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Abstract

We introduce “EloChoice”, a package for R which uses Elo rating to assess pairwise com-

parisons between stimuli in order to measure perceived stimulus characteristics. To demon-

strate the package and compare results from forced choice pairwise comparisons to those

from more standard single stimulus rating tasks using Likert (or Likert-type) items, we inves-

tigated perceptions of physical strength from images of male bodies. The stimulus set com-

prised images of 82 men standing on a raised platform with minimal clothing. Strength-

related anthropometrics and grip strength measurements were available for each man in

the set. UK laboratory participants (Study 1) and US online participants (Study 2) viewed

all images in both a Likert rating task, to collect mean Likert scores, and a pairwise compari-

son task, to calculate Elo, mean Elo (mElo), and Bradley-Terry scores. Within both studies,

Likert, Elo and Bradley-Terry scores were closely correlated to mElo scores (all rs > 0.95),

and all measures were correlated with stimulus grip strength (all rs > 0.38) and body size

(all rs > 0.59). However, mElo scores were less variable than Elo scores and were hundreds

of times quicker to compute than Bradley-Terry scores. Responses in pairwise comparison

trials were 2/3 quicker than in Likert tasks, indicating that participants found pairwise com-

parisons to be easier. In addition, mElo scores generated from a data set with half the partic-

ipants randomly excluded produced very comparable results to those produced with Likert

scores from the full participant set, indicating that researchers require fewer participants

when using pairwise comparisons.

Introduction

Likert-type rating vs pairwise comparisons

When a researcher wants to quantify some perceived characteristic for stimuli within a set,

one way to achieve this is to ask participants to rate each stimulus along an integer scale,

anchored on either end with bivalent labels. For example, a rater could be asked to evaluate the
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attractiveness (“characteristic”) of an image depicting a face (i.e. “stimulus”) along a gradient

between not attractive at all and highly attractive that could be scored along integers between 1

and 7. This is often referred to as a Likert scale [1–3] but this is technically inaccurate as Likert

himself used “scale” to refer to a group of multiple such items [4]. Discrete Visual Analogue

Scale is suggested as a general alternative [5], but we will simply refer to the practice as “Likert

rating”. When inter-rater agreement is high, and average responses are calculated from a rea-

sonable sample of raters, Likert rating tends to produce repeatable results that convey useful

information about the stimuli [6]. This represents a mathematically straight-forward process

that is easy for researchers with even minimal technical ability to complete using very basic

and readily available hardware and software tools.

From an individual participants’ perspective, however, the rating experience could be bet-

ter. The scale itself can be a challenging concept for users with a weak grasp of number lines;

for instance, small children [7], or members of some traditional, pre-literate cultures [8]. More

generally, using a rating scale can increase cognitive demand as it requires conscientious raters

to monitor their responses to each stimuli and retrospectively compare them to responses

from previous perceptive states, whereas paired comparisons imposes no such constraint [9].

One alternative to Likert rating is to show stimuli in pairs and ask participants to choose

which one better expresses some characteristic, for example, which of two faces is more attrac-

tive. The results of these pairwise comparisons can be used to quantify perceptions of a stimu-

lus according to a mathematical model that calculates its probability of being judged to be

more or less expressive than a given set of alternatives. This method was first developed in the

context of psychological research by Thurstone [10], but developed further by Bradley & Terry

[11]. A class of mathematically-related models are now often known as Bradley-Terry models

[12–13], and include a variety of sophisticated extensions and approaches to model-fitting [9,

14–16]. Also related are models that were independently derived to rank chess players—the

earliest by Zermelo [17] and the most famous by Elo [18], which in turn has led to more com-

plex derivatives such as Glicko [19] and TrueSkill™ [20].

There are a number of advantages associated with pairwise comparisons. They are less com-

plicated for participants: there are only two choices for each decision, the choices do not require

an understanding of number lines, and there is no need to track responses from previous deci-

sions. Besides this, each decision made provides information about two stimuli, therefore

representing a more efficient use of participant time. In previous contrasts, results from Likert

ratings correlate strongly with pairwise comparison methods [21–22]. Nevertheless, pairwise

comparisons are much less used, perhaps because many Bradley-Terry models, although simple

by the standards of mathematicians, are comparatively complex and computationally intensive.

However, this is no longer a serious constraint as the hardware and software capabilities to over-

come it are readily available. Elo rating, in particular, is a relatively simple approach that offers

conceptual accessibility, widespread familiarity and use [23–27], and recent programming

implementations [28–29]. The purpose of this paper is to demonstrate the application of Elo rat-

ing to pairwise comparisons of stimuli, and introduce “EloChoice”, an R package optimized for

this use and designed to be accessible even to those with limited experience of the free, and

increasingly popular, R programming environment [30]. The package including its source code

is available from https://cran.r-project.org/web/packages/EloChoice/index.html and includes a

detailed manual (https://cran.r-project.org/web/packages/EloChoice/vignettes/tutorial.pdf).

Elo rating

The following paragraphs outline the Elo rating process in brief, but further details and more

in-depth discussion are readily available [18, 23, 31, 29].

Why rate when you could compare?
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Elo rating was developed to quantify and track over time skill distribution amongst chess

players using information available from their previous matches. After a match between two

players, points are exchanged depending on both players’ prior probability of winning the

match. Each player enters with a score based on their match records, and the disparity between

scores is used to predict the probability of outcomes, according to the following formulas,

which assume a logistical distribution [18]:

E1 ¼
1

1þ 10ðS2 � S1Þ=400
ð1Þ

E2 ¼
1

1þ 10ðS1 � S2Þ=400
ð2Þ

where E1 and E2 are the estimated probabilities of a win for players 1 and 2 respectively, and S1

and S2 are their current scores. Players with equal scores are expected to be equally likely to

win. After each new match, more information is available and is used to update each player’s

scores, according to the following formulas:

S0
1
¼ S1 þ kðO1 � E1Þ ð3Þ

S02 ¼ S2 þ kðO2 � E2Þ ð4Þ

where O1 and O2 are the actual outcomes for players 1 and 2 respectively (win = 1, loss = 0), S’1

and S’2 are their new scores, and k is a constant representing maximum point exchange. The

exact value of k affects how quickly scores change and their eventual range, but, given a suffi-

cient number of matches, will have a limited effect on player rankings [29, 31–32].

A key feature of the system is that the less expected the win, the more scores change (both

for winner and loser). An unsurprising victory over a far weaker opponent will not result in a

large score change, but an upset win will. Therefore, the highest scores require wins over most

other opponents, including those with above-average ability.

Elo rating can be readily adapted to quantify the distribution of perceived attributes for a

set of stimuli on an interval scale, allowing simple side-by-side comparisons while taking into

account disparity between stimuli. Each pairwise comparison can be seen as a contest between

two stimuli, with the one chosen as a better exemplar of some attribute being the winner. All

stimuli begin with the same starting score, but diverge as successive comparisons take place.

Because the number of points exchanged in any comparison is symmetrical (the winner’s

gains equal the loser’s losses), the mean score will always equal the starting score, so long as

the number of stimuli in the set remains stable. When stimuli are paired randomly, the scores

should quickly converge to a stable ranking, assuming sufficient variation among stimuli and

a reasonable degree of shared perceptions among rating participants. As with chess players,

there is no requirement that all combinations of stimuli are observed, and, indeed, this is one

of the system’s chief advantages [33].

There are at least two problems associated with the Elo rating system in the context of this

application, but both are readily surmountable. The first problem arises from the fact that final

scores can be influenced by the sequence order of contests, because the same contest outcomes

will produce different results depending on the order in which they are observed. This is

appropriate when the targets being scored are entities that may become weaker or stronger

with time (such as players gaining or losing skill), but psychological stimuli are typically static

in this regard and hence the order of events is not capturing any useful information. As there

is nothing special about the sequence of contests presented to participants, any variation in

Why rate when you could compare?
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final scores introduced by sequence variation is undesirable noise. To counter this problem,

we propose a simple fix; randomly shuffle the original sequence presented to participants mul-

tiple times to create multiple virtual sequences, and average Elo scores for each stimuli from

the different sequences to generate mean Elo scores that are free from sequence noise.

A second problem is that there is currently no commonly accepted way to measure consis-

tency across paired comparison trials. It is often desirable to measure the consistency of ratings

for stimuli across multiple raters (to gauge the extent to which raters share perceptions about

targets), and in the case of Likert rating this is most appropriately achieved by calculating the

intraclass correlation coefficient (ICC) [34–35]. To provide a conceptually (but not directly)

comparable value, our solution is to propose a novel measure, the Elo consistency index,

which tracks how often outcomes deviate from predictions based on previous judgments (that

is, those trials in which the stimulus with the lower Elo score was chosen–in other words, an

upset or reversal). Because the preceding Elo score is generated by the judgements made in

previous comparisons, violations of expected outcomes can be seen as inconsistency between

judgements. This inconsistency can occur both between and within raters. The index will be

biased towards tracking one form of inconsistency or the other depending on the ratio of raters

to the times each rater makes a judgement on each stimulus. In the case that each rater makes

only one judgement on each stimulus, the index will be entirely tracking between-rater consis-

tency (because each preceding Elo score was generated by judgements made by previous raters

only). The index can be calculated for any sequence of trials (across any number of raters) and

is defined by the following formula:

R ¼ 1 �

PN
i¼1

ui

N
ð5Þ

where u is a vector of 1’s and 0’s, in which a 1 indicates that the expected outcome was violated

and a 0 indicates that it was not, and N is the total number of trials for which an expectation

existed (that is, for all trials in which the preceding Elo score difference was not 0). The result-

ing index value will vary between 0 and 1. Index values approach 1 as fewer expectation viola-

tions (or upsets/reversals) are observed, and approach 0 as more are observed. An index value

of 0.5 indicates random choice, but values of less than 0.5 are technically possible. Index values

for each sequence generated can be averaged to produce a mean consistency index score to

correspond with mean Elo scores.

A weighted version of the Elo consistency index can be calculated by taking into account

the score disparity observed in expectation violations, according to the following formula:

R0 ¼ 1 �
XN

i¼1

ui�wiP
w

ð6Þ

where u is the same vector described above and w is the absolute difference in preceding Elo

scores between members of a trial. This can be understood as the proportion of all points

exchanged in a sequence that were correctly predicted by preceding Elo scores. The weighted

consistency index will again vary between 0 and 1, and larger expectation violations (that is,

where the difference in preceding Elo scores is greater) will negatively impact values of R
more. Generally the weighted consistency index value is expected to be greater than the

unweighted value, as the magnitude of difference between Elo scores should negatively predict

probability of an expectation violation.

To demonstrate Elo rating in action and to compare it both to Likert rating and to a basic

Bradley-Terry model, we use the example of perceived physical strength from stimuli com-

posed of images of human male bodies. Previous research using Likert-type ratings have

shown that participants judging strength from photographs of men’s bodies display high inter-

Why rate when you could compare?
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rater agreement, and mean ratings correlate robustly with men’s actual measured strength and

strength-related body measurements [36]. We use both laboratory (Study 1) and online partic-

ipants (Study 2) to demonstrate that the Elo-rating method is appropriate in both contexts.

Study 1—Laboratory rating

Methods

Target stimuli. Stimuli consisted of digital images (399 x 710 pixels) of 82 men (mean
age = 21.4, sd = 2.5, min = 18, max = 30) depicted standing on a raised platform and facing

the camera. The men are wearing only a pair of black boxer briefs. Their heads are digitally

blurred, making positive identification from face alone impossible. Images were all captured

from the same camera, mounted on a tripod at the same height, location and orientation.

Anthropometric measures were collected from each man on the day he was image was cap-

tured. The men who posed for the images gave written informed consent beforehand, and

were reimbursed for their time (£40 GBP). Approval for their participation was given by the

Faculty of Science Human Research Ethics Committee, at the University of Bristol.

Stimuli measures. We used hand grip strength as an assay of overall physical strength,

as it easy to collect and previous research has shown it to be highly correlated with other mea-

sures, such as chest and shoulder strength [36]. Each man who posed for stimulus images was

instructed to squeeze a hand dynamometer as hard as he could using one hand. Trials were

completed for both the right hand and the left hand separately. For each man, the average of

these two squeezes (measured in kg) was taken and used as the grip strength score associated

with the stimulus image (mean = 39.5, sd = 7.1).

Body size has also been found to correlate with upper-body strength in males [36]. We

used six anthropometric measures to construct a proxy of body size: height, weight, shoulder

circumference, chest circumference, bicep circumference and forearm circumference. We per-

formed a principal components analysis on these measures and used scores for the first princi-

pal component (explaining 72.4% of total variance) as our body size score (PC1 of body size;

mean = 0, sd = 2.1). Grip strength and PC1 of body size were moderately correlated (r = 0.46).

Rating participants. 56 participants (28 male, 28 female; mean age = 19.9, sd = 1.98)

took part in the rating study. These participants were students recruited from the University

of Bristol either by opportunity sampling (word of mouth) or for partial course credit in the

undergraduate Psychology programme. Participants gave written informed consent before

completing any task. Approval for their participation was given by the Faculty of Science

Human Research Ethics Committee, at the University of Bristol.

Rating procedure. Participants viewed each image three times, once within a Likert rating

task, and twice within a paired comparison task. The order of these tasks was counterbalanced.

The tasks were presented on a laboratory computer using e-Prime software. Each participant

completed the tasks in private, and no time requirement was specified.

For the Likert rating task, images were presented sequentially in random order. Each image

was presented for 2 seconds before text appeared, reading, “How strong is this man?” accom-

panied by a 7-point scale anchored by “very weak” at point 1 and “very strong” at point 7. Par-

ticipants used the keyboard to indicate a response, and time to make a response was recorded.

82 responses were required to complete the task.

The paired comparison task was presented in two blocks. In each block, each image was

randomly paired with a different image and each pair was presented in random order. The

paired images were presented side by side. Each pair was presented for 2 seconds before text

appeared, reading, “Which man is stronger?”. Participants used the keyboard to indicate a

response by pressing ‘z’ to choose the image on the left, and ‘m’ to choose the image on the

Why rate when you could compare?
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right. Again, response time was recorded. 41 responses were required to complete each block,

and 82 responses were required to complete the task.

Rating measures. For each stimulus image, Likert responses from all rating participants

were averaged to generate a mean Likert rating score.

To generate Elo scores for each stimulus image, all paired comparison trials were arranged

in their original sequence, ordered first by rating participant number and then by trial number.

Beginning Elo scores were set to 0, and k was arbitrarily set to 100, following precedent [29].

Using Formulas 1–4, updates to Elo scores were calculated for each trial sequentially—each

trial involved updating scores for two images. Final Elo scores were the scores for each image

after the calculation performed for the last trial within the sequence.

Elo scores were calculated for each image using the original sequence, as described above,

and then for 99 randomized trial sequences. Final Elo scores from each of the 100 sequences

were averaged together to generate mean Elo (mElo) scores for each image. For comparative

purposes, an additional set of mElo scores was generated by averaging Elo scores across 1000

sequences (the original sequence plus 999 randomized sequences). These are referred to as

mElo(M) scores in the subsequent analyses.

Scores were collected by extracting worth parameters from a Bradley-Terry model fit using

the paired comparison data. As these scores are highly skewed, they are log-transformed for

the purposes of correlations.

Statistical software. All analyses were conducted in R version 3.2.1 [30].

Principal components analysis was conducted using the “FactoMineR” package [37].

Elo and mElo scores and the Elo consistency indices were calculated using the “EloChoice”

package [38].

Bradley-Terry models were fit and worth parameters extracted using the “psychotools”

package [39].

Comparisons between overlapping and non-overlapping correlations from dependent

groups were conducted using the “cocor” package [40] and Williams’s t [41].

Intraclass correlation coefficients were calculated using “irr” package [42].

Comparisons between means from dependent groups were conducted using the “perfect-t-

test” script [43].

Results

All analyses shown incorporate responses from male and female rating participants together,

as we were not interested in sex differences for this project.

Descriptive statistics of rating measures. Table 1 displays descriptive statistics for Likert

ratings of perceived strength, and Elo scores (from the original sequence), mElo scores, mElo

(M) scores, and Bradley-Terry scores from perceived strength comparisons for the sample of

82 stimulus images.

Table 1. Descriptive statistics for mean Likert ratings, Elo scores, mElo scores (using 100 iterations), mElo(M) scores (using 1000 iterations) and Bradley-Terry

scores for the 82 stimulus images.

mean standard deviation median minimum maximum
Likert 3.97 0.90 3.89 2.14 5.91

Elo 0 289.5 -11 -727 755

mElo 0 292.8 -29.6 -686.2 628.3

mElo(M) 0 292.2 -33.2 -672.7 635.0

Bradley-Terry 0.012 0.024 0.0028 0.000085 0.15

https://doi.org/10.1371/journal.pone.0190393.t001
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Correlations between rating measures and stimuli measures. All rating measures were

strongly correlated with each other (see Table 2), particularly in the cases of mElo, mElo(M)

and Bradley-Terry scores (log-transformed), which were almost perfect correlated (all rs>

0.999).

All ratings measures were correlated with stimuli measures (grip strength and PC1 of body

size) to a similar extent (see Table 3), although these relationships were weakest for mean

Likert ratings.

The very similar results obtained by mElo and mElo(M) suggest that there is little to be

gained by generating mElo scores from greater than 100 sequences.

Comparing Elo and mElo scores. The 100 sequences used to calculate the mElo scores

each produced their own set of Elo scores. Considered separately, each set significantly corre-

lated with grip strength, but the strength of these correlations varied (0.35 < all rs< 0.49).

This was also the case for correlations with PC1 of body size (0.56< all rs< 0.68). These 100

sets of Elo scores were all strongly correlated with each other, but again with considerable vari-

ation (0.86< all rs < 0.95).

Fig 1 shows Elo scores from the original sequence and mElo scores for individual stimulus

images on the same plot for comparison.

Comparing Likert ratings and mElo scores from reduced data sets. To show how the

relationships between measures of perceived strength and stimulus variables is affected by the

number of raters, Likert ratings of perceived strength and mElo scores from perceived strength

comparisons were recalculated using just the first half of rating participants (n = 28; 14 males

and 14 females), and then again using just the first quarter of rating participants (n = 14; 7

males and 7 females). Correlation coefficients (rs) for these relationships using the full, half,

and quarter participant sets are show in Table 4.

For the Likert ratings, correlations from the halved set were significantly smaller than those

from the full set (grip strength: t = -2.100, df = 79, p = 0.039�; PC1 of body size: t = -2.412,

df = 79, p = 0.018�), and correlations from the quartered set were significantly smaller than

those from the halved set (grip strength: t = -3.616, df = 79, p< 0.001���; PC1 of body size:

t = -3.203, df = 79, p = 0.004��).

For the mElo scores, correlations from the halved set were significantly smaller than those

from the full set (grip strength: t = -2.144, df = 79, p = 0.035�; PC1 of body size: t = -4.524,

df = 79, p< 0.001���), but correlations from the quartered set were not significantly smaller

than those from the halved set.

Table 2. Correlations between mean Likert ratings, Elo scores, mElo scores (100 iterations), mElo(M) scores

(1000 iterations), and log-transformed Bradley-Terry scores for the 82 stimulus images.

Likert Elo mElo mElo(M)

Likert -

Elo 0.91 -

mElo 0.96 0.95 -

mElo(M) 0.96 0.95 1 -

Bradley-Terry 0.96 0.95 1 1

https://doi.org/10.1371/journal.pone.0190393.t002

Table 3. Correlations between stimuli measures (grip strength and PC1 of body size) and rating measures (mean Likert ratings, Elo scores, mElo scores (100 itera-

tions), mElo(M) scores (1000 iterations), and log-transformed Bradley-Terry scores) for the 82 stimulus images.

Likert Elo mElo mElo(M) Bradley-Terry

grip strength 0.4 0.43 0.44 0.44 0.45

PC1 of body size 0.6 0.68 0.65 0.65 0.65

https://doi.org/10.1371/journal.pone.0190393.t003
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Consistency of Likert ratings and mElo scores. To measure inter-rater consistency of

Likert ratings, an average score intraclass correlation coefficient (model: two-way; type: consis-

tency) was calculated [34]. The result (ICC = 0.984, 95% CI: 0.979 < ICC< 0.989) indicates

very high agreement between raters about the perceived strength of targets.

To measure inter-trial consistency of perceived strength comparisons used to calculate

mElo scores, we used the novel consistency indices described (formulas 5 and 6). The mean

unweighted consistency index was 0.766, while the mean weighted consistency index was

0.864. It is important to note that these values are not directly comparable with ICC values.

The unweighted value indicates that 76.6% of trial outcomes were concordant with the predic-

tions of preceding Elo scores, and the weighted value indicates that the direction of 86.4% of

all points exchanged was predicted by preceding Elo scores. Both values indicate high consis-

tency of judgements between trials.

How many raters are needed to establish stable consistency indices?. Values for the

consistency indices are expected to become more accurate as the number of raters increases.

This is because the number of trials with an expected result will increase, effectively increasing

the sample size from which to estimate consistency. To demonstrate how many raters are

needed before these estimates become stable, the weighted consistency index was re-calculated

multiple times starting with data from just the first rater (according to the original sequence),

then adding the second rater, then the third rater, and so on until all 56 raters were included.

Fig 2 depicts these results, showing that index values reached a stable plateau after roughly 30

Fig 1. Elo scores from the original sequence (grey circles) and mElo scores (black circles) are depicted for each of

the stimulus images, arranged from left to right in order of decreasing mElo score. The whiskers depict the range of

Elo scores from the 100 sequences generated to calculate the mElo scores.

https://doi.org/10.1371/journal.pone.0190393.g001

Table 4. Correlation coefficients for relationships between Likert ratings and mElo scores and stimulus variables

for full, half and quarter participant sets.

Likert ratings mElo scores

grip strength PC1 of body size grip strength PC1 of body size

full set 0.40 0.60 0.44 0.65

½ set 0.37 0.57 0.41 0.60

¼ set 0.32 0.53 0.38 0.57

https://doi.org/10.1371/journal.pone.0190393.t004
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raters. This could also be used as an indication of the minimal number of raters required to

produce relatively stable rankings of mElo scores.

Comparing decision times for Likert ratings and paired comparison tasks. Mean deci-

sion times (in milliseconds) for Likert ratings (mean = 995.6, sd = 392.6) were compared to

mean decision times (in milliseconds) for paired comparisons (mean = 635.8, sd = 233.7)

using a paired t-test. The result indicates a significant difference between the two (t55 = 7.65,

p< 0.001���), and a large effect size (Hedges’ g = 1.1, 95% CI: 0.76< g< 1.46).

Fig 3 shows mean decision times for Likert ratings and paired comparisons.

Comparing computation times for mElo and Bradley-Terry scores. Both mElo and

Bradley-Terry models involve more computation than either Likert or Elo. To compare the

time it takes to compute scores via these methods, we timed each procedure on the same lap-

top computer (2.2 GHz processor speed, 8 GB RAM), using R’s system.time function. The

elapsed time for computing mElo scores for the entire data set was 3 seconds. The elapsed time

for computing Bradley-Terry scores for the entire data set was 1017 seconds.

Study 2—Online rating

The results of Study 1 suggest that mElo scores correspond well with Likert ratings for tasks

completed within the lab, but with the advantages offered by web-based data collection (speed,

cost, diversity of participants) it is important to check whether comparable results are obtained

for tasks completed online. Previous research indicates that online performance is generally

good compared to performance in labs [44] and that attention to instructions is actually better

[45].

Methods

Target stimuli, stimuli measures, rating measures and statistical software were identical to

Study 1, but mElo(M) scores (based on 1000 sequences) were not calculated.

Fig 2. Weighted consistency indices for the original sequence (small grey circles) and mean weighted consistency

indices (large black circles) calculated for an increasing number of Study 1 raters (1–56, in increments of 1). The

whiskers represent inter-quartile ranges of indices from the 100 sequences generated to calculate the mean index.

https://doi.org/10.1371/journal.pone.0190393.g002
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Rating participants. 96 participants (59 male, 37 female; mean age = 32.6, sd = 9.31) took

part in and completed the rating study. These participants were recruited from mTurk (US res-

idents only) and paid $3 USD for participation. Before completing any task, participants gave

informed consent by ticking a check box stating that they had read and understood the proce-

dure. Approval for their participation was given by the Faculty of Science Human Research

Ethics Committee, at the University of Bristol.

Rating procedure. Participants viewed each image three times, once within a Likert rating

task, and twice within a paired comparison task. The order of these tasks was counterbalanced.

The tasks were presented using Xperiment online presentation software (www.experiment.

mobi). Unlike Study 1, no response times were recorded.

For the Likert rating task, images were presented sequentially in random order. Each image

was presented for 2 seconds before text appeared, reading, “How strong is this man?” accom-

panied by a 7-point scale anchored by “very weak” at point 1 and “very strong” at point 7.

Participants clicked a point on the scale to indicate a response. 82 responses were required to

complete the task.

The paired comparison task was presented in two blocks. In each block, each image was

randomly paired with a different image and each pair was presented in random order. The

paired images were presented side by side for 2 seconds before text appeared, reading, “Which

man is stronger?”. Participants indicated a response by clicking on the button corresponding

to either the left or right image. 41 responses were required to complete each block, and 82

responses were required to complete the task.

Results

All analyses shown incorporate responses from male and female rating participants together,

as we were not interested in sex differences for this project.

Fig 3. Violin plots depict the distribution of response times for paired comparison trials (left), and Likert trials

(right). Individual values are depicted by small grey circles. Error bars depict within-subject 95% confidence intervals.

Means are depicted by large black circles.

https://doi.org/10.1371/journal.pone.0190393.g003
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Descriptive statistics. Table 5 displays descriptive statistics for Likert ratings of perceived

strength, and Elo scores (from the original sequence), mElo scores, and Bradley-Terry scores

for the sample of 82 stimulus images.

Correlations between rating measures and stimuli measures. All rating measures were

strongly correlated with each other (see Table 6), particularly mElo and Bradley-Terry scores

(log-transformed), which were almost perfect correlated (r = 0.9992).

All ratings measures were correlated with stimuli measures (grip strength and PC1 of body

size) to a similar extent (see Table 7).

Correlations between rating measures from Study 1 and Study 2. To examine whether

lab participants and online participants produce similar results using these rating measures,

we correlated ratings and scores from Studies 1 and 2 (see Table 8). The measures were

strongly correlated with one another, indicating that mode of delivery (lab or online) did not

have a great impact.

Comparing Elo and mElo scores. Fig 4 shows Elo scores from the original sequence and

mElo scores for individual stimulus images on the same plot for comparison.

Table 5. Descriptive statistics for mean Likert ratings, Elo scores, mElo scores and Bradley-Terry scores for the 82 stimulus images.

mean standard deviation median minimum maximum
Likert 3.90 0.79 3.76 2.16 5.65

Elo 0 277.8 -34 -571 628

mElo 0 255.8 -20.7 -620.2 562.4

Bradley-Terry 0.012 0.019 0.0044 0.00019 0.096

https://doi.org/10.1371/journal.pone.0190393.t005

Table 6. Correlations between mean Likert ratings, Elo scores, mElo scores and log-transformed Bradley-Terry

scores for the 82 stimulus images.

Likert Elo mElo

Likert -

Elo 0.92 -

mElo 0.97 0.95 -

Bradley-Terry 0.97 0.94 1

https://doi.org/10.1371/journal.pone.0190393.t006

Table 7. Correlations between stimuli measures (grip strength and PC1 of body size) and rating measures (mean

Likert ratings, Elo scores, mElo scores and log-transformed Bradley-Terry scores) for the 82 stimulus images.

Likert Elo mElo Bradley-Terry

grip strength 0.38 0.40 0.43 0.43

PC1 of body size 0.61 0.59 0.62 0.62

https://doi.org/10.1371/journal.pone.0190393.t007

Table 8. Correlations between rating measure scores from Study 1 and Study 2.

Study 2

Likert Elo mElo Bradley-Terry

Study 1 Likert 0.98

Elo 0.91 0.85

mElo 0.96 0.91 0.97

Bradley-Terry 0.96 0.92 0.97 0.97

https://doi.org/10.1371/journal.pone.0190393.t008
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Consistency of Likert ratings and mElo scores. To measure inter-rater consistency of

Likert ratings, an average score intraclass correlation coefficient (model: two-way; type: consis-

tency) was calculated. The result (ICC = 0.99, 95% CI: 0.985< ICC< 0.994) indicates very

high agreement between raters about the perceived strength of targets.

To measure inter-trial consistency of perceived strength comparisons used to calculate

mElo scores, we used the novel consistency indices described (formulas 5 and 6). The mean

unweighted consistency index was 0.740, while the mean weighted consistency index was

0.837. Again, note that these values are not directly comparable with ICC values. The

unweighted value indicates that 74.0% of trial outcomes were concordant with the predictions

of preceding Elo scores, and the weighted value indicates that the direction of 83.7% of all

points exchanged was predicted by preceding Elo scores. Both values indicate high consistency

of judgements between trials.

How many raters are needed to establish stable consistency indices?. As in Study 1, to

demonstrate how many raters are needed before estimates of consistency become stable, the

weighted consistency index was re-calculated multiple times, starting with data from just the

first rater (according to the original sequence), then adding the second rater, then the third

rater, and so on until all 96 raters were included. Fig 5 depicts these results, showing that index

values changed little after about 40 raters. Again, this could also be used as an indication of the

minimal number of raters required to produce relatively stable rankings of mElo scores.

Comparing computation times for Bradley-Terry and mElo scores. To compare the

time it takes to compute scores via mElo and Bradley-Terry methods, we timed each procedure

on the same laptop computer (2.2 GHz processor speed, 8 GB RAM), using R’s system.time

function. The elapsed time for computing mElo scores for the entire data set was 5 seconds.

The elapsed time for computing Bradley-Terry scores for the entire data set was 904 seconds.

Discussion

Likert ratings, Elo scores and Bradley-Terry scores were closely correlated with mElo scores,

indicating that they were tracking perceptions similarly. Each measure of perceived strength

Fig 4. Elo scores from the original sequence (grey circles) and mElo scores (black circles) are depicted for each of

the stimulus images, arranged from left to right in order of decreasing mElo. The whiskers depict the range of Elo

scores from the 100 sequences generated to calculate the mElo scores.

https://doi.org/10.1371/journal.pone.0190393.g004
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was also similarly correlated with actual strength and strength-related measurements of the

men depicted in the stimuli, indicating that these perceptions reliably track actual physical

differences between men, as reported by Sell et al. [36]. In addition, these relationships were

observed in both the laboratory, using a primarily UK undergraduate participant base, and

online, using a more diversely aged US participant base. On the basis of these facts alone, there

is little to separate one measure from another, and little reason to favour one above the other

options. However, we argue that mElo scores represent a good alternative option to Elo scores,

Bradley-Terry scores and Likert ratings, for distinct reasons.

Figs 1 and 4 demonstrates the range of Elo scores that can result from different sequences

of the same trial comparisons with the same outcomes, and the range of correlations with grip

strength and PC1 of body size (Study 1) demonstrates why this is problematic. As argued ear-

lier, this variation in final scores represents an undesirable feature in the context of our rating

temporally stable features, and we proposed mElo scores to address this issue. When multiple

mElo scores are generated, each using the same trial data but using different randomly shuffled

sequence orders, the results are far less variable. Each mElo score was almost perfectly corre-

lated with all others, and there was no detectable variation between them when predicting

actual strength and strength-related measurements. This was even the case for the one mElo

score that was generated using 1000 different sequence orders, which indicates that, in this

case at least, using 100 sequence orders is sufficient and saves computing time without cost.

We argue that the mElo approach is conceptually simpler than standard Bradley-Terry

models, and thus more likely to appeal to researchers who are new to pairwise comparison.

Our results suggest that mElo is computationally simpler as well, calculating score in 5 seconds

or less, whereas Bradley-Terry models took over 15 minutes. This could be related to the num-

ber of stimuli used in our example, so studies using an even greater number of stimuli may suf-

fer even greater time disparities.

Although results from Likert ratings and mElo scores were largely similar for this task,

the procedure for obtaining them was quite different, leading to a very divergent participant

Fig 5. Weighted consistency indices for the original sequence (small grey circles) and mean weighted consistency

indices (large black circles) calculated for an increasing number of Study 1 raters (1–96, in increments of 1). The

whiskers represent inter-quartile ranges of indices from the 100 sequences generated to calculate the mean index.

https://doi.org/10.1371/journal.pone.0190393.g005
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experience. Participants completed pairwise comparison trials significantly quicker than rating

trials, and the effect size for this difference was large (see Fig 3). Taking response time as a

proxy of cognitive load [46], the speed difference between the trial types indicates that partici-

pants found the pairwise comparisons to be easier. This is likely to be a particularly important

consideration for more difficult tasks (e.g. rating characteristics which are not readily appar-

ent, such as personality traits from faces [47], or kinship in monkeys [48]), or for participant

groups that have either compromised capacity or limited experience with stimulus tasks, par-

ticularly those involving novel concepts.

In addition, because participants complete pairwise comparison tasks more quickly, they

might be willing to be paid less to provide similarly useful information. This is not the only

way in which pairwise comparisons may prove to be more efficient. Note that correlations

with actual strength and strength-related measures deteriorated as more raters were excluded

for both Likert ratings and mElo scores, despite strong correlations with ratings and scores

from the full participant set. This indicates that collecting data from more participants is likely

to beneficial for both methods. However, also note that the mElo scores obtained from the

halved set had strikingly similar associations with stimulus variables as Likert ratings from the

full set did, and similarly mElo scores from the quartered set produced similar associations as

Likert ratings from the halved set (see Table 2). If this pattern is typical of other data sets, this

suggests that only half as many pairwise comparison participants are required to produce

results equivalent to those from ratings tasks. This could represent a considerable savings for

researchers both in time and participant payments.

In conclusion, using pairwise comparisons in conjunction with the “EloChoice” package

represents a simple alternative option for researchers interested in quantifying perceived char-

acteristics of stimuli, offering participants a less demanding experience while requiring fewer

of them, and representing a minimal learning cost even for researchers inexperienced with R.
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