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Abstract This article provides an overview of various

notions of shape spaces, including the space of parame-

trized and unparametrized curves, the space of immer-

sions, the diffeomorphism group and the space of Rie-

mannian metrics. We discuss the Riemannian metrics

that can be defined thereon, and what is known about

the properties of these metrics. We put particular em-

phasis on the induced geodesic distance, the geodesic

equation and its well-posedness, geodesic and metric

completeness and properties of the curvature.
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1 Introduction

The variability of a certain class of shapes is of in-

terest in various fields of applied mathematics and it

is of particular importance in the field of computa-

tional anatomy. In mathematics and computer vision,

shapes have been represented in many different ways:

point clouds, surfaces or images are only some exam-

ples. These shape spaces are inherently non-linear. As

an example, consider the shape space of all surfaces of

a certain dimension and genus. The nonlinearity makes

it difficult to do statistics. One way to overcome this

difficulty is to introduce a Riemannian structure on the

space of shapes. This enables us to locally linearize the

space and develop statistics based on geodesic methods.

Another advantage of the Riemannian setting for shape

analysis is its intuitive notion of similarity. Namely, two

shapes that differ only by a small deformation are re-

garded as similar to each other.

In this article we will concentrate on shape spaces

of surfaces and we will give an overview of the different

Riemannian structures, that have been considered on

these spaces.

1.1 Spaces of interest

We fix a compact manifold M without boundary of di-

mension d − 1. In this paper a shape is a submanifold

of Rd that is diffeomorphic to M and we denote by

Bi(M,Rd) and Be(M,Rd) the spaces of all immersed

and embedded submanifolds.
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Fig. 1 An overview of the relations between the spaces discussed in this article. Here Vol+(M) is the space of all positive
definite volume densities, Diff(M) the diffeomorphism group, Met(M) the space of all Riemannian metrics, Imm(M,Rd) the
space of immersed surfaces and Bi(M,Rd) the shape space of unparametrized surfaces; g denotes the Euclidean metric on Rd.

One way to represent Bi(M,Rd) is to start with

the space Imm(M,Rd) of immersions upon which the

diffeomorphism group Diff(M) acts from the right via

Imm(M,Rd)×Diff(M) 3 (q, ϕ) 7→ q ◦ϕ ∈ Imm(M,Rd).

The space Imm(M,Rd) is the space of parametrized

type M submanifolds of Rd and the action of Diff(M)

represents reparametrizations. The immersions q and

q ◦ϕ have the same image in Rd and thus one can iden-

tify Bi(M,Rd) with the quotient

Bi(M,Rd) ∼= Imm(M,Rd)/Diff(M) .

The space Bi(M,Rd) is not a manifold, but an orb-

ifold with isolated singular points; see Sect. 3.3. To re-

move these we will work with the slightly smaller space

Immf (M,Rd) of free immersions (see Sect. 3.1) and de-

note the quotient by

Bi,f (M,Rd) ∼= Immf (M,Rd)/Diff(M) .

Similarly one obtains the manifold Be(M,Rd) as the

quotient of the space Emb(M,Rd) of embedded sub-

manifolds with the group Diff(M).

The spaces Imm(M,Rd) and Emb(M,Rd) are some-

times called pre-shape spaces, and Diff(M) is the re-

parametrization group. Their quotients Bi(M,Rd) and

Be(M,Rd) are called shape spaces.

We would like to note that our usage of the terms

shape and pre-shape space differs from that employed

in [42, 68, 119]. In the terminology of [68] a pre-shape

space is the space of labelled landmarks modulo trans-

lations and scalings and the shape space additionally

quotients out rotations as well. For the purposes of

this paper, the pre-shape space contains parametrized

curves or surfaces and we pass to the shape space by

quotienting out the parametrizations.

A Riemannian metric on Imm(M,Rd) that is in-

variant under the action of Diff(M) induces a metric

on Bi,f (M,Rd), such that the projection

π : Immf (M,Rd)→ Bi,f (M,Rd), q 7→ q(M) ,

is a Riemannian submersion. This will be our method

of choice to study almost local and Sobolev-type met-

rics on Imm(M,Rd) and Bi,f (M,Rd) in Sect. 5 and 6.

These are classes of metrics, that are defined via quan-

tities measured directly on the submanifold. We might

call them inner metrics to distinguish them from outer

metrics, which we will describe next. This is however

more a conceptual distinction rather than a rigorously

mathematical one.

Most Riemannian metrics, that we consider in this

article, will be weak, i.e., considered as a mapping from

the tangent bundle to the cotangent bundle the metric

is injective, but not surjective. Weak Riemannian met-

rics are a purely infinite-dimensional phenomenon and

they are the source of most of the analytical complica-

tions, that we will encounter.

A way to define Riemannian metrics on the space

of parametrized submanifolds is via the left action of

Diffc(Rd) on Emb(M,Rd),

Diffc(Rd)×Emb(M,Rd)3(ϕ, q) 7→ϕ ◦ q ∈ Emb(M,Rd).

Here Diffc(Rd) denotes the Lie group of all compactly

supported diffeomorphisms of Rd with Lie algebra the

space Xc(Rd) of all compactly supported vector fields,

see Sect. 7. Given a right-invariant metric on Diffc(Rd),
the left action induces a metric on Emb(M,Rd), such

that for each embedding q0 ∈ Emb(M,Rd) the map

πq0 : Diffc(Rd)→ Emb(M,Rd), ϕ 7→ ϕ ◦ q0 ,

is a Riemannian submersion onto the image. This con-

struction formalizes the idea of measuring the cost of

deforming a shape as the minimal cost of deforming the

ambient space, i.e.,

GEmb
q (h, h) = inf

X ◦ q=h
GDiff

Id (X,X) . (1)

Here h ∈ Tq Emb(M,Rd) is an infinitesimal deforma-

tion of q and the length squaredGEmb
q (h, h), which mea-

sures its cost, is given as the infimum of GDiff
Id (X,X),

that is the cost of deforming the ambient space. The
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infimum is taken over all X ∈ Xc(Rd) infinitesimal de-

formations of Rd, that equal h when restricted to q.

This motivates the name outer metrics, since they are

defined in terms of deformations of the ambient space.

The natural space to define these metrics is the

space of embeddings instead of immersions, because not

all orbits of the Diffc(Rd) action on Imm(M,Rd) are

open. Defining a Riemannian metric on Be(M,Rd) is

now a two step process

Diffc(Rd)
πq0 //Emb(M,Rd) π //Be(M,Rd) .

One starts with a right-invariant Riemannian metric

on Diffc(Rd), which descends via (1) to a metric on

Emb(M,Rd). This metric is invariant under the repa-

rametrization group and thus descends to a metric on

Be(M,Rd). These metrics are studied in Sect. 8.

Riemannian metrics on the diffeomorphism groups

Diffc(Rd) and Diff(M) are of interest, not only because

these groups act as the deformation group of the ambi-

ent space and the reparametrization group respectively.

They are related to the configuration spaces for hydro-

dynamics and various PDEs arising in physics can be in-

terpreted as geodesic equations on the diffeomorphism

group. While a geodesic on Diffc(Rd) is a curve ϕ(t) of

diffeomorphisms, its right-logarithmic derivative u(t) =

∂tϕ(t) ◦ϕ(t)−1 is a curve of vector fields. If the metric

on Diffc(Rd) is given as GId(u, v) =
∫
Rd〈Lu, v〉dx with

a differential operator L, then the geodesic equation can

be written in terms of u(t) as

∂tm+ (u · ∇)m+m div u+DuT .m = 0, m = Lu .

PDEs that are special cases of this equation include the

Camassa-Holm equation, the Hunter-Saxton equation
and others. See Sect. 7 for details.

So far we encoded shape through the way it lies in

the ambient space; i.e., either as a map q : M → Rd or

as its image q(M). One can also look at how the map q

deforms the model space M . Denote by g the Euclidean

metric on Rd and consider the pull-back map

Imm(M,Rd)→ Met(M), q 7→ q∗g , (2)

where Met(M) is the space of all Riemannian metrics

on M and q∗g denotes the pull-back of g to a metric on

M . Depending on the dimension of M one can expect

to capture more or less information about shape with

this map. Elements of Met(M) with dim(M) = d − 1

are symmetric, positive definite tensor fields of type
(

0
2

)
and thus have d(d−1)

2 components. Immersions on the

other hand are maps from M into Rd and thus have

d components. For d = 3, the case of surfaces in R3,

the number of components coincide, while for d > 3 we

have d(d−1)
2 > d. Thus we would expect the pull-back

map to capture most aspects of shape. The pull-back is

equivariant with respect to Diff(M) and thus we have

the commutative diagram

Immf (M,Rd)
q 7→q∗g //

��

Met(M)

��
Bi,f (M,Rd) // Met(M)/Diff(M)

The space in the lower right corner is not far away from

Met(M)/Diff0(M), where Diff0(M) denotes the con-

nected component of the identity. This space, known as

super space, is used in general relativity. Little is known

about the properties of the pull-back map (2), but as a

first step it is of interest to consider Riemannian met-

rics on the space Met(M). This is done in Sect. 11, with

special emphasis on the L2- or Ebin-metric.

1.2 Questions discussed

After having explained the spaces, that will play the

main roles in the paper and the relationships between

them, what are the questions that we will be asking?

The questions are motivated by applications to com-

paring shapes.

After equipping the space with a Riemannian met-

ric, the simplest way to compare shapes is by looking

at the matrix of pairwise distances, measured with the

induced geodesic distance function. Thus an important

question is, whether the geodesic distance function is

point-separating, that is whether for two distinct shapes

C0 6= C1 we have d(C0, C1) > 0. In finite dimensions

the answer to this question is always “yes”. Even more,

a standard result of Riemannian geometry states that

the topology induced by the geodesic distance coin-

cides with the manifold topology. In infinite dimensions,

when the manifold is equipped with a weak Rieman-

nian metric, this is in general not true any more. The

topology induced by the geodesic distance will also be

weaker than the manifold topology. We will therefore

survey what is known about the geodesic distance and

the topology it induces.

The path realizing the distance between two shapes

is, if it exists, a geodesic. So it is natural to look at

the geodesic equation on the manifold. In finite dimen-

sions the geodesic equation is an ODE, the initial value

problem for geodesics can be solved, at least for short

times, and the solution depends smoothly on the ini-

tial data. The manifolds of interest in this paper are

naturally modeled mostly as Fréchet manifolds and in

coordinates the geodesic equation is usually a partial

differential equation or even involves pseudo differential
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operators. Only the regulat Lie group Diffc(N) of dif-

feomorphisms with compact support on a noncompact

manifold are modeled on (LF )-spaces. Thus even the

short-time solvability of the initial-value problem is a

non-trivial question. For some of the metrics, in partic-

ular for the class of almost local metrics, it is still open.

For the diffeomorphism group the geodesic equations

for various metrics are of interest in their own right. To

reflect this we will discuss in Sect. 7 first the geodesic

equations before proceeding with the properties of the

geodesic distance.

It is desirable for applications that the Riemannian

metric possesses some completeness properties. It can

be either in form of geodesic completeness, i.e., that

geodesics are extendable for all time, or metric com-

pleteness with respect to the induced geodesic distance.

Since we are considering only weak Riemannian metrics

on spaces of smooth shapes, we cannot expect the space

to be metrically complete, but in some examples it is

possible to at least describe the metric completion of

shape space.

In order to perform statistics on shape space one can

choose a reference shape, for example by computing the

mean of a given set of shapes, and linearize the space

around this shape via the Riemannian exponential map

and normal coordinates. The curvature tensor contains

information about the accuracy of this approximation.

In general computing the curvature leads to long for-

mulas that are hard to interpret, but in some cases

curvature admits a simple expression. We collect the

examples, where more is known about the curvature,

usually the sectional curvature, than just the formula

for it.

To summarize, we will deal with the following four

properties of Riemannian metrics on shape spaces:

– Geodesic distance

– Geodesic equation and existence of geodesics

– Geodesic and metric completeness

– Properties of the curvature

Riemannian geometry on shape spaces is currently

an active area of research. Therefore this paper is less

an encyclopedic treatment of the subject but rather re-

sembles an interim report highlighting what is known

and more importantly, what is not.

1.3 Topics not discussed

There are many topics that lie outside the scope of this

paper, among which are the following.

Changes in topology. In certain applications it may

be of interest to consider deformations of a shape that

allow for the development of holes or allow the shape

to split into several components. In this paper we fix

the model manifold M and only consider submanifolds

of Rd diffeomorphic to M . Thus by definition all de-

formations are topology-preserving. See [21,41,131] for

topologically robust approaches to shape matching.

Non-geodesic distances. Many interesting distances

can be defined on shape spaces, that are not induced

by an underlying Riemannian metric; see for exam-

ple [81, 83, 103]. As we are looking at shape spaces

through the lens of Riemannian geometry, these metrics

will necessarily be left out of focus.

Subgroups of the diffeomorphism groups. The Rie-

mannian geometry of the diffeomorphism group and its

subgroups, especially the group of volume-preserving

diffeomorphisms, has been studied extensively; see for

example [120]. It plays an important role in hydrody-

namics, being the configuration space for incompress-

ible fluid flow [44]. While the full diffeomorphism group

itself is indispensable for shape analysis, its subgroups

have not been used much in this context.

Utmost generality. We did not strive to state the

results in the most general setting. It is possible to con-

sider shapes of higher codimension inside Rd or curved

ambient spaces; see [11]. This would include examples

like space curves or curves that lie on a sphere. It would

also make the presentation more difficult to read.

Numerical methods. Since shape space is infinite-

dimensional, computing the exponential map, the geo-

desic between two shapes or the geodesic distance are

numerically non-trivial tasks. While we present some

examples, we do not attempt to provide a comprehen-

sive survey of the numerical methods that have been

employed in the context of shape spaces. Finding sta-

ble, robust and fast numerical methods and proving

their convergence is an area of active research for most

of the metrics and spaces discussed in this paper. See

[4,38,39,57,111,113] for various approaches to discretiz-

ing shape space.

2 Preliminaries

2.1 Notation

In this section we will introduce the basic notation that

we will use throughout this article. On Rd we consider

the Euclidean metric, which we will denote by ḡ or 〈·, ·〉.
Unless stated otherwise we will assume that the param-

eter space M is a compact, oriented manifold without

boundary of dimension dim(M) = d − 1. Riemannian

metrics on M are usually denoted by g. Tensor fields

like g and its variations h are identified with their as-

sociated mappings TM → T ∗M . For a metric g this
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yields the musical isomorphisms

[ : TM → T ∗M and ] : T ∗M → TM.

Immersions from M to Rd – i.e., smooth mappings with

everywhere injective derivatives – are denoted by q and

the corresponding unit normal field of an (orientable)

immersion q is denoted by nq. For every immersion q :

M → Rd we consider the induced pull-back metric g =

q∗ḡ on M given by

q∗ḡ(X,Y ) = ḡ(Tq.X, Tq.Y ),

for vector fields X,Y ∈ X(M). Here Tq denotes the

tangent mapping of the map q : M → Rd. We will

denote the induced volume form of the metric g = q∗ḡ

as vol(g). In positively oriented coordinates (u, U) it is

given by

vol(g) =
√

det(ḡ (∂iq, ∂jq)) du
1 ∧ · · · ∧ dud−1 .

Using the volume form we can calculate the total vol-

ume Volq =
∫
M

vol(q∗ḡ) of the immersion q.

The Levi-Civita covariant derivative determined by

a metric g will be denoted by ∇g and we will consider

the induced Bochner–Laplacian ∆g, which is defined for

all vector fields X ∈ X(M) via

∆gX = −Tr(g−1∇2X) .

Note that in Rd the usual Laplacian ∆ is the negative

of the Bochner–Laplacian of the Euclidean metric, i.e.,

∆ḡ = −∆.

Furthermore, we will need the second fundamental

form sq(X,Y ) = ḡ
(
∇q
∗ḡ
X Tq.Y, nq

)
. Using it we can

define the Gauß curvature Kq = det(g−1sq) and the

mean curvature Hq = Tr(g−1sq).

In the special case of plane curves (M = S1 and

d = 2) we use the letter c for the immersed curve. The

curve parameter θ ∈ S1 will be the positively oriented

parameter on S1, and differentiation ∂θ will be denoted

by the subscript θ, i.e., cθ = ∂θc. We will use a similar

notation for the time derivative of a time dependent

family of curves, i.e., ∂tc = ct.

We denote the corresponding unit length tangent

vector by

v = vc =
cθ
|cθ|

= −Jnc where J =
√
−1 on C = R2 ,

and nc is the unit length tangent vector. The covariant

derivative of the pull-back metric reduces to arclength

derivative, and the induced volume form to arclength

integration:

Ds =
∂θ
|cθ|

, ds = |cθ|dθ.

Using this notation the length of a curve can be written

as

`c =

∫
S1

ds .

In this case Gauß and mean curvature are the same and

are denoted by κ = 〈Dsv, n〉.

2.2 Riemannian submersions

In this article we will repeatedly induce a Riemannian

metric on a quotient space using a given metric on the

top space. The concept of a Riemannian submersion will

allow us to achieve this goal in an elegant manner. We

will now explain in general terms what a Riemannian

submersion is and how geodesics in the quotient space

correspond to horizontal geodesics in the top space.

Let (E,GE) be a possibly infinite dimensional weak

Riemannian manifold; weak means that GE : TE →
T ∗E is injective, but need not be surjective. A conse-

quence is that the Levi-Civita connection (equivalently,

the geodesic equation) need not exist; however, if the

Levi-Civita connection does exist, it is unique. Let G
be a smooth possibly infinite dimensional regular Lie

group; see [77] or [76, Section 38] for the notion used

here, or [106] for a more general notion of Lie group. Let

G×E → E be a smooth group action on E and assume

that B := E/G is a manifold. Denote by π : E → B the

projection, which is then a submersion of smooth man-

ifolds by which we means that it admits local smooth

sections everywhere; in particular, Tπ : TE → TB is

surjective. Then

Ver = Ver(π) := ker(Tπ) ⊂ TE

is called the vertical subbundle. Assume that GE is in

addition invariant under the action of G. Then the ex-

pression

‖Y ‖2GB := inf{‖X‖2GE : X ∈ TxE, Tπ.X = Y }

defines a semi-norm on B. If it is a norm, it can be

shown (by polarization pushed through the completion)

that this norm comes from a weak Riemannian metric

GB on B; then the projection π : E → B is a Rieman-

nian submersion.

Sometimes the the GE-orthogonal space Ver(π)⊥ ⊂
TE is a fiber-linear complement in TE. In general, the

orthogonal space is a complement (for the GE-closure

of Ver(π)) only if taken in the fiberwise GE-completion
TE of TE. This leads to the notion of a robust Rieman-

nian manifold: a Riemannian manifold (E,GE) is called

robust, if TE is a smooth vector-bundle over E and

the Levi-Civita connection of GE exists and is smooth.
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See [88] for details. We will encounter examples, where

the use of TE is necessary in Sect. 8.

The horizontal subbundle Hor = Hor(π,G) is the

GE-orthogonal complement of Ver in TE or in TE,

respectively. Any vector X ∈ TE can be decomposed

uniquely in vertical and horizontal components as

X = Xver +Xhor .

Note that if we took the complement in TE, i.e., Hor ⊂
TE, then in general Xver ∈ Ver. The mapping

Txπ|Horx : Horx → Tπ(x)B or Tπ(x)B

is a linear isometry of (pre-)Hilbert spaces for all x ∈ E.

Here Tπ(x)B is the fiber-wise GB-completion of Tπ(x)B.

We are not claiming that TB forms a smooth vector-

bundle over B although this will be true in the examples

considered in Sect. 8.

Theorem 2.1 Consider a Riemannian submersion π :

E → B between robust weak Riemannian manifolds,

and let γ : [0, 1]→ E be a geodesic in E.

1. If γ′(t) is horizontal at one t, then it is horizontal

at all t.

2. If γ′(t) is horizontal then π ◦ γ is a geodesic in B.

3. If every curve in B can be lifted to a horizontal curve

in E, then, up to the choice of an initial point, there

is a one-to-one correspondence between curves in B

and horizontal curves in E. This implies that in-

stead of solving the geodesic equation in B one can

equivalently solve the equation for horizontal geode-

sics in E.

See [92, Sect. 26] for a proof, and [88] for the case of

robust Riemannian manifolds.

3 The spaces of interest

3.1 Immersions and embeddings

Parametrized surfaces will be modeled as immersions

or embeddings of the configuration manifold M into

Rd. We call immersions and embeddings parametrized

since a change in their parametrization (i.e., applying a

diffeomorphism on the domain of the function) results

in a different object. We will deal with the following

sets of functions:

Emb(M,Rd) ⊂ Immf (M,Rd)
⊂ Imm(M,Rd) ⊂ C∞(M,Rd) .

(3)

Here C∞(M,Rd) is the set of smooth functions from M

to Rd, Imm(M,Rd) is the set of all immersions of M

into Rd, i.e., all functions q ∈ C∞(M,Rd) such that Txq

is injective for all x ∈M . The set Immf (M,Rd) consists

of all free immersions q; i.e., the diffeomorphism group

of M acts freely on q, i.e., q ◦ϕ = q implies ϕ = IdM
for all ϕ ∈ Diff(M).

By [26, Lem. 3.1], the isotropy group Diff(M)q :=

{ϕ ∈ Diff(M) : q ◦ϕ = q} of any immersion q is al-

ways a finite group which acts properly discontinuously

on M so that M → M/Diff(M)q is a covering map.

Emb(M,N) is the set of all embeddings of M into Rd,
i.e., all immersions q that are homeomorphisms onto

their image.

Theorem 3.1 The spaces Imm(M,Rd), Immf (M,Rd)
and Emb(M,Rd) are Fréchet manifolds.

Proof Since M is compact by assumption it follows that

C∞(M,Rd) is a Fréchet manifold by [76, Sect. 42.3];

see also [58], [90]. All inclusions in (3) are inclusions of

open subsets: first Imm(M,Rd) is open in C∞(M,Rd)
since the condition that the differential is injective at

every point is an open condition on the one-jet of q [90,

Sect. 5.1]. Immf (M,Rd) is open in Imm(M,Rd) by [26,

Thm. 1.5]. Emb(M,Rd) is open in Immf (M,Rd) by [76,

Thm. 44.1]. Thus all the spaces are Fréchet manifolds

as well.

3.2 Shape space

Unparametrized surfaces are equivalence classes of pa-

rametrized surfaces under the action of the reparame-

trization group.

Theorem 3.2 (Thm. 1.5, [26]) The quotient space

Bi,f (M,Rd) := Immf (M,Rd)/Diff(M)

is a smooth Hausdorff manifold and the projection

π : Immf (M,Rd)→ Bi,f (M,Rd)

is a smooth principal fibration with Diff(M) as structure

group.

For q ∈ Immf (M,Rd) we can define a chart around

π(q) ∈ Bi,f (M,Rd) by

π ◦ψq : C∞(M, (−ε, ε))→ Bi,f (M,Rd)

with ε sufficiently small, where

ψq : C∞(M, (−ε, ε))→ Immf (M,Rd)

is defined by ψq(a) = q + anq and nq is the unit-length

normal vector to q.

Corollary 3.3 The statement of Thm. 3.2 does not

change, if we replace Bi,f (M,Rd) by Be(M,Rd) and

Immf (M,Rd) by Emb(M,Rd).
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The result for embeddings is proven in [18,58,89,90].

As Emb(M,Rd) is an open subset of Immf (M,Rd) and

is Diff(M)-invariant, the quotient

Be(M,Rd) := Emb(M,Rd)/Diff(M)

is an open subset of Bi,f (M,Rd) and as such itself a

smooth principal bundle with structure group Diff(M).

3.3 Some words on orbifolds

The projection

Imm(M,Rd)→ Bi(M,Rd) := Imm(M,Rd)/Diff(M)

is the prototype of a Riemannian submersion onto an

infinite dimensional Riemannian orbifold. In the arti-

cle [122, Prop. 2.1] it is stated that the finite dimen-

sional Riemannian orbifolds are exactly of the form

M/G for a Riemannian manifold M and a compact

group G of isometries with finite isotropy groups. Cur-

vature on Riemannian orbifolds is well defined, and it

suffices to treat it on the dense regular subset. In our

case Bi,f (M,Rd) is the regular stratum of the orbifold

Bi(M,Rd). For the behavior of geodesics on Rieman-

nian orbit spaces M/G see for example [1]; the easiest

way to carry these results over to infinite dimensions

is by using Gauss’ lemma, which only holds if the Rie-

mannian exponential mapping is a diffeomorphism on

an GImm-open neighborhood of 0 in each tangent space.

This is rarely true.

Given a Diff(M)-invariant Riemannian metric on

Imm(M,Rd), one can define a metric distance distBi on

Bi(M,Rd) by taking as distance between two shapes

the infimum of the lengths of all (equivalently, hor-

izontal) smooth curves connecting the corresponding

Diff(M)-orbits. There are the following questions:

– Does distBi separate points? In many cases this has

been decided.

– Is (Bi(M,Rd),distBi) a geodesic metric space? In

other words, does there exists a rectifiable curve

connecting two shapes in the same connected com-

ponent whose length is exactly the distance? This is

widely open, but it is settled as soon as local mini-

mality of geodesics in Imm(M,Rd) is established.

In this article we are discussing Riemannian met-

rics on Bi,f (M,Rd), that are induced by Riemannian

metrics on Immf (M,Rd) via Riemannian submersions.

However all metrics on Immf (M,Rd), that we consider,

arise as restrictions of metrics on Imm(M,R2). Thus,

when dealing with parametrized shapes, we will use the

space Imm(M,R2) and restrict ourselves to the open

and dense subset Immf (M,R2), whenever we consider

the space Bi,f (M,R2) of unparametrized shapes.

3.4 Diffeomorphism group

Concerning the Lie group structure of the diffeomor-

phism group we have the following theorem.

Theorem 3.4 (Thm. 43.1, [76]) Let M be a smooth

manifold, not necessarily compact. The group

Diffc(M) =
{
ϕ : ϕ,ϕ−1 ∈ C∞(M,M),

{x : ϕ(x) 6= x} has compact closure
}

of all compactly supported diffeomorphisms is an open

submanifold of C∞(M,M) (equipped wit a refinement

of the Whitney C∞-topology) and composition and in-

version are smooth maps. It is a regular Lie group and

the Lie algebra is the space Xc(M) of all compactly sup-

ported vector fields, whose bracket is the negative of the

usual Lie bracket.

An infinite dimensional smooth Lie group G with

Lie algebra g is called regular, if the following two con-

ditions hold:

– For each smooth curve X ∈ C∞(R, g) there exists

a unique smooth curve g ∈ C∞(R, G) whose right

logarithmic derivative is X, i.e.,

g(0) = e

∂tg(t) = Te(µ
g(t))X(t) = X(t).g(t) .

(4)

Here µg : G→ G denotes the right multiplication:

µgx = x.g .

– The map evolrG : C∞(R, g) → G is smooth, where

evolrG(X) = g(1) and g is the unique solution of (4).

IfM is compact, then all diffeomorphisms have com-

pact support and Diffc(M) = Diff(M). For Rn the

group Diff(Rd) of all orientation preserving diffeomor-

phisms is not an open subset of C∞(Rd,Rd) endowed

with the compact C∞-topology and thus it is not a

smooth manifold with charts in the usual sense. There-

fore, it is necessary to work with the smaller space

Diffc(Rd) of compactly supported diffeomorphisms. In

Sect. 7 we will also introduce the groups DiffH∞(Rd)
and DiffS(Rd) with weaker decay conditions towards

infinity. Like Diffc(Rd) they are smooth regular Lie

groups.

3.5 The space of Riemannian metrics

We denote by Met(M) the space of all smooth Rieman-

nian metrics. Each g ∈ Met(M) is a symmetric, positive

definite
(

0
2

)
tensor field on M , or equivalently a point-

wise positive definite section of the bundle S2T ∗M .
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Theorem 3.5 (Sect. 1.1, [52]) Let M be a compact

manifold without boundary. The space Met(M) of all

Riemannian metrics on M is an open subset of the

space Γ (S2T ∗M) of all symmetric
(

0
2

)
tensor fields and

thus itself a smooth Fréchet-manifold.

For each g ∈ Met(M) and x ∈ M we can regard

g(x) as either a map

g(x) : TxM × TxM → R

or as an invertible map

gx : TxM → T ∗xM .

The latter interpretation allows us to compose g, h ∈
Met(M) to obtain a fiber-linear map g−1.h : TM →
TM .

4 The L2-metric on plane curves

4.1 Properties of the L2-metric

We first look at the simplest shape space, the space of

plane curves. In order to induce a metric on the mani-

fold of un-parametrized curves Bi,f (S1,R2) we need to

define a metric on parametrized curves Imm(S1,R2),

that is invariant under reparametrizations, c.f. Sect. 2.2.

The simplest such metric on the space of immersed

plane curves is the L2-type metric

G0
c(h, k) =

∫
S1

〈h(θ), k(θ)〉ds .

The horizontal bundle of this metric, when restricted

to Immf (S1,R2), consists of all tangent vectors, h that
are pointwise orthogonal to cθ, i.e., h(θ) = a(θ)nc(θ)

for some scalar function a ∈ C∞(S1). An expression

for the metric on the quotient space Bi,f (S1,R2), using

the charts from Thm. 3.2, is given by

G0
C(Tcπ(a.nc), Tcπ(b.nc)) =

∫
S1

a(θ)b(θ) ds .

This metric was first studied in the context of shape

analysis in [95]. The geodesic equation for theG0-metric

on Immf (S1,R2) is given by

(|cθ|ct)t = −1

2

(
|ct|2cθ
|cθ|

)
θ

. (5)

Geodesics on Bi,f (S1,R2) correspond to horizontal geo-

desics on Immf (S1,R2) by Thm. 2.1; these satisfy ct =

a.nc, with a scalar function a(t, θ). Thus the geodesic

equation (5) reduces to an equation for a(t, θ),

at =
1

2
κa2 .

Note that this is not an ODE for a, because κc, being

the curvature of c, depends implicitly on a. It is however

possible to eliminate κ and arrive at (see [95, Sect. 4.3])

att − 4
a2
t

a
− a6aθθ

2w4
+
a6aθwθ
w5

− a5a2
θ

w4
= 0

w(θ) = a(0, θ)
√
|cθ(0, θ)| ,

a nonlinear hyperbolic PDE of second order.

Open question. Are the geodesic equations on either

of the spaces Imm(S1,R2) or Bi,f (S1,R2) for the L2-

metric (locally) well-posed?

The L2-metric is among the few for which the sec-

tional curvature on Bi,f (S1,R2) has a simple expres-

sion. Let C = π(c) ∈ Bi,f (S1,R2) and choose c ∈
Immf (S1,R2) such that it is parametrized by constant

speed. Take a.nc, b.nc ∈ HorG0(c) two orthonormal hor-

izontal tangent vectors at c. Then the sectional cur-

vature of the plane spanned by them is given by the

Wronskian

kC(P (Tcπ(a.nc), Tcπ(b.nc)) =
1

2

∫
S1

(abθ − aθb)2
ds .

(6)

In particular the sectional curvature is non-negative

and unbounded.

Remark 4.1 This metric has a natural generalization

to the space Imm(M,Rd) of immersions of an arbitrary

compact manifold M . This can be done by replacing

the integration over arc-length with integration over the

volume form of the induced pull-back metric. For q ∈
Imm(M,Rd) the metric is defined by

G0
q(h, k) =

∫
M

〈h(x), k(x)〉 vol(q∗ḡ) .

The geodesic spray of this metric was computed in [17]

and the curvature in [65].

For all its simplicity the main drawback of the L2-

metric is that the induced geodesic distance vanishes

on Imm(S1,R2). If c : [0, 1] → Imm(S1,R2) is a path,

denote by

LenGImm(c) =

∫ 1

0

√
Gc(t)(ct(t), ct(t)) dt

its length. The geodesic distance between two points is

defined as the infimum of the pathlength over all paths

connecting the two points,

distGImm(c0, c1) = inf
c(0)=c0,
c(1)=c1

LenGImm(c) .
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For a finite dimensional Riemannian manifold (M,G)

this distance is always positive, due to the local inverti-

bility of the exponential map. This does not need to be

true for a weak Riemannian metric in infinite dimen-

sions and the L2-metric on Bi,f (S1,R2) was the first

known example, where this was indeed false. We have

the following result.

Theorem 4.2 The geodesic distance function induced

by the metric G0 vanishes identically on Imm(S1,R2)

and Bi,f (S1,R2).

For any two curves c0, c1 ∈ Imm(S1,R2) and ε > 0

there exists a smooth path c : [0, 1]→ Imm(S1,R2) with

c(0) = c0, c(1) = c1 and length LenG
0

Imm(c) < ε.

For the space Bi,f (S1,R2) an explicit construction

of the path with arbitrarily short length was given in

[95]. Heuristically, if the curve is made to zig-zag wildly,

then the normal component of the motion will be in-

versely proportional to the length of the curve. Since the

normal component is squared the length of the path can

be made arbitrary small. This construction is visualized

in Fig.2.

For Imm(S1,R2) vanishing of the geodesic distance

is proven in [5]; the proof makes use of the vanishing of

the distance on Bi,f (S1,R2) and on Diff(S1).
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Fig. 2 A short path in the space of un-parametrized curves
that connects the bottom to the top line. Original image pub-
lished in [95].

Remark 4.3 In fact, this result holds more generally for

the space Imm(M,Rd). One can also replace Rd by an

arbitrary Riemannian manifold N ; see [94].

The vanishing of the geodesic distance leads us to

consider stronger metrics that prevent this behavior.

In this article we will present three different classes of

metrics:

– Almost local metrics:

GΨq (h, k) =

∫
M

Ψ(q)〈h, k〉 vol(q∗ḡ),

where Ψ : Imm(M,Rd)→ C∞(M,R>0) is a suitable

smooth function.

– Sobolev type metrics:

GLq (h, k) =

∫
M

〈Lqh, k〉 vol(q∗ḡ),

where Lq : Tq Imm(M,Rd) → Tq Imm(M,Rd) is a

suitable differential operator.

– Metrics that are induced by right invariant metrics

on the diffeomorphism group of the ambient space.

4.2 Gradient flows on curves

The L2-metric is used in geometric active contour mod-

els to define gradient flows for various energies. For ex-

ample the curve shortening flow

ct = κcnc

is the gradient flow of the energy E(c) =
∫
S1 ds = `c

with respect to the L2-metric.

The following example is taken from [85]. The cen-

troid based energy E(c) = 1
2 |µ(c) − w|2, with w ∈ R2

fixed and µ(c) = 1
`c

∫
S1 cds denoting the centroid, at-

tains its minimum when µ(c) = w. The L2-gradient of

the energy is

∇0E(c) = 〈µ(c)− w, nc〉nc + κc〈µ(c)− c, µ(c)− w〉nc .

We see from the second term that the gradient flow

ct = −∇0E(c)

tries to decrease the length of the curve for points with

〈µ(c)−c, µ(c)−w〉 ≤ 0, but increase for 〈µ(c)−c, µ(c)−
w〉 > 0. This latter part is ill-posed. However the ill-

posedness of the gradient flow is not an intrinsic prop-

erty of the energy, it is a consequence of the metric we

chose to define the gradient. For example the gradient

flow with respect to the H1-metric

G1
c(h, k) =

∫
S1

1
`c
〈h, k〉+ `c〈Dsh,Dsk〉ds

is locally well-posed. See [123–125] for more details on

Sobolev active contours and applications to segmenta-

tion and tracking. The same idea has been employed

for gradient flows of surfaces in [140].
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5 Almost local metrics on shape space

Almost local metrics are metrics of the form

GΨq (h, k) =

∫
M

Ψ(q)〈h, k〉 vol(q∗ḡ) ,

where Ψ : Imm(M,Rd) → C∞(M,R>0) is a smooth

function that is equivariant with respect to the action

of Diff(M), i.e.,

Ψ(q ◦ϕ) = Ψ(q) ◦ϕ , q ∈ Imm(M,Rd) , ϕ ∈ Diff(M) .

Equivariance of Ψ then implies the invariance of GΨ and

thus GΨ induces a Riemannian metric on the quotient

Bi,f (M,Rd).
Examples of almost local metrics that have been

considered are of the form

GΦq (h, k) =

∫
M

Φ(Volq, Hq,Kq)〈h, k〉 vol(q∗ḡ) , (7)

where Φ ∈ C∞(R3,R>0) is a function of the total vol-

ume Volq, the mean curvature Hq and the Gauß cur-

vature Kq. The name “almost local” is derived from

the fact that while Hq and Kq are local quantities, the

total volume Volq induces a mild non-locality in the

metric. If Φ = Φ(Vol) depends only on the total vol-

ume, the resulting metric is conformally equivalent to

the L2-metric, the latter corresponding to Φ ≡ 1.

For an almost local metric GΨ the horizontal bundle

at q ∈ Immf (M,Rd) consists of those tangent vectors

h that are pointwise orthogonal to q,

HorΨ (q) = {h ∈ Tq Immf (M,Rd) :

h = a.nq , a ∈ C∞(M,R)} .

Using the charts from Thm. 3.2, the metric GΨ on

Bi,f (M,Rd) is given by

GΨπ(q) (Tqπ(a.nq), Tqπ(b.nq)) =

∫
M

Ψ(q).a.b vol(q∗ḡ) ,

with a, b ∈ C∞(M,R).

Almost local metrics, that were studied in more de-

tail include the curvature weighted GA-metrics

GAc (h, k) =

∫
S1

(1 +Aκ2
c)〈h, k〉ds , (8)

with A > 0 in [95] and the conformal rescalings of the

L2-metric

GΦc (h, k) = Φ(`c)

∫
S1

〈h, k〉ds ,

with Φ ∈ C∞(R>0,R>0) in [115,135], both on the space

of plane curves. More general almost local metrics on

the space of plane curves were considered in [96] and

they have been generalized to hypersurfaces in higher

dimensions in [3, 12,13].

5.1 Geodesic distance

Under certain conditions on the function Ψ almost local

metrics are strong enough to induce a point-separating

geodesic distance function on the shape space.

Theorem 5.1 If Ψ satisfies one of the following con-

ditions

1. Ψ(q) ≥ 1 +AH2
q

2. Ψ(q) ≥ AVolq

for some A > 0, then the metric GΨ induces a point-

separating geodesic distance function on Bi,f (M,Rd),
i.e., for C0 6= C1 we have distΨBi,f (C0, C1) > 0.

For planar curves the result under assumption 1 is

proven in [95, Sect. 3.4] and under assumption 2 in [115,

Thm. 3.1]. The proof was generalized to the space of

hypersurfaces in higher dimensions in [12, Thm. 8.7].

The proof is based on the observation that under

the above assumptions the GΨ -length of a path of im-

mersions can be bounded from below by the area swept

out by the path. A second ingredient in the proof is the

Lipschitz-continuity of the function
√

Volq.

Theorem 5.2 If Ψ satisfies

Ψ(q) ≥ 1 +AH2
q ,

then the geodesic distance satisfies∣∣∣√VolQ1
−
√

VolQ2

∣∣∣ ≤ 1

2
√
A

distG
Ψ

Bi,f
(Q1, Q2) .

In particular the map

√
Vol : (Bi,f (M,Rd),distG

Ψ

Bi,f
)→ R≥0

is Lipschitz continuous.

This result is proven in [95, Sect. 3.3] for plane

curves and in [12, Lem. 8.4] for hypersurfaces in higher

dimensions.

In the case of planar curves [115] showed that for

the almost local metric with Ψ(c) = `c the geodesic

distance on Bi,f (S1,R2) is not only bounded by but

equal to the infimum over the area swept out,

dist`Bi,f (C0, C1) = inf
π(c(0))=C0

π(c(1))=C1

∫
S1×[0,1]

|det dc(t, θ)| dθ dt.

Remark 5.3 No almost local metric can induce a point

separating geodesic distance function on Immf (M,Rd)
and thus neither on Imm(M,Rd). When we restrict

the metric GΨ to an orbit q ◦Diff(M) of the Diff(M)-

action, the induced metric on the space q ◦Diff(M) ∼=
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Diff(M) is a right-invariant weighted L2-type metric,

for which the geodesic distance vanishes. Thus

distΨImm(q, q ◦ϕ) = 0 ,

for all q ∈ Immf (M,Rd) and ϕ ∈ Diff(M). See Sect.

7.4 for further details.

This is not a contradiction to Thm. 5.1, since a

point-separating distance on the quotient Bi,f (M,Rd)
only implies that the distance on Immf (M,Rd) sepa-

rates the fibers of the projection π : Bi,f (M,Rd) →
Immf (M,Rd). On each fiber π−1(C) ⊂ Immf (M,Rd)
the distance can still be vanishing, as it is the case for

the almost local metrics.

It is possible to compare the geodesic distance on

shape space with the Fréchet distance. The Fréchet dis-

tance is defined as

distL
∞

Bi,f
(Q0, Q1) = inf

q0,q1
‖q0 − q1‖L∞ , (9)

where the infimum is taken over all immersions q0, q1

with π(qi) = Qi. Depending on the behavior of the

metric under scaling, it may or may not be possible to

bound the Fréchet distance by the geodesic distance.

Theorem 5.4 (Thm. 8.9, [12]) If Ψ satisfies one of

the conditions,

1. Ψ(q) ≤ C1 + C2H
2k
q

2. Ψ(q) ≤ C1 Volkq ,

with some constants C1, C2 > 0 and k < d+1
2 , then

there exists no constant C > 0, such that

distL
∞

Bi,f
(Q0, Q1) ≤ C distΨBi,f (Q0, Q1) ,

holds for all Q0, Q1 ∈ Bi,f (M,Rd).

Note that this theorem also applies to theGA-metric

for planar curves defined in (8). Even though Thm. 5.4

states that the identity map

ι :
(
Bi,f (S1,R2),distG

A
)
→
(
Bi,f (S1,R2),distL

∞
)

is not Lipschitz continuous, it can be shown that is

continuous and thus the topology induces by distG
A

is

stronger than that induced by distL
∞

.

Theorem 5.5 (Cor. 3.6, [95]) The identity map on

Bi,f (S1,R2) is continuous from (Bi,f (S1,R2),distG
A

)

to (Bi,f (S1,R2),distL
∞

) and uniformly continuous on

every subset, where the length `C is bounded.

As a corollary to this result we obtain another proof

that the geodesic distance for the GA-metric is point-

separating on Bi,f (S1,R2).

5.2 Geodesic equation

Since geodesics on Bi,f correspond to horizontal geo-

desics on Immf (M,Rd), see Thm. 2.1, to compute the

geodesic equation on Bi,f (M,Rd) it is enough to re-

strict the geodesic equation on Immf (M,Rd) to hori-

zontal curves.

As an example for the resulting equations we will

present the geodesic equations on Bi,f (M,Rd) for the

almost local metric with Ψ(q) = 1 + AH2
q , which is a

generalization of the metric (8), and the family of met-

rics with Ψ(q) = Φ(Volq), which are conformal rescal-

ings of the L2-metric.

Theorem 5.6 Geodesics of the almost local GΨ -metric

with Ψ(q) = 1 + AH2
q on Bi,f (M,Rd) are given by so-

lutions of

qt = anq , g = q∗g ,

at = 1
2a

2Hq + 2A
1+AH2

q
g(Hq∇ga+ 2a∇gHq,∇ga)

− Aa2

1+AH2
q

(
∆gHq + Tr

((
g−1sq

)2))
.

For the family of metrics with Ψ(q) = Φ(Volq) geodesics

are given by

qt =
b(t)

Φ(Volq)
nq , g = q∗g ,

at =
Hq

2Φ(Volq)

(
a2 − Φ′(Volq)

Φ(Volq)

∫
M

a2 vol(g)

)
.

For the GA-metric and planar curves the geodesic equa-

tion was calculated in [95, Sect. 4.1], whereas for con-

formal metrics on planar curves it is presented in [115,

Sect. 4]. For hypersurfaces in higher dimensions the

equations are calculated in [12, Sect. 10.2 and 10.3].

Note that both for A = 0 and Φ(q) ≡ 1 one recovers

the geodesic equation for the L2-metric,

at =
1

2
Hqa

2.

Similarly to the case of the L2-metric it is unknown,

whether the geodesic equations are well-posed.

Open question. Are the geodesic equations on either

of the spaces Imm(M,R2) or Bi,f (M,R2) for the almost

local metrics (locally) well-posed?

5.3 Conserved quantities

If the map Ψ is equivariant with respect to the Diff(M)-

action, then the GΨ -metric is invariant, and we obtain
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by Noether’s theorem that the reparametrization mo-

mentum is constant along each geodesic. The repara-

metrization momentum for the GΨ -metric is given by

Ψ(q)g(q>t , ·) vol(q∗g) ∈ Γ (T ∗M ⊗ Λd−1T ∗M) ,

with g = q∗g and the pointwise decomposition of the

tangent vector qt = q>t + q⊥t of qt into q⊥t = g(qt, nq)nq
and q>t (x) ∈ Tq(x)q(M). This means that for each X ∈
X(M) we have∫
M

Ψ(q)g(q>t , X) vol(q∗g) = const.

If Ψ is additionally invariant under the action of

the Euclidean motion group Rd o SO(d), i.e., Ψ(O.q +

v) = Ψ(q), then so is the GΨ -metric and by Noether’s

theorem the linear and angular momenta are constant

along geodesics. These are given by∫
M

Ψ(q)qt vol(q∗g) ∈ Rd∫
M

Ψ(q) q ∧ qt vol(q∗g) ∈
∧2

Rd ∼= so(d)∗ .

The latter means that for each Ω ∈ so(d) the quantity∫
M

Ψ(q)g(Ω.q, qt) vol(q∗g)

is constant along geodesics.

If the function Ψ satisfies the scaling property

Ψ(λq) = λ− dim(M)−2Ψ(q), q ∈ Imm(M,Rd), λ ∈ R>0,

then the induced metric GΨ is scale invariant. In this

case the scaling momenta are conserved along geodesics

as well:∫
M

Ψ(q)〈q, qt〉 vol(q∗g) scaling momentum

For plane curves the momenta are∫
S1

Ψ(c)〈cθ, ct〉µds reparametrization momentum∫
S1

Ψ(c)ct ds linear momentum∫
S1

〈Jc, ct〉ds angular momentum∫
S1

Ψ(c)〈c, ct〉ds scaling momentum

with µ ∈ C∞(S1) and J denoting rotation by π
2 .

5.4 Completeness

Regarding geodesic completeness, one can look at the

set of spheres with a common center. This one-dimen-

sional subset of Bi,f (Sd−1,Rd) is a totally geodesic sub-

manifold, i.e., a geodesic up to parameterization. One

can explicitly calculate the length of this geodesic as

spheres shrink towards a point and when they expand

towards infinity. When it is possible to shrink to a point

with a geodesic of finite length, the space can obviously

not be geodesically complete. This is the case under the

following conditions.

Theorem 5.7 (Thm. 9.1, [12]) If Ψ satisfies one of

the conditions,

1. Ψ(q) ≤ C1 + C2H
2k
q

2. Ψ(q) ≤ C1 Volkq ,

with some constants C1, C2 > 0 and k < d+1
2 , then

the spaces Imm(Sd−1,Rd) and Bi,f (Sd−1,Rd) are not

geodesically complete with respect to the GΨ -metric.

Note that these are the same conditions as in Thm.

5.4. For other choices of M scalings will in general not

be geodesic, but under the same condition an immersion

can be scaled down to a point with finite energy. What

conditions are sufficient to prevent geodesics from de-

veloping singularities and thus make the spaces geodesi-

cally complete is unknown.

Concerning metric completeness, it cannot be ex-

pected that a weighted L2-type metric will be able to

prevent immersions from losing smoothness in the com-

pletion. We have only a partial result available for the

GA-metric (8) on plane curves.

Similarly to the definition of Bi,f (S1,R2), we can

define the larger space

Blipi (S1,R2) = Lip(S1,R2)/ ∼

of equivalence classes of Lipschitz curves. We identify

two Lipschitz curves, if they differ by a monotone cor-

respondence. This can be thought of as a generalization

of reparametrizations, which allow for jumps and inter-

vals of zero speed; see [95, Sect. 2.11]. Equipped with

the Fréchet-distance (9), the space Blipi (S1,R2) is met-

rically complete.

A curve C ∈ Blipi (S1,R2) is called a 1-BV rectifiable

curve, if the turning angle function α of an arc-length

parametrized lift c ∈ Lip(S1,R2) of C is a function of

bounded variation.

Theorem 5.8 (Thm. 3.11, [95]) The completion of

the metric space (Bi,f (S1,R2),distG
A

) is contained in

the shape space Blipi (S1,R2) of Lipschitz curves and it

contains all 1-BV rectifiable curves.
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5.5 Curvature

The main challenge in computing the curvature for al-

most local metrics on Imm(M,Rd) is finding enough

paper to finish the calculations. It is probably due to

this that apart from the L2-metric we are not aware of

any curvature calculations on the space Imm(M,Rd).
For the quotient space Bi,f (M,Rd) the situation is a

bit better and the formulas a bit shorter. This is be-

cause Bi,f (M,Rd) is modeled on C∞(M,R), while the

space Imm(M,Rd) is modeled on C∞(M,Rd). In co-

ordinates elements of Bi,f (M,Rd) are represented by

scalar functions, while immersions need functions with

d components. For plane curves and conformal met-

rics the curvature has been calculated in [115] and for

Ψ(c) = Φ(`c, κc) in [96]. Similarly for higher dimen-

sional surfaces the curvature has been calculated for

Ψ(q) = Φ(Volq, Hq) in [12].

The sectional curvature for the L2-metric on plane

curves (6) is non-negative. In general the expression for

the sectional curvature for almost local metrics with

Φ 6≡ 1 will contain both positive definite, negative def-

inite and indefinite terms. For example the sectional

curvature of the metric (8) with Ψ(c) = 1 + Aκ2
c on

plane curves has the following form.

Theorem 5.9 (Sect. 4.6, [95]) Let C ∈ Bi,f (S1,R2)

and choose c ∈ Imm(S1,R2) such that C = π(c) and c

is parametrized by constant speed. Let a.n, b.n ∈ Hor(c)

two orthonormal horizontal tangent vectors at c. Then

the sectional curvature of the plane spanned by a, b ∈
TCBi,f (S1,R2) for the GA metric is

kC(P (a, b)) = −
∫
S1

A(a.D2
sb− b.D2

sa)2ds

+

∫
(1−Aκ2)2 − 4A2κ.D2

sκ+ 8A2(Dsκ)2

2(1 +Aκ2)
·

· (a.Dsb − b.Dsa)2ds

It is assumed, although not proven at the moment,

that for a generic immersion, similar to Thm. 7.14, the

sectional curvature will assume both signs.

5.6 Examples

To conclude the section we want to present some ex-

amples of numerical solutions to the geodesic boundary

value problem for given shapes Q0, Q1 ∈ Bi,f (M,Rd)
with metrics of the form (7). One method to tackle this

problem is to directly minimize the horizontal path en-

ergy

Ehor(q) =

∫ 1

0

∫
M

Φ(Volq, Hq)〈qt, nq〉2 vol(q∗ḡ) dt

over the set of paths q of immersions with fixed end-

points q0, q1 that project onto the target surfaces Q0

and Q1, i.e., π(qi) = Qi. The main advantage of this

approach for the class of almost local metrics lies in

the simple form of the horizontal bundle. Although we

will only show one specific example in this article it is

worth to note that several numerical experiments are

available; see:

– [95, 96] for the GA–metric and planar curves.

– [135,136] for conformal metrics and planar curves.

– [3, 12,13] for surfaces in R3.

Fig. 3 A geodesic in the GA–metric joining two shapes of
size about 1 at distance 5 apart with A = .25, using 20 time
samples and a 48-gon approximation for all curves. Original
image published in [95].

The example we want to present here, is concerned with

the behavior of the GA-metric matching curves that are

far apart in space. In the article [95] the authors showed

that pure translation of a cigar-like shape with a cross–

section of 2
√
A is (locally) a geodesic for theGA–metric.

Thus one might expect that a geodesic between dis-

tant curves will asymptotically utilize this cigar shaped

curve, translate this optimal curve and then deform it

to the target shape. In fact the numerical examples re-

semble this behavior as can be seen in Fig.3. Note that

the cross–section of the middle figure – which is high-

lighted – is slightly bigger than 2
√
A. A reason for this

might be that the distance between the two boundary

shapes is not sufficiently large. In the article [12] it has

been shown that this behavior carries over to the case of

higher-dimensional surfaces, c.f. Fig. 4. Note that the

behavior of the geodesics changes dramatically if one

increases the distance further, namely for shapes that

are sufficiently far apart the geodesics will go through a

shrink and grow behavior. This phenomenon is based on

the fact that it is possible to shrink a sphere to zero in

finite time for the GA–metric. Then geodesics of very

long translations will go via a strong shrinking part

and growing part, and almost all of the translation will

be done with the shrunken version of the shape. This

behavior, which also occurs for the class of conformal

metrics, is described in [12].



14 Martin Bauer et al.

Fig. 4 Middle figure of a geodesic between two unit spheres
at distance 3 apart for A = 0.2, A = 0.4, A = 0.6, A = 0.8. In
each of the simulations 20 time steps and a triangulation with
720 triangles were used. Original image published in [12].

6 Sobolev type metrics on shape space

Sobolev-type inner metrics on the space Imm(M,Rd)
of immersions are metrics of the form

GLq (h, k) =

∫
M

〈Lqh, k〉 vol(q∗g) ,

where for each q ∈ Imm(M,Rd), Lq is a pseudo-differen-

tial operator on Tq Imm(M,Rd). To be precise we as-

sume that the operator field

L : T Imm(M,Rd)→ T Imm(M,Rd)

is a smooth base-point preserving bundle isomorphism,

such that for every q ∈ Imm(M,Rd) the map

Lq : Tq Imm(M,Rd)→ Tq Imm(M,Rd)

is a pseudo-differential operator, that is symmetric and

positive with respect to the L2-metric. Ordinarily, Lq
will be elliptic and of order ≥ 1, with the order being

constant in q. However, the operator fields in [105] are

not elliptic. An example for such an operator field L is

Lqh = h+ (∆g)lh, l ≥ 0 , (10)

where∆g is the Laplacian of the induced metric g = q∗g

on M .

We will also assume that the operator field L is in-

variant under the action of the reparametrization group

Diff(M), i.e.,

(Lqh) ◦ϕ = Lq ◦ϕ(h ◦ϕ) , (11)

for all ϕ, q and h. Then the metric GL is invariant under

Diff(M) and it induces a Riemannian metric on the

quotient space Bi,f (M,Rd).
In contrast to the class of almost local metrics, for

whom the horizontal bundle of the submersion

Immf (M,Rd)→ Bi,f (M,Rd)

consisted of tangent vectors, that are pointwise orthog-

onal to the surface, here the horizontal bundle cannot

be described explicitly. Instead we have

HorL(q) = {h ∈ Tq Immf (M,Rd) : Lqh = a.nq} ,

where a ∈ C∞(M,R) is a smooth function. Thus to

parametrize the horizontal bundle we need to invert

the operator Lq.

General Sobolev-type inner metrics on the space of

immersed plane curves have been studied in [96] and

on surfaces in higher dimensions in [11]. Numerical ex-

periments for special cases of order one Sobolev type

metrics are presented in the articles [4, 62,121].

Fig. 5 In this figure we show the Karcher mean of five vase-
shaped objects with respect to the Sobolev metric of order one
– as defined in (10) – on the space of parametrized surfaces
Imm(S1 × [0, 1],R3). The mean shape, which is displayed in
the center of the figure is computed using an iterated shooting
method. The colored regions on the averaged shapes encode
the Euclidean length of the initial velocity of the geodesic,
which connects each shape to the mean. The color of the
mean was chosen for artistic purposes only. Original image
published in [4].

In [14] the authors consider metrics of the form

GLq (h, k) = Φ(Volq)

∫
M

〈Lqh, k〉 vol(q∗g) .

These are a combination of Sobolev-type metrics with

a non-local weight function, that can be chosen such

that the resulting metric is scale-invariant. Sobolev type

metrics are far better investigated and understood on

the the manifold of plane curves than in higher dimen-

sion. Therefore, we will discuss this case separately in

Sect. 6.1.

6.1 Sobolev metrics on plane curves

A reparametrization invariant Sobolev-type metric on

the space of plane curves has been first introduced by

Younes in [137]. There he studied the homogeneous Ḣ1

metric

GḢ
1

c (h, k) =

∫
S1

〈Dsh,Dsk〉ds .
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However, this is not a metric on Imm(S1,R2) but only

on the quotient space Imm(S1,R2)/ transl. In order to

penalize bending and stretching of the curve differently

it has been generalized in [99,100] to

Ga,bc (h, k) =

∫
S1

a2〈Dsh, nc〉〈Dsk, nc〉

+ b2〈Dsh, vc〉〈Dsk, vc〉ds .
(12)

In this metric the parameters a, b can be interpreted as

the tension and rigidity coefficients of the curves. For

a = 1, b = 1
2 a computationally efficient representation

of this metric – called the Square Root Velocity Trans-

form (SRVT) – has been found in [121] and it has been

generalized for arbitrary parameters a, b in [7]. Follow-

ing [121] we will describe this transformation for the

case a = 1, b = 1
2 :

R :

{
Imm(S1,R2)/ transl. → C∞(S1,R2)

c 7→
√
|cθ|v.

The inverse of this map is given by

R−1 :

{
C∞(S1,R2)→ Imm([0, 2π],R2)/ transl.

e 7→
∫ θ

0
|e(σ)|e(σ) dσ .

Here Imm([0, 2π],R2)/ transl. is viewed as the subspace

of curves c with c(0) = 0.

Note that R−1(e) is a closed curve if and only if∫ 2π

0

|e(θ)|e(θ) dθ = 0 .

Theorem 6.1 Consider the flat L2-metric

GL
2,flat

q (e, f) =

∫
S1

〈e, f〉dθ

on C∞(S1,R2). The pullback of the metric GL
2,flat by

the R-transform is the elastic metric with coefficients

a = 1, b = 1
2 .

The image of the space Imm(S1,R2)/ transl. under

the R-transform is a co-dimension 2 submanifold of the

flat space C∞(S1,R2).

This representation not only allows to efficiently dis-

cretize the geodesic equation, but also to compute the

curvature of Imm(S1,R2); See [7, 121] for details.

Fig. 6 A geodesic in the shape space Bi,f (S1,R2) equipped
with the elastic metric that connects the cat–shaped figure
to the dog–shaped figure. Original image published in [7].

A scale invariant version of the Ḣ1-metric

Gc(h, k) =
1

`c

∫
S1

〈Dsh,Dsk〉ds

has been studied in [139]. There the authors derive

an explicit solution formula for the geodesic equation

and calculate the sectional curvature. More general and

higher order Sobolev metrics on plane curves have been

studied in [84, 96], and they have been applied to the

field of active contours in [27,125]. Other Sobolev type

metrics on curves that have been studied include a met-

ric for which translations, scale changes and deforma-

tions of the curve are orthogonal [123] and an H2-type

(semi)-metric whose kernel is generated by translations,

scalings and rotations. [116].

For curves we can use arclength to identify each el-

ement C ∈ Bi,f (S1,R2) of shape space with a (up to

rotation) unique parametrized curve c ∈ Imm(S1,R2).

This observation has been used by Preston to induce

a Riemannian metric on the shape space of unpara-

metrized curves, via metrics on the space of arclength

parametrized curves; see [109,110]. A similar approach

has been chosen in [74].

6.2 Geodesic distance

Sobolev-type metrics induce a point-separating geode-

sic distance function on Bi,f (M,Rd), if the order of the

operator field L is high enough. For the H1-metric

GH
1

q (h, k) =

∫
M

〈(Id +∆g)h, k〉 vol(q∗g) , (13)

one can bound the length of a path by the area (volume)

swept-out, similarly to the case of almost local metrics.

Theorem 6.2 If the metric GL induced by the operator

field L is at least as strong as the H1-metric (13), i.e.,

GLq (h, h) ≥ CGH
1

q (h, h)

for some constant C > 0, then GL induces a point-

separating geodesic distance function on the shape space

Bi,f (M,Rd).

A proof can be found in [11, Thm 7.6]. An ingredient

in the proof is the Lipschitz continuity of
√

Volq.

Theorem 6.3 The H1-metric satisfies∣∣∣√VolQ1 −
√

VolQ2

∣∣∣ ≤ 1

2
distH

1

Bi,f
(Q1, Q2) .

In particular the map
√

Vol : (Bi,f (M,Rd),distH
1

Bi,f
)→ R>0

is Lipschitz continuous.
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A proof for plane curves can be found in [96, Sect.

4.7] and for higher dimensional surfaces in [11, Lem.

7.5].

The behavior of the geodesic distance on the space

Immf (M,Rd) is unknown. Similar to Sect. 5.1 we can

restrict the GL-metric to an orbit q ◦Diff(M) and the

induced metric on Diff(M) will be a right-invariant

Sobolev metric. Since Sobolev-type metrics of a suffi-

ciently high order on the diffeomorphism group have

point-separating geodesic distance functions, there is

no a-priori obstacle for the distance distLImm not to be

point-separating.

Open question. Under what conditions on the opera-

tor field L does the metric GL induce a point-separating

geodesic distance function on Immf (M,Rd)?

6.3 The geodesic equation

The most concise way to write the geodesic equation

on Imm(M,Rd) for a general operator field L involves

its covariant derivative ∇L and adjoint Adj(∇L). See

[11, Sect. 4.2] for the definition of ∇L; note that ∇
here is not related to the metric GL. For a general

operator field L on Imm(M,Rd) we define the adjoint

Adj(∇L) to be the adjoint of (∇kL)h in the k vari-

able with respect to the L2-metric, i.e., for all h, k,m ∈
Tq Imm(M,Rd) we have∫
M

〈(∇kL)h,m〉 vol(q∗g) =

=

∫
M

〈k,Adj(∇L)(h,m)〉 vol(q∗g) . (14)

The existence and smoothness of the adjoint has to

be checked for each metric by hand. This usually in-

volves partial integration and even for simple operator

fields like L = Id +(∆g)l the expressions for the adjoint

quickly become unwieldy.

Assuming the adjoint in the above sense exists, we

can write the geodesic equation in the following form

in terms of the momentum.

Theorem 6.4 (Thm. 6.5, [11]) Let L be a smooth

pseudo-differential operator field, that is invariant un-

der reparametrizations, such that the adjoint Adj(∇L)

exists in the sense of (14). Then the geodesic equation

for the GL-metric on Imm(M,Rd) is given by:

p = Lqqt ⊗ vol(q∗g)

pt =
1

2

(
Adj(∇L)(qt, qt)

⊥ − 2Tq.〈Lqqt,∇qt〉]

−Hq〈Lqqt, qt〉nq
)
⊗ vol(q∗g)

(15)

Note, that only the normal part of the adjoint

Adj(∇L)(qt, qt)
⊥ = 〈Adj(∇L)(qt, qt), nq〉nq

appears in the geodesic equation. The tangential part is

determined by the reparametrization invariance of the

operator field L; see [11, Lem. 6.2].

Example 6.5 Consider the simple operator field L = Ds

on the space Imm(S1,R2) of plane curves. To emphasize

the nonlinear dependence of L on the footpoint c we

write it as Lch = 1
|cθ|hθ. The covariant derivative ∇L is

simply the derivative of L with respect to the footpoint,

(∇kL)h = − 1

|cθ|3
〈kθ, cθ〉hθ = −〈Dsk, vc〉Dsh .

for the operator field L = Ds. To compute its adjoint,

we use the following identity, obtained by integration

by parts,∫
S1

〈Dsk, vc〉〈Dsh,m〉ds =

= −
∫
S1

〈k, κcnc〉〈Dsh,m〉+ 〈k, vc〉Ds〈Dsh,m〉ds ,

which leads to

Adj(∇L)(h,m) = 〈Dsh,m〉κcnc +Ds (〈Dsh,m〉) vc .

The normal part Adj(∇L)⊥, which is necessary for the

geodesic equation is

Adj(∇L)⊥(h,m) = 〈Dsh,m〉κcnc .

Note that while the full adjoint is a second order dif-

ferential operator field, the normal part has only order

one. This reduction in order will be important for the

well-posedness of the geodesic equation.

To prove that geodesics on Bi,f (M,Rd) can be rep-
resented by horizontal geodesics on Immf (M,Rd) we

need the following lifting property.

Lemma 6.6 (Lem. 6.8 and 6.9, [11]) Let L be a

smooth pseudo-differential operator field with order con-

stant in q, that is invariant under reparametrizations,

and such that for each q, the operator Lq is elliptic,

symmetric, and positive-definite. Then the decomposi-

tion

T Immf (M,Rd) = HorL⊕Ver

of tangent vectors into horizontal and vertical parts is

a smooth operation.

For any smooth path q(t) in Immf (M,Rd) there ex-

ists a smooth path ϕ(t) in Diff(M) depending smoothly

on q(t) such that the path q̃(t) = q(t) ◦ϕ(t) is horizon-

tal, i.e.,

GLq̃(t)(∂tq̃(t), T q̃.X) = 0 , ∀X ∈ X(M) .

Thus any path in shape space can be lifted to a hor-

izontal path of immersions.
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6.4 Well-posedness of the geodesic equation

The well-posedness of the geodesic equation can be pro-

ven under rather general assumptions on the operator

field.

Assumptions. For each q ∈ Imm(M,Rd) the op-

erator Lq is an elliptic, pseudo-differential operator of

order 2l and it is positive and symmetric with respect

to the L2-metric.

The operator field L, the covariant derivative ∇L,

and the normal part of the adjoint Adj(∇L)⊥ are all

smooth sections of the corresponding bundles. For fixed

q the expressions

Lqh, (∇hLq)k, Adj(∇L)q(h, k)⊥

are pseudo-differential operators of order 2l in h, k sep-

arately. As mappings in the footpoint q they can be

a composition of non-linear differential operators and

linear pseudo-differential operators as long as the total

order is less than 2l.

The operator field L is reparametrization invariant

in the sense of (11).

With these assumptions we have the following the-

orem from [11, Thm. 6.6]. A similar theorem has been

proven for plane curves in [96, Thm 4.3].

Theorem 6.7 Let the operator field L satisfy the above

assumptions with l ≥ 1 and let k > dim(M)
2 + 2l + 1.

Then the geodesic spray of the GL-metric is smooth on

the Sobolev manifold Immk(M,Rd) of Hk-immersions.

In particular the initial value problem for the geode-

sic equation (15) has unique solutions

(t 7→ q(t, ·)) ∈ C∞((−ε, ε), Immk(M,Rd)) ,

for small times and the solution depends smoothly on

the initial conditions q(0, ·), qt(0, ·) in T Immk(M,Rd).

Remark 6.8 For smooth initial conditions q(0, ·), qt(0, ·)
in T Immk(M,Rd) we can apply the above theorem for

different k and obtain solutions in each Sobolev comple-

tion Immk(M,Rd). It can be shown that the maximal

interval of existence is independent of the Sobolev order

k and thus the solution of the geodesic equation itself is

in fact smooth. Therefore the above theorem continues

to hold, if Immk(M,Rd) is replaced by Imm(M,Rd).

Remark 6.9 Due to the correspondence of horizontal

geodesics on Immf (M,Rd) to geodesics on shape space

Bi,f (M,Rd) the above well-posedness theorem implies

in particular the well-posedness of the geodesic problem

on Bi,f (M,Rd).

Example 6.10 The assumptions of this theorem might

look very abstract at first. The simplest operator ful-

filling them is

Lq = Id +∆g

or any power of the Laplacian, Lq = Id +(∆g)l. We can

also introduce non-constant coefficients, for example

Lq = f1(Hq,Kq) + f2(Hq,Kq)(∆
g)l ,

as long as the operator remains elliptic, symmetric and

positive. To check symmetry and positivity it is some-

times easier to start with the metric. For example the

expression

Gq(h, k) =

∫
M

g1(Volq)〈h, k〉+

+ g2(Volq)

d∑
i=1

g(∇ghi,∇gki) vol(q∗g) ,

defines a metric and the corresponding operator Lq will

be symmetric and positive, provided g1 and g2 are pos-

itive functions. We can compute the operator via inte-

gration by parts,

(Lqh)i = g1(Volq)h
i − divg

(
g2(Volq)∇ghi

)
.

For this operator field to satisfy the assumptions of

Thm. 6.7, if g2 is the constant function, because Lqh

has order 2 in h, so it can depend at most on first

derivatives of q.

6.5 Conserved quantities

If the operator field L is invariant with respect to repa-

rametrizations, the GL-metric will be invariant under

the action of Diff(M). By Noether’s theorem the repa-

rametrization momentum is constant along each geode-

sic, c.f. Sect. 5.3. This means that for each X ∈ X(M)

we have∫
M

〈Lqqt, T q.X〉 vol(q∗g) = const.

If L is additionally invariant under the action of the

Euclidean motion group Rdo SO(d) then so is the GL-

metric and the linear and angular momenta are con-

stant along geodesics. These are given by∫
M

(Lqqt) vol(q∗g) ∈ Rd∫
M

q ∧ (Lqqt) vol(q∗g) ∈
∧2

Rd ∼= so(d)∗ .

If the operator field L satisfies the scaling property

Lλ.q = λ− dim(M)−2Lq, q ∈ Imm(M,Rd), λ ∈ R ,
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then the induced metric GL is scale invariant. In this

case the scaling momentum is conserved along geodesics

as well. It is given by:∫
M

〈q, Lqqt〉 vol(g) ∈ R .

See Sect. 5.3 for a more detailed explanation of the

meaning of these quantities.

6.6 Completeness

Concerning geodesic completeness it is possible to de-

rive a result similar to Thm. 5.7. The set of concentric

spheres with a common center is again a totally geode-

sic submanifold and we can look for conditions, when it

is possible to shrink spheres to a point with a geodesic

of finite length.

Theorem 6.11 (Lem. 9.5, [11]) If L = Id +(∆g)l

and l < dim(M)
2 + 1, then the spaces Imm(Sd−1,Rd)

and Bi,f (Sd−1,Rd) are not geodesically complete with

respect to the GL-metric.

For other choices of M scalings will in general not be

geodesic, but under the same condition an immersion

can be scaled down to a point with finite energy. Under

what conditions these spaces become geodesically com-

plete is unknown. We do however suspect that similarly

as Thm. 7.5 for the diffeomorphism group, a differen-

tial operator field of high enough order will induce a

geodesically complete metric.

The metric completion of Bi,f (S1,R2) is known for

the Sobolev metrics

GH
j

c (h, k) =

∫
S1

1

`c
〈h, k〉+ `2jc 〈Dj

sh,D
j
sk〉ds ,

with j = 1, 2. For the metric of order 1 we have the

following theorem.

Theorem 6.12 (Thms. 26 and 27, [84]) The metric

completion of (Bi,f ,distH
1

) is Blipi (S1,R2), the space of

all rectifiable curves with the Fréchet topology.

See Sect. 5.4 for details about Blipi (S1,R2). There

is a similar result for the metric of second order.

Theorem 6.13 (Thm. 29, [84]) The completion of

the metric space (Bi,f ,distH
2

) is the set of all those

rectifiable curves that admit curvature κc as a measur-

able function and
∫
S1 κ

2
c ds <∞.

6.7 Curvature

Apart from some results on first and second order met-

rics on the space of plane curves, very little is known

about the curvature of Sobolev-type metrics on either

Immf (M,Rd) or Bi,f (M,Rd).
The family (12) of H1-type metrics on the space

Imm([0, 2π],R2)/trans of open curves modulo transla-

tions is isometric to an open subset of a vector space

and therefore flat; see [7]. It then follows from O’Neil’s

formula that the quotient space Bi,f (M,Rd) has non-

negative sectional curvature.

The scale-invariant H1-type semi-metric

Gc(h, k) =
1

`c

∫
S1

〈Dsh,Dsk〉ds ,

descends to a weak metric on Bi,f (S1,R2)/(sim), which

is the quotient of Bi,f (S1,R2) by similarity transforma-

tions — translations, rotations and scalings. The sec-

tional curvature has been computed explicitly in [139];

it is again non-negative and upper bounds of the fol-

lowing form can be derived.

Theorem 6.14 (Sect. 5.8, [139]) Take a curve c ∈
Imm(S1,R2) and let h1, h2 ∈ Tc Imm(S1,R2) be two

orthonormal tangent vectors. Then the sectional curva-

ture at C = π(c) of the plane spanned by the projections

of h1, h2 in the space Bi,f (S1,R2)/(sim) is bounded by

0 ≤ kC(P (h1, h2)) ≤ 2 +A1(κc)+

+A2(κc)‖Dsh2 · n‖∞ +A3(κc)‖Ds(Dsh2 · n)‖∞ .

where Ai : C∞(S1,R) → R are functions of κ that

are invariant under reparametrizations and similarity

transformations.

Explicit formulas of Ai(κ) can be found in [139].

This is a bound on the sectional curvature, that depends

on the first two derivatives of h2 and is independent of

h1. Moreover, the explicit formulas for geodesics given

in [139] show that conjugate points are not dense on

geodesics.

A similar bound has been derived in [116] for a sec-

ond order metric on the space of plane curves.

7 Diffeomorphism groups

In the context of shape spaces diffeomorphism groups

arise two-fold:

– The shape space Bi,f (M,Rd) of immersed subman-

ifolds is the quotient

Bi,f (M,Rd) = Immf (M,Rd)/Diff(M)

of the space of immersions by the reparametrization

group Diff(M).
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– By fixing an embedding q0 ∈ Emb(M,Rd) we have

the map

Diffc(Rd)→ Emb(M,Rd), ϕ 7→ ϕ ◦ q0

A right-invariant Riemannian metric on Diffc(Rd)
induces a Riemannian metric on Emb(M,Rd) such

that the above map is a Riemannian submersion.

See Sect. 8 for this construction.

These are the two main applications of the diffeomor-

phism group discussed in this paper. Thus we mainly

will treat the group

Diff(M) =
{
ϕ∈C∞(M,M) : ϕ bij.,ϕ−1∈C∞(M,M)

}
of smooth diffeomorphisms of a closed manifold M and

groups of diffeomorphisms of Rd with the following de-

cay conditions towards infinity

Diffc(Rd) = {ϕ : supp(ϕ− Id) compact}
DiffS(Rd) =

{
ϕ : (ϕ− Id) ∈ S(Rd)

}
DiffH∞(Rd) =

{
ϕ : (ϕ− Id) ∈ H∞(Rd)

}
.

Here H∞(Rd) denotes the intersection of all Sobolev

spaces Hk(Rd), k ∈ N≥0, S(Rd) denotes the Schwartz

space of all rapidly decreasing functions. All these are

smooth regular Lie groups. Their Lie algebras are the

spaces Xc(Rd),XS(Rd) and XH∞(Rd) of compactly sup-

ported, rapidly decreasing and Sobolev vector fields, re-

spectively. See [91] and [93] for details.

None of the diffeomorphism groups on Rd intro-

duced above contain translations, rotations, or, more

generally, affine maps, since they require the diffeo-

morphisms to decay towards the identity. It is pos-

sible to extend the groups by considering a semidi-

rect product, for example Diffc(Rd) o SO(d). But for

our purposes this is not necessary: given two embed-

ding q1, q2 ∈ Emb(M,Rd) differing by an affine map

q2 = A◦q1, sinceM is compact, there exists a diffeomor-

phism ϕ, decaying to the identity such that q2 = ϕ◦ q1.

Thus when considering the action of Diffc(Rd) or the

other diffeomorphism groups on Emb(M,Rd) in Sect.

8, we are not really losing affine maps, although they

are not literally elements of the considered groups.

On general non-compact manifolds N one can also

consider the group of compactly supported diffeomor-

phisms like on Rd; see [76, Sect. 43].

7.1 Right-invariant Riemannian metrics

A right-invariant metric on Diffc(Rd) is determined via

Gϕ(Xϕ, Yϕ) = 〈Xϕ ◦ϕ−1, Yϕ ◦ϕ−1〉L ,
Xϕ, Yϕ ∈ Tϕ Diffc(Rd) , (16)

by an inner product 〈·, ·〉L on the space Xc(Rd) of vec-

tor fields. We assume that the inner product is defined

via a symmetric, positive definite, pseudo-differential

operator field L : X(Rd)→ X(Rd) by

〈X,Y 〉L =

∫
Rd
LX · Y dx .

Examples of such inner products include

– The L2-metric with L = Id,

〈X,Y 〉L2 =

∫
Rd
〈X,Y 〉dx .

– The Sobolev-type metrics of order s with s > 0,

〈X,Y 〉Hs =

∫
Rd

(
1 + |ξ|2

)s 〈X̂(ξ), Ŷ (ξ)〉dξ ,

with X̂(ξ) = (2π)−d/2
∫
Rd e

−i〈x,ξ〉X(x) dx being the

Fourier transform. Note that for s ∈ N these metrics

can be written as

〈X,Y 〉Hs =

∫
Rd
〈(Id−∆)

s
X,Y 〉dx ,

i.e., L = (Id−∆)s.

– The family of a-b-c-metrics, introduced in [70],

〈X,Y 〉a,b,c =

∫
Rd
a〈X,Y 〉+ bdivX div Y+

+ c〈dX[, dY [〉dx . (17)

Recall that ∆ = −∆g denotes the usual Laplacian on

Rd, which is the negative of the geometric Laplacian; see

Sect. 2.1. In dimension d = 1 the second and the third

term coincide and the metric simplifies to the family of

a-b metrics

〈X,Y 〉a,b =

∫
R
aXY + bX ′Y ′ dx .

On manifolds other than Rd, one can use the intrin-

sic differential operator fields to define inner products

on X(M), which are then extended to right-invariant

Riemannian metrics on Diff(M) via (16). For example,

when (M, g) is a Riemannian manifold Sobolev-metrics

of integral order can be defined using the Laplacian ∆g

via

〈X,Y 〉Hk =

∫
M

g
(
(Id +∆g)kX,Y

)
volg .

Similarly the family of a-b-c metrics have an intrinsic

representation given by (where δ = − ∗ d∗ is the codif-

ferential)

〈X,Y 〉a,b,c =

∫
M

ag(X,Y ) + bg(δX[, δY [)+

+ cg(dX[, dY [) volg .
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More general Sobolev spaces Hs(M) with s /∈ N and

the corresponding norms can be introduced using parti-

tions of unity and Riemannian exponential coordinates.

See the books [127] and [45] for the theory of function

spaces, including Sobolev spaces of fractional order, on

manifolds.

Remark 7.1 An alternative approach to induce a metric

on the diffeomorphism group is to use a reproducing

kernel Hilbert space H of vector fields, with X(Rd) ⊂ H
and consider the restriction of the inner product on H
to X(Rd). This approach is described in Sect. 8.2.

7.2 Geodesic Equation

The geodesic equation on any Lie group G with a right-

invariant metric is given as follows. A curve g(t) ∈ G
is a geodesic if the right logarithmic derivative u(t) =

∂tg(t)g(t)−1 satisfies

∂tu = − adTu u ,

where adT is the transpose of ad with respect to the

given inner product γ(·, ·) on the Lie algebra, i.e.,

γ(adTu v, w) = γ(v, adu w)

On Diff(Rd) with a metric given via an operator

field L we can write the equation as a PDE in terms of

the momentum m = Lu,

∂tm+(u·∇)m+mdiv u+DuT .m = 0, m = Lu , (18)

and ∂tϕ = u ◦ϕ. For different choices of L one can

obtain the following PDEs as geodesic equations.

The L2-metric with Lu = u in one dimension has as

geodesic equation Burgers’ equation,

ut + 3uux = 0 .

This equation was used as a model equation for turbu-

lence in [24].

The H1-metric with Lu = u−uxx in one dimension

has as geodesic equation the Camassa-Holm equation

[25],

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0 .

It describes the propagation of shallow water waves on

the free surface under gravity. It is a completely inte-

grable equation and possesses a bihamiltonian struc-

ture, that gives rise to an infinite number of conserva-

tion laws.

The homogeneous Ḣ1 semi-metric on Diff(S1) with

the operator Lu = −uxx descends to a metric on the

right coset space Rot(S1)\Diff(S1) of diffeomorphisms

modulo rigid rotations. The geodesic equation is the

periodic Hunter-Saxton equation

uxxt + 2uxuxx + uuxxx = 0 .

The Hunter-Saxton equation was proposed as a model

for the propagation of orientation waves in nematic liq-

uid crystals in [60]. Its geodesic nature was discovered

in [72]. It is also a completely integrable, bihamilto-

nian equation with an infinite number of conservation

laws [61]. As a Riemannian manifold (Diff(S1), Ḣ1) is

isometric to an open subset of a sphere and as such

has positive constant curvature [80]. It was shown re-

cently in [9], that a related result also holds for the non-

periodic Hunter-Saxton equation, which is the geodesic

equation for the Ḣ1-metric on a certain extension of

Diffc(R).

Between the Hunter-Saxton and the Camassa-Holm

equation lies the µ-Hunter-Saxton equation,

uxxt − 2µ(u)ux + 2uxuxx + uuxxx = 0 ,

which is the geodesic equation on the circle with re-

spect to the µḢ1-metric defined by the operator Lu =

µ(u)− uxx, with µ(u) = 1
2π

∫
S1 udx being the mean. It

was introduced in [69] as a non degenerate metric on

Diff(S1), such that the projection

(Diff(S1), µḢ1)→ (Rot(S1)\Diff(S1), Ḣ1)

is a Riemannian submersion. It is also a completely in-

tegrable, bihamiltonian equation.

The geodesic equation for the homogeneous Ḣ1/2-

metric is the modified Constantin-Lax-Majda (mCLM)

equation,

mt + umx + 2uxm = 0, m = Hux .

The mCLM equation is part of a family of one dimen-

sional models for the vorticity equation [37, 40, 107].

Its geodesic nature was recognized in [132]. As for the

Hunter-Saxton equation we have to regard the mCLM

equation on the coset space Rot(S1)\Diff(S1).

In the context of hydrodynamics a closely related

space is the Virasoro-Bott group

Vir(S1) = Diff(S1)×c R ,

with the group operations(
ϕ

α

)(
ψ

β

)
=

(
ϕ ◦ψ

α+ β + c(ϕ,ψ)

)
,

(
ϕ

α

)−1

=

(
ϕ−1

−α

)
for ϕ,ψ ∈ Diff(S1), and α, β ∈ R. The Virasoro-Bott

group is a central extension of Diff(S1) with respect to

the Bott-cocycle:

c : Diff(S1)×Diff(S1)→ R

c(ϕ,ψ) =
1

2

∫
log(ϕ′ ◦ψ)d logψ′ ,
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Space Metric Geod. equation

Diff(S1) L2 Burgers

Diff(S1) H1 Camassa-Holm

Diff(S1) µḢ1 µ-Hunter-Saxton

Rot(S1)\Diff(S1) Ḣ1 Hunter-Saxton

Rot(S1)\Diff(S1) Ḣ1/2 mCLM

Vir(S1) L2 KdV

Vir(S1) H1 Camassa-Holm w. disp.

Fig. 7 Some geodesic equations on diffeomorphism groups,
that are relevant in mathematical physics.

and it is the unique non-trivial central extension of

Diff(S1). For a detailed exposition of the Virasoro-Bott

group see the book of Guieu and Roger [56]. It was

found in [108, 114] that the geodesic equation of the

right invariant L2-metric on the Virasoro-Bott group is

the Korteweg-de Vries equation

ut + 3uxu+ auxxx = 0, a ∈ R .

Similarly the Camassa Holm equation with dispersion

ut − uxxt + 3uux − 2uxuxx − uuxxx + 2κux = 0

was recognized to be the geodesic equation on the Vira-

soro-Bott group with respect to the H1-metric in [101].

The geodesic equation (18) can be rewritten as an

integral in Lagrangian coordinates. For a metric given

by a differential operator, let K(x, y) be its Green’s

function. We assume that the initial momentum m0

is a vector-valued distribution, whose components are

finite measures. The initial velocity can be obtained

from m0 via u0(x) =
∫
Rd K(x, .)m0(.) and conversely

m0 = Lu0 ⊗ dx. Then (18) can be written as

∂tϕ(t, x) =

∫
Rd
K(ϕ(t, x), .)ϕ(t)∗m0(.) . (19)

7.3 Well-posedness of the geodesic equation

One possible method to prove the well-posedness of the

geodesic equations is to extend the group and the metric

to the Sobolev-completion

Diffq(M) = {ϕ ∈ Hq(M,M) : ϕbij., ϕ−1∈Hq(M,M)}

which is a Hilbert manifold and a topological group

for q > dim(M)/2 + 1. It is however not a Lie group

any more, since the right-multiplication is only con-

tinuous but not smooth. Nevertheless it is possible to

show that the geodesic spray of various metrics on the

Sobolev-completion is smooth for q large enough and

then an application of the theorem of Picard-Lindelöf

for ODEs shows the existence and smoothness of the

exponential map. This method was first applied in [44]

for the L2-metric on the group of volume-preserving

diffeomorphisms to show the existence of solutions for

Euler’s equations, which model inviscid, incompressible

fluid flows. On the full diffeomorphism group the follow-

ing well-posedness results can be obtained via the same

method.

Theorem 7.2 (Thm. 3.3, [50]) Let (M, g) be a com-

pact Riemannian manifold without boundary. The geo-

desic spray of the H1-metric

〈u, v〉 =

∫
M

g(u, v) + g(∇u,∇v) volg

is smooth as a map T Diffq(M)→ T 2 Diffq(M) for q >
dim(M)

2 + 1.

The (higher-dimensional) Camassa-Holm equation

with initial condition u0 ∈ Xq(M,M) admits a unique

solution u(t) for small times, the map t 7→ u(t) is

in C0((−ε, ε),Xq(M))∩C1((−ε, ε),Xq−1(M)), and the

map u0 ∈ Xq(M) 7→ u(t) ∈ Xq(M) is continuous.

This result holds more generally also for manifolds

with boundary with either Dirichlet, Navier or mixed

boundary conditions. See [50] for more details. For the

one-dimensional case the smoothness of the geodesic

spray was noted already in [75].

For the circle M = S1 we have the stronger result

that the geodesic sprays for Sobolev metrics Hs are

smooth for s ≥ 1
2 .

Theorem 7.3 (Cor. 4.2, [46]) The geodesic spray of

the Hs-metric

〈u, v〉 =
∑
n∈Z

(1 + n2)sû(n)v̂(n)

on the diffeomorphism group Diffq(S1) of the circle is

smooth for s ≥ 1
2 and q > 2s + 3

2 . Here û denotes

the Fourier series of u. Thus the geodesic equation is,

similarly to Thm. 7.2, locally well-posed.

The case of Sobolev metrics of integer order, which

includes the periodic Camassa-Holm equation, was pro-

ven in [36]. For the homogeneous Ḣ1/2-metric this re-

sult was proven in [47] and the estimates were then ex-

tended to cover general metrics given via Fourier mul-

tipliers in [46].

As a consequence of the well-posedness result for

Sobolev metrics on Imm(M,Rd) it has been shown that

the Lagrangian form of the geodesic equation is locally

well posed for higher order Sobolev metrics on Diff(M).
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Theorem 7.4 (Thm. 10, [11]) Let (M, g) be a com-

pact Riemannian manifold without boundary and let

k ≥ 1 with k ∈ N. For q > dim(M)
2 + 2k+ 1 the geodesic

spray of the Hk-metric is smooth as a map on Diffq(M)

and the geodesic equation has unique local solutions on

Diffq(M).

If the metric is strong enough, it is possible to show

the long-time existence of solutions.

Theorem 7.5 If the Green’s function K of the opera-

tor L inducing the metric is a C1-function, then for any

vector-valued distribution m0, whose components are fi-

nite signed measures, equation (19) with ϕ(0, x) = x

can be solved for all time and the solution is a map

(t 7→ ϕ(t, ·)) ∈ C1(R, C1(Rd,Rd)) .

This result is implicit in the work [129], an explicit

proof can be found in [105]. See also [138].

Remark 7.6 This method of proving well-posedness is

not universally applicable as not all geodesic sprays are

smooth. For example the spray induced by the right-

invariant L2-metric on Diff(S1) is not smooth. More

precisely in [35] it is shown that the exponential map

is not a C1-map from a neighborhood of TId Diffq(S1)

to Diffq(S1) for any q ≥ 2. Nevertheless the geodesic

equation, which is Burgers’ equation in this case, has

solutions t 7→ u(t) for small time with

u ∈ C0((−ε, ε), Hq(S1)) ∩ C1((−ε, ε), Hq−1(S1)),

when u0 ∈ Hq(S1); see [66]. A similar statement holds

for the KdV-equation, which is the geodesic equation

on the Virasoro-Bott group with respect to the right-

invariant L2-metric; see [34].

7.4 Geodesic distance

It was shown in [94] that the geodesic distance on the

group Diffc(M) vanishes for the L2-metric and is posi-

tive for the H1-metric. This naturally raises the ques-

tion, what happens for the Hs-metric with 0 < s < 1.

For M = S1 a complete answer is provided in [6],

whereas for more general manifolds N a partial answer

was given in the articles [6, 8].

Theorem 7.7 (Thm. 3.1, [6, 8]) The geodesic dis-

tance on Diffc(M) induced by the Sobolev-type metric

of order s vanishes

– for s < 1
2 ,

– for s = 1
2 , when M = S1 × C with C compact.

The geodesic distance is positive

– for s ≥ 1,

– for s > 1
2 , when dim(M) = 1.

Remark 7.8 By taking C = {point} to be the zero di-

mensional manifold, the above theorem provides a com-

plete answer for M = S1: the geodesic distance vanishes

if and only if s ≤ 1
2 .

Remark 7.9 The H1/2-metric on Diff(S1) is the only

known example, where the geodesic spray is smooth on

the Sobolev-completions Diffq(S1) for all q ≥ 5
2 and the

geodesic distance vanishes at the same time.

It is shown in [46] that for q > 5
2 the exponential

map is a local diffeomorphism exp : U ⊆ Hq(R) →
Diffq(S1). In particular we have the inequality

LenH
1/2

(ϕ) ≥ ‖ exp−1(ϕ(1))‖H1/2

for all paths ϕ : [0, 1]→ exp(Bqε(0)) with ϕ(0) = Id. In

other words we have a lower bound on the length for all

paths, that remain Hq-close to Id. This does not how-

ever imply anything about the geodesic distance, since

a path can have small H1/2-length or equivalently re-

main H1/2-close to Id, but leave the Hq-neighborhood.

Open question. For a Sobolev metric of order s the

behavior of the geodesic distance on Diffc(M) remains

open for

– 1
2 < s < 1 and dim(N) ≥ 2.

– s = 1
2 and N 6= S1 ×M , with M compact.

Extrapolating from the known cases, we conjecture the

following result: The geodesic distance induced by the

Sobolev-type metric of order s on Diffc(N) vanishes for

s ≤ 1
2 and is non-degenerate for s > 1

2 .

A main ingredient for the vanishing result is the follow-

ing property of the geodesic distance on Diffc(N):

Lemma 7.10 Let s ≥ 0. If the geodesic distance on

Diffc(N) for a right-invariant Sobolev Hs-metric van-

ishes for one pair ϕ,ψ ∈ Diffc(N) with ϕ 6= ψ, then the

geodesic distance already vanishes identically on all of

Diffc(N).

This lemma follows from the fact that the set

A =
{
ϕ : distH

s

(Id, ϕ) = 0
}

is a normal subgroup of Diffc(N) for all s ≥ 0 and

because Diffc(N) is a simple group. Thus, if A contains

any element apart from Id it has to be the whole group.

Remark 7.11 We can also consider the geodesic dis-

tance on the Virasoro-Bott group, which is the one-

dimensional central extension of Diff(S1). There the

geodesic distance vanishes for s = 0, i.e., for the L2-

metric. For s > 1
2 the geodesic distance cannot vanish

identically. Whether it is point-separating is not known.
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Open question. For a Sobolev metric of order s the

behavior of the geodesic distance on the Virasoro-Bott

group remains open for 0 < s < 1.

One way to define geodesics is to fix two diffeomor-

phisms ϕ0, ϕ1 and to consider the set

B = {ϕ(t) : ϕ(0) = ϕ0, ϕ(1) = ϕ1}

of all paths joining them. Geodesics then correspond to

critical points of the energy or equivalently the length

functional restricted to the set B. Vanishing of the geo-

desic distance implies that these functionals have no

global minima. The following theorem shows that for

the L2-metric there are no local minima either.

Theorem 7.12 (Thm 3.1, [22]) Let ϕ(t, x) with t ∈
[0, T ] be a path in Diffc(R). Let U be a neighborhood of

ϕ in the space C∞c ([0, T ]×R). Then there exists a path

ψ ∈ U with the same endpoints as ϕ and

E(ψ) < E(ϕ),

where E(.) is the energy w.r.t. the right-invariant L2-

metric.

In the article [22] the result is proven for DiffS(R), but

essentially the same proof works also for Diffc(R).

7.5 Completeness

As a corollary of Thm. 7.5 we obtain the result that the

diffeomorphism group equipped with a metric of high

enough order is geodesically complete:

Theorem 7.13 Let (M, g) be a compact Riemannian
manifold and let Gs be the Sobolev metric of order s.

For s ≥ dim(M)+3
2 the space

(
Diff(M), Gs

)
is geodesi-

cally complete.

This result is based on the observation, that for s ≥
dim(M)+3

2 the kernel of the operator inducing the metric

Gs is a C1-function.

7.6 Curvature

Denote by γ(·, ·) the inner product on the Lie algebra g

of any Lie group G and let u, v ∈ g be orthonormal vec-

tors. Then the sectional curvature of the plane P (u, v)

in G with respect to the right-invariant metric induced

by γ is given by

k(P (u, v)) =
1

4
‖ adTv u+ adTu v‖2γ − γ(adTv u, adTu v)

− 3

4
‖ adu v‖2γ +

1

2
γ(adu v, adTv u− adTu v),

where adT is the transpose of ad with respect to the

given inner product γ inducing the right invariant met-

ric.

For general Sobolev metrics there are no results on

curvature available, but for the family of a-b-c-metrics

(17) on the d-dimensional torus Td, it was shown in [70]

that the curvature assumes both signs.

Theorem 7.14 (Thm. 7.1, [70]) If d ≥ 2 and at

least two of the parameters a, b, c are non-zero, then

the sectional curvature of the a-b-c-metric on Diff(Td)
assumes both signs.

In dimension one we have the same behavior for the

family of a-b metrics.

Theorem 7.15 (Sect. 6, [70]) If d = 1 and both pa-

rameters a, b are non-zero, then the sectional curvature

of the a-b-metric on Diff(S1) assumes both signs.

There are two special cases, where the sign of the

curvature is constant. The first is the L2-metric (b = 0)

in one dimension.

Theorem 7.16 (Sect. 5.4, [94]) If d = 1 and b = 0

then the sectional curvature of the plane spanned by

two orthonormal vector fields u, v ∈ X(S1) for the a-

b metric on Diff(S1) is given by

k(P (u, v)) =

∫
S1

(uv′ − vu′)2 dx .

In particular the sectional curvature is non-negative.

This does not generalize to higher dimensions. De-

note by Td the flat d-dimensional torus.

Theorem 7.17 (Prop. 7.2, [70]) If d ≥ 2 and b =

c = 0 then then the sectional curvature of the a-b-c

metric on Diff(Td) assumes both signs.

The sectional curvature of the L2-metric has been

calculated for an arbitrary Riemannian manifold N .

The expression for sectional curvature is the sum of a

non-negative term and a term whose sign is indefinite.

Although we conjecture that the statement of Thm.

7.17 extends to arbitrary manifoldsN , this has not been

proven yet.

The second special case is the homogeneous Ḣ1-

metric with a = c = 0 for d ≥ 2 and a = 0 for d = 1.

The metric is degenerate on Diff(M), but it induces the

Fisher-Rao metric on the space Diff(M)/Diffµ(M) of

densities. Remarkably the induced metric has constant

sectional curvature.
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Theorem 7.18 (Cor. 3.2, [70]) Let (M, g) be a com-

pact Riemannian manifold. Then the homogeneous Ḣ1-

metric

〈u, v〉Ḣ1 =

∫
M

div(u) div(v) vol(g)

on Diff(M)/Diffµ(M) has constant positive sectional

curvature

k(P (u, v)) =
1

Vol(M)
.

This result is based on the observation, that the Ḣ1

metric on Diff(M)/Diffµ(M) is isometric to a sphere

in the Hilbert space L2(M, vol(g)). For M = S1 this

result has been proven already in [80]. Recently it has

been shown that the Ḣ1-metric on a certain extension

of Diffc(R) is a flat space in the sense of Riemannian

geometry; see [9].

8 Metrics on shape space induced by Diff(Rd)

In this section we will consider Riemannian metrics on

Be(M,Rd), the space of embedded type M submani-

folds that are induced by the left action of Diff(Rd).
Let Diff(Rd) stand for one of the groups Diffc(Rd),
DiffS(Rd) or DiffH∞(Rd) described in Sect. 7. We also

relax the assumption on the dimension of M and only

require dim(M) < d. The action is given by

Diff(Rd)×Be(M,Rd) 3 (ϕ,Q) 7→ ϕ(Q) ∈ Be(M,Rd) .

This action is in general not transitive – consider for ex-

ample a knotted and an unknotted circle in R3 – but its

orbits are open subsets of Be(M,Rd). Since the groups

Diffc(Rd), DiffS(Rd) and DiffH∞(Rd) connected and M

is compact, the orbits are the connected components of

Be(M,Rd). For Q ∈ Be(M,Rd) the isotropy group

Diff(Rd)Q = {ϕ : ϕ(Q) = Q} ,

consists of all diffeomorphisms that map Q to itself.

Thus each orbit Orb(Q) = Diff(Rd).Q can be identified

with the quotient

Be(M,Rd) ⊇ Orb(Q) ∼= Diff(Rd)/Diff(Rd)Q .

Let us take a step backwards and remember that an-

other way to represent Be(M,Rd) was as the quotient

Be(M,Rd) ∼= Emb(M,Rd)/Diff(M) .

The diffeomorphism group Diff(Rd) also acts on the

space Emb(M,Rd) of embeddings, that is parametrized

submanifolds with the action

Diff(Rd)×Emb(M,Rd)3(ϕ, q) 7→ ϕ ◦ q ∈ Emb(M,Rd).

This action is generally not transitive either, but has

open orbits as before. For fixed q ∈ Emb(M,Rd), the

isotropy group

Diff(Rd)q =
{
ϕ : ϕ|q(M) ≡ Id

}
,

consists of all diffeomorphisms that fix the image q(M)

pointwise. Note the subtle difference between the two

groups Diff(Rd)q and Diff(Rd)Q, when Q = q(M). The

former consists of diffeomorphisms that fix q(M) point-

wise, while elements of the latter only fix q(M) as a

set. As before we can identify each orbit Orb(q) =

Diff(Rd).q with the set

Emb(M,Rd) ⊇ Orb(q) ∼= Diff(Rd)/Diff(Rd)q .

The isotropy groups are subgroups of each other

Diff(Rd)q E Diff(Rd)Q ≤ Diff(Rd) ,

with Diff(Rd)q being a normal subgroup of Diff(Rd)Q.

Their quotient can be identified with

Diff(Rd)Q/Diff(Rd)q ∼= Diff(M) .

Now we have the two-step process,

Diff(Rd)→
→ Diff(Rd)/Diff(Rd)q ∼= Orb(q) ⊆ Emb(M,Rd)→

→ Emb(M,Rd)/Diff(M) ∼= Be(M,Rd) .

In particular the open subset Orb(Q) of Be(M,Rd) can

be represented as any of the quotients

Orb(Q) ∼= Orb(q)/Diff(M) ∼=

∼= Diff(Rd)/Diff(Rd)q
/

Diff(Rd)Q/Diff(Rd)q
∼=

∼= Diff(Rd)/Diff(Rd)Q .

Let a right-invariant Riemannian metric GDiff be

given on Diff(Rd). Then we can attempt to define a

metric on Emb(M,Rd) in the following way: fix q0 ∈
Emb(M,Rd) and let q = ϕ ◦ q0 be an element in the

orbit of q0. Define the (semi-)norm of a tangent vector

h ∈ Tq Emb(M,Rd) by

GEmb
q (h, h) = inf

Xϕ ◦ q0=h
GDiff
ϕ (Xϕ, Xϕ) ,

with Xϕ ∈ Tϕ Diff(Rd). If we define πq0 to be the pro-

jection

πq0 : Diff(Rd)→ Emb(M,Rd), πq0(ϕ) = ϕ ◦ q0 ,

then

h = Xϕ ◦ q0 = Tϕπq0 .Xϕ ,
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and the equation defining GEmb is the relation between

two metrics that are connected by a Riemannian sub-

mersion. Because GDiff is right-invariant and the group

action is associative we can rewrite the defining equa-

tion as

GEmb
q (h, h) = inf

X ◦ q=h
GDiff

Id (X,X) ,

with X ∈ TId Diff(Rd). Thus we see that GEmb does not

depend on the choice of q0.

One has to prove in each example, that GEmb is

smooth and a metric, i.e., that it is non-degenerate. We

will see for landmark matching in Sect. 9, that even

though the metric GDiff on Diff(Rd) is smooth, the in-

duced metric on the landmark space Ln(Rd) has only

finitely many derivatives.

While πq0 is a Riemannian submersion this is an

example, where the horizontal bundle exists only in a

suitable Sobolev-completion; see Sect. 2.2. In Sect. 8.2

we will take care of this by defining the metric via a

reproducing kernel Hilbert space H.

Assuming that this construction yields a Rieman-

nian metric on the space Emb(M,Rd), then this metric

is invariant under reparametrizations, because the left-

action by Diff(Rd) commutes with the right-action by

Diff(M):

GEmb
q ◦ϕ(h ◦ϕ, h ◦ϕ) = inf

X ◦ q ◦ϕ=h ◦ϕ
GDiff

Id (X,X) =

= inf
X ◦ q=h

GDiff
Id (X,X) = GEmb

q (h, h) .

The metric GEmb then projects to a Riemannian metric

on Be(M,Rd) as explained in Sect. 2.2.

8.1 Pattern theory

This section is closely related to ideas in Grenander’s

pattern theory [54, 55, 104]. The principle underlying

pattern theory is to explain changes of shape by a de-

formation group acting on the shape. In our case shapes

are elements of either Emb(M,Rd) or Be(M,Rd) and

the deformation group is the group Diff(Rd).
There is a lot of flexibility in the choice of the group

and the space it acts upon. If M is a finite set of n

points, then Emb(M,Rd) ⊆ (Rd)n is the set of land-

marks. We have inclusion instead of equality because

landmarks have to be distinct points. We will return to

this space in Sect. 9.

An important example is when the shape space is

the space of volumetric grey-scale images modeled as

functions in C∞(Rd,R) and the deformation group is

Diff(Rd). The action is given by

Diff(Rd)× C∞(Rd,R)3(ϕ, I) 7→ I ◦ϕ−1 ∈ C∞(Rd,R).

This action is far from being transitive. Thus it is not

possible to rigorously define a Riemannian metric on

C∞(Rd,R) that is induced by Diff(Rd). Nevertheless

the idea of images being deformed by diffeomorphisms

led to the image registration method known as LD-

DMM [16, 97, 98, 128]. It is being applied in computa-

tional anatomy with images being MRI and CT scans

to study the connections between anatomical shape and

physiological function. See [23] for an overview of image

registration within the LDDMM framework.

8.2 Defining metrics on Diff(Rd)

Following the presentation in [88] we assume that the

inner product on Xc(Rd) is given in the following way:

let (H, 〈·, ·〉H) be a Hilbert space of vector fields, such

that the canonical inclusions in the following diagram

Xc(Rd) ↪→ H ↪→ Ckb (Rd,Rd)

are bounded linear mappings for some k ≥ 0. We shall

also assume that the Lie algebra Xc(Rd) of Diff(Rd) is

dense in H. Here Ckb (Rd,Rd) is the space of all glob-

ally bounded Ck-vector fields with the norm ‖X‖k,∞ =∑
0≤j≤k ‖DjX‖∞.

Given these assumptions, the space H is a repro-

ducing kernel Hilbert space, i.e., for all x, a ∈ Rd the

directional point-evaluation evax : H → R defined as

evax(u) = 〈u(x), a〉 is a continuous linear functional on

H. See [2] or [112] for a detailed treatment. The relation

〈u,K(., x)a〉H = 〈u(x), a〉

defines a matrix-valued function K : Rd × Rd → Rd×d,
called the kernel of H. It satisfies the two properties

– K ∈ Ckb (Rd × Rd,Rd×d) and

– K(y, x) = K(x, y)T .

Associated to H we have the canonical isomorphism

L : H → H∗. Note that the kernel satisfies K(y, x)a =

L−1(evax)(y); this relation is even more general: the

space Mk(Rd,Rd) of vector-valued distributions, whose

components are k-th derivatives of finite signed mea-

sures is a subspace of the dual space Ckb (Rd,Rd)∗ and

the operator

K : Mk(Rd,Rd)→ Ckb (Rd,Rd), m 7→
∫
Rd
K(., x)m(x)

coincides with L−1. This is represented in the diagram

Xc(Rd)∗ H∗oo Mk(Rd)oo

K
��

⊆ // Ckb (Rd,Rd)∗

Xc(Rd) // H //

L

OO

Ckb (Rd,Rd)
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Here Xc(Rd)∗ denotes the space of vector-valued distri-

butions dual to X(Rd), depending on the decay condi-

tions chosen. The inner product on Xc(Rd) is the re-

striction of the inner product on H,

〈X,Y 〉H =

∫
Rd
〈LX, Y 〉dx ,

where the expression on the right hand side is a sugges-

tive way to denote the pairing 〈LX, Y 〉X∗c×Xc between

a distribution and a vector field.

Example 8.1 LetH = Hk(Rd,Rd) be the Sobolev space

of order k > d
2 with the inner product

〈X,Y 〉Hk =

∫
Rd
〈(Id−∆)kX,Y 〉dx .

Then by the Sobolev embedding theorem we have

Hk(Rd,Rd) ↪→ Clb(Rd,Rd) for l < k − d/2.

In this example L : Hk(Rd,Rd) → H−k(Rd,Rd) is the

operator L = (Id−∆)k and the kernel K is the Green’s

function of L,

K(x, y) = (2π)−d/2
21−k

(k − 1)!
|x−y|k−

d
2 J

k−d2
(|x−y|) Id .

Jα(x) is the modified Bessel function of order α. Around

x = 0 the Bessel function behaves like Jα(|x|) ∼ |x|α
and so

|x−y|k−
d
2 J

k−d2
(|x−y|) ∼ |x−y|2k−d around x−y = 0 .

Thus K ∈ C2k−d−1
b (Rd×Rd,Rd×d); this will be relevant

in the case of landmarks.

In the above example L was a scalar differential op-

erator; it acted on each component of the vector field

equally and was a multiple of the identity matrix. This

is not always the case. For example the operator asso-

ciated to the family of a-b-c-metrics is in general not

scalar and the corresponding kernel is a dense (not

sparse) matrix.

In Sect. 7 the metric on Diff(Rd) was introduced by

choosing a differential operator. Given an operator with

appropriate properties, it is possible to reconstruct the

space H. The reason for emphasizing the space H and

the reproducing kernel is twofold: Firstly, the induced

metrics on Emb(M,Rd) and the space of landmarks

have a simpler representation in terms of the kernel.

Secondly, in the literature on LDDMM (e.g., in [138])

the starting point is the space H of vector fields and by

presenting both approaches we show their similarities.

8.3 The metric on Emb(M,Rd)

Let GH be a right-invariant metric on Diff(Rd). The

induced metric on Emb(M,Rd) is defined via

GHq (h, h) = inf
X ◦ q=h

〈X,X〉H .

To compute a more explicit expression for GHq , we de-

compose H into

Hvert
q = {X : X|q ≡ 0} , Hhor

q = (Hvert
q )⊥ .

Then the induced metric is

GHq (h, h) = 〈Xhor, Xhor〉H ,

with X ∈ Xc(Rd) any vector field such that X ◦ q = h.

The horizontal projection does not depend on the choice

of the lift, i.e., if X,Y ∈ Xc(Rd) coincide along q, then

Xhor = Y hor. We identifyHhor
q with the GH-completion

of the tangent space Tq Emb(M,Rd). There are maps

Tq Emb(M,Rd)→ Hhor
q

h 7→ Xhor ,
Hhor
q → Ckb (M,Rd)
X 7→ X ◦ q .

The composition of these two maps is the canonical

embedding Tq Emb(M,Rd) ↪→ Ckb (M,Rd). The space

Hhor
q is again a reproducing kernel Hilbert space with

the kernel given by

Kq : M ×M → Rd×d , Kq(x, y) = K(q(x), q(y)) .

Thus we have identified the induced Riemannian metric
GH on Emb(M,Rd) as

GHq (h, h) = 〈h, h〉Hhor
q
.

In this formula we identified Hhor
q with vector fields on

M with values in Rd.

8.4 Geodesic distance

If the metric on Diff(Rd) is strong enough, then the in-

duced Riemannian metric on Emb(M,Rd) has a point-

separating geodesic distance function and we conjecture

that the same is true for Be(M,Rd).

Theorem 8.2 If the norm on H is at least as strong

as the C0
b -norm. i.e., H ↪→ C0

b , then there exists C > 0

such that for q0, q1 ∈ Emb(M,Rd) we have

‖q0 − q1‖∞ ≤ C distHEmb(q0, q1) .
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Proof Since H ↪→ C0
b , there exists a constant C > 0,

such that ‖X‖∞ ≤ C‖X‖H holds for all X ∈ H. Given

h ∈ Emb(M,Rd) and x ∈ M let X ∈ X(Rd) be any

vector field with X ◦ q = h. From

|h(x)| = |X(q(x))| ≤ ‖X‖∞ ≤ C‖X‖H ,

we see that ‖h‖∞ ≤ C‖X‖∞ and by taking the infimum

over all X we obtain

‖h‖2∞ ≤ C2GHq (h, h) .

Now for any path q(t) between q0 and q1 we have

q1(x)− q0(x) =

∫ 1

0

∂tq(t, x) dt ,

and thus

|q1(x)− q0(x)| ≤
∫ 1

0

|∂tq(t, x)|dt ≤

≤ C
∫ 1

0

√
GHq(t)(∂tq(t), ∂tq(t)) dt = C LenHEmb(q) .

By taking the supremum over x ∈M and the infimum

over all paths we obtain

‖q0 − q1‖∞ ≤ C distLEmb(q0, q1)

as required. ut

For the geodesic distance on shape space we have a

positive result for the space Be(S
1,R2) of plane curves

and the family H = Hk(Rd) of Sobolev spaces. A lower

bound on distLBe is given by the Fréchet distance (9).

Theorem 8.3 The geodesic distance on Be(S
1,R2) of

the outer metric induced by H = Hk(Rd) with the op-

erator L = (1− A∆)k for A > 0 and k ≥ 1 is bounded

from below by the Fréchet distance, i.e., for Q0, Q1 ∈
Be(S

1,R2) we have

distL
∞

Be (Q0, Q1) ≤ distH
k

Be (Q0, Q1) .

Proof Take Q0, Q1 ∈ Be(M,Rd) and let Q(t) be a path

between them. Then by [91, Prop. 5.7] we can lift this

path to a horizontal path q(t) on Emb(S1,R2). Then

distL
∞

Be (Q0, Q1) ≤ ‖q(0)− q(1)‖∞ =

= LenEmb(q) = LenBe(Q) ,

and by taking the infimum over all paths we obtain the

result. ut

In order to generalize this result to Be(M,Rd) one

would need to be able to lift horizontal paths from

Be(M,Rd) to Emb(M,Rd). A careful analysis of the

induced metric GH in the spirit of [91] should provide

such a result for a fairly general Sobolev-type metric.

8.5 Geodesic equation

The geodesic equation on Emb(M,Rd) is most conve-

niently written in Hamiltonian form in terms of the

position q(t) and the momentum p̃(t) = p(t) ⊗ volg,

where volg = vol(g) = vol(q∗ḡ). The momentum de-

fines a vector-valued distribution with support in the

image of q(t). The momentum p̃ acts on X ∈ X(Rd) by∫
M

〈X ◦ q(t), p̃(t)〉 =

∫
M

〈X(q(t, x)), p(t, x)〉 volg(x).

Let us introduce the notation

K ′q(t)(x, y) = D1K(q(t, x), q(t, y))

for the derivative of the kernel with respect to the first

variable. The geodesic equation is given by

∂tq(t, x) = X(t, q(t, x))

∂t (p(t)⊗ volg) (t, x) =

= −
(∫

M

p(t, x)TK ′q(t)(x, y)p(t, y) volg(y)

)
⊗ volg(x)

X(t, u) =

∫
M

K(u, q(t, y))p(t, y) volg(y) .

See [91] for a derivation of the geodesic equation for

plane curves and [88] for the related geodesic equation

on Be(M,Rd).
The vector field X is not smooth but only X ∈ H.

Therefore it is not possible to horizontally lift geode-

sics from Emb(M,Rd) to Diff(Rd). One can however

work in a suitable Sobolev completion of Diff(Rd). Then

right-invariance of the Riemannian metric on Diff(Rd)
implies the conservation of the momentum:

ϕ(t)∗p̃(t, .) is independent of t .

From here we obtain via p̃(t, .) = ϕ(t)∗p̃(0, .) that ϕ(t)

satisfies the following form of the Euler-Poincaré equa-

tion on the diffeomorphism group (EPDiff),

∂tϕ(t, x) =

∫
M

K(ϕ(t, x), .)ϕ(t)∗p̃(0, .) . (20)

See [59] for details on singular solutions of the EPDiff

equations. Theorem 7.5 can be applied to show long-

time existence of solutions of (20).

8.6 Curvature

The representation of Be(M,Rd) as the quotient

Be(M,Rd) = Diff(Rd)/Diff(Rd)Q

was used in [88] together with an infinite dimensional

version of O’Neil’s formula to compute an expression

for the sectional curvature on Be(M,Rd). For details

consult [88, Sect. 5].
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9 The space of landmarks

By choosing M to be the finite set M = {1, . . . , n} we

obtain as Emb(M,Rd) the set of landmarks, i.e., the set

of n distinct, labeled points in Rd. Let us denote this

space by

Ln(Rd) :=
{

(q1, . . . , qn)|qk ∈ Rd, qk 6= qj , k 6= j
}
.

Note that Ln(Rd) is an open subset of Rnd and thus it is

the first example of a finite dimensional shape space in

this paper. As a consequence some of the questions dis-

cussed for other shape spaces have a simple answer for

the space of landmarks. The geodesic distance is guar-

anteed to be point-separating, the geodesic equation is

an ODE and therefore locally well-posed and due to

Hopf-Rinow geodesic completeness implies metric com-

pleteness.

Remark 9.1 We regard landmark space as the set of all

labeled collections of n points in Rd, i.e., the landmarks

q = (q1, q2, . . . qn), q̃ = (q2, q1, . . . qn) are regarded as

different elements of Ln(Rd). One could also consider

the space of unlabeled landmarks Lnu(Rd), which would

correspond to Be(M,Rd). It is sometimes called also

configuration space. Since Diff(M) = Sn is the symmet-

ric group of n elements, we have Lnu(Rd) = Ln(Rd)/Sn.

The group Sn is a finite group, therefore the projec-

tion Ln(Rd) → Lnu(Rd) is a covering map and so for

local properties of Riemannian geometry it is enough

to study the space Ln(Rd).

Before we proceed we need to fix an ordering for

the coordinates on Rnd. There are two canonical choices

and we will follow the convention of [63]. A landmark
q is a vector q = (q1, . . . , qn)T ∈ Ln(Rd) and each qi

has d components qi = (qi1, . . . , qid)T . We concatenate

these vectors as follows

q = (q11, . . . , q1d, q21, . . . , q2d, . . . , qnd)T . (21)

Riemannian metrics on Ln(Rd), that are induced

by the action of the diffeomorphism group, have been

studied in [63, 82, 87] and on the landmark space on

the sphere in [53]. Other metrics on landmark space

include Bookstein’s thin-plate spline distance [19, 20]

and Kendall’s similitude invariant distance [67]. See [97]

for an overview comparing the different approaches.

9.1 A metric on Ln(Rd) induced by Diff(Rd)

As in Sect. 8.2 let the metric GH on Diff(Rd) be defined

via a Hilbert space H of vector fields satisfying the con-

ditions given in Sect. 8.2 and let K be the reproducing

kernel of H. As before we will write Diff(Rd) for any

of the groups Diffc(Rd), DiffS(Rd) or DiffH∞(Rd). The

metric GH induces a Riemannian metric gH on Ln(Rd)
and we can calculate it explicitly; see Thm 9.3.

For the convenience of the reader we will repeat the

definition of the distance function on Ln(Rd) induced

by the metric GH; see Sect. 8 for the the more general

situation of embeddings of an arbitrary manifold M in

Rd. Let E be the energy functional of the metric GH

on the diffeomorphism group, i.e.,

E(v) =

∫ 1

0

‖v(t, ·)‖2H dt . (22)

The induced distance function of the action of the dif-

feomorphism group on the landmark space is given by

distH(q, q̃) = inf
v

{√
E(v) : ϕv(qi) = q̃i

}
, (23)

where ϕv is the flow of the time dependent vector field

v and where the infimum is taken over all sufficiently

smooth vector fields v : [0, 1] → X(Rd). Given a solu-

tion v of the above minimization problem, the landmark

trajectories qi(t) are then given as the solutions of the

ODE

q̇i(t) = v(t, qi(t)), i = 1 . . . , n .

We will now define a Riemannian metric on the fi-

nite dimensional space Ln(Rd) directly and we will see

that it is in fact induced by the metric GH on the dif-

feomorphism group. For a landmark q we define the

matrix

g−1
H (q) =

K(q1, q1) · · · K(q1, qn)
...

. . .
...

K(qn, q1) · · · K(qn, qn)

 ∈ Rnd×nd , (24)

where K : Rd×Rd → Rd×d is the kernel of H. That gH
defines a Riemannian metric on Ln(Rd) can be easily

shown using the properties of the kernel K.

The metric gH defines, in the usual way, an energy

functional directly on the space of landmark trajecto-

ries,

Ẽ(q(t)) =

∫ 1

0

q̇(t)T gH(q(t))q̇(t) dt , (25)

and one can also define the induced distance function

of g as

d̃istH(q, q̃) = inf
q(t)

{√
Ẽ(q(t)) : q(0) = q, q(1) = q̃

}
,

(26)

where the infimum is taken over all sufficiently smooth

paths in landmark space q : [0, 1]→ Ln(Rd).
It is shown in [87, Prop. 2] that the minimization

problems (23) and (26) are equivalent and that the in-

duced distance functions are equal:
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Theorem 9.2 (Prop. 2, [87]) Let v be a minimizer

of the energy functional (22). Then the trajectory q(t),

which is obtained as the solution of the system of ODE’s

q̇i(t) = v(t, qi(t)), i = 1 . . . , n ,

minimizes the energy functional (25) and E(v) = Ẽ(q).

On the other hand, if q(t) is a minimizer of the energy

functional (25) define the vector field

v(t, x) =

n∑
i=1

pi(t)K(x, qi(t)) (27)

with the momenta pi : [0, 1]→ Rd given implicitely by

q̇i(t) =

n∑
j=1

pj(t)K(qi(t), qj(t)) . (28)

Then the vector field v is a minimizer of the energy (22)

and we have Ẽ(q) = E(v).

Thus we have:

Theorem 9.3 If H ↪→ Ckb , then the induced metric gH
on Ln(Rd) is given by

gH(q) =

K(q1, q1) · · · K(q1, qn)
...

. . .
...

K(qn, q1) · · · K(qn, qn)


−1

∈ Rnd×nd ,

(29)

where K ∈ Ck(Rd × Rd,Rd×d) is the kernel of H. We

have gH ∈ Ck(Rnd,Rnd×nd).

We will discuss the solutions of the minimization prob-

lem (25) in Sect. 9.3.

Remark 9.4 Note that in the articles [86, 87] the co-

ordinates were ordered in a different way. Given q =

(q1, . . . , qn) they flatten it as

q = (q11, . . . , qn1, q12, . . . , qn2, . . . , qnd)T .

If the kernel K(x, y) of H is a multiple of the iden-

tity matrix, i.e., K(x, y) = k(x, y) Idd×d for a scalar

function k, then the matrix gH(q) is sparse and these

coordinates allow us see the sparsity in an elegant way,

g−1
H (q) =


k(q) 0 · · · 0

0 k(q) · · · 0
...

...
. . .

...

0 · · · 0 k(q)

 ,

Here k(q) denotes the n× n-matrix (k(qi, qj))1≤i,j≤n.

9.2 The geodesic equation

The geodesic equation can be deduced from the equa-

tion in the general case Emb(M,Rd); see Sect. 8.5.

Theorem 9.5 If H ↪→ C1
b , then the Hamiltonian form

of the geodesic equation of the metric gH on Ln(Rd) is

given by

q̇i =

N∑
j=1

K(qi, qj)pj ,

ṗi = −
N∑
j=1

p>i (∂1K)(qi, qj)pj

(30)

with pi(t) = K(q(t))−1qi(t) the vector valued momen-

tum.

For scalar kernels this system has been studied in the

articles [82,87]; see also the PhD-thesis of Micheli [86].

Two examples of a two-particle interaction can be seen

in Fig.8.

Remark 9.6 A different possibility to derive the above

geodesic equation is to consider directly the Hamil-

tonian function of the finite dimensional Riemannian

manifold (Ln(Rd), gH). Following [64, Eqn. 1.6.6] it is

given by

Ham(p, q) =
1

2
pT g(q)−1p =

N∑
i,j=1

pTi K(qi, qj)pj ,

Then the geodesic equations (30) are just Hamilton’s

equation for Ham:

q̇i =
∂Ham

∂pi
, ṗi = −∂Ham

∂qi
.
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Fig. 8 Two geodesics in L2(R2). The grid represents the cor-
responding diffeomorphisms. On the left-hand side both land-
marks travel in the same direction, and the two paths tend
to attract each other. On the right hand side the landmarks
travel in opposite directions and the paths try to avoid each
other. Original image published in [87].
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Remark 9.7 We can regard a geodesic curve of land-

marks as a soliton-like solution of the geodesic equa-

tion on Diff(Rd) where the corresponding momentum

is a linear combination of vector valued delta distribu-

tions and travels as such.

9.3 Completeness

As a consequence of the global well-posedness theorem

on the full diffeomorphism group – Thm. 7.5 – we can

deduce the long-time existence of geodesics on Land-

mark space. To do so we solve the geodesic equation

(20) on the diffeomorphism group for a singular initial

momentum p(0, x) =
∑n
j=1 pjδ(x− qj). Then the land-

mark trajectories are given by qi(t) = ϕ(t, qi(0)), where

ϕ ∈ Diff(Rd) is the solution of (20).

Theorem 9.8 If H ↪→ C1
b , then the Riemannian man-

ifold
(
Ln(Rd), gH

)
is geodesically complete.

A consequence of this theorem is that two landmarks

will never collide along a geodesic path. For finite di-

mensional Riemannian manifolds with a metric that is

at least C2 the theorem of Hopf-Rinow asserts that the

notions of geodesic completeness and metric complete-

ness are equivalent.

Corollary 9.9 If H ↪→ C2
b , then (Ln(Rd),distH) is a

complete metric space.

For a C2-metric gH one can use once more the theo-

rem of Hopf-Rinow to show the well-posedness of the

geodesic boundary value problem.

Corollary 9.10 (Prop. 1, [87]) If H ↪→ C2
b then for

each pair of landmarks q, q̃ ∈ Ln(Rd) there exists a min-
imizer q(t) ∈ C1([0, 1],Ln(Rd)) of the energy functional

(25).

In fact the existence of minimizers to the boundary

value problem on landmark space can be proven un-

der even weaker smoothness conditions on the metric

gH, see [63, Sect. C].

9.4 Curvature

We see from (24) that the expression for the co-metric

g−1
H is much simpler than that for gH. In the article [87]

the authors took this observation as a motivation to

derive a formula for the sectional curvature in terms

of the co-metric, now called Marios formula; see [87,

Thm. 3.2]. Using this formula they were able to calcu-

late the the sectional curvature of the landmark space

(Ln(Rd), gH); see [87, Thm. 9]. We will not present

these formulas in the general case but only for the spe-

cial case of two landmarks in R:

Theorem 9.11 (Prop. 23, [87]) The sectional cur-

vature on L2(R) depends only on the distance ρ = |q−q̃|
between the two landmarks q, q̃. For a metric gH, with

reproducing kernel K ∈ C2(R,R), it is given by

k(ρ) =
K(0)−K(ρ)

K(0) +K(ρ)
K ′′(ρ)− 2K(0)−K(ρ)

(K(0) +K(ρ))2
K ′(0)2 .

For a Gaussian kernel K a plot of the curvature de-

pending on the distance between the landmarks can be

seen in Fig.9.
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Fig. 9 Sectional curvature of L2(R), gK as a function of the
distance between the landmarks q0, q1. Here K was the Gaus-
sian kernel K(x) = exp(−x

2
). Original image published in [87].

10 Universal Teichmüller space as shape space

Here we sketch how Diff(S1)/PSL(2,R) parametrizes

the shape space of simple closed smooth plane curves

modulo translations and scalings and discuss the associ-

ated Riemannian metric, called the Weil-Peterson met-

ric. This metric has nonpositive curvature, is geodesi-

cally complete, and any two shapes can be connected

by a unique minimal geodesic. There exist soliton-like

solutions which are called teichons which are given by

a finite dimensional Hamiltonian system. They relate

to geodesics of shapes like landmarks do to geodesics in

Diff(Rd); see Sect. 9.7. This theory and the correspond-

ing numerical analysis has been developed in [117,118].

The use of teichons has been developed in [78].

Given a 1-dimensional closed smooth and connected

submanifold Γ in R2 = C inside the Riemann sphere
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C = C ∪ {∞}, we consider its interior Γint and its

exterior Γext which contains ∞; these are smooth 2-

manifolds with boundary. Let Dint and Dext denote the

unit disk and the exterior of the unit disk respectively.

By the smooth Riemann mapping theorem ( [126, page

323] or [130]) there exists a biholomorphic mapping

Φint : Dint → Γint extending smoothly to the bound-

aries, unique up to replacing it by Φint ◦A for a Möbius

transformation

A(z) =
az + b

bz + a
with

(
a b

b a

)
∈ PSU(1, 1) ∼= PSL(2,R).

Likewise we have a biholomorphic map between the ex-

teriors Φext : Dext → Γext which is unique by the re-

quirement that Φext(∞) = ∞ and Φ′ext(∞) > 0. The

resulting diffeomorphism

Ψ := Φ−1
ext ◦Φint : S1 → S1,

projects to a unique element of Diff+(S1)/PSL(2,R)

(here S1 is viewed as P 1(R)). It is called the fingerprint

of Γ . Any coset Ψ.PSL(2,R) comes from a shape Γ ,

and two shapes give the same coset if they differ by a

Möbius transformation in Aut(C) which fixes ∞ and

has positive derivative at ∞; i.e., by translations and

scalings.

One can reconstruct the shape Γ from the finger-

print Ψ.PSL(2,R) by welding : Construct a Riemann

surface by welding the boundaries of Dint and Dext via

the mapping Ψ . The result is conformally equivalent to

the Riemann sphere and we use a conformal mapping

Φ from the welded surface to the sphere which takes∞
to ∞ and has positive derivative at ∞. Then Γ equals

Φ−1(S1) up to a translation and a scaling of C. An

efficient numerical procedure for welding is described

in [117,118].

The quotient T := Diff(S1)/PSL(2,R), also known

as universal Teichmüller space, is naturally a coadjoint

orbit of the Virasoro group (see Sect. 7.2) and as such

it carries a natural invariant Kähler structure; see [73].

The corresponding Riemann metric can be described

as follows. For u ∈ X(S1) ∼= C∞(S1) we consider the

Fourier series u(θ) =
∑
n∈Z ane

inθ with an = a−n and

the seminorm

‖u‖2WP =
∑
n∈Z
|n3 − n||an|2.

The kernel of this seminorm consists of vector fields

of the form a1e
−iθ + a0 + a1e

iθ; i.e., ker(‖ · ‖WP) =

sl(2,R). So this gives an inner product on the tan-

gent space at the base point of T . This norm can also

be defined by the elliptic pseudodifferential operator

L = H(∂3
θ + ∂θ) via ‖u‖ =

∫
S1 L(u).udθ, where the pe-

riodic Hilbert transform H is given by convolution with

1
2π cotan( θ2 ). The inverse of L is convolution with the

Green’s function

K(θ) =
∑
|n|>1

einθ

n3 − n
=

= (1− cos θ) log (2(1− cos θ)) +
3

2
cos θ − 1.

According to Sect. 7.2, ϕ(t) ∈ Diff(S1) projects to a

geodesic in T if and only if the right logarithmic deriva-

tive u(t) = ∂tϕ(t) ◦ϕ(t)−1 satisfies

L(ut) = − ad∗u(Lu) or

(Lu)t + u.(Lu)θ + 2uθ.(Lu) = 0

and u(0) has vanishing Fourier coefficients of order −1,

0, 1. We call m = Lu ∈ (X(S1)/sl(2,R))′ the momen-

tum, with u = G ∗ m. The Weil-Petersson metric de-

scribed by L is a Sobolev metric of order 3/2. The ex-

tension to the corresponding Sobolev completions has

been worked out by [51].

If we look for the geodesic evolution of a momentum

of the form

m =

N∑
j=1

pjδ(θ − qj), so that v =

N∑
j=1

pjG(θ − qj)

a finite combination of delta distributions, which lies

outside of the image of L : X(S1)/sl→ (X(S1)/sl)′, we

see that the evolution of the parameters qj , pj is given

by the Hamiltonian system{
ṗk = −pk

∑N
j=1 pjG

′(qk − qj)
q̇k =

∑N
j=1 pjG(qk − qj)

These solutions are called Teichons, and they can be

used to approximate smooth geodesics of shapes in a

very efficient way which mimics the evolution of land-

marks. The disadvantage is, that near concave parts of

a shape the teichons crowd up exponentially. An exam-

ple of such a geodesic can be seen in Fig. 10; see [78]

and [79] for more details.

11 The space of Riemannian metrics

Let M be a compact manifold without boundary and

dim(M) = m. In this part we describe the Riemannian

geometry on Met(M), the manifold of all Riemannian

metrics on M . The L2-metric on Met(M) is given by

GEg (h, k) =

∫
M

Tr
(
g−1hg−1k

)
vol(g) ,

with g ∈ Met(M) and h, k ∈ Tg Met(M). Each tangent

vector h is a bilinear form h : TM ×M TM → R, that
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Fig. 10 Evolution of an 8-Teichon from the circle to a
Donald-Duck-like shape. Positions of individual 1-Teichons
are marked by asterisks. Original image published in [78].

is interpreted as a map TM → T ∗M . This metric has

been introduced in [43] and is also known as the Ebin-

metric. Its geodesic equation and curvature have been

calculated in [49,52], and the induced distance function

and metric completion have been studied by Clarke [28–

31].

Similar to Riemannian metrics on immersions, So-

bolev metrics of higher order and almost local metrics

can be defined using a (pseudo differential) operator

field L acting on the tangent space of Met(M). To be

more precise, let

L : T Met(M)→ T Met(M)

be a smooth base-point preserving bundle isomorphism,

such that for every g ∈ Met(M) the map

Lg : Tg Met(M)→ Tg Met(M)

is a pseudo differential operator, that is symmetric and

positive with respect to the metric GE . Then we can

define the metric GL by

GL(h, k) =

∫
M

Tr
(
g−1Lg(h)g−1k

)
vol(g) .

Let us also assume, that the operator field L is invariant

under the action of Diff(M), i.e.,

ϕ∗(Lgh) = Lϕ∗g(ϕ
∗h) .

Then the metric GL induces a Riemannian metric on

Met(M)/Diff0(M) where Diff0(M) denotes the group

of all diffeomorphisms that are homotopic to the iden-

tity. In relativity theory the Lorentzian analog of the

space Met(M)/Diff0(M) is called super space, since it

is the true phase space of Einstein’s equation.

An example for an operator field L is

Lgh = h+ (∆g)lh , l ≥ 0 .

The resulting metric GL, which is a the Sobolev metric

of order l, has been introduced in [15]. Other metrics,

that have been studied include conformal transforma-

tions of the L2-metric [15,32],

GΦg (h, k) = Φ(Volg)

∫
M

Tr
(
g−1hg−1k

)
vol(g)

with Φ ∈ C∞(R>0,R>0) and scalar curvature weighted

metrics [15],

GΦg (h, k) =

∫
M

Φ(Scalg) Tr
(
g−1hg−1k

)
vol(g) ,

with Φ ∈ C∞(R,R>0).

The main focus of the section will be on the L2-

metric.

11.1 Connections to Teichmüller theory and

information geometry

Our main motivation to consider the space of all Rie-

mannian metrics in this article lies in its possible ap-

plication to shape analysis of surfaces as explained in

Sect. 1.1; see also [62].

Another motivation for the study of the L2-metric

on the manifold of metrics can be found in its con-

nections to Teichmüller theory. Let M be a Riemann

surface of genus greater than one. Then the L2-metric,

restricted to the space Met1 of hyperbolic metrics, in-

duces the Weil-Peterson metric on Teichmüller space

Met1(M)/Diff0(M). This is described for example by

Fischer and Tromba [48] or Yamada [133,134].

A surprising connection can be also found with the

field of information geometry, since the L2-metric de-

scends to the Fisher-Rao metric on the space of volume

densities. To understand this connection we will con-

sider the Riemannian metric on Diff(M) induced by

GE . For a fixed metric g0 ∈ Met(M) we introduce the

map:

Pull : Diff(M)→ Met(M), ϕ 7→ ϕ∗g0 .

Now we can define a metric GPull on Diff(M) as the

pullback of the L2-metric under the map Pull, i.e.,

GPull
ϕ (h, k) = GE(Tϕ Pullh, Tϕ Pull k) .

This mapping and the induced metric on Diff(M) for

a variety of metrics on Met(M) is studied in [10]. The
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metric GPull is invariant under the left action by the

group Diffµ(M) of volume-preserving diffeomorphisms

and the metric induced on the quotient space

Dens(M) ∼= Diffµ(M)\Diff(M)

of densities is the Fisher-Rao metric; see [102, Thm.

4.9].

Another possibility, to see the connection to infor-

mation geometry was implicitly presented in [33]. There

the authors consider the subspace of Kähler metrics in

a fixed Kähler class – assuming that M admits a Kähler

structure. Then the Ebin metric induces the so-called

Calabi geometry on the space of Kähler metrics. It was

then observed in [71] that this space is, via the Calabi-

Yau map, isometric to the space of volume densities

with the Fisher-Rao metric.

11.2 Geodesic distance

In contrast to to the spaces of immersions, submani-

folds and the diffeomorphism group, the L2-metric on

Met(M) induces a point-separating geodesic distance

function.

Theorem 11.1 (Thm. 18, [29]) The L2-metric in-

duces a point-separating geodesic distance function on

Met(M).

Remark 11.2 Note that this result also holds for all

metrics, that are stronger than the L2-metric, i.e.,

GEg (h, h) ≤ CGg(h, h) ,

with a constant C > 0, independent of g. This applies

in particular to almost local metrics, if the function Φ
is bounded from below by Φ ≥ C > 0, as well as to

most Sobolev-type metrics.

Fix a Riemannian metric g̃ on M . For each x ∈ M
denote by Met(M)x = S2

+T
∗
xM the space of symmet-

ric, positive definite
(

0
2

)
-tensors at x. Then for b, c ∈

Ta Met(M)x the expression

γx,a(b, c) = Tr(a−1ba−1c)
√

det g̃(x)−1a

defines a Riemannian metric on the finite-dimensional

manifold Met(M)x. Denote by dx the induced geodesic

distance function and define the following distance on

Met(M),

Ω2(g0, g1) =

√∫
M

dx(g0(x), g1(x))2 vol(g̃) .

The following theorem states that computing the geode-

sic distance on Met(M) with respect to the L2-distance,

is equivalent to summing point-wise geodesic distances

on Met(M)x.

Theorem 11.3 (Thm. 3.8, [32]) Geodesic distance

induced by the L2 metric and the distance Ω2 coincide,

i.e., for all g0, g1 ∈ Met(M),

distE(g0, g1) = Ω2(g0, g1) .

Similar as in the case of the GA-metric and the So-

bolev metrics on the space of immersions the square

root of the volume is again a Lipschitz continuous func-

tion.

Theorem 11.4 (Lem. 12, [29]) Geodesic distance in-

duced by the L2-metric satisfies the inequality∣∣∣√Vol(F, g0)−
√

Vol(F, g1)
∣∣∣ ≤ √m

4
distEMet(M)(g0, g1)

for any measurable set F ⊂M . Here Vol(F, g) denotes

the volume of F ⊂M with respect to the metric g.

This implies the Lipschitz continuity of the map

√
Vol :

(
Met(M),distFMet(M)

)
→ R≥0.

On the other hand we also have the following upper

bound for the geodesic distance.

Theorem 11.5 (Prop. 4.1, [31]) For the L2-metric

the geodesic distance is bounded from above by

distE(g0, g1) ≤ C(m)
(√

Vol(F, g0) +
√

Vol(F, g1)
)
,

where F denotes the support of g1 − g0

F = {x ∈M |g0(x) 6= g1(x)} ,

and C(m) is a constant depending only on the dimen-
sion of M .

The above corollary implies that the set Metµ(M)

of all Riemannian metrics having a total volume less or

equal than µ has a finite diameter with respect to the

L2-metric.

11.3 The geodesic equation

The Christoffel symbols for the L2-metric were first cal-

culated in [43, Sect. 4]. Subsequently Freed and Groisser

[49] and Michor and Gil-Medrano [52] computed the

geodesic equation and found explicit solution formu-

las. The geodesic equation for higher order Sobolev

type metrics and Scalar curvature metrics can be found

in [15] and for volume weighted metrics in [15,33].

The geodesic equation for the L2-metric decouples

the time and spatial variables, i.e., instead of being a

PDE in (t, x), it is only an ODE in t.
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Lemma 11.6 (Sect. 4, [43]) The geodesic equation

for the L2-metric is given by the ordinary differential

equation:

gtt =
1

4
Tr(g−1gtg

−1gt)g + gtg
−1gt −

1

2
Tr(g−1gt)gt .

There exists an explicit solution formula for this ODE.

Theorem 11.7 The geodesic starting at g0 ∈ Met(M)

in the direction of h ∈ Tg0 Met(M) is given by the curve

g(t) = g0e
a(t) Id +b(t)H0 ,

where H0 is the traceless part of H := g−1
0 h, i.e., H0 =

H − Tr(H)
m Id, and where a(t) and b(t) ∈ C∞(M) are

defined by

a(t) = 2
m log

(
(1 + t

4 Tr(H))2 + m
16 Tr(H2

0 )t2
)

b(t) =


4√

mTr(H2
0 )

arctan

(√
mTr(H2

0 ) t

4+tTr(H)

)
,Tr(H2

0 ) 6= 0

t
1+ t

4 Tr(H)
, Tr(H2

0 ) = 0.

Here arctan is taken to have values in (−π2 ,
π
2 ) for the

points of the manifold where Tr(H) ≥ 0, and on a point

where Tr(H) < 0 we define

arctan

(√
mTr(H2

0 ) t

4 + tTr(H)

)

=


arctan in [0, π2 ) for t ∈ [0,− 4

Tr(H) )
π
2 for t = − 4

Tr(H)

arctan in (π2 , π) for t ∈ (− 4
Tr(H) ,∞).

Let Nh := {x ∈ M : H0(x) = 0}, and if Nh 6= ∅ let

th := inf{Tr(H)(x) : x ∈ Nh}. Then the geodesic g(t)

is defined for t ∈ [0,∞) if Nh = ∅ or if th ≥ 0, and it

is only defined for t ∈ [0,− 4
th

) if th < 0.

These formulas have been independently derived by

Freed and Groisser [49] and Michor and Gil-Medrano

[52]. A similar result is also available for the metric GΦ

with Φ(Vol) = 1
Vol ; see [33].

Remark 11.8 The geodesic equation for higher order

metrics will generally not be an ODE anymore and ex-

plicit solution formulas do not exist. Nevertheless, it

has been shown that the geodesic equations are (lo-

cally) well-posed, assuming certain conditions on the

operator field L defining the metric; see [15]. These con-

ditions are satisfied by the class of Sobolev type metrics

and conformal metrics but not by the scalar curvature

weighted metrics.

11.4 Conserved quantities

Noether’s theorem associates to any metric on Met(M),

that is invariant under pull-backs by the diffeomor-

phism group Diff(M), for each X ∈ X(M) the quantity

Gg(gt, ζX(g)) = const ,

which is conserved along each geodesic g(t). Here ζX
is the fundamental vector field of the right action of

Diff(M),

ζX(g) = LXg = 2 Sym∇g(g(X)) ,

and Sym∇g(g(X)) is the symmetrization of the bilinear

form (Y,Z) 7→ ∇gY g(X,Z), i.e.,

Sym∇g(g(X))(Y,Z) = 1
2 (∇gY g(X,Z) +∇gZg(X,Y )) .

If Gg(gt, ζX(g)) vanishes for all vector fields X ∈ X(M)

along a geodesic g(t), then g(t) intersects each Diff(M)-

orbit orthogonally.

11.5 Completeness

The L2-metric on Met(M) is incomplete, both metri-

cally and geodesically. The metric completion of it has

been studied by Clarke in [28, 31, 32]. To describe the

completion let Metf denote the set of measurable sec-

tions of the bundle S2
≥0T

∗M of symmetric, positive

semi-definite
(

0
2

)
-tensors, which have finite total vol-

ume. Define an equivalence relation on Metf by iden-

tifying g0 ∼ g1, if the following statement holds almost

surely:

g0(x) 6= g1(x)⇒ both gi(x) are not positive definite.

In other words, let D = {x : g0(x) 6= g1(x)} and Ai =

{x : gi(x) not pos. def.}. Then

g0 ∼ g1 ⇔ D \ (A0 ∩A1) has measure 0 .

Note that the map Met(M) ↪→ Metf /∼ is injective.

Theorem 11.9 (Thm. 5.17, [28]) The metric com-

pletion of the space (Met(M),distE) can be naturally

identified with Metf /∼.

In the subsequent article [32] it is shown that the

metric completion is a non-positively curved space in

the sense of Alexandrov.

Theorem 11.10 (Thm 5.6, [32]) The metric com-

pletion Met(M) of Met(M) with respect to the distE-

metric is a CAT(0) space, i.e.,

1. there exists a length-minimizing path (geodesic) be-

tween any two points in Met(M) and

2.
(
Met(M),distE

)
is a non-positively curved space in

the sense of Alexandrov.
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11.6 Curvature

For the L2-metric, there exists a comparably simple

expression for the curvature tensor.

Theorem 11.11 (Prop. 2.6, [52]) The Riemannian

curvature for the L2–metric on the manifold Met(M)

of all Riemannian metrics is given by

g−1Rg(h, k)l = 1
4 [[H,K], L]

+
m

16
(Tr(KL)H − Tr(HL)K)

+
1

16
(Tr(H) Tr(L)K − Tr(K) Tr(L)H)

+
1

16
(Tr(K) Tr(HL)− Tr(H) Tr(KL)) Id ,

where H = g−1h, K = g−1k and L = g−1l.

In the article [49] the authors have determined the

sign of the sectional curvature:

Theorem 11.12 (Cor. 1.17, [49]) The sectional cur-

vature for the L2–metric on the manifold Met(M) of

all Riemannian metrics is non-positive. For the plane

P (h, k) spanned by orthonormal h, k it is

kMet
g (P (h, k)) =

∫
M

m

16

(
Tr(HK)2 − Tr(H)2 Tr(K)2

)
+

1

4
Tr
(

([H,K])2
)

vol(g) ,

where H = g−1h and K = g−1k.

In [33] it is proven that this negative curvature carries

over to the metric-completion of (Met(M), GE), as it is

a CAT(0) space; see Lem. 11.10.

Acknowledgements We would like to thank the referees for
their careful reading of the article as well as the thoughtful
comments, that helped us improve the exposition.

References

1. D. Alekseevsky, A. Kriegl, M. Losik, and P. W. Michor.
The Riemannian geometry of orbit spaces—the metric,
geodesics, and integrable systems. Publ. Math. Debre-

cen, 62(3-4):247–276, 2003. Dedicated to Professor La-
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pects géométriques et algébriques, généralisations. [Ge-
ometric and algebraic aspects, generalizations], With an
appendix by Vlad Sergiescu.

57. A. Günther, H. Lamecker, and M. Weiser. Direct LD-
DMM of discrete currents with adaptice finite elements.
In 3nd MICCAI Workshop on Mathematical Foundations
of Computational Anatomy, pages 1–14, 2011.

58. R. S. Hamilton. The inverse function theorem of Nash
and Moser. Bull. Amer. Math. Soc. (N.S.), 7(1):65–222,
1982.

59. D. D. Holm and J. E. Marsden. Momentum maps
and measure-valued solutions (peakons, filaments, and
sheets) for the EPDiff equation. In The breadth of sym-
plectic and Poisson geometry, volume 232 of Progr. Math.,
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