5.2, each MSSERD controller in each subnet 

joining the network starts to multicast MDP packets until network steady state is reached, 

which depends on how many devices (switches in the local subnet and the number of 

subnets) in the network it needs to discover. In addition, an MDP multicast occurs, if 

there is any change in network conditions, such as adding a port for a switch. Then, the 

MSSERD unicasts MDP packets at specified time intervals, according to the 

Dynamic_reaction feature. These MDP packets are used to discover the local switches 

(as same as LLDP), next neighbour subnets and far subnets in same network.  

If a new switch joins the local subnet, the controller multicasts MDP packets from 

all the output ports in that switch (e.g. S1) involved in its subnet. Then, it receives the 

same MDP packets sent back to it from other switches, which leads to the controller being 

aware that S1 has a direct connection with them. In addition, the MSSERD controller can 

calculate the link-delay between each pair of the direct connection switches to help it to 

find the best path between the sources and destinations among multiple switches in same 

subnet by using the Dijkstra algorithm. After this, MSSERD stops local multicast MDP 

packets and relies on the report status port mechanism to trigger the reactive mode. 

Moreover, if a switch leaves, the controller directly detects this through the OpenFlow 

protocol’s status report. 

If a new neighbour subnet joins the network, the MSSERD controller in it carries its 

own information and sends multicast MDP packets. These packets will be sent by Exit-

switches to the next neighbour subnets that will register that information as next 

neighbour information in the Exit_switches_discovery  table . In addition, it will 

timestamp received MDP packets to use for calculating the Link_delay with neighbours. 

The Exit_switches_discovery table is updated after a specified time, depending on the 
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number of next neighbour subnets and the Dynamic_reaction feature /administrator’s 

decision. 

If a new far subnet joins the network, the MSSERD controller in that subnet will send 

its information to the next subnet, which while filling the Exit_switches_discovery table 

starts to fill a Subnets_discovery table (IPs of the source and destination subnets, subnet 

Mask source and destination, and link_delay). Then, it exchanges this table information 

with its next neighbours in dictionary format, for example subnet1 :{subnet 2:delay_X, 

subnet 3:delay_Y}, which means subnet1 connects separately and directly with subnet2 

and subnet3 by a link delay equal to delay_X and delay_Y, respectively. When the next 

subnet receive the MDP packet it will update its Subnets_discovery table, if there are any 

changes and add its own connections with other subnets as well as sending the new MDP 

packet to next neighbours and so on, in an aggregated way. For example, in Figure 5.2, 

when joining subnet4, after period of time when the network reaches steady state, all the 

subnets’ controllers will send the same MDP packets, which have all the subnets’ 

information i.e. sub4_inf + sub2_inf + sub1_inf+ sub3_inf and has the same 

Subnets_discovery table. If there is no change in the received MDP and in the local 

information, then MSSERD will not multicast MDP to save bandwidth and prevent 

congestion on network and just send unicast messages to neighbouring subnets at the 

specified time to say I’M Alive without change, which uses just the subnet ID.  

On the other hand, if the next neighbour subnets leave the network, the MSSERD 

controller in the neighbouring subnet will detect this by checking the Expire_time field 

in the Exit-switches table, which records the last time it received an MDP 

multicast/unicast packet from that subnet. After Expire_time reaches zero the 

neighbouring subnet controller will send a ping to the controller in that subnet three times 

and await a reply. If no reply arrives, it will delete all of its information from the 

Subnets_discovery table, the Exit_switches_discovery table and all the rules that were 

installed in the Exit_switches to direct packets to it. While if a far subnet leaves, the 

controllers in other subnets will detect this by monitoring the Subnets_discovery table 

and if there is an entry that has subnet information that is not updated after a specified 

time, then that entry will be deleted from the table in every controller and so too, every 

rule which relate to that entry in the switches.  
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5.4 IMPLEMENTATION FOR MSSERD 
 

In this section, MSSERD implementation for SDN networks is covered in detail in 

relation to dynamic discovery and handling ARP packets both within and out of subnets, 

as an extension to Ryu’s OpenFlow controller and by using an Open Virtual Switch 

(OVS). All the requirements set out in section 5.1 are met by MSSERD, and in what 

follows its components are described. 

 

5.4.1 MSSERD’s rules implementation 

 

In order to manage the connection between sources and the destinations locally or 

remotely, two types of switches introduced above, namely, Exit_switches and 

Internal_switches, have two forms of MSSERD rules. These are, proactive rules, called 

Switch_proactive rules that are installed in switches in the proactive mode and reactive 

rules, termed X_packet_L2 rules, which are installed in switches, if they are chosen as 

belonging to the best path during the processing of the ARP component, as described later 

in subsection (5.4.4).  

 

5.4.1.1 Switch_proactive rules    

 

These are used to deal with ARP packets in order to get the destination’s MAC 

address. They are designed to transfer ARP requests/replies inside the same subnet (i.e. 

locally) and among multiple subnets (remotely). There are request rules and reply rules 

according to the different ARP packet types. After bootstrap time, the MSSERD 

controller installs these rules in the Internal_switches and Exit_switches in proactive 

mode. The ARP request rules have the highest priority in the Internal_switches, while 

ARP reply rules do so in Exit_switches. It should be noted that if the subnet has one 

Exit_switch, the Internal_switches need just one ARP request and reply rule per switch 

to connect to the other subnets, because the rules will depend on packet type, i.e. ARP 

type, no matter what the subnets’ IP. To provide a better understanding in relation to how 

these rules are working inside OVS switches, Table 5.1 has been created, which describes 

this in detail and the flowchart of manual packet tracing, as shown in Figure 5.3, traces 

the packets from the OVS point of view. This type of rules appears in Figure 5.4 as  

for clear tracing and hence, better understanding. 
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Table 5.1: MSSERD’s Switch_proactive rules strategies in Exit-switches and Internal_switches 

to forward packets to their destinations locally and remotely 

Rules in Internal_switches 

ARP request received packet ARP reply received packet 

Source 

IP in 

received 

packet 

Destination IP in 

received packet 

Rule 

direction 

 

Source 

IP in 

received 

packet 

Destination 

IP in 

received 

packet 

Rule direction 

 

local local Go to the 

ARP server 

local local If the switch 

connects to an 

ARP server 

Go to the 

controller, 

else use 

x_packet_L2 

rules 

local remote Go to a 

specific 

Exit_switch 

local remote Go to a 

specific 

Exit_switch 

remote local Go to the 

ARP server 

remote local Go to the 

controller 

remote remote [i.e. 

middle subnet 

between source 

(Src.) and 

destination(Dst.) 

subnets] 

Go to a 

specific 

Exit_switch 

remote remote  Go to a 

specific 

Exit_switch 

Rules in Exit_switches 

ARP request received packet ARP reply received packet 

Source 

IP in 

Destination IP in 

received packet 

Rule 

direction 

 

Source 

IP in 

Destination 

IP in 

Rule direction 
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received 

packet 

received 

packet 

received 

packet 

local local Go to the 

ARP server  

local local Go to the 

controller  

local remote Go to a hop 

in next 

subnet 

local remote Go to the 

controller 

remote local Go to the 

ARP server  

remote local Go to the 

controller 

remote remote (i.e. 

middle subnet 

between Src. and 

Dst. subnets) 

Go to a hop 
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Go to 
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Figure 5.3: A flowchart showing the manual tracing of packets from an SDN switch view point; 

It contains steps how switches deal with incoming packets under MSSERD, and the priority of 

MSSERD’s rules 
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5.4.1.2 X_packet_L2 rules  

 

These are rules installed in switches (no matter whether they are Internal_switches or 

Exit_switches) during the ARP reply processing time using an ARP component. This is 

called an X_packet_L2 rule, because it forwards any type of packet (X) between sources 

and destinations located in the same or different subnets by using just layer2 MAC rules. 

It should be noted that the controller will install X_packet_L2 rules after forwarding the 

ARP reply packet to its destination (the host that makes the request), i.e. installed 

X_packet_L2 rules do not affect the ARP response time. For a better understanding of 

the X_packet_L2 rules, it is shown in Figure 5.4 with an arrow . 

 

 

Figure 5.4: MSSERD’s rule types and steps tracing the ARP process between subnet1 and a far 

subnet (subnet3) 
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5.4.2 MSSERD’s bootstrap, proactive and reactive components 

MSSERD contains three different operation modes that are bases on each other, as 

can be seen full detail in the flowchart in Figure 5.5. Firstly, the MSSERD controller 

starts bootstrap mode by creating tables to manage its subnet and discover abroad subnets 

(next neighbouring and far subnets). That is, it creates a set of local topology tables, 

including a Host_information table, Server_information table and a Switch_ discovery  

table, which are dictionary based tables that store all the local subnet information. In 

addition, it establishes an Exit_switches discovery  table, which discovers local switches 

that connect the local subnet to its next neighbour subnets containing: Exit_switch_ID, 

Exit_port_number, Next_neighbour subnets_IP/ID, Link_delay, local timestamp and 

expiry time. Moreover, MSSERD creates a Subnets_ discovery table, which stores far 

subnets information, including: Source_subnet_IP, Source_subnet_Mask, 

Destination_subnet_IP, Destination_ subnet_Mask and Link_ delay. This table is used by 

the MSSERD controller to draw the General_view_topology, which has all the subnets 

around it, whether next or far, which helps the controller to decide which Exit_switch it 

should forward the packet to and then it installs rules in the switches accordingly. 

After creating all these tables, MSSERD  starts the process of filling them up. it 

registers any joining switch, which exchanges with the controller the Openflow 

negotiation messages. Then, the controller multicasts MDP packets to all connected 

switches, such that they can reach both local switches and those switches in the next 

neighbour subnets.  After that, the controller keeps listening for any MDP returned 

packets and uses them to fill the discovery tables, as is explained in relation to MDP 

implementation in subsection (5.4.3). The servers will then be registered in the Server_ 

information table, so that this information can be used during the next steps. 

The proactive mode is established next which pertains to analysing the filled tables 

and installing rules in SDN switches. The controller starts this mode by examining the 

Exit _switch table to make a dictionary (Exit_switch ID): {next neighbour subnet ID: 

link_delay}. In addition, it analyses the Subnets_discovery table to make a dictionary of: 

“Which subnet connects to which subnet with what delay” (i.e. source subnet ID: 

{destination subnet ID: link_delay}). After this, the controller starts to choose switches 

one by one or in parallel by using a multithread concept to find the best path from each 

switch to the ARP server and then installs rules to serve local requests. At the same time, 

it finds the best path from each switch to the Exit_switches to serve abroad requests, 

depending on the dictionaries compiled in the previous steps. The number of rules 
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installed in each switch depends on the number of subnets, however, if there is just one 

Exit_switch in a subnet, then one rule is enough regardless the number of subnets. 

 

Figure 5.5: A flowchart of MSSERD’s operation mode components 
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In is way, there is a rule installed proactively in each switch for each external subnet, no 

matter if it is a far or the next subnet the aim is to make one rule in OVS to connect to 

each set of subnets. It should be noted that if the switch has dual operations, i.e. works as 

Internal _switch whilst at the same time working as Exit_switch, first, the controller 

installs in it the rules for abroad subnets and then, those appropriate for the local subnet.  

After this, the subnets are now ready to answer requests. The MSSERD controller repeats 

multicast MDP, if there is a change in the network conditions or performs unicasts at 

specified times in reactive mode so as to ensure that it stays up-to-date with any changes 

in its subnet status and those of abroad subnets, such as subnet leaves/joins and switch 

leaves/joins.  

 

5.4.3 MDP component implementation  

 

In the MSSERD controller, MDP plays the salient role of allowing it to discover other 

subnets in its network. It starts working during bootstrap time and reactive time in the 

proposed model. It has LLDP abilities plus several others that are not available in that 

protocol. It discovers the next neighbor subnets, far subnets and it sends crucial 

information that help controllers choose the best path, because it can be used to calculate 

cost, including link delay and link capacity. The implementation of MDP contains two 

parts. The first contains a new type-length-value (TLV) class (MSSERD class with TLV 

number 125) and then, two subclasses are added (Local_Subnet_ID and 

All_Pairs_subnets. The Local_Subnet_ID represents the subnet ID, whilst the 

All_Pairs_subnets pertains to a hash table of pairs of connected subnets in the same 

network as well as the link cost. For the second part, an algorithm to discover the local 

subnet, next neighbour subnets and far subnets as can be seen in algorithm 1 is 

implemented.  

To discover the local and next neighbor subnets, the MSSERD controller generates 

MDP packets with just first the subtype (Local_Subnet_ID). Then, it multicasts those 

packets to its local subnet and to the next neighbour subnets. After that, the MSSERD 

controller listens to catch MDP packets as Packets_in. The controller will check whether 

the packet is sent by itself and then it will use it to update the local switch_discovery 

table. If the packet does not belong to itself, it will be used to add /update the 

subnet_discovery table and the controller will identify the switch that entered that packet 
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as an Exit_switch and put its information in the Exit_switches_discovery table. The 

controller will repeat this procedure in a concatenating with a reactive operation mode, if 

there is a change in its subnet conditions.  

On the other hand, to discover far subnets, the MSSERD controller waits for the 

specified time, which must be sufficient for each controller to discover its local subnet’s 

switches and next neighbour subnets. Subsequently, the controller uses the 

Subnet_discovery table to create a dictionary, which contains just its subnet pairs and link 

cost with its next neighbour subnet (i.e my_subnet_id:{next_subnet_id:cost}).  The 

controller then creates MDP packets, especially to help discover far subnets and uses the 

dictionary as the parameter for All_Pairs_subnets, whilst it uses local controller IP as a 

parameter for Local_Subnet_ID. The MDP packets will be unicast over all Exit_switches. 

Each MSSERD controller keeps listening to all MDP packets, if one is from another 

subnet, then the received dictionary is used to update its subnet_discovery table. Then, 

the updated Subnet_discovery table will be used to make a new dictionary and the 

MSSERD controller repeats the procedure to send the new dictionary for all next 

neighbour subnets, as can be seen in algorithm 2. After a period of time all the controllers 

in all the subnets will have the same dictionary and same Subnet_discovery_table.  

 

Algorithm 1 Discovering local and next neighbour subnets 

Input: Local_Subnet_ID 

     

Output: MDP packets with Local_Subnet_ID, 

        Update Switch_discovery table, 

  Update Subnet_discovery table, 

              Update Exit_switch_discovery table.        

START 

declare Local_Subnet_ID  

SET Local_Subnet_ID to specific IP, got automatically from the system 

REPEAT  

     Generate MDP packets with just Local_subnet_ID  

 

Multicast/unicast the packets from each output port in each switch. 

Listening to Packet_in to catch MDP packets. 
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Decapsulating each MDP packet  

Read IP address from each decapsulated packet 

     IF Local_Subnet_ID = (packet_ip AND Mask) then 

             Update Switch_discovery table.  

     ELSE  

Update Subnet_discovery table  

Update Exit_switch_discovery table.  

     END IF 

        

     Wait the specified time or wait for any change in subnet conditions 

UNTIL terminated by the administrator  

 

Algorithm 2 Discovering far subnets 

Input: Local_Subnet_ID 

  Outputs from the first iteration of algorithm 1  

       Discovery time parameter  

Output: MDP packets with Local_dict. and Local_Subnet_ID , 

        Update Switch_discovery table, 

  Update Subnet_discovery table, 

              Update Exit_switch table.        

START after first iteration of algorithm 1  

DECLARE global Local_dict 

Local_dict  CALCULATE pairs of (my_subnet: next_subnet, cost) 

REPEAT  

      Generate MDP packets with Local_subnet_ID and      

All_pairs_subnets(Local_dict.). 

      SEND unicast MDP packets over all Exit_switches  

      LISTEN to Packet_in to catch MDP packets  

      DECAPSULAT each MDP packet  

      READ IP address from each decapsulated packet 

      IF Local_Subnet_ID ≠ (packet_ip AND Mask), then, 

    Update Exit_switch table 
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    Update Subnet_discovery table 

                   Local_dict  CALCULATE pairs of next neighbour subnets 

    Merge dictionary from decapsulated packets with local dictionary 

Local_dict local_dict + Decapsulated_dict 

    DELETE any repeated pairs  

       Else  

  Update Switch_discovery table 

       END IF     

       WAIT the specified time, as defined by the Discovery_time parameter 

UNTIL terminated by the administrator  

 

 

5.4.4 ARP component implementation  

 

In the proposed model, to complete an ARP process, Switch_proactive rules are 

installed in the proactive mode that is supported by the reactive actions of using an ARP 

component. The MSSERD controller contains an ARP component, which deals with ARP 

request and reply messages from both the local and abroad subnets to acquire the 

destination’s MAC address for the requesting host and also to install the Ethernet-

channel/mix channel (it is the path that uses just layer 2/a mix of layer2 and layer3) 

between sources and destinations. The ARP component starts listening to incoming 

packets after bootstrap mode and after the first set of iterations in proactive mode in order 

to detect whether a new Internal_switch or Exit_switch is joining (i.e. by catching packets 

that are not caught by the discovery reactive mode). It then updates the Host_information 

table and installs X-packet_L2 rules. The ARP component can deal with two types of 

ARP request/reply depending on its destination. This could be a Local_ARP 

request/reply, with the destination host in the same subnet of source host or an 

Abroad_ARP request/reply. The latter is defined as an ARP request /reply sent to the next 

neighbor subnet or to a far subnet so as to obtain the destinations’ MAC addresses. To 

clarify the functioning of this component, the example of a host needing to connect to 

another host at a different location is taken (locally, next subnet and far subnet). The full 

details of the connection steps are available in Figure 5.4 and the ARP component 

architecture is provided in the flowchart in Figure 5.6.  
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1)  Firstly, if the source and destination are in same subnet, then the source host (Host1) 

sends an ARP request message with its source IP and MAC addresses in the packet’s 

source IP and MAC fields, respectively. Whilst the destination IP field is equal to the 

destination host’s IP address and the destination MAC field equals the broadcast address 

‘00:00:00:00:00:00’. The switch connected to Host1, (S1), receives this packet and uses 

a Switch_proactive rule that is already installed in proactive mode. The switch 

decapsulates and compares the destination IP in the received packet with network ID field 

in the installed rule. As the IP of the destination host is located within the same subnet ID 

of the local subnet, then the nearest connected switch (S1) will forward this packet to the 

local ARP server using proactive rules. The ARP server then answers with an ARP Reply. 

This packet goes to the MSSERD controller that triggers the ARP component in order to 

find and install the best path among to switches between the ARP server and Host1, which 

subsequently forwards the ARP Reply packet to it using the X_packet_L2 rules.  

 

Figure 5.6: A flowchart of MSSERD’s ARP component 
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2) Secondly, for the destination host (Host2) located in the next neighbour subnet, Host1 

generates an ARP request with the same fields that are generated locally. It should be 

noted that this is completely different to what the host does in a legacy network, for as 

explained before in section 5.2, when a host needs to connect to a destination outside its 

subnet it has to first know the default gateway’s MAC address.  

Hence, the host in legacy architecture initially sends an ARP request with the gateway 

IP and not the host destination’s IP. In the proposed model, if the IP of the destination 

host in the ARP request packet is located outside the subnet (subnet1) (e.g. the destination 

is in the next subnet) and if there is just one EXIT-switch, switch1 (S1) will use the 

Switch_proactive rule to forward this packet to that EXIT-switch (S3). However, if there 

is more than one EXIT_switch, switch1 will look up in its forwarding rules which rule 

matches the destination IP of the packet and then, will forward the packet to the specific 

Exit_switch that leads to subnet2. All Internal_switches between S1 and S3 follow the 

same procedure. MSSERD has already installed in each Exit_switch (if there is more than 

one) the rules by depending on the general view of all the network topology in order to 

forward the ARP request packet to the next hop in the next subnet (subnet2).  

When the ARP request packet reaches Exit_switch (EXT_S_subnet2) in the next 

neighbour subnet (subnet2), the EXT_S_subnet2 forwards the packet to the local ARP 

server using the proactive installed rules along all path from the EXT_S_subnet2 to the 

local ARP server in subnet2. Then, the ARP server looks in its ARP_serving table and 

drops packet if there is no record of such a destination host (Host2) or generates an ARP 

reply packet with an Ethernet frame containing the MAC source field equal to the ARP 

server’s MAC address and the destination MAC field equal to the requesting host MAC 

address (Host1) that made the request. This is different to the legacy architecture 

mechanism, where the destination MAC field equals the default gateway’s MAC address. 

 In addition, in the proposed model the source IP and MAC fields in the ARP frame 

are equal to the IP and MAC addresses for Host2 and the destination IP and MAC fields 

are equal to the IP and MAC addresses for Host1. As a consequence, It can be seen from 

the reply packet frames that in the proposed model there is no difference between the 

connection to outside the subnet or inside the same subnet, which should minimise 

complexity on the host side. Subsequently, the ARP server in subnet2 forwards the reply 

packet to the nearest connected switch (S5). This Internal_switch will use the proactive 

rule to forward the reply packet to a specific Exit_switch (i.e. EXT_S_subnet2), 

depending on the destination IP (Host1). It should be noted that it is not obligatory for 
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subnet2 to use the same Exit_switch (which entered the ARP request) to send back the 

ARP reply, if it has more than one connection with subnet1 using different Exit_switches, 

which leads to more flexibility regarding the recovery and load balance processes.  

The EXT_S_subnet2 will send any ARP reply packet coming to it to the MSSERD 

controller by using middle priority rules of the ARP reply in Exit_switch, see Figure 5.3 

showing the manually traced packet. The controller decapsulates the ARP reply and 

recognises that the destination IP is outside its subnet. Then, it gets the source and 

destination MAC addresses from the ARP reply packet and looks in the host-information 

table to get the Internal_switch and its port that connect to the local requested host 

(Host2). The controller then use this information to install bidirectional layer 2 rules 

(X_packet_L2) in the switches along the path between Host2 and a specific Exit_switch 

(i.e EXT_S_subnet2). For example, the rule in switch (S4) in subnet2 will be “Any packet 

(X) that has a destination MAC address equal to Host2’s MAC address goes to the port 

(P1)”. In addition, it installs X_packet_L2 rules (in the same way as above) in 

EXT_S_subnet2 to exchange any type of future X packets to Host1 and Host2. Then, the 

controller will forward the packet to the subnet1using the Packet_out message of 

Openflow  .  

The Exit_switch in subnet1, after receiving the ARP reply will forward the packet to 

the MSSERD controller in subnet1, which leads to triggering of the ARP component. The 

MSSERD controller will receive the packet as a Packet_in and decapsulate it determine 

whether it is an ARP reply, whether or not it is from a local ARP server, and whether it 

is coming from an authorised Exit_switch (meaning there must be a match between the 

pairs next neighbour subnet and the Exit_switch), for security purposes. The controller 

then checks if the destination IP/ MAC in the ARP packet is going to one of hosts under 

its service, subsequently ascertaining whether the source IP came from another subnet. 

Then, MSSERD will look up the host information table, update it, find the best path and 

install the ARP reply rule as well as the X_packet_L2 rule in each switch along the path 

from the Exit_switch to Host1. Next, the controller will forward the packet to the next 

switch using a Packet_out message. Then, the ARP reply packet goes through all the 

switches using the stored rules until it reaches Host1. As a consequence, the subsequent 

packets between Host1 and Host2 will use layer2. 

 

3) Thirdly, the destination host (Host3) is located in a far subnet (subnet3), with Figure 

5.4 describing in detail the steps to connect between Host1 and Host3. In addition, for the 
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trace the manual trace figure, Figure 5.3, can be used to understand how each switch deals 

with incoming packets and how to forward that packet as well as being utilised to 

understand the sequence of priority of the rules inside each Internal_switch or 

Exit_switch. In this case, the same procedure will be followed as in 2 (i.e. previous point) 

for each source subnet (subnet1) and destination subnet (subnet3). Regarding the middle 

subnet (subnet2), when the Exit_switch receives an ARP request, it uses the proactive 

rule to determine the source and destination IPs, to forward the packet to the next 

neighbour subnet (subnet3).  

This procedure will be repeated in each middle subnet until the ARP request packet 

reaches the destination subnet (subnet3). Then, subnet3 will answer with an ARP Reply 

message from its ARP server to a specific Exit_switch, as describe in 2 and subsequently, 

sends it to the controller, which then forward it to the nearest middle subnet (subnet2). 

After this, the Exit_switch in the middle subnet receives the ARP reply packet, having 

two different mechanisms depending on the requirements, available hardware features 

and administrator decision, i.e. if he/she needs subsequent X packets to forward using 

layer3 or layer2 in his/her subnet if it works as middle subnet. 

 Layer3 usage: the Exit_switch already uses Switch_proactive rules to forward 

ARP reply packets to the next subnet proactively, which prevents such packets 

being sent as Packet_in to the controller in subnet2 and in turn, all subsequent 

X_packets will use the same mechanism. This mechanism has the advantage of 

no overhead in the control plane for all middle subnets between the source and 

destination subnets as well as no rule for each X_packet. This is supported by 

switches’ features currently, because they are processing layer3 with the same 

latency as layer2 [104].  

 Layer2 usage: the Exit_switch sends an ARP reply packet as a Packet_in to the 

controller. The MSSERD controller decapsulates it and uses its information to 

install the X_packet_L2 rules in all affected Internal/Exit switches (i.e. 

EXT_S_subnet2) that will forward the packets to the source subnet (subnet1). 

Moreover, so as to be able to forward any type of packet to Host1 and Host3 in 

the future by using layer2 rules. The controller then passes the packet to the 

EXT_S_subnet2 that will forward it to the next hop in the next neighbour subnet 

(subnet1). 
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If there are multiple middle subnets between the source and destination subnets, all the 

middle subnets follow the previous procedure until the reply reaches the source subnet. 

The Exit_switch in subnet1 is not cognisant of whether the reply came from the next 

neighbour subnet or from a far one. It directly forwards the packet after encapsulating it 

through the Openflow protocol to the controller, which will install the rules along path to 

the Host1 and forward the packet to its destination.  

There are some other decisions that are taken by the MSSERD controller, as can be 

seen in the ARP component flow chart. For example, if the packet coming to the 

controller as Packet_in is an ARP request, the controller by checking the IP field can 

recognise whether a new switch has joined its subnet or an Internal_switch has become 

an Exit_switch. As consequence, this leads to the triggering of the Fast_active signal, 

which is used to interrupt the waiting timer for reactive mode, so as to get it to start 

sending MDP packets to discover what new events have happened in the subnet. In 

addition, the controller uses the ARP request coming with the IP source address equal to 

the IP destination address or IP source equal to zero when discovering the hosts in its 

subnet. 

 

 

5.5 Experimental results 
 

In this section, different types of experiments on authentically built testbed have been 

designed and implemented, with the results demonstrating improved performance and 

efficiency by using the proposed scheme when compared to legacy architecture. Firstly, 

the testbed is built from scratch and it consists of hardware and software parts. The former 

consists of twenty three computers, Ethernet cables with different lengths (1, 2 and 3 

metres), and Ethernet LAN cards with a speed of 1000 Megabits per second. In more 

detail, twenty of the computers have specifications of Core 2 Quad, 2.66 GHz and 2.0 

GiB memory and can be used as SDN controllers, OVS switches, legacy routers or hosts. 

In addition, there are two computers with the specifications of core i7, 3.4 GHz and 3.8 

GiB memory, which are used as powerful SDN controllers when performing load 

experiments. Finally, a Samsung laptop with specifications of core i7, 2.20 GHz and 7.8 

GiB memory is used as a host or ARP server depending on the particular experiment. The 

software part comprises Ubuntu version 14.04, which is installed on all computers and 

updated with all required libraries, OVS and Ryu’s SDN controller, as the network 
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operating system (NOS). In addition, all the SDN switches and SDN controllers use the 

Openflow protocol, which is a well documented protocol and open source platform. The 

logic diagram for 23 PCs connected together can be seen in Figure 5.7 

 

Subnet 1 Subnet 10

Switch Switch

Controller Controller

Linear topology-10 subnets

ARP serverHost 2Host 1
 

Figure 5.7: Logic diagram for built testbed that has 23 computers 

 

To verify the efficient performance of the proposed model with scalability, different 

experimental scenarios were designed and implemented, with comparisons being made 

between the legacy router-based and MSSERD schemes. There are two parts in this 

section, with the first dealing with two subnets, whilst the second deals with multiple 

subnets (i.e. 2-10 subnets). 

The first part has two experiments concerning the response time and reliability during 

loading. A linear topology is utilised with four PCs used as switches, two PCs as legacy 

routers, two hosts, two controllers and one ARP server are used for these particular 

experiments. 

 The first experiment is designed to measure the response time when increasing 

the number of requests per second, for both MSSERD and legacy router-based 

architecture. 

 The second experiment considers the reliability of both architectures. This is 

performed by evaluating the percentage of packet loss when increasing the 

number of requesting load packets.   
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In the second part, three experiments are performed to measure the number of packets in 

the control and data planes, number of Ethernet frame changes as well as the response 

time regarding bootstrap discovery time and rediscovery time in relation to network 

scalability. A linear topology is used comprising ten PCs working as legacy routers or as 

SDN switches, ten PCs used as SDN controllers, two hosts and one ARP server. 

 

 The third experiment pertains to measuring the number of packets in the control 

and data planes, in general and in the legacy routers and Exit_switches, 

specifically, when generating one ping, whilst increasing the number of subnets 

under the traditional router-based scheme and the proposed model scheme. 

 The fourth experiment is undertaken to measure performances in relation to 

network scalability, by increasing the number of subnets and evaluating the 

response time between the source and destination subnets in both legacy and the 

proposed schemes.  

 The fifth experiment is run to measure the subnets’ discovery and re-discovery 

times with the proposed model using the MDP protocol. 

 

5.5.1 Performance with load: comparison between MSSERD and legacy router-

based architecture  

A linear topology with fix two subnets, each having two switches and one legacy 

router and the destination subnet having two hosts (one of them used as ARP server in 

the proposed model), is deployed to evaluate how the response time is affected by load 

on routers in a legacy network and by Exit_switch in the proposed model, after removing 

the routers and default gateway settings. A different load rate, called Load-requests, is 

generated from 10 virtual hosts on the router and Exit switch in the source subnet in the 

legacy and the proposed models, respectively. Then one ping is sent during the load and 

the response time in both architectures is evaluated. The legacy model response time 

statistics, in Figure 5.8, show that when increasing the load on the router in the source 

subnet from 17 Request per Second (RPS) to 100 RPS, the ping response time grows 

slightly from 27.6 ms to 34.6 ms. However, when the load is increasing to 1000, 2000 

and 3333 RPS the response time is significantly increased, reaching 94.2 ms, 125 ms and 

1054 ms, respectively. The reason for this trend is that the router in the destination subnet, 
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when it receives Load-Requests from source subnet, will broadcast an ARP request per 

each one coming from the source subnet in order to discover the destination’s MAC 

address so as to be able to pass a Load_Request packet to it. That broadcast mechanism 

puts load on all the links in the destination subnet, which leads to congestion, especially 

if the destination host does not respond. This leads to the router retransmitting the request 

three times to discover the destination’s MAC address, which in turn, affects the Reply 

packet of the ping request in terms of the response time and this will increase with 

increasing load.  

However, in the proposed model, load has a negligible impact on response time when 

scaling the network, with an average response time of 17.38 ms. That is, there is increased 

scalability inside each subnet such that the number of hosts within can be increased. This 

happens in the proposed system, because the SDN Exit_switch in the destination subnet 

already has an installed proactive rule to switching any Load_Request to the ARP server, 

which in turn either replies or drops the packet, if there is no matching entry. 

 

 

Figure 5.8: Response time during traffic loading: comparison between MSSERD and legacy 

router-based architecture 
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5.5.2 Reliability during loading: comparison between MSSERD and legacy 

router-based architectures 

In this experiment, the reliability has been evaluated using packet loss percentage. 

The topology that is used in this experiment is the same as in previous one and 10 ping 

requests are sent from the source to the destination subnet whilst loading the network 

from 10 virtual hosts with a fix rate 3333 RPS during a specified time to generate different 

numbers of packets. Regarding legacy architecture evaluation, Figure 5.9 shows that with 

a load less than 8000 packets there is no packet loss, while it has 30 % packet loss when 

it is between 8000-11000 and this increases to 100% when the load reaches 15,000 

packets. This occurs because increasing the number of packets with a rate of 3333 RPS 

will make the destination network too busy to answer each request and load occurs on 

both source and destination routers. Moreover, the worst case scenario is when the 

destination router does not reply to the source router, which leads to the latter resending 

the same requests again, because it works on behalf of the source host.  

This results in congestion on the links between both routers, which leads to ICMP 

reply being impeded and hence, the source router sends an unreached destination message 

to the source host [28]. In addition, the destination router before sending the ICMP request 

must send an ARP discovery request to each requested host, which costs approximately 

10.5 ms in this experiment topology without load, which increases with load growth as 

well as increasing number of hops between the router and the destination host. This, in 

turn, puts the router into waiting status until its get the reply from the destination host.  

In contrast, with the proposed model, there is no packet loss with increasing load, 

where one of up to 60,000 packets at a rate of 3,333 RPS was tested, but there is an 

increase in response time, reaching 1,008 ms at that load. MSSERD uses the data plane 

more than the control plane for expected types of packet such as an ARP request, while 

only one ARP_Reply enters the control plane in the destination subnet, for just 

approximately 3.56 ms (without the effect of the number of hops between Exit_switch 

and ARP server/destination host), to get host destination information to install the 

X_packet_L2 rules between the Exit_switch and the destination host, In addition, another 

ARP_Reply enters the control plane in the source subnet to let the controller get the 

source host information to install X_packet _L2 rules and ARP reply rules in all the 

switches to the source host. Another reason for such a trend in MSSERD is that the load 

is divided between the ARP server, which has the responsibility to answer just ARP 

requests and the hosts which have the responsibility to answer ICMP requests. As a 
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consequence, the packets switching in the network is faster than with legacy architecture 

and has greater reliability in terms of driving packets to their destinations. 

 

 

Figure 5.9: Number of packets lost during traffic load: comparison between MSSERD and 

legacy router-based architecture 

5.5.3 Number of packets in the data and control planes: comparison between 

MSSERD and legacy model 

In this experiment, linear topology is used when increasing the number of subnets 

from 2 to 10. The source and destination subnets each have the topology (host-switch-

switch-router) in the legacy architecture, but the routers are removed in the proposed 

architecture and an ARP server is used. The middle subnets contain just one 

router/Exit_switch and a controller per subnet. Only one ping request is sent each time 

from the source to the destination subnets and by using the Wireshark tool all packet 

trajectories in both the control and data planes are recorded across all elements in both 

architectures. 

Regarding the control plane statistics, as can be seen in Figure 5.10, in the legacy 

router-based scheme when increasing the number of subnets from 2 to10, the number of 

control packets is significantly increased from 32 to 96 for several reasons. Firstly, any 

host needing to send a message outside its subnet, must send an ARP request to its default 

gateway (router) that creates 1 Packet_in and 1 Packet_out in the control plane in the 

router section. Secondly, because of the broadcast discovery mechanism in the legacy 
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architecture, each switch in the source and destination subnets, when it first deals with 

the ARP request from a host, makes 4 packets in the controller plane, including 2 for the 

ARP request and 2 for the ARP Reply. Thirdly, the router in each subnet, after discovering 

the IPs for its neighbours’ router, broadcasts ARP requests to all routers asking for their 

MAC addresses that will be needed for modifying the Ethernet frame in each packet going 

out from its subnet. Moreover, routers have to continue broadcasting at specified times to 

keep their MAC tables up-to-date. 

 

 

Figure 5.10: Number of packets in the control and data planes, number of changing Ethernet 

frames as well as the number of ARP packets when scaling network: comparison between 

MSSERD and legacy router-based architecture 

 

 As a consequence, each router in this experiment’s topology deals with 1 ARP 

request and 1 ARP reply. Fourth, each router, after answering ARP requests from other 

routers, starts to generate its ARP requests to those asked to confirm its validation. This 

leads to at least 2 ARP packets being generated in each router and this number increases 

with increasing the number of routers, i.e. in mesh topology the number of broadcasts 
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increases when the number of output ports from router increases. Finally, the router in 

the destination subnet deals with an extra 2 ARP packets and 2 ICMP packets in the 

control plane, whereby after receiving ICMP from the source subnet, the router broadcasts 

an ARP request to discover the destination host’s MAC address and on receiving the ARP 

reply, has to send the ICMP to that destination host.  

On other hand, using the proposed model the packets in the control plane is fixed at 

8 packets, regardless the number of subnets between the source and destination subnets, 

because it has a general subnets view feature and can consequently, install proactive rules 

between the source and destination subnets. Those 8 packets are generated only in the 

source and the destination subnets, i.e. there are no controller packets in middle subnets. 

In more detail, the proposed model involves just sending 1 ARP reply for the Exit_switch 

in the destination subnet and 1 ARP reply in the source subnet to release the hosts 

information in order to install ARP and the X_packet_L2 rules, which totals 6 packets. 

Regarding the data plane statistics, the numbers of ARP and ICMP packets that are 

generated in the legacy architecture increases from 64 to 160 packets, when dealing with 

2 and 10 subnets, respectively, because of the mechanism for discovering the default 

gateways and destination hosts. In contrast, for MSSERD, this figure rise from 40 to 104 

packets for 2 and 10 subnets, respectively owing to the removal of the routers and the use 

of proactive rules. As a consequence, the proposed model consumes 35% less bandwidth 

than the legacy model in the data plane when dealing with 10 subnets. In addition, it can 

be seen from Figure 5.10, that the router generates approximately 3 times as many ARP 

packets than MSSERD when the number of subnet is 10, which, in turn impacts on the 

data plane in the legacy model. 

Finally in this experiment, how many times both architectures are changing the 

Ethernet frame is calculated and it is clear that the legacy model with router devices 

changes from 4 to 20 times to deal with 2 to 10 subnets (i.e. increasing by a rate of 2 for 

each new subnet), because each router must modify the Ethernet frame for each ICMP 

packet by removing the source MAC address and put in its MAC address instead. As 

MSSERD does not modify the Ethernet frame of the ICMP packets that pass from one 

subnet to other, the number of times changing the Ethernet frame is equal to zero.  

It should be noted that regarding all the statistics in this experiment, the worst 

scenarios, especially for legacy architecture when evaluating number of packets are, 

firstly, when a hybrid topology among routers (not linear) is used, as this increases the 

number of output ports from each router, which increases number of packets owing to the 
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broadcast mechanism. Secondly, when increasing the number of hosts in each subnet, for 

each specified time each host sends an ARP request asking for the router’s MAC address 

and if the number of hosts increases then this also increases bandwidth consumption.  

 

5.5.4 Performance with scalability: comparison between the proposed and legacy 

router-based architectures 

In this testbed experiment, there is a linear topology with an increase in the number 

of subnets from 2 to 10 and generating one ARP request using the ARPing tool [105] and 

then generating one ping request using the ping command from the host, which is 

connected to an edge subnet requesting the MAC address for a destination host that 

connects to the subnet on other edge of the network. The Wireshark tool is used to trace 

the ARP and ICMP packets. Firstly, the legacy network is implemented by using the 

topology (host-switch-router) in the source and destination subnets as well as the routers 

in the middle subnets. Then, all the routers that work as default gateways are removed 

and SDN switches as switching devices are used to implement the proposed model.  

From Figure 5.11, it can be seen that the legacy architecture failed to send an ARP 

request with broadcast value ‘ff:ff:ff:ff:ff:ff’ in the Ethernet’s destination MAC address 

field outside the source subnet, which is why there is no line for this in the figure below. 

The reason for this is the legacy network architecture completely depends on the 

broadcast mechanism to discover the local components in each subnet. So, each subnet 

generates a huge amount of broadcast packets that will not be allowed to pass to the next 

subnets and they are dropped by the routers, because passing them will definitely have a 

bad effect on the other subnets, which is compatible with theoretical finding from Legacy 

Rule1 in subsection (5.2.1).  

While in the proposed model the destination MAC’s address is obtained with an 

average ARP response time = 8.71 ms. In addition, the trend with an increase in the 

number of subnets from 2 to 10, is that the ARP response time only slightly increases 

from 8.11 ms to 8.91 ms. The reason for this is that MSSERD has the proactive mode that 

installs general ARP rules in bootstrap time, which can be used by any ARP request to 

get the destination’s MAC address from a different subnet.  

On the other hand, by generating one ping request in legacy network and scaling the 

network, the general trend of the ping response time is to increase from 22.9 ms to 25.5 

ms for 2 and 10 subnets, respectively, with an average of 23.65 ms. In more detail, with 
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legacy architecture, if optimum calculation is assumed, a source host when trying to 

connect to a host in another subnet, firstly, generates ARP request to discover the default 

gateway’s MAC address (internal router’s MAC address), which approximately 

practically costs 8 ms (for topology router-switch-host) and about 6.5 ms will be spent 

when the router in the destination subnet discovers the MAC address for destination host 

using the same topology. So, regardless of the number of subnets in the middle between 

the source and destination subnets and regardless of the time cost in/between the routers, 

at least one ping requires 14.5 ms with the legacy router architecture. The proposed model 

is 39.45% (i.e. (8.78-14.5)/14.5*100%) and 22.06% faster than the legacy model when 

dealing with 2 and 10 subnets (all the experimental subnets), respectively. In addition, 

according to the experimental calculation in Figure 5.11, the proposed model, on average, 

is 2.36 times faster than the legacy one. This is because MSSERD avoids using the 

broadcast legacy mechanism (used by legacy architecture to get next routers’ MAC 

addresses) between routers, which costs in legacy scheme 2.4 ms as well as removing the 

router devices will eliminate the time taken to pass packets and multiple changing of the 

Ethernet frames (which costs in legacy scheme 0.08 ms for each incoming/outcoming 

packet per router). 

In contrast, MSSERD installs proactive rules that send ARP packets with a quick 

response time. In addition, the controllers in the proposed framework are designed in a 

way as to experience little latency to response to an ARP reply packet. Moreover, the 

SDN Exit_switches in all the middle subnets use proactively installed IP_to_physical port 

rules to switch packets to their destination.  Furthermore, one of the reason for the 

proposed system being faster than the legacy one is because latency in the latter is greater 

than the SDN switches in the proposed model architecture. Regarding which, when both 

switches deal with an ARP request the latency will be 0.1 ms in the proposed switches as 

compared with 2 ms in the legacy switches because the latter send ARP request packets 

to the controller to register the source MAC’s address, which costs time. 

There are some slight fluctuations in the legacy results, which is because of collisions 

and competition to use the same link exactly at the same time. One reason for these 

occurring is owing to each router in each subnet, during the bootstrap and after each 

specified period of time, generating broadcast ARP packets to all its neighbouring routers 

in order to keep its ARP table up-to-date with their MAC addresses. Regarding the 

scalability evaluations from this experiment, by using the Excel trend tool, it emerges that  

MSSERD with 25.5 ms can pass about 52 subnets, whilst for legacy this figure is 10, 
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which means MSSERD scales up the network by 524% in terms of subnets, when 

compared to the legacy router mechanism. 

 

 

Figure 5.11: Ping and ARP response times whilst scaling the network: comparison between 

MSSERD and legacy router-based architecture 

5.5.5 Bootstrap discovery and rediscovery time 

In this experiment, the bootstrap discovery time and rediscovery time in the SDN 

multi-subnets architecture is evaluated using the proposed model. The linear topology is 

used with an increasing number of subnets from 2 to 10 and the discovery time interval 

for MDP is set at 2 secs, with all the subnets working concurrently. The discovery time 

in this experiment can be defined as the time spent by all the subnets to discover all other 

subnets’ information that are in same network, fill the subnet_discovery table for all 

subnets and to install proactive rules in the SDN switches. The bootstrap time is the time 

taken by any system from the moment of starting to work until it reaches steady state. In 

this experiment, this is arrived at when all the subnets have a general view of all the other 

subnets i.e all have the same subnet_discovery table.  

As can be seen in Figure 5.12, there are three bootstrap discovery time zones 

depending on their values, whereby zone1 contains (2,3,4) subnets with an average 

discovery time of 7.92 ms, zone2 contains (5,6,7,8) subnets with an average of 10 ms and 

zone3 has (9,10) subnets, with an average of 14.32 ms. Accordingly, when the number of 

subnets is increasing the bootstrap discovery time is also increasing, because every subnet  
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Figure 5.12: Bootstrap discovery and rediscovery times whilst scaling the network 

 

spends time on the boot process until they start sending or receiving MDP discovery 

packets. As a consequence, when the number of subnets increases the total boot time 

spent by all also definitely increases.  

In addition, the rediscovery time is evaluated using the proposed model, which can 

be defined as the time need by all subnets to detect adding/deleting one or more subnets 

to/from the network and this is evaluated after the finish of bootstrap time. In the 

rediscovery experiment, a new subnet is added or an existing one is deleted from the 

network and the time taken to detect those events is evaluated for all subnets. A subnet  

is inserted/deleted from one edge of the linear topology and record the rediscovery time 

to update the subnet discovery table on the other edge, as this is the worst time. As can 

be seen from Figure 5.12, the general rediscovery time values are less than the bootstrap 

discovery time, because all subnets during the rediscovery process are already running 

and each subnet already has reached its steady state.  

There are three main zones in the rediscovery process that match the zones from the 

bootstrap discovery process, such that zone1 has (2,3,4) subnets with an average of 3.87 



106 

 

ms, zone2 contains (5,6,7,8) subnets with an average of 6.8 ms and zone3 has (9,10) 

subnets, with an average of 11.94 ms. It should be noted that the results in the same zone 

regarding the two aspects of time, shown in Figure 5.12, change slightly because all the 

subnets work concurrently. The discovery and rediscovery times in zone3 are different 

by approximately 4 secs than those in zone2, because when there is an increase in the 

number of subnets in linear topology the discovery packets generated by last subnet need 

to make all the subnets to reach the first subnet. This leads to an increase in 

discovery/rediscovery times with scaling of subnets. In addition, the size of the MDP 

packet increases only during the multicast phase when there is an increase in the number 

of subnets, which leads to an increase of latency time for transferring/dealing with it In 

this experiment the MDP is configured to continue multicast after bootstrap so as to get 

the worst case scenario owing to collisions.  

 

 

5.6 Summary 
 

In this chapter, legacy router-based network architecture and default gateway 

mechanism used to connect LAN-based networks have been analysed. Subsequently, 

meeting all the requirements and overcoming the limitations of the legacy router-based 

mechanism, the MSSERD design and implementation were introduced for handling ARP 

and general IP packets, supported by dynamic discovery of the whole network through 

the proposed MDP protocol. Through building an actual testbed and implementing 

several experiments, comprehensive results have shown that MSSERD enhances 

scalability in terms of the number of subnets up to 52 when compared to the legacy 

architecture. In addition, it improves the efficiency significantly, especially with high 

load, by reducing the overhead in the control and data planes, improving performance 2.3 

times over legacy mechanisms, enhancing reliability without packet loss and by reducing 

complexity. 
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Chapter 6  Open-Level Control plane architecture 

 

 

Open-Level Control plane architecture  

 

 

6.1 Introduction 
 

Scalability of networks is a real issue in current network architecture [71] owing to 

the rapid increase in the traffic of hosts, for such as video on demand as well as the 

growing number of end devices, in particular, in relation to development of the Internet 

of Things (IoT) technology [106]. In order to design an architecture/mechanism that can 

scale the network into a large one, whilst concurrently enhancing network performance, 

the following requirements should be taken into account:  

 

 The new architecture/mechanism needs to support SDN’s powerful feature, i.e. 

proactivity, which leads to enhancement of the response time and load balance 

among the network resources. That is, the general view of network is the 

fundamental requirement to apply proactive behaviour in an SDN for traffic 

manipulation [107]. As the network general view relies on the discovery process, 

this leads to consideration of the process as an essential one that is sensitive to the 

time factor. Accordingly, the discovery packets should avoid the congestion plane 

(i.e. the data plane) as much as possible; 

 No new hardware (e.g. middleboxes) should be added to the network and no new 

software should be added to the host or switch sides as this could lead to 

downward compatibility problems; 

 Standard protocols should be used to support interoperability and openness [29], 

regarding which, [20] fails to support this point; 
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 The number of protocols used for the discovery process should be as few as 

possible so as to avoid inconsistency, complexity and latency as a consequence of 

their concurrent operation; 

 There needs to be support for transparency, which means users can see the system 

as a single one [29];  

 The complexity between the intra and inter-domains should be decreased as much 

as possible by using the same/consistent discovery protocols. Some other designs 

fail to apply this, such as in [20].  

 

No previous study (see chapter 3 regarding scalability limitation owing to the use of 

the aggregation distributed mechanism in distributed architectures) has efficiently solved 

the scalability issue nor has completely taken into account the fundamental requirements 

set out above, which is the motivation behind the presenting of this chapter. We propose 

an Open-Levels Control plane architecture (OLC) to provide better scalability in an SDN 

network. OLC, firstly, analyses a well–known distributed mechanism, namely, the 

distributed aggregation mechanism, which is essential for performing the discovery 

process in traditional and SDN architectures. Then, novel architecture for the control 

plane is put forward, which defines open levels (i.e. multi-levels) of this plane with a 

distributed-centralized concept as well as defining the SDN switches between the control 

levels. In addition, an innovative dynamic discovery mechanism is introduced, which can 

discover multiple subnets and networks. In sum, OLC introduces full architecture and 

mechanisms for discovering intra and inter-domains.  

 

6.2 Description of the distributed control plane architecture and 

analytical model formulation 
 

In this section, we describe the distributed aggregation mechanism by analysing 

discovery packets in fully distributed architecture under both the current and SDN 

architectures. In addition, the mathematical formulation for this mechanism is calculated 

at the end of this section. 
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6.2.1 Distributed control plane architecture  

 

In an SDN network that covers a large area, distributed subnets interconnect each 

other, with each subnet having its own switches and controller. The internal switch 

forwards packets within the same subnet, while the edge switches work as middlebox 

devices (e.g. routers) to forward packets outside/inside their subnets.  The controller 

controls every packet in its subnet depending on its policy as well as exchanging its 

subnet’s information with other subnets in the same distributed-based network, which is 

why this is called a distributed control plane. This type of network normally uses the data 

plane bus to transfer discovery packets through the edge devices, such as in [20].  

 

6.2.2 Connectivity of distributed control plane  

 

In order to make connections among subnets in same SDN network, the edge devices, 

such as routers/Exit_switches must exchange their information with their neighbors. In 

this architecture, the controller has the main script and the routing table (in the case of 

using a router as an edge device, then it is called virtual router [18]). The rules inside each 

edge device can be installed in two ways. Firstly, manually by the administrator, where 

he/she has to know each neighbor’s information (IP address and subnet mask) in order to 

install a static route to it. Secondly, this can be done dynamically by using a routing 

protocol (e.g. OSPF, RIP or MDP), where each controller has the routing protocol’s script 

and exchanges advertisement packets at specified times with its neighbors.  

After the specified discovery time each controller has an understanding of the whole 

network topology and installs rules in the edge devices (e.g. virtual routers) to pass 

packets to outside the subnet. If the virtual router is used as an edge device then it needs 

to refresh its connection with its neighbors by exchanging ARP packets after the specified 

time in order to keep the ARP table in each router updated [97], because it depends on 

the default gateway mechanism. Whilst if the Exit_switch is used as an edge device then 

this omits the use of ARP packets and there is no need to for refreshment as the 

Exit_switch mechanism relies on the proactive behaviour of the SDN controller through 

the availability of the general view of the network. 
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6.2.3 Aggregation discovery mechanism to exchange network discovery 

information  

 

The aggregation mechanism is used in fully distributed subnets to discover the whole 

network’s IPs and to gather statistics [20] in order for each subnet to have a consistent 

general network view. As a consequence, this gives SDN the powerful ability to install 

 

 

Figure 6.1: Shows the discovery phases when applying the aggregation 

mechanism in fully distributed architecture  

(Note 1: in each phase the process on link happens before the result inside the subnets) 

(Note 2: for the figure to be not fully packed we eliminate repeated discovery messages, 

however in practice there is a message on each port from each subnet in each phase) 
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rules proactively and reactively in SDN switches for better performance. Regarding the 

aggregation mechanism, I theoretically evaluate the number of phases that are needed by 

the network in order to let each controller in each subnet have the general view of its 

entirety. As can be seen in the example topology in Figure 6.1 (a), each controller in each 

subnet starts the first round by sending multicast discovery protocol’s packets to all its 

neighbours, which is called phase1 of the discovery process. It should be noted the 

number in the pink shape reflects the subnet number with all its discovery information 

involving its routing and topology gathered from its neighbor subnets [31].  

As consequence of the results from phase 1, each controller just has knowledge about 

its next neighbors and puts this information in the neighbors’ tables as well as putting the 

network topology in the topology table. As a result of phase 1, Subnet1 just has 

information about subnets 2 and 4, while Subnet2 just has information about subnets 1, 4 

and 5. In phase 2, the subnets will start the second round of multicasting, as can be seen 

in Figure 6.1 (b). In this round, each controller will be used as a bridge to exchange the 

information among its undirected connected neighbors. In this case, the information will 

go one subnet further than in phase 1. As a result of phase 2, the topology and neighbors’ 

tables will be updated, for example Subnet1 has new information regarding subnet5 while 

Subnet5 has new information regarding subnets 1, 3 and 4 (satisfied). Continuing to phase 

3, the tables will be updated and the discovery packets will continue multicasting to next 

neighbours, which leads to the discovery information going two subnets further than in 

phase 1 as can be seen in Figure 6.1(c). Finally, after finishing the fourth phase, all the 

controllers will have the appropriate information regarding all the subnets’ topology 

tables, as can be seen in Figure 6.1(d). 

As a result of using the distributed aggregation mechanism in traditional/SDN 

architectures the number of phases is equal to the best path between the furthest edges of 

network (i.e. furthest subnets), as in Equation 6.1.  

 

Nop = Bpfes        (6.1) 

Where, Nop denotes the number of phases and Bpfes is the best path between the furthest 

subnets. 

Regarding the discovery process latency, the highest controller latency refers to the 

time needed by the controller to multicast discovery packets, receive discovery packets 

and to store/retrieve information to/from the discovery tables. As the subnets work 

concurrently, highest controller latency is equal approximately to the latency of the 
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slowest controller. Whilst the latency in each phase is equal to the highest controller 

latency plus the highest link latency , as in Equation 6.2.  

 

Lp = Hcl + Hll            (6.2) 

Where, Lp denotes the latency in each phase, Hcl is the latency of the slowest controller 

and Hll is highest link latency, which represents the slowest link in the network between 

subnets. 

Accordingly, the discovery time needed each specified time (T) is approximately 

equal to the number of phases multiplied by the latency of each phase, as in Equation 6.3. 

 

Dt = Nop * Lp            (6.3) Where Dt = discovery time 

The number of packets generated in the network to complete the discovery process 

for one phase is equal to the summation of the number of out links from each subnet, as 

in Equation 6.4. 

 

           NpDp1 = ∑ (
𝑁𝑠

𝑛=1
  Nol )n  (6.4)  

Where, NpDp1 is the number of packets generated in the network to complete the discovery 

process for one phase, Nol is the number of links from each subnet and Ns represents the 

number of subnets. 

While the number of packets to complete the full discovery process is equal to the 

number of phases multiplied by the number of packets required to complete one phase, 

as in Equation 6.5. 

 

       NpDpF = Nop * NpDp1          (6.5) 

Where NpDpF represents the number of packets to complete the full discovery process. 

As can be seen from the equations, for a large network this requires many phases in 

relation to Bpfes (Equation 6.1) and also an extensive number of packets in each phase, 

which leads to consumption of data plane bandwidth, an increase in the requirements of 

the control plane [20] and longer discovery/rediscovery time.  
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6.3 OLC design 
 

The OLC model is designed in this section, where a general architecture in order to 

enhance the discovery subnets/networks mechanisms in large Ethernet SDN networks is 

proposed. In addition, the dynamic discovery hierarchal protocol (DHP) for a multi-layer 

control plane is proposed to provide a general view of whole network, which supports 

SDN performing proactive behaviour. We focus on the control plane in intra and inter 

domains, where the data planes are already connected. 

 

6.3.1 OLC units 

 

OLC model contains several units for completing the purposes that it has been 

designed for, as can be seen in Figure 6.2. These units work with a multithread concept 

aimed at fast response and distributed loads on the cores of the CPUs. The Received Unit 

receives discovery packets from the same level, level minus 1 (level-1) and level plus 1 

(level+1) controllers, subsequently sending the messages to the Analysis and Calculation 

Unit that has connections with all the discovery tables. This unit will obtain, analyze and 

perform calculations on the received information to fill the discovery tables, including 

the Neighbors_topology and All_topology. Then, it sends the information to the Send 

Unit, which has two subunits, DHP1 and DHP2, which were assigned their names from 

the dynamic discovery hierarchal protocol (DHP) proposed in this chapter.  This unit 

takes its information from the discovery tables and sends discovery messages into the 

same/different level controllers, as is explained later in this section. 

 

 

Figure 6.2: OLC units in a single controller 
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6.3.2 General network architecture under OLC 

 

When a network is scaled up, important requirements are a fast discovery time during 

bootstrap time and a fast rediscovery time for any change in the network states, such as 

add/remove the link between two subnets/networks. That is, the latency of the discovery 

time is an important factor when scaling the network, whereby if this time is low, new 

subnets/networks can be added and hence, the network scaled up. In order to achieve the 

best performance with fast discovery/rediscovery times, we believe that the centralized 

architecture should be combined with the distributed one. 

The proposed model involves dividing the scale concept for an SDN network into 

vertical and horizontal scales, where the former represents the scale of the control plane, 

whilst the latter pertains to that of the data plane. The ability to scale the control plane 

leads to scaling of the data plane, because it enhances the discovery time. As a 

consequence, we believe we have developed the best discovery architecture, for it 

combines both distributed and centralized architectures, which introduces an open-level 

distributed-centralized control plane architecture in an SDN network, as can be seen in 

Figure 6.3. 

 

Figure 6.3: Overall OLC architecture 
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The vertical process in the figure pertains to the scaling up of the control plane. 

Regarding which, level 1 is the first level in the chain and contains distributed SDN 

controllers, each responsible for at least one subnet, whilst the second level contains the 

centralized SDN controllers. The proposed model uses SDN switches between each 

vertical neighbour level to give more flexibility and for recovery purposes. In order to 

scale the network up to a large one, such as a Metropolitan Area Network (MAN)/ Wide 

Area Network (WAN), the controllers in the last level of each network (i.e. level M) will 

represent distributed controllers for the level 1 controllers of the core network. The 

controllers keep connecting in a hierarchical way until those in level n are reached, which 

represent the top of the pyramid for all zones. The core of a network’s control plane could 

start from level 3 or above depending on the size of network and the decision of the 

administrator.  

On other hand, horizontally, each zone could represent a campus/enterprise/small city 

that connects to its neighboring zones using the data plane. By using this architecture, we 

can continue to link zones until cover a very large area, such as a country/group of cities. 

From the global perspective, we can imagine dividing the world into areas, with each 

containing one/more zones have one/more head controller(s) at the edge that can be 

connected in a distributed manner to exchange information. In addition, we could build 

data plane’s core in the same way as that of the control plane, whereby there are SDN 

switches connected each other to exchange data among different networks. 

 

6.3.3 OLC Discovery Mechanism  

 

As the OLC model can be scaled up to support a very large area, such as a country or 

even the world, there are two discovery views, with the first being with regards to the 

same network (intra-domains), while the other relates to a large network (inter- domains).  

 

6.3.3.1 Within the same network (intra-domain) 

 

The type of discovery we propose in this chapter involves a hierarchal mechanism 

with M open level controllers in the intra-domains (Figure 6.4 shows two levels of 

controllers as an example). In order to perform it, the OLC model involves deploying a 

dynamic discovery hierarchical protocol (DHP), which is developed from the LLDP 
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protocol. As aforementioned, this contains two elements, specifically, a distributed one 

(DHP1) in the controller’s DHP1 subunit and a centralized one (DHP2) in its DHP2 

subunit. The hierarchical discovery mechanism starts from the controllers in the subnets. 

Firstly, each controller in each subnet in bootstrap time will create a Neighbors_topology 

table. which has the fields: Neighbors_ID, Timestamps_of_packets, which are use to 

calculate links’ latencies with neighbors and hence, identify the best paths, 

Edge_switch_ID, which is used to identify a subnet’s edge switch and the 

Edge_switch_port, identifying which port is going to which subnet.  

As can be seen in Figure 6.4 (a), in each subnet the controller in level 1 during phase 

1 multicasts its ID and timestamp of packet to the neighbors using one DHP1 message, 

while there are no messages being sent to the level 2 controller. Each controller will 

receive DHP1 messages from its neighbors, which it adds to the Neighbors_topology 

table. The controller will perform multicasting after a specified time or if there is a change 

 

Figure 6.4: Example of the OLC discovery mechanism inside one network (i.e. intra-domain) 

containing six subnets with two levels of controllers 

(P = discovery message containing route information calculated by a centralized controller for all 

subnets in dictionary format, i.e. Sub.x can go to Sub.y through Sub.z). 
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in network conditions. Secondly, the level 1 controllers will send DHP2 messages from 

the DHP2 subunit, which has some of the information that is in the Neighbors_topology 

table (i.e. Neighbors ID, link latency and Internal_subnet latency) in dictionary style, to 

the centralized controller in level 2, as seen in Figure 6.4 (b).  

The centralized controller in bootstrap time creates an All_topology table, which has 

following fields: Source_ID, Destination_ID, Link_latency and Internal_latency. The 

centralized controller will combine all received DHP2 messages and using the Dijkstra 

algorithm will find the best paths between each pair of subnets and then, will fill the 

All_topology table. This controller will send back DHP2 messages which contain just the 

crucial information to each related subnet required to install rules for reaching the 

destination subnets.  

It should be noted the DHP2’s messages are different from each other, i.e. each is 

unique for each subnet in order to avoid sending information to unrelated one. The 

messages will be in dictionary format, i.e. net_X  {net_Y: net_Z}, which means if 

subnet/network X wants to connect to subnet/network Y, it should go through 

subnet/network Z. The controller in level 1 will save this information in the 

All_view_discovery table that has been created in all controllers at all levels in bootstrap 

time. As a consequence, the controllers in level 1 will have a general view of the whole 

network. Then, the level 1 controller installs rules proactively in its switches to each 

destination subnet in its network relying on Edge_switch_ID and Edge_switch_port fields 

in the Neighbors_topology table. 

Regarding the number of phases (Nop) in the OLC discovery mechanism, if we 

assume there are two levels of controllers in the intra-domain architecture, in order to 

compare our architecture with the aggregation distributed mechanism in section 6.2, each 

controller deals with one phase in the data plane and one in the control plane. 

Accordingly, there are two phases no matter how many subnets are in the network, as in 

Equation 6.6.  

 

Nop = 2     (6.6) where Nop= number of phases 

Regarding the discovery time, this is needed after each specified time (T) and 

approximately equals the latency of the one phase from Equation 6.2, plus the Highest 

level 1 controller latency when sending/receiving DHP2 messages (multiplied by 2), plus 

the maximum latency of the centralized Links, which connect level 1 to level 2 controllers 

(there and back),  plus the latency of the centralize controller (Lcc), as in Equation 6.7.  
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Dt = Lp +2 LcL + Lcc + Hcl       (6.7) 

Where, Dt denotes the discovery time, Lp is the latency of one phase, LcL is the latency of 

the centralised links, Lcc is the latency of the centralised controller and Hcl is the highest 

level 1 controller latency. 

While the number of packets generated in the network to complete the full discovery 

process is equal to the sum of the number of links from each subnet and the number of 

links from level 1 to level 2 (i.e. number of subnets, if each subnet connects with one 

controller in level 2), as in Equation 6.8. 

 

NpDpF =∑ (
𝑁𝑠

𝑛=1
 Nol)n + Ns  (6.8)    

Where, NpDpF represents the number of packets generated in the network to complete the 

full discovery process, Nol is the number of links from each subnet and Ns is Number of 

subnets 

 

6.3.3.2 In the multiple networks (inter-domain) 

 

The OLC model provides the same mechanism as inside the network (i.e. intra-

domain) to connect multiple networks in order to cover a large area, where each controller 

in the last level of each network will represent its network by using Network Address 

Translation (NAT) [108]. In addition, it will be seen in a distributed manner in relation to 

other controllers in the last level from other networks, as can be seen in Figure 6.5. 

Each intra-domain network will have an SDN-switch(es), which connect(s) directly to 

the controller in the last level of that network. That switch belongs to the data plane and 

is used to send information using DHP1 messages to the neighbor networks that are in 

different domains after applying the NAT mechanism.  Whereas the DHP1 discovery 

messages will contain the Public_network_ID field, which represent the public IPs for 

that domain and Timestamp field to evaluate the link latency between two neighbor inter-

domains. After receiving DHP1 messages, the relevant controller will send DHP2 

messages to a one level up controller (e.g. level 3) that will perform path calculation 

among the inter-domain networks and send back this information to the related network 

in a dictionary style. For example, Network_X{Network_Y: Network_Z}, which means 

that if network X wants to connect to network Y, it should connect first to Network Z. 
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That information will be saved in the All_view_discovery table. The same OLC 

mechanism is applied when there are (n) levels of controllers covering a very large area. 

 

6.3.4 Location of the controllers 

 

The OLC offers a flexible architecture for fulfilling different purposes. For example, 

if it is used on a campus/in an enterprise with long distances between departments then 

the level 1 controllers will be located near to the subnets, especially if there are many 

users, in order to reduce discovery/rediscovery time. While if it is used in a data center 

network, the level 1 controller can be located in the controllers’ pool near to the last level 

of controllers in that network (e.g. level 2’s controllers). In addition, the other controllers 

that represent the core network could belong to the same or different providers and could 

be located near to its serving zones.  

 

 

 

Figure 6.5: Open-levels OLC intra and inter domains 

 

 

Subnet 
1

Subnet 
2

Subnet 
3

Subnet 
4

Subnet 
5

Subnet 
6

Level 1_distributed 
control plane_intra-

domain 

Level M control plane 
centralized for the 
intra-domain and 
distributed for the 

inter-domains

Level N control plane 
_core network

Subnet 
2

Subnet 
3

Subnet 
1

Zone 1 Zone 2 Zone W

Hierarchical core 
network

Level 1_control 
plane_core network

 Controller Z



120 

 

6.3.5 Reacting when the network fails  

 

There are different types of failure can happen in any network that could lead to the 

whole network grinding to a halt. OLC take different actions to overcome these failures 

and their consequences as follows.   

 

6.3.5.1 Handling level 1 controller failure 

 

OLC uses the standard master-slave mechanism offered by the Openflow protocol 

[89]. With this mechanism, the level x+1 controller works as a slave controller for the 

level x controllers (i.e. masters), where if any master controller related to a subnet fails, 

then the slave controller will take the responsibility of controlling that subnet.  

 

6.3.5.2 Handling levels 2 to n controller failure  

 

If a centralized controller in levels 2 to n fails, OLC provides a recovery feature by 

using the SDN switches in the control plane such that two or more controllers in the same 

level are connected to the same switch, so if the master fails the slave can serve the 

network. In addition, by using the same mechanism the load balance can be achieved 

among different controllers in same level, if they are serving the same zone/area. 

 

6.3.5.3 Handling failed links  

 

In the OLC architecture, more than one SDN switch could be used in the same level 

of the control plane to provide dependent links for recovery purposes. In addition, these 

links can also be used for load balancing purposes during peak control signals load. 

 

6.3.6  Handling subnet/network discovery (join, leave) 

 

Since SDN has to complete its function as a proactive installer of rules in devices 

along the path between the sources and destinations, it needs a dynamic fast subnet 

discovery mechanism to give it a general view of all subnet information. In addition, it 
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should have a fast rediscovery time for covering any changes in the network, such as a 

new subnet joining or one leaving.  

If a new subnet joins the network, the level 1 controllers in that subnet will start 

multicasting to all linked neighbor subnets, whilst simultaneously receiving DHP1s from 

them and then sending a DHP2 to the centralized controller in level+1 in order to get back 

the related general view. If a subnet leaves the network, the centralized controller will 

detect this through periodically monitoring the Still_alive field in the 

neighbors_discovery table. As a consequence of no activity from a subnet being for a 

specified time, a 0 will put in the Still_alive field. The centralized controller will check 

that field before send back the DHP2 to the relevant level 1’s controller. If the Boolean 

value in that field is equal to 1, the DHP2 will contain the related subnet information, 

whilst if it is 0 the centralized controller will delete that subnet from the evaluation. 

Through the same mechanism, the controllers in the core network can detect the join and 

leave network in inter-domain networks by monitoring the activity of the edge controllers 

in them. 

 

6.4 Implementation of OLC 
 

In this section, we explain our OLC implementation for an open-level control plane 

in SDN networks in detail in relation to dynamic discovery in order to provide general 

view for single and multiple SDN networks covering a large area, as an addition to Ryu’s 

[94] controller using an OpenVswitch (OVS) [91]. All the requirements set out in section 

6.1 are met by OLC, which implements the DHP, thereby providing the controllers with 

a general view of all destination subnets/networks. It has been developed from the LLDP 

protocol, with DHP being the new feature. While the LLDP standard protocol just 

discovers the SDN switches inside one subnet, our proposal has the ability to discover all 

the subnets in the same network (i.e. intra-domain network), whilst also discovering other 

networks in different areas (i.e. inter-domain networks). To do so, the DHP has two parts 

as follows.  

 

6.4.1 Implementation of the DHP distributed part in the DHP1 subunit 

 

This part of the protocol is located in any level of controllers in the OLC architecture 

that are connected to their same level neighbor controllers using SDN switches, being 



122 

 

called the distributed part of the DHP protocol (DHP1). For example, during the bootstrap 

time the level 1 controllers will use this part of the DHP protocol in order to carry its own 

information to all neighbor controllers in different subnets in a distributed manner. 

Concurrently, so as to know which SDN switch connects the subnet to the other subnets, 

the controller monitors all the local switches using Packet_in messages.  

If the Packet_in message is a DHP1 message and has an ID different to the local 

subnet’s controller ID, then OLC will register the SDN switch which enters that DHP1 

as an edge switch and put Switch_ID, Switch_port, Source_subnet_ID and the Timestamp 

of the message in the Neighbors_Discovery table. In order to implement the DHP1 piece, 

we define in the DHP protocol a new type-length-value (TLV) with number 124 class and 

two subclasses named Type_of_DHP and Subnet_ID. Whilst The Type_of_DHP is equal 

to 0 for discovery messages sent at the same level, the value of the Subnet_ID subclass 

can be calculated by performing an AND operation between the subnet IP and subnet 

Mask. Subsequently, the OLC model will create DHP1 messages and multicast them to 

all neighbors in unicast/multicast manner. As a consequence, the DHP helps the 

destination controller to know to which source controller it is connected with. Each 

controller that connects to its same level neighbor controller using an SDN switch has to 

use the DHP1 piece (e.g. level 1 controller). It will repeat this listening and sending after 

the specified time or reverts to reactive mode when there are changes in subnet states, 

such as adding a new edge switch. We implement algorithm 1 to show how these steps 

are carried out in the OLC model. 

 

Algorithm 1. Distributed discovery for neighbors’ subnets/networks in the same 

level (e.g. level 1)  

Input: Local_IP , Local_Mask, level_of_contoller, Network_public_IP, Public Mask 

Output: DHP1 packets with Local_Subnet_ID/Public_network_ID, Timestamp, 

               Updating Neighbors_Discovery table      

1: START 

2: Declare General_ID Timestamp, Type_of_DHP 

3: Get controller IP , Mask and Level_of_contoller from the system configuration 

4: IF controller IP = Network_public_IP then  # use NAT 

5:         General_ID  Calculate (Network_public_IPs AND Public Mask) 

6: ELSE 
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7:         General_ID  Calculate (Subnet_IP AND subnet_Mask) 

8: END IF 

9: Type_of_DHP 0        #To send DHP1s to the same level controllers 

10: REPEAT  

11:      Generate DHP1 packets with General_ID and Type_of_DHP 

12:  Multicast/unicast the packets from each output port in each switch 

13:      Listening to Packet_in to catch DHP1 packets 

14:      Decapsulating each DHP1 packet  

15:      Read Message_General_ID, Type_of_DHP from each decapsulated packet 

16:       IF Message_General_ID ≠ General_ID AND Type_of_DHP = 0 then # Means 

the message came from a neighbor in the same 

level 

17:                   Update Neighbors_Discovery table   

18:      END IF   

19:      Wait the specified time or wait for any change in subnet conditions in reactive 

manner 

20: UNTIL terminated by the administrator  

 

 

6.4.2 Implementation of the DHP centralized part in the DHP2 subunit 

 

The centralized part (DHP2) located in the controllers in level 2 and core controllers 

(levels 3 to n). There are two roles that can be performed using this piece of the protocol 

depending on the sent packet direction. The DHP2 subunit sends discovery packets to the 

controller one level up in order to calculate the best routes and then sends back the 

calculated information to the level -1 controllers so as to get a full view of other 

subnets/networks for proactive SDN behavior. The Type_of_DHP in DHP2 packets has 

the value 1, if the packet is sent up to level+1 and -1, if sent down to level-1.  

A new subclass (net_inf.) adds to the DHP protocol in part 2. which has 

subnet/network information in a dictionary style (net_X:{net_Y:delay_Z}). Another 

subclass (Internal_latency) is added, which stores the internal latency for the 

subnets/networks that help in evaluating the best paths. Then, the controller in level+1 

will collect all DHP2 packets from all level-1 controllers and waits for a specified time 
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to let all join and send their information to it. After this, the controller in level+1 uses the 

Dijkstra algorithm to evaluate the best paths from each subnet/network to others 

depending on the Internal_latency field and delay between the subnets/networks. Then, it 

will save this information in dictionary format and send it with two types of DHP2 

packets, the first of which having Type_of_DHP equal +1 for a one level up controller in 

order to inform the core network about the network information. While the second type, 

with value -1, are sent to all controllers in level-1, which will save them in the 

All_view_discovery table.  

The centralized controllers will repeat this procedure individually according to 

changes in network/subnet states. The full details for the centralized part can be seen in 

algorithm 2.  

 

Algorithm 2. Centralized discovery for the whole subnets/networks (level-1 and 

level+1) 

Input: Local_IP, Local Mask, Level_of_contoller, Neighbors_Discovery table, 

DHP2 messages from level-1, Network_public_IPs, Public Mask 

 

Output: DHP2 packets to level+1 and level-1 

              Update All_topology and All_view_discovery tables      

1: START 

2: Declare General_ID, Type_of_DHP 

3: Get Controller IP, Mask and Level_of_contoller from the system configuration 

4: IF Controller IP = Network_public_IP then # use NAT 

5:         General_ID  Calculate (Network_public_IPs AND Public Mask) 

6: ELSE 

7:         General_ID  Calculate (Subnet_IP AND subnet_Mask) 

8: END IF 

9: Type_of_DHP  +1 or -1  

10: REPEAT  

////////////////////////////////////start send DHP2 one level up 

11:       IF    Level_of_controller = 1 then 

12:             Generate DHP2 packet with (General_ID, Type_of_DHP, Inf. from 

Neighbors_discovery table) 
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13:       ELSE    #means all other levels 

14:              Generate DHP2 packet with (General_ID, Type_of_DHP, Inf. from 

All_topology table) 

15:      END IF 

16:      Unicast the packet to the level+1 centralized controller. 

////////////////////////////////////////////////////////////End of send one level up 

////////////////////////////////Start listening to catch DHP2 from up and down level  

17:      Listening to a specified port to catch DHP2 packet from level+1(back), -1 

18:      Decapsulating each DHP2 packet  

19:      Read Message_General_ID, Type_of_DHP from each decapsulated packet 

20:      IF Message_General_ID ≠ General_ID AND Type_of_DHP = +1 then # 

means the message came from a level+1 controller 

21:                   Update All_view_discovery table   

22:                   IF  Level_of_controller ≠ (1 or 2), then #2 because we use NAT, 1 

because there is no level 0 ///this is specific to the core network 

23:                              Generate DHP2 packet with (Local_Subnet_ID, Type_of_DHP, 

Inf. from All_view_discovery) 

24:                              Unicast generated packet to the level (-1) controllers.                   

 

25:                 END IF   

26:      ELSE IF Message_General_ID ≠ General_ID AND Type_of_DHP = -1 then   

                                                                      # Means the message came from level-1 

controller 

27:                    Wait specified time # to collect all tables from level-1 controllers  

28:                    Analysis tables           

29:                    Apply Dijkstra algorithm to find best paths 

30:                     Generate DHP2 packet with (General_ID, Type_of_DHP, Inf. from 

All_topology table to level+1 and All_view_discovery to 

level-1) 

31:                    Unicast generated packet to the level (+1 and -1) controllers                   

32:       END IF   

33:       Wait the specified time or wait for any change in any subnet/network’s status 

in a reactive manner  
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34: UNTIL terminated by the administrator  

 

 

 

6.5 Experimental results 
 

In this section, an extensive number of testbed experiments are performed in four 

scenarios, with the results being presented to show the effectiveness of our proposed 

model. In the experiments, open source SDN Ryu is used as an OpenFlow controller and 

OVS as an OpenFlow switch. Both software are installed under Ubuntu 14.04 on 22 

computers, with two of these PCs having the specifications of core i7, 3.4 GHz and 3.8 

GiB memory, whilst the other 20 have specifications of Core 2 Quad, 2.66 GHz and 2.0 
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                   Figure 6.6: Logical diagram of built testbed with 22 computers 
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GiB memory. The connections between computers are made using Ethernet cables of 

different lengths of 1, 2 and 3 meters, with LAN cards of 1,000 Megabits per second 

being used in each computer; the logic diagram of the testbed environment can be seen 

in Figure 6.6. 

The OLC components are implemented on Ryu. In order to approve the proposed 

model’s performance and its suitability for large Ethernet networks four different 

scenarios are performed, all of them using linear topology because they rely on the 

number of hops. In the OLC experiments, two levels of controllers are used while in the 

fully distributed architectures one level is deployed. Each sub-experiment (i.e. result) is 

repeated five times and the average is taken, with the total number of runs of the testbed 

being 200 [i.e. 4 experiments*10 sub-experiments (i.e. results)*5 times. The four 

experimental scenarios are designed as follows: 

 

 The first scenario is performed to measure the initial system discovery time for 

verifying the scalability and performance of OLC compared with fully distributed 

control plane architectures; 

 

 The second scenario is run to measure the rediscovery time during no load on the 

network under both OLC and fully distributed control plane architectures; 

 

 The third scenario is designed to evaluate the rediscovery time under load for both 

OLC and fully distributed control plane architectures; 

 

 The fourth scenario is performed by increasing the number of subnets with the 

aim of evaluating the number of packets that are generated as a consequence in 

the data plane. 
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6.5.1 Initial system discovery time: comparison between OLC and fully 

distributed control plane architectures  

Each system, when run from the shutdown state, takes time to reach steady state, 

called the boot time or bootstrap time. When connecting multiple subnets/networks it is 

important to measure this time for configuring the devices of the network and knowing 

when a steady state has been reached, such that services can be offered to the customers. 

A linear topology is used with an increasing number of subnets from 2 to 10, each having 

one SDN controller and one SDN switch. This experiment is deployed to evaluate the 

bootstrap discovery time under fully distributed control plane SDN architecture and the 

proposed open-level control plane SDN architecture. All the controllers and the switches 

are timed to work concurrently and we record the discovery time needed by each subnet 

to have a general view of the whole network. The worst (i.e. highest) time taken is usually 

by the edge subnet in the linear topology.  

The fully distributed model discovery time statistics provided in Figure 6.7, show 

that when increasing the number of subnets from 2 to 10, the discovery time increases 

from 6.13 secs to 14.55 secs, which means it increases by 8.42 secs and the average is 

10.27 secs. These experimental results are almost identical to the theoretical findings in 

Equation 6.3 (e.g. when the traditional architecture deals with 8 subnets, the bootstrap 

 

  

Figure 6.7: Bootstrap discovery time under the OLC and fully distributed aggregation 

mechanisms 
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discovery time is 10.01 secs theoretically and it is 10.52 secs experimentally). This trend 

of results occurs because each controller in each subnet needs to send multiple discovery 

packets during multiple phases through the network data plane which consumes time, as 

explained in detail in section 6.2. In addition, the phases are also overlapping with each 

other, which leads to the generation of more packets in the same link from both sides. As 

a result, there is congestion and an accompanying increase the time that needed to pass 

the information of each subnet to the neighbor subnets.  

However, under the OLC model the discovery time only increases from 3.70 secs to 

6.40 secs when the number of subnets is increase from 2 to 10 subnets. Moreover, the 

average bootstrap discovery time using OLC is 4.6 secs, which is nearly the same as the 

theoretical findings in Equation 6.7 (i.e. 4.8 secs). This, in turn, means the OLC discovery 

mechanism can discover a network that contains 2 to 10 subnets approximately 55.2% 

faster than the fully distributed aggregation mechanism. 

The OLC model has the ability to discover at this speed, because it has multi-level 

control plane architecture, which leads to the allocation of a different control plane for 

different discovery phases. Specifically, the next neighbors are discovered within the first 

phase, which in this experiment have been allocated to the level1 controllers, while the 

other phase is allocated to the level2 controllers, which have centralized architecture. As 

a consequence, the network under the OLC model can scale to 32 subnets within the same 

discovery time (14.55 secs) that is needed by fully distributed discovery architecture for 

discovering 10 subnets, the equation for this calculation is the number of subnets*average 

change in discovery time (which pertains to how much time is needed to add a new 

subnet) + first state time = 14.55 secs  number of subnets*0.337+ 3.70 = 14.55 secs  

32 subnets. This means that OLC scales the network 3.2 times more than the fully 

distributed discovery architecture.  

 

6.5.2 Rediscovery time without load: comparison between OLC and fully 

distributed control plane architectures  

In this experiment, linear topology is used and the time needed for rediscovery is 

calculated, firstly, to detect a new event (e.g. add a new subnet to the edge of the network) 

and secondly, to distribute that new information to the whole network’s subnets in order 

to update their switching tables. This experiment is deployed under fully distributed 

control plane SDN architecture and OLC architecture, as can be seen in Figure 6.8.  
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Regarding the statistics of the fully distributed architecture, it can be seen that when 

increasing the number of subnets from 2 to 10, the rediscovery time will increase by 9.23 

secs with two different leaps (leap to 6.26 secs from 4.12 secs and to 11.11 secs from 7.3 

secs). The rediscovery time in the fully distributed architecture has this trend because 

when adding a new subnet to the edge of the linear topology, the rediscovery time that is 

needed by furthest subnets will be impacted by the number of phases (Nop) to get the 

new added subnet’s information multiple by the Latency of each phase (LP), as described 

in Equation 6.3 in section 6.2. As a consequence, we can expect more delay when we 

scale the network. The trend of leaps because the discovery protocol between five and 

eight subnets will increase the size of discovery packets and repeat this every four added 

subnets.  

Regarding the statistics of the network under OLC, the rediscovery time is slightly 

increased from 3.7 secs to 5.34 secs, i.e. by 1.64 secs and with one small leap from 2.1 

secs to 3.7 secs.   This is because the level1 controllers just perform one distributed phase 

with their neighbor subnets, which has the most impact on the rediscovery time, then the 

remaining time is consumed by level2’s controllers to multicast/unicast the switching 

tables to all the subnets. In addition, because OLC uses separated open-level control 

planes there will be no congestion on data plane links, which enhances the rediscovery 

 

Figure 6.8: Rediscovery time for network events during no load on the network under 

the OLC and fully distributed aggregation mechanisms 
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time and this is opposite to the behavior of the fully distributed architecture. In addition, 

in terms of scaling up the number of subnets in relation to rediscovery time, the OLC can 

scale up the number of subnets by 313% when compared to fully distributed architecture. 

  

 

6.5.3 The efficiency during load: comparison between OLC and fully distributed 

control plane architectures 

The efficiency and effectiveness of the OLC model during different load rates are 

presented in this experiment, where the rediscovery time has been evaluated during a 

range of (200-33,333,333) requests per seconds (RPS). Three fix subnets are connected 

together using a linear topology and then we generate loads from 20 virtual hosts on the 

link between subnets 2 and 3 in order to make congestion on that link. Subsequently, a 

new subnet is added to the third subnet and the time needed by all the other subnets to 

discover that event is recorded.  

Regarding the fully distributed architecture evaluation, Figure 6.9 shows that with an 

increase in the load from 200 to 222,222 RPS the rediscovery time is increased 

significantly from 20.78 secs to 80.07 secs. After that, it fluctuates with an average of 

70.5 secs for loads between 333,333-13,333,333 RPS and then rises notably to reach 101 

secs for 33,333,333 RPS. This trend occurs because the increase in the number of requests 

per second on the link between the second and third switch leads to more collisions and 

competition to use that link, which results in more congestion that impedes the discovery 

packets passing link and hence, causes a delay in rediscovery time.  

In contrast, under the same circumstances, the OLC provides efficiency during 

different load rates, offering approximately a steady rediscovery time with an average of 

4.34 secs. The reason behind this is that just one phase needs to be performed on the 

congested link in the data plane, which means that only one packet from each connected 

subnet passing that link is enough to let all the other subnets know about any new events.    

In addition, the centralized controller plays a big role in terms of multicasting/unicasting 

any changes so as to update the whole network. As a consequence, when comparing the 

averages of both models the proposed model has 93.5 % greater efficiency enhancement 

than the full distributed architecture by reducing the response time.  
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6.5.4 Data plane bandwidth consumption: comparison between the OLC and 

fully distributed control plane architectures 

The bandwidth consumption from the discovery process is evaluated using the 

number of discovery phases and number of discovery packets, which are generated on 

the data plane to provide all the subnets a general view of the whole network. A linear 

topology is used whilst increasing the number of subnets from 2 to 10 and the Wireshark 

tool is used to evaluate the number of discovery packets and how many phases are needed 

to complete one discovery process. 

Regarding the discovery process statistics under distributed architecture, as can be 

seen in Figure 6.10, when increasing in the number of subnets from two to 10 the number 

of phases is increased linearly from one to nine phases, which is identical with the 

theoretical finding in section 6.2, where this is equal to the best path between the furthest 

apart subnets.  

As a consequence of using the linear topology, the number of phases is equal to the 

number of subnets minus 1. In addition, the number of discovery packets in the distributed 

architecture generated in the data plane increases exponentially from two to 162 packets. 

This is because approximately the same number of packets are generated per each phase 

 

 

Figure 6.9: Models’ efficiency during load 
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in the network in order to complete the whole discovery process. This, in turn, leads to 

more congestion on the links, which increases when the network is scaled up.  

On other hand, the OLC model generates just one fix phase in the data plane without 

any effect due an increase in the number of subnets. This is because it relies on a separated 

open-level control plane architecture, where the centralized controller performs the 

second phase discovery of the network. Regarding the number of discovery packets in 

the data plane, this increases by a rate of two for every new subnet added to the network. 

This is because every new subnet sends and receives one discovery packet with its 

neighbour in linear topology, if it is at the edge of the network. As a consequence of all 

of the above, in this experiment, the OLC model, on average, reduces bandwidth 

consumption by about 84% more than the fully distributed discovery architecture. As the 

data plane is an important part of the network for transferring these data among the 

subnets, it is essential to decrease the load on that plane [76], which can be achieved by 

using the proposed model. In addition, in terms of increasing the number of subnets in 

 

 

Figure 6.10: Number of discovery packets and phases generated under the OLC and fully 

distributed aggregation mechanisms 
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relation to the number of packets in data plane, OLC can scale it by 820% when compared 

to the fully distributed architecture. 

 

 

6.6 Summary 
 

In this chapter, the limitations of current distributed architectures and aggregation 

discovery mechanisms which are used to provide a network general view have been 

analysed. Subsequently, SDN based OLC architecture has been introduced and 

implemented to provide a general view discovery process taking into account all the 

fundamental requirements. By implementing an actual testbed and after an extensive set 

of experiments, the results have demonstrated that OLC offers a reduction in the number 

of discovery packets in the data plane to the average of 10 packets, 5.67 (10.27-4.6) secs 

faster discovery time and scaling up the number of subnets in an SDN network 3.2 times 

more than with the traditional distributed architecture and mechanism. Moreover, it 

provides an approximately steady rediscovery time of 4.34 secs even with a very high 

load. 
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Chapter 7 Conclusions, Impact and F uture wor k 

 

 

Conclusions, Impact and Future 

work 

 

 

This chapter contains three parts, firstly, the main findings are presented and the 

conclusions to the whole thesis are provided. The second explains the potential impact of 

the study outcomes, while the last part considers other developments as well as containing 

suggestions in relation to future work. 

 

7.1 Conclusions 
 

In this thesis, scalability has been defined and different metrics for measuring it have 

been reviewed. In addition, a series of proposals have been made throughout the 

contributions chapters that have covered the enhancing of network scalability, starting 

with the smallest network unit, i.e. a LAN, and then regarding the biggest, i.e. an inter-

domain network.  This involved analyzing the legacy network designs, architectures, 

mechanisms and protocols to find their limitations that hinder scaling up of networks. 

Then, others' work has been studied to identify the gaps that have prevented them from 

solve the scalability issue efficiently and hence, why their models have not been officially 

used.  

When delivering the contributions of this study, a balance between scalability and 

other important network factors, including reliability, security, complexity, performance 

and efficiency has been central to the process. The findings from this thesis lead to the 

conclusion these contributions are very promising. The salient outcomes in terms 

percentage improvements delivered by the proposed procedures over legacy architectures 

and mechanisms are summarized in the following.  

 Enhancements provided in chapter 4: After thorough analysis of the broadcast 

mechanism and its limitations regarding network scalability, the SSED model was 
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proposed, thereby providing several contributions to the field. The main 

conclusions after applying this model to an actual testbed are that it can: eliminate 

broadcast packets from the network completely; provide a reduction in the 

consumption of network resources in the data plane by 27800 packets; reduce 

control packets in the control plane to 8,022 during bootstrap time; reduce peak 

overhead on the controller, thus preventing failed requests; enhance controller 

security; offer better response time; and provide more efficient performance. 

Moreover, it can provide better scalability such that it scales up the number of 

hosts to 2500-3076 hosts and the number of switches to 161 switches when 

compared with the legacy broadcast-based architectures. 

 

 Enhancements delivered in chapter 5: As a consequence of highlighting how the 

middlebox devices (e.g. routers) are one of the causes of restricting networks 

(which contains multi-subnets) from scaling up, the router device and its default 

gateway mechanism were analyzed in depth. MSSERD has been proposed in 

multi-subnet distributed architectures to overcome router and default gateway 

mechanism limitations and enhance network scalability. Through building an 

actual testbed and implementing several experiments, comprehensive results have 

shown that MSSERD enhances scalability in terms of the number of subnets up 

to 52 subnets when compared to the legacy architecture. In addition, it improves 

the efficiency significantly, especially with high load, by reducing the overhead 

in the control and data planes through reducing bandwidth consumption over 

legacy mechanisms. In addition, it improves performance by 2.3 times, enhances 

reliability by providing 0% packet loss when dealing with 60,000 packets with 

rate 3333 RPS and reduces complexity when compared to legacy mechanisms by 

removing several of the network’s manual configurations. 

 

 Enhancements delivered from chapter 6: The third reason for restricted network 

scalability, i.e. the discovery aggregation mechanism, has been investigated in 

detail. The OLC model has been introduced, which contains open-level control 

plane architecture to use in intra and inter domains as well as the DHP discovery 

protocol which has the fastest discovery mechanism to the best of this researcher’s 

knowledge. By implementing an actual testbed and after an extensive set of 
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experiments, the results have demonstrated that OLC offers a reduction in the 

number of discovery packets in the data plane to the average of 10 packets, 5.67 

secs faster discovery time and scaling up of the number of subnets in an SDN 

network to 31 - 82 subnets over the traditional distributed architecture and 

mechanism. Moreover, it provides an approximately steady rediscovery time of 

4.34 secs even with a very high load. 

 

 

7.2 Future work 
 

The results after applying a series of proposals in this thesis are encouraging and the 

models are promising. However, these accomplishments should be developed further to 

meet future changes and requirements; hopefully the models in this study will be 

officially used. This thesis opens the road to several other developments and here, some 

suggestions for future work are put forward.  

 

7.2.1 Short term future work 

The following developments, enhancements and suggestions need to be considered in 

the near future: 

 

 Testing SSED for all well-known broadcast protocols and services;  

 Applying SSED to load balancing among more than one server in a data centre 

network/campus network in order to increase scalability in terms of the number 

of end users per domain; 

 Connecting MSSERD-based subnets to the Internet to assess the system with daily 

traffic;   

 Developing MSSERD to support load balancing and multi-path transmissions in 

a LAN-based network, which will lead to improved network scalability in terms 

of response time; 

 Connecting OLC to the Internet to check its validity for dealing with daily traffic 

load;  

 Investigating how to enhance the MDP and DHP protocols to carry different 

control messages; 
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 Implementing a core network prototype using the OLC architecture and testing it 

by applying it across several virtual campus networks.  

 

7.2.2 Long term future work 

Suggested long term future work is briefly outlined as follows: 

 

 The proposed models are pure SDN-based models so it would be beneficial if they 

were developed to support hybrid network devices (i.e. legacy and SDN devices); 

 NFV technology could be deployed more than it was for this thesis by 

concatenation with the proposed models for enhancing network scalability 

further. For example, applying distributed NFV technology inside one large 

network could lead to a reduction in response time for several discovery-based 

protocols and in turn, enhance scalability. 
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